WO2014008801A1 - 远端机和直放站系统 - Google Patents

远端机和直放站系统 Download PDF

Info

Publication number
WO2014008801A1
WO2014008801A1 PCT/CN2013/077364 CN2013077364W WO2014008801A1 WO 2014008801 A1 WO2014008801 A1 WO 2014008801A1 CN 2013077364 W CN2013077364 W CN 2013077364W WO 2014008801 A1 WO2014008801 A1 WO 2014008801A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
baseband signal
baseband
remote
signal input
Prior art date
Application number
PCT/CN2013/077364
Other languages
English (en)
French (fr)
Inventor
龚兰平
袁震
沈俭
彭卫红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014008801A1 publication Critical patent/WO2014008801A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • This invention relates to the field of communications technology and, more particularly, to remote machines and repeater systems. Background technique
  • the analog repeater system is used for transparent transmission and amplification of signals between the base station and the mobile phone.
  • the repeater system includes a near-end system and a remote unit, and the remote system includes a retransmission antenna and a remote unit.
  • the near-end machine system picks up the base station signal through its donor antenna, converts the base station signal into a remote machine system, and the remote machine system changes the converted signal back to the base station signal, and then uses the retransmission antenna as a target. Signal coverage is available in the area.
  • the signal from the mobile phone is also amplified and transmitted to the base station along the opposite path.
  • a remote machine including:
  • each base unit includes a digital intermediate frequency processor, a transceiver, a duplexer, and a coupler; a first baseband signal output end of the baseband processing unit is connected to a first baseband signal input end of the DBF setting unit, a first baseband signal input end of the baseband processing unit and a first baseband of the DBF setting unit The signal output end is connected; the second baseband signal output end of the DBF setting unit is connected to the baseband signal input end of the digital intermediate frequency processor, and the second baseband signal input end of the DBF setting unit and the digital intermediate frequency The baseband signal output end of the processor is connected; the intermediate frequency input/output end of the digital intermediate frequency processor is connected to the receiving signal output end ⁇ transmitting signal input end of the transceiver; the receiving signal
  • the common end of the duplexer is connected to the radio frequency port of the antenna element; the calibration circuit is respectively connected to the calibration circuit end of the DBF setting unit and the calibration circuit end of the coupler.
  • all antenna elements in the remote unit are vertically distributed, horizontally distributed, or arrayed.
  • all antenna elements in the remote base unit are vertically distributed, horizontally distributed, or arrayed.
  • the antenna in the remote base unit The vibrator is specifically a single-polarized antenna vibrator.
  • the antenna in the remote base unit The vibrator is specifically a dual-polarized antenna vibrator, the dual-polarized antenna vibrator includes two single-polarized antenna vibrators, the remote base unit includes at least two basic units, and the radio frequency ports of the two single-polarized antenna vibrators Connect the common ends of different basic units separately.
  • the method further includes an amplitude and phase distribution network, where the common end is indirectly connected to the radio frequency port of the antenna element through the amplitude phase distribution network.
  • the common unit further includes a conversion unit, and the second baseband signal output end of the baseband processing unit is connected to a baseband signal input interface of the conversion unit, the baseband processing unit The second baseband signal input terminal is coupled to the baseband signal output interface of the conversion unit.
  • the converting unit includes a connected optical transceiver and a serial deserializer, and the baseband of the serial deserializer
  • the signal input interface is coupled to the second baseband signal output of the baseband processing unit
  • the baseband signal output interface of the serial deserializer is coupled to the second baseband signal input of the baseband processing unit.
  • the converting unit includes a connected radio frequency interface and a radio frequency transposed baseband converter, where the radio frequency interface is connected to the donor antenna, a baseband signal input interface of the RF to baseband converter is coupled to a second baseband signal output of the baseband processing unit, a baseband signal output interface of the RF to baseband converter and a second baseband of the baseband processing unit The signal inputs are connected.
  • a repeater system including the remote machine described above.
  • the remote unit provided by the embodiment of the present invention combines the functions of the conventional retransmission antenna with the functions of the conventional remote unit, and realizes the integration of the retransmission antenna and the remote unit, thereby improving the integration degree.
  • the antenna array also provides hardware support for beamforming, and the DBF setting unit and the baseband processing unit cooperate with other units or devices to perform beamforming on the antenna array in the digital domain.
