WO2015172730A1 - 有源天线相关设备、系统及收发校准方法 - Google Patents

有源天线相关设备、系统及收发校准方法 Download PDF

Info

Publication number
WO2015172730A1
WO2015172730A1 PCT/CN2015/078979 CN2015078979W WO2015172730A1 WO 2015172730 A1 WO2015172730 A1 WO 2015172730A1 CN 2015078979 W CN2015078979 W CN 2015078979W WO 2015172730 A1 WO2015172730 A1 WO 2015172730A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
channel
unit
signal
coupling circuit
Prior art date
Application number
PCT/CN2015/078979
Other languages
English (en)
French (fr)
Inventor
李传军
苏昕
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US15/310,702 priority Critical patent/US10305183B2/en
Priority to EP15792998.5A priority patent/EP3145090B1/en
Publication of WO2015172730A1 publication Critical patent/WO2015172730A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/22RF wavebands combined with non-RF wavebands, e.g. infrared or optical
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an active antenna related device, system, and transceiver calibration method.
  • a communication system architecture consisting of a Baseband Processing Unit (BBU) and a Remote Radio Unit (RRU) is adopted, wherein a BBU and an RRU are used.
  • BBU Baseband Processing Unit
  • RRU Remote Radio Unit
  • one BBU can support multiple RRUs.
  • FIG. 1 is a schematic structural diagram of a communication system composed of a BBU+RRU, wherein the BBU is connected to the optical interface of the RRU through an optical fiber, the optical interface of the RRU is connected to a digital intermediate frequency, and the digital intermediate frequency is respectively aligned with the transceiver array and the transceiver.
  • the transceiver array is connected to the PA and LNA array (PA is the abbreviation of power amplifier, ie power amplifier; LNA is the abbreviation of Low Noise Amplifier, ie low noise amplifier), the PA and LNA array are connected through N antenna channels To the passive antenna array, and the transceiver calibration unit is connected to the passive antenna array through one calibration channel.
  • PA is the abbreviation of power amplifier
  • LNA Low Noise Amplifier
  • the number of antenna channels is greater than or equal to 64, that is, the number of jumpers on the radio is greater than 64, in order to reduce the transmission loss between the antenna and the RRU.
  • the upper jumper uses a radio frequency cable with a certain diameter. A large number of radio frequency cables are quite difficult to implement in engineering, and it is difficult to provide reliability guarantee.
  • Embodiments of the present invention provide an active antenna related device, a system, and a transceiver calibration method, which are used to implement a scalable design of an antenna array, reduce engineering implementation difficulty, and provide engineering implementation reliability.
  • an embodiment of the present invention provides an active antenna device, including:
  • N active antenna arrays main calibration coupling circuit units, transceiver calibration units, calibration parameter storage units, and ROF (Radio-Over-Fiber) photoelectric conversion units, the N being greater than 1;
  • the active antenna array includes at least an antenna calibration coupling circuit unit and M antenna elements connected to the antenna calibration coupling circuit unit, the M being greater than 1;
  • An antenna calibration coupling circuit unit of the active antenna array is connected to the main calibration coupling circuit unit through a calibration channel, the main calibration coupling circuit unit is connected to the transceiving calibration unit, the transceiving calibration unit and the calibration parameter
  • the storage unit is respectively connected to the ROF photoelectric conversion unit;
  • the calibration parameter storage unit stores transmission parameters of the calibration channels of the N active antenna arrays, and transmits the transmission parameters to the ROF photoelectric conversion unit, and is converted into an optical signal by the ROF photoelectric conversion unit.
  • the antenna calibration coupling circuit unit of the active antenna array couples the received M-channel calibration RF signal into one-channel calibration calibration RF signal and outputs the same to the main calibration coupling circuit unit through a calibration channel
  • the main calibration coupling circuit unit will have N
  • the N-channel transmit calibration radio frequency signals transmitted by the active antenna array are combined into one transmit calibration radio frequency signal, and the transceiver calibration unit performs power amplification on the one-channel transmit calibration radio frequency signal transmitted by the main calibration coupling circuit unit Transmitting to a calibration calibration IQ analog signal output to the ROF photoelectric conversion unit, the ROF photoelectric conversion unit converting the emission calibration IQ analog signal into an optical signal and transmitting through an optical fiber; and/or, the transceiving calibration unit
  • the receiving calibration IQ analog signal transmitted by the ROF photoelectric conversion unit is modulated into a receiving school a quasi-RF signal, which is subjected to power amplification and then transmitted to the main calibration coupling circuit unit, wherein the main calibration coupling circuit unit splits the power amplified amp
  • an embodiment of the present invention provides an active antenna device, including:
  • N active antenna arrays main calibration coupling circuit units, transceiver calibration units, calibration parameter storage units, digital processing units, and fiber optic interface units, said N being greater than 1;
  • the active antenna array includes at least an antenna calibration coupling circuit unit and M antenna elements connected to the antenna calibration coupling circuit unit, the M being greater than 1;
  • An antenna calibration coupling circuit unit of the active antenna array is connected to the main calibration coupling circuit unit through a calibration channel, the main calibration coupling circuit unit is connected to the transceiving calibration unit, the transceiving calibration unit and the calibration parameter Storage units are respectively connected to the digital processing unit;
  • the calibration parameter storage unit stores transmission parameters of the calibration channels of the N active antenna arrays, and transmits the transmission parameters to the digital processing unit;
  • the antenna calibration coupling circuit unit of the active antenna array couples the received M-channel calibration RF signal into one-channel calibration calibration RF signal and outputs the same to the main calibration coupling circuit unit through a calibration channel
  • the main calibration coupling circuit unit will have N
  • the N-channel transmit calibration radio frequency signals transmitted by the active antenna array are combined into one transmit calibration radio frequency signal, and the transceiver calibration unit performs power amplification on the one-channel transmit calibration radio frequency signal transmitted by the main calibration coupling circuit unit Transmitting to a transmit calibration IQ analog signal output to the digital processing unit, the digital processing unit converting the transmit calibration IQ analog signal to a transmit calibration IQ digital signal and transmitting through a fiber optic interface unit; and/or the number
  • the processing unit converts the received calibration IQ digital signal received by the fiber interface unit into a received calibration IQ analog signal
  • the transceiver calibration unit modulates the received calibration IQ analog signal transmitted by the digital processing unit to receive the calibration RF signal, and performs Power amplification and transmission to the main calibration coupling
  • an embodiment of the present invention provides a baseband processing device, including:
  • ROF photoelectric conversion unit a digital processing unit, and a baseband processing unit connected in sequence;
  • the baseband processing unit converts a preset one receiving calibration sequence into one receiving calibration IQ digital signal, and transmits the one receiving calibration IQ digital signal to the digital processing unit; and receiving N by M channel receiving Calibrating the IQ digital signal, using the transmission parameters of the preset N by M calibration channels, correcting the N-by-M-channel receiving calibration IQ digital signal, and receiving the calibrated IQ digital signal according to the corrected N-by-M channel
  • Receiving a calibration sequence calculating a received calibration amplitude correction parameter and a reception calibration phase correction parameter of each RF channel corresponding to the calibration channel; and/or, the baseband processing unit converting the preset N by M emission calibration sequences
  • the calibration IQ digital signal is transmitted for the N by M channel, and the N-by-M transmission calibration IQ digital signal of the corresponding calibration channel is corrected by using the transmission parameters of the preset N by M calibration channels, and the corrected N multiplication is transmitted.
  • the M channel transmits a calibration IQ digital signal to the digital processing unit, and the digital processing unit converts the corrected N by M channel transmission calibration IQ digital signal into an N by M channel transmission calibration IQ analog signal. Converting to an optical signal by the ROF photoelectric conversion unit and transmitting the optical signal through the optical fiber; and receiving a 1-way transmission calibration IQ digital signal, and calculating the calibration signal according to the received 1-channel transmission calibration IQ digital signal and the N-by-M transmission calibration sequence Transmitting calibration amplitude correction parameters and emission calibration phase correction parameters of each RF channel corresponding to the calibration channel;
  • the one-way receiving and calibrating IQ digital signal is sequentially transmitted through the 1-channel calibration channel and the N-by-M-channel RF channel of the active antenna device, and then received through the optical fiber. Obtained after being processed by the ROF photoelectric conversion unit and the digital processing unit;
  • the received 1-channel transmit calibration IQ digital signal is a modified N-by-M-channel transmit calibration IQ digital signal, which is sequentially transmitted by the N-by-M RF channel and the 1-channel calibration channel of the active antenna device, and then received by the optical fiber. And obtained by the ROF photoelectric conversion unit and the digital processing unit;
  • the transmission parameters of the preset N by M calibration channels are received by the optical fiber and then passed through the ROF
  • the photoelectric conversion unit and the digital processing unit are transferred to the baseband processing unit.
  • an embodiment of the present invention provides a baseband processing device, including: an optical fiber interface unit and a baseband processing unit connected to each other;
  • the baseband processing unit converts a preset one receiving calibration sequence into one receiving calibration IQ digital signal, and sends the one receiving calibration IQ digital signal to the optical fiber interface unit, and the optical fiber interface unit passes Receiving a fiber optic transmission; and receiving a N by M path transmitted through the fiber optic interface unit to receive a calibrated IQ digital signal, and using the preset N by M calibration channel transmission parameters to receive the calibrated IQ digital signal for the N by M channel Correcting, and receiving, according to the modified N by M way, the calibration IQ digital signal and the receiving calibration sequence, calculating a receiving calibration amplitude correction parameter and a receiving calibration phase correction parameter of each RF channel corresponding to the calibration channel; and Or, the baseband processing unit converts the preset N by M transmit calibration sequences into N-by-M transmit calibration IQ digital signals, and uses the preset N by M calibration channels to transmit the corresponding calibration channels.
  • the N-by-M-channel transmits a calibrated IQ digital signal for correction, and transmits a modified N-by-M-channel transmit calibrated IQ digital signal to the fiber optic interface unit, the fiber optic interface unit Correcting the N-by-M transmission calibration IQ digital signal is converted into an optical signal and transmitted through the optical fiber; and receiving a 1-channel transmission calibration IQ digital signal transmitted by the optical fiber interface unit, and calibrating the IQ number according to the received 1-channel transmission
  • the signal and the N by M transmit calibration sequences calculate a transmit calibration amplitude correction parameter and a transmit calibration phase correction parameter of each RF channel corresponding to the calibration channel;
  • the 1-channel receiving calibrated IQ digital signal is sequentially transmitted through the 1-channel calibration channel and the N-by-M-channel RF channel of the active antenna device, and then received through the optical fiber. Obtained after being processed by the optical fiber interface unit;
  • Receiving the one-way transmission calibration IQ digital signal for the modified N-by-M-channel transmission calibration IQ digital signal is sequentially transmitted through the N-by-M RF channels and the 1-channel calibration channel of the active antenna device, Obtaining the optical fiber after receiving and processing by the optical fiber interface unit;
  • the transmission parameters of the preset N by M calibration channels are received by the optical fiber and transmitted to the baseband processing unit via the fiber optic interface unit.
  • an embodiment of the present invention provides a communication system, including the one described in the first aspect.
  • the source antenna device and the baseband processing device of the third aspect, the baseband processing device and the active antenna device are connected by an optical fiber.
  • an embodiment of the present invention provides a communications system, including the active antenna device of the second aspect, and the baseband processing device of the fourth aspect, wherein the baseband processing device and the active antenna device pass Fiber optic connection.
  • an embodiment of the present invention provides a transceiver calibration method, including:
  • the baseband processing device converts a preset one receiving calibration sequence into one receiving calibration IQ digital signal, and transmits the one receiving calibration IQ digital signal to the active antenna device, and the active antenna device sequentially passes through After the channel calibration channel and the N-by-M channel RF channel transmit the 1-channel received calibration IQ digital signal, an N-by-M channel is received to receive the calibration IQ digital signal; and the baseband processing device receives the N-by-M channel to receive the calibration IQ digital signal And correcting the N-by-M channel receiving calibration IQ digital signal by using a preset N by M calibration channel transmission parameters, and receiving the calibration IQ digital signal according to the corrected N by M channel and the receiving calibration sequence Calculating a receiving calibration amplitude correction parameter and a receiving calibration phase correction parameter of each RF channel corresponding to the calibration channel;
  • the baseband processing device converts the preset N by M transmit calibration sequences into N-by-M transmit calibration IQ digital signals, using a preset N by M calibration channel transmission parameters for the corresponding calibration channel N by M path Transmitting the calibration IQ digital signal for correction, and transmitting the corrected N-by-M transmission calibration IQ digital signal to the active antenna device, wherein the active antenna device is sequentially transmitted through the N-by-M RF channel and the 1-channel calibration channel.
  • a 1-channel transmission calibrated IQ digital signal is obtained; the baseband processing device receives the 1-channel transmission calibrated IQ digital signal, and calibrates according to the received 1-channel transmission
  • the IQ digital signal and the N by M transmit calibration sequences calculate a transmit calibration amplitude correction parameter and a transmit calibration phase correction parameter for each of the RF channels corresponding to the calibration channel.
  • an antenna calibration coupling circuit unit, a calibration channel, a main calibration coupling circuit unit, a transceiver calibration unit, and a calibration parameter storage unit are added in the active antenna device to provide hardware support for transmitting and receiving calibration. Enabling the calibration channel based on this And the active antenna device of the calibration circuit realizes the transmission and reception calibration of each RF channel, and realizes the scalable design of the antenna channel by using the active antenna device, ensures the performance of each antenna channel to be consistent, reduces the difficulty of engineering implementation, and improves the Implementation reliability.
  • 1 is a schematic diagram of an existing distributed communication system architecture
  • FIG. 2 is a schematic structural diagram of an active antenna array according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a large-scale active antenna device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a transceiver calibration unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another large-scale active antenna device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a large-scale baseband processing device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another large-scale baseband processing device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another communication system according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a process of receiving calibration according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a process of transmitting calibration according to an embodiment of the present invention.
  • the inconsistency between the N RF channels may result in an inability to achieve optimal performance combining between N uplink signals or downlink signals. Therefore, it is critical to achieve calibration between the N RF channel channels.
  • the scalability and N-channel antenna consistency calibration are mutually constrained.
  • the N-channel antenna calibration needs to couple the N-channel signals to one way, but the expansion requires independent consideration of the structure of each sub-array.
  • an active antenna array 21 is provided.
  • the active antenna array includes a filter array 201, a PA and LNA array 202, and a transceiver array 203, which are sequentially connected.
  • M antenna elements 204 wherein M is greater than 1, the M antenna elements 204 are connected to an antenna calibration coupling circuit unit 205, and the antenna calibration coupling circuit unit 205 is connected to the filter array 201, and the antenna calibration coupling circuit unit 205 is further Connect a calibration channel.
  • the M antenna vibrators 204 are configured to receive electromagnetic waves and convert them into M-channel RF signals, or respectively receive M-channel RF signals and convert them into electromagnetic waves for transmission;
  • the antenna calibration coupling circuit unit 205 is configured to transmit an M-channel RF signal between the filter array 201 and the M antenna elements 204 during the transmission of the RF signal; during the calibration of the received signal or the transmitted signal, the filter array 201
  • the transmitted M-channel calibration RF signal is coupled to output a calibration RF signal through the calibration channel; or, the calibration channel receives a calibration RF signal, and the received calibration RF signal is split into an M-channel calibration RF signal and transmitted to the filter array 201.
  • a filter array 201 configured to filter the M-channel RF signal
  • a PA and LNA array 202 for performing power amplification on the M-channel RF signal
