JP6497581B2 - Refrigerator unit - Google Patents

Refrigerator unit Download PDF

Info

Publication number
JP6497581B2
JP6497581B2 JP2015050073A JP2015050073A JP6497581B2 JP 6497581 B2 JP6497581 B2 JP 6497581B2 JP 2015050073 A JP2015050073 A JP 2015050073A JP 2015050073 A JP2015050073 A JP 2015050073A JP 6497581 B2 JP6497581 B2 JP 6497581B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
electric expansion
expansion valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015050073A
Other languages
Japanese (ja)
Other versions
JP2016169906A (en
Inventor
裕志 八藤後
裕志 八藤後
光洋 加藤
光洋 加藤
三原 一彦
一彦 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015050073A priority Critical patent/JP6497581B2/en
Priority to CN201610133013.5A priority patent/CN105972883B/en
Publication of JP2016169906A publication Critical patent/JP2016169906A/en
Application granted granted Critical
Publication of JP6497581B2 publication Critical patent/JP6497581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Description

本発明は冷凍機ユニットに関する。   The present invention relates to a refrigerator unit.

従来より冷凍装置は、圧縮手段、ガスクーラ、絞り手段等から冷凍サイクルが構成され、圧縮手段で圧縮された冷媒がガスクーラにて放熱し、絞り手段にて減圧された後、蒸発器にて冷媒を蒸発させて、このときの冷媒の蒸発により周囲の空気を冷却するものとされていた。近年、この種冷凍装置では、自然環境問題などからフロン系冷媒が使用できなくなってきている。このため、フロン冷媒の代替品として自然冷媒である二酸化炭素を使用するものが開発されている。当該二酸化炭素冷媒は、高低圧差の激しい冷媒で、臨界圧力が低く、圧縮により冷媒サイクルの高圧側が超臨界状態となることが知られている(例えば、特許文献1参照)。
また、給湯機を構成するヒートポンプ装置では、ガスクーラにて優れた加熱作用が得られる二酸化炭素冷媒が使用されるようになってきており、その場合にガスクーラから出た冷媒を2段膨張させ、各膨張装置の間に気液分離器を介設して、圧縮機にガスインジェクションできるようにするものも開発されている(例えば、特許文献2参照)。
一方、例えばショーケース等に設置された蒸発器において吸熱作用を利用し、庫内を冷却する冷凍装置では、外気温度(ガスクーラ側の熱源温度)が高い等の原因により、ガスクーラ出口の冷媒温度が高くなる条件下においては、蒸発器入口の比エンタルピが大きくなるため、冷凍能力が著しく低下する問題がある。そのようなときに、冷凍能力を確保するため、圧縮手段の吐出圧力(高圧側圧力)を上昇させると、圧縮動力が増大して成績係数が低下してしまう。
そこで、ガスクーラで冷却された冷媒を二つの冷媒流に分流し、分流された一方の冷媒流を補助絞り手段で絞った後、スプリット熱交換器の一方の通路に流し、他方の冷媒流をスプリット熱交換器の他方の流路に流して熱交換させた後、主絞り手段を介して蒸発器に流入させる所謂スプリットサイクルの冷凍装置が提案されている。係る冷凍装置によれば、減圧膨張された第1の冷媒流により第2の冷媒流を冷却でき、蒸発器入口の比エンタルピを小さくすることで、冷凍能力を改善することができるものであった(例えば、特許文献3参照)。
Conventionally, a refrigeration apparatus has a refrigeration cycle composed of a compression means, a gas cooler, a throttle means, etc., and the refrigerant compressed by the compression means dissipates heat in the gas cooler and is depressurized by the throttle means, and then the refrigerant is discharged by the evaporator. The surrounding air was cooled by evaporation of the refrigerant at this time. In recent years, chlorofluorocarbon refrigerants cannot be used in this type of refrigeration system due to natural environmental problems. For this reason, the thing using the carbon dioxide which is a natural refrigerant | coolant is developed as a substitute of a fluorocarbon refrigerant | coolant. The carbon dioxide refrigerant is a refrigerant having a high and low pressure difference, and has a low critical pressure. It is known that the high pressure side of the refrigerant cycle is brought into a supercritical state by compression (see, for example, Patent Document 1).
Moreover, in the heat pump device constituting the water heater, a carbon dioxide refrigerant capable of obtaining an excellent heating action in the gas cooler has been used. In that case, the refrigerant discharged from the gas cooler is expanded in two stages, There has also been developed an apparatus in which a gas-liquid separator is interposed between expansion devices to enable gas injection into a compressor (see, for example, Patent Document 2).
On the other hand, for example, in an refrigeration system that uses an endothermic action in an evaporator installed in a showcase or the like to cool the interior, the refrigerant temperature at the outlet of the gas cooler is high due to factors such as high outside air temperature (heat source temperature on the gas cooler side). Under higher conditions, the specific enthalpy at the inlet of the evaporator increases, which causes a problem that the refrigerating capacity is remarkably reduced. In such a case, if the discharge pressure (high-pressure side pressure) of the compression means is increased in order to ensure the refrigeration capacity, the compression power increases and the coefficient of performance decreases.
Therefore, the refrigerant cooled by the gas cooler is divided into two refrigerant streams, one of the divided refrigerant streams is squeezed by the auxiliary throttle means, and then flows into one passage of the split heat exchanger, and the other refrigerant stream is split. A so-called split-cycle refrigeration apparatus has been proposed in which heat is exchanged by flowing through the other flow path of the heat exchanger and then flows into the evaporator via the main throttle means. According to such a refrigeration apparatus, the second refrigerant flow can be cooled by the first refrigerant flow expanded under reduced pressure, and the refrigeration capacity can be improved by reducing the specific enthalpy at the inlet of the evaporator. (For example, refer to Patent Document 3).

特公平7−18602号公報Japanese Patent Publication No. 7-18602 特開2007−178042号公報JP 2007-178042 A 特開2011−133207号公報JP 2011-133207 A

このような従来の技術においては、オイルセパレータ中のオイルが高温となると、オイル粘度が下がり、圧縮機の摺動部に摩耗が発生する場合があった。
本発明は、上述した事情に鑑みてなされたものであり、オイルセパレータ内のオイル温度を冷却できる冷凍機ユニットを提供することを目的とする。
In such a conventional technique, when the oil in the oil separator becomes high temperature, the oil viscosity is lowered, and the sliding portion of the compressor may be worn.
This invention is made | formed in view of the situation mentioned above, and aims at providing the refrigerator unit which can cool the oil temperature in an oil separator.

上記目的を達成するために、本発明は、圧縮機を配置した機械室と、室外熱交換器、送風機を配置した熱交換室とを備えた冷凍機ユニットにおいて、前記室外熱交換器が前記熱交換室の側面から背面に沿って配置され、前記室外熱交換器は、正面視において前記機械室の後方にまで延びており、ユニット本体の中央部に前記機械室と前記熱交換室とを仕切る仕切板が上下方向全体にわたって設けられ、前記仕切板は、上面視で後方にかけて、斜めに折り曲げられ、前記仕切板の後端部は、前記室外熱交換器の端部に固定され、前記送風機は、前記ユニット本体の前面に配置され、前記圧縮機の吐出部に設けたオイルセパレータを、前記室外熱交換器と前記送風機との間であって、正面視において前記送風機と重なる位置であり、かつ、前記仕切り板に隣接する位置に配置した、ことを特徴とする。 To achieve the above object, the present invention includes a machine room disposed compressor, an outdoor heat exchanger, the refrigeration unit comprising a heat exchange chamber arranged blower, the outdoor heat exchanger the heat The outdoor heat exchanger is arranged from the side surface to the back surface of the exchange chamber, and extends to the rear of the machine room in a front view, and partitions the machine room and the heat exchange chamber at the center of the unit body. A partition plate is provided over the entire vertical direction, the partition plate is bent obliquely from the rear in a top view, a rear end portion of the partition plate is fixed to an end portion of the outdoor heat exchanger, and the blower is An oil separator disposed on the front surface of the unit main body and provided in a discharge portion of the compressor is between the outdoor heat exchanger and the blower, and is in a position overlapping the blower in a front view, and , The above Ri plate was positioned adjacent to, that is characterized.

また、本発明は、冷凍サイクルの冷媒に二酸化炭素冷媒を使用したことを特徴とする。   Further, the present invention is characterized in that a carbon dioxide refrigerant is used as a refrigerant for the refrigeration cycle.

本発明によれば、圧縮機の吐出部に設けたオイルセパレータを、送風機の送風経路内に配置したため、送風機の送風によりオイルセパレータ内のオイル温度を冷却できる冷凍機ユニットを提供できる。   According to this invention, since the oil separator provided in the discharge part of the compressor was arrange | positioned in the ventilation path of an air blower, the refrigerator unit which can cool the oil temperature in an oil separator by ventilation of an air blower can be provided.

本発明の実施形態に係る冷凍装置における冷凍サイクルの回路図である。It is a circuit diagram of the refrigerating cycle in the refrigerating device concerning the embodiment of the present invention. 図1の冷凍サイクルの制御装置が実行する2段膨張サイクルとスプリットサイクルの併用サイクルのP−H線図である。FIG. 2 is a PH diagram of a combined cycle of a two-stage expansion cycle and a split cycle executed by the refrigeration cycle control device of FIG. 1. 図1の冷凍サイクルの制御装置が実行する2段膨張サイクルのP−H線図である。FIG. 2 is a PH diagram of a two-stage expansion cycle executed by the refrigeration cycle control device of FIG. 1. 図1の冷凍サイクルの制御装置が実行するスプリットサイクルの併用サイクルのP−H線図である。FIG. 2 is a PH diagram of a combined cycle of split cycles executed by the control device for the refrigeration cycle in FIG. 1. 冷凍機ユニットの前面カバーを外した状態の概略を示す斜視図である。It is a perspective view which shows the outline of the state which removed the front cover of the refrigerator unit. 冷凍機ユニットの前面カバーを外した状態の概略を示す正面図である。It is a front view which shows the outline of the state which removed the front cover of the refrigerator unit. ユニット本体の分解斜視図である。It is a disassembled perspective view of a unit main body.

以下、図面を参照しながら本発明の実施形態を説明する。図1は本発明を適用する一実施例にかかる冷凍装置Rの冷媒回路図である。本実施例における冷凍装置Rは、スーパーマーケット等の店舗の機械室等に設置された冷凍機ユニット3と、店舗の売り場内に設置された一台若しくは複数台(図面では一台のみ示す)のショーケース4とを備え、これら冷凍機ユニット3とショーケース4とが、ユニット出口6とユニット入口7を介して、冷媒配管(液管)8及び冷媒配管9により連結されて所定の冷媒回路1を構成している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus R according to an embodiment to which the present invention is applied. The refrigeration apparatus R in this embodiment is a show of a refrigerator unit 3 installed in a machine room or the like of a store such as a supermarket, and one or a plurality of units (only one is shown in the drawing) installed in the store sales area. The refrigerator unit 3 and the showcase 4 are connected by a refrigerant pipe (liquid pipe) 8 and a refrigerant pipe 9 via a unit outlet 6 and a unit inlet 7 so that a predetermined refrigerant circuit 1 is provided. It is composed.

この冷媒回路1は、高圧側の冷媒圧力がその臨界圧力以上(超臨界)となる二酸化炭素(R744)を冷媒として用いる。この二酸化炭素冷媒は、地球環境に優しく、可燃性及び毒性等を考慮した自然冷媒である。また、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等、既存のオイルが使用される。   The refrigerant circuit 1 uses, as a refrigerant, carbon dioxide (R744) in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure (supercritical). This carbon dioxide refrigerant is a natural refrigerant that is friendly to the global environment and takes into consideration flammability and toxicity. As the lubricating oil, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.

冷凍機ユニット3は、圧縮手段としての圧縮機11を備える。本実施例において、圧縮機11は、内部中間圧型2段圧縮式ロータリコンプレッサであり、密閉容器12と、この密閉容器12の内部空間の上部に配置収納された駆動要素としての電動要素13及びこの電動要素13の下側に配置され、その回転軸により駆動される第1の(低段側)回転圧縮要素(第1の圧縮要素)14及び第2の(高段側)回転圧縮要素(第2の圧縮要素)16から成る回転圧縮機構部にて構成されている。   The refrigerator unit 3 includes a compressor 11 as compression means. In this embodiment, the compressor 11 is an internal intermediate pressure type two-stage compression rotary compressor, and includes an airtight container 12, an electric element 13 as a drive element disposed and housed in the upper part of the internal space of the airtight container 12, and the A first (low stage side) rotary compression element (first compression element) 14 and a second (high stage side) rotary compression element (first stage) disposed below the electric element 13 and driven by the rotating shaft thereof. 2 compression elements) 16 and a rotary compression mechanism.

圧縮機11の第1の回転圧縮要素14は、冷媒配管9を介して冷媒回路1の低圧側から圧縮機11に吸い込まれる低圧冷媒を圧縮して中間圧まで昇圧して吐出し、第2の回転圧縮要素16は、第1の回転圧縮要素14で圧縮されて吐出された中間圧の冷媒を更に吸い込み、圧縮して高圧まで昇圧し、冷媒回路1の高圧側に吐出する。圧縮機11は、周波数可変型の圧縮機であり、電動要素13の運転周波数を変更することで、第1の回転圧縮要素14及び第2の回転圧縮要素16の回転数を制御可能とする。   The first rotary compression element 14 of the compressor 11 compresses the low-pressure refrigerant sucked into the compressor 11 from the low-pressure side of the refrigerant circuit 1 through the refrigerant pipe 9 and raises it to an intermediate pressure for discharge. The rotary compression element 16 further sucks in the intermediate pressure refrigerant compressed and discharged by the first rotary compression element 14, compresses it to a high pressure, and discharges it to the high pressure side of the refrigerant circuit 1. The compressor 11 is a variable frequency compressor, and the rotational frequency of the first rotary compression element 14 and the second rotary compression element 16 can be controlled by changing the operating frequency of the electric element 13.