  • FIG. 1 is a schematic structural diagram of a remote unit according to an embodiment of the present invention
  • FIG. 1b is a schematic structural diagram of a remote base unit according to an embodiment of the present invention
  • FIG. 1c is a vertical plane combination of a single-polarized antenna oscillator according to an embodiment of the present invention
  • schematic diagram ;
  • FIG. 2a is another schematic structural diagram of a remote base unit according to an embodiment of the present invention
  • FIG. 2b is another schematic structural diagram of a remote base unit according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a remote base unit according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a remote base unit according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of different wavelength and azimuth angles obtained by setting DBF coefficients of different M columns for two carriers according to an embodiment of the present invention
  • FIG. 4b is a schematic diagram of two carriers provided by an embodiment of the present invention
  • the DBF coefficients of the different M columns are set to obtain different waveform widths.
  • FIG. 4c is a schematic diagram of setting different DB rows of N rows for two carriers to obtain different downtilt angles according to an embodiment of the present invention;
  • FIG. 5 is another schematic structural diagram of a remote machine according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION
  • abbreviations or abbreviations of the technical terms used hereinafter are summarized as follows:
  • DBF Digital BeamForming, Digital Beamforming
  • FPGA Field - Programmable Gate Array, Field Programmable Gate Array
  • TRX Transceiver, Transceiver
  • IF Intermediate Frequency, IF;
  • BTS Basestation System, base station system
  • SON Self-Optimizing Network, automatic network optimization
  • CAPEX Capital Expenditure, website fee
  • OPEX Operating Expenditure, maintenance cost
  • RSSI Received Signal Strength Indicator, receiving signal strength indication
  • BF Beamforming, beamforming or beam U-shape
  • CPRI CommON Public Radio Interface, general public RF interface
  • the embodiment of the present invention aims to provide a remote machine and a repeater system to solve the technical problem that the existing remote machine and the retransmission antenna are installed at different positions, independent of each other, and the integration degree is not high.
  • the remote machine provided by the embodiment of the present invention may include: a common unit
  • each remote base unit 13 may include at least one base unit 10 and at least one antenna element 5.
  • Each of the basic units 10 may specifically include a digital intermediate frequency processor 1, a transceiver 2, a duplexer 3, and a coupler 4. among them:
  • the intermediate frequency input ⁇ output 101 of the digital intermediate frequency processor 1 is connected to the receiving signal output terminal ⁇ transmitting signal input terminal 201 of the transceiver 2;
  • the receiving signal input end 202 of the transceiver 2 is connected to the receiving signal output end 301 of the duplexer 3, and the transmitting signal output end 203 of the transceiver 2 is connected to the transmitting signal input end 302 of the duplexer 3;
  • the common end 303 of the duplexer 3 is connected to the radio frequency port 501 of the antenna element 5;
  • the coupler 4 is disposed between the common end 303 of the duplexer 3 and the radio frequency port 501 for transmitting or receiving by the duplexer 3.
  • the signal, the coupler 4 is not connected to the duplexer 3 and the antenna element 5, and the calibration circuit of the coupler 4 is connected to the calibration circuit (this will be described later in detail).
  • the remote unit provided by the embodiment of the present invention combines the functions of the conventional retransmission antenna with the functions of the conventional remote unit (that is, the remote unit provided by the embodiment of the present invention can provide the traditional remote unit system. Function), realizes the integration of the retransmission antenna and the remote unit, and improves the integration degree.
  • the M-column N-row antenna array provides hardware support for beamforming.
  • the DBF setup unit and the baseband processing unit cooperate with other units or devices to perform beamforming on the M-column N-row antenna array in the digital domain.
  • the antenna array can be covered according to the actual hotspot area, or the beam can be dynamically adjusted, so that the downtilt and azimuth of the retransmission antenna can be adjusted.
  • M is greater than 4
  • N can be based on the gain requirement and the variable range of the downtilt angle, and generally N is also greater than 4. Therefore, further, the technical solution provided by the embodiment of the present invention can improve network performance, and provides a basis for automatic optimization of the base station and coordinated coverage optimization of the base station and the repeater system.
  • the remote unit includes at least two remote base units
  • the common unit can separately control the antenna elements in each of the remote base units.
  • a remote base unit for example, FIG. 5
  • independent control of each antenna element in the remote unit can be achieved.
  • the output power of the remote base unit may be low power and multiple low power.
  • the remote base unit can be combined to output high power. Therefore, a different number of remote base units + a common unit can be selected to form a remote unit (system) with different output power specifications, thereby forming an optical fiber of an output power specification.