  • the transceiver array 203 is configured to convert the M-channel RF signal into an M-channel IQ analog signal and transmit the signal, or convert the received M-channel IQ analog signal into an M-channel RF signal.
  • the filter array 201 is composed of mutually independent M-path filters.
  • the PA and LNA array 202 is composed of mutually independent M-channel power amplifiers and independent M-channel low noise amplifiers.
  • the transceiver array 203 is composed of M-way transceiver units.
  • the antenna element 204 may be a single-polarized antenna element, and is also a polarization element that can be polarized by any one of the dual-polarized or multi-polarized antenna elements.
  • the input M channel is input into the IQ analog signal through the transceiver array, and the modulation is up-converted into the M-channel RF signal, and the M-channel RF signal is amplified by the PA and LNA array signals, and the filter array is filtered.
  • Forming an M-channel radio frequency signal having a corresponding spectrum the M-channel radio frequency signal having a corresponding spectrum is transmitted to the M antenna vibrators via the antenna calibration coupling circuit unit, and the radio frequency signals having the corresponding spectrum are converted into electromagnetic waves by the M antenna vibrators, and Electromagnetic waves are emitted into space.
  • the M antenna elements receive the RF signal from the space electromagnetic wave conversion M, and the M channel RF signal is transmitted to the filter array via the antenna calibration coupling circuit unit for RF filtering to form the M channel having the corresponding spectrum.
  • the RF signal, the M-channel RF signal with the corresponding spectrum is amplified by the PA and LNA array signals, and then output to the transceiver array.
  • the transceiver array down-converts the M-channel RF signals from the PA and LNA arrays into M-channel IQ analog signal, and output M-channel IQ analog signal.
  • the M-channel calibrated IQ analog signal is input to the transceiver array, and the transceiver array is modulated and up-converted to the M-channel transmission to calibrate the RF signal, and the M-channel calibrated RF signal is passed.
  • the PA and LNA array signal power is amplified, and the filter array is filtered to form an M-channel transmission calibration radio frequency signal having a corresponding spectrum.
  • the M-channel has a corresponding spectrum of the emission calibration RF signal input antenna calibration coupling circuit unit, and is coupled via the antenna calibration coupling circuit unit.
  • a 1-way transmit calibration RF signal is formed and output through a 1-way calibration channel.
  • one channel of the received calibration RF signal is input to the antenna calibration coupling circuit unit through one calibration channel, and is branched into the M channel to receive the calibration RF signal via the antenna calibration coupling circuit unit.
  • the road receives the calibration RF signal output to the filter array for RF filtering to form a M-channel receiving and calibrating RF signal with a corresponding spectrum.
  • the M-channel has a corresponding spectrum of the received calibration RF signal, which is amplified by the PA and LNA array signals, and then output to the transceiver.
  • the signal array, the transceiver array down-converts the M-channel received calibration RF signals from the PA and LNA arrays into M-channel receiving and calibrating IQ analog signals, and outputs M-channel receiving and calibrating IQ analog signals.
  • the antenna calibration coupling circuit unit receives the M-channel RF signal from the filter array, and transmits the M-channel RF signal to the M antenna oscillators. .
  • the antenna calibration coupling circuit unit receives the RF signals from the M antenna elements and transmits the M-channel RF signals to the filter array.
  • the antenna calibration coupling circuit unit receives the M-channel calibration RF signal from the filter array, and couples the M-channel calibration RF signal to the 1-channel calibration channel to form Calibrate the output of the RF signal all the way.
  • the antenna calibration coupling circuit receives the input of the calibration RF signal from the 1-way calibration channel, and couples the input calibration RF signal to form an M-channel calibration RF signal, and transmits the M-channel calibration RF signal to Filter array.
  • the filter array performs radio frequency filtering on the radio frequency signal to control the transmitted and received radio frequency signals within a certain frequency range to reduce inter-system interference.
  • the RF signals from the PA and LNA arrays are RF filtered, and the filtered RF signals are transmitted to the antenna calibration coupling circuit unit.
  • the filter array performs radio frequency filtering on the radio frequency signal from the antenna calibration coupling circuit unit, and transmits the filtered radio frequency signal to the PA and LNA array.
  • the PA and the LNA array implement power amplification of the transmit (or receive) signal, and during the signal transmission process, the M-channel RF signal from the transceiver array is power amplified, and the amplified M-channel RF signal is amplified. Input to the filter array; in the signal receiving process, the M-channel RF signal from the filter array is power amplified, and the amplified M-channel RF signal is input into the transceiver array.
  • the transceiver array modulates and converts the input M-channel IQ analog signal into a radio frequency signal during signal transmission, and outputs the signal to the PA and LNA array; during the signal receiving process, the image is received from the PA and the LNA array.
  • the M-channel RF signal is down-converted to an M-channel IQ analog signal.
  • an active antenna device 31 is provided.
  • the large-scale active antenna device 31 includes an ROF photoelectric conversion unit 301 and N active antenna arrays 21, wherein N More than 1, and includes a main calibration coupling circuit unit 302 and a transceiving calibration unit 303;
  • a calibration parameter storage unit 304 connected to the ROF photoelectric conversion unit 301 is included.
  • the active antenna array includes a filter array 201, a PA and LNA array 202, and a transceiver array 203, and M, which are sequentially connected.
  • the antenna vibrator 204 wherein M is greater than 1, the M antenna elements 204 are connected to the antenna calibration coupling circuit unit 205, and the antenna calibration coupling circuit unit 205 is connected to the filter array 201.
  • the antenna calibration coupling circuit unit 205 is also connected One way calibration channel.
  • the antenna calibration coupling circuit unit 205 of each active antenna array 21 is connected to the main calibration coupling circuit unit 302 through a calibration channel.
  • the main calibration coupling circuit unit 302 is connected to the transceiver calibration unit 303, and the calibration and reception unit 303 and the calibration parameter storage unit. 304 is connected to the ROF photoelectric conversion unit 301, respectively.
  • the calibration parameter storage unit 304 is configured to save the transmission parameters of the calibration channels of the N active antenna arrays 21, and transmit the saved transmission parameters to the ROF photoelectric conversion unit 301, and convert the optical signals into the optical signals by the ROF photoelectric conversion unit 301.
  • the N active antenna arrays can be combined to form a planar array structure, a cylindrical structure, and any other possible structure.
  • the ROF photoelectric conversion unit 301 and the active antenna array 21 have different signal processing processes for signal reception and signal transmission, as follows:
  • the active antenna array 21 converts the received electromagnetic waves into M-channel RF signals through the M antenna elements 204.
  • the antenna calibration coupling circuit unit 205 receives the M-channel RF signals and transmits them to the filter array 201 for filtering and transmission to the PA and LNA arrays.
  • 202 is power amplification, the power amplified M-channel RF signal is converted into an M-channel IQ analog signal via the transceiver array 203, and transmitted to the ROF photoelectric conversion unit 301;
  • the ROF photoelectric conversion unit 301 converts the N by M IQ analog signals transmitted from the N active antenna arrays 21 into optical signals and transmits them through an optical fiber.
  • the ROF photoelectric conversion unit 301 converts the optical signal received through the optical fiber into an N by M way IQ mode.
  • the pseudo-signal, the N-by-M-channel IQ analog signal is divided into N groups and respectively transmitted to the N active antenna arrays 21;
  • Each of the active antenna arrays 21 is configured to convert the M-channel IQ analog signals received through the transceiver array 203 into M-channel RF signals, perform power amplification through the PA and LNA array 202, and perform filtering by the filter array 201.
  • the filtered M-channel radio frequency signals are respectively transmitted to the M antenna vibrators 204 by the antenna calibration coupling circuit unit 205, converted into electromagnetic waves by the antenna vibrators 204, and transmitted.
  • the first, the specific process signal processing of the emission calibration is as follows:
  • the antenna calibration coupling circuit unit 205 of the active antenna array 21 couples the received M-channel calibration RF signal into one-channel calibration calibration RF signal and outputs it to the main calibration coupling circuit unit 302 through the calibration channel.
  • the main calibration coupling circuit unit 302 will N active.
  • the N-channel calibrated RF signals transmitted by the antenna array 21 are combined into one-channel calibrated RF signal.
  • the transceiver calibration unit 303 performs power amplification on the one-channel calibrated RF signal transmitted by the main calibration coupling circuit unit 302, and demodulates into a transmit calibration IQ simulation.
  • the signal is output to the ROF photoelectric conversion unit 301, which converts the emission calibration IQ analog signal into an optical signal and transmits it through the optical fiber.
  • the transceiver calibration unit 303 modulates the received calibration IQ analog signal transmitted by the ROF photoelectric conversion unit 301 to receive the calibration RF signal, performs power amplification, and transmits it to the main calibration coupling circuit unit 302.
  • the main calibration coupling circuit unit 302 performs power amplification and reception calibration.
  • the RF signal is split into the same N-channel receiving calibration RF signals, which are respectively sent to the corresponding antenna calibration coupling circuit unit 205 through the calibration channels corresponding to the N active antenna arrays 21, and the antenna calibration coupling circuit unit 205 will receive the same way.
  • the receiving calibration RF signal is split into M channels to receive the calibration RF signal.
  • the main calibration coupling circuit unit 302 is composed of one or more combined splitters, or consists of more than one combined splitter and coupler, or is composed of more than one switch matrix.
  • the transceiver calibration unit 303 is composed of a radio frequency signal amplifying unit 401 and a transceiver unit 402 connected to each other, specifically, the radio frequency signal amplifying unit 401 and the main unit.
  • the calibration coupling circuit unit 302 is connected, and the transceiver unit 23 is connected to the ROF photoelectric conversion unit 301.
  • the transceiver calibration unit will perform a power amplification on the 1-channel transmit calibration RF signal from the main calibration coupling circuit unit, and down-convert the demodulation into a transmit calibration IQ analog signal, and transmit the calibration IQ simulation.
  • the signal is output to the ROF photoelectric conversion unit.
  • the transceiver calibration unit modulates the received calibration IQ analog signal from the ROF photoelectric conversion unit to receive the calibrated RF signal, and enters the RF power amplification, and outputs the amplified received calibration RF signal to the main Calibrate the coupling circuit unit.
  • the filter array 201 is composed of mutually independent M-path filters.
  • the PA and LNA array 202 is composed of mutually independent M-channel power amplifiers and independent M-channel low noise amplifiers.
  • the transceiver array 203 is composed of M-way transceiver units.
  • an active antenna device 51 is provided.
  • the large-scale active antenna device includes a digital processing unit 501, an optical fiber interface unit 502, a main calibration coupling circuit unit 503, and a transceiver.
  • N active antenna arrays 21 are respectively connected to the digital processing unit 501, and the digital processing unit 501 is connected to the optical fiber interface unit 502;
  • a calibration parameter storage unit 505 connected to the digital processing unit 501 is also included.
  • the active antenna array includes a filter array 201, a PA and LNA array 202, and a transceiver array 203, and M, which are sequentially connected.
  • the antenna vibrator 204 wherein M is greater than 1, the M antenna elements 204 are connected to the antenna calibration coupling circuit unit 205, and the antenna calibration coupling circuit unit 205 is connected to the filter array 201.
  • the antenna calibration coupling circuit unit 205 is also connected One way calibration channel.
  • the antenna calibration coupling circuit unit 205 of each active antenna array 21 is connected to the main calibration coupling circuit unit 503 through a calibration channel.
  • the main calibration coupling circuit unit 503 is connected to the transceiver calibration unit 504, and the calibration and reception unit 504 and the calibration parameter storage unit. 505 are connected to digital processing unit 501, respectively.
  • the calibration parameter storage unit 505 is configured to save the calibration channel of the N active antenna arrays 21
  • the transmission parameters are used to communicate the transmission parameters to the digital processing unit 501.
  • the N active antenna arrays can be combined to form a planar array structure, a cylindrical structure, and any other possible structure.
  • the active antenna array 21 is configured to convert the received electromagnetic wave into the M-channel RF signal by the M antenna elements 204, and transmit the M-channel RF signal to the filter array 201 through the antenna calibration coupling circuit unit 205 for filtering and transmitting to the PA and
  • the LNA array 202 performs power amplification, and the power amplified M-channel RF signal is converted into an M-channel IQ analog signal via the transceiver array 203, and transmitted to the digital processing unit 501;
  • the digital processing unit 501 converts the N-by-M IQ analog signals transmitted by the N active antenna arrays 21 into N-by-M-channel IQ digital signals;
  • the fiber interface unit 502 converts the N by M IQ digital signals transmitted by the digital processing unit 501 into optical signals and transmits them via optical fibers.
  • the optical fiber interface unit 502 converts the optical signal transmitted through the optical fiber into an N by M IQ digital signal
  • the digital processing unit 501 converts the N-by-M IQ digital signal transmitted by the fiber interface unit 502 into an N-by-M IQ analog signal, and divides the N-by-M IQ analog signal into N groups and transmits them to the N active antenna arrays. twenty one;
  • the active antenna array 21 is configured to convert the M-channel IQ analog signal received through the transceiver array 203 into an M-channel RF signal, perform power amplification through the PA and LNA array 202, and filter the filter array 201.
  • the antenna calibration coupling circuit unit 205 transmits the filtered M-channel radio frequency signals to the M antenna vibrators 204, respectively, and is converted into electromagnetic waves by the antenna vibrators 204 and transmitted.
  • the first, the specific signal processing process of the transmission calibration is as follows:
  • the antenna calibration coupling circuit unit of the active antenna array couples the received M-channel calibration RF signal Aligning a calibration RF signal for one channel to the main calibration coupling circuit unit through a calibration channel, the main calibration coupling circuit unit combining N transmission calibration RF signals transmitted by the N active antenna arrays into one transmission calibration RF signal Transmitting, by the transceiver calibration unit, power amplification of the one-way transmission calibration radio frequency signal transmitted by the main calibration coupling circuit unit, and demodulating into a transmission calibration IQ analog signal output to the digital processing unit, by the digital processing unit
  • the transmit calibrated IQ analog signal is converted to a transmit calibrated IQ digital signal and transmitted through a fiber optic interface unit.
  • the N active antenna arrays receive N-by-M-channel calibrated IQ analog signals from the digital processing unit, and convert the N-by-M-channel modulating IQ analog signals into N by M.
  • the road transmits and calibrates the RF signal.
  • the N-by-M-channel calibrated RF signal is coupled and combined into an N-channel calibrated RF signal, and the N-channel calibrated RF signal is output to the main calibration coupling circuit unit.
  • the digital processing unit converts the received calibration IQ digital signal received by the fiber optic interface unit into a received calibration IQ analog signal, the transceiving calibration unit modulating the received calibration IQ analog signal transmitted by the digital processing unit to receive the calibration radio frequency signal, Performing power amplification and transmitting to the main calibration coupling circuit unit, the main calibration coupling circuit unit splitting the power amplified amplified radio frequency signal into the same N-channel receiving calibration radio frequency signals, respectively, by N
  • the calibration channel corresponding to the active antenna array is sent to the corresponding antenna calibration coupling circuit unit, and the antenna calibration coupling circuit unit branches the received one of the received calibration RF signals into M channels to receive the calibration RF signal.
  • the N active antenna arrays receive N received calibration RF signals from the primary calibration coupling circuit unit, and divides the received N received calibration RF signals into N by M.
  • the road receives the calibration RF signal, and at the same time, converts the N-by-M-channel received calibration RF signal into an N-by-M-channel reception calibration IQ analog signal, and outputs the N-by-M-channel reception calibration IQ analog signal to the digital processing unit.
  • the primary calibration coupling circuit unit 503 is composed of more than one combined splitter; or consists of more than one combined splitter and coupler, or more than one switching moment Array composition.
  • the transceiver calibration unit 504 is composed of a radio frequency signal amplifying unit and a transceiver unit connected to each other. Specifically, the radio frequency signal amplifying unit is connected to the main calibration coupling circuit unit 503, and the transceiver unit is connected. It is connected to the digital processing unit 501. During the transmission calibration of the antenna RF channel, the transceiver calibration unit power-amplifies the 1-channel transmit calibration RF signal from the primary calibration coupling circuit unit, and down-converts the transmit-corrected IQ analog signal and transmits the calibration IQ analog signal. Output to the digital processing unit.
  • the transceiver calibration unit modulates the received calibration IQ analog signal from the digital processing unit to receive the calibrated RF signal, and enters the RF power amplification, and outputs the amplified received calibration RF signal to the primary calibration. Coupling circuit unit.
  • the filter array 201 is composed of mutually independent M-path filters.