圧縮機11の密閉容器12の側面には、第1の回転圧縮要素14に連通する低段側吸込口17と、密閉容器12内に連通する低段側吐出口18と、第2の回転圧縮要素16に連通する高段側吸込口19及び高段側吐出口21が形成されている。圧縮機11の低段側吸込口17には、冷媒導入配管22の一端が接続され、その他端はユニット入口7にて冷媒配管9に接続されている。   On the side surface of the sealed container 12 of the compressor 11, a low-stage suction port 17 communicating with the first rotary compression element 14, a low-stage discharge port 18 communicating with the inside of the sealed container 12, and a second rotational compression A high-stage suction port 19 and a high-stage discharge port 21 communicating with the element 16 are formed. One end of the refrigerant introduction pipe 22 is connected to the lower stage side suction port 17 of the compressor 11, and the other end is connected to the refrigerant pipe 9 at the unit inlet 7.

低段側吸込口17より第1の回転圧縮要素14の低圧部に吸い込まれた低圧(LP:通常運転状態で2.6MPa程)の冷媒ガスは、当該第1の回転圧縮要素14により中間圧(MP:通常運転状態で5.5MPa程度)に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となる。   The low-pressure refrigerant gas (LP: about 2.6 MPa in the normal operation state) sucked into the low-pressure portion of the first rotary compression element 14 from the low-stage suction port 17 is intermediate pressure by the first rotary compression element 14. The pressure is increased to (MP: about 5.5 MPa in a normal operation state) and discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP).

そして、密閉容器12内の中間圧の冷媒ガスが吐出される圧縮機11の低段側吐出口18には、中間圧吐出配管23の一端が接続され、その他端はインタクーラ24の入口に接続されている。このインタクーラ24は、第1の回転圧縮要素14から吐出された中間圧の冷媒を空冷するものであり、当該インタクーラ24の出口には、中間圧吸入配管26の一端が接続され、この中間圧吸入配管26の他端は圧縮機11の高段側吸込口19に接続される。   One end of the intermediate pressure discharge pipe 23 is connected to the low-stage discharge port 18 of the compressor 11 from which the intermediate pressure refrigerant gas in the sealed container 12 is discharged, and the other end is connected to the inlet of the intercooler 24. ing. The intercooler 24 air-cools the intermediate pressure refrigerant discharged from the first rotary compression element 14, and one end of an intermediate pressure suction pipe 26 is connected to the outlet of the intercooler 24. The other end of the pipe 26 is connected to the higher stage suction port 19 of the compressor 11.

高段側吸込口19より第2の回転圧縮要素16に吸い込まれた中間圧(MP)の冷媒ガスは、当該第2の回転圧縮要素16により2段目の圧縮が行われて高温高圧(HP:通常運転状態で9MPa程の超臨界圧力)の冷媒ガスとなる。   The intermediate pressure (MP) refrigerant gas sucked into the second rotary compression element 16 from the high-stage side suction port 19 is compressed in the second stage by the second rotary compression element 16 to generate a high temperature and high pressure (HP). : Supercritical pressure of about 9 MPa in a normal operation state).

そして、圧縮機11の第2の回転圧縮要素16の高圧室側に設けられた高段側吐出口21には、高圧吐出配管27の一端が接続され、その他端はガスクーラ(放熱器)28の入口に接続されている。20はこの高圧吐出配管27内に介設されたオイルセパレータである。オイルセパレータ20は圧縮機11から吐出された冷媒中のオイルを分離し、オイル通路25Aと電動弁25Bを介して圧縮機11の密閉容器12内に戻す。尚、55は圧縮機11内のオイルレベルを検出するフロートスイッチである。   One end of a high-pressure discharge pipe 27 is connected to the high-stage discharge port 21 provided on the high-pressure chamber side of the second rotary compression element 16 of the compressor 11, and the other end is a gas cooler (heat radiator) 28. Connected to the entrance. An oil separator 20 is provided in the high-pressure discharge pipe 27. The oil separator 20 separates the oil in the refrigerant discharged from the compressor 11 and returns it to the sealed container 12 of the compressor 11 through the oil passage 25A and the electric valve 25B. Reference numeral 55 denotes a float switch for detecting the oil level in the compressor 11.

ガスクーラ28は、圧縮機11から吐出された高圧の吐出冷媒を冷却するものであり、ガスクーラ28の近傍には当該ガスクーラ28を空冷する送風機31が配設されている。   The gas cooler 28 cools the high-pressure discharged refrigerant discharged from the compressor 11, and a blower 31 for air-cooling the gas cooler 28 is disposed in the vicinity of the gas cooler 28.

ガスクーラ28の出口にはガスクーラ出口配管32の一端が接続され、このガスクーラ出口配管32の他端は圧力調整用絞り手段としての電動膨張弁33の入口に接続されている。この電動膨張弁33はガスクーラ28から出た冷媒を絞って膨張させると共に、電動膨張弁33から上流側の冷媒回路1の高圧側圧力の調整を行うためのもので、その出口はタンク入口配管34を介してタンク36の上部に接続されている。   One end of a gas cooler outlet pipe 32 is connected to the outlet of the gas cooler 28, and the other end of the gas cooler outlet pipe 32 is connected to an inlet of an electric expansion valve 33 as a pressure adjusting throttle means. The electric expansion valve 33 is used to squeeze and expand the refrigerant discharged from the gas cooler 28 and to adjust the high-pressure side pressure of the refrigerant circuit 1 upstream from the electric expansion valve 33, and the outlet thereof is a tank inlet pipe 34. It is connected to the upper part of the tank 36 via.

このタンク36は内部に所定容積の空間を有する容積体であり、その下部にはタンク出口配管37の一端が接続され、このタンク出口配管37の他端がユニット出口6にて冷媒配管8に接続されている。   The tank 36 is a volume body having a predetermined volume space inside, and one end of a tank outlet pipe 37 is connected to the lower part of the tank 36, and the other end of the tank outlet pipe 37 is connected to the refrigerant pipe 8 at the unit outlet 6. Has been.

一方、店舗内に設置されるショーケース4は、冷媒配管8及び9に接続される。ショーケース4には、主絞り手段としての電動膨張弁39と蒸発器41が設けられており、冷媒配管8と冷媒配管9との間に順次接続されている(電動膨張弁39が冷媒配管8側、蒸発器41が冷媒配管9側)。蒸発器41には、当該蒸発器41に送風する図示しない冷気循環用送風機が隣設されている。そして、冷媒配管9は、上述したように冷媒導入配管22を介して圧縮機11の第1の回転圧縮要素14に連通する低段側吸込口17に接続されている。   On the other hand, the showcase 4 installed in the store is connected to the refrigerant pipes 8 and 9. The showcase 4 is provided with an electric expansion valve 39 and an evaporator 41 as main throttle means, which are sequentially connected between the refrigerant pipe 8 and the refrigerant pipe 9 (the electric expansion valve 39 is connected to the refrigerant pipe 8). Side, the evaporator 41 is the refrigerant pipe 9 side). The evaporator 41 is provided with a cool air circulation blower (not shown) that blows air to the evaporator 41. The refrigerant pipe 9 is connected to the low-stage suction port 17 that communicates with the first rotary compression element 14 of the compressor 11 via the refrigerant introduction pipe 22 as described above.

他方、タンク36の上部にはガス配管42の一端が接続されており、このガス配管42の他端は第1の補助回路用絞り手段としての電動膨張弁43の入口に接続されている。ガス配管42はタンク36上部からガス冷媒を流出させ、電動膨張弁43に流入させる。この電動膨張弁43の出口には、中間圧戻り配管44の一端が接続され、その他端は圧縮機11の中間圧部に繋がる中間圧領域の一例として中間圧吸入配管26の途中に連通されている。この中間圧戻り配管44中にスプリット熱交換器29の第1の流路29Aが介設されている。   On the other hand, one end of a gas pipe 42 is connected to the upper portion of the tank 36, and the other end of the gas pipe 42 is connected to an inlet of an electric expansion valve 43 as a first auxiliary circuit throttle means. The gas pipe 42 causes the gas refrigerant to flow out from the upper portion of the tank 36 and to flow into the electric expansion valve 43. One end of the intermediate pressure return pipe 44 is connected to the outlet of the electric expansion valve 43, and the other end is connected to the middle pressure suction pipe 26 as an example of an intermediate pressure region connected to the intermediate pressure portion of the compressor 11. Yes. A first flow path 29 A of the split heat exchanger 29 is interposed in the intermediate pressure return pipe 44.

また、タンク36の下部には液配管46の一端が接続されており、この液配管46の他端は電動膨張弁43の下流側の中間圧戻り配管44に連通されている。また、この液配管46中には第2の補助回路用絞り手段としての電動膨張弁47が介設されている。これら電動膨張弁43(第1の補助回路用絞り手段)と電動膨張弁47(第2の補助回路用絞り手段)が本出願における補助絞り手段を構成する。また、液配管46はタンク36下部から液冷媒を流出させ、電動膨張弁47に流入させる。そして、これら中間圧戻り配管44と、電動膨張弁43、47と、これら電動膨張弁43、47の上流側にあるガス配管42及び液配管46が本発明における補助回路48を構成する。   One end of a liquid pipe 46 is connected to the lower part of the tank 36, and the other end of the liquid pipe 46 is connected to an intermediate pressure return pipe 44 on the downstream side of the electric expansion valve 43. Further, an electric expansion valve 47 as a second auxiliary circuit throttle means is interposed in the liquid pipe 46. The electric expansion valve 43 (first auxiliary circuit throttle means) and the electric expansion valve 47 (second auxiliary circuit throttle means) constitute auxiliary throttle means in the present application. Further, the liquid pipe 46 causes liquid refrigerant to flow out from the lower portion of the tank 36 and to flow into the electric expansion valve 47. The intermediate pressure return pipe 44, the electric expansion valves 43 and 47, and the gas pipe 42 and the liquid pipe 46 on the upstream side of the electric expansion valves 43 and 47 constitute an auxiliary circuit 48 in the present invention.

このような構成により、電動膨張弁33はガスクーラ28の下流側であって電動膨張弁39の上流側に位置する。また、タンク36は電動膨張弁33の下流側であって電動膨張弁39の上流側に位置する。更に、スプリット熱交換器29はタンク36の下流側であって電動膨張弁39の上流側に位置することになり、以上により本実施例における冷凍装置Rの冷媒回路1が構成される。   With such a configuration, the electric expansion valve 33 is located downstream of the gas cooler 28 and upstream of the electric expansion valve 39. The tank 36 is located downstream of the electric expansion valve 33 and upstream of the electric expansion valve 39. Furthermore, the split heat exchanger 29 is positioned downstream of the tank 36 and upstream of the electric expansion valve 39, and the refrigerant circuit 1 of the refrigeration apparatus R in this embodiment is configured as described above.

この冷媒回路1の各所には種々のセンサが取り付けられている。即ち、高圧吐出配管27には高圧センサ49が取り付けられて冷媒回路1の高圧側圧力HP(圧縮機11からガスクーラ28に吐出される冷媒の圧力である圧縮機11の高段側吐出口21と電動膨張弁33の入口の間の圧力)を検出する。また、冷媒導入配管22には低圧センサ51が取り付けられて冷媒回路1の低圧側圧力LP(電動膨張弁39の出口と低段側吸込口17の間の圧力)を検出する。また、中間圧吸入配管26には中間圧センサ52が取り付けられて冷媒回路の1の中間圧領域の圧力である中間圧MP(密閉容器12内と高段側吸込口19の間、電動膨張弁43、47の出口以降の中間圧戻り配管44内の圧力)を検出する。   Various sensors are attached to various portions of the refrigerant circuit 1. That is, a high pressure sensor 49 is attached to the high pressure discharge pipe 27, and the high pressure side pressure HP of the refrigerant circuit 1 (the high pressure side discharge port 21 of the compressor 11, which is the pressure of the refrigerant discharged from the compressor 11 to the gas cooler 28). The pressure between the inlets of the electric expansion valve 33 is detected. A low pressure sensor 51 is attached to the refrigerant introduction pipe 22 to detect a low pressure LP of the refrigerant circuit 1 (pressure between the outlet of the electric expansion valve 39 and the low stage suction port 17). Further, an intermediate pressure sensor 52 is attached to the intermediate pressure suction pipe 26, and an intermediate pressure MP (the pressure between the inside of the hermetic container 12 and the high-stage side suction port 19, between the electric expansion valve and the intermediate pressure region 1 of the refrigerant circuit). The pressure in the intermediate pressure return pipe 44 after the outlets 43 and 47) is detected.

また、スプリット熱交換器29の下流側のタンク出口配管37にはユニット出口センサ53が取り付けられており、このユニット出口センサ53はタンク36内の圧力TPを検出する。このタンク36内の圧力は、即ち、冷凍機ユニット3から出て冷媒配管8から電動膨張弁39に流入する冷媒の圧力となる。更にまた、圧縮機11の高段側吐出口21に接続された高圧吐出配管27には吐出温度センサ61が取り付けられ、圧縮機11からガスクーラ28に吐出される冷媒の温度(吐出温度)を検出する。
また、タンク出口配管37にはユニット出口温度センサ54が取り付けられ、冷媒導入配管22にはユニット入口温度センサ56が取り付けられている。
A unit outlet sensor 53 is attached to the tank outlet pipe 37 on the downstream side of the split heat exchanger 29, and this unit outlet sensor 53 detects the pressure TP in the tank 36. That is, the pressure in the tank 36 becomes the pressure of the refrigerant flowing out of the refrigerator unit 3 and flowing into the electric expansion valve 39 from the refrigerant pipe 8. Furthermore, a discharge temperature sensor 61 is attached to the high-pressure discharge pipe 27 connected to the high-stage discharge port 21 of the compressor 11 to detect the temperature (discharge temperature) of the refrigerant discharged from the compressor 11 to the gas cooler 28. To do.
A unit outlet temperature sensor 54 is attached to the tank outlet pipe 37, and a unit inlet temperature sensor 56 is attached to the refrigerant introduction pipe 22.

