JP2019138499A - Air conditioning apparatus - Google Patents

Air conditioning apparatus Download PDF

Info

Publication number
JP2019138499A
JP2019138499A JP2018019858A JP2018019858A JP2019138499A JP 2019138499 A JP2019138499 A JP 2019138499A JP 2018019858 A JP2018019858 A JP 2018019858A JP 2018019858 A JP2018019858 A JP 2018019858A JP 2019138499 A JP2019138499 A JP 2019138499A
Authority
JP
Japan
Prior art keywords
pressure
compressor
rotation speed
pressure difference
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018019858A
Other languages
Japanese (ja)
Other versions
JP7035584B2 (en
Inventor
隆志 木村
Takashi Kimura
隆志 木村
廣太郎 戸矢
Kotaro Toya
廣太郎 戸矢
中島 健
Takeshi Nakajima
健 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018019858A priority Critical patent/JP7035584B2/en
Publication of JP2019138499A publication Critical patent/JP2019138499A/en
Application granted granted Critical
Publication of JP7035584B2 publication Critical patent/JP7035584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide an air conditioning apparatus in which a compression mechanism section of a compressor is not poorly lubricated even when outside air temperature is low in a small capacity ratio.SOLUTION: When a capacity ratio D is a threshold capacity ratio Dt or less and an outside air temperature To is a threshold outside air temperature Tot or less, a CPU 210 takes in delivery pressure Pd and suction pressure Ps and calculates a pressure difference ΔP by subtracting the taken in suction pressure Ps from the taken in delivery pressure Pd. When the pressure difference ΔP is a first pressure difference P1 and more and less than a second pressure difference P2, the CPU 210 maintains a present compressor rotation speed Rc. When the pressure difference ΔP is less than the first pressure difference P1, the CPU 210 obtains rotation speed by adding additional rotation speed ΔRc to capacity-proportionate rotation speed Rcp. When the capacity ratio D is less than the threshold capacity ratio Dt, or taken in outside air temperature To is more than threshold outside air temperature Tot, or the pressure difference ΔP is the second pressure difference P2, the CPU 210 sets the compressor rotation speed Rc as the capacity-proportionate rotation speed Rcp.SELECTED DRAWING: Figure 2

Description

本発明は、空気調和装置に関わり、特に低外気温度時に冷房運転を行う際の圧縮機の制御に関する。   The present invention relates to an air conditioner, and more particularly to control of a compressor when performing a cooling operation at a low outside air temperature.

従来、1台の室外機に複数台の室内機が冷媒配管で接続され、全ての室内機が同時に冷房運転あるいは暖房運転を行う空気調和装置では、各室内機で要求される冷房能力あるいは暖房能力に応じて、圧縮機の回転数が決定される。例えば、特許文献1には、暖房運転時に、予め外気温度と冷媒配管の長さと各室内機で要求される暖房能力とに応じて決定されている目標高圧となるように、圧縮機の回転数を制御する空気調和装置が記載されている。   Conventionally, in an air conditioner in which a plurality of indoor units are connected to one outdoor unit by refrigerant piping and all the indoor units perform cooling operation or heating operation simultaneously, the cooling capacity or heating capacity required for each indoor unit In response to this, the rotational speed of the compressor is determined. For example, in Patent Document 1, during the heating operation, the rotation speed of the compressor is set so that the target high pressure is determined in advance according to the outside air temperature, the length of the refrigerant pipe, and the heating capacity required for each indoor unit. An air conditioner that controls the air is described.

特開平4−187930号公報Japanese Patent Laid-Open No. 4-187930

ところで、上述したような空気調和装置の全ての室内機が、サーバールームなどの通年で冷房運転を行う必要がある部屋に配置される場合がある。このような空気調和装置が冬季に冷房運転を行う際に、外気温度が低く(例えば−5℃以下)、かつ、冷房運転を行う室内機の台数が少ない場合は、以下のような問題が起こる恐れがある。   By the way, all the indoor units of the air conditioner as described above may be arranged in a room such as a server room where it is necessary to perform a cooling operation throughout the year. When such an air conditioner performs a cooling operation in winter, the following problems occur when the outside air temperature is low (for example, −5 ° C. or lower) and the number of indoor units performing the cooling operation is small. There is a fear.

外気温度が低い場合は、外気温度が高い場合と比べて、冷房運転時に凝縮器として機能する室外熱交換器で発揮される凝縮能力が大きくなる。凝縮能力が大きくなると、冷媒回路における高圧側の冷媒圧力が低くなって冷媒回路における低圧側の冷媒圧力との圧力差が小さくなる。圧力差が小さくなると、冷媒回路における冷媒循環量が低下するので、圧縮機に吸入される冷媒量も減少する。そして、圧縮機に吸入される冷媒量が減少すれば、冷媒回路における高圧側の冷媒圧力がさらに低くなる。   When the outside air temperature is low, the condensing capacity exhibited by the outdoor heat exchanger that functions as a condenser during the cooling operation is greater than when the outside air temperature is high. As the condensing capacity increases, the refrigerant pressure on the high pressure side in the refrigerant circuit decreases and the pressure difference from the refrigerant pressure on the low pressure side in the refrigerant circuit decreases. As the pressure difference becomes smaller, the amount of refrigerant circulating in the refrigerant circuit decreases, so the amount of refrigerant drawn into the compressor also decreases. And if the refrigerant | coolant amount suck | inhaled by the compressor reduces, the refrigerant | coolant pressure of the high voltage | pressure side in a refrigerant circuit will become still lower.

また、外気温度が低いことに起因して高圧側の冷媒圧力が低くなる状況で、冷房運転を行う室内機の台数が少ない場合は、冷房運転を行う室内機の台数が多い場合と比べて、冷房運転を行う室内機で必要とされる冷媒量が少ない。このため、圧縮機の回転数が低くされて冷媒回路における冷媒循環量が少なくなるので、冷媒回路における高圧側の冷媒圧力がさらに低くなる。   In addition, when the number of indoor units that perform cooling operation is small in a situation where the refrigerant pressure on the high pressure side is low due to low outside air temperature, compared to the case where there are many indoor units that perform cooling operation, A small amount of refrigerant is required in an indoor unit that performs cooling operation. For this reason, since the rotation speed of a compressor is made low and the refrigerant | coolant circulation amount in a refrigerant circuit decreases, the refrigerant | coolant pressure of the high voltage | pressure side in a refrigerant circuit becomes still lower.

以上説明したように、外気温度が低い環境下で冷房運転を行う室内機の台数が少ない場合は、外気温度が高い場合や冷房運転を行う室内機の台数が多い場合と比べて、冷媒回路における高圧側の冷媒圧力が低くなることで、高圧側の冷媒圧力と低圧側の冷媒圧力との圧力差が小さくなる。   As described above, when the number of indoor units that perform cooling operation in an environment where the outside air temperature is low is smaller in the refrigerant circuit than when the outside air temperature is high or the number of indoor units that perform cooling operation is large. By reducing the refrigerant pressure on the high pressure side, the pressure difference between the refrigerant pressure on the high pressure side and the refrigerant pressure on the low pressure side becomes small.

圧縮機が高圧容器型の圧縮機である場合は、冷凍機油を溜めている圧縮機の密閉容器の下部が冷媒回路の高圧側と連通しており、また、圧縮機の圧縮機構部が冷媒回路の低圧側と連通している。従って、高圧側の冷媒圧力と低圧側の冷媒圧力との圧力差が小さくなれば、圧縮機の密閉容器の下部の圧力と圧縮機構部の圧力との圧力差も小さくなる。そして、圧縮機が、密閉容器の下部の圧力と圧縮機構部の圧力との圧力差を利用して、冷凍機油を密閉容器の下部から圧縮機構部へと供給する所謂差圧給油式のものである場合は、上述した圧力差が小さいと圧縮機の圧縮機構部の潤滑に十分な量の冷凍機油を密閉容器の下部から圧縮機構部へと吸い上げることができず、圧縮機の圧縮機構部が潤滑不良となって圧縮機構部の摩耗や焼き付きが発生する恐れがあった。   When the compressor is a high-pressure vessel type compressor, the lower part of the closed container of the compressor storing refrigeration oil communicates with the high-pressure side of the refrigerant circuit, and the compressor's compression mechanism is the refrigerant circuit. It communicates with the low pressure side. Therefore, if the pressure difference between the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure becomes small, the pressure difference between the pressure in the lower part of the hermetic container of the compressor and the pressure in the compression mechanism part also becomes small. The compressor uses a pressure difference between the pressure in the lower part of the sealed container and the pressure in the compression mechanism part to supply the refrigeration oil from the lower part of the sealed container to the compression mechanism part. In some cases, if the above-described pressure difference is small, a sufficient amount of refrigeration oil for lubricating the compression mechanism portion of the compressor cannot be sucked from the lower part of the sealed container to the compression mechanism portion, and the compression mechanism portion of the compressor There was a risk of poor lubrication and wear and seizure of the compression mechanism.

本発明は以上述べた問題点を解決するものであって、低外気温度で少数の室内機を冷房運転する場合であっても、圧縮機の圧縮機構部が潤滑不良とならない空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and provides an air conditioner in which a compression mechanism portion of a compressor does not cause poor lubrication even when a small number of indoor units are cooled at a low outside air temperature. The purpose is to do.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機と室外熱交換器と外気温度を検出する外気温度検出手段と圧縮機の吐出圧力を検出する吐出圧力検出手段と圧縮機の吸入圧力を検出する吸入圧力検出手段とを有する室外機と、室内熱交換器を有する複数台の室内機と、圧縮機の駆動制御を行う制御手段とを有する。制御手段は、室外熱交換器を凝縮器として機能させるとともに、各室内熱交換器を蒸発器として機能させる冷房運転を行うとき、外気温度検出手段で検出した外気温度が予め定められた閾外気温度以下である場合は、吐出圧力検出手段で検出した吐出圧力、あるいは、吐出圧力から吸入圧力検出手段で検出した吸入圧力を減じた圧力差のいずれか一方に基づいて、冷房運転中の圧縮機の回転数を決定する。   In order to solve the above problems, an air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, an outside air temperature detecting means for detecting the outside air temperature, a discharge pressure detecting means for detecting the discharge pressure of the compressor, and the compressor. An outdoor unit having a suction pressure detecting means for detecting the suction pressure of the plurality of indoor units, a plurality of indoor units having an indoor heat exchanger, and a control means for controlling drive of the compressor. The control means causes the outdoor heat exchanger to function as a condenser, and when performing a cooling operation in which each indoor heat exchanger functions as an evaporator, the outside air temperature detected by the outside air temperature detecting means is a predetermined threshold outside air temperature. In the following cases, based on either the discharge pressure detected by the discharge pressure detection means or the pressure difference obtained by subtracting the suction pressure detected by the suction pressure detection means from the discharge pressure, Determine the number of revolutions.

上記のように構成した本発明の空気調和装置は、外気温度が閾外気温度以下である場合は、吐出圧力、あるいは、吐出圧力から吸入圧力を減じた圧力差のいずれか一方に基づいて、冷房運転中の圧縮機の回転数を決定する。これにより、低外気温度で少数の室内機を冷房運転する場合であっても、圧縮機の圧縮機構部が潤滑不良となることを防止できる。   When the outside air temperature is equal to or lower than the threshold outside air temperature, the air conditioning apparatus of the present invention configured as described above is based on either the discharge pressure or the pressure difference obtained by subtracting the suction pressure from the discharge pressure. Determine the compressor speed during operation. Thereby, even if it is a case where a small number of indoor units are air-cooled at low outdoor temperature, it can prevent that the compression mechanism part of a compressor becomes poor lubrication.