  • the PA and LNA array 202 is composed of mutually independent M-channel power amplifiers and independent M-channel low noise amplifiers.
  • the transceiver array 203 is composed of M-way transceiver units.
  • a baseband processing device 61 is provided. As shown in FIG. 6, the baseband processing device includes ROF photoelectric conversion units connected in sequence. 601. Digital processing unit 602 and baseband processing unit 603.
  • the ROF photoelectric conversion unit 601 converts the received optical signal into an N by M way IQ analog signal, N is greater than 1, and M is greater than 1;
  • the digital processing unit 602 converts the N by M way IQ analog signal received from the ROF photoelectric conversion unit 601 into an N by M way IQ digital signal;
  • the baseband processing unit 603 performs data processing on the N by M-channel IQ digital signals received from the digital processing unit 602 to obtain received data;
  • the baseband processing unit 603 performs data processing on the data to be transmitted into an N by M way IQ digital signal. number;
  • the digital processing unit 602 converts the N by M way IQ digital signal received from the baseband processing unit 603 into an N by M way IQ analog signal;
  • the ROF photoelectric conversion unit 601 converts the N by M IQ analog signal received from the digital processing unit 602 into an optical signal and transmits it via an optical fiber.
  • the first, the specific signal processing process for receiving calibration is as follows:
  • the baseband processing unit converts the preset one receiving calibration sequence into one receiving calibration IQ digital signal, and transmits the one receiving calibration IQ digital signal to the digital processing unit; and receiving the N multimeter M receiving calibration IQ
  • the digital signal using the transmission parameters of the preset N by M calibration channels, correcting the N-by-M channel receiving calibration IQ digital signal, and receiving the calibration IQ digital signal according to the modified N by M channel and the receiving
  • the calibration sequence calculates a received calibration amplitude correction parameter and a received calibration phase correction parameter for each RF channel corresponding to the calibration channel.
  • the received N-by-M channel receives the calibrated IQ digital signal, and the 1-channel received calibrated IQ digital signal is sequentially transmitted through the 1-channel calibration channel and the N-by-M-channel RF channel of the active antenna device, and then received through the optical fiber. Obtained after being processed by the ROF photoelectric conversion unit and the digital processing unit.
  • the transmission parameters of the preset N by M calibration channels are received by the optical fiber and transmitted to the baseband processing unit via the ROF photoelectric conversion unit and the digital processing unit.
  • the baseband processing unit 603 acquires uplink data, performs amplitude correction on the uplink data by using the received calibration amplitude correction parameter, and performs phase correction on the data by using the received calibration phase correction parameter;
  • the uplink data is obtained according to an uplink signal transmitted to the baseband processing unit 603 via the ROF photoelectric conversion unit 601 and the digital processing unit 602 after being received via the optical fiber.
  • the baseband processing unit converts the preset N by M transmission calibration sequences into N-by-M-channel transmission calibration IQ digital signals, and adopts a preset N by M calibration channel transmission parameters for the corresponding calibration channel N by M path Transmit the calibrated IQ digital signal for correction and send the corrected N by M path Transmitting a calibration IQ digital signal to the digital processing unit, and converting, by the digital processing unit, the corrected N by M channel transmission calibration IQ digital signal into an N by M channel transmission calibration IQ analog signal, and then passing through the ROF photoelectric conversion unit Converting to an optical signal for transmission via an optical fiber; and receiving a 1-channel transmit calibration IQ digital signal, and calculating, according to the received 1-channel transmit calibration IQ digital signal and the N by M transmit calibration sequences, each of the calibration channels The transmit calibration amplitude correction parameter and the transmit calibration phase correction parameter of the RF channel.
  • the received 1-channel transmit calibration IQ digital signal is the corrected N-by-M-channel transmit calibration IQ digital signal, which is sequentially transmitted by the N-by-M RF channel and the 1-channel calibration channel of the active antenna device, and then received by the optical fiber. And obtained by the ROF photoelectric conversion unit and the digital processing unit.
  • the transmission parameters of the preset N by M calibration channels are received by the optical fiber and transmitted to the baseband processing unit via the ROF photoelectric conversion unit and the digital processing unit.
  • the baseband processing unit 603 performs beamforming on the data to be transmitted, and performs amplitude correction on the beamformed data by using the transmit calibration amplitude correction parameter, and data after beamforming processing using the transmit calibration phase correction parameter.
  • the phase correction is performed and sent to the digital processing unit 602, processed by the digital processing unit 602 and the ROF photoelectric conversion unit 601, and then transmitted via the optical fiber.
  • the baseband processing unit has functions of beamforming, signal detection, calibration detection, calibration compensation, and the like.
  • Calibration detection functions include: transmit calibration and receive calibration.
  • Calibration compensation functions include transmit calibration compensation and receive calibration compensation.
  • the baseband processing unit passes the transmitted data, after beamforming processing, and transmits calibration calibration processing, and forms an N by M IQ digital signal to be output to the digital processing unit.
  • the baseband processing unit performs the reception calibration compensation process on the N-by-M IQ digital signal from the digital processing unit, and then detects the signal to obtain the received data.
  • a baseband processing device 71 is provided in the fifth embodiment of the present invention.
  • the large-scale baseband processing device 71 includes interconnected optical fiber interface units. 701 and baseband processing unit 702.
  • the optical fiber interface unit 701 converts the received optical signal into an N by M IQ digital signal, N is greater than 1, and M is greater than 1;
  • the baseband processing unit 702 performs data processing on the N by M IQ digital signals received from the optical fiber interface unit 701 to obtain received data.
  • the baseband processing unit 702 performs data processing on the data to be transmitted into an N by M IQ digital signal
  • the optical fiber interface unit 701 converts the N by M IQ digital signal received from the baseband processing unit 702 into an optical signal, and transmits the optical fiber.
  • the first, the specific signal processing process for receiving calibration is as follows:
  • the baseband processing unit converts the preset one receiving calibration sequence into one receiving calibration IQ digital signal, and sends the one receiving calibration IQ digital signal to the optical fiber interface unit, and the optical fiber interface unit sends the optical signal through the optical fiber interface unit And receiving the N-by-M channel transmitted through the fiber interface unit to receive the calibrated IQ digital signal, and correcting the N-by-M-channel receiving calibrated IQ digital signal by using a preset N by M calibration channel transmission parameters, And receiving the calibration IQ digital signal and the receiving calibration sequence according to the modified N by M channel, and calculating a receiving calibration amplitude correction parameter and a receiving calibration phase correction parameter of each RF channel corresponding to the calibration channel.
  • the received N-by-M channel receives the calibrated IQ digital signal, and the 1-channel received calibrated IQ digital signal is sequentially transmitted through the 1-channel calibration channel and the N-by-M-channel RF channel of the active antenna device, and then through the optical fiber. Obtained after being received and processed by the fiber optic interface unit.
  • the transmission parameters of the preset N by M calibration channels are received by the optical fiber and transmitted to the baseband processing unit via the fiber interface unit.
  • the baseband processing unit 702 acquires uplink data, performs amplitude correction on the uplink data by using the received calibration amplitude correction parameter, and performs phase correction on the data by using the received calibration phase correction parameter;
  • the uplink data is transmitted to the baseband processing list via the optical fiber interface unit 701 after being received via the optical fiber.
  • the uplink signal of element 702 is obtained.
  • the baseband processing unit converts the preset N by M transmission calibration sequences into N-by-M-channel transmission calibration IQ digital signals, and adopts a preset N by M calibration channel transmission parameters for the corresponding calibration channel N by M path Transmitting the calibration IQ digital signal for correction, and transmitting the corrected N by M channel to transmit the calibrated IQ digital signal to the fiber optic interface unit, and converting the corrected N by M channel transmission calibrated IQ digital signal to the fiber interface unit Transmitting an optical signal over the optical fiber; and receiving a 1-way transmit calibrated IQ digital signal transmitted by the fiber optic interface unit, and calculating the received signal according to the received 1-channel transmit calibrated IQ digital signal and the N by M transmit calibration sequence
  • the received 1-channel transmit calibration IQ digital signal is transmitted by the modified N-by-M-channel transmit calibration IQ digital signal in sequence via N-M RF channels and 1-channel calibration channels of the active antenna device.
  • the fiber is received and processed by the fiber optic interface unit.
  • the transmission parameters of the preset N by M calibration channels are received by the optical fiber and transmitted to the baseband processing unit via the fiber interface unit.
  • the baseband processing unit 702 performs beamforming on the data to be transmitted, and performs amplitude correction on the beamformed data by using the transmit calibration amplitude correction parameter, and data after beamforming processing using the transmit calibration phase correction parameter.
  • the phase correction is performed and sent to the fiber interface unit 701, and then transmitted through the optical fiber interface unit 701 and then transmitted by the optical fiber.
  • the baseband processing unit has functions of beamforming, signal detection, calibration detection, calibration compensation, and the like.
  • Calibration detection features include transmit calibration and receive calibration.
  • Calibration compensation functions include transmit calibration compensation and receive calibration compensation.
  • the baseband processing unit forms the N-by-M IQ digital signal to the fiber interface unit after beamforming and transmission calibration compensation processing.
  • the baseband processing unit performs the reception calibration compensation process on the N-by-M IQ digital signal from the fiber interface unit, and then detects the signal to obtain the received data.
  • a communication system including the active antenna device (Massive Active Antenna Unit, Massive AAU) provided by the second embodiment. 31 and a baseband processing device (Massive Building Baseband Unit, Massive BBU) 61 provided by the fourth embodiment;
  • the active antenna device Massive Active Antenna Unit, Massive AAU
  • a baseband processing device Massive Building Baseband Unit, Massive BBU
  • the active antenna device 31 and the baseband processing device 61 are connected by an optical fiber.
  • FIG. 9 another communication system is provided, as shown in FIG. 9, including the active antenna device 51 provided by the third embodiment and the baseband processing device 71 provided by the fifth embodiment;
  • the active antenna device 51 and the baseband processing device 71 are connected by an optical fiber.
  • a receiving calibration method is further provided to receive and calibrate each antenna channel, and the specific process is as follows:
  • the baseband processing device converts a preset one receiving calibration sequence into one receiving calibration IQ digital signal, and transmits the one receiving calibration IQ digital signal to the active antenna device, and the active antenna device sequentially passes through After the channel calibration channel and the N by M channel RF channel transmit the one channel receiving and calibrating the IQ digital signal, the N multimeter M channel is received to receive the calibrated IQ digital signal;
  • the baseband processing device receives the N by M channels to receive a calibrated IQ digital signal, and uses the preset N by M calibration channel transmission parameters to correct the N by M channels to receive the calibrated IQ digital signals, and correct according to the correction
  • the subsequent N by M channels receive the calibration IQ digital signal and the received calibration sequence, and calculate the received calibration amplitude correction parameter and the received calibration phase correction parameter of each RF channel corresponding to the calibration channel.
  • the transmission parameters of the preset N by M calibration channels are pre-stored in the active antenna device; the baseband processing device acquires the preset N by M calibration channels from the active antenna device Transmission parameters.
  • the baseband processing device acquires uplink data, performs amplitude correction on the uplink data by using the received calibration amplitude correction parameter, and performs phase correction on the data by using the received calibration phase correction parameter.
  • the specific process of performing reception calibration is as follows:
  • Step 1001 Receive calibration start
  • Step 1003 The Massive BBU sends the calibration sequence c through one calibration channel, and then receives it through the N-by-M RF channel to perform reception calibration.
  • the signal returned to the Massive BBU after the calibration channel is transmitted;
  • Step 1005 The Massive BBU corrects the received calibration IQ digital signal corresponding to the RF channel to r i /s i according to the received calibration IQ digital signal corresponding to the i-th RF channel and the transmission parameter corresponding to the i-th RF channel;
  • Step 1006 The Massive BBU calculates a received calibration amplitude correction parameter and a received calibration phase correction parameter for each RF channel according to the corrected received calibration IQ digital signal and the calibration sequence.
  • Step 1007 After receiving the uplink data, the Massive BBU corrects the amplitude of the received uplink data according to the received calibration amplitude correction parameter corresponding to each RF channel, and adjusts the received uplink according to the received calibration phase correction parameter corresponding to each RF channel.
  • the phase of the data is corrected to ensure that the amplitude and phase at each antenna interface are the same.
  • a method for transmitting calibration is also provided to perform transmission calibration on each antenna channel.
  • the specific process is as follows:
  • the baseband processing device converts the preset N by M transmit calibration sequences into N-by-M transmit calibration IQ digital signals, using a preset N by M calibration channel transmission parameters for the corresponding calibration channel N by M path Transmitting the calibration IQ digital signal for correction, and transmitting the corrected N-by-M transmission calibration IQ digital signal to the active antenna device, wherein the active antenna device is sequentially transmitted through the N-by-M RF channel and the 1-channel calibration channel. After the corrected N-by-M channel is transmitted to calibrate the IQ digital signal, a 1-channel transmit calibration IQ digital signal is obtained;
  • the baseband processing device receives the 1-channel transmit calibration IQ digital signal, and calculates each RF channel corresponding to the calibration channel according to the received 1-channel transmit calibration IQ digital signal and the N by M transmit calibration sequence The transmit calibration amplitude correction parameter and the transmit calibration phase correction parameter.
  • the transmission parameters of the preset N by M calibration channels are pre-stored in the active antenna device
  • the baseband processing device acquires transmission parameters of the preset N by M calibration channels from the active antenna device.
  • the baseband processing device performs beamforming on the data to be transmitted, and performs amplitude correction on the beamformed data using the transmit calibration amplitude correction parameter, and uses the transmit calibration phase correction parameter to The beamformed data is phase corrected and sent to the active antenna device.
  • Step 1101 The start of the transmission calibration
  • Step 1104 The Massive BBU sends the corrected calibration sequence c i /s i through the N-by-M RF channel, and then receives it through one calibration channel to perform emission calibration.
  • Step 1105 The Massive BBU receives a 1-way hybrid transmit calibration IQ digital signal r from one calibration channel, and calculates a calibration calibration range of each RF channel according to the hybrid transmit calibration IQ digital signal and the calibration sequence c i corresponding to the RF channel. Correcting parameters and receiving calibration phase correction parameters;
  • Step 1106 Beamforming the data to be transmitted by the Massive BBU, and performing amplitude correction on the beamformed data by using the transmit calibration amplitude correction parameter, and phase-forming the data after beamforming by using the transmit calibration phase correction parameter. Corrected.
  • an antenna calibration coupling circuit unit, a calibration channel, a main calibration coupling circuit unit, a transceiver calibration unit, and a calibration parameter storage unit are added in the active antenna device to provide hardware support for transmitting and receiving calibration. It enables the transmission and reception calibration of each RF channel based on the active antenna device with the calibration channel and the calibration circuit, and realizes the scalable design of the antenna channel while using the active antenna device to ensure the performance of each antenna channel is consistent, and the engineering is reduced. The implementation difficulty is improved while the implementation reliability is improved.
  • the method for transmitting calibration provided by the embodiment of the present invention eliminates the influence of the calibration parameters of the internal parameters of the calibration network, and ensures the uniformity of the amplitude and phase at the interface of each antenna vibrator.
  • the receiving calibration method provided by the embodiment of the invention eliminates the influence of the internal parameters of the calibration network on the receiving calibration performance, and ensures the uniformity of the amplitude and phase at the interface of each antenna vibrator.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Optical Communication System (AREA)
  • Transceivers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种有源天线相关设备、系统及收发校准方法,用以实现天线阵列的可扩展设计,降低工程实施难度的同时提供工程实施可靠性。该有源天线设备包括:N个有源天线阵列、主校准耦合电路单元、收发校准单元、校准参数存储单元以及光载无线通信ROF光电转换单元,所述N大于1;所述有源天线阵列至少包括天线校准耦合电路单元以及M个连接至所述天线校准耦合电路单元的天线振子,所述M大于1;所述有源天线阵列的天线校准耦合电路单元通过校准通道连接至所述主校准耦合电路单元,所述主校准耦合电路与所述收发校准单元连接,所述收发校准单元以及所述校准参数存储单元分别连接至所述ROF光电转换单元。