  • the repeater system which standardizes the remote unit (system), makes the remote unit (system) normal and economical.
  • Antenna oscillator When more than one antenna element is included in a remote base unit, all antenna elements in the remote base unit can be vertical.
  • the surface distribution i.e., the in-line distribution in the vertical direction of the entire antenna array surface
  • the horizontal distribution i.e., the in-line distribution in the horizontal direction of the entire antenna array surface
  • the above vertical direction corresponds to the Y coordinate direction
  • the horizontal direction corresponds to the X coordinate direction.
  • the vertical and water levels referred to in the following paragraphs follow the same XY coordinate system.
  • all of the antenna elements may also be vertically distributed, horizontally distributed, or arrayed.
  • Figure lc shows the vertical plane combination of the 4 _ 10 single-polarized antenna elements (i.e., the vertical plane distribution described above).
  • the EIRP antenna port power
  • EIRP is:
  • a dual-polarized antenna oscillator can be considered to consist of two mutually independent and orthogonal single-polarized antenna oscillators.
  • the technical solution of the single-polarized antenna oscillator is mainly taken as an example.
  • the digital intermediate frequency processor the digital intermediate frequency processor
  • the digital IF processor can be used for digital up-conversion and channel filtering.
  • the digital intermediate frequency processor may also have analog/digital, digital to analog conversion functionality.
  • the analog-to-digital/digital-to-analog conversion function can also be provided by a separate analog-to-digital/digital-to-analog converter, which will not be described here.
  • Transceiver A transceiver can carry 1 to X (X is an integer of >1) monopolar antenna elements with the same polarization direction. This point is particularly noteworthy when the antenna element is a dual-polarized antenna oscillator.
  • Figures 2a and b show a specific structure of a remote base unit connected to a single-polarized antenna element (coupler not shown): duplexer 3 connected to one or two single-polarized antenna elements 51 .
  • Figure 2c shows a specific structure of the remote base unit connected to the dual-polarized antenna element 52.
  • the remote base unit shown in Figure 2d which is driven by four basic units.
  • the transceiver 2 of each basic unit drives two or three single-polarized antenna elements 51.
  • one duplexer 3 can also be connected to more than three single-polarized antenna elements 51, which will not be described herein.
  • a single-polarized antenna oscillator is driven by a transceiver, and the accuracy is best when beamforming.
  • a transceiver can drive multiple single-polarized antenna elements to reduce the number of transceivers.
  • the remote base unit or remote unit system may further include an amplitude and phase distribution network.
  • One or more duplexers may be indirectly connected to a plurality of single-polarized antenna elements through an amplitude-to-phase distribution network.
  • the amplitude and phase distribution network can further allocate the amplitude and/or phase of the connected plurality of single-polarized antenna elements, thereby improving the accuracy of beamforming while reducing the number of transceivers.
  • Figure 2e shows a specific structure of a remote base unit including an amplitude and phase distribution network, comprising: two basic units, each of which includes a digital intermediate frequency processor 1, one Transceiver 2, a duplexer 3 and a coupler (not shown in Figure 2e). Both of the above transceivers 2 drive a column of single-polarized antenna elements 51 through the amplitude distribution network 6.
  • Baseband processing unit The first baseband signal output terminal 701 of the baseband processing unit 7 is connected to the first baseband signal input terminal 801 of the DBF setting unit 8, and the first baseband signal input terminal 702 and the DBF setting unit of the baseband processing unit 7 are connected.
  • the first baseband signal output 802 of 8 is connected; the baseband processing unit 7 described above can be used for carrier mapping (carrier mapping includes dividing the combined carrier into parallel carriers and combining the parallel carriers).
  • all of the remote base units may be serviced by a baseband processing unit 7.
  • a baseband processing unit 7 may be configured for each remote base unit, or one baseband processing unit 7 may be configured for each basic unit, which is not described herein.
  • the baseband processing unit may further include a receive channel baseband processing unit and a transmit channel baseband processing unit. Five, DBF setting unit:
  • the second baseband signal output terminal 803 of the DBF setting unit 8 is connected to the baseband signal input terminal 102 of the digital intermediate frequency processor 1, the second baseband signal input terminal 804 of the DBF setting unit 8 and the baseband signal output terminal of the digital intermediate frequency processor 1 103 connected;
  • the DBF setting unit 8 can be used for the configuration of DBF coefficients.