本発明の実施形態における空気調和装置の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段のブロック図である。It is explanatory drawing of the air conditioning apparatus in embodiment of this invention, (A) is a refrigerant circuit figure, (B) is a block diagram of an outdoor unit control means. 本発明の実施形態における、回転数制御テーブルである。It is a rotation speed control table in the embodiment of the present invention. 本発明の実施形態における、加算回転数テーブルである。It is an addition rotation speed table in the embodiment of the present invention. 本発明の実施形態における、冷房運転時の圧縮機の制御を行う際の処理を示すフローチャートである。It is a flowchart which shows the process at the time of performing control of the compressor at the time of air_conditionaing | cooling operation in embodiment of this invention. 本発明の他の実施形態における、回転数制御テーブルである。It is a rotation speed control table in other embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、定格能力が80kWである1台の室外機に定格能力が2kWである40台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, an air conditioner in which 40 indoor units with a rated capacity of 2 kW are connected in parallel to one outdoor unit with a rated capacity of 80 kW, and a cooling operation or a heating operation can be performed simultaneously in all the indoor units. Will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1(A)に示すように、本実施形態における空気調和装置1は、1台の室外機2と、室外機2に液管8およびガス管9で並列に接続された40台の室内機5(図1(A)では、これらのうちの2台のみを描画している)とを備えている。より詳細には、室外機2の閉鎖弁25と各室内機5の液管接続部53とが液管8で接続されている。また、室外機2の閉鎖弁26と各室内機5のガス管接続部54とがガス管9で接続されている。このように、室外機2と40台の室内機5とが液管8およびガス管9で接続されて、空気調和装置1の冷媒回路10が形成されている。   As shown in FIG. 1 (A), an air conditioner 1 according to this embodiment includes one outdoor unit 2 and 40 indoor units connected to the outdoor unit 2 in parallel by a liquid pipe 8 and a gas pipe 9. 5 (only two of them are drawn in FIG. 1A). More specifically, the shutoff valve 25 of the outdoor unit 2 and the liquid pipe connection portion 53 of each indoor unit 5 are connected by the liquid pipe 8. Further, the shut-off valve 26 of the outdoor unit 2 and the gas pipe connection portion 54 of each indoor unit 5 are connected by the gas pipe 9. Thus, the outdoor unit 2 and the 40 indoor units 5 are connected by the liquid pipe 8 and the gas pipe 9, and the refrigerant circuit 10 of the air conditioning apparatus 1 is formed.

<室外機の構成>
まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外膨張弁24と、液管8が接続された閉鎖弁25と、ガス管9が接続された閉鎖弁26と、アキュムレータ27と、室外ファン28と、室外機制御手段200とを備えている。そして、室外ファン28と室外機制御手段200とを除くこれら各装置が、以下で詳述する各冷媒配管で相互に接続されて冷媒回路10の一部をなす室外機冷媒回路20を形成している。
<Configuration of outdoor unit>
First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, a closing valve 25 to which the liquid pipe 8 is connected, and a closing valve 26 to which the gas pipe 9 is connected. And an accumulator 27, an outdoor fan 28, and an outdoor unit control means 200. Then, these devices other than the outdoor fan 28 and the outdoor unit control means 200 are connected to each other through refrigerant pipes described in detail below to form an outdoor unit refrigerant circuit 20 that forms a part of the refrigerant circuit 10. Yes.

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる高圧容器型の能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaと吐出管41で接続されており、また、圧縮機21の冷媒吸入側は、アキュムレータ27の冷媒流出側と吸入管42で接続されている。   The compressor 21 is a high-pressure vessel type variable-capacity compressor that can vary the operation capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 21 is connected to a port a of a four-way valve 22 to be described later and a discharge pipe 41, and the refrigerant suction side of the compressor 21 is connected to the refrigerant outflow side of the accumulator 27 and a suction pipe 42. Has been.

圧縮機21の図示しない密閉容器の下部には、圧縮機21の密閉容器の上部に配置される図示しない圧縮機構部に供給されて圧縮機構部の潤滑性を保つための冷凍機油が滞留している。この冷凍機油は、圧縮機21の密閉容器の下部の圧力と圧縮機構部の圧力との圧力差によって、密閉容器の下部から圧縮機構部に供給される。圧縮機21の密閉容器の下部が上述した冷媒吐出側であり、吐出管41を介して冷媒回路10の高圧側に連通している。また、圧縮機21の圧縮機構部が上述した冷媒吸入側であり、吸入管42を介して冷媒回路10の低圧側に連通している。   Refrigerating machine oil that is supplied to a compression mechanism unit (not shown) disposed above the closed container of the compressor 21 and maintains the lubricity of the compression mechanism unit is retained in the lower part of the sealed container (not shown) of the compressor 21. Yes. The refrigerating machine oil is supplied from the lower part of the sealed container to the compression mechanism part due to the pressure difference between the pressure in the lower part of the sealed container of the compressor 21 and the pressure of the compression mechanism part. The lower part of the hermetic container of the compressor 21 is the refrigerant discharge side described above, and communicates with the high pressure side of the refrigerant circuit 10 via the discharge pipe 41. Further, the compression mechanism portion of the compressor 21 is the refrigerant suction side described above, and communicates with the low pressure side of the refrigerant circuit 10 via the suction pipe 42.

四方弁22は、冷媒回路10における冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、アキュムレータ27の冷媒流入側と冷媒配管46で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管45で接続されている。   The four-way valve 22 is a valve for switching the flow direction of the refrigerant in the refrigerant circuit 10 and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 41 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant inflow side of the accumulator 27 by a refrigerant pipe 46. The port d is connected to the closing valve 26 by an outdoor unit gas pipe 45.

室外熱交換器23は、冷媒と、後述する室外ファン28の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。上述したように、室外熱交換器23の一方の冷媒出入口と四方弁22のポートbとが冷媒配管43で接続されている。また、室外熱交換器23の他方の冷媒出入口と閉鎖弁25とが室外機液管44で接続されている。室外熱交換器23は、空気調和装置1が冷房運転を行う場合は凝縮器として機能し、空気調和装置1が暖房運転を行う場合は蒸発器として機能する。   The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 and the port b of the four-way valve 22 are connected by the refrigerant pipe 43. The other refrigerant inlet / outlet of the outdoor heat exchanger 23 and the closing valve 25 are connected by an outdoor unit liquid pipe 44. The outdoor heat exchanger 23 functions as a condenser when the air conditioner 1 performs a cooling operation, and functions as an evaporator when the air conditioner 1 performs a heating operation.

室外膨張弁24は、室外機液管44に設けられている。室外膨張弁24は図示しないパルスモータにより駆動される電子膨張弁であり、パルスモータに与えられるパルス数によって開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量が調整される。室外膨張弁24の開度は、空気調和装置1が暖房運転を行っている場合は、後述する吐出温度センサ33で検出した圧縮機21の吐出温度に応じてその開度が調整され、冷房運転を行っている場合はその開度が全開とされる。   The outdoor expansion valve 24 is provided in the outdoor unit liquid pipe 44. The outdoor expansion valve 24 is an electronic expansion valve driven by a pulse motor (not shown), and the amount of refrigerant flowing into the outdoor heat exchanger 23 or the outdoor volume is adjusted by adjusting the opening degree according to the number of pulses applied to the pulse motor. The amount of refrigerant flowing out of the heat exchanger 23 is adjusted. The opening degree of the outdoor expansion valve 24 is adjusted according to the discharge temperature of the compressor 21 detected by a discharge temperature sensor 33 (described later) when the air-conditioning apparatus 1 is performing a heating operation. When the operation is performed, the opening is fully opened.

アキュムレータ27は、前述したように、冷媒流入側が四方弁22のポートcと冷媒配管46で接続されるとともに、冷媒流出側が圧縮機21の冷媒吸入側と吸入管42で接続されている。アキュムレータ27は、冷媒配管46からアキュムレータ28の内部に流入した冷媒をガス冷媒と液冷媒に分離してガス冷媒のみを圧縮機21に吸入させる。   As described above, the accumulator 27 has the refrigerant inflow side connected to the port c of the four-way valve 22 and the refrigerant pipe 46, and the refrigerant outflow side connected to the refrigerant intake side of the compressor 21 and the intake pipe 42. The accumulator 27 separates the refrigerant flowing into the accumulator 28 from the refrigerant pipe 46 into a gas refrigerant and a liquid refrigerant, and causes the compressor 21 to suck only the gas refrigerant.

室外ファン28は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン28は、図示しないファンモータによって回転することで、図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。   The outdoor fan 28 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23. The outdoor fan 28 is rotated by a fan motor (not shown) to take outside air into the interior of the outdoor unit 2 from a suction port (not shown), and the outdoor air heat exchanged with the refrigerant in the outdoor heat exchanger 23 is sent from an outlet (not shown) to the outdoor unit. 2 to the outside.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ28の冷媒流入口近傍には、圧縮機21に吸入される冷媒の圧力である吸入圧力を検出する吸入圧力センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸込温度センサ34とが設けられている。尚、吐出圧力センサ31が本発明の吐出圧力検出手段であり、吸入圧力センサ32が本発明の吸入圧力検出手段である。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1, a discharge pressure sensor 31 that detects a discharge pressure that is a pressure of refrigerant discharged from the compressor 21 and a discharge that detects the temperature of refrigerant discharged from the compressor 21 are disposed in the discharge pipe 41. A temperature sensor 33 is provided. Near the refrigerant inlet of the accumulator 28 in the refrigerant pipe 46, a suction pressure sensor 32 that detects a suction pressure that is a pressure of the refrigerant sucked into the compressor 21, and a temperature of the refrigerant sucked into the compressor 21 are detected. A suction temperature sensor 34 is provided. The discharge pressure sensor 31 is the discharge pressure detection means of the present invention, and the suction pressure sensor 32 is the suction pressure detection means of the present invention.

室外機液管44における室外熱交換器23と室外膨張弁24との間には、室外熱交換器23に流入する冷媒の温度、あるいは、室外熱交換器23から流出する冷媒の温度を検出するための熱交温度センサ35が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が備えられている。尚、外気温度センサ36が、本発明の外気温度検出手段である。   Between the outdoor heat exchanger 23 and the outdoor expansion valve 24 in the outdoor unit liquid pipe 44, the temperature of the refrigerant flowing into the outdoor heat exchanger 23 or the temperature of the refrigerant flowing out of the outdoor heat exchanger 23 is detected. A heat exchanger temperature sensor 35 is provided. An outdoor air temperature sensor 36 that detects the temperature of the outside air that flows into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2. The outside temperature sensor 36 is the outside temperature detecting means of the present invention.

また、室外機2には、本発明の制御手段である室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU210と、記憶部220と、通信部230と、センサ入力部240とを備えている。   Further, the outdoor unit 2 is provided with an outdoor unit control means 200 which is a control means of the present invention. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2, and as shown in FIG. 1B, a CPU 210, a storage unit 220, a communication unit 230, The sensor input unit 240 is provided.

記憶部220は、例えばフラッシュメモリで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン28の駆動状態、各室内機5から送信される運転情報(運転/停止情報、冷房/暖房等の運転モード等を含む)や室外機2の定格能力および各室内機5の定格能力を記憶する。通信部230は、各室内機5との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。   The storage unit 220 includes, for example, a flash memory. The storage unit 220 transmits a detection value corresponding to a control program of the outdoor unit 2 and detection signals from various sensors, driving states of the compressor 21 and the outdoor fan 28, and transmission from each indoor unit 5. Operation information (including operation / stop information, operation modes such as cooling / heating), the rated capacity of the outdoor unit 2 and the rated capacity of each indoor unit 5 are stored. The communication unit 230 is an interface that performs communication with each indoor unit 5. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.

CPU210は、センサ入力部240を介して各種センサでの検出値を定期的(例えば、30秒毎)に取り込むとともに、各室内機5から送信される運転情報を含む信号が通信部230を介して入力される。CPU210は、これら入力された各種情報に基づいて、室外膨張弁24の開度調整、圧縮機21や室外ファン28の駆動制御を行う。   The CPU 210 fetches the detection values of various sensors periodically (for example, every 30 seconds) via the sensor input unit 240, and a signal including operation information transmitted from each indoor unit 5 is transmitted via the communication unit 230. Entered. The CPU 210 adjusts the opening degree of the outdoor expansion valve 24 and controls the drive of the compressor 21 and the outdoor fan 28 based on the various pieces of input information.

<各室内機の構成>
次に、40台の室内機5について説明する。40台の室内機5は全て同じ構成を有しており、室内熱交換器51と、室内膨張弁52と、液管接続部53と、ガス管接続部54と、室内ファン55とを備えている。そして、室内ファン55を除くこれら各構成装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路50を構成している。
<Configuration of each indoor unit>
Next, 40 indoor units 5 will be described. All 40 indoor units 5 have the same configuration, and include an indoor heat exchanger 51, an indoor expansion valve 52, a liquid pipe connection part 53, a gas pipe connection part 54, and an indoor fan 55. Yes. These constituent devices other than the indoor fan 55 are connected to each other through refrigerant pipes described in detail below to constitute an indoor unit refrigerant circuit 50 that forms part of the refrigerant circuit 10.