Description

有源天线相关设备、系统及收发校准方法
本申请要求在2014年5月14日提交中国专利局、申请号为201410204038.0、发明名称为“有源天线相关设备、系统及收发校准方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种有源天线相关设备、系统及收发校准方法。
背景技术
目前,第三代移动通信(3G)网络中,采用基带处理单元(Building Baseband Unit,BBU)和射频拉远单元(Remote Radio Unit,RRU)组成的通信系统架构,其中,BBU和RRU之间采用光纤连接,一个BBU可以支持多个RRU。
如图1所示为由BBU+RRU组成的通信系统的架构示意图,其中,BBU通过光纤连接至RRU的光接口,RRU中光接口与数字中频连接,数字中频分别与收发信机阵列和收发校准单元连接。其中,收发信机阵列连接PA和LNA阵列(PA为power amplifier的英文缩写,即功率放大器;LNA为Low Noise Amplifier的英文缩写,即低噪声放大器),该PA和LNA阵列通过N路天线通道连接至无源天线阵列,且收发校准单元通过一路校准通道与无源天线阵列连接。可见,RRU和无源天线之间通过(N+1)路射频上跳线连接,射频上跳线的数量随着天线通道的数量N的增大而增大。
大规模输入输出(Massive Multiple-Input Multiple-Output,Massive MIMO)通信系统中,天线通道的数量N大于等于64,即射频上跳线的个数大于64,为了减少天线和RRU之间的传输损耗,通常上跳线采用具有一定直径的射频线缆,数量较大的射频线缆在工程实现上相当困难,且难以提供可靠性保障。
因此,现有的BBU和RRU以及无源天线组合的通信系统解决方案,在 Massive MIMO通信系统中是不可行的。
发明内容
本发明实施例提供一种有源天线相关设备、系统及收发校准方法,用以实现天线阵列的可扩展设计,降低工程实施难度的同时提供工程实施可靠性。
本发明实施例提供的具体技术方案如下:
第一方面,本发明实施例提供了一种有源天线设备,包括:
N个有源天线阵列、主校准耦合电路单元、收发校准单元、校准参数存储单元以及ROF(Radio-Over-Fiber,光载无线通信)光电转换单元,所述N大于1;
所述有源天线阵列至少包括天线校准耦合电路单元以及M个连接至所述天线校准耦合电路单元的天线振子,所述M大于1;
所述有源天线阵列的天线校准耦合电路单元通过校准通道连接至所述主校准耦合电路单元,所述主校准耦合电路单元与所述收发校准单元连接,所述收发校准单元以及所述校准参数存储单元分别连接至所述ROF光电转换单元;
所述校准参数存储单元保存N个所述有源天线阵列的校准通道的传输参数,以及将所述传输参数传送给所述ROF光电转换单元,由所述ROF光电转换单元转换为光信号后经光纤发送;
所述有源天线阵列的天线校准耦合电路单元将接收的M路校准射频信号耦合为一路发射校准射频信号通过校准通道输出至所述主校准耦合电路单元,所述主校准耦合电路单元将N个所述有源天线阵列传送的N路发射校准射频信号合并为一路发射校准射频信号,所述收发校准单元将所述主校准耦合电路单元传送的所述一路发射校准射频信号进行功率放大后,解调为发射校准IQ模拟信号输出至所述ROF光电转换单元,所述ROF光电转换单元将所述发射校准IQ模拟信号转换为光信号并通过光纤传送;和/或,所述收发校准单元将所述ROF光电转换单元传送的接收校准IQ模拟信号调制为接收校 准射频信号,进行功率放大后传送给所述主校准耦合电路单元,所述主校准耦合电路单元将功率放大后的所述接收校准射频信号分路为相同的N路接收校准射频信号,分别通过N个所述有源天线阵列所对应的校准通道发送至相对应的所述天线校准耦合电路单元,所述天线校准耦合电路单元将接收的一路所述接收校准射频信号分路成M路接收校准射频信号。
第二方面,本发明实施例提供了一种有源天线设备,包括:
N个有源天线阵列、主校准耦合电路单元、收发校准单元、校准参数存储单元、数字处理单元以及光纤接口单元,所述N大于1;
所述有源天线阵列至少包括天线校准耦合电路单元以及M个连接至所述天线校准耦合电路单元的天线振子,所述M大于1;
所述有源天线阵列的天线校准耦合电路单元通过校准通道连接至所述主校准耦合电路单元,所述主校准耦合电路单元与所述收发校准单元连接,所述收发校准单元以及所述校准参数存储单元分别连接至所述数字处理单元;
所述校准参数存储单元保存N个所述有源天线阵列的校准通道的传输参数,以及将所述传输参数传送给所述数字处理单元;
所述有源天线阵列的天线校准耦合电路单元将接收的M路校准射频信号耦合为一路发射校准射频信号通过校准通道输出至所述主校准耦合电路单元,所述主校准耦合电路单元将N个所述有源天线阵列传送的N路发射校准射频信号合并为一路发射校准射频信号,所述收发校准单元将所述主校准耦合电路单元传送的所述一路发射校准射频信号进行功率放大后,解调为发射校准IQ模拟信号输出至所述数字处理单元,由所述数字处理单元将所述发射校准IQ模拟信号转换为发射校准IQ数字信号并通过光纤接口单元传送;和/或,所述数字处理单元将通过所述光纤接口单元接收的接收校准IQ数字信号转换为接收校准IQ模拟信号,所述收发校准单元将所述数字处理单元传送的接收校准IQ模拟信号调制为接收校准射频信号,进行功率放大后传送给所述主校准耦合电路单元,所述主校准耦合电路单元将功率放大后的所述接收校准射频信号分路为相同的N路接收校准射频信号,分别通过N个所述有源天 线阵列所对应的校准通道发送至相对应的所述天线校准耦合电路单元,所述天线校准耦合电路单元将接收的一路所述接收校准射频信号分路成M路接收校准射频信号。
第三方面,本发明实施例提供了一种基带处理设备,包括:
依次连接的ROF光电转换单元、数字处理单元和基带处理单元;
所述基带处理单元将预设的1个接收校准序列转化为1路接收校准IQ数字信号,并将所述1路接收校准IQ数字信号发送至所述数字处理单元;以及接收N乘M路接收校准IQ数字信号,采用预设的N乘M个校准通道的传输参数,对所述N乘M路接收校准IQ数字信号进行修正,并根据修正后的N乘M路接收校准IQ数字信号以及所述接收校准序列,计算所述校准通道所对应的各射频通道的接收校准幅度修正参数和接收校准相位修正参数;和/或,所述基带处理单元将预设的N乘M个发射校准序列转化为N乘M路发射校准IQ数字信号,采用预设的N乘M个校准通道的传输参数对所对应的校准通道的N乘M路发射校准IQ数字信号进行修正,并发送修正后的N乘M路发射校准IQ数字信号至所述数字处理单元,由所述数字处理单元将修正后的N乘M路发射校准IQ数字信号转换为N乘M路发射校准IQ模拟信号后通过所述ROF光电转换单元转换为光信号经光纤发送;以及接收1路发射校准IQ数字信号,并根据接收的所述1路发射校准IQ数字信号及所述N乘M个发射校准序列计算所述校准通道所对应的各射频通道的发射校准幅度修正参数和发射校准相位修正参数;
所述接收的N乘M路接收校准IQ数字信号为所述1路接收校准IQ数字信号依次经有源天线设备的1路校准通道、N乘M路射频通道传输后,经由所述光纤接收并经所述ROF光电转换单元和数字处理单元处理后获得;
所述接收的1路发射校准IQ数字信号为修正后的N乘M路发射校准IQ数字信号依次经有源天线设备的N乘M路射频通道、1路校准通道传输后,由所述光纤接收并经所述ROF光电转换单元和数字处理单元处理后获得;
所述预设的N乘M个校准通道的传输参数由所述光纤接收后经所述ROF 光电转换单元以及所述数字处理单元传送至所述基带处理单元。
第四方面,本发明实施例提供了一种基带处理设备,包括:相互连接的光纤接口单元和基带处理单元;
所述基带处理单元将预设的1个接收校准序列转化为1路接收校准IQ数字信号,并将所述1路接收校准IQ数字信号发送至所述光纤接口单元,由所述光纤接口单元通过光纤发送;以及接收经由所述光纤接口单元传送的N乘M路接收校准IQ数字信号,采用预设的N乘M个校准通道的传输参数,对所述N乘M路接收校准IQ数字信号进行修正,并根据所述修正后的N乘M路接收校准IQ数字信号以及所述接收校准序列,计算所述校准通道所对应的各射频通道的接收校准幅度修正参数和接收校准相位修正参数;和/或,所述基带处理单元将预设的N乘M个发射校准序列转化为N乘M路发射校准IQ数字信号,采用预设的N乘M个校准通道的传输参数对所对应的校准通道的N乘M路发射校准IQ数字信号进行修正,并发送修正后的N乘M路发射校准IQ数字信号至所述光纤接口单元,由所述光纤接口单元将修正后的N乘M路发射校准IQ数字信号转换为光信号经光纤发送;以及接收由所述光纤接口单元传送的1路发射校准IQ数字信号,并根据接收的所述1路发射校准IQ数字信号及所述N乘M个发射校准序列计算所述校准通道所对应的各射频通道的发射校准幅度修正参数和发射校准相位修正参数;
接收的所述N乘M路接收校准IQ数字信号为所述1路接收校准IQ数字信号依次经有源天线设备的1路校准通道、N乘M路射频通道传输后,经由所述光纤接收并经所述光纤接口单元处理后获得;
接收的所述1路发射校准IQ数字信号为所述修正后的N乘M路发射校准IQ数字信号依次经有源天线设备的N乘M个射频通道、1路校准通道传输后,由所述光纤接收并经所述光纤接口单元处理后获得;
所述预设的N乘M个校准通道的传输参数由所述光纤接收后经所述光纤接口单元传送至所述基带处理单元。
第五方面,本发明实施例提供了一种通信系统,包括第一方面所述的有 源天线设备以及第三方面所述的基带处理设备,所述基带处理设备与所述有源天线设备通过光纤连接。
第六方面,本发明实施例提供了一种通信系统,包括第二方面所述的有源天线设备以及第四方面所述的基带处理设备,所述基带处理设备与所述有源天线设备通过光纤连接。
第七方面,本发明实施例提供了一种收发校准方法,包括:
基带处理设备将预设的1个接收校准序列转化为1路接收校准IQ数字信号,并将所述1路接收校准IQ数字信号发送给有源天线设备,由所述有源天线设备依次经1路校准通道、N乘M路射频通道传输所述1路接收校准IQ数字信号后,得到N乘M路接收校准IQ数字信号;所述基带处理设备接收所述N乘M路接收校准IQ数字信号,采用预设的N乘M个校准通道的传输参数,对所述N乘M路接收校准IQ数字信号进行修正,并根据修正后的N乘M路接收校准IQ数字信号以及所述接收校准序列,计算所述校准通道所对应的各射频通道的接收校准幅度修正参数和接收校准相位修正参数;
和/或
基带处理设备将预设的N乘M个发射校准序列转化为N乘M路发射校准IQ数字信号,采用预设的N乘M个校准通道的传输参数对所对应的校准通道的N乘M路发射校准IQ数字信号进行修正,将修正后的N乘M路发射校准IQ数字信号发送给有源天线设备,由所述有源天线设备依次经N乘M路射频通道、1路校准通道传输所述修正后的N乘M路发射校准IQ数字信号后,得到1路发射校准IQ数字信号;所述基带处理设备接收所述1路发射校准IQ数字信号,并根据接收的所述1路发射校准IQ数字信号及所述N乘M个发射校准序列计算所述校准通道所对应的各射频通道的发射校准幅度修正参数和发射校准相位修正参数。
基于上述技术方案,本发明实施例中,通过在有源天线设备中增设天线校准耦合电路单元、校准通道、主校准耦合电路单元、收发校准单元、校准参数存储单元,以为收发校准提供硬件支撑,使得能够基于该具有校准通道 和校准电路的有源天线设备实现各射频通道的收发校准,在采用有源天线设备实现天线通道的可扩展设计的同时,保证各天线通道的性能保持一致,降低工程实施难度的同时,提高了实施可靠性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有的分布式通信系统架构示意图;
图2为本发明实施例中一种有源天线阵列的结构示意图;
图3为本发明实施例中一种大规模有源天线设备的结构示意图;
图4为本发明实施例中一种收发校准单元的结构示意图;
图5为本发明实施例中另一种大规模有源天线设备的结构示意图;
图6为本发明实施例中一种大规模基带处理设备的结构示意图;
图7为本发明实施例中另一种大规模基带处理设备的结构示意图;
图8为本发明实施例中一种通信系统的架构示意图;
图9为本发明实施例中另一种通信系统的架构示意图;
图10为本发明实施例中一种接收校准的过程示意图;
图11为本发明实施例中一种发射校准的过程示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
对于N大于等于64的大规模有源天线系统,N个射频通道之间的不一致性会导致N路上行信号或下行信号之间无法达到性能最优的合并处理。因此,在N个射频道通道之间实现校准是至关重要的。
同时,对于N大于等于64的大规模有源天线来讲,实现可扩展,灵活地实现128路,256路的大规模有源天线也是至关重要的。
可扩展与N路天线一致性校准之间是相互制约的,N路天线校准需要将N路信号耦合到一路,但可扩展则需要独立考虑各个子阵列的结构。
本发明第一实施例中,提供了一种有源天线阵列21,如图2所示,该有源天线阵列包括依次连接的滤波器阵列201、PA和LNA阵列202和收发信机阵列203,以及M个天线振子204,其中,M大于1,该M个天线振子204连接至天线校准耦合电路单元205,该天线校准耦合电路单元205与滤波器阵列201连接,该天线校准耦合电路单元205还连接有一路校准通道。
其中,M个天线振子204,用于接收电磁波并转换为M路射频信号,或者,分别接收M路射频信号并转换为电磁波后发射;
天线校准耦合电路单元205在射频信号的传输过程中,用于在滤波器阵列201与M个天线振子204之间传输M路射频信号;在接收信号或发射信号校准过程中,将滤波器阵列201传送的M路校准射频信号耦合为一路校准射频信号通过校准通道输出;或者,通过校准通道接收一路校准射频信号,将接收的校准射频信号分路成M路校准射频信号并传送给滤波器阵列201;
滤波器阵列201,用于对M路射频信号进行滤波;
PA和LNA阵列202,用于对M路射频信号进行功率放大;
收发信机阵列203,用于将M路射频信号转换为M路IQ模拟信号并发送,或者,将接收的M路IQ模拟信号转换为M路射频信号。
具体实施中,滤波器阵列201由相互独立的M路滤波器组成。
具体实施中,PA和LNA阵列202由相互独立的M路功率放大器和相互独立的M路低噪声放大器组成。
具体实施中,收发信机阵列203由M路收发信机单元组成。