  • the DBF setting unit 8 can set the transmit beamforming coefficient group and the receiving beamforming coefficient group to adjust the receiving downtilt and azimuth angles of the M-column N-row antenna array, and the horizontal and vertical wave widths, more specifically:
  • the DBF setting unit 8 can obtain different downtilt angles on the vertical plane by issuing different amplitude and phase weights on the N path.
  • the DBF setting unit 8 can issue different amplitude and phase weights to different carriers to obtain different downtilt angles of different carriers.
  • the DBF setting unit 8 can also issue different amplitude and phase weights on the M road to obtain different azimuth angles on the horizontal plane.
  • different DBF coefficients can be generated on different horizontal planes to obtain different Wave width.
  • Figure 4a shows that different wavelength and azimuth angles are obtained by setting different M-column DBF coefficients for two carriers; and
  • Figure 4b shows by setting different values for two carriers (F1 and F2)
  • the DBF coefficients of the M columns obtain different wave widths; as for Fig. 4c, it is shown that different downtilt angles are obtained by setting different N-row DBF coefficients for the two carriers (F1 and F2) (so that a certain carrier Can do hotspot coverage).
  • the remote unit can be serviced by one DBF setting unit 8.
  • a DBF setting unit 8 may be configured for each remote base unit or even each basic unit, which is not described herein.
  • the DBF setting unit may further include a receiving channel DBF setting unit (abbreviated as RX DBF) and a sending channel DBF setting unit (referred to as TX DBF for short).
  • RX DBF receiving channel DBF setting unit
  • TX DBF sending channel DBF setting unit
  • the calibration circuit 9 is connected to the calibration circuit terminal 805 of the DBF setting unit 8 and the calibration circuit terminal 401 of the coupler 4, respectively. More specifically, the calibration circuit may specifically include a correction unit, an ADC/DAC (analog/digital to analog), a transceiver, and a duplexer.
  • the functions of the above ADC/DAC can also be integrated in the correction unit.
  • the above-mentioned correcting unit may further include a receiving channel calibration unit (abbreviated as RX calibration unit) and a channel calibration unit (referred to as a TX calibration unit).
  • RX calibration unit a receiving channel calibration unit
  • TX calibration unit a channel calibration unit
  • the calibration circuit generally works when the system is restarted.
  • the correction unit corrects the channel error by tracking and compensating the amplitude and phase characteristics of the channel, reducing the relative error between the channels, and meeting the control precision requirements of the upper and lower beamforming algorithms.
  • the channel calibration signal for the channel error correction needs to use a pseudo-random signal that is 20 dB lower than the service signal, that is, SNR ⁇ -20 dB, so as not to affect the service signal.
  • the receive channel and the transmit channel can be calibrated simultaneously.
  • the correcting process for the receiving channel includes: calculating the sending power of the starting channel calibration signal according to the principle that the transmitting channel calibration signal reaching the service receiving channel is 20 dB lower than the service signal, and transmitting, and demodulating through the service receiving channel. , ⁇ Long-term correlation accumulation to complete the receiving channel feature extraction, and complete the correction of the receiving channel.
  • the correction process for the transmission channel includes: receiving a channel correction signal with a uniform amplitude and a minimum output power of 20 dB smaller than the minimum output power value in the service transmission channel, and receiving channels
  • the correction signal is transmitted along with the service signal, and then received and demodulated by receiving the calibration channel, and the correlation accumulation of the transmission channel is completed for a long time to complete the transmission channel characteristic extraction and complete the transmission calibration.
  • the embodiment also simultaneously claims a repeater system that includes at least the remote unit as claimed in the embodiments of the present invention.
  • the above common unit may further include a conversion unit.
  • the conversion unit may include a baseband signal input interface and a baseband signal output interface, wherein the baseband signal input interface is coupled to the second baseband signal output terminal of the baseband processing unit, and the baseband signal output interface is coupled to the second baseband of the baseband processing unit The signal inputs are connected.
  • the conversion unit specifically includes different devices.
  • the conversion unit may include a connected fiber-optic transceiver and a serial deserializer, and a fiber-optic transceiver and a serial deserializer Communication can be coordinated through CPRI.
  • the baseband signal input interface of the serial deserializer is connected to the second baseband signal output end of the baseband processing unit, and the baseband signal output interface is connected to the second baseband signal input end of the baseband processing unit.
  • Fig. 5 shows a specific structure of a remote unit for constituting an optical fiber digital repeater system.