尚、前述したように、本実施形態では、室外機2に室内機5が40台接続され、各室内機5の定格能力が全て同じ定格能力:2kWとしているが、室内機5の台数や各室内機5の定格能力が異なっていてもよく、室内機5の定格能力の合計値が室外機2の定格能力を超えなければよい。   In addition, as mentioned above, in this embodiment, 40 indoor units 5 are connected to the outdoor unit 2 and the rated capacity of each indoor unit 5 is set to the same rated capacity: 2 kW. The rated capacity of the indoor unit 5 may be different, and the total value of the rated capacity of the indoor unit 5 does not have to exceed the rated capacity of the outdoor unit 2.

室内熱交換器51は、冷媒と、後述する室内ファン55の回転により図示しない吸込口から室内機5の内部に取り込まれた室内空気を熱交換させるものである。室内熱交換器51の一方の冷媒出入口と液管接続部53とが室内機液管71で接続され、他方の冷媒出入口とガス管接続部54aとが室内機ガス管72で接続されている。室内熱交換器51は、空気調和装置1が冷房運転を行う場合は蒸発器として機能し、空気調和装置1が暖房運転を行う場合は凝縮器として機能する。尚、液管接続部53やガス管接続部54は、各冷媒配管が溶接やフレアナット等により接続されている。   The indoor heat exchanger 51 exchanges heat between the refrigerant and the indoor air taken into the indoor unit 5 from a suction port (not shown) by rotation of an indoor fan 55 described later. One refrigerant inlet / outlet of the indoor heat exchanger 51 and the liquid pipe connecting portion 53 are connected by an indoor unit liquid pipe 71, and the other refrigerant inlet / outlet and the gas pipe connecting portion 54 a are connected by an indoor unit gas pipe 72. The indoor heat exchanger 51 functions as an evaporator when the air conditioner 1 performs a cooling operation, and functions as a condenser when the air conditioner 1 performs a heating operation. Note that the refrigerant pipes of the liquid pipe connection part 53 and the gas pipe connection part 54 are connected by welding, flare nuts, or the like.

室内膨張弁52は、室内機液管71に設けられている。室内膨張弁52は電子膨張弁であり、室内熱交換器51が蒸発器として機能する場合すなわち室内機5が冷房運転を行う場合は、その開度は、室内熱交換器51の冷媒出口(ガス管接続部54側)での冷媒過熱度が目標冷媒過熱度となるように調整される。また、室内膨張弁52は、室内熱交換器51が凝縮器として機能する場合すなわち室内機5が暖房運転を行う場合は、その開度は、室内熱交換器51の冷媒出口(液管接続部53側)での冷媒過冷却度が目標冷媒過冷却度となるように調整される。ここで、目標冷媒過熱度や目標冷媒過冷却度とは、室内機5で十分な冷房能力あるいは暖房能力を発揮するのに必要な冷媒過熱度および冷媒過冷却度である。   The indoor expansion valve 52 is provided in the indoor unit liquid pipe 71. The indoor expansion valve 52 is an electronic expansion valve, and when the indoor heat exchanger 51 functions as an evaporator, that is, when the indoor unit 5 performs a cooling operation, the opening degree of the indoor expansion valve 52 depends on the refrigerant outlet (gas The refrigerant superheat degree at the pipe connecting portion 54 side) is adjusted so as to become the target refrigerant superheat degree. Further, when the indoor heat exchanger 51 functions as a condenser, that is, when the indoor unit 5 performs the heating operation, the opening of the indoor expansion valve 52 is the refrigerant outlet (liquid pipe connection portion) of the indoor heat exchanger 51. (53 side) is adjusted so that the refrigerant subcooling degree becomes the target refrigerant subcooling degree. Here, the target refrigerant superheat degree and the target refrigerant subcool degree are the refrigerant superheat degree and the refrigerant subcool degree necessary for the indoor unit 5 to exhibit sufficient cooling capacity or heating capacity.

室内ファン55は樹脂材で形成されており、室内熱交換器51の近傍に配置されている。室内ファン55は、図示しないファンモータによって回転することで、図示しない吸込口から室内機5の内部に室内空気を取り込み、室内熱交換器51において冷媒と熱交換した室内空気を図示しない吹出口から室内へ放出する。   The indoor fan 55 is formed of a resin material and is disposed in the vicinity of the indoor heat exchanger 51. The indoor fan 55 is rotated by a fan motor (not shown) to take indoor air from the suction port (not shown) into the indoor unit 5, and the indoor air exchanged with the refrigerant in the indoor heat exchanger 51 from the blower outlet (not shown). Release into the room.

以上説明した構成の他に、室内機5には各種のセンサが設けられている。室内機液管71における室内熱交換器51と室内膨張弁52との間には、室内熱交換器51に流入あるいは室内熱交換器51から流出する冷媒の温度を検出する液側温度センサ61が設けられている。室内機ガス管72には、室内熱交換器51から流出あるいは室内熱交換器51に流入する冷媒の温度を検出するガス側温度センサ62が設けられている。室内機5の図示しない吸込口付近には、室内機5の内部に流入する室内空気の温度、すなわち吸込温度を検出する吸込温度センサ63が備えられている。   In addition to the configuration described above, the indoor unit 5 is provided with various sensors. Between the indoor heat exchanger 51 and the indoor expansion valve 52 in the indoor unit liquid pipe 71, there is a liquid side temperature sensor 61 that detects the temperature of the refrigerant flowing into or out of the indoor heat exchanger 51. Is provided. The indoor unit gas pipe 72 is provided with a gas side temperature sensor 62 that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 51 or flowing into the indoor heat exchanger 51. A suction temperature sensor 63 that detects the temperature of indoor air flowing into the indoor unit 5, that is, the suction temperature, is provided near the suction port (not shown) of the indoor unit 5.

<冷媒回路の動作>
次に、本実施形態における空気調和装置1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、空気調和装置1が冷房運転を行う場合について説明し、暖房運転を行う場合については詳細な説明を省略する。また、図1における矢印は冷房運転時の冷媒の流れを示している。
<Operation of refrigerant circuit>
Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air-conditioning apparatus 1 in the present embodiment will be described with reference to FIG. In addition, in the following description, the case where the air conditioning apparatus 1 performs a cooling operation will be described, and the detailed description of the case where a heating operation is performed will be omitted. Moreover, the arrow in FIG. 1 has shown the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation.

図1に示すように、空気調和装置1が冷房運転を行う場合は、四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するように、また、ポートcとポートdとが連通するように切り換えられる。これにより、冷媒回路10は、各室内熱交換器51が蒸発器として機能するとともに、室外熱交換器23が凝縮器として機能する冷房サイクルとなる。   As shown in FIG. 1, when the air-conditioning apparatus 1 performs a cooling operation, the four-way valve 22 is in a state indicated by a solid line, that is, the port a and the port b of the four-way valve 22 communicate with each other, and the port c And the port d are switched to communicate with each other. Thereby, the refrigerant circuit 10 becomes a cooling cycle in which each indoor heat exchanger 51 functions as an evaporator and the outdoor heat exchanger 23 functions as a condenser.

上記のような冷媒回路10の状態で圧縮機21が駆動すると、圧縮機21から吐出された冷媒は、吐出管41を流れて四方弁22に流入し、四方弁22から冷媒配管43を介して室外熱交換器23へと流入する。   When the compressor 21 is driven in the state of the refrigerant circuit 10 as described above, the refrigerant discharged from the compressor 21 flows through the discharge pipe 41 and flows into the four-way valve 22, and from the four-way valve 22 through the refrigerant pipe 43. It flows into the outdoor heat exchanger 23.

室外熱交換器23へと流入した冷媒は、室外ファン28の回転によって室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。室外熱交換器23から室外機液管44へと流出した冷媒は、開度が全開とされている室外膨張弁24を通過し、閉鎖弁25を介して液管8に流出する。   The refrigerant flowing into the outdoor heat exchanger 23 is condensed by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28. The refrigerant that has flowed out of the outdoor heat exchanger 23 into the outdoor unit liquid pipe 44 passes through the outdoor expansion valve 24 whose opening is fully opened, and flows out into the liquid pipe 8 through the closing valve 25.

液管8を流れる冷媒は、液管接続部53を介して各室内機5に分流する。各室内機5に流入した冷媒は各室内機液管71を流れ、室内熱交換器51の各々の冷媒出口での冷媒過熱度が目標冷媒過熱度となるように開度が調整された各室内膨張弁52を通過する際に減圧される。   The refrigerant flowing through the liquid pipe 8 is divided into each indoor unit 5 through the liquid pipe connection portion 53. The refrigerant that has flowed into each indoor unit 5 flows through each indoor unit liquid pipe 71, and each indoor unit whose opening degree is adjusted so that the refrigerant superheat degree at each refrigerant outlet of the indoor heat exchanger 51 becomes the target refrigerant superheat degree. When passing through the expansion valve 52, the pressure is reduced.

各室内機液管71から各室内熱交換器51に流入した冷媒は、各室内ファン55の回転により各室内機5の内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、各室内熱交換器51が蒸発器として機能し、各室内熱交換器51で冷媒と熱交換を行って冷却された室内空気が図示しない吹出口から室内に吹き出されることによって、40台の室内機5が設置された室内の冷房が行われる。   The refrigerant flowing into each indoor heat exchanger 51 from each indoor unit liquid pipe 71 evaporates by exchanging heat with the indoor air taken into each indoor unit 5 by the rotation of each indoor fan 55. Thus, each indoor heat exchanger 51 functions as an evaporator, and the indoor air cooled by performing heat exchange with the refrigerant in each indoor heat exchanger 51 is blown into the room from a blower outlet (not shown). Cooling of the room in which 40 indoor units 5 are installed is performed.

各室内熱交換器51から各室内機ガス管72に流出した冷媒は、各ガス管接続部54を介してガス管9に流出する。ガス管9で合流し閉鎖弁25を介して室外機2に流入した冷媒は、室外機ガス管45、四方弁22、冷媒配管46、アキュムレータ27、吸入管42の順に流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant that has flowed out from each indoor heat exchanger 51 to each indoor unit gas pipe 72 flows out to the gas pipe 9 via each gas pipe connecting portion 54. The refrigerant that merges in the gas pipe 9 and flows into the outdoor unit 2 through the closing valve 25 flows in the order of the outdoor unit gas pipe 45, the four-way valve 22, the refrigerant pipe 46, the accumulator 27, and the suction pipe 42, and is sucked into the compressor 21. And compressed again.

尚、空気調和装置1が暖房運転を行う場合、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するように切り換えられる。これにより、冷媒回路10は、各室内熱交換器51が凝縮器として機能するとともに、室外熱交換器23が蒸発器として機能する暖房サイクルとなる。   When the air conditioner 1 performs the heating operation, the four-way valve 22 is in a state indicated by a broken line, that is, the port a and the port d of the four-way valve 22 communicate with each other, and the port b and the port c communicate with each other. Can be switched. Thereby, the refrigerant circuit 10 becomes a heating cycle in which each indoor heat exchanger 51 functions as a condenser and the outdoor heat exchanger 23 functions as an evaporator.

<圧縮機の回転数制御について>
次に、図1乃至図4を用いて、本実施形態の空気調和装置1が、40台の室内機5が全てサーバールームなどの通年で冷房運転を行う必要がある部屋に設置された場合の、圧縮機21の回転数制御について説明する。
<About compressor speed control>
Next, referring to FIGS. 1 to 4, when the air conditioner 1 according to the present embodiment is installed in a room where all 40 indoor units 5 need to perform cooling operation throughout the year, such as a server room. The rotation speed control of the compressor 21 will be described.

本実施形態の空気調和装置1が上記のように設置されて通年で冷房運転を行う場合に、外気温度が所定の外気温度(以降、閾外気温度と記載する)以下であり、かつ、10台の室内5のうち冷房運転を行う室内機の台数が少ない場合は、以下に記載する問題が起こる恐れがある。   When the air-conditioning apparatus 1 of the present embodiment is installed as described above and performs a cooling operation throughout the year, the outside air temperature is equal to or lower than a predetermined outside air temperature (hereinafter referred to as a threshold outside air temperature), and 10 units. When the number of indoor units performing the cooling operation is small, there is a possibility that the problems described below may occur.