具体实施中,天线振子204可以是单极化天线振子,也是可以双极化或多极化天线振子中任何一个极化的极化振子。
具体地,在信号发射时,通过收发信机阵列将输入的M路输入IQ模拟信号,调制上变频为M路射频信号,该M路射频信号经过PA和LNA阵列信号功率放大、滤波器阵列滤波形成M路具有相应频谱的射频信号,此M路具有相应频谱的射频信号经由天线校准耦合电路单元传输给M个天线振子,通过M个天线振子将此具有相应频谱的射频信号转化为电磁波,并将电磁波向空间发射出去。
具体地,在信号接收时,M个天线振子将接收到来自空间电磁波转化M路射频信号,M路射频信号经由天线校准耦合电路单元传输给滤波器阵列进行射频滤波,形成M路具有相应频谱的射频信号,此M路具有相应频谱的射频信号经过PA和LNA阵列信号功率放大,然后输出到收发信机阵列,收发信机阵列将来自于PA和LNA阵列的M路射频信号下变频解调为M路IQ模拟信号,并输出M路IQ模拟信号。
具体地,在天线射频通道的发射校准时,将M路发射校准IQ模拟信号输入到收发信机阵列,通过收发信机阵列调制上变频为M路发射校准射频信号,M路发射校准射频信号经过PA和LNA阵列信号功率放大,滤波器阵列滤波,形成M路具有相应频谱的发射校准射频信号,此M路具有相应频谱的发射校准射频信号输入天线校准耦合电路单元,经由天线校准耦合电路单元耦合形成1路发射校准射频信号,通过1路校准通道输出。
具体地,在天线射频通道的接收校准时,将1路接收校准射频信号通过1路校准通道输入到天线校准耦合电路单元,经由天线校准耦合电路单元分路成M路接收校准射频信号,此M路接收校准射频信号输出给滤波器阵列进行射频滤波,形成M路具有相应频谱的接收校准射频信号,此M路具有相应频谱的接收校准射频信号经过PA和LNA阵列信号功率放大,然后输出到收发信机阵列,收发信机阵列将来自于PA和LNA阵列的M路接收校准射频信号下变频解调为M路接收校准IQ模拟信号,并输出M路接收校准IQ模拟信号。
具体实施中,当系统工作在非天线射频通道校准时,在信号发射过程中,天线校准耦合电路单元接收来自于滤波器阵列的M路射频信号,并将M路射频信号传输给M个天线振子。在信号接收过程中,天线校准耦合电路单元接收来自于M个天线振子射频信号,并将M路射频信号传输给滤波器阵列。
当系统工作在天线射频通道校准时,在发射校准过程中,天线校准耦合电路单元接收来自于滤波器阵列的M路校准射频信号,并将M路校准射频信号耦合输出到1路校准通道,形成一路校准射频信号的输出。在接收校准过程中时,天线校准耦合电路接收来自于1路校准通道的校准射频信号的输入,并将输入的校准射频信号通过耦合形成M路校准射频信号,并将M路校准射频信号传输给滤波器阵列。
具体实施中,滤波器阵列对射频信号进行射频滤波,控制发射和接收到的射频信号在一定的频率范围内,以减少系统间的干扰。在信号发射过程中,将来自于PA和LNA阵列的射频信号进行射频滤波,将滤波后的射频信号传输给天线校准耦合电路单元。滤波器阵列在信号接收过程中,将来自于天线校准耦合电路单元的射频信号进行射频滤波,将滤波后的射频信号传输PA和LNA阵列。
具体实施中,PA和LNA阵列实现发射(或接收)信号的功率放大,在信号发射过程中,将来自于收发信机阵列的M路射频信号进行功率放大,并将放大后的M路射频信号输入到滤波器阵列;在信号接收过程中,将来自于滤波器阵列的M路射频信号进行功率放大,并将放大后的M路射频信号输入收发信机阵列。
具体实施中,收发信机阵列在信号发射过程中,将输入的M路IQ模拟信号调制上变频为射频信号,输出给PA和LNA阵列;在信号接收过程中,将来自于PA和LNA阵列的M路射频信号下变频解调为M路IQ模拟信号。
本发明第二实施例中,提供了一种有源天线设备31,如图3所示,该大规模有源天线设备31包括ROF光电转换单元301和N个有源天线阵列21,其中,N大于1,以及包括主校准耦合电路单元302和收发校准单元303;还 包括连接至ROF光电转换单元301的校准参数存储单元304。
其中,有源天线阵列21的具体实施可参见第一实施例的描述,具体地,该有源天线阵列包括依次连接的滤波器阵列201、PA和LNA阵列202和收发信机阵列203,以及M个天线振子204,其中,M大于1,该M个天线振子204连接至天线校准耦合电路单元205,该天线校准耦合电路单元205与滤波器阵列201连接,该天线校准耦合电路单元205还连接有一路校准通道。
其中,每个有源天线阵列21的天线校准耦合电路单元205通过校准通道连接至主校准耦合电路单元302,主校准耦合电路单元302与收发校准单元303连接,收发校准单元303以及校准参数存储单元304分别连接至ROF光电转换单元301。
其中,校准参数存储单元304用于保存N个有源天线阵列21的校准通道的传输参数,以及将保存的传输参数传送给ROF光电转换单元301,由ROF光电转换单元301转换为光信号后经光纤发送。
具体实施中,N个有源天线阵列可组合形成平面形阵列结构,圆柱形结构,以及其它任何可能结构。
其中,ROF光电转换单元301和有源天线阵列21针对信号接收和信号发射,具有不同的信号处理过程,具体如下:
第一种,信号接收的具体过程如下:
有源天线阵列21通过M个天线振子204将接收的电磁波转换为M路射频信号,天线校准耦合电路单元205接收该M路射频信号并传送给滤波器阵列201进行滤波后传送至PA和LNA阵列202进行功率放大,功率放大后的M路射频信号经由收发信机阵列203转换为M路IQ模拟信号,并传送给ROF光电转换单元301;
ROF光电转换单元301将N个有源天线阵列21传送的N乘M路IQ模拟信号转换为光信号并通过光纤发送。
第二种,信号发射的具体过程如下:
ROF光电转换单元301将通过光纤接收的光信号转换为N乘M路IQ模 拟信号,将该N乘M路IQ模拟信号划分为N组分别传送给N个有源天线阵列21;
每个有源天线阵列21,用于将通过收发信机阵列203接收的M路IQ模拟信号转换为M路射频信号后,经PA和LNA阵列202进行功率放大并经滤波器阵列201进行滤波后,由天线校准耦合电路单元205将滤波后的M路射频信号分别传送至M个天线振子204,由天线振子204转换为电磁波并发射。
在校准过程中,根据接收校准和发射校准可以有以下两种处理过程:
第一种,发射校准的具体过程信号处理过程如下:
有源天线阵列21的天线校准耦合电路单元205将接收的M路校准射频信号耦合为一路发射校准射频信号通过校准通道输出至主校准耦合电路单元302,主校准耦合电路单元302将N个有源天线阵列21传送的N路发射校准射频信号合并为一路发射校准射频信号,该收发校准单元303将主校准耦合电路单元302传送的一路发射校准射频信号进行功率放大后,解调为发射校准IQ模拟信号输出至ROF光电转换单元301,ROF光电转换单元301将发射校准IQ模拟信号转换为光信号并通过光纤传送。
第二种,接收校准的具体信号处理过程如下:
收发校准单元303将ROF光电转换单元301传送的接收校准IQ模拟信号调制为接收校准射频信号,进行功率放大后传送给主校准耦合电路单元302,主校准耦合电路单元302将功率放大后的接收校准射频信号分路为相同的N路接收校准射频信号,分别通过N个有源天线阵列21所对应的校准通道发送至相对应的天线校准耦合电路单元205,天线校准耦合电路单元205将接收的一路接收校准射频信号分路成M路接收校准射频信号。
具体实施中,主校准耦合电路单元302由一个以上的合路分路器组成,或者,由一个以上的合路分路器和耦合器组成,或者,由一个以上的开关矩阵组成。
具体实施中,如图4所示,收发校准单元303由相互连接的射频信号放大单元401和收发信机单元402组成,具体地,射频信号放大单元401与主 校准耦合电路单元302连接,收发信机单元23与ROF光电转换单元301连接。在天线射频通道的发射校准时,收发校准单元将来自于主校准耦合电路单元的1路发射校准射频信号,进行功率放大,并且下变频解调为发射校准IQ模拟信号,并将发射校准IQ模拟信号输出到ROF光电转换单元。在天线射频通道的接收校准时,收发校准单元将来自于ROF光电转换单元的接收校准IQ模拟信号调制上变频为接收校准射频信号,并进射频功率放大,将放大后的接收校准射频信号输出到主校准耦合电路单元。
具体实施中,滤波器阵列201由相互独立的M路滤波器组成。
具体实施中,PA和LNA阵列202由相互独立的M路功率放大器和相互独立的M路低噪声放大器组成。
具体实施中,收发信机阵列203由M路收发信机单元组成。
本发明第三实施例中,提供了一种有源天线设备51,如图5所示,该大规模有源天线设备包括数字处理单元501、光纤接口单元502、主校准耦合电路单元503、收发校准单元504以及N个有源天线阵列21,N大于1;
N个有源天线阵列21分别与数字处理单元501连接,数字处理单元501与光纤接口单元502连接;
还包括连接至数字处理单元501的校准参数存储单元505。
其中,有源天线阵列21的具体实施可参见第一实施例的描述,具体地,该有源天线阵列包括依次连接的滤波器阵列201、PA和LNA阵列202和收发信机阵列203,以及M个天线振子204,其中,M大于1,该M个天线振子204连接至天线校准耦合电路单元205,该天线校准耦合电路单元205与滤波器阵列201连接,该天线校准耦合电路单元205还连接有一路校准通道。
其中,每个有源天线阵列21的天线校准耦合电路单元205通过校准通道连接至主校准耦合电路单元503,主校准耦合电路单元503与收发校准单元504连接,收发校准单元504以及校准参数存储单元505分别连接至数字处理单元501。
其中,校准参数存储单元505用于保存N个有源天线阵列21的校准通道 的传输参数,以及用于将该传输参数传送给数字处理单元501。
具体实施中,N个有源天线阵列可组合形成平面形阵列结构,圆柱形结构,以及其它任何可能结构。
其中,针对信号接收和信号发射的不同处理过程,具体如下:
第一种,信号接收的具体过程如下:
有源天线阵列21,用于通过M个天线振子204将接收的电磁波转换为M路射频信号,将M路射频信号通过天线校准耦合电路单元205传送给滤波器阵列201进行滤波后传送至PA和LNA阵列202进行功率放大,功率放大后的M路射频信号经由收发信机阵列203转换为M路IQ模拟信号,并传送给数字处理单元501;
数字处理单元501将N个有源天线阵列21传输的N乘M路IQ模拟信号转为N乘M路IQ数字信号;
光纤接口单元502将数字处理单元501传输的N乘M路IQ数字信号转换为光信号,并经光纤发送。
第二种,信号发射的具体过程如下:
光纤接口单元502将通过光纤传送的光信号转换为N乘M路IQ数字信号;
数字处理单元501将光纤接口单元502传送的N乘M路IQ数字信号转换为N乘M路IQ模拟信号,并将N乘M路IQ模拟信号划分为N组分别传送至N个有源天线阵列21;
有源天线阵列21,用于将通过收发信机阵列203接收的M路IQ模拟信号转换为M路射频信号后,经PA和LNA阵列202进行功率放大并经滤波器阵列201进行滤波后,由天线校准耦合电路单元205将滤波后的M路射频信号分别传送至M个天线振子204,由天线振子204转换为电磁波并发射。
在校准过程中,根据接收校准和发射校准可以有以下两种处理过程:
第一种,发射校准的具体信号处理过程如下:
有源天线阵列的天线校准耦合电路单元将接收的M路校准射频信号耦合 为一路发射校准射频信号通过校准通道输出至所述主校准耦合电路单元,所述主校准耦合电路单元将N个所述有源天线阵列传送的N路发射校准射频信号合并为一路发射校准射频信号,所述收发校准单元将所述主校准耦合电路单元传送的所述一路发射校准射频信号进行功率放大后,解调为发射校准IQ模拟信号输出至所述数字处理单元,由所述数字处理单元将所述发射校准IQ模拟信号转换为发射校准IQ数字信号并通过光纤接口单元传送。
具体地,在天线射频通道的发射校准时,N个有源天线阵列接收来自数字处理单元的N乘M路发射校准IQ模拟信号,并将N乘M路发射校准IQ模拟信号转化成N乘M路发射校准射频信号,同时,对N乘M路发射校准射频信号进行耦合合并成N路发射校准射频信号,并将N路发射校准射频信号输出到主校准耦合电路单元。
第二种,接收校准的具体信号处理过程如下:
数字处理单元将通过所述光纤接口单元接收的接收校准IQ数字信号转换为接收校准IQ模拟信号,所述收发校准单元将所述数字处理单元传送的接收校准IQ模拟信号调制为接收校准射频信号,进行功率放大后传送给所述主校准耦合电路单元,所述主校准耦合电路单元将功率放大后的所述接收校准射频信号分路为相同的N路接收校准射频信号,分别通过N个所述有源天线阵列所对应的校准通道发送至相对应的所述天线校准耦合电路单元,所述天线校准耦合电路单元将接收的一路所述接收校准射频信号分路成M路接收校准射频信号。
具体地,在天线射频通道的接收校准时,N个有源天线阵列接收来自主校准耦合电路单元的N路接收校准射频信号,并将接收到的N路接收校准射频信号分路成N乘M路接收校准射频信号,同时,将N乘M路接收校准射频信号转化为N乘M路接收校准IQ模拟信号,并将N乘M路接收校校准IQ模拟信号输出到数字处理单元。
具体实施中,主校准耦合电路单元503由一个以上的合路分路器组成;或者,由一个以上的合路分路器和耦合器组成,或者,由一个以上的开关矩 阵组成。
具体实施中,同上一实施例,收发校准单元504由相互连接的射频信号放大单元和收发信机单元组成,具体地,该射频信号放大单元与主校准耦合电路单元503连接,该收发信机单元与数字处理单元501连接。在天线射频通道的发射校准时,收发校准单元将来自于主校准耦合电路单元的1路发射校准射频信号进行功率放大,并且下变频解调为发射校准IQ模拟信号,并将发射校准IQ模拟信号输出到数字处理单元。在天线射频通道的接收校准时,收发校准单元将来自于数字处理单元的接收校准IQ模拟信号调制上变频为接收校准射频信号,并进射频功率放大,将放大后的接收校准射频信号输出到主校准耦合电路单元。
具体实施中,滤波器阵列201由相互独立的M路滤波器组成。
具体实施中,PA和LNA阵列202由相互独立的M路功率放大器和相互独立的M路低噪声放大器组成。
具体实施中,收发信机阵列203由M路收发信机单元组成。
相应于第二实施例中提供的有源天线设备31,本发明第四实施例中,提供了一种基带处理设备61,如图6所示,该基带处理设备包括依次连接的ROF光电转换单元601、数字处理单元602和基带处理单元603。
其中,针对信号接收和信号发射的不同处理过程,具体如下:
第一种,信号接收的具体过程如下:
ROF光电转换单元601将接收的光信号转换为N乘M路IQ模拟信号,N大于1,且M大于1;
数字处理单元602将从ROF光电转换单元601接收的N乘M路IQ模拟信号转换为N乘M路IQ数字信号;
基带处理单元603对从数字处理单元602接收的N乘M路IQ数字信号进行数据处理获得接收数据;
第二种,信号发射的具体过程如下:
基带处理单元603对待发射的数据进行数据处理为N乘M路IQ数字信 号;
数字处理单元602将从基带处理单元603接收的N乘M路IQ数字信号转换为N乘M路IQ模拟信号;
ROF光电转换单元601将从数字处理单元602接收的N乘M路IQ模拟信号转换为光信号,并经光纤发送。
在校准过程中,根据接收校准和发射校准可以有以下两种处理过程:
第一种,接收校准的具体信号处理过程如下:
基带处理单元将预设的1个接收校准序列转化为1路接收校准IQ数字信号,并将所述1路接收校准IQ数字信号发送至所述数字处理单元;以及接收N乘M路接收校准IQ数字信号,采用预设的N乘M个校准通道的传输参数,对所述N乘M路接收校准IQ数字信号进行修正,并根据修正后的N乘M路接收校准IQ数字信号以及所述接收校准序列,计算所述校准通道所对应的各射频通道的接收校准幅度修正参数和接收校准相位修正参数。
其中,接收的N乘M路接收校准IQ数字信号为所述1路接收校准IQ数字信号依次经有源天线设备的1路校准通道、N乘M路射频通道传输后,经由所述光纤接收并经所述ROF光电转换单元和数字处理单元处理后获得。
其中,预设的N乘M个校准通道的传输参数由所述光纤接收后经所述ROF光电转换单元以及所述数字处理单元传送至所述基带处理单元。
优选地,基带处理单元603获取上行数据,并采用接收校准幅度修正参数对该上行数据进行幅度修正,以及采用接收校准相位修正参数对该上述数据进行相位修正;
其中,上行数据为根据经由光纤接收后经ROF光电转换单元601以及数字处理单元602传送至基带处理单元603的上行信号得到。
第二种,发射校准的具体信号处理过程如下:
基带处理单元将预设的N乘M个发射校准序列转化为N乘M路发射校准IQ数字信号,采用预设的N乘M个校准通道的传输参数对所对应的校准通道的N乘M路发射校准IQ数字信号进行修正,并发送修正后的N乘M路 发射校准IQ数字信号至所述数字处理单元,由所述数字处理单元将修正后的N乘M路发射校准IQ数字信号转换为N乘M路发射校准IQ模拟信号后通过所述ROF光电转换单元转换为光信号经光纤发送;以及接收1路发射校准IQ数字信号,并根据接收的所述1路发射校准IQ数字信号及所述N乘M个发射校准序列计算所述校准通道所对应的各射频通道的发射校准幅度修正参数和发射校准相位修正参数。
其中,接收的1路发射校准IQ数字信号为修正后的N乘M路发射校准IQ数字信号依次经有源天线设备的N乘M路射频通道、1路校准通道传输后,由所述光纤接收并经所述ROF光电转换单元和数字处理单元处理后获得。
其中,预设的N乘M个校准通道的传输参数由所述光纤接收后经所述ROF光电转换单元以及所述数字处理单元传送至所述基带处理单元
优选地,基带处理单元603对待发射的数据进行波束赋形,并采用发射校准幅度修正参数对波束赋形处理后的数据进行幅度修正,以及采用发射校准相位修正参数对波束赋形处理后的数据进行相位修正后发送给数字处理单元602,经由数字处理单元602和ROF光电转换单元601处理后经由光纤发送。
具体地,基带处理单元具有波束赋形、信号检测、校准检测、校准补偿等功能。校准检测功能包括:发射校准和接收校准等。校准补偿功能包括发射校准补偿和接收校准补偿。在发射时,基带处理单元将发射的数据,经过波束形处理,发射校准补偿处理后,形成N乘M路IQ数字信号输出到数字处理单元。在接收时,基带处理单元将来自于数字处理单元的N乘M路IQ数字信号,进行接收校准补偿处理后,进行信号的检测,得到接收的数据。
相应于第三实施例提供的有源天线设备51,本发明第五实施例中提供了一种基带处理设备71,如图7所示,该大规模基带处理设备71包括相互连接的光纤接口单元701和基带处理单元702。
其中,针对信号接收和信号发射的不同处理过程,具体如下:
第一种,信号接收的具体过程如下:
光纤接口单元701将接收的光信号转换为N乘M路IQ数字信号,N大于1,且M大于1;
基带处理单元702对从光纤接口单元701接收的N乘M路IQ数字信号进行数据处理获得接收数据。
第二种,信号发射的具体过程如下:
基带处理单元702对待发射的数据进行数据处理为N乘M路IQ数字信号;
光纤接口单元701将从基带处理单元702接收的N乘M路IQ数字信号转换为光信号,并将光纤发送。
在校准过程中,根据接收校准和发射校准可以有以下两种处理过程:
第一种,接收校准的具体信号处理过程如下:
基带处理单元将预设的1个接收校准序列转化为1路接收校准IQ数字信号,并将所述1路接收校准IQ数字信号发送至所述光纤接口单元,由所述光纤接口单元通过光纤发送;以及接收经由所述光纤接口单元传送的N乘M路接收校准IQ数字信号,采用预设的N乘M个校准通道的传输参数,对所述N乘M路接收校准IQ数字信号进行修正,并根据所述修正后的N乘M路接收校准IQ数字信号以及所述接收校准序列,计算所述校准通道所对应的各射频通道的接收校准幅度修正参数和接收校准相位修正参数。
其中,接收的所述N乘M路接收校准IQ数字信号为所述1路接收校准IQ数字信号依次经有源天线设备的1路校准通道、N乘M路射频通道传输后,经由所述光纤接收并经所述光纤接口单元处理后获得。
其中,预设的N乘M个校准通道的传输参数由所述光纤接收后经所述光纤接口单元传送至基带处理单元。
优选地,基带处理单元702获取上行数据,并采用接收校准幅度修正参数对上行数据进行幅度修正,以及采用接收校准相位修正参数对上述数据进行相位修正;
上行数据为根据经由光纤接收后经光纤接口单元701传送至基带处理单 元702的上行信号得到。
第二种,发射校准的具体信号处理过程如下:
基带处理单元将预设的N乘M个发射校准序列转化为N乘M路发射校准IQ数字信号,采用预设的N乘M个校准通道的传输参数对所对应的校准通道的N乘M路发射校准IQ数字信号进行修正,并发送修正后的N乘M路发射校准IQ数字信号至所述光纤接口单元,由所述光纤接口单元将修正后的N乘M路发射校准IQ数字信号转换为光信号经光纤发送;以及接收由所述光纤接口单元传送的1路发射校准IQ数字信号,并根据接收的所述1路发射校准IQ数字信号及所述N乘M个发射校准序列计算所述校准通道所对应的各射频通道的发射校准幅度修正参数和发射校准相位修正参数。
其中,接收的所述1路发射校准IQ数字信号为所述修正后的N乘M路发射校准IQ数字信号依次经有源天线设备的N乘M个射频通道、1路校准通道传输后,由所述光纤接收并经所述光纤接口单元处理后获得。
其中,预设的N乘M个校准通道的传输参数由所述光纤接收后经所述光纤接口单元传送至所述基带处理单元。
优选地,基带处理单元702对待发射的数据进行波束赋形,并采用发射校准幅度修正参数对波束赋形处理后的数据进行幅度修正,以及采用发射校准相位修正参数对波束赋形处理后的数据进行相位修正后发送给光纤接口单元701,经由光纤接口单元701后由光纤发送。
具体实施中,基带处理单元具有波束赋形、信号检测、校准检测、校准补偿等功能。校准检测功能包括发射校准和接收校准。校准补偿功能包括发射校准补偿和接收校准补偿。在发射时,基带处理单元将发射的数据,经过波束赋形、发射校准补偿处理后,形成N乘M路IQ数字信号输出到光纤接口单元。在接收时,基带处理单元将来自于光纤接口单元的N乘M路IQ数字信号,进行接收校准补偿处理后,进行信号的检测,得到接收的数据。
本发明第六实施例中,还提供了一种通信系统,如图8所示,包括第二实施例所提供的有源天线设备(Massive Active Antenna Unit,Massive AAU) 31以及第四实施例所提供的基带处理设备(Massive Building Baseband Unit,Massive BBU)61;
其中,有源天线设备31和基带处理设备61通过光纤连接。
该实施例中,有源天线设备31的具体结构可参见上述第二实施例的描述,此处不再赘述。
该实施例中,基带处理设备61的具体结构可参见上述第四实施例的描述,此处不再赘述。
本发明第七实施例中,提供了另一种通信系统,如图9所示,包括第三实施例所提供的有源天线设备51和第五实施例所提供的基带处理设备71;
其中,有源天线设备51与基带处理设备71通过光纤连接。
该实施例中,有源天线设备51的具体结构可参见上述第三实施例的描述,此处不再赘述。
该实施例中,基带处理设备71的具体结构可参见上述第五实施例的描述,此处不再赘述。
基于同一发明构思,本发明第八实施例中,还提供了一种接收校准方法,以对各天线通道进行接收校准,具体过程如下:
基带处理设备将预设的1个接收校准序列转化为1路接收校准IQ数字信号,并将所述1路接收校准IQ数字信号发送给有源天线设备,由所述有源天线设备依次经1路校准通道、N乘M路射频通道传输所述1路接收校准IQ数字信号后,得到N乘M路接收校准IQ数字信号;
所述基带处理设备接收所述N乘M路接收校准IQ数字信号,采用预设的N乘M个校准通道的传输参数,对所述N乘M路接收校准IQ数字信号进行修正,并根据修正后的N乘M路接收校准IQ数字信号以及所述接收校准序列,计算所述校准通道所对应的各射频通道的接收校准幅度修正参数和接收校准相位修正参数。
其中,预设的N乘M个校准通道的传输参数预存储在所述有源天线设备中;基带处理设备从所述有源天线设备中获取所述预设的N乘M个校准通道 的传输参数。
优选地,基带处理设备获取上行数据,并采用所述接收校准幅度修正参数对所述上行数据进行幅度修正,以及采用所述接收校准相位修正参数对所述上述数据进行相位修正。
基于以上第六~第七实施例所提供的通信系统,如图10所示,进行接收校准的具体过程如下:
步骤1001:接收校准开始;
步骤1002:Massive AAU将校准参数存储单元中保存的各校准通道的传输参数发送给Massive BBU,该传输参数可表示为Si,i=1,...,NM;
步骤1003:Massive BBU通过1路校准通道发送校准序列c后,然后通过N乘M路射频通道分别接收,进行接收校准,
步骤1004:Massive BBU在N乘M个射频通道共接收到N乘M路接收校准IQ数字信号ri,i=1,...,NM,接收校准IQ数字信号为校准序列c经Massive AAU的校准通道传输后返回给Massive BBU的信号;
步骤1005:Massive BBU根据第i个射频通道对应的接收校准IQ数字信号,以及第i个射频通道对应的传输参数,对该射频通道所对应的接收校准IQ数字信号修正为ri/si
步骤1006:Massive BBU根据修正后的接收校准IQ数字信号以及校准序列,计算得到每个射频通道的接收校准幅度修正参数和接收校准相位修正参数;
步骤1007:Massive BBU在接收上行数据后,根据各射频通道所对应的接收校准幅度修正参数对接收的上行数据的幅度进行修正,以及根据各射频通道所对应的接收校准相位修正参数对接收的上行数据的相位进行修正,以保证各天线振子接口处的幅度和相位一致。
基于同一发明构思,本发明第九实施例中,还提供了一种发射校准方法,以对各天线通道进行发射校准,具体过程如下:
基带处理设备将预设的N乘M个发射校准序列转化为N乘M路发射校准IQ数字信号,采用预设的N乘M个校准通道的传输参数对所对应的校准通道的N乘M路发射校准IQ数字信号进行修正,将修正后的N乘M路发射校准IQ数字信号发送给有源天线设备,由所述有源天线设备依次经N乘M路射频通道、1路校准通道传输所述修正后的N乘M路发射校准IQ数字信号后,得到1路发射校准IQ数字信号;
所述基带处理设备接收所述1路发射校准IQ数字信号,并根据接收的所述1路发射校准IQ数字信号及所述N乘M个发射校准序列计算所述校准通道所对应的各射频通道的发射校准幅度修正参数和发射校准相位修正参数。
优选地,预设的N乘M个校准通道的传输参数预存储在所述有源天线设备中;
基带处理设备从所述有源天线设备中获取所述预设的N乘M个校准通道的传输参数。
优选地,基带处理设备对待发射的数据进行波束赋形,并采用所述发射校准幅度修正参数对所述波束赋形处理后的数据进行幅度修正,以及采用所述发射校准相位修正参数对所述波束赋形处理后的数据进行相位修正后发送给所述有源天线设备。
基于以上第六~第七实施例所提供的通信系统,如图11所示,进行发射校准的具体过程如下:
步骤1101:发射校准开始;
步骤1102:Massive AAU将校准参数存储单元中保存的各校准通道的传输参数发送给Massive BBU,该传输参数可表示为Si,i=1,...,NM;
步骤1103:Massive BBU根据各射频通道所对应的校准通道的传输参数,将所对应的射频通道所对应的校准序列ci(i=1,...,NM)修正为ci/si
步骤1104:Massive BBU通过N乘M路射频通道分别发送修正后的校准序列ci/si后,然后通过1路校准通道接收,进行发射校准;
步骤1105:Massive BBU接收来自1路校准通道的1路混合发射校准IQ数字信号r,并根据混合发射校准IQ数字信号以及射频通道所对应的校准序列ci,计算每个射频通道的发射校准幅度修正参数和接收校准相位修正参数;
步骤1106:Massive BBU对待发射的数据进行波束赋形,并采用发射校准幅度修正参数对波束赋形处理后的数据进行幅度修正,以及采用发射校准相位修正参数对波束赋形处理后的数据进行相位修正。
基于上述技术方案,本发明实施例中,通过在有源天线设备中增设天线校准耦合电路单元、校准通道、主校准耦合电路单元、收发校准单元、校准参数存储单元,以为收发校准提供硬件支撑,使得能够基于该具有校准通道和校准电路的有源天线设备实现各射频通道的收发校准,在采用有源天线设备实现天线通道的可扩展设计的同时,保证各天线通道的性能保持一致,降低工程实施难度的同时,提高了实施可靠性。
同时,本发明实施例提供的发射校准方法,消除了校准网络内部参数对的发射校准性能的影响,确保了各天线振子的接口处的幅度和相位的一致。
本发明实施例提供的接收校准方法,消除了校准网络内部参数对接收校准性能的影响,确保了各天线振子的接口处的幅度和相位的一致。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (26)