そして、これらセンサ49、51、52、53、54、56、61はマイクロコンピュータから構成された冷凍機ユニット3の制御手段を構成する制御装置57の入力に接続され、フロートスイッチ55も制御装置57の入力に接続される。また、制御装置57の出力には圧縮機11の電動要素13、電動弁25B、送風機31、電動膨張弁(圧力調整用絞り手段)33、電動膨張弁(第1の補助回路用絞り手段)43、電動膨張弁(第2の補助回路用絞り手段)47、電動膨張弁(主絞り手段)39が接続され、制御装置57は各センサの出力と設定データ等に基づいてこれらを制御する。   These sensors 49, 51, 52, 53, 54, 56, 61 are connected to the input of the control device 57 constituting the control means of the refrigerator unit 3 composed of a microcomputer, and the float switch 55 is also connected to the control device 57. Connected to the input. The output of the control device 57 includes the electric element 13 of the compressor 11, the electric valve 25 </ b> B, the blower 31, the electric expansion valve (pressure adjusting throttle means) 33, and the electric expansion valve (first auxiliary circuit throttle means) 43. The electric expansion valve (second auxiliary circuit throttle means) 47 and the electric expansion valve (main throttle means) 39 are connected, and the control device 57 controls them based on the output of each sensor, setting data and the like.

尚、以後はショーケース4側の電動膨張弁(主絞り手段)38や前述した冷気循環用送風機も制御装置57が制御するものとして説明するが、それらは実際には店舗の主制御装置(図示せず)を介し、制御装置57と連携して動作するショーケース4側の制御装置(図示せず)により制御される。従って、本発明における制御手段は制御装置57やショーケース4側の制御装置、前述した主制御装置等を含めた概念とする。   In the following description, it is assumed that the control device 57 controls the electric expansion valve (main throttle means) 38 on the showcase 4 side and the above-mentioned cool air circulation blower. Through a control device (not shown) on the side of the showcase 4 that operates in cooperation with the control device 57. Therefore, the control means in the present invention has a concept including the control device 57, the control device on the showcase 4 side, the main control device described above, and the like.

(2)冷凍装置Rの動作
以上の構成で、次に冷凍装置Rの動作を説明する。制御装置57により圧縮機11の電動要素13が駆動されると、第1の回転圧縮要素14及び第2の回転圧縮要素16が回転し、低段側吸込口17より第1の回転圧縮要素14の低圧部に低圧(前述したLP:通常運転状態で2.6MPa程)の冷媒ガス(二酸化炭素)が吸い込まれる。そして、第1の回転圧縮要素14により中間圧(前述したMP:通常運転状態で5.5MPa程度)に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となる。
(2) Operation of Refrigeration Apparatus R Next, the operation of the refrigeration apparatus R with the above configuration will be described. When the electric element 13 of the compressor 11 is driven by the control device 57, the first rotary compression element 14 and the second rotary compression element 16 rotate and the first rotary compression element 14 is rotated from the low-stage suction port 17. The refrigerant gas (carbon dioxide) having a low pressure (LP: about 2.6 MPa in a normal operation state) is sucked into the low pressure portion. Then, the pressure is increased to an intermediate pressure (MP described above: about 5.5 MPa in the normal operation state) by the first rotary compression element 14 and discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP).

そして、密閉容器12内の中間圧の冷媒ガスは低段側吐出口18から中間圧吐出配管23を経てインタクーラ24に入り、そこで空冷された後、中間圧吸入配管26を経て高段側吸込口19に戻る。この高段側吸込口19に戻った中間圧(MP)の冷媒ガスは、第2の回転圧縮要素16に吸い込まれ、この第2の回転圧縮要素16により2段目の圧縮が行われて高温高圧(HP:前述した通常運転状態で9MPa程の超臨界圧力)の冷媒ガスとなり、高段側吐出口21から高圧吐出配管27に吐出される。   Then, the intermediate-pressure refrigerant gas in the sealed container 12 enters the intercooler 24 from the low-stage discharge port 18 through the intermediate-pressure discharge pipe 23, and is air-cooled there, and then through the intermediate-pressure suction pipe 26 and the high-stage suction port. Return to 19. The intermediate pressure (MP) refrigerant gas that has returned to the high-stage suction port 19 is sucked into the second rotary compression element 16, and the second stage compression is performed by the second rotary compression element 16, resulting in a high temperature. The refrigerant gas becomes high-pressure (HP: supercritical pressure of about 9 MPa in the above-described normal operation state) and is discharged from the high-stage discharge port 21 to the high-pressure discharge pipe 27.

高圧吐出配管27に吐出された冷媒ガスはオイルセパレータ20に流入し、冷媒に含まれたオイルが分離される。分離されたオイルはオイル通路25Aを通り、電動弁25Bを経て密閉容器12内に戻される。尚、制御装置57はフロートスイッチ55が検出する密閉容器12内のオイルレベルに基づき、電動弁25Bを制御してオイルの戻し量を調整し、密閉容器12内のオイルレベルを維持する。   The refrigerant gas discharged to the high-pressure discharge pipe 27 flows into the oil separator 20, and the oil contained in the refrigerant is separated. The separated oil passes through the oil passage 25A, and is returned to the hermetic container 12 through the electric valve 25B. The control device 57 controls the motor-operated valve 25B based on the oil level in the sealed container 12 detected by the float switch 55, and adjusts the return amount of oil to maintain the oil level in the sealed container 12.

(2−1)電動膨張弁33の制御
一方、オイルセパレータ20でオイルが分離された冷媒ガスは、次にガスクーラ28に流入して空冷された後、ガスクーラ出口配管32を経て電動膨張弁(圧力調整用絞り手段)33に至る。この電動膨張弁33は、当該電動膨張弁33より上流側の冷媒回路1の高圧側圧力HPを所定の目標値THP(例えば前述した9MPa等。後述する如く設定される)に制御するために設けられており、高圧センサ49の出力に基づき、制御装置57によりその弁開度が制御される。
(2-1) Control of Electric Expansion Valve 33 On the other hand, the refrigerant gas from which the oil has been separated by the oil separator 20 flows into the gas cooler 28 and is air-cooled, and then passes through the gas cooler outlet pipe 32 and then the electric expansion valve (pressure). Adjustment throttling means) 33. The electric expansion valve 33 is provided to control the high-pressure side pressure HP of the refrigerant circuit 1 upstream of the electric expansion valve 33 to a predetermined target value THP (for example, 9 MPa as described above, set as described later). The valve opening degree is controlled by the control device 57 based on the output of the high pressure sensor 49.

(2−1−1)電動膨張弁33の始動時開度の設定
ここで先ず、制御装置57は外気温度を示す指標である高圧センサ49の検出圧力(高圧側圧力HP)に基づいて冷凍装置Rの始動時における電動膨張弁33の開度(始動時開度)を設定する。高圧センサ49が検出する高圧側圧力HPと外気温度との間には相関関係があるため、制御装置57は高圧側圧力HPから外気温度を判断することができる。そして、実施例の場合、制御装置57は始動時における高圧側圧力HP(外気温度)と電動膨張弁33の始動時の弁開度の関係を示すデータテーブルを予め有しており、始動時における外気温度を推定し、上記データテーブルに基づいて高圧側圧力HP(外気温度)が高い程増大し、逆に高圧側圧力HPが低い程減少する方向(データテーブルに設定されている)で、電動膨張弁33の始動時の弁開度を設定する。
(2-1-1) Setting of the opening degree at the start of the electric expansion valve 33 Here, first, the control device 57 is based on the detected pressure (high pressure side pressure HP) of the high pressure sensor 49 which is an index indicating the outside air temperature. The opening of the electric expansion valve 33 at the start of R (starting opening) is set. Since there is a correlation between the high pressure side pressure HP detected by the high pressure sensor 49 and the outside air temperature, the controller 57 can determine the outside temperature from the high pressure side pressure HP. In the case of the embodiment, the control device 57 has in advance a data table showing the relationship between the high-pressure side pressure HP (outside air temperature) at the time of starting and the opening degree of the electric expansion valve 33 at the time of starting. The outside air temperature is estimated, and the electric pressure increases in proportion to the higher high pressure side pressure HP (outside air temperature) based on the above data table, and conversely decreases as the high pressure side pressure HP decreases (set in the data table). The opening degree of the expansion valve 33 when starting is set.

これにより、外気温度が高い環境での圧縮機11の起動(冷凍装置Rの始動)時に、電動膨張弁33より上流側の冷媒回路1の高圧側圧力HPが異常に上昇してしまうことを抑制し、圧縮機11の保護を図ることが可能となる。また、圧縮機11は特に起動時に高圧側圧力HPが上昇する。そのため、所定の高い値(異常な高圧)で圧縮機11を強制的に停止する保護動作が設けられているが、電動膨張弁33の始動時弁開度を上記の如く設定することで、強制停止も抑制、若しくは、防止することが可能となる。   This suppresses the high pressure side pressure HP of the refrigerant circuit 1 upstream of the electric expansion valve 33 from abnormally rising when the compressor 11 is started (starting of the refrigeration apparatus R) in an environment where the outside air temperature is high. As a result, the compressor 11 can be protected. Further, the high pressure side pressure HP of the compressor 11 increases particularly at the time of starting. For this reason, a protective operation for forcibly stopping the compressor 11 at a predetermined high value (abnormally high pressure) is provided. By setting the opening degree of the electric expansion valve 33 as described above, Stopping can also be suppressed or prevented.

尚、実施例では高圧センサ49が検出する高圧側圧力HPから制御装置57が外気温度を推定するようにしたが、それに限らず、別途外気温度センサを設けて直接外気温度を検出するようにしてもよい(以下、同じ)。   In the embodiment, the controller 57 estimates the outside air temperature from the high pressure side pressure HP detected by the high pressure sensor 49. However, the present invention is not limited to this, and a separate outside temperature sensor is provided to directly detect the outside air temperature. It is good (hereinafter the same).

(2−1−2)運転中における高圧側圧力HPの目標値THPの設定
更に、制御装置57は上記の如く外気温度を示す指標である高圧センサ49の検出圧力(高圧側圧力HP)に基づいて前述した目標値THPを設定する。この場合、制御装置57は高圧側圧力HP(外気温度)が高い程高くし、逆に低い程低くする方向で目標値THPを設定する。この場合の高圧側圧力HPの目標値THPの標準となる値は、前述した9MPa等となる。制御装置57は高圧センサ49が検出する高圧側圧力HPと目標値THPの差から電動膨張弁33の弁開度の調整値(ステップ数)を算出し、前述した始動時の弁開度に加算して電動膨張弁33を制御する。これにより、高圧側圧力HPを目標値THPに制御する。
(2-1-2) Setting of the target value THP of the high pressure side pressure HP during operation Further, the control device 57 is based on the detected pressure (high pressure side pressure HP) of the high pressure sensor 49 which is an index indicating the outside air temperature as described above. To set the target value THP described above. In this case, the control device 57 sets the target value THP in such a direction that the higher the high-pressure side pressure HP (outside air temperature), the higher the pressure, and vice versa. In this case, the standard value of the target value THP of the high pressure side pressure HP is 9 MPa as described above. The control device 57 calculates the adjustment value (number of steps) of the valve opening of the electric expansion valve 33 from the difference between the high pressure side pressure HP detected by the high pressure sensor 49 and the target value THP, and adds it to the valve opening at the time of starting described above. Thus, the electric expansion valve 33 is controlled. Thereby, the high pressure side pressure HP is controlled to the target value THP.

尚、この場合も予め設定されたデータテーブルを用いても良いし、計算式から算出しても良い。但し、制御が難しい場合には前述した如く外気温度センサを用いて直接外気温度を取り込むと良い。   In this case as well, a preset data table may be used, or may be calculated from a calculation formula. However, when the control is difficult, it is preferable to directly take in the outside temperature using the outside temperature sensor as described above.

これにより、外気温度が高い環境では電動膨張弁33より上流側の高圧側圧力HPの運転中における目標値THPが高くなり、外気温度が低い環境では目標値THPが低くなる。即ち、高い外気温度の影響で高圧側圧力HPが高くなる状況ではその目標値THPが高くなるので、電動膨張弁33の弁開度が過度に大きくなってタンク36内の圧力が高くなり過ぎる不都合を防止することができるようになる。逆に、低い外気温度で高圧側圧力HPが低くなる状況では目標値THPも低くなるので、電動膨張弁33の弁開度が過度に小さくなってタンク36に流入する冷媒量が減少する不都合も防止することができるようになる。   As a result, the target value THP during operation of the high-pressure side pressure HP upstream from the electric expansion valve 33 is high in an environment where the outside air temperature is high, and the target value THP is low in an environment where the outside air temperature is low. That is, since the target value THP increases in a situation where the high pressure side pressure HP increases due to the influence of a high outside air temperature, the valve opening degree of the electric expansion valve 33 becomes excessively large and the pressure in the tank 36 becomes too high. Can be prevented. Conversely, in a situation where the high pressure side pressure HP is low at a low outside air temperature, the target value THP is also low, so that the valve opening degree of the electric expansion valve 33 becomes excessively small and the amount of refrigerant flowing into the tank 36 is reduced. Can be prevented.

そして、これらによって季節の移り変わりに伴う外気温度の変化に関わらず、電動膨張弁33の弁開度を適切に制御し、冷凍装置Rの冷凍能力の確保と圧縮機11の保護の双方を好適に実現することができるようになる。   Then, regardless of the change in the outside air temperature due to the change of season, the valve opening degree of the electric expansion valve 33 is appropriately controlled, and both the securing of the refrigeration capacity of the refrigeration apparatus R and the protection of the compressor 11 are suitably performed. Can be realized.