外気温度が低い場合は、外気温度が高い場合と比べて、冷房運転時に凝縮器として機能する室外熱交換器23で発揮される凝縮能力が大きくなる。凝縮能力が大きくなると、冷媒回路10における高圧側の冷媒圧力が低くなって冷媒回路10における低圧側の冷媒圧力との圧力差が小さくなる。圧力差が小さくなると、冷媒回路10における冷媒循環量が低下するので、圧縮機21に吸入される冷媒量も減少する。そして、圧縮機21に吸入される冷媒量が減少すれば、冷媒回路10における高圧側の冷媒圧力がさらに低くなる。   When the outside air temperature is low, the condensing capacity exhibited by the outdoor heat exchanger 23 that functions as a condenser during cooling operation is greater than when the outside air temperature is high. As the condensing capacity increases, the refrigerant pressure on the high pressure side in the refrigerant circuit 10 decreases, and the pressure difference from the refrigerant pressure on the low pressure side in the refrigerant circuit 10 decreases. When the pressure difference becomes small, the refrigerant circulation amount in the refrigerant circuit 10 decreases, so the refrigerant amount sucked into the compressor 21 also decreases. And if the refrigerant | coolant amount suck | inhaled by the compressor 21 reduces, the refrigerant | coolant pressure of the high voltage | pressure side in the refrigerant circuit 10 will become still lower.

また、外気温度が低いことに起因して高圧側の冷媒圧力が低くなる状況で、冷房運転を行う室内機5の台数が少ない場合は、冷房運転を行う室内機5の台数が多い場合と比べて、冷房運転を行う室内機5で必要とされる冷媒量が少ない。このため、圧縮機21の回転数が低くされて冷媒回路10における冷媒循環量が少なくなるので、冷媒回路における高圧側の冷媒圧力がさらに低くなる。   Further, in a situation where the refrigerant pressure on the high pressure side is low due to the low outside air temperature, the number of indoor units 5 performing the cooling operation is smaller than the number of indoor units 5 performing the cooling operation. Thus, the amount of refrigerant required in the indoor unit 5 that performs the cooling operation is small. For this reason, since the rotation speed of the compressor 21 is lowered and the refrigerant circulation amount in the refrigerant circuit 10 is reduced, the refrigerant pressure on the high pressure side in the refrigerant circuit is further reduced.

以上説明したように、外気温度が低い環境下で冷房運転を行う室内機5の台数が少ない場合は、外気温度が高い場合や冷房運転を行う室内機5の台数が多い場合と比べて、冷媒回路10における高圧側の冷媒圧力が低くなることで、高圧側の冷媒圧力と低圧側の冷媒圧力との圧力差が小さくなる。   As described above, when the number of indoor units 5 that perform the cooling operation in an environment where the outside air temperature is low is smaller than the case where the outside air temperature is high or the number of the indoor units 5 that perform the cooling operation is large, the refrigerant By reducing the refrigerant pressure on the high pressure side in the circuit 10, the pressure difference between the refrigerant pressure on the high pressure side and the refrigerant pressure on the low pressure side becomes small.

前述したように、圧縮機21は高圧容器型であり、かつ、密閉容器の下部の圧力と圧縮機構部の圧力との圧力差を利用して、冷凍機油を密閉容器の下部から圧縮機構部へと供給する所謂差圧給油式のものである。そして、冷凍機油を溜めている圧縮機21の密閉容器の下部が冷媒回路10の高圧側と連通しており、また、圧縮機21の圧縮機構部が冷媒回路10の低圧側と連通している。従って、高圧側の冷媒圧力と低圧側の冷媒圧力との圧力差が小さくなれば、圧縮機21の密閉容器の下部の圧力と圧縮機構部の圧力との圧力差も小さくなって、圧縮機21の圧縮機構部の潤滑に十分な量の冷凍機油を密閉容器の下部から圧縮機構部へと吸い上げることができず、圧縮機21の圧縮機構部が潤滑不良となって圧縮機構部の摩耗や焼き付きが発生する恐れがある。   As described above, the compressor 21 is of a high-pressure container type, and the refrigerating machine oil is transferred from the lower part of the sealed container to the compression mechanism part using the pressure difference between the pressure at the lower part of the sealed container and the pressure of the compression mechanism part. The so-called differential pressure oil supply type. And the lower part of the airtight container of the compressor 21 that stores the refrigerating machine oil communicates with the high pressure side of the refrigerant circuit 10, and the compression mechanism portion of the compressor 21 communicates with the low pressure side of the refrigerant circuit 10. . Therefore, if the pressure difference between the refrigerant pressure on the high pressure side and the refrigerant pressure on the low pressure side becomes small, the pressure difference between the pressure in the lower part of the hermetic container of the compressor 21 and the pressure in the compression mechanism part also becomes small. A sufficient amount of refrigerating machine oil for lubricating the compression mechanism portion cannot be sucked from the lower part of the closed container to the compression mechanism portion, and the compression mechanism portion of the compressor 21 becomes poorly lubricated, and the compression mechanism portion is worn or seized. May occur.

そこで、本実施形態の空気調和装置1では、冷房運転時に外気温度が閾外気温度以下であり、かつ、冷房運転を行う室内機5の台数が少ない場合は、以下に説明する図2に示す回転数制御テーブル200および図3に示す加算回転数テーブル300に基づいて、圧縮機21の回転数制御を行う。   Therefore, in the air conditioner 1 of the present embodiment, when the outside air temperature is equal to or lower than the threshold outside air temperature during the cooling operation and the number of indoor units 5 performing the cooling operation is small, the rotation shown in FIG. 2 described below is performed. The rotational speed control of the compressor 21 is performed based on the number control table 200 and the additional rotational speed table 300 shown in FIG.

以下の説明では、まず、図2と図3とを用いて回転数制御テーブル200と加算回転数テーブル300について説明し、次に、図4を用いて上記各テーブルを用いて冷房運転時に圧縮機21の回転数を制御する際に室外機制御手段200のCPU210が行う処理について説明する。   In the following description, first, the rotation speed control table 200 and the addition rotation speed table 300 will be described with reference to FIGS. 2 and 3, and then the compressor during cooling operation will be described with reference to the respective tables with reference to FIG. 4. Processing performed by the CPU 210 of the outdoor unit control means 200 when controlling the number of rotations 21 will be described.

尚、以下の説明では、外気温度をTo、閾外気温度をTotとする。ここで、閾外気温度Totは、予め試験などを行って定められて記憶部220に記憶されているものであり、外気温度Toが閾外気温度をTot以下の環境下で空気調和装置1が冷房運転を行えば、冷媒回路10における高圧側の冷媒圧力が低くなって冷媒回路10における低圧側の冷媒圧力との圧力差が小さくなることで、圧縮機21の密閉容器の下部の圧力と圧縮機構部の圧力との圧力差が小さくなって圧縮機構部の潤滑不良となる可能性があるものである。尚、一例として閾外気温度をTotは−5℃である。   In the following description, the outside air temperature is To and the threshold outside temperature is Tot. Here, the threshold outside air temperature Tot is determined in advance by performing a test or the like and stored in the storage unit 220. The air conditioner 1 is cooled in an environment where the outside air temperature To is equal to or lower than the threshold outside air temperature Tot. When the operation is performed, the pressure difference between the refrigerant pressure on the high pressure side in the refrigerant circuit 10 and the pressure difference between the refrigerant pressure on the low pressure side in the refrigerant circuit 10 and the pressure in the lower part of the hermetic container of the compressor 21 and the compression mechanism are reduced. There is a possibility that the pressure difference from the pressure of the part becomes small, resulting in poor lubrication of the compression mechanism part. As an example, the threshold outside air temperature is Tot of −5 ° C.

また、室外機2の定格能力である室外機定格能力をAo、各室内機5の定格能力である室内機定格能力をAi、室内機5のうちの冷房運転を行っている室内機で使用者により要求されている冷房能力をAr、冷房運転を行っている室内機の室内機定格能力Aiの合計値を室外機定格能力Aoで除した能力比をD、閾能力比をDtとする。   Also, the outdoor unit rated capacity of the outdoor unit 2 is Ao, the rated capacity of each indoor unit 5 is Ai, and the indoor unit 5 is performing an air-cooling operation. Ar is the cooling capacity required by the above, D is the capacity ratio obtained by dividing the total value of the indoor unit rated capacity Ai of the indoor units performing the cooling operation by the outdoor unit rated capacity Ao, and the threshold capacity ratio is Dt.

ここで、能力比Dとは、冷房運転を行っている室内機5の台数を簡易的に表すものである。すなわち、能力比Dが大きい値であれば、冷房運転を行っている室内機の室内機定格能力Aiの合計値が大きいつまりは冷房運転を行っている室内機5の台数が多いことを示し、能力比Dが小さい値であれば、冷房運転を行っている室内機の室内機定格能力Aiの合計値が小さいつまりは冷房運転を行っている室内機5の台数が少ないことを示す。   Here, the capacity ratio D simply represents the number of indoor units 5 performing the cooling operation. That is, if the capacity ratio D is a large value, the total value of the indoor unit rated capacity Ai of the indoor units that are performing the cooling operation is large, that is, the number of indoor units 5 that are performing the cooling operation is large. When the capacity ratio D is a small value, it indicates that the total value of the indoor unit rated capacities Ai of the indoor units that are performing the cooling operation is small, that is, the number of indoor units 5 that are performing the cooling operation is small.

また、閾能力比Dtは、予め試験などを行って求められて記憶部220に記憶されているものであり、上述した能力比Dが閾能力比Dt以下となる冷房運転を行っている室内機5の台数であれば、圧縮機21の密閉容器の下部の圧力と圧縮機構部の圧力との圧力差が小さくなって圧縮機構部の潤滑不良が発生する可能性が高くなることが判明しているものである。尚、一例として閾能力比Dtは、冷房運転を行っている室内機5が2台の場合、つまり、冷房運転を行っている室内機5の室内機定格能力Aiの合計値が4kWであるときの能力比Dt=4kW/80kW=0.05である。   The threshold capacity ratio Dt is obtained in advance through a test or the like and stored in the storage unit 220, and the indoor unit performing the cooling operation in which the above-described capacity ratio D is equal to or less than the threshold capacity ratio Dt. If the number is 5, the pressure difference between the pressure of the lower part of the sealed container of the compressor 21 and the pressure of the compression mechanism portion becomes small, and it is found that the possibility of poor lubrication of the compression mechanism portion increases. It is what. As an example, the threshold capacity ratio Dt is when the number of indoor units 5 performing the cooling operation is two, that is, when the total value of the indoor unit rated capacities Ai of the indoor units 5 performing the cooling operation is 4 kW. The capacity ratio Dt = 4 kW / 80 kW = 0.05.

また、吐出圧力センサ31で検出する圧縮機21の吐出圧力(冷媒回路10の高圧側の冷媒圧力に相当)をPd、吸入圧力センサ32で検出する圧縮機21の吸入圧力(冷媒回路10の低圧側の冷媒圧力に相当)をPs、吸入圧力Psの性能上の下限値である吸入圧力下限値をPsmin、吸入圧力Psの閾吸入圧力をPst、吐出圧力Pdと吸入圧力Psとの圧力差(Pd−Ps)をΔP、圧力差ΔPのうちの第1圧力差をP1、圧力差ΔPの第2圧力差をP2(ただし、P1<P2)とする。尚、第1圧力差P1および第2圧力差P2の各々については、後に詳細に説明する。   Further, the discharge pressure of the compressor 21 detected by the discharge pressure sensor 31 (corresponding to the refrigerant pressure on the high pressure side of the refrigerant circuit 10) is Pd, and the suction pressure of the compressor 21 detected by the suction pressure sensor 32 (the low pressure of the refrigerant circuit 10). Is equivalent to the refrigerant pressure on the side) Ps, the suction pressure lower limit, which is the lower limit on the performance of the suction pressure Ps, Psmin, the threshold suction pressure of the suction pressure Ps is Pst, and the pressure difference between the discharge pressure Pd and the suction pressure Ps ( Pd−Ps) is ΔP, the first pressure difference among the pressure differences ΔP is P1, and the second pressure difference of the pressure difference ΔP is P2 (where P1 <P2). Each of the first pressure difference P1 and the second pressure difference P2 will be described in detail later.