  1. 一种有源天线设备,其特征在于,包括:
    N个有源天线阵列、主校准耦合电路单元、收发校准单元、校准参数存储单元以及光载无线通信ROF光电转换单元,所述N大于1;
    所述有源天线阵列至少包括天线校准耦合电路单元以及M个连接至所述天线校准耦合电路单元的天线振子,所述M大于1;
    所述有源天线阵列的天线校准耦合电路单元通过校准通道连接至所述主校准耦合电路单元,所述主校准耦合电路单元与所述收发校准单元连接,所述收发校准单元以及所述校准参数存储单元分别连接至所述ROF光电转换单元;
    所述校准参数存储单元保存N个所述有源天线阵列的校准通道的传输参数,以及将所述传输参数传送给所述ROF光电转换单元,由所述ROF光电转换单元转换为光信号后经光纤发送;
    所述有源天线阵列的天线校准耦合电路单元将接收的M路校准射频信号耦合为一路发射校准射频信号通过校准通道输出至所述主校准耦合电路单元,所述主校准耦合电路单元将N个所述有源天线阵列传送的N路发射校准射频信号合并为一路发射校准射频信号,所述收发校准单元将所述主校准耦合电路单元传送的所述一路发射校准射频信号进行功率放大后,解调为发射校准IQ模拟信号输出至所述ROF光电转换单元,所述ROF光电转换单元将所述发射校准IQ模拟信号转换为光信号并通过光纤传送;和/或,所述收发校准单元将所述ROF光电转换单元传送的接收校准IQ模拟信号调制为接收校准射频信号,进行功率放大后传送给所述主校准耦合电路单元,所述主校准耦合电路单元将功率放大后的所述接收校准射频信号分路为相同的N路接收校准射频信号,分别通过N个所述有源天线阵列所对应的校准通道发送至相对应的所述天线校准耦合电路单元,所述天线校准耦合电路单元将接收的一路所述接收校准射频信号分路成M路接收校准射频信号。
  2. 如权利要求1所述的设备,其特征在于,所述有源天线阵列还包括:
    依次连接的滤波器阵列、功率放大器PA和低噪声放大器LNA阵列和收发信机阵列,所述滤波器阵列与所述天线校准耦合电路单元连接,所述收发信机阵列与所述ROF光电转换单元连接;
    所述滤波器阵列,用于对M路校准射频信号进行滤波;
    所述PA和LNA阵列,用于对M路校准射频信号进行功率放大;
    所述收发信机阵列,用于将M路校准射频信号转换为M路IQ模拟信号并发送,或者,将接收的M路IQ模拟信号转换为M路校准射频信号。
  3. 如权利要求1所述的设备,其特征在于,所述主校准耦合电路单元包括:
    一个以上的合路分路器;
    或者,一个以上的合路分路器和耦合器;
    或者,一个以上的开关矩阵。
  4. 如权利要求2所述的设备,其特征在于,所述收发校准单元包括:相互连接的射频信号放大单元和收发信机单元;
    所述射频信号放大单元与所述主校准耦合电路单元连接,所述收发信机单元与所述ROF光电转换单元连接。
  5. 如权利要求2所述的设备,其特征在于,所述滤波器阵列包括:相互独立的M路滤波器。
  6. 如权利要求2所述的设备,其特征在于,所述PA和LNA阵列包括:
    相互独立的M路功率放大器和相互独立的M路低噪声放大器。
  7. 如权利要求2所述的设备,其特征在于,所述收发信机阵列包括:M路收发信机单元。
  8. 一种有源天线设备,其特征在于,包括:
    N个有源天线阵列、主校准耦合电路单元、收发校准单元、校准参数存储单元、数字处理单元以及光纤接口单元,所述N大于1;
    所述有源天线阵列至少包括天线校准耦合电路单元以及M个连接至所述 天线校准耦合电路单元的天线振子,所述M大于1;
    所述有源天线阵列的天线校准耦合电路单元通过校准通道连接至所述主校准耦合电路单元,所述主校准耦合电路单元与所述收发校准单元连接,所述收发校准单元以及所述校准参数存储单元分别连接至所述数字处理单元;
    所述校准参数存储单元保存N个所述有源天线阵列的校准通道的传输参数,以及将所述传输参数传送给所述数字处理单元;
    所述有源天线阵列的天线校准耦合电路单元将接收的M路校准射频信号耦合为一路发射校准射频信号通过校准通道输出至所述主校准耦合电路单元,所述主校准耦合电路单元将N个所述有源天线阵列传送的N路发射校准射频信号合并为一路发射校准射频信号,所述收发校准单元将所述主校准耦合电路单元传送的所述一路发射校准射频信号进行功率放大后,解调为发射校准IQ模拟信号输出至所述数字处理单元,由所述数字处理单元将所述发射校准IQ模拟信号转换为发射校准IQ数字信号并通过光纤接口单元传送;和/或,所述数字处理单元将通过所述光纤接口单元接收的接收校准IQ数字信号转换为接收校准IQ模拟信号,所述收发校准单元将所述数字处理单元传送的接收校准IQ模拟信号调制为接收校准射频信号,进行功率放大后传送给所述主校准耦合电路单元,所述主校准耦合电路单元将功率放大后的所述接收校准射频信号分路为相同的N路接收校准射频信号,分别通过N个所述有源天线阵列所对应的校准通道发送至相对应的所述天线校准耦合电路单元,所述天线校准耦合电路单元将接收的一路所述接收校准射频信号分路成M路接收校准射频信号。
  9. 如权利要求8所述的设备,其特征在于,所述有源天线阵列还包括:
    依次连接的滤波器阵列、功率放大器PA和低噪声放大器LNA阵列和收发信机阵列,所述滤波器阵列与所述天线校准耦合电路单元连接,所述收发信机阵列与所述数字处理单元连接;
    所述滤波器阵列,用于对M路校准射频信号进行滤波;
    所述PA和LNA阵列,用于对M路校准射频信号进行功率放大;
    所述收发信机阵列,用于将M路校准射频信号转换为M路IQ模拟信号并发送,或者,将接收的M路IQ模拟信号转换为M路校准射频信号。
  10. 如权利要求8所述的设备,其特征在于,所述主校准耦合电路单元包括:
    一个以上的合路分路器;
    或者,一个以上的合路分路器和耦合器;
    或者,一个以上的开关矩阵。
  11. 如权利要求9所述的设备,其特征在于,所述收发校准单元包括:相互连接的射频信号放大单元和收发信机单元;
    所述射频信号放大单元与所述主校准耦合电路单元连接,所述收发信机单元与所述数字处理单元连接。
  12. 如权利要求9所述的设备,其特征在于,所述滤波器阵列包括:相互独立的M路滤波器。
  13. 如权利要求9所述的设备,其特征在于,所述PA和LNA阵列包括:
    相互独立的M路功率放大器和相互独立的M路低噪声放大器。
  14. 如权利要求9所述的设备,其特征在于,所述收发信机阵列包括:M路收发信机单元。
  15. 一种基带处理设备,其特征在于,包括:
    依次连接的光载无线通信ROF光电转换单元、数字处理单元和基带处理单元;
    所述基带处理单元将预设的1个接收校准序列转化为1路接收校准IQ数字信号,并将所述1路接收校准IQ数字信号发送至所述数字处理单元;以及接收N乘M路接收校准IQ数字信号,采用预设的N乘M个校准通道的传输参数,对所述N乘M路接收校准IQ数字信号进行修正,并根据修正后的N乘M路接收校准IQ数字信号以及所述接收校准序列,计算所述校准通道所对应的各射频通道的接收校准幅度修正参数和接收校准相位修正参数;和/或,所述基带处理单元将预设的N乘M个发射校准序列转化为N乘M路发射校 准IQ数字信号,采用预设的N乘M个校准通道的传输参数对所对应的校准通道的N乘M路发射校准IQ数字信号进行修正,并发送修正后的N乘M路发射校准IQ数字信号至所述数字处理单元,由所述数字处理单元将修正后的N乘M路发射校准IQ数字信号转换为N乘M路发射校准IQ模拟信号后通过所述ROF光电转换单元转换为光信号经光纤发送;以及接收1路发射校准IQ数字信号,并根据接收的所述1路发射校准IQ数字信号及所述N乘M个发射校准序列计算所述校准通道所对应的各射频通道的发射校准幅度修正参数和发射校准相位修正参数;
    所述接收的N乘M路接收校准IQ数字信号为所述1路接收校准IQ数字信号依次经有源天线设备的1路校准通道、N乘M路射频通道传输后,经由所述光纤接收并经所述ROF光电转换单元和数字处理单元处理后获得;
    所述接收的1路发射校准IQ数字信号为修正后的N乘M路发射校准IQ数字信号依次经有源天线设备的N乘M路射频通道、1路校准通道传输后,由所述光纤接收并经所述ROF光电转换单元和数字处理单元处理后获得;
    所述预设的N乘M个校准通道的传输参数由所述光纤接收后经所述ROF光电转换单元以及所述数字处理单元传送至所述基带处理单元。
  16. 如权利要求15所述的设备,其特征在于,所述基带处理单元还用于:
    获取上行数据,并采用所述接收校准幅度修正参数对所述上行数据进行幅度修正,以及采用所述接收校准相位修正参数对所述上述数据进行相位修正;
    所述上行数据根据经由所述光纤、所述ROF光电转换单元以及所述数字处理单元传送至基带处理单元的上行信号得到。
  17. 如权利要求15所述的设备,其特征在于,所述基带处理单元还用于:
    对待发射的数据进行波束赋形,并采用所述发射校准幅度修正参数对所述波束赋形处理后的数据进行幅度修正,以及采用所述发射校准相位修正参数对所述波束赋形处理后的数据进行相位修正后发送给所述数字处理单元,经由所述数字处理单元和所述ROF光电转换单元处理后经由所述光纤发送。
  18. 一种基带处理设备,其特征在于,包括:相互连接的光纤接口单元和基带处理单元;
    所述基带处理单元将预设的1个接收校准序列转化为1路接收校准IQ数字信号,并将所述1路接收校准IQ数字信号发送至所述光纤接口单元,由所述光纤接口单元通过光纤发送;以及接收经由所述光纤接口单元传送的N乘M路接收校准IQ数字信号,采用预设的N乘M个校准通道的传输参数,对所述N乘M路接收校准IQ数字信号进行修正,并根据所述修正后的N乘M路接收校准IQ数字信号以及所述接收校准序列,计算所述校准通道所对应的各射频通道的接收校准幅度修正参数和接收校准相位修正参数;和/或,所述基带处理单元将预设的N乘M个发射校准序列转化为N乘M路发射校准IQ数字信号,采用预设的N乘M个校准通道的传输参数对所对应的校准通道的N乘M路发射校准IQ数字信号进行修正,并发送修正后的N乘M路发射校准IQ数字信号至所述光纤接口单元,由所述光纤接口单元将修正后的N乘M路发射校准IQ数字信号转换为光信号经光纤发送;以及接收由所述光纤接口单元传送的1路发射校准IQ数字信号,并根据接收的所述1路发射校准IQ数字信号及所述N乘M个发射校准序列计算所述校准通道所对应的各射频通道的发射校准幅度修正参数和发射校准相位修正参数;
    接收的所述N乘M路接收校准IQ数字信号为所述1路接收校准IQ数字信号依次经有源天线设备的1路校准通道、N乘M路射频通道传输后,经由所述光纤接收并经所述光纤接口单元处理后获得;
    接收的所述1路发射校准IQ数字信号为所述修正后的N乘M路发射校准IQ数字信号依次经有源天线设备的N乘M个射频通道、1路校准通道传输后,由所述光纤接收并经所述光纤接口单元处理后获得;
    所述预设的N乘M个校准通道的传输参数由所述光纤接收后经所述光纤接口单元传送至所述基带处理单元。
  19. 如权利要求18所述的设备,其特征在于,所述基带处理单元还用于:
    获取上行数据,并采用所述接收校准幅度修正参数对所述上行数据进行 幅度修正,以及采用所述接收校准相位修正参数对所述上述数据进行相位修正;
    所述上行数据根据经由所述光纤、所述光纤接口单元传送至所述基带处理单元的上行信号得到。
  20. 如权利要求18所述的设备,其特征在于,所述基带处理单元还用于:
    对待发射的数据进行波束赋形,并采用所述发射校准幅度修正参数对所述波束赋形处理后的数据进行幅度修正,以及采用所述发射校准相位修正参数对所述波束赋形处理后的数据进行相位修正后发送给所述光纤接口单元,由所述光纤接口单元转换为光信号后通过所述光纤发送。
  21. 一种通信系统,其特征在于,包括权利要求1-7任一项所述的有源天线设备以及权利要求15-17任一项所述的基带处理设备,所述基带处理设备与所述有源天线设备通过光纤连接。
  22. 一种通信系统,其特征在于,包括权利要求8-14任一项所述的有源天线设备以及权利要求18-20任一项所述的基带处理设备,所述基带处理设备与所述有源天线设备通过光纤连接。
  23. 一种收发校准方法,其特征在于,包括:
    基带处理设备将预设的1个接收校准序列转化为1路接收校准IQ数字信号,并将所述1路接收校准IQ数字信号发送给有源天线设备,由所述有源天线设备依次经1路校准通道、N乘M路射频通道传输所述1路接收校准IQ数字信号后,得到N乘M路接收校准IQ数字信号;所述基带处理设备接收所述N乘M路接收校准IQ数字信号,采用预设的N乘M个校准通道的传输参数,对所述N乘M路接收校准IQ数字信号进行修正,并根据修正后的N乘M路接收校准IQ数字信号以及所述接收校准序列,计算所述校准通道所对应的各射频通道的接收校准幅度修正参数和接收校准相位修正参数;
    和/或
    基带处理设备将预设的N乘M个发射校准序列转化为N乘M路发射校准IQ数字信号,采用预设的N乘M个校准通道的传输参数对所对应的校准 通道的N乘M路发射校准IQ数字信号进行修正,将修正后的N乘M路发射校准IQ数字信号发送给有源天线设备,由所述有源天线设备依次经N乘M路射频通道、1路校准通道传输所述修正后的N乘M路发射校准IQ数字信号后,得到1路发射校准IQ数字信号;所述基带处理设备接收所述1路发射校准IQ数字信号,并根据接收的所述1路发射校准IQ数字信号及所述N乘M个发射校准序列计算所述校准通道所对应的各射频通道的发射校准幅度修正参数和发射校准相位修正参数。
  24. 如权利要求23所述的方法,其特征在于,所述预设的N乘M个校准通道的传输参数预存储在所述有源天线设备中;
    所述基带处理设备从所述有源天线设备中获取所述预设的N乘M个校准通道的传输参数。
  25. 如权利要求23所述的方法,其特征在于,所述方法还包括:
    所述基带处理设备获取上行数据,并采用所述接收校准幅度修正参数对所述上行数据进行幅度修正,以及采用所述接收校准相位修正参数对所述上述数据进行相位修正。
  26. 如权利要求23所述的方法,其特征在于,所述方法还包括:
    所述基带处理设备对待发射的数据进行波束赋形,并采用所述发射校准幅度修正参数对所述波束赋形处理后的数据进行幅度修正,以及采用所述发射校准相位修正参数对所述波束赋形处理后的数据进行相位修正后发送给所述有源天线设备。
PCT/CN2015/078979 2014-05-14 2015-05-14 有源天线相关设备、系统及收发校准方法 WO2015172730A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/310,702 US10305183B2 (en) 2014-05-14 2015-05-14 Active antenna associated device and system, and transmitting and receiving calibration method
EP15792998.5A EP3145090B1 (en) 2014-05-14 2015-05-14 Active antenna device, communication system, and transmission and reception calibration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410204038.0 2014-05-14
CN201410204038.0A CN103997352B (zh) 2014-05-14 2014-05-14 有源天线相关设备、系统及收发校准方法