(2−1−3)高圧側圧力HPの上限値MHPでの制御
尚、上述のように制御を行っているときに、設置環境や負荷の影響で電動膨張弁33より上流側の高圧側圧力HPが所定の上限値MHP(例えば、11MPa等)に上昇してしまった場合、制御装置57は電動膨張弁33の弁開度を所定ステップ増大させる。この弁開度の増大により、高圧側圧力HPは低下する方向に向かうので、高圧側圧力HPを常に上限値MHP以下に維持することができるようになる。これにより、電動膨張弁33より上流側の高圧側圧力HPの異常上昇を的確に抑制して圧縮機11の保護を確実に行うことが可能となり、異常な高圧による前述した圧縮機11の強制停止(保護動作)を未然に回避することが可能となる。
(2-1-3) Control with the upper limit value MHP of the high pressure side pressure HP When the control is performed as described above, the high pressure side pressure upstream of the electric expansion valve 33 due to the influence of the installation environment and load. When HP has increased to a predetermined upper limit value MHP (for example, 11 MPa or the like), the control device 57 increases the valve opening of the electric expansion valve 33 by a predetermined step. As the valve opening increases, the high-pressure side pressure HP tends to decrease, so that the high-pressure side pressure HP can always be kept below the upper limit value MHP. As a result, it is possible to reliably suppress the abnormal increase in the high-pressure side pressure HP upstream from the electric expansion valve 33 and reliably protect the compressor 11, and forcibly stop the compressor 11 due to the abnormal high pressure. (Protection operation) can be avoided in advance.

ガスクーラ28から出た超臨界状態の冷媒ガスは、この電動膨張弁33で絞られて膨張することにより液化していき、タンク入口配管34を経て上部からタンク36内に流入して一部が蒸発する。このタンク36は電動膨張弁33を出た液/ガスの冷媒を一旦貯留し、分離する役割と、冷凍装置Rの高圧側圧力(この場合は、タンク36より上流側の圧縮機11の高圧吐出配管27までの領域)の圧力変化や冷媒循環量の変動を吸収する役割を果たす。このタンク36内下部に溜まった液冷媒は、タンク出口配管37から流出し(主回路38)、スプリット熱交換器29の第2の流路29Bにて後述するように第1の流路29A(補助回路48)を流れる冷媒により冷却(過冷却)された後、冷凍機ユニット3から出て冷媒配管8から電動膨張弁(主絞り手段)39に流入する。   The supercritical refrigerant gas emitted from the gas cooler 28 is liquefied by being throttled and expanded by the electric expansion valve 33, and flows into the tank 36 from the upper part via the tank inlet pipe 34, and a part thereof is evaporated. To do. The tank 36 temporarily stores and separates the liquid / gas refrigerant that has exited the electric expansion valve 33 and the high-pressure side pressure of the refrigeration apparatus R (in this case, the high-pressure discharge of the compressor 11 upstream of the tank 36). It plays a role of absorbing pressure changes in the region up to the pipe 27) and fluctuations in the refrigerant circulation rate. The liquid refrigerant accumulated in the lower part of the tank 36 flows out of the tank outlet pipe 37 (main circuit 38), and the first flow path 29A (as will be described later) in the second flow path 29B of the split heat exchanger 29. After being cooled (supercooled) by the refrigerant flowing through the auxiliary circuit 48), the refrigerant leaves the refrigerator unit 3 and flows into the electric expansion valve (main throttle means) 39 from the refrigerant pipe 8.

電動膨張弁39に流入した冷媒はそこで絞られて膨張することで更に液分が増え、蒸発器41に流入して蒸発する。これによる吸熱作用により冷却効果が発揮される。制御装置57は蒸発器41の入口側と出口側の温度を検出する図示しない温度センサの出力に基づき、電動膨張弁39の弁開度を制御して蒸発器41における冷媒の過熱度を適正値に調整する。蒸発器41から出た低温のガス冷媒は冷媒配管9から冷凍機ユニット3に戻り、冷媒導入配管22を経て圧縮機11の第1の回転圧縮要素14に連通する低段側吸込口17に吸い込まれる。以上が主回路38の流れである。   The refrigerant that has flowed into the electric expansion valve 39 is squeezed there and expanded to further increase the liquid content, and flow into the evaporator 41 to evaporate. The cooling effect is exhibited by the endothermic action. The control device 57 controls the valve opening degree of the electric expansion valve 39 based on the output of a temperature sensor (not shown) that detects the temperatures of the inlet side and the outlet side of the evaporator 41 and sets the superheat degree of the refrigerant in the evaporator 41 to an appropriate value. Adjust to. The low-temperature gas refrigerant discharged from the evaporator 41 returns from the refrigerant pipe 9 to the refrigerator unit 3, and is sucked into the low-stage suction port 17 communicating with the first rotary compression element 14 of the compressor 11 through the refrigerant introduction pipe 22. It is. The above is the flow of the main circuit 38.

(2−2)電動膨張弁43の制御
次に補助回路48の流れを説明する。前述した如くタンク36の上部に接続されたガス配管42には電動膨張弁43(第1の補助回路用絞り手段)が接続されており、この電動膨張弁43を介してタンク36上部からガス冷媒が流出し、スプリット熱交換器29の第1の流路29Aに流される。
(2-2) Control of Electric Expansion Valve 43 Next, the flow of the auxiliary circuit 48 will be described. As described above, an electric expansion valve 43 (first auxiliary circuit throttle means) is connected to the gas pipe 42 connected to the upper portion of the tank 36, and the gas refrigerant is supplied from the upper portion of the tank 36 through the electric expansion valve 43. Flows out and flows into the first flow path 29A of the split heat exchanger 29.

タンク36内上部に溜まるガス冷媒は、タンク36内での蒸発により温度が低下している。このタンク36内上部のガス冷媒は、上部に接続された補助回路48を構成するガス配管42から流出し、電動膨張弁43を経て絞られた後、スプリット熱交換器29の第1の流路29Aに流入する。そこで第2の流路29Bを流れる冷媒を冷却した後、中間圧戻り配管44を経て中間圧吸入配管26に合流し、圧縮機11の中間圧部に吸い込まれる。   The temperature of the gas refrigerant that accumulates in the upper part of the tank 36 is reduced by evaporation in the tank 36. The gas refrigerant in the upper part of the tank 36 flows out from the gas pipe 42 constituting the auxiliary circuit 48 connected to the upper part, is throttled through the electric expansion valve 43, and then the first flow path of the split heat exchanger 29. Flows into 29A. Therefore, after the refrigerant flowing through the second flow path 29B is cooled, it joins the intermediate pressure suction pipe 26 via the intermediate pressure return pipe 44 and is sucked into the intermediate pressure portion of the compressor 11.

また、電動膨張弁43はタンク36の上部から流出する冷媒を絞る機能の他に、タンク36内の圧力(電動膨張弁39に流入する冷媒の圧力)を所定の目標値SPに調整する役割を果たす。そして、制御装置57はユニット出口センサ53の出力に基づき、電動膨張弁43の弁開度を制御する。電動膨張弁43の弁開度が増大すれば、タンク36内からのガス冷媒の流出量が増大し、タンク36内の圧力は低下するからである。   The electric expansion valve 43 has a function of adjusting the pressure in the tank 36 (the pressure of the refrigerant flowing into the electric expansion valve 39) to a predetermined target value SP in addition to the function of restricting the refrigerant flowing out from the upper portion of the tank 36. Fulfill. The control device 57 controls the valve opening degree of the electric expansion valve 43 based on the output of the unit outlet sensor 53. This is because if the valve opening degree of the electric expansion valve 43 increases, the amount of gas refrigerant flowing out of the tank 36 increases and the pressure in the tank 36 decreases.

実施例では、この目標値SPは高圧側圧力HPよりも低く、中間圧MPよりも高い、例えば6MPaに設定されている。そして、制御装置57はユニット出口センサ53が検出するタンク36内の圧力TIP(電動膨張弁39に流入する冷媒の圧力)と目標値SPの差から電動膨張弁39の弁開度の調整値(ステップ数)を算出し、後述する始動時の弁開度に加算してタンク36内の圧力TIP(電動膨張弁39に流入する冷媒の圧力)を目標値SPに制御する。即ち、タンク36内の圧力TIPが目標値SPより上昇した場合には電動膨張弁43の弁開度を増大させてタンク36内からガス冷媒をガス配管42に流出させ、逆に目標値SPより降下した場合には弁開度を縮小させて閉じる方向に制御する。   In the embodiment, the target value SP is set to be lower than the high pressure side pressure HP and higher than the intermediate pressure MP, for example, 6 MPa. Then, the controller 57 adjusts the valve opening degree of the electric expansion valve 39 from the difference between the pressure TIP in the tank 36 detected by the unit outlet sensor 53 (pressure of the refrigerant flowing into the electric expansion valve 39) and the target value SP ( The number of steps) is calculated and added to the valve opening at the time of starting to be described later, and the pressure TIP in the tank 36 (pressure of the refrigerant flowing into the electric expansion valve 39) is controlled to the target value SP. That is, when the pressure TIP in the tank 36 rises above the target value SP, the valve opening degree of the electric expansion valve 43 is increased so that the gas refrigerant flows out of the tank 36 into the gas pipe 42, and conversely from the target value SP. When it descends, the valve opening is reduced and controlled to close.

(2−2−1)電動膨張弁43の始動時開度の設定
ここで、制御装置57は外気温度を示す指標である高圧センサ49の検出圧力(高圧側圧力HP。又は、前述の如く外気温度センサが設けられている場合には、直接検出した外気温度)に基づいて冷凍装置Rの始動時における電動膨張弁43の弁開度(始動時開度)を設定する。実施例の場合、前述同様に制御装置57は始動時における高圧側圧力HP(外気温度)と電動膨張弁43の始動時の弁開度の関係を示すデータテーブルを予め有している。
(2-2-1) Setting of the opening degree at the start of the electric expansion valve 43 Here, the control device 57 detects the pressure detected by the high-pressure sensor 49 (high-pressure side pressure HP), which is an index indicating the outside air temperature, or the outside air as described above. In the case where a temperature sensor is provided, the valve opening degree (starting opening degree) of the electric expansion valve 43 when starting the refrigeration apparatus R is set based on the directly detected outside air temperature). In the case of the embodiment, as described above, the control device 57 has in advance a data table indicating the relationship between the high-pressure side pressure HP (outside air temperature) at the time of starting and the valve opening degree at the time of starting the electric expansion valve 43.

そして、制御装置57は始動時における外気温度を推定し、上記データテーブルに基づいて高圧側圧力HP(外気温度)が高い程増大し、逆に高圧側圧力HPが低い程減少する方向(データテーブルに設定されている)で、電動膨張弁43の始動時の弁開度を設定する。これにより、外気温度が高い環境での始動時におけるタンク36内圧力の上昇を抑制し、電動膨張弁39に流入する冷媒の圧力上昇を防止することが可能となる。   Then, the control device 57 estimates the outside air temperature at the time of starting, and increases according to the high pressure side pressure HP (outside air temperature) based on the data table, and conversely decreases (the data table) as the high pressure side pressure HP decreases. The valve opening at the start of the electric expansion valve 43 is set. Thereby, it is possible to suppress an increase in the pressure in the tank 36 at the time of start-up in an environment where the outside air temperature is high, and to prevent an increase in the pressure of the refrigerant flowing into the electric expansion valve 39.

尚、実施例では上述した如く、タンク36内の圧力TIP(電動膨張弁39に流入する冷媒の圧力)の目標値SPを6MPaに固定して制御するようにしたが、電動膨張弁33の場合と同様に、外気温度を示す指標である高圧センサ49の検出圧力(高圧側圧力HP)に基づいて目標値SPを設定するようにしてもよい。その場合には、高圧側圧力HP(外気温度)が高い程高くし、逆に低い程低くする方向で目標値SPを設定する。   In the embodiment, as described above, the target value SP of the pressure TIP in the tank 36 (pressure of the refrigerant flowing into the electric expansion valve 39) is fixed to 6 MPa, but in the case of the electric expansion valve 33, Similarly to the above, the target value SP may be set based on the detected pressure (high pressure side pressure HP) of the high pressure sensor 49 which is an index indicating the outside air temperature. In this case, the target value SP is set in such a direction that the higher the high pressure side pressure HP (outside air temperature) is, the lower the pressure is higher.

そのため、外気温度が高い環境では電動膨張弁39に流入する冷媒の圧力の運転中における目標値SPが高くなり、外気温度が低い環境では目標値SPが低くなる。即ち、高い外気温度の影響で圧力が高くなる状況では、電動膨張弁39に流入する冷媒の圧力の目標値SPが高くなるので、電動膨張弁43の弁開度が過度に大きくなって補助回路48に冷媒が流れ過ぎる不都合を防止することができるようになる。逆に低い外気温度で圧力が低くなる状況では電動膨張弁39に流入する冷媒の圧力の目標値SPも低くなるので、電動膨張弁43の弁開度が小さくなり過ぎて、補助回路48に流入する冷媒量が減少し過ぎる不都合を防止することができるようになる。これらにより、季節の移り変わりに伴う外気温度の変化に関わらず、電動膨張弁43の弁開度を適切に制御して、補助回路48に流れる冷媒量を的確に調整することができるようになる。   Therefore, in an environment where the outside air temperature is high, the target value SP during operation of the pressure of the refrigerant flowing into the electric expansion valve 39 is high, and in an environment where the outside air temperature is low, the target value SP is low. In other words, in a situation where the pressure increases due to the influence of a high outside air temperature, the target value SP of the pressure of the refrigerant flowing into the electric expansion valve 39 increases, so that the valve opening degree of the electric expansion valve 43 becomes excessively large and the auxiliary circuit Thus, it is possible to prevent inconvenience of excessive flow of the refrigerant to the 48. On the other hand, when the pressure is low at a low outside air temperature, the target value SP of the pressure of the refrigerant flowing into the electric expansion valve 39 is also low, so that the valve opening degree of the electric expansion valve 43 becomes too small and flows into the auxiliary circuit 48. This makes it possible to prevent the disadvantage that the amount of refrigerant to be reduced is excessively reduced. As a result, the amount of refrigerant flowing in the auxiliary circuit 48 can be accurately adjusted by appropriately controlling the valve opening degree of the electric expansion valve 43 regardless of the change in the outside air temperature accompanying the change in season.