また、圧縮機21の回転数をRc、冷房要求能力Arを発揮するのに必要な圧縮機21の回転数である能力相応回転数をRcp、外気温度Toが閾外気温度Tot以下かつ能力比Dが閾能力比Dt以下である場合の圧縮機21の起動時回転数をRct、圧縮機21の回転数Rcに加える加算回転数をΔRc、第1加算回転数をRc1、第2加算回転数をRc2(ただし、Rc1<Rc2)とする。ここで、起動時回転数Rctは、予め試験などを行って求められて室外機制御手段200の記憶部220に記憶されているものであり、起動時回転数Rctで圧縮機21を起動すれば、圧縮機21で潤滑不良が発生しないことが判明している回転数である。尚、一例として起動時回転数Rctは30rpsである。尚、第1加算回転数Rc1および第2加算回転数Rc2の各々については、後に詳細に説明する。   Further, the rotation speed of the compressor 21 is Rc, the rotation speed corresponding to the capacity, which is the rotation speed of the compressor 21 required to exhibit the cooling required capacity Ar, is Rcp, the outside air temperature To is less than the threshold outside air temperature Tot, and the capacity ratio D Is the threshold speed ratio Dt or less, the starting rotational speed of the compressor 21 is Rct, the additional rotational speed added to the rotational speed Rc of the compressor 21 is ΔRc, the first additional rotational speed is Rc1, and the second additional rotational speed is Let Rc2 (where Rc1 <Rc2). Here, the starting rotation speed Rct is obtained in advance through a test or the like and stored in the storage unit 220 of the outdoor unit control means 200. If the compressor 21 is started at the starting rotation speed Rct, The rotation speed has been found to cause no lubrication failure in the compressor 21. As an example, the starting rotational speed Rct is 30 rps. Each of the first addition rotation speed Rc1 and the second addition rotation speed Rc2 will be described in detail later.

<回転数制御テーブル>
図2に示す回転数制御テーブル200は、予め試験を行って定められて、室外機制御手段200の記憶部220に記憶されている。この回転数制御テーブル200では、一外気温度Toの閾外気温度Totを前述した−5℃、第1圧力差P1を0.7MPa、第2圧力差P2を0.9MPaとしている。
<Rotation speed control table>
The rotation speed control table 200 shown in FIG. 2 is determined in advance by testing and stored in the storage unit 220 of the outdoor unit control means 200. In the rotation speed control table 200, the threshold outside air temperature Tot of the one outside air temperature To is −5 ° C., the first pressure difference P1 is 0.7 MPa, and the second pressure difference P2 is 0.9 MPa.

そして、回転数制御テーブル200では、外気温度Toが−5℃超であるときは、圧力差ΔPに関わらず圧縮機回転数Rcを能力相応回転数Rcpとしている。能力比Dが閾能力比Dt以下であるときに外気温度Toが閾外気温度Tot超である場合は、外気温度Toが閾外気温度Tot以下である場合と比べて、凝縮器として機能する室外熱交換器23で凝縮能力が小さくなって凝縮圧力が高くなるため、圧縮機21の回転数が低くされても圧力差ΔPが小さくならない。そこで、回転数制御テーブル200では、外気温度Toが閾外気温度Tot超である場合は、圧縮機回転数Rcがどのような回転数となっても圧力差ΔPが確保できる、つまりは、圧縮機構部に十分な量の冷凍機油が供給できる、圧縮機21の密閉容器の下部の圧力と圧縮機構部の圧力との圧力差が確保できると考えて、圧縮機回転数Rcを能力相応回転数Rcとしている。   In the rotational speed control table 200, when the outside air temperature To is higher than −5 ° C., the compressor rotational speed Rc is set as the capacity-dependent rotational speed Rcp regardless of the pressure difference ΔP. When the outdoor air temperature To is higher than the threshold outdoor air temperature Tot when the capacity ratio D is equal to or lower than the threshold outdoor power ratio Dt, the outdoor heat that functions as a condenser is compared with the case where the outdoor air temperature To is lower than the threshold outdoor air temperature Tot. Since the condensation capacity is reduced by the exchanger 23 and the condensation pressure is increased, the pressure difference ΔP is not reduced even if the rotation speed of the compressor 21 is reduced. Therefore, in the rotation speed control table 200, when the outside air temperature To is higher than the threshold outside air temperature Tot, the pressure difference ΔP can be secured regardless of the rotation speed of the compressor Rc, that is, the compression mechanism. Assuming that a sufficient pressure difference between the pressure of the lower part of the closed container of the compressor 21 and the pressure of the compression mechanism can be secured, a sufficient amount of refrigeration oil can be supplied to the compressor. It is said.

一方、外気温度Toが−5℃以下であるときは、圧力差ΔPが0.7MPa未満である場合の圧縮機回転数Rcを、能力相応回転数Rcpに後述する加算回転数テーブル300に定められた加算回転数ΔRcを加算した回転数としている。また、圧力差ΔPが0.7MPa以上0.9MPa未満である場合の圧縮機回転数Rcを、現在の圧縮機回転数Rcに維持としている。また、圧力差ΔPが0.9MPa以上である場合の圧縮機回転数Rcを能力相応回転数Rcpとしている。   On the other hand, when the outside air temperature To is −5 ° C. or lower, the compressor rotational speed Rc when the pressure difference ΔP is less than 0.7 MPa is determined in an additional rotational speed table 300 described later as the capacity-dependent rotational speed Rcp. The added number of rotations ΔRc is the added number of rotations. Further, the compressor rotation speed Rc when the pressure difference ΔP is 0.7 MPa or more and less than 0.9 MPa is maintained at the current compressor rotation speed Rc. Further, the compressor rotation speed Rc when the pressure difference ΔP is 0.9 MPa or more is set as the capacity-related rotation speed Rcp.

能力比Dが閾能力比Dt以下であるときに外気温度Toが閾外気温度Tot以下である場合は、凝縮器として機能する室外熱交換器23で凝縮能力が大きくなって凝縮圧力が低くなるために圧力差ΔPが小さくなる。このとき、圧縮機21の回転数を低くして冷媒回路10における冷媒循環量を少なくすれば、さらに凝縮圧力が低くなって圧力差ΔPが小さくなるので、圧縮機21の圧縮機構部の潤滑に十分な量の冷凍機油を圧縮機構部に供給することができなくなる可能性が高い。そこで、回転数制御テーブル200では、圧力差ΔPに応じて圧縮機回転数Rcを定めており、圧力差ΔPが第1圧力差P1(=0.7MPa)未満であるときは、圧力差ΔPを大きくするために、圧縮機回転数Rcを能力相応回転数Rcpに加算回転数ΔRcを加算した回転数としている。また、圧力差ΔPが第1圧力差P1以上第2圧力差P2(=0.9MPa)未満である場合は、圧力差ΔPが低下して第1圧力差P1未満とならないように、圧縮機回転数Rcを現在の圧縮機回転数Rcに維持する。そして、圧力差ΔPが第2圧力差P2以上である場合は、圧縮機回転数Rcを上昇させても圧力差ΔPが低下して第1圧力差未満となる可能性が低いので、圧縮機回転数Rcを能力相応回転数Rcpとしている。   When the capacity ratio D is equal to or less than the threshold capacity ratio Dt and the outside air temperature To is equal to or less than the threshold outside air temperature Tot, the condensing capacity is increased and the condensing pressure is decreased in the outdoor heat exchanger 23 functioning as a condenser. The pressure difference ΔP becomes smaller. At this time, if the rotation speed of the compressor 21 is lowered to reduce the refrigerant circulation amount in the refrigerant circuit 10, the condensing pressure is further reduced and the pressure difference ΔP is reduced, so that the compression mechanism portion of the compressor 21 is lubricated. There is a high possibility that a sufficient amount of refrigerating machine oil cannot be supplied to the compression mechanism. Therefore, in the rotation speed control table 200, the compressor rotation speed Rc is determined according to the pressure difference ΔP. When the pressure difference ΔP is less than the first pressure difference P1 (= 0.7 MPa), the pressure difference ΔP is set. In order to increase the compressor speed, the compressor speed Rc is set to a speed obtained by adding the additional speed ΔRc to the speed Rcp corresponding to the capacity. When the pressure difference ΔP is not less than the first pressure difference P1 and less than the second pressure difference P2 (= 0.9 MPa), the compressor rotation is performed so that the pressure difference ΔP does not decrease and become less than the first pressure difference P1. The number Rc is maintained at the current compressor speed Rc. If the pressure difference ΔP is equal to or greater than the second pressure difference P2, it is unlikely that the pressure difference ΔP will decrease and become less than the first pressure difference even if the compressor rotational speed Rc is increased. The number Rc is the rotation speed Rcp corresponding to the capacity.

<回転数加算テーブル>
図3に示す加算回転数テーブル300は、予め試験を行って定められて、室外機制御手段200の記憶部220に記憶されている。この加算回転数テーブル300では、一例として吸入圧力下限値Psminを0.2MPa、閾吸入圧力Pstを0.5MPa、第1加算回転数Rc1を5rps、第2加算回転数Rc2を8rpsとしている。
<Rotation speed addition table>
The addition rotation speed table 300 shown in FIG. 3 is determined in advance by testing and stored in the storage unit 220 of the outdoor unit control means 200. In this additional rotational speed table 300, for example, the suction pressure lower limit Psmin is 0.2 MPa, the threshold suction pressure Pst is 0.5 MPa, the first additional rotational speed Rc1 is 5 rps, and the second additional rotational speed Rc2 is 8 rps.

前述したように、空気調和装置1で冷房運転を行うときに外気温度Toが閾外気温度Tot以下であり、かつ、能力比Dが閾能力比Dt以下である場合は、回転数制御テーブル200を用いて圧縮機回転数Rcを制御する。そして、回転数制御テーブル200では、外気温度Toが閾外気温度Totでありかつ圧力差ΔPが0.7MPa未満であるときの圧縮機回転数Rcを、現在の圧縮機回転数Rcに加算回転数ΔRcを加算した回転数とする。   As described above, when the outside air temperature To is equal to or lower than the threshold outside air temperature Tot and the capacity ratio D is equal to or less than the threshold capacity ratio Dt when the air-conditioning apparatus 1 performs the cooling operation, the rotation speed control table 200 is set. Use to control the compressor speed Rc. In the rotational speed control table 200, the compressor rotational speed Rc when the outdoor air temperature To is the threshold outdoor air temperature Tot and the pressure difference ΔP is less than 0.7 MPa is added to the current compressor rotational speed Rc. The rotation speed is obtained by adding ΔRc.

上記のように、加算回転数ΔRcを加算して圧縮機回転数Rcを上昇させるときに、吸入圧力Psが低くて吸入圧力下限値Psminに近い値である場合は、加算回転数ΔRcが大きな値であれば吸入圧力Psが吸入圧力下限値Psminを下回る恐れがある。そこで、本実施形態の空気調和装置1では、回転数制御テーブル200を用いて圧縮機回転数Rcを制御しているときに、吸入圧力センサ51で検出した吸入圧力Psを用い、加算回転数テーブル300を参照して検出した吸入圧力Psに応じた加算回転数ΔRcを決定している。   As described above, when the compressor rotational speed Rc is increased by adding the additional rotational speed ΔRc, if the suction pressure Ps is low and close to the suction pressure lower limit value Psmin, the additional rotational speed ΔRc is a large value. If so, the suction pressure Ps may fall below the suction pressure lower limit value Psmin. Therefore, in the air conditioning apparatus 1 of the present embodiment, when the compressor rotation speed Rc is controlled using the rotation speed control table 200, the suction pressure Ps detected by the suction pressure sensor 51 is used to add the rotation speed table. The addition rotational speed ΔRc corresponding to the suction pressure Ps detected with reference to 300 is determined.