Publications (1)

Publication Number Publication Date
WO2015172730A1 true WO2015172730A1 (zh) 2015-11-19

Family

ID=51311373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078979 WO2015172730A1 (zh) 2014-05-14 2015-05-14 有源天线相关设备、系统及收发校准方法

Country Status (4)

Country Link
US (1) US10305183B2 (zh)
EP (1) EP3145090B1 (zh)
CN (1) CN103997352B (zh)
WO (1) WO2015172730A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451776A (zh) * 2021-06-22 2021-09-28 广州中雷电科科技有限公司 一种高集成度数字相控阵系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997352B (zh) 2014-05-14 2016-02-24 电信科学技术研究院 有源天线相关设备、系统及收发校准方法
CN105049102A (zh) * 2015-08-07 2015-11-11 苏州市吴通天线有限公司 一种高频率毫米波集成天线系统
CN106877944B (zh) 2015-12-10 2019-07-19 电信科学技术研究院 一种有源天线设备及其测试方法
CN106452541B (zh) * 2016-07-19 2020-01-07 北京邮电大学 一种光和无线信号相互辅助的波束赋形方法和装置
CN106680601A (zh) * 2016-11-25 2017-05-17 上海华为技术有限公司 一种信号处理的方法、有源天线及信号处理系统
WO2018133065A1 (zh) * 2017-01-22 2018-07-26 华为技术有限公司 天线端口切换装置及有源天线单元
WO2019061147A1 (en) * 2017-09-28 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) BASE STATION AND METHOD FOR FACILITATING CALIBRATION OF FIBER RADIO TRANSCEIVER RECEIVERS
CN112385086B (zh) 2018-07-06 2021-08-20 华为技术有限公司 相控阵天线的校准方法及相关装置
FR3087977B1 (fr) * 2018-10-29 2021-12-10 Safran Electronics & Defense Auto-etalonnage d'un reseau d'antennes
CN109347492B (zh) * 2018-10-31 2021-03-26 鹰视云(深圳)科技有限公司 一种增强移动通信基站空天覆盖能力的系统及方法
CN111510229B (zh) * 2019-01-30 2022-12-27 华为技术有限公司 射频通道的校正方法和装置及天线和基站
CN111726172B (zh) 2019-03-22 2021-10-26 华为技术有限公司 通道校正的方法和装置
CN110212986A (zh) * 2019-06-13 2019-09-06 苏州市职业大学 一种基于合波传输的5g光信号前传架构
US11482779B2 (en) 2019-07-12 2022-10-25 Raytheon Company Minimal phase matched test target injection for parallel receiver phase and amplitude alignment
WO2021035705A1 (zh) * 2019-08-30 2021-03-04 华为技术有限公司 天线校正装置和天线校正方法
CN112825503B (zh) * 2019-11-20 2022-03-25 大唐移动通信设备有限公司 一种链路调度方法及设备
CN111193560B (zh) * 2020-01-06 2021-10-15 西南电子技术研究所(中国电子科技集团公司第十研究所) 多目标测控通信天线阵列光纤闭环校准方法
CN113660713A (zh) * 2020-05-12 2021-11-16 大唐移动通信设备有限公司 一种有源天线处理单元、工作状态的切换方法及装置
CN112040487A (zh) * 2020-07-15 2020-12-04 中国电子科技集团公司第三十研究所 一种多优先级高效的5g网络数据服务安全通道管理方法
CN116547866A (zh) * 2020-12-23 2023-08-04 华为技术有限公司 用于无线通信的方法和装置
CN112994808B (zh) * 2021-05-20 2021-07-27 成都天锐星通科技有限公司 一种射频信号内校准系统及相控阵天线
CN113452789B (zh) * 2021-06-29 2022-07-01 中信科移动通信技术股份有限公司 一种前传接口频域合路系统及频域合路方法
CN114567393B (zh) * 2022-03-10 2023-07-11 四川恒湾科技有限公司 一种射频拉远单元下行链路自检测方法
CN115941012B (zh) * 2023-03-15 2023-05-12 电子科技大学 芯片化可重构弹性规模多波束数字阵列

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005002070A2 (en) * 2003-03-20 2005-01-06 Bae Systems Information & Electronic Systems Integration Inc. Correlation interferometer geolocation
CN101383647A (zh) * 2007-09-06 2009-03-11 大唐移动通信设备有限公司 对工作天线进行校准的方法及装置
CN102035611A (zh) * 2010-12-29 2011-04-27 武汉邮电科学研究院 远端射频单元多天线实时校准系统及其方法
US8320903B2 (en) * 2005-09-07 2012-11-27 Samsung Electronics Co., Ltd. Method and system for calibrating multiple types of base stations in a wireless network
CN103053072A (zh) * 2010-06-03 2013-04-17 尤比戴尼有限公司 有源天线阵列和用于中继无线电信号的方法
CN103997352A (zh) * 2014-05-14 2014-08-20 电信科学技术研究院 有源天线相关设备、系统及收发校准方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075997A (en) * 1997-11-03 2000-06-13 Telefonaktiebolaget L M Ericsson (Publ) Automatic configuration of antenna near parts equipment
JP3347099B2 (ja) * 1999-07-23 2002-11-20 エヌイーシーアクセステクニカ株式会社 簡易携帯電話内蔵型携帯電話機におけるアンテナ切替回路
US7676210B2 (en) * 2003-09-29 2010-03-09 Tod Paulus Method for performing dual mode image rejection calibration in a receiver
GB0513583D0 (en) * 2005-07-01 2005-08-10 Nokia Corp A mobile communications network with multiple radio units
EP1746735A1 (en) * 2005-07-20 2007-01-24 Sony Ericsson Mobile Communications AB Antenna control arrangement and method
GB0616449D0 (en) * 2006-08-18 2006-09-27 Quintel Technology Ltd Diversity antenna system with electrical tilt
JP2008219453A (ja) * 2007-03-05 2008-09-18 Alps Electric Co Ltd 送受信回路モジュール
KR20080093746A (ko) * 2007-04-18 2008-10-22 삼성전자주식회사 저잡음 증폭기를 상하향 공용으로 구성하는 시분할 이중화방식의 원격 스테이션 및 이를 이용한 유선 중계 방법
CN101651480B (zh) * 2008-08-14 2013-04-24 华为技术有限公司 有源天线、基站、刷新幅度和相位的方法及信号处理方法
WO2010135862A1 (zh) * 2009-05-26 2010-12-02 华为技术有限公司 一种天线装置
US20100321233A1 (en) * 2009-06-18 2010-12-23 Alvarion Ltd. Method for calibrating antenna arrays
CN102377027A (zh) * 2010-08-27 2012-03-14 大唐移动通信设备有限公司 一种有源天线及校准有源天线的方法
US20130260844A1 (en) 2012-03-28 2013-10-03 Andrew Llc Series-connected couplers for active antenna systems
CN102857310B (zh) * 2012-07-27 2017-10-27 中兴通讯股份有限公司 一种有源天线系统无线指标的测试方法及装置
CN103338084B (zh) * 2013-06-14 2015-04-22 三维通信股份有限公司 一种基于rof的新型基站反馈接收、收发校准复用电路
CN203387519U (zh) * 2013-06-14 2014-01-08 三维通信股份有限公司 基于rof的新型基站反馈接收、收发校准复用电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005002070A2 (en) * 2003-03-20 2005-01-06 Bae Systems Information & Electronic Systems Integration Inc. Correlation interferometer geolocation
US8320903B2 (en) * 2005-09-07 2012-11-27 Samsung Electronics Co., Ltd. Method and system for calibrating multiple types of base stations in a wireless network
CN101383647A (zh) * 2007-09-06 2009-03-11 大唐移动通信设备有限公司 对工作天线进行校准的方法及装置
CN103053072A (zh) * 2010-06-03 2013-04-17 尤比戴尼有限公司 有源天线阵列和用于中继无线电信号的方法
CN102035611A (zh) * 2010-12-29 2011-04-27 武汉邮电科学研究院 远端射频单元多天线实时校准系统及其方法
CN103997352A (zh) * 2014-05-14 2014-08-20 电信科学技术研究院 有源天线相关设备、系统及收发校准方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451776A (zh) * 2021-06-22 2021-09-28 广州中雷电科科技有限公司 一种高集成度数字相控阵系统
CN113451776B (zh) * 2021-06-22 2024-03-26 广州中雷电科科技有限公司 一种高集成度数字相控阵系统

Also Published As

Publication number Publication date
US10305183B2 (en) 2019-05-28
EP3145090A4 (en) 2017-06-21
CN103997352A (zh) 2014-08-20
US20170077602A1 (en) 2017-03-16
CN103997352B (zh) 2016-02-24
EP3145090B1 (en) 2020-09-09
EP3145090A1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2015172730A1 (zh) 有源天线相关设备、系统及收发校准方法
US20170279500A1 (en) Antenna and Active Antenna System
US10122476B2 (en) Radio unit with internal parallel antenna calibration
WO2010017706A1 (zh) 有源天线、基站、刷新幅度和相位的方法及信号处理方法
US20220103241A1 (en) Dual-polarization beamforming
US11601165B2 (en) Antenna arrangement for two polarizations
WO2013135017A1 (zh) 一种有源天线多通道链路校准的方法及装置
KR102116539B1 (ko) 원격 무선 장비
WO2017005005A1 (en) Systems and methods for rru control messaging architecture for massive mimo systems
CN109547105B (zh) 一种实现mimo传输的通信设备
US20150111504A1 (en) Calibration coupleing unit, ccu, and a method therein for enabling calibration of base station
WO2017097107A1 (zh) 一种有源天线设备及其测试方法
WO2014008801A1 (zh) 远端机和直放站系统
US20220303020A1 (en) Central unit, remote unit, small cell system, and communication method
JP2015518669A (ja) 送受信モジュール、アンテナ、基地局、および信号受信方法
US10715261B2 (en) Method and apparatus for antenna array calibration using on-board receiver
CN102742174B (zh) 时延校正方法、设备及系统
WO2017158910A1 (ja) アクティブアンテナシステム
US10153791B2 (en) Method for transmitting radio signals from a base station, a system and a computer program product
CN102594423A (zh) 多输入多输出系统
KR101470199B1 (ko) 무선 환경을 고려한 제어 노드 장치 및 제어 노드 장치의 동작 방법
WO2019061147A1 (en) BASE STATION AND METHOD FOR FACILITATING CALIBRATION OF FIBER RADIO TRANSCEIVER RECEIVERS
WO2015034313A1 (ko) 원격 무선 장비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15310702

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015792998

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015792998

Country of ref document: EP