(2−2−2)タンク内圧力TIPの規定値MTIPでの制御
尚、上述のように制御を行っているときに、設置環境や負荷の影響でタンク36内圧力TIP(電動膨張弁39に流入する冷媒の圧力)が所定の規定値MTIP(例えば、7MPa等)に上昇してしまった場合、制御装置57は電動膨張弁43の弁開度を所定ステップ増大させる。この弁開度の増大により、タンク36内圧力TIPは低下する方向に向かうので、圧力TIPを常に規定値MTIP以下に維持することができるようになり、高圧側圧力変動の影響抑制と、電動膨張弁39に搬送される冷媒の圧力の抑制効果を確実に達成することが可能となる。
(2-2-2) Control of tank internal pressure TIP with specified value MTIP Note that when the control is performed as described above, the internal pressure TIP (electric expansion valve 39 in the electric expansion valve 39) is affected by the installation environment and load. When the pressure of the refrigerant flowing in) increases to a predetermined specified value MTIP (for example, 7 MPa or the like), the control device 57 increases the valve opening degree of the electric expansion valve 43 by a predetermined step. As the valve opening increases, the pressure TIP in the tank 36 tends to decrease, so that the pressure TIP can always be maintained below the specified value MTIP. It becomes possible to reliably achieve the effect of suppressing the pressure of the refrigerant conveyed to the valve 39.

(2−3)電動膨張弁47の制御
また、前述した如くタンク36の下部に接続された液配管46には電動膨張弁47(第2の補助回路用絞り手段)が接続されており、この電動膨張弁47を介してタンク36下部から液冷媒が流出し、ガス配管42からのガス冷媒に合流してスプリット熱交換器29の第1の流路29Aに流される。
(2-3) Control of the electric expansion valve 47 The electric expansion valve 47 (second auxiliary circuit throttle means) is connected to the liquid pipe 46 connected to the lower portion of the tank 36 as described above. The liquid refrigerant flows out from the lower portion of the tank 36 via the electric expansion valve 47, merges with the gas refrigerant from the gas pipe 42, and flows into the first flow path 29 </ b> A of the split heat exchanger 29.

即ち、タンク36内下部に溜まる液冷媒は、下部に接続された補助回路48を構成する液配管46から流出し、電動膨張弁47を経て絞られた後、スプリット熱交換器29の第1の流路29Aに流入、そこで蒸発する。このときの吸熱作用により、第2の流路29Bを流れる冷媒の過冷却を増大させた後、中間圧戻り配管44を経て中間圧吸入配管26に合流し、圧縮機11の中間圧部に吸い込まれる。   That is, the liquid refrigerant that accumulates in the lower part of the tank 36 flows out from the liquid pipe 46 that constitutes the auxiliary circuit 48 connected to the lower part, is throttled through the electric expansion valve 47, and then the first of the split heat exchanger 29. It flows into the flow path 29A and evaporates there. The heat absorption at this time increases the supercooling of the refrigerant flowing through the second flow path 29B, and then merges with the intermediate pressure suction pipe 26 via the intermediate pressure return pipe 44 and sucks into the intermediate pressure portion of the compressor 11. It is.

このように、電動膨張弁47はタンク36の下部から流出する液冷媒を絞ってスプリット熱交換器29の第1の流路29Aで蒸発させ、第2の流路29Bに流れる主回路38の冷媒を過冷却するものであるが、制御装置57は電動膨張弁47の弁開度を制御することにより、スプリット熱交換器29の第1の流路29Aに流す液冷媒の量を調整する。   In this way, the electric expansion valve 47 throttles the liquid refrigerant flowing out from the lower part of the tank 36, evaporates it in the first flow path 29A of the split heat exchanger 29, and the refrigerant of the main circuit 38 that flows into the second flow path 29B. The control device 57 adjusts the amount of liquid refrigerant flowing through the first flow path 29A of the split heat exchanger 29 by controlling the valve opening degree of the electric expansion valve 47.

スプリット熱交換器29における主回路38の冷媒の過冷却の量が増大すれば、電動膨張弁39に搬送される冷媒の液相割合が高くなるため、電動膨張弁39には満液状態の冷媒が流入するようになり、それにより、圧縮機11が吸い込む冷媒の温度も低下することになる。そして、結果的に圧縮機11からガスクーラ28に吐出される冷媒の吐出温度も低下することになる。   When the amount of supercooling of the refrigerant in the main circuit 38 in the split heat exchanger 29 increases, the liquid phase ratio of the refrigerant conveyed to the electric expansion valve 39 increases, so that the electric expansion valve 39 has a full refrigerant. Will flow in, and the temperature of the refrigerant sucked by the compressor 11 will also decrease. As a result, the discharge temperature of the refrigerant discharged from the compressor 11 to the gas cooler 28 also decreases.

そこで、制御装置57は吐出温度センサ61が検出する圧縮機11からガスクーラ28に吐出される冷媒の温度(吐出温度)に基づいて電動膨張弁47の弁開度を制御することにより、スプリット熱交換器29の第1の流路に流す液冷媒の量を調整し、圧縮機11からガスクーラ28に吐出される冷媒の吐出温度を所定の目標値TDTに制御する。即ち、実際の吐出温度が目標値TDTより高い場合には電動膨張弁47の弁開度を増大させ、低い場合には縮小させる。それにより、圧縮機11の冷媒の吐出温度を目標値TDTに維持し、圧縮機11の保護を図る。   Therefore, the control device 57 controls the opening degree of the electric expansion valve 47 based on the temperature (discharge temperature) of the refrigerant discharged from the compressor 11 to the gas cooler 28 detected by the discharge temperature sensor 61, thereby performing split heat exchange. The amount of liquid refrigerant flowing through the first flow path of the vessel 29 is adjusted, and the discharge temperature of the refrigerant discharged from the compressor 11 to the gas cooler 28 is controlled to a predetermined target value TDT. That is, when the actual discharge temperature is higher than the target value TDT, the opening degree of the electric expansion valve 47 is increased, and when the actual discharge temperature is lower, the opening is reduced. Thereby, the discharge temperature of the refrigerant of the compressor 11 is maintained at the target value TDT, and the compressor 11 is protected.

その場合、制御装置57は蒸発器41における冷媒の蒸発温度を表す指標である低圧センサ51の検出圧力(低圧側圧力LP)に基づき、低圧側圧力LP(蒸発温度)が高い程低くし、低い程高くする方向で圧縮機11の冷媒の吐出温度の目標値TDTを変更する。例えば、蒸発温度が−20℃より低い場合、目標値TDTを+70℃とし、蒸発温度が−20℃以上の場合、目標値TDTを+100℃に変更する。   In that case, based on the detected pressure (low pressure side pressure LP) of the low pressure sensor 51, which is an index indicating the refrigerant evaporation temperature in the evaporator 41, the control device 57 lowers and lowers the lower pressure LP (evaporation temperature). The target value TDT of the refrigerant discharge temperature of the compressor 11 is changed in such a direction as to increase it. For example, when the evaporation temperature is lower than −20 ° C., the target value TDT is set to + 70 ° C., and when the evaporation temperature is −20 ° C. or higher, the target value TDT is changed to + 100 ° C.

これにより、特に蒸発器41における蒸発温度が高い冷蔵条件(冷蔵ショーケース等)において、スプリット熱交換器29の第2の流路29Bにおける主回路38の冷媒の過冷却を確保し、冷凍能力を安定して維持することができるようになる。   This ensures supercooling of the refrigerant in the main circuit 38 in the second flow path 29B of the split heat exchanger 29, particularly under refrigeration conditions (such as a refrigeration showcase) where the evaporation temperature in the evaporator 41 is high, and refrigerating capacity is increased. It can be maintained stably.

(2−4)外気温度毎の冷凍装置Rの実際の動作
次に、図2〜図4のP−H線図を用いて冷凍装置Rの実際の動作状況を各外気温度毎に説明する。
(2-4) Actual Operation of Refrigeration Apparatus R for Each Outside Air Temperature Next, the actual operation status of the refrigeration apparatus R will be described for each outside air temperature with reference to the PH diagrams of FIGS.

(2−4−1)中間期
図2は例えば外気温度が+25℃程の中間期の環境であるときを示している。前述した如く制御装置57は、電動膨張弁33の弁開度を制御して、当該電動膨張弁33より上流側の高圧側圧力HPを目標値THPに制御し、電動膨張弁43の弁開度を制御して、ガス配管42から流出するガス冷媒の量を調整し、タンク36内の圧力TIP(電動膨張弁39に流入する冷媒の圧力)を目標値SPに制御する。更に、電動膨張弁47の弁開度を制御して、液配管46から流出する液冷媒の量を調整し、圧縮機11の冷媒の吐出温度を目標値TDTに調整する。
(2-4-1) Interim period FIG. 2 shows an intermediate period environment where the outside air temperature is about + 25 ° C., for example. As described above, the control device 57 controls the valve opening degree of the electric expansion valve 33 to control the high-pressure side pressure HP upstream from the electric expansion valve 33 to the target value THP. To adjust the amount of the gas refrigerant flowing out from the gas pipe 42, and the pressure TIP in the tank 36 (the pressure of the refrigerant flowing into the electric expansion valve 39) is controlled to the target value SP. Further, the valve opening degree of the electric expansion valve 47 is controlled to adjust the amount of liquid refrigerant flowing out from the liquid pipe 46, and the refrigerant discharge temperature of the compressor 11 is adjusted to the target value TDT.

図2中のX1〜X2で降下している線が電動膨張弁33による減圧を示している。X2の圧力(タンク36内の圧力TIP)は電動膨張弁43で目標値SPに調整される。このX2でタンク36から液/ガスが分かれ、X2から左に向かう線は主回路38の電動膨張弁39に向かう液冷媒の過冷却を示す。そして、同様にX3で電動膨張弁39で絞られ圧力が降下する(図3も同様)。   A line descending from X1 to X2 in FIG. The pressure of X2 (pressure TIP in the tank 36) is adjusted to the target value SP by the electric expansion valve 43. The liquid / gas is separated from the tank 36 at X2, and the line from X2 to the left indicates the supercooling of the liquid refrigerant toward the electric expansion valve 39 of the main circuit 38. Similarly, the electric expansion valve 39 throttles the pressure at X3 and the pressure drops (the same applies to FIG. 3).

中間期には中間圧MPが低くなるため、電動膨張弁43で調整されるタンク36内の圧力TIPとの間に差ができる。これにより、スプリット熱交換器29では主回路38の冷媒の過冷却に必要な熱交換量を確保することができるようになるので、冷媒回路1は2段膨張サイクルと所謂スプリットサイクルの併用サイクルとなる。   Since the intermediate pressure MP becomes low in the intermediate period, there is a difference from the pressure TIP in the tank 36 adjusted by the electric expansion valve 43. As a result, the split heat exchanger 29 can secure a heat exchange amount necessary for the supercooling of the refrigerant in the main circuit 38, so that the refrigerant circuit 1 has a two-stage expansion cycle and a so-called split cycle combined cycle. Become.

(2−4−2)高外気温時(夏季等)
図3は例えば外気温度が+30℃以上の環境(夏季等)であるときを示している。このような高外気温時には、中間圧MPが高くなり、タンク36内の圧力TIPとの差が無くなってくるため、スプリット熱交換器29での熱交換量が少なくなり、主回路38の冷媒の過冷却を確保できなくなる。また、高圧側圧力HPが高くなり勝ちなため、それを抑えるべく電動膨張弁33の弁開度は前記中間期よりも増大する(制御装置57による制御)。
(2-4-2) At high outdoor temperatures (summer, etc.)
FIG. 3 shows a case where the outside air temperature is an environment (summer season or the like) where the outside air temperature is + 30 ° C. or higher. At such a high outside air temperature, the intermediate pressure MP becomes high and there is no difference from the pressure TIP in the tank 36. Therefore, the heat exchange amount in the split heat exchanger 29 is reduced, and the refrigerant of the main circuit 38 is reduced. Overcooling cannot be secured. Further, since the high-pressure side pressure HP tends to increase, the valve opening of the electric expansion valve 33 is increased from that in the intermediate period in order to suppress it (control by the control device 57).

そのため、タンク36内への冷媒流入量が増加するが、制御装置57はタンク36内の圧力TIP(電動膨張弁39に流入する冷媒の圧力)の上昇を抑えるために、電動膨張弁43の弁開度を増大させる。そのため、圧縮機11の中間圧部(中間圧吸入配管26)に戻される冷媒の量が増えるため、中間圧MPは上昇する。故にスプリット熱交換器29での主回路38の冷媒の過冷却効果が減少することになり、冷媒回路1は所謂2段膨張サイクルとなる。   Therefore, the amount of refrigerant flowing into the tank 36 increases, but the control device 57 controls the valve of the electric expansion valve 43 in order to suppress an increase in the pressure TIP (pressure of the refrigerant flowing into the electric expansion valve 39) in the tank 36. Increase the opening. For this reason, the amount of refrigerant returned to the intermediate pressure portion (intermediate pressure suction pipe 26) of the compressor 11 increases, so that the intermediate pressure MP increases. Therefore, the refrigerant subcooling effect of the main circuit 38 in the split heat exchanger 29 is reduced, and the refrigerant circuit 1 becomes a so-called two-stage expansion cycle.

(2−4−3)低外気温時(冬季等)
次に、図4は例えば外気温度が+20℃以下に下がった環境(冬季)であるときを示している。このような低外気温時には高圧側圧力HPが低くなるが、前述したように目標値THPも低くなるため、電動膨張弁33の弁開度は全開に近い状態になる。そのため、タンク36内の圧力TIPは高圧側圧力HPに近い圧力となり、タンク36の効果は小さくなるが、低外気温のためにガスクーラ28を出た冷媒は液化し易くなっているので、電動膨張弁33を経てタンク36に入った冷媒は殆ど液化しており、タンク36内には大量の液冷媒が貯留される状態となる。
(2-4-3) At low outside temperatures (winter etc.)
Next, FIG. 4 shows a time when the outside air temperature is lowered to + 20 ° C. or lower (in winter). At such a low outside air temperature, the high pressure side pressure HP is low, but the target value THP is also low as described above, so that the valve opening degree of the electric expansion valve 33 is almost fully open. Therefore, the pressure TIP in the tank 36 becomes a pressure close to the high-pressure side pressure HP, and the effect of the tank 36 is reduced. However, the refrigerant that has exited the gas cooler 28 is liable to be liquefied due to the low outside air temperature. The refrigerant that has entered the tank 36 via the valve 33 is almost liquefied, and a large amount of liquid refrigerant is stored in the tank 36.