具体的には、加算回転数テーブル300では、吸入圧力Psが閾吸入圧力Pst(=0.5MPa)以上である場合、つまり、吸入圧力Psが圧縮機回転数Rcの上昇によって低下したときに吸入圧力下限値Psminを下回る可能性が低い場合は、加算回転数ΔRcを第2加算回転数(=8rps)としている。一方、吸入圧力Psが0.2MPa以上0.5MPa未満である場合、つまり、吸入圧力Psが圧縮機回転数Rcの上昇によって低下したときに吸入圧力下限値Psminを下回る可能性が高い場合は、加算回転数ΔRcを第2加算回転数より低い第1加算回転数(=5rps)としている。   Specifically, in the addition rotation speed table 300, when the suction pressure Ps is equal to or higher than the threshold suction pressure Pst (= 0.5 MPa), that is, when the suction pressure Ps is decreased due to an increase in the compressor speed Rc, the suction is performed. When the possibility of falling below the pressure lower limit value Psmin is low, the additional rotational speed ΔRc is set to the second additional rotational speed (= 8 rps). On the other hand, when the suction pressure Ps is 0.2 MPa or more and less than 0.5 MPa, that is, when the suction pressure Ps is likely to fall below the suction pressure lower limit value Psmin when the suction pressure Ps decreases due to an increase in the compressor rotational speed Rc, The addition rotation speed ΔRc is set to a first addition rotation speed (= 5 rps) lower than the second addition rotation speed.

<冷房運転時の圧縮機回転数制御に関わる処理の流れ>
次に、図4を用いて、空気調和装置1が冷房運転を行う際の、圧縮機21の回転数制御に関わる処理の流れについて説明する。図4に示すのは、冷房運転時に圧縮機21の回転数制御において、室外機制御手段200のCPU210が行う処理を示すフローチャートである。図4において、STは処理のステップを表し、これに続く数字はステップの番号を表している。尚、図4では、本発明に関わる処理のみに言及しており、暖房運転時の空気調和装置1の制御などのその他の制御に係る処理については、記載と説明を省略する。
<Processing flow related to compressor speed control during cooling operation>
Next, the flow of processing related to the rotational speed control of the compressor 21 when the air-conditioning apparatus 1 performs the cooling operation will be described with reference to FIG. FIG. 4 is a flowchart showing processing performed by the CPU 210 of the outdoor unit control means 200 in the rotational speed control of the compressor 21 during the cooling operation. In FIG. 4, ST represents a process step, and the number following this represents a step number. Note that FIG. 4 refers only to processing related to the present invention, and description and description of processing related to other controls such as control of the air conditioner 1 during heating operation are omitted.

空気調和装置1が冷房運転を行うとき、CPU210は、冷房運転を行っている室内機5から、室内機定格能力Aiと使用者が要求する冷房要求能力Arとを通信部230を介して取り込む(ST1)。尚、室内機定格能力Aiについては、事前にCPU210が通信部を介して全ての室内機5の室内機定格能力Aiを取り込んで記憶部220に記憶しておき、冷房運転を行っている室内機5に対応する室内機定格能力Aiを記憶部220から読み出すようにしてもよい。   When the air conditioning apparatus 1 performs the cooling operation, the CPU 210 takes in the indoor unit rated capacity Ai and the cooling required capacity Ar requested by the user from the indoor unit 5 performing the cooling operation via the communication unit 230 ( ST1). As for the indoor unit rated capacity Ai, the CPU 210 previously takes in the indoor unit rated capacity Ai of all the indoor units 5 through the communication unit, stores it in the storage unit 220, and performs the cooling operation. The indoor unit rated capacity Ai corresponding to 5 may be read from the storage unit 220.

次に、CPU210は、記憶部220に予め記憶されている室外機2の室外機定格能力Aoを読み出す(ST2)。   Next, the CPU 210 reads out the outdoor unit rated capacity Ao of the outdoor unit 2 stored in advance in the storage unit 220 (ST2).

次に、CPU210は、ST1で取り込んだ冷房要求能力Arを用いて、能力相応回転数Rcpを決定する(ST3)。図示は省略するが、記憶部220には、冷房要求能力Arに対応させて能力相応回転数Rcpを定めたテーブルが記憶されており、CPU210は、このテーブルを参照して取り込んだ冷房要求能力Arに応じた能力相応回転数Rcpを決定する。   Next, the CPU 210 determines the rotation speed Rcp corresponding to the capacity using the cooling required capacity Ar taken in ST1 (ST3). Although illustration is omitted, the storage unit 220 stores a table in which the rotation speed Rcp corresponding to the capacity is determined in correspondence with the cooling required capacity Ar, and the CPU 210 refers to this table and takes in the cooling required capacity Ar Rotational speed Rcp corresponding to the capability is determined.

次に、CPU210は、圧縮機21を記憶部220に記憶している起動時回転数Rctで起動する(ST4)。前述したように、起動時回転数Rctは、予め試験などを行って求められて室外機制御手段200の記憶部220に記憶されているものであり、起動時回転数Rctで圧縮機21を起動すれば、圧縮機21で潤滑不良が発生しないことが判明している回転数である。   Next, the CPU 210 starts up the compressor 21 at the starting rotation speed Rct stored in the storage unit 220 (ST4). As described above, the starting rotational speed Rct is obtained in advance through a test or the like and stored in the storage unit 220 of the outdoor unit control means 200, and the compressor 21 is started at the starting rotational speed Rct. In this case, the rotational speed is known to cause no lubrication failure in the compressor 21.

次に、CPU210は、能力比Dが閾能力比Dt以下であるか否かを判断する(ST5)。具体的には、CPU210は、ST1で取り込んだ室内機定格能力Aiの合計値をST2で読み出した室外機定格能力Aoで除して能力比Dを求め、求めた能力比Dと記憶部220に記憶している閾能力比Dtとを比較する。   Next, the CPU 210 determines whether or not the capability ratio D is equal to or less than the threshold capability ratio Dt (ST5). Specifically, the CPU 210 obtains the capacity ratio D by dividing the total value of the indoor unit rated capacity Ai captured in ST1 by the outdoor unit rated capacity Ao read in ST2, and stores the calculated capacity ratio D in the storage unit 220. The stored threshold ability ratio Dt is compared.

能力比Dが閾能力比Dt以下でなければ(ST5−No)、CPU210は、ST12に処理を進める。能力比Dが閾能力比Dt以下であれば(ST5−Yes)、CPU210は、外気温度センサ36で検出した外気温度Toをセンサ入力部240を介して取り込み(ST6)、取り込んだ外気温度Toが記憶部220に記憶している閾外気温度Tot以下であるか否かを判断する(ST7)。   If the capability ratio D is not less than or equal to the threshold capability ratio Dt (ST5-No), the CPU 210 advances the process to ST12. If the capacity ratio D is equal to or less than the threshold capacity ratio Dt (ST5-Yes), the CPU 210 takes in the outside air temperature To detected by the outside air temperature sensor 36 via the sensor input unit 240 (ST6), and the taken in outside air temperature To is It is determined whether or not the temperature is equal to or lower than the threshold outside air temperature Tot stored in the storage unit 220 (ST7).

取り込んだ外気温度Toが閾外気温度Tot以下でなければ(ST7−No)、CPU210は、ST12に処理を進める。取り込んだ外気温度Toが閾外気温度Tot以下であれば(ST7−Yes)、CPU210は、吐出圧力センサ31で検出した吐出圧力Pdと、吸入圧力センサ32で検出した吸入圧力Psとを、センサ入力部240を介して取り込み(ST8)、取り込んだ吐出圧力Pdから取り込んだ吸入圧力Psを減じて圧力差ΔPを算出する(ST9)。   If the taken-in outside temperature To is not below the threshold outside temperature Tot (ST7-No), the CPU 210 advances the process to ST12. If the taken-in outside air temperature To is equal to or lower than the threshold outside air temperature Tot (ST7-Yes), the CPU 210 inputs the discharge pressure Pd detected by the discharge pressure sensor 31 and the suction pressure Ps detected by the suction pressure sensor 32 from the sensor input. The pressure difference ΔP is calculated by subtracting the intake pressure Ps acquired from the discharge pressure Pd acquired (ST9).

次に、CPU210は、ST9で算出した圧力差ΔPが第1圧力差P1未満であるか否かを判断する(ST10)。圧力差ΔPが第1圧力差P1未満でなければ(ST10−No)、CPU210は、圧力差ΔPが第1圧力差P1以上第2圧力差未満であるか否かを判断する(ST11)。尚、第1圧力差P1および第2圧力差P2は、それぞれ回転数制御テーブル200に定められているものである。   Next, CPU 210 determines whether or not pressure difference ΔP calculated in ST9 is less than first pressure difference P1 (ST10). If the pressure difference ΔP is not less than the first pressure difference P1 (ST10-No), the CPU 210 determines whether or not the pressure difference ΔP is greater than or equal to the first pressure difference P1 and less than the second pressure difference (ST11). The first pressure difference P1 and the second pressure difference P2 are determined in the rotation speed control table 200, respectively.

圧力差ΔPが第1圧力差P1以上第2圧力差P2未満でなければ(ST11−No)、つまり、圧力差ΔPが第2圧力差P2以上であれば、CPU210は、圧縮機回転数RcをST3で決定した能力相応回転数Rcpとして(ST12)、ST8に処理を戻す。   If the pressure difference ΔP is not equal to or greater than the first pressure difference P1 and less than the second pressure difference P2 (ST11-No), that is, if the pressure difference ΔP is equal to or greater than the second pressure difference P2, the CPU 210 sets the compressor rotational speed Rc. As the speed Rcp corresponding to the capacity determined in ST3 (ST12), the process returns to ST8.

ST11において、圧力差ΔPが第1圧力差P1以上第2圧力差P2未満であれば(ST11−Yes)、CPU210は、現在の圧縮機回転数Rcを維持し(ST15)、ST5に処理を戻す。   If the pressure difference ΔP is greater than or equal to the first pressure difference P1 and less than the second pressure difference P2 in ST11 (ST11-Yes), the CPU 210 maintains the current compressor speed Rc (ST15) and returns the process to ST5. .

ST10において、圧力差ΔPが第1圧力差P1未満であれば(ST10−Yes)、CPU210は、記憶部220に記憶している加算回転数テーブル300を参照し、ST8で取り込んだ吸入圧力Psに応じた加算回転数ΔRcを決定し(ST13)、圧縮機回転数Rcを、ST3で決定した能力相応回転数Rcpに加算回転数ST13で決定したΔRcを加算した回転数として(ST14)、ST5に処理を戻す。   In ST10, if the pressure difference ΔP is less than the first pressure difference P1 (ST10-Yes), the CPU 210 refers to the addition rotational speed table 300 stored in the storage unit 220 and sets the suction pressure Ps acquired in ST8. In response, an additional rotational speed ΔRc is determined (ST13), and the compressor rotational speed Rc is determined as the rotational speed obtained by adding ΔRc determined in the additional rotational speed ST13 to the capacity-corresponding rotational speed Rcp determined in ST3 (ST14). Return processing.

以上説明したように、本実施形態の空気調和装置1では、外気温度Toが閾外気温度Tot以下であり、かつ、能力比Dが閾能力比Dt以下である環境下で冷房運転を行うときに、圧縮機回転数テーブル200および回転数加算テーブル300を用いて、圧縮機21の回転数を制御する。これにより、圧力差ΔPが小さくなって圧縮機21の密閉容器下部の圧力と圧縮機構部の圧力との圧力差が小さくなることで、圧縮機21の内部で圧縮機構部に冷凍機油が供給されにくい状態となった場合でも、圧縮機21の回転数を制御して適切な量の冷凍機油が圧縮機21の圧縮機構部に供給されるようにするので、圧縮機21の圧縮機構部が潤滑不良となることを防ぐことができる。   As described above, in the air conditioner 1 of the present embodiment, when the cooling operation is performed in an environment where the outside air temperature To is equal to or lower than the threshold outside air temperature Tot and the capacity ratio D is equal to or less than the threshold capacity ratio Dt. Then, the rotation speed of the compressor 21 is controlled using the compressor rotation speed table 200 and the rotation speed addition table 300. As a result, the pressure difference ΔP is reduced and the pressure difference between the pressure at the lower part of the hermetic container of the compressor 21 and the pressure of the compression mechanism portion is reduced, whereby refrigeration oil is supplied to the compression mechanism portion inside the compressor 21. Even in a difficult state, the rotation speed of the compressor 21 is controlled so that an appropriate amount of refrigeration oil is supplied to the compression mechanism section of the compressor 21, so that the compression mechanism section of the compressor 21 is lubricated. It can be prevented from becoming defective.