  • the aforementioned transceiver is represented by a pair of RX (receiver) and TX (transmitter), and the aforementioned duplexer is represented by a pair of filters 504. Therefore, in FIG. 5, the aforementioned calibration circuit 9 includes an RX calibration unit 91 and a TX calibration unit 92, an ADC, a DAC, a pair of RX and TX, and a pair of filters 504; the aforementioned coupler is identified by 503 in FIG.
  • the coupler is connected to the filter 504 of the calibration circuit through the RF cable 502; the function of the aforementioned digital intermediate frequency processor is implemented by an FPGA board, and the FPGA board is connected with a pair of independent ADCs and DACs to complete the digital/analog Convert to each other.
  • the aforementioned baseband processing unit includes a receiving channel baseband processing unit 71 and a transmitting channel baseband processing unit 72.
  • the aforementioned DBF setting unit includes a receiving channel DBF setting unit (RX DBF) and a transmitting channel DBF setting unit (TX DBF).
  • the conversion unit may further include a connected radio frequency interface and a radio frequency to baseband converter.
  • the baseband signal input interface of the RF to baseband converter may be connected to the second baseband signal output end of the foregoing baseband processing unit, and the baseband signal output interface of the RF to baseband converter may be coupled to the second baseband signal of the foregoing baseband processing unit.
  • the inputs are connected.
  • the RF antenna can be directly connected to the donor antenna to form a wireless beamformable repeater system. Since in the wireless beamformable repeater system, the donor antenna can be connected to the RF interface of the conversion unit, it is not necessary to use the near-end machine. It should be noted that, in all the above embodiments, except for the antenna element, other units may be in the form of integrated chips, and therefore, the units may be integrated on one backplane.
  • an FPGA can be used to implement the functions of other units besides the antenna elements.
  • the remote unit and even the repeater system provided by the present invention can be highly integrated.
  • the remote machine or the repeater system provided by all the foregoing embodiments of the present invention can effectively utilize the carrier capacity limit, efficiently utilize carrier resources, and indirectly Increase base station capacity.