そのため、電動膨張弁43や47では液冷媒が絞られ、スプリット熱交換器29の第1の流路29Aで蒸発するようになるため、スプリット熱交換器29の効果が大きくなって、主回路38(第2の流路29B)の冷媒の過冷却がとれるようになり、冷媒回路1はスプリットサイクルとなる。   Therefore, since the liquid refrigerant is throttled in the electric expansion valves 43 and 47 and evaporates in the first flow path 29A of the split heat exchanger 29, the effect of the split heat exchanger 29 increases, and the main circuit 38 The refrigerant in the (second flow path 29B) can be supercooled, and the refrigerant circuit 1 enters a split cycle.

以上詳述したように、本発明ではガスクーラ28の下流側であって電動膨張弁39の上流側の冷媒回路1に接続された電動膨張弁33と、この電動膨張弁33の下流側であって電動膨張弁39の上流側の冷媒回路1に接続されたタンク36と、タンク36の下流側であって電動膨張弁39の上流側の冷媒回路1に設けられたスプリット熱交換器29と、タンク36内の冷媒を、電動膨張弁43や電動膨張弁47を介してスプリット熱交換器29の第1の流路29Aに流した後、圧縮機11の中間圧部に吸い込ませる補助回路48と、タンク36下部から冷媒を流出させ、スプリット熱交換器29の第2の流路29Bに流し、第1の流路29Aを流れる冷媒と熱交換させた後、電動膨張弁39に流入させる主回路38を備えているので、補助回路48を構成するスプリット熱交換器29の第1の流路29Aに流れる冷媒を電動膨張弁43、47で膨張させ、主回路38を構成するスプリット熱交換器29の第2の流路29Bに流れる冷媒を過冷却することができるようになり、蒸発器41入口の比エンタルピを小さくして冷凍能力を効果的に改善することができるようになる。   As described in detail above, in the present invention, the electric expansion valve 33 connected to the refrigerant circuit 1 downstream of the gas cooler 28 and upstream of the electric expansion valve 39, and downstream of the electric expansion valve 33. A tank 36 connected to the refrigerant circuit 1 upstream of the electric expansion valve 39; a split heat exchanger 29 provided in the refrigerant circuit 1 downstream of the tank 36 and upstream of the electric expansion valve 39; An auxiliary circuit 48 that causes the refrigerant in 36 to flow into the first flow path 29A of the split heat exchanger 29 via the electric expansion valve 43 and the electric expansion valve 47 and then sucked into the intermediate pressure portion of the compressor 11; A main circuit 38 that causes the refrigerant to flow out from the lower portion of the tank 36, flows into the second flow path 29B of the split heat exchanger 29, exchanges heat with the refrigerant flowing through the first flow path 29A, and then flows into the electric expansion valve 39. It is equipped with auxiliary times The refrigerant flowing in the first flow path 29A of the split heat exchanger 29 constituting 48 is expanded by the electric expansion valves 43 and 47, and flows to the second flow path 29B of the split heat exchanger 29 constituting the main circuit 38. The refrigerant can be supercooled, and the specific enthalpy at the inlet of the evaporator 41 can be reduced to effectively improve the refrigerating capacity.

また、スプリット熱交換器29の第1の流路29Aに流れる冷媒は圧縮機11の中間圧部に戻されるため、圧縮機11の低圧部に吸い込まれる冷媒量が減少し、低圧から中間圧まで圧縮するための圧縮機11における圧縮仕事量が減少する。その結果、圧縮機11における圧縮動力が低下して成績係数が向上する。   Further, since the refrigerant flowing through the first flow path 29A of the split heat exchanger 29 is returned to the intermediate pressure portion of the compressor 11, the amount of refrigerant sucked into the low pressure portion of the compressor 11 is reduced, and from low pressure to intermediate pressure. The amount of compression work in the compressor 11 for compression is reduced. As a result, the compression power in the compressor 11 is reduced and the coefficient of performance is improved.

更に、電動膨張弁33で膨張されることで液化した冷媒の一部はタンク36内で蒸発し、温度が低下したガス冷媒となり、残りは液冷媒となってタンク36内下部に一旦貯留されるかたちとなる。そして、このタンク36内下部の液冷媒が主回路38を構成するスプリット熱交換器29の第2の流路29Bを経て電動膨張弁39に流入することになるので、満液状態で電動膨張弁39に冷媒を流入させることが可能となり、特に蒸発器41における蒸発温度が高い冷蔵条件における冷凍能力の向上を図ることができるようになる。更にまた、タンク36にて冷媒回路1内の循環冷媒量の変動が吸収される効果もあるので、冷媒充填量の誤差も吸収される。   Furthermore, a part of the refrigerant liquefied by expansion by the electric expansion valve 33 evaporates in the tank 36 to become a gas refrigerant having a lowered temperature, and the rest becomes liquid refrigerant and is temporarily stored in the lower part of the tank 36. It becomes a shape. The liquid refrigerant in the lower part of the tank 36 flows into the electric expansion valve 39 through the second flow path 29B of the split heat exchanger 29 constituting the main circuit 38. It becomes possible to allow the refrigerant to flow into 39, and it is possible to improve the refrigerating capacity especially under refrigeration conditions where the evaporation temperature in the evaporator 41 is high. Furthermore, since the tank 36 has the effect of absorbing the fluctuation of the circulating refrigerant amount in the refrigerant circuit 1, the refrigerant filling amount error is also absorbed.

特に、制御装置57により電動膨張弁33を制御し、この電動膨張弁33によって、当該電動膨張弁33より上流側の冷媒回路1の高圧側圧力HPを調整するようにしたので、圧縮機11から冷媒が吐出される高圧側圧力HPが高くなって圧縮機11の運転効率が低下し、或いは、圧縮機11に損傷を来す不都合を未然に回避することが可能となる。   In particular, since the electric expansion valve 33 is controlled by the control device 57 and the high pressure side pressure HP of the refrigerant circuit 1 upstream of the electric expansion valve 33 is adjusted by the electric expansion valve 33, the compressor 11 The high-pressure side pressure HP at which the refrigerant is discharged becomes high, so that the operation efficiency of the compressor 11 is lowered, or the inconvenience of causing damage to the compressor 11 can be avoided.

この場合、制御装置57は外気温度を表す指標に基づき、外気温度が高い程、増大する方向で電動膨張弁33の始動時の開度を設定するので、外気温度が高い環境での始動時における高圧側圧力HPの上昇を抑制し、圧縮機11の保護を図ることが可能となる。   In this case, the control device 57 sets the opening degree at the start of the electric expansion valve 33 in a direction that increases as the outside air temperature increases based on the index representing the outside air temperature. The increase in the high-pressure side pressure HP can be suppressed, and the compressor 11 can be protected.

また、制御装置57は電動膨張弁33の弁開度を制御することにより、この電動膨張弁33より上流側の冷媒回路1の高圧側圧力HPを所定の目標値THPに制御すると共に、外気温度を表す指標に基づき、外気温度が高い程、高くする方向で高圧側圧力HPの目標値THPを設定するので、外気温度が高い環境では電動膨張弁33より上流側の高圧側圧力HPの運転中における目標値THPが高くなり、外気温度が低い環境では目標値THPが低くなる。   Further, the control device 57 controls the valve opening degree of the electric expansion valve 33 to control the high-pressure side pressure HP of the refrigerant circuit 1 upstream of the electric expansion valve 33 to a predetermined target value THP, and the outside air temperature. Since the target value THP of the high-pressure side pressure HP is set in the direction of increasing the higher the outside air temperature based on the index representing the pressure, the high-pressure side pressure HP upstream of the electric expansion valve 33 is being operated in an environment where the outside air temperature is high. The target value THP becomes low and the target value THP becomes low in an environment where the outside air temperature is low.

これにより、高い外気温度の影響で高圧側圧力HPが高くなる状況ではその目標値THPが高くなるので、電動膨張弁33の弁開度が過度に大きくなってタンク36内圧力が高くなり過ぎる不都合を防止することができるようになる。逆に、低い外気温度で高圧側圧力HPが低くなる状況では目標値THPも低くなるので、電動膨張弁33の弁開度が過度に小さくなってタンク36に流入する冷媒量が減少する不都合を防止することができるようになる。   As a result, the target value THP increases in a situation where the high-pressure side pressure HP increases due to the influence of a high outside air temperature, so that the valve opening degree of the electric expansion valve 33 becomes excessively large and the internal pressure of the tank 36 becomes too high. Can be prevented. Conversely, in a situation where the high pressure side pressure HP is low at a low outside air temperature, the target value THP is also low, so that the valve opening degree of the electric expansion valve 33 becomes excessively small and the amount of refrigerant flowing into the tank 36 is reduced. Can be prevented.

これらにより、季節の移り変わりに伴う外気温度の変化に関わらず、電動膨張弁33の開度を適切に制御して、冷凍能力の確保と圧縮機11の保護の双方を好適に実現することができるようになる。   As a result, it is possible to appropriately realize both the securing of the refrigerating capacity and the protection of the compressor 11 by appropriately controlling the opening degree of the electric expansion valve 33 regardless of the change in the outside air temperature accompanying the change in season. It becomes like this.

更に、制御装置57は電動膨張弁33より上流側の冷媒回路1の高圧側圧力HPが所定の上限値MHPに上昇した場合、電動膨張弁33の弁開度を増大させるので、高圧側圧力HPを常に上限値MHP以下に維持することができる。これにより、電動膨張弁33より上流側の高圧側圧力HPの異常上昇を的確に抑制して圧縮機11の保護を確実に行うことが可能となり、異常な高圧による圧縮機11の停止(保護動作)を未然に回避することが可能となる。   Further, when the high pressure side pressure HP of the refrigerant circuit 1 upstream of the electric expansion valve 33 is increased to a predetermined upper limit value MHP, the control device 57 increases the valve opening degree of the electric expansion valve 33, so that the high pressure side pressure HP is increased. Can always be kept below the upper limit value MHP. As a result, the compressor 11 can be reliably protected by accurately suppressing an abnormal increase in the high-pressure side pressure HP upstream from the electric expansion valve 33, and the compressor 11 can be stopped (protective operation) due to an abnormal high pressure. ) Can be avoided in advance.

また、電動膨張弁43を設け、補助回路48にはタンク36上部から冷媒を流出させ、電動膨張弁43に流入させるガス配管42を有し、制御装置57が電動膨張弁43により、電動膨張弁39に流入する冷媒の圧力TIPを調整するようにしたので、この電動膨張弁43によって、高圧側圧力HPの変動の影響を抑制して、電動膨張弁39に搬送される冷媒の圧力TIPを制御することができるようになる。   In addition, an electric expansion valve 43 is provided, the auxiliary circuit 48 has a gas pipe 42 through which refrigerant flows out from the upper portion of the tank 36 and flows into the electric expansion valve 43, and the control device 57 is operated by the electric expansion valve 43. Since the pressure TIP of the refrigerant flowing into the engine 39 is adjusted, the electric expansion valve 43 controls the pressure TIP of the refrigerant conveyed to the electric expansion valve 39 while suppressing the influence of the fluctuation of the high-pressure side pressure HP. Will be able to.

また、電動膨張弁43によって電動膨張弁39に流入する冷媒の圧力TIPを下げることにより、電動膨張弁39に至る配管として耐圧強度が低いものを使用することができるようになる。これにより、施工性や施工コストの改善を図ることが可能となる。   Further, by lowering the pressure TIP of the refrigerant flowing into the electric expansion valve 39 by the electric expansion valve 43, it is possible to use a pipe having a low pressure resistance as the pipe reaching the electric expansion valve 39. Thereby, it becomes possible to improve workability and construction cost.

特に、タンク36上部から電動膨張弁43を介して低温のガスを抜くことで、タンク36内の圧力が低下する。これにより、タンク36内では温度が低下するので、冷媒の凝縮作用が生じ、当該タンク36内に液状態の冷媒を効果的に貯めることができるようになる。   In particular, when the low temperature gas is extracted from the upper part of the tank 36 via the electric expansion valve 43, the pressure in the tank 36 is reduced. As a result, the temperature is lowered in the tank 36, so that the refrigerant condenses, and the liquid refrigerant can be effectively stored in the tank 36.

この場合、制御装置57は外気温度を表す指標に基づき、外気温度が高い程、増大する方向で電動膨張弁43の始動時の弁開度を設定するので、外気温度が高い環境での始動時におけるタンク36内圧力の上昇を抑制し、電動膨張弁39に流入する冷媒の圧力上昇を防止することが可能となる。   In this case, since the control device 57 sets the opening degree of the electric expansion valve 43 at the time of starting the electric expansion valve 43 in such a direction that the higher the outside air temperature is, based on the index representing the outside air temperature, the starting time in the environment where the outside air temperature is high. It is possible to suppress an increase in the pressure in the tank 36 and to prevent an increase in the pressure of the refrigerant flowing into the electric expansion valve 39.

また、制御装置57は電動膨張弁43の弁開度を制御することにより、電動膨張弁39に流入する冷媒の圧力TIPを所定の目標値SPに制御すると共に、外気温度を表す指標に基づき、外気温度が高い程、高くする方向で電動膨張弁39に流入する冷媒の圧力の目標値SPを設定するようにすれば、外気温度が高い環境では電動膨張弁39に流入する冷媒の圧力TIPの運転中における目標値SPが高くなり、外気温度が低い環境では目標値SPが低くなる。   Further, the control device 57 controls the valve opening degree of the electric expansion valve 43 to control the pressure TIP of the refrigerant flowing into the electric expansion valve 39 to a predetermined target value SP, and based on an index representing the outside air temperature, If the target value SP of the pressure of the refrigerant flowing into the electric expansion valve 39 is set so as to increase as the outside air temperature increases, the pressure TIP of the refrigerant flowing into the electric expansion valve 39 in an environment where the outside air temperature is high. The target value SP during operation increases, and the target value SP decreases in an environment where the outside air temperature is low.