次に、図5を用いて、本発明の第2の実施形態について説明する。本実施形態は、第1の実施形態における回転数制御テーブル200に代えて、室外機制御手段200の記憶部220に図5に示す回転数制御テーブル200aを記憶している点が、第1の実施形態と異なる。尚、この回転数制御テーブルが異なる点を除いて、冷媒回路10の構成や図4を用いて説明した冷房運転時の圧縮機21の回転数制御などは、第1の実施形態と同じであるため、詳細な説明は省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, instead of the rotation speed control table 200 in the first embodiment, the rotation speed control table 200a shown in FIG. 5 is stored in the storage unit 220 of the outdoor unit control means 200. Different from the embodiment. Except for the difference in the rotational speed control table, the configuration of the refrigerant circuit 10 and the rotational speed control of the compressor 21 during the cooling operation described with reference to FIG. 4 are the same as those in the first embodiment. Therefore, detailed description is omitted.

<回転数制御テーブル>
図5に示す回転数制御テーブル200aは、予め試験を行って定められて、室外機制御手段200の記憶部220に記憶されている。この回転数制御テーブル200aでは、第1の実施形態で説明した図2の回転数制御テーブル200における圧力差ΔPが吐出圧力Pdに変更されており、外気温度Toが閾外気温度Tot以下である場合に、吐出圧力Pdを第1吐出圧力Pd1と第2吐出圧力Pd2(ただし、Pd1<Pd2)で区分しこの区分に応じて圧縮機回転数Rcを定めている。
<Rotation speed control table>
The rotation speed control table 200a shown in FIG. 5 is determined in advance by a test and stored in the storage unit 220 of the outdoor unit control means 200. In the rotation speed control table 200a, the pressure difference ΔP in the rotation speed control table 200 of FIG. 2 described in the first embodiment is changed to the discharge pressure Pd, and the outside air temperature To is equal to or lower than the threshold outside air temperature Tot. Further, the discharge pressure Pd is divided into a first discharge pressure Pd1 and a second discharge pressure Pd2 (where Pd1 <Pd2), and the compressor speed Rc is determined according to this division.

回転数制御テーブル200aでは、一例として、第1吐出圧力Pd1を0.9MPa、第2吐出圧力Pd2を1.1MPaとしている。これら第1吐出圧力Pd1と第2吐出圧力Pd2とは、第1の実施形態で説明した吸入圧力Psの下限値である吸入圧力下限値Psminに、回転数制御テーブル200における第1圧力差P1および第1圧力差P2を加算したものである。具体的には、第1吐出圧力Pd1:0.9MPa=吸入圧力下限値Psmin:0.2MPa+第1圧力差P1:0.7MPaであり、第2吐出圧力Pd2:1.1MPa=吸入圧力下限値Psmin:0.2MPa+第2圧力差P2:0.9MPaである。また、外気温度Toの閾外気温度Totは、圧縮機回転数テーブル200と同じく−5℃である。   In the rotation speed control table 200a, as an example, the first discharge pressure Pd1 is 0.9 MPa, and the second discharge pressure Pd2 is 1.1 MPa. The first discharge pressure Pd1 and the second discharge pressure Pd2 are set to the suction pressure lower limit value Psmin that is the lower limit value of the suction pressure Ps described in the first embodiment, and the first pressure difference P1 in the rotation speed control table 200 and The first pressure difference P2 is added. Specifically, the first discharge pressure Pd1: 0.9 MPa = the suction pressure lower limit value Psmin: 0.2 MPa + the first pressure difference P1: 0.7 MPa, and the second discharge pressure Pd2: 1.1 MPa = the suction pressure lower limit value. Psmin: 0.2 MPa + second pressure difference P2: 0.9 MPa. Further, the threshold outside air temperature Tot of the outside air temperature To is −5 ° C. as in the compressor rotation speed table 200.

圧縮機回転数テーブル200aでは、外気温度Toが−5℃超であるときは、吐出圧力Pdに関わらず圧縮機回転数Rcを能力相応回転数Rcpとしている。能力比Dが閾能力比Dt以下であるときに外気温度Toが閾外気温度Tot超である場合は、外気温度Toが閾外気温度Tot(=−5℃)以下である場合と比べて、凝縮器として機能する室外熱交換器23で凝縮能力が小さくなって凝縮圧力が高くなるため、圧縮機21の回転数が低くされても吐出圧力Pdが低くならない、つまり、圧力差ΔPが小さくならず、圧縮機21の圧縮機構部の潤滑に十分な量の冷凍機油が圧縮機構部に供給される状態であると考えられる。そこで、回転数制御テーブル200aでは、外気温度To閾外気温度Tot超である場合は、圧縮機回転数Rcがどのような回転数となっても圧縮機構部に十分な量の冷凍機油が供給できる圧力差ΔPが確保できる、つまりは、圧縮機構部に十分な量の冷凍機油が供給できる、圧縮機21の密閉容器の下部の圧力と圧縮機構部の圧力との圧力差が確保できると考えて、圧縮機回転数Rcを能力相応回転数Rcとしている。   In the compressor rotation speed table 200a, when the outside air temperature To is higher than −5 ° C., the compressor rotation speed Rc is set as the rotation speed Rcp corresponding to the capacity regardless of the discharge pressure Pd. When the outside air temperature To is higher than the threshold outside air temperature Tot when the capacity ratio D is equal to or less than the threshold capacity ratio Dt, the outside air temperature To is condensed compared to the case where the outside air temperature To is below the threshold outside air temperature Tot (= −5 ° C.). The outdoor heat exchanger 23 functioning as a compressor has a low condensing capacity and a high condensing pressure. Therefore, even if the rotation speed of the compressor 21 is lowered, the discharge pressure Pd does not become low, that is, the pressure difference ΔP does not become small. It is considered that a sufficient amount of refrigerating machine oil for lubricating the compression mechanism portion of the compressor 21 is supplied to the compression mechanism portion. Therefore, in the rotation speed control table 200a, when the outside air temperature To exceeds the threshold outside air temperature Tot, a sufficient amount of refrigerating machine oil can be supplied to the compression mechanism section regardless of the rotation speed of the compressor Rc. The pressure difference ΔP can be secured, that is, a sufficient amount of refrigerating machine oil can be supplied to the compression mechanism section, and the pressure difference between the pressure in the lower part of the sealed container of the compressor 21 and the pressure of the compression mechanism section can be secured. The compressor rotational speed Rc is set to a speed Rc corresponding to the capacity.

一方、外気温度Toが−5℃以下であるときは、吐出圧力Pdが0.9MPa未満での圧縮機回転数Rcを、能力相応回転数Rcpに加算回転数テーブル300に定められた加算回転数ΔRcを加算した回転数としている。また、吐出圧力Pdが0.9MPa以上1.1MPa未満である場合の圧縮機回転数Rcを現在の圧縮機回転数Rcに維持としている。また、吐出圧力Pdが1.1MPa以上である場合の圧縮機回転数Rcを能力相応回転数Rcpとしている。   On the other hand, when the outside air temperature To is −5 ° C. or lower, the compressor rotational speed Rc when the discharge pressure Pd is less than 0.9 MPa is added to the rotational speed Rcp corresponding to the capacity. The rotation speed is obtained by adding ΔRc. Further, the compressor rotation speed Rc when the discharge pressure Pd is 0.9 MPa or more and less than 1.1 MPa is maintained at the current compressor rotation speed Rc. Further, the compressor rotation speed Rc when the discharge pressure Pd is 1.1 MPa or more is set as the capacity-related rotation speed Rcp.

能力比が閾能力比以下であるときに外気温度Toが閾外気温度Tot以下である場合は、凝縮器として機能する室外熱交換器23で凝縮能力が大きくなって凝縮圧力が低くなるために圧力差ΔPが小さくなる。このとき、圧縮機21の回転数を低くして冷媒回路10における冷媒循環量を少なくすれば、さらに凝縮圧力が低くなって圧力差ΔPが小さくなるので、圧縮機21の圧縮機構部の潤滑に十分な量の冷凍機油を圧縮機構部に供給することができなくなる可能性が高い。そこで、回転数制御テーブル200aでは、吐出圧力Pdに応じて圧縮機回転数Rcを定めており、吐出圧力Pdが第1吐出圧力Pd1(=0.9MPa)未満であるときは、圧力差ΔPを大きくするために、能力相応回転数Rcpに加算回転数ΔRcを加算した回転数としている。また、吐出圧力Pdが第1吐出圧力Pd1以上第2吐出圧力Pd2(=1.1MPa)未満である場合は、圧力差ΔPが低下して第1圧力差未満とならないように、圧縮機回転数Rcを現在の圧縮機回転数Rcに維持する。そして、吐出圧力Pdが第2吐出圧力Pd2以上である場合は、圧縮機回転数Rcを上昇させても圧力差ΔPが低下して第1圧力差未満となる可能性が低いため圧縮機回転数Rcを能力相応回転数Rcpとしている。   If the outdoor air temperature To is lower than the threshold outdoor air temperature Tot when the capacity ratio is equal to or lower than the threshold capacity ratio, the outdoor heat exchanger 23 functioning as a condenser increases the condensing capacity and lowers the condensing pressure. The difference ΔP is reduced. At this time, if the rotation speed of the compressor 21 is lowered to reduce the refrigerant circulation amount in the refrigerant circuit 10, the condensing pressure is further reduced and the pressure difference ΔP is reduced, so that the compression mechanism portion of the compressor 21 is lubricated. There is a high possibility that a sufficient amount of refrigerating machine oil cannot be supplied to the compression mechanism. Therefore, in the rotation speed control table 200a, the compressor rotation speed Rc is determined according to the discharge pressure Pd. When the discharge pressure Pd is less than the first discharge pressure Pd1 (= 0.9 MPa), the pressure difference ΔP is set. In order to increase the rotational speed, the rotational speed is determined by adding the additional rotational speed ΔRc to the rotational speed Rcp corresponding to the capacity. In addition, when the discharge pressure Pd is equal to or higher than the first discharge pressure Pd1 and lower than the second discharge pressure Pd2 (= 1.1 MPa), the compressor rotational speed is set so that the pressure difference ΔP does not decrease and become less than the first pressure difference. Rc is maintained at the current compressor speed Rc. When the discharge pressure Pd is equal to or higher than the second discharge pressure Pd2, the compressor rotational speed is low because it is unlikely that the pressure difference ΔP will decrease and become less than the first pressure difference even if the compressor rotational speed Rc is increased. Rc is the rotation speed Rcp corresponding to the capacity.

以上説明した回転数制御テーブル200aと図3に示す加算回転数テーブル300とを用いて、空気調和装置1が冷房運転を行うときの圧縮機21の回転数制御が行われる。尚、本実施形態でCPU210が冷房運転時の圧縮機21の回転数制御を行うときの処理の流れでは、第1の実施形態で説明した図4に示すフローチャートのうち、ST9の処理が不要になるとともに、ST10およびST11の判断が圧力差ΔPに代えて吐出圧力Pdでなされる。これらST9〜ST11の処理以外は、前述したように第1の実施形態で説明した処理と同じである。   The rotational speed control of the compressor 21 when the air-conditioning apparatus 1 performs the cooling operation is performed using the rotational speed control table 200a described above and the additional rotational speed table 300 illustrated in FIG. In the present embodiment, the CPU 210 controls the rotation speed of the compressor 21 during the cooling operation. In the flowchart shown in FIG. 4 described in the first embodiment, the process of ST9 is unnecessary. At the same time, the determination of ST10 and ST11 is made with the discharge pressure Pd instead of the pressure difference ΔP. The processes other than the processes of ST9 to ST11 are the same as those described in the first embodiment as described above.