  • an operator has a plurality of frequency bands from 2G to 4G
  • the remote machine system and the repeater system provided by the embodiments of the present invention can utilize space power synthesis to realize high power broadband of the remote machine.
  • Treatment which reduces volume and weight, reduces CAPEX.
  • the present invention can bring the following beneficial effects: (1) reducing CAPEX and OPEX; (2) improving network performance and increasing network capacity; (3) providing hardware foundation for performing SON; (4) reducing integration with antennas Consumption, thereby reducing volume and weight.
  • the various embodiments in the specification are described in a progressive manner, and each embodiment focuses on differences from the other embodiments, and the same similar parts between the various embodiments can be referred to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明实施例公开了远端机和直放站系统。所述远端机包括:一个公共单元(12)以及至少一个远端基础单元(13);所述公共单元(12)包括一个较准电路(9)、至少一个数字波形赋形(DBF)设置单元(8),以及至少一个基带处理单元(1);每一远端基础单元包括至少一个基本单元,以及至少一个天线振子(51)。上述远端机中所有的天线振子(51)可组合成天线阵列,从而实现重发天线的功能。本发明实施例所提供的远端机兼具了传统重发天线的功能和传统远端机的功能,实现了重发天线与远端机的集成,解决了现有技术的远端机和重发天线安装于不同位置,彼此相互独立而引气的集成度不高的问题。

Description

远端机和直放站系统
技术领域
本发明涉及通信技术领域, 更具体地说, 涉及远端机和直放站系统。 背景技术
在无线通信传输过程中, 模拟直放站系统用于对基站与手机间的信号 进行透明传输和放大。 直放站系统包括近端机系统和远端机系统, 远端机 系统又包括重发天线和远端机。 其中, 近端机系统通过其施主天线拾取基 站信号, 将基站信号变频后传输到远端机系统, 远端机系统再将变频后的 信号重新变回基站信号, 然后利用其重发天线为目标地区提供信号覆盖。 而手机的信号也会沿相反的路径被放大并传送至基站。
现有的远端机和重发天线是安装在不同的位置, 彼此相互独立, 因此 集成度不高。 发明内容 本发明实施例目的在于提供远端机和直放站系统, 以解决现有的远端 机和重发天线安装在不同的位置, 彼此相互独立, 集成度不高。 为实现上述目的, 本发明实施例提供如下技术方案: 根据本发明实施例的第一方面, 提供一种远端机, 包括:
一个公共单元以及至少一个远端基础单元; 所述公共单元包括一个校准电路, 至少一个数字波束赋形 DBF设置 单元, 以及至少一个基带处理单元; 每一远端基础单元包括至少一个基本单元, 以及至少一个天线振子; 每一基本单元包括一个数字中频处理器,一个收发信机,一个双工器, 以及一个耦合器; 其中: 所述基带处理单元的第一基带信号输出端与所述 DBF设置单元的第 一基带信号输入端相连接, 所述基带处理单元的第一基带信号输入端与所 述 DBF设置单元的第一基带信号输出端相连接; 所述 DBF设置单元的第二基带信号输出端与所述数字中频处理器的 基带信号输入端相连接, 所述 DBF设置单元的第二基带信号输入端与所 述数字中频处理器的基带信号输出端相连接; 所述数字中频处理器的中频输入 \输出端与所述收发信机的接收信号 输出端 \发射信号输入端相连接; 所述收发信机的接收信号输入端与所述双工器的接收信号输出端相 连接, 所述收发信机的发射信号输出端与所述双工器的发射信号输入端相 连接;