これにより、高い外気温度の影響で圧力が高くなる状況では、電動膨張弁39に流入する冷媒の圧力TIPの目標値SPが高くなるので、電動膨張弁43の弁開度が過度に大きくなって補助回路48に冷媒が流れ過ぎる不都合を防止することができるようになる。逆に低い外気温度で圧力が低くなる状況では電動膨張弁39に流入する冷媒の圧力TIPの目標値SPも低くなるので、電動膨張弁43の弁開度が小さくなり過ぎて、補助回路48に流入する冷媒量が減少し過ぎる不都合を防止することができるようになる。これらにより、季節の移り変わりに伴う外気温度の変化に関わらず、電動膨張弁43の弁開度を適切に制御して、補助回路48に流れる冷媒量を的確に調整することができるようになる。   As a result, in a situation where the pressure increases due to the influence of a high outside air temperature, the target value SP of the pressure TIP of the refrigerant flowing into the electric expansion valve 39 increases, so that the valve opening degree of the electric expansion valve 43 becomes excessively large. It is possible to prevent the inconvenience that the refrigerant flows excessively in the auxiliary circuit 48. On the other hand, in a situation where the pressure becomes low at a low outside air temperature, the target value SP of the pressure TIP of the refrigerant flowing into the electric expansion valve 39 also becomes low, so that the valve opening degree of the electric expansion valve 43 becomes too small and the auxiliary circuit 48 It is possible to prevent a disadvantage that the amount of refrigerant flowing in is excessively reduced. As a result, the amount of refrigerant flowing in the auxiliary circuit 48 can be accurately adjusted by appropriately controlling the valve opening degree of the electric expansion valve 43 regardless of the change in the outside air temperature accompanying the change in season.

更に、制御装置57は電動膨張弁39に流入する冷媒の圧力が所定の規定値MTIPに上昇した場合、電動膨張弁43の弁開度を増大させるので、電動膨張弁39に搬送される冷媒の圧力TIPを常に規定値MTIP以下に維持することができるようになり、高圧側圧力変動の影響抑制と、電動膨張弁39に搬送される冷媒の圧力の抑制効果を確実に達成することが可能となる。   Further, when the pressure of the refrigerant flowing into the electric expansion valve 39 rises to a predetermined specified value MTIP, the control device 57 increases the valve opening degree of the electric expansion valve 43, so that the refrigerant conveyed to the electric expansion valve 39 is increased. It becomes possible to always maintain the pressure TIP below the specified value MTIP, and it is possible to reliably achieve the effect of suppressing the influence of the high pressure side pressure fluctuation and the effect of suppressing the pressure of the refrigerant conveyed to the electric expansion valve 39. Become.

また、電動膨張弁47を設けると共に、補助回路48はタンク36下部から冷媒を流出させ、電動膨張弁47に流入させる液配管46を有し、制御装置57は電動膨張弁47の弁開度を制御して、スプリット熱交換器29の第1の流路29Aに流す液冷媒量を調整することにより、圧縮機11からガスクーラ28に吐出される冷媒の吐出温度を所定の目標値TDTに制御するので、電動膨張弁47を介してスプリット熱交換器29の第1の流路29Aにタンク36内下部の液冷媒を流し、スプリット熱交換器29の第2の流路29Bを流れる主回路38の冷媒の過冷却を増大させることができる。   In addition, an electric expansion valve 47 is provided, and the auxiliary circuit 48 has a liquid pipe 46 through which refrigerant flows out from the lower portion of the tank 36 and flows into the electric expansion valve 47, and the controller 57 controls the valve opening degree of the electric expansion valve 47. By controlling the amount of liquid refrigerant flowing through the first flow path 29A of the split heat exchanger 29, the discharge temperature of the refrigerant discharged from the compressor 11 to the gas cooler 28 is controlled to a predetermined target value TDT. Therefore, the liquid refrigerant in the lower part of the tank 36 is caused to flow through the first flow path 29A of the split heat exchanger 29 via the electric expansion valve 47, and the main circuit 38 flowing through the second flow path 29B of the split heat exchanger 29 is supplied. The supercooling of the refrigerant can be increased.

これにより、電動膨張弁39に搬送される冷媒の液相割合を高め、満液状態で電動膨張弁39に流入させることができるようになる。また、圧縮機11が吸い込む冷媒の温度も低下することになるので、結果的に圧縮機11からガスクーラ28に吐出される冷媒の吐出温度も目標値TDTに下げることができるようになり、確実に圧縮機11の保護を図ることが可能となる。   Thereby, the liquid phase ratio of the refrigerant conveyed to the electric expansion valve 39 can be increased and can be made to flow into the electric expansion valve 39 in a full state. Further, since the temperature of the refrigerant sucked by the compressor 11 is also lowered, as a result, the refrigerant discharge temperature discharged from the compressor 11 to the gas cooler 28 can be lowered to the target value TDT. It is possible to protect the compressor 11.

この場合、制御装置57は蒸発器41における冷媒の蒸発温度を表す指標に基づき、当該蒸発温度が高い程、低くする方向で冷媒の吐出温度の目標値TDTを変更するので、特に蒸発器41における蒸発温度が高い冷蔵条件において、スプリット熱交換器29における主回路38の冷媒の過冷却を確保し、冷凍能力を安定して維持することができるようになる。   In this case, the control device 57 changes the target value TDT of the refrigerant discharge temperature in a direction to lower the higher the evaporation temperature based on the index representing the refrigerant evaporation temperature in the evaporator 41. Under refrigeration conditions where the evaporation temperature is high, it is possible to ensure supercooling of the refrigerant in the main circuit 38 in the split heat exchanger 29 and stably maintain the refrigeration capacity.

次に、図1に示した冷凍サイクルの内、冷凍機ユニット3の構成について図5〜図7を用いて説明する。
図5は、冷凍機ユニット3の前面カバーを外した状態の概略を示す斜視図である。図6は、冷凍機ユニット3の前面カバーを外した状態の概略を示す正面図である。図7は、ユニット本体100の分解斜視図である。なお、以下の説明において、上下、前後、左右とは、冷凍機ユニット3を正面から見た場合の上下、前後、左右を示している。
Next, the configuration of the refrigerator unit 3 in the refrigeration cycle shown in FIG. 1 will be described with reference to FIGS.
FIG. 5 is a perspective view schematically showing a state in which the front cover of the refrigerator unit 3 is removed. FIG. 6 is a front view schematically showing a state in which the front cover of the refrigerator unit 3 is removed. FIG. 7 is an exploded perspective view of the unit body 100. In the following description, “up / down”, “front / rear”, and “left / right” refer to upper / lower, front / rear, and left / right when the refrigerator unit 3 is viewed from the front.

図5、図6に示すように、冷凍機ユニット3は、ユニット本体100とユニット本体100の前面に取り付けられる前面カバー(不図示)とを備える。このユニット本体100は、右側室内である熱交換室30と、左側室内の下側半室である機械室40と、左側室内の上側半室である電装室60と、を備えている。本実施形態の冷凍機ユニット3は、いわゆるサイドフロー式の冷凍機ユニット3とされている。   As shown in FIGS. 5 and 6, the refrigerator unit 3 includes a unit main body 100 and a front cover (not shown) attached to the front surface of the unit main body 100. The unit main body 100 includes a heat exchange chamber 30 that is a right chamber, a machine chamber 40 that is a lower half chamber of a left chamber, and an electrical component chamber 60 that is an upper half chamber of the left chamber. The refrigerator unit 3 of the present embodiment is a so-called side flow type refrigerator unit 3.

ユニット本体100には、ユニット本体100の右側側面から背面に沿って平面略L字状のインタクーラ24とガスクーラ28が配置されている。インタクーラ24とガスクーラ28は重ねて設けられている。
ユニット本体100の右側側面に設けられるインタクーラ24とガスクーラ28、ユニット本体100前後方向の長さと略等しく設けられている。ユニット本体100背面に設けられるインタクーラ24とガスクーラ28は、ユニット本体100の右方向で右側から略4分の3程度の幅に設けられている。
ユニット本体100の左後方部には、上面視略L字状の後方カバー72が設けられている。この後方カバー72の右端部は、インタクーラ24とガスクーラ28の左端部と固定されている。後方カバー72の前端部は、電装室60と固定されている。
ユニット本体100の右後方の角部には、インタクーラ24とガスクーラ28の外側にコーナーカバー77が設けられている。
In the unit main body 100, a plane substantially L-shaped intercooler 24 and a gas cooler 28 are arranged from the right side surface of the unit main body 100 to the back surface. The intercooler 24 and the gas cooler 28 are provided so as to overlap each other.
The intercooler 24 and the gas cooler 28 provided on the right side surface of the unit main body 100 are provided approximately equal to the length in the front-rear direction of the unit main body 100. The intercooler 24 and the gas cooler 28 provided on the back surface of the unit main body 100 are provided with a width of about three quarters from the right side in the right direction of the unit main body 100.
A rear cover 72 that is substantially L-shaped when viewed from above is provided on the left rear portion of the unit body 100. The right end portion of the rear cover 72 is fixed to the left end portions of the intercooler 24 and the gas cooler 28. The front end portion of the rear cover 72 is fixed to the electrical equipment chamber 60.
A corner cover 77 is provided outside the intercooler 24 and the gas cooler 28 at the right rear corner of the unit body 100.

この冷凍機ユニット3には、内部の略中央部に室内を左右に2分割する仕切板70が上下方向全体にわたって設けられている。この仕切板70は、上面視で後方にかけて斜め左に折り曲げられており、仕切板70の後端部は、インタクーラ24とガスクーラ28の左端部に固定されている。また、仕切板70には、左側室内の上側半室に電装室60を配置するための棚板71が固設されている。   In the refrigerator unit 3, a partition plate 70 that divides the room into two parts left and right is provided in the substantially central portion of the interior over the entire vertical direction. The partition plate 70 is bent obliquely leftward as viewed from above, and the rear end portions of the partition plate 70 are fixed to the left end portions of the intercooler 24 and the gas cooler 28. Further, the partition plate 70 is fixedly provided with a shelf plate 71 for disposing the electrical equipment chamber 60 in the upper half chamber in the left side chamber.

このような構成によって、冷凍機ユニット3の内部には、右側室内である熱交換室30と、左側室内の下側半室である機械室40と、左側室内の上側半室である電装室60とが形成されている。   With such a configuration, inside the refrigerator unit 3, the heat exchange chamber 30 that is the right chamber, the machine chamber 40 that is the lower half chamber of the left chamber, and the electrical room 60 that is the upper half chamber of the left chamber. And are formed.

熱交換室30には、オイルセパレータ20と、送風機31とが設けられている。図7に示すように、送風機31は、側面視コ字状の支持体136と、支持体136に上下に2箇所設けられるファンモータ132と、ファンモータ132に設けられる回転軸133と、回転軸133に取り付けられるファン体134とで構成されている。
図5に示すように、送風機31は、ファン体134が前向きとなるような向きで熱交換室30の幅方向の中央部であり、前後方向の前側に配置されている。送風機31は、支持体136の上面とインタクーラ24の上面とを支え板35により固定することで、固定されている。
In the heat exchange chamber 30, an oil separator 20 and a blower 31 are provided. As shown in FIG. 7, the blower 31 includes a U-shaped support 136 in a side view, a fan motor 132 provided on the support 136 at two locations above and below, a rotating shaft 133 provided on the fan motor 132, and a rotating shaft. And a fan body 134 attached to 133.
As shown in FIG. 5, the blower 31 is disposed at the front side in the front-rear direction, at the center in the width direction of the heat exchange chamber 30 in such a direction that the fan body 134 faces forward. The blower 31 is fixed by fixing the upper surface of the support 136 and the upper surface of the intercooler 24 by the support plate 35.

熱交換室30の左奥、すなわち仕切板70に近接し、ガスクーラ28に近接する位置には、オイルセパレータ20が設けられている。このオイルセパレータ20は、ガスクーラ28より前側に位置し、ファン体134より後ろ側に配置されている。また、オイルセパレータ20は、オイルセパレータ20に接続される冷媒配管をできる限り熱交換室30に配置せず機械室40に配置できるよう仕切板70に近接する位置に配置されている。
オイルセパレータ20の上部には、冷媒配管が接続されており、この冷媒配管は、仕切板70の下部に設けられた接続孔78を介して機械室40へ延びている。
An oil separator 20 is provided at the left rear of the heat exchange chamber 30, that is, at a position close to the partition plate 70 and close to the gas cooler 28. The oil separator 20 is positioned on the front side of the gas cooler 28 and is disposed on the rear side of the fan body 134. Further, the oil separator 20 is disposed at a position close to the partition plate 70 so that the refrigerant pipe connected to the oil separator 20 can be disposed in the machine chamber 40 without being disposed in the heat exchange chamber 30 as much as possible.
A refrigerant pipe is connected to the upper portion of the oil separator 20, and the refrigerant pipe extends to the machine chamber 40 through a connection hole 78 provided in the lower portion of the partition plate 70.

機械室40には、圧縮機11と、タンク36と、これらをつなぐ冷媒配管とが設けられている。
機械室40には、機械室40を左右に分ける隔壁73が設けられている。この隔壁73の外側(左側)には、冷却風の風路S1が形成されている。
風路S1は、隔壁73と、機械室40の下半分を前後に分ける支持板74とで囲われている。支持板74は、隔壁73の略半分の高さを備え、支持板74の上方は、機械室40の前後が分けられておらず、機械室40の前後に空間が広がっている。この風路S1には、支持板74に固定されるユニット出口6と、隔壁73に固定されるユニット入口7とが設けられている。風路S1の下側には、ユニット本体100の底板が位置し、この底板には通気孔76が設けられている。
The machine room 40 is provided with the compressor 11, the tank 36, and a refrigerant pipe that connects them.
The machine room 40 is provided with a partition wall 73 that divides the machine room 40 into left and right. On the outside (left side) of the partition wall 73, an air passage S1 for cooling air is formed.
The air passage S1 is surrounded by a partition wall 73 and a support plate 74 that divides the lower half of the machine room 40 into the front and rear. The support plate 74 has substantially half the height of the partition wall 73, and the upper portion of the support plate 74 is not divided into the front and the rear of the machine room 40, and the space extends in the front and rear of the machine room 40. In the air passage S1, a unit outlet 6 fixed to the support plate 74 and a unit inlet 7 fixed to the partition wall 73 are provided. A bottom plate of the unit main body 100 is located below the air passage S1, and a vent hole 76 is provided in the bottom plate.