以上説明したように、本実施形態の空気調和装置1では、外気温度Toが閾外気温度Tot以下であり、かつ、能力比Dが閾能力比Dt以下である環境下で冷房運転を行うときに、圧縮機回転数テーブル200aおよび回転数加算テーブル300を用いて、圧縮機21の回転数を制御する。これにより、第1の実施形態と同様に、圧力差ΔPが小さくなって圧縮機21の密閉容器下部の圧力と圧縮機構部の圧力との圧力差が小さくなることで、圧縮機21の内部で圧縮機構部に冷凍機油が供給されにくい状態となった場合でも、圧縮機21の回転数を制御して適切な量の冷凍機油が圧縮機21の圧縮機構部に供給されるようにするので、圧縮機21の圧縮機構部が潤滑不良となることを防ぐことができる。   As described above, in the air conditioner 1 of the present embodiment, when the cooling operation is performed in an environment where the outside air temperature To is equal to or lower than the threshold outside air temperature Tot and the capacity ratio D is equal to or less than the threshold capacity ratio Dt. Using the compressor rotation speed table 200a and the rotation speed addition table 300, the rotation speed of the compressor 21 is controlled. As a result, as in the first embodiment, the pressure difference ΔP is reduced, and the pressure difference between the pressure at the lower portion of the hermetic container of the compressor 21 and the pressure of the compression mechanism portion is reduced. Even when it becomes difficult to supply the refrigerating machine oil to the compression mechanism unit, the rotation speed of the compressor 21 is controlled so that an appropriate amount of the refrigerating machine oil is supplied to the compression mechanism unit of the compressor 21. It is possible to prevent the compression mechanism portion of the compressor 21 from being poorly lubricated.

1 空気調和装置
2 室外機
6a〜6e 切換ユニット
8a〜8e 室内機
21 圧縮機
50 吐出圧力センサ
51 吸入圧力センサ
58 外気温度センサ
100 制御手段
110 CPU
Ai 室内機定格能力
Ao 室外機定格能力
Ar 冷房要求能力
D 能力比
Dt 閾能力比
Pd 吐出圧力
Pd1 第1吐出圧力
Pd2 第2吐出圧力
Ps 吸入圧力
Psmin 吸入圧力下限値
Pst 閾吸入圧力
P1 第1圧力差
P2 第2圧力差
ΔP 圧力差
Rc 圧縮機回転数
Rcp 能力相応回転数
Rct 起動時回転数
ΔRc 加算回転数
To 外気温度
Tot 閾外気温度
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 6a-6e Switching unit 8a-8e Indoor unit 21 Compressor 50 Discharge pressure sensor 51 Suction pressure sensor 58 Outside temperature sensor 100 Control means 110 CPU
Ai indoor unit rated capacity Ao outdoor unit rated capacity Ar cooling requirement capacity D capacity ratio Dt threshold capacity ratio Pd discharge pressure Pd1 first discharge pressure Pd2 second discharge pressure Ps suction pressure Psmin suction pressure lower limit Pst threshold suction pressure P1 first pressure Difference P2 Second pressure difference ΔP Pressure difference Rc Compressor rotation speed Rcp Capacity appropriate rotation speed Rct Start-up rotation speed ΔRc Addition rotation speed To Outside air temperature Tot Threshold outside air temperature

Claims (4)

圧縮機と、室外熱交換器と、外気温度を検出する外気温度検出手段と、前記圧縮機の吐出圧力を検出する吐出圧力検出手段と、前記圧縮機の吸入圧力を検出する吸入圧力検出手段とを有する室外機と、
室内熱交換器を有する複数台の室内機と、
前記圧縮機の駆動制御を行う制御手段と、
を有し、
前記制御手段は、
前記室外熱交換器を凝縮器として機能させるとともに、前記各室内熱交換器を蒸発器として機能させる冷房運転を行うとき、
前記外気温度検出手段で検出した前記外気温度が予め定められた閾外気温度以下である場合は、
前記吐出圧力検出手段で検出した前記吐出圧力、あるいは、同吐出圧力から前記吸入圧力検出手段で検出した前記吸入圧力を減じた圧力差のいずれか一方に応じて、前記冷房運転中の前記圧縮機の回転数を決定する、
ことを特徴とする空気調和装置。
A compressor, an outdoor heat exchanger, an outside air temperature detecting means for detecting the outside air temperature, a discharge pressure detecting means for detecting the discharge pressure of the compressor, and a suction pressure detecting means for detecting the suction pressure of the compressor. An outdoor unit having
A plurality of indoor units having indoor heat exchangers;
Control means for performing drive control of the compressor;
Have
The control means includes
When operating the outdoor heat exchanger as a condenser and performing a cooling operation in which each indoor heat exchanger functions as an evaporator,
When the outside air temperature detected by the outside air temperature detecting means is equal to or lower than a predetermined threshold outside air temperature,
The compressor during the cooling operation according to either the discharge pressure detected by the discharge pressure detection means or the pressure difference obtained by subtracting the suction pressure detected by the suction pressure detection means from the discharge pressure Determine the number of revolutions,
An air conditioner characterized by that.
前記吐出圧力が予め定められた第1吐出圧力未満である場合は、前記圧縮機の回転数を前記冷房運転を行っている室内機で要求される冷房能力に応じた回転数である能力相応回転数に所定の加算回転数を加算した回転数とし、
前記吐出圧力が前記第1吐出圧力より大きい予め定められた第2吐出圧力以上である場合は、前記圧縮機の回転数を前記能力相応回転数とし、
前記吐出圧力が前記第1吐出圧力以上前記第2吐出圧力未満である場合は、前記圧縮機の回転数を現在の回転数に維持する、
ことを特徴とする請求項1に記載の空気調和装置。
When the discharge pressure is less than a predetermined first discharge pressure, the rotation speed corresponding to the capacity is the rotation speed corresponding to the cooling capacity required for the indoor unit performing the cooling operation. The number of rotations plus a predetermined number of rotations,
If the discharge pressure is greater than or equal to a predetermined second discharge pressure greater than the first discharge pressure, the rotation speed of the compressor is the rotation speed corresponding to the capacity,
When the discharge pressure is not less than the first discharge pressure and less than the second discharge pressure, the rotation speed of the compressor is maintained at the current rotation speed.
The air conditioner according to claim 1.
前記圧力差が予め定められた第1圧力差未満である場合は、前記圧縮機の回転数を前記冷房運転を行っている室内機で要求される冷房能力に応じた回転数である能力相応回転数に所定の加算回転数を加算した回転数とし、
前記圧力差が前記第1圧力差より大きい予め定められた第2圧力差以上である場合は、前記圧縮機の回転数を前記能力相応回転数とし、
前記圧力差が前記第1圧力差以上前記第2圧力差未満である場合は、前記圧縮機の回転数を現在の回転数に維持する、
ことを特徴とする請求項1に記載の空気調和装置。
When the pressure difference is less than a predetermined first pressure difference, the rotation corresponding to the capacity is the rotation speed corresponding to the cooling capacity required by the indoor unit performing the cooling operation. The number of rotations plus a predetermined number of rotations,
If the pressure difference is greater than or equal to a predetermined second pressure difference greater than the first pressure difference, the rotation speed of the compressor is set as the rotation speed corresponding to the capacity,
If the pressure difference is greater than or equal to the first pressure difference and less than the second pressure difference, the rotational speed of the compressor is maintained at the current rotational speed.
The air conditioner according to claim 1.
前記所定の加算回転数は、前記吸入圧力に応じて定められ、
前記吸入圧力が小さい場合の加算回転数は、前記吸入圧力が大きい場合の加算回転数よりも小さい値とされている、
ことを特徴とする請求項1乃至請求項3のいずれかに記載の空気調和装置。
The predetermined addition rotational speed is determined according to the suction pressure,
The additional rotational speed when the suction pressure is small is a value smaller than the additional rotational speed when the suction pressure is large.
The air conditioner according to any one of claims 1 to 3, wherein
JP2018019858A 2018-02-07 2018-02-07 Air conditioner Active JP7035584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018019858A JP7035584B2 (en) 2018-02-07 2018-02-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019858A JP7035584B2 (en) 2018-02-07 2018-02-07 Air conditioner

Publications (2)

Publication Number Publication Date
JP2019138499A true JP2019138499A (en) 2019-08-22
JP7035584B2 JP7035584B2 (en) 2022-03-15

Family

ID=67693611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019858A Active JP7035584B2 (en) 2018-02-07 2018-02-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP7035584B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422189A (en) * 2019-08-27 2019-11-08 石家庄国祥运输设备有限公司 The on-line prediction method of compressor fault in rail vehicle air conditioner group
CN110578991A (en) * 2019-09-16 2019-12-17 海信(山东)空调有限公司 Control method and device of air conditioner capacity mode, air conditioner and readable storage medium
CN111520894A (en) * 2020-07-03 2020-08-11 宁波奥克斯电气股份有限公司 Output control method and device for air conditioner compressor, air conditioner and storage medium
US20210063042A1 (en) * 2019-08-30 2021-03-04 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
CN112797570A (en) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 Defrosting control method, defrosting device and multi-connected air conditioning system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152204A (en) * 1994-11-30 1996-06-11 Hitachi Ltd Air conditioner and operating method therefor
JP2002039598A (en) * 2000-07-26 2002-02-06 Daikin Ind Ltd Air conditioner
JP2006234329A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air conditioning system
JP2007170800A (en) * 2006-03-10 2007-07-05 Sanyo Electric Co Ltd Refrigeration system
JP2010276276A (en) * 2009-05-28 2010-12-09 Aisin Seiki Co Ltd Air conditioner
US20150219377A1 (en) * 2014-02-05 2015-08-06 Lennox Industries Inc. System for controlling operation of an hvac system
JP2017053527A (en) * 2015-09-08 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle apparatus and control method for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152204A (en) * 1994-11-30 1996-06-11 Hitachi Ltd Air conditioner and operating method therefor
JP2002039598A (en) * 2000-07-26 2002-02-06 Daikin Ind Ltd Air conditioner
JP2006234329A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air conditioning system
JP2007170800A (en) * 2006-03-10 2007-07-05 Sanyo Electric Co Ltd Refrigeration system
JP2010276276A (en) * 2009-05-28 2010-12-09 Aisin Seiki Co Ltd Air conditioner
US20150219377A1 (en) * 2014-02-05 2015-08-06 Lennox Industries Inc. System for controlling operation of an hvac system
JP2017053527A (en) * 2015-09-08 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle apparatus and control method for the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422189A (en) * 2019-08-27 2019-11-08 石家庄国祥运输设备有限公司 The on-line prediction method of compressor fault in rail vehicle air conditioner group
CN110422189B (en) * 2019-08-27 2020-05-12 石家庄国祥运输设备有限公司 Online prediction method for compressor fault in air conditioning unit of railway vehicle
US20210063042A1 (en) * 2019-08-30 2021-03-04 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
CN110578991A (en) * 2019-09-16 2019-12-17 海信(山东)空调有限公司 Control method and device of air conditioner capacity mode, air conditioner and readable storage medium
CN110578991B (en) * 2019-09-16 2021-02-09 海信(山东)空调有限公司 Control method and device of air conditioner capacity mode, air conditioner and readable storage medium
CN111520894A (en) * 2020-07-03 2020-08-11 宁波奥克斯电气股份有限公司 Output control method and device for air conditioner compressor, air conditioner and storage medium
CN111520894B (en) * 2020-07-03 2020-11-27 宁波奥克斯电气股份有限公司 Output control method and device for air conditioner compressor, air conditioner and storage medium
CN112797570A (en) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 Defrosting control method, defrosting device and multi-connected air conditioning system
CN112797570B (en) * 2020-12-30 2022-08-23 宁波奥克斯电气股份有限公司 Defrosting control method, defrosting device and multi-connected air conditioning system

Also Published As

Publication number Publication date
JP7035584B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP2019138499A (en) Air conditioning apparatus
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP6870382B2 (en) Air conditioner
US10598413B2 (en) Air-conditioning apparatus
JP2018132216A (en) Air conditioning device
JP4726845B2 (en) Refrigeration air conditioner
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
US20190360725A1 (en) Refrigeration apparatus
JP2019168151A (en) Air conditioning device
US11796238B2 (en) Heat source unit and refrigeration apparatus
US20220221200A1 (en) Refrigeration apparatus
JP2019168150A (en) Air conditioning device
JP2019143876A (en) Air conditioning system
JP2015145742A (en) Refrigeration device
US11788759B2 (en) Refrigeration system and heat source unit
JP7189423B2 (en) refrigeration cycle equipment
US20220268498A1 (en) Intermediate unit for refrigeration apparatus, and refrigeration apparatus
US11512876B2 (en) Refrigeration apparatus
US11448433B2 (en) Refrigeration apparatus
JP2010261623A (en) Air conditioning device
CN108027178B (en) Heat pump
JP2018132218A (en) Air conditioning device
WO2017094172A1 (en) Air conditioning device
JP2021009014A (en) Refrigerator
JP2021162252A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R151 Written notification of patent or utility model registration

Ref document number: 7035584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151