所述双工器的公共端与所述天线振子的射频端口相连接; 所述校准电路分别与所述 DBF设置单元的校准电路端, 以及耦合器 的校准电路端相连接。 在第一种可能的实现方式中, 所述远端机中的所有的天线振子呈垂直 面分布、 水平面分布或阵列分布。 在第二种可能的实现方式中, 所述远端基础单元中的所有的天线振子 呈垂直面分布、 水平面分布或阵列分布。 结合第一方面, 或第一方面的第一种可能的实现方式, 或第一方面的 第二种可能的实现方式, 在第三种可能的实现方式中, 所述远端基础单元 中的天线振子具体为单极化天线振子。 结合第一方面, 或第一方面的第一种可能的实现方式, 或第一方面的 第二种可能的实现方式, 在第四种可能的实现方式中, 所述远端基础单元 中的天线振子具体为双极化天线振子, 所述双极化天线振子包括两个单极 化天线振子, 所述远端基础单元包括至少两个基本单元, 所述两个单极化 天线振子的射频端口分别连接不同基本单元的公共端。 在第五种可能的实现方式中, 还包括幅相分配网络, 所述公共端通过 所述幅相分配网络与所述天线振子的射频端口间接连接。 在第六种可能的实现方式中, 所述公共单元还包括一个转换单元, 所 述基带处理单元的第二基带信号输出端与所述转换单元的基带信号输入 接口相连接, 所述基带处理单元的第二基带信号输入端与所述转换单元的 基带信号输出接口相连接。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式 中, 所述转换单元包括相连接的光纤收发器和串行解串器, 所述串行解串 器的基带信号输入接口与所述基带处理单元的第二基带信号输出端相连 接, 所述串行解串器的基带信号输出接口与所述基带处理单元的第二基带 信号输入端相连接。 结合第一方面的第六种可能的实现方式, 在第八种可能的实现方式 中, 所述转换单元包括相连接的射频接口和射频转基带转换器, 所述射频 接口与施主天线相连接, 所述射频转基带转换器的基带信号输入接口与所 述基带处理单元的第二基带信号输出端相连接, 所述射频转基带转换器的 基带信号输出接口与所述基带处理单元的第二基带信号输入端相连接。
根据本发明实施例的第二方面, 结合上述第一方面或第一方面的任一 种可能的实现方式, 提供一种直放站系统, 包括上述的远端机。
由上可知, 在本发明实施例所提供的技术方案中, 上述远端机中所有 的天线振子可组合成天线阵列, 从而实现重发天线的功能。 因而, 本发明 实施例所提供的远端机兼具了传统重发天线的功能和传统远端机的功能, 实现了重发天线与远端机的集成, 提高了集成度。 并且, 上述天线阵列也 为波束赋形提供了硬件支持, 而 DBF设置单元、 基带处理单元与其他单 元或器件相配合, 可在数字域完成对上述天线阵列的波束赋形。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。 图 1 a为本发明实施例提供的远端机结构示意图; 图 l b为本发明实施例提供的远端基础单元结构示意图; 图 l c为本发明实施例提供的单极化天线振子的垂直面组合示意图;
图 2a为本发明实施例提供的远端基础单元另一结构示意图; 图 2b为本发明实施例提供的远端基础单元又一结构示意图; 图 2c为本发明实施例提供的远端基础单元又一结构示意图; 图 2d为本发明实施例提供的远端基础单元又一结构示意图; 图 2e为本发明实施例提供的远端基础单元又一结构示意图; 图 3为本发明实施例提供的公共单元结构示意图; 图 4a为本发明实施例提供的为两个载波设置不同的 M列的 DBF 系 数, 获得不同的波宽和方位角的示意图; 图 4b为本发明实施例提供的为两个载波设置不同的 M列的 DBF 系 数, 获得不同的波宽的示意图; 图 4c为本发明实施例提供的为两个载波设置不同的 N行的 DBF系数 , 获得不同的下倾角的示意图;
图 5为本发明实施例提供的远端机的另一结构示意图。 具体实施方式 为了引用和清楚起见, 下文中使用的技术名词的说明、 简写或缩写总 结如下:
DBF: Digital BeamForming, 数字波束赋形; FPGA: Field - Programmable Gate Array , 现场可编程门阵列; TRX: Transceiver, 收发信机; IF: Intermediate Frequency, 中频;
BTS: Basestation System, 基站系统; SON: Self-Optimizing Network , 自动网络优化; CAPEX: Capital Expenditure , 建站费用;
OPEX: Operating Expenditure , 维护费用; RSSI: Received Signal Strength Indicator, 接收信号强度指示;
BF: Beamforming, 波束成形或波束 U武形;
CPRI: CommON Public Radio Interface , 通用公共射频接口;
Serdes: Serializer/Deserializer , 串行解串器。 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
本发明实施例目的在于提供远端机和直放站系统, 以解决现有的远端 机和重发天线安装在不同的位置,彼此相互独立,集成度不高的技术问题。 请参见图 la, 本发明实施例所提供的远端机可包括: 一个公共单元
12和至少一个远端基础单元 13。 上述公共单元可包括至少一个基带处理单元, 至少一个 DBF设置单 元, 以及一个校准电路。 请参见图 lb ,每一远端基础单元 13可包括至少一个基本单元 10以及 至少一个天线振子 5。而每一基本单元 10又可具体包括一个数字中频处理 器 1、 一个收发信机 2、 一个双工器 3和一个耦合器 4。 其中:
数字中频处理器 1的中频输入 \输出端 101与收发信机 2的接收信号输 出端 \发射信号输入端 201相连接;