隔壁73の内側(右側)には、電装室60の底板と隔壁73と仕切板70とで囲われる機械要素スペースS2が設けられている。機械要素スペースS2には、圧縮機11と、冷媒配管等が配置されている。この冷媒配管は、隔壁73と圧縮機11との間の幅に機械室40の前後に渡って密集して設けられている。   A machine element space S <b> 2 surrounded by the bottom plate of the electrical chamber 60, the partition wall 73, and the partition plate 70 is provided on the inner side (right side) of the partition wall 73. In the machine element space S2, a compressor 11, a refrigerant pipe, and the like are arranged. The refrigerant pipes are provided densely across the machine chamber 40 in the width between the partition wall 73 and the compressor 11.

風路S1の後ろ側、すなわち、支持板74の後ろ側には、タンクスペースS3が設けられており、タンクスペースS3には、タンク36が設けられている。このタンクスペースS3と風路S1とは、支持板74により区切られているが、支持板74より上方は区切られておらず、つながった空間となっている。   A tank space S3 is provided behind the air passage S1, that is, behind the support plate 74, and a tank 36 is provided in the tank space S3. The tank space S3 and the air passage S1 are separated by a support plate 74, but are not separated above the support plate 74, and are connected spaces.

機械室40の上方には、電子回路基板などを備えた電装室60が設けられている。この電装室60の熱交換室30側の側壁には、スリット75が設けられている。このスリット75は、仕切板70に設けたスリット(不図示)に連通しており、電装室60と機械室40とは、これらスリットを介して連通している。   Above the machine room 40, an electrical equipment room 60 including an electronic circuit board and the like is provided. A slit 75 is provided on the side wall of the electrical component chamber 60 on the heat exchange chamber 30 side. The slit 75 communicates with a slit (not shown) provided in the partition plate 70, and the electrical component chamber 60 and the machine chamber 40 communicate with each other through these slits.

本実施形態においては、まず、圧縮機11を動作させることにより、圧縮機11の低段側吸込口17からショーケース41から送られる冷媒を吸入し、この冷媒は、第1の回転圧縮要素14により、中間圧力に圧縮されて低段側吐出口18から吐出される。
また、圧縮機11の低段側吐出口18から吐出された冷媒は、中間圧吐出配管23を介してインタクーラ24に流入し、このインタクーラ24で送風機31により外気と熱交換して冷却され、圧縮機11の高段側吸込口19に戻される。
In the present embodiment, first, by operating the compressor 11, the refrigerant sent from the showcase 41 is sucked from the low-stage suction port 17 of the compressor 11, and this refrigerant is the first rotary compression element 14. By this, it is compressed to an intermediate pressure and discharged from the low-stage discharge port 18.
In addition, the refrigerant discharged from the low-stage discharge port 18 of the compressor 11 flows into the intercooler 24 through the intermediate pressure discharge pipe 23, and is cooled by heat exchange with the outside air by the blower 31 in this intercooler 24. It is returned to the high stage side inlet 19 of the machine 11.

インタクーラ24から戻された冷媒は、圧縮機11で第2の回転圧縮要素16により必要な圧力に圧縮して高段側吐出口21から吐出され、オイルセパレータ20を介してガスクーラ28に送られる。圧縮機11から送られた冷媒は、ガスクーラ28で送風機31により外気と熱交換させて冷却して高圧冷媒としてタンク36に送られる。
タンク36で減圧されて冷却された冷媒は、ユニット出口6を介してショーケース4等の冷凍負荷(蒸発器41)に送られ、この蒸発器41において、庫内空気と熱交換して、庫内の冷却が行われる。蒸発器41で熱交換した後の冷媒は、ユニット入口7および冷媒導入配管22を介して圧縮機11に戻される。
The refrigerant returned from the intercooler 24 is compressed to a required pressure by the second rotary compression element 16 by the compressor 11 and discharged from the high-stage discharge port 21, and is sent to the gas cooler 28 through the oil separator 20. The refrigerant sent from the compressor 11 is cooled by exchanging heat with the outside air by the blower 31 by the gas cooler 28 and sent to the tank 36 as a high-pressure refrigerant.
The refrigerant that has been depressurized and cooled in the tank 36 is sent to the refrigeration load (evaporator 41) such as the showcase 4 through the unit outlet 6, and in this evaporator 41, heat is exchanged with the internal air to store the refrigerant. Inside cooling is performed. The refrigerant after heat exchange in the evaporator 41 is returned to the compressor 11 via the unit inlet 7 and the refrigerant introduction pipe 22.

冷凍機ユニット3では、送風機31により吸い込まれる外気がインタクーラ24およびガスクーラ28を通過し、熱交換室30に通過して前面ユニット(不図示)を介して排出される。このとき送風機31により吸い込まれる外気は、熱交換室30内に配置されるオイルセパレータ20にあたり、オイルセパレータ20内に貯留したオイルが冷却される。
オイルセパレータ20を熱交換室30内に配置することで、オイルセパレータ20を機械室40に配置場合と比べ、略5℃程度オイル温度を低下させることができる。
In the refrigerator unit 3, the outside air sucked by the blower 31 passes through the intercooler 24 and the gas cooler 28, passes through the heat exchange chamber 30, and is discharged through the front unit (not shown). At this time, the outside air sucked in by the blower 31 hits the oil separator 20 arranged in the heat exchange chamber 30, and the oil stored in the oil separator 20 is cooled.
By disposing the oil separator 20 in the heat exchange chamber 30, the oil temperature can be lowered by about 5 ° C. as compared with the case where the oil separator 20 is disposed in the machine chamber 40.

以上説明したように、本実施の形態によれば、圧縮機11の吐出部に設けたオイルセパレータ20を、送風機31の送風経路内に配置したため、送風機31の送風によりオイルセパレータ20を冷却できる。   As described above, according to the present embodiment, since the oil separator 20 provided in the discharge portion of the compressor 11 is disposed in the blowing path of the blower 31, the oil separator 20 can be cooled by the blowing of the blower 31.

また、本実施の形態によれば、インタクーラ24およびガスクーラ28をユニット本体100の背面に開放し、送風機31をユニット本体100の前後方向の前側に配置した。
本構成によれば、送風機31の送風経路がユニット本体100の背面から前面にかけて形成されるため、送風機31の送風により、オイルセパレータ20内のオイルを効率よく冷却できる。また、送風機31をユニット本体100の前後方向の前側に配置したため、熱交換室30にオイルセパレータ20を配置してもファン体134と接触しないスペースを確保できる。
Further, according to the present embodiment, the intercooler 24 and the gas cooler 28 are opened on the back surface of the unit main body 100, and the blower 31 is disposed on the front side in the front-rear direction of the unit main body 100.
According to this structure, since the ventilation path | route of the air blower 31 is formed from the back surface of the unit main body 100 to a front surface, the oil in the oil separator 20 can be cooled efficiently by the ventilation of the air blower 31. Further, since the blower 31 is disposed on the front side in the front-rear direction of the unit main body 100, a space that does not contact the fan body 134 can be secured even if the oil separator 20 is disposed in the heat exchange chamber 30.

また、本実施の形態によれば、オイルセパレータ20を仕切板70に隣接して配置した。
本構成によれば、オイルセパレータ20は仕切板70の近くに配置されるため、熱交換室30内に延在する冷媒配管長を短くできる。
Further, according to the present embodiment, the oil separator 20 is disposed adjacent to the partition plate 70.
According to this configuration, since the oil separator 20 is disposed near the partition plate 70, the length of the refrigerant pipe extending into the heat exchange chamber 30 can be shortened.

以上、一実施の形態に基づいて本発明を説明したが、本発明はこの実施形態に限定されるものではない。あくまでも本発明の一実施の態様を例示するものであるから、本発明の趣旨を逸脱しない範囲で任意に変更、及び応用が可能である。   As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this embodiment. Since only one embodiment of the present invention is illustrated, changes and applications can be arbitrarily made without departing from the spirit of the present invention.

1 冷媒回路
3 冷凍機ユニット
11 圧縮機
20 オイルセパレータ
24 インタクーラ
28 ガスクーラ
30 熱交換室
31 送風機
36 タンク
40 機械室
60 電装室
70 仕切板
75 スリット
78 接続孔
100 ユニット本体
132 ファンモータ
133 回転軸
134 ファン体
136 支持体
DESCRIPTION OF SYMBOLS 1 Refrigerant circuit 3 Refrigerator unit 11 Compressor 20 Oil separator 24 Intercooler 28 Gas cooler 30 Heat exchange chamber 31 Blower 36 Tank 40 Machine room 60 Electrical room 70 Partition plate 75 Slit 78 Connection hole 100 Unit main body 132 Fan motor 133 Rotating shaft 134 Fan Body 136 Support

Claims (2)

圧縮機を配置した機械室と、室外熱交換器、送風機を配置した熱交換室とを備えた冷凍機ユニットにおいて、
前記室外熱交換器が前記熱交換室の側面から背面に沿って配置され、
前記室外熱交換器は、正面視において前記機械室の後方にまで延びており、
ユニット本体の中央部に前記機械室と前記熱交換室とを仕切る仕切板が上下方向全体にわたって設けられ、
前記仕切板は、上面視で後方にかけて、斜めに折り曲げられ、
前記仕切板の後端部は、前記室外熱交換器の端部に固定され、
前記送風機は、前記ユニット本体の前面に配置され、
前記圧縮機の吐出部に設けたオイルセパレータを、前記室外熱交換器と前記送風機との間であって、正面視において前記送風機と重なる位置であり、かつ、前記仕切り板に隣接する位置に配置した、
ことを特徴とする冷凍機ユニット。
In a refrigerator unit including a machine room in which a compressor is disposed, an outdoor heat exchanger, and a heat exchange chamber in which a blower is disposed.
The outdoor heat exchanger is disposed along the back surface from the side of the heat exchange chamber;
The outdoor heat exchanger extends to the rear of the machine room in a front view,
A partition plate that partitions the machine room and the heat exchange chamber in the center of the unit body is provided over the entire vertical direction,
The partition plate is bent obliquely over the rear in a top view,
The rear end of the partition plate is fixed to the end of the outdoor heat exchanger,
The blower is disposed on the front surface of the unit body,
An oil separator provided in a discharge part of the compressor is disposed between the outdoor heat exchanger and the blower, at a position overlapping the blower in a front view and adjacent to the partition plate. did,
A refrigerator unit characterized by that.
冷凍サイクルの冷媒に二酸化炭素冷媒を使用したことを特徴とする請求項1に記載の冷凍機ユニット。 2. The refrigerator unit according to claim 1 , wherein carbon dioxide refrigerant is used as a refrigerant for the refrigeration cycle .
JP2015050073A 2015-03-12 2015-03-12 Refrigerator unit Active JP6497581B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015050073A JP6497581B2 (en) 2015-03-12 2015-03-12 Refrigerator unit
CN201610133013.5A CN105972883B (en) 2015-03-12 2016-03-09 Refrigerator unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050073A JP6497581B2 (en) 2015-03-12 2015-03-12 Refrigerator unit

Publications (2)

Publication Number Publication Date
JP2016169906A JP2016169906A (en) 2016-09-23
JP6497581B2 true JP6497581B2 (en) 2019-04-10

Family

ID=56983563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050073A Active JP6497581B2 (en) 2015-03-12 2015-03-12 Refrigerator unit

Country Status (2)

Country Link
JP (1) JP6497581B2 (en)
CN (1) CN105972883B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811957B1 (en) * 2016-11-09 2017-12-22 한국해양대학교 산학협력단 Cascade Heat Pump with Two Stage Expansion Structure using CO2 Refrigerant and Method for Circulating thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200406547A (en) * 2002-06-05 2004-05-01 Sanyo Electric Co Internal intermediate pressure multistage compression type rotary compressor, manufacturing method thereof and displacement ratio setting method
JP2005133971A (en) * 2003-10-28 2005-05-26 Matsushita Electric Ind Co Ltd Air-conditioner
CN1782553A (en) * 2004-11-29 2006-06-07 乐金电子(天津)电器有限公司 Outdoor unit of one dragging more air conditioner
WO2006068210A1 (en) * 2004-12-24 2006-06-29 Toshiba Carrier Corporation Outdoor unit for air conditioner
JP4941008B2 (en) * 2007-03-02 2012-05-30 ダイキン工業株式会社 Air conditioner
JP5062191B2 (en) * 2009-02-02 2012-10-31 ダイキン工業株式会社 Outdoor unit
CN201503166U (en) * 2009-03-06 2010-06-09 上海源知机电科技有限公司 Refrigeration heat recovery unit capable of producing high-temperature hot water
JP2011133208A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
JP5126343B2 (en) * 2010-11-17 2013-01-23 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
CN105972883B (en) 2020-07-03
JP2016169906A (en) 2016-09-23
CN105972883A (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP6292480B2 (en) Refrigeration equipment
JP4651627B2 (en) Refrigeration air conditioner
JP6264688B2 (en) Refrigeration equipment
JP6814974B2 (en) Refrigeration equipment
JP2015148406A (en) Refrigeration device
KR101220741B1 (en) Freezing device
JP2011133209A (en) Refrigerating apparatus
JP5819006B2 (en) Refrigeration equipment
JP2015148407A (en) Refrigeration device
KR20110074706A (en) Freezing device
JP6388260B2 (en) Refrigeration equipment
KR20110074709A (en) Freezing device
JP6534062B2 (en) Refrigerator unit
KR20110074708A (en) Freezing device
JP6653463B2 (en) Refrigeration equipment
JP6497582B2 (en) Refrigerator unit
JP6253370B2 (en) Refrigeration cycle equipment
JP6497581B2 (en) Refrigerator unit
JP6467682B2 (en) Refrigeration equipment
JP6765086B2 (en) Refrigeration equipment
JP6555584B2 (en) Refrigeration equipment
JP6094859B2 (en) Refrigeration equipment
JP6206787B2 (en) Refrigeration equipment
JP6653464B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R151 Written notification of patent or utility model registration

Ref document number: 6497581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151