收发信机 2的接收信号输入端 202与双工器 3的接收信号输出端 301 相连接, 而收发信机 2的发射信号输出端 203与双工器 3的发射信号输入 端 302相连接; 双工器 3的公共端 303与天线振子 5的射频端口 501相连接; 耦合器 4安置于双工器 3的公共端 303与射频端口 501之间, 用于耦 合双工器 3所发射或接收的信号, 耦合器 4与双工器 3和天线振子 5—般 不连接, 至于耦合器 4的校准电路端则与校准电路相连接(本文后续将对 校准确电路进行具体介绍) 。 上述远端机中所有的天线振子可组合成 M列 N行天线阵列, 以实现 重发天线的功能。 因而, 本发明实施例所提供的远端机兼具了传统重发天 线的功能和传统远端机的功能(也即, 本发明实施例所提供的远端机可提 供传统远端机系统的功能) , 实现了重发天线与远端机的集成, 提高了集 成度。 并且, 上述 M列 N行天线阵列为波束赋形提供了硬件支持。 而 DBF 设置单元、 基带处理单元与其他单元或器件相配合, 可在数字域完成对上 述 M列 N行天线阵列的波束赋形。 通过波束赋形, 上述天线阵列可根据 实际热点域区进行覆盖, 或者动态调整波束, 从而可实现对重发天线下倾 角和方位角的调整(需要说明的是,为实现水平波束可调,一般 M大于 4, N可根据增益要求和下倾角可变范围取值, 一般 N也大于 4 ) 。 从而, 进 一步的, 本发明实施例所提供的技术方案还可提高了网络性能, 为基站的 自动优化和基站与直放站系统的协同覆盖优化提供了基础。 此外, 当远端机包括至少两个远端基础单元时, 公共单元可分别对每 一远端基础单元中的天线振子进行控制。 特别的, 当一个远端基础单元中 仅包括一个天线振子 (例如图 5 ) 时, 可实现对远端机中每一个天线振子 的独立控制。 还需要指出的是, 光纤直放站系统和基站输出功率规格种类多, 针对 这一情况, 在本发明其他实施例中, 上述远端基础单元的输出功率可为小 功率, 多个小功率的远端基础单元可进行组合以输出大功率, 因此, 可选 择不同个数的远端基础单元 +—个公共单元来构成输出功率规格不同的远 端机(系统) , 进而构成输出功率规格的光纤直放站系统, 从而标准化了 远端机(系统) , 令远端机(系统) 变得归一化和经济化。 首先对天线振子、 数字中频处理器和收发信机进行具体介绍: 一, 天线振子: 当一个远端基础单元中包括多于一个天线振子时, 该远端基础单元中 的所有天线振子可呈垂直面分布 (也即,在整个天线阵列面的垂直方向上呈 一字型分布)、 水平面分布(也即, 在整个天线阵列面的水平方向上呈一字 型分布)或阵列分布。 上述垂直方向相当于 Y坐标方向, 而水平方向相当 于 X 坐标方向。 如无特殊声明, 本文后续所称的垂直、 水平均遵从同一 XY坐标系。 而在包括一个或多个远端基础单元的远端机中, 其所有的天线振子也 可呈垂直面分布、 水平面分布或阵列分布。
图 lc示出了 4 _ 10个单极化天线振子的垂直面组合 (即上述垂直面 分布) 。
设定基本单元的输出功率为 PI dBm, 而天线的增益为 Pant dBi, 则天线 口输出的 EIRP (天线口功率)为: P=Pl+Pant+20*lgN。 其中, N为组成垂直 面的单极化天线振子的个数。
一般地, 假定 Pl=25dBm, Pant=9dBi, 则图 lc所示的排列的功率输出值
Figure imgf000009_0001
EIRP为:
P=Pl+Pant+20*lgM。 图 Id示出了单极化天线振子的阵列组合(即在垂直方向和水平方向上都 进行组合) , 其天线口输出的 EIRP为: P=Pl+Pant+20*logN+20*logM。
双极化天线振子可视为由两个相互独立且正交的单极化天线振子组成。 对于双极化天线振子每一极化的垂直面组合、 水平面组合或阵列组合, 其对应的 EIRP的计算公式, 乃至其与其他单元的相互关系, 分别与上述单极 化天线振子的相同, 在此不作赘述。 本文下述将主要以单极化天线振子为例 进行技术方案的介绍。 二, 数字中频处理器:
数字中频处理器可用于数字上下变频以及通道滤波。 在本发明某些实 施例中, 数字中频处理器还可具有模 /数、 数 /模转换功能。 当然, 也可由 独立的模数 /数模转换器来提供模数 /数模转换功能, 在此不作赘述。 三, 收发信机: 一个收发信机可带 1到 X个 (X为>1的整数)极化方向相同的单极 化天线振子。 这点在天线振子为双极化天线振子尤其需要注意。 图 2a和 b示出了与单极化天线振子相连接的远端基础单元的一种具 体结构 (未示出耦合器) : 双工器 3与一个或两个单极化天线振子 51相 连接。 图 2c则示出了与双极化天线振子 52相连接的远端基础单元的一种 具体结构。 另外, 参见图 2d所示的远端基础单元, 其由四个基本单元驱动一列
( 10个) 单极化天线振子 51。 每一个基本单元的收发信机 2驱动两个或 三个单极化天线振子 51。 当然, 一个双工器 3还可与多于三个单极化天线 振子 51相连接, 在此不作赘述。 需要注意的是,一般情况下,由一收发信机驱动一个单极化天线振子, 在波束赋形时精度最好。 但考虑到成本, 可令一收发信机驱动多个单极化 天线振子, 以减少收发信机的数量。 为兼顾成本和精度, 在本发明其他实施例中, 上述远端基础单元或远 端机系统还可包括幅相分配网络。 一个或多个双工器(基本单元)可通过 幅相分配网络与多个单极化天线振子间接连接。 幅相分配网络可对所连接 的多个单极化天线振子的幅度和 /或相位进行进一步的分配,从而可在减少 收发信机数量的同时, 提高波束赋形的精度。 图 2e 即示出了包括幅相分配网络的远端基础单元的一种具体结构, 其包括: 两个基本单元, 每一基本单元包括一个数字中频处理器 1 , 一个 收发信机 2、 一个双工器 3和一个耦合器(图 2e未示出) 。 上述两个收发 信机 2均通过幅相分配网络 6驱动一列单极化天线振子 51。 在介绍完远端基础单元中的各单元后, 请参见图 3 , 本文下述将对公 共单元中的各单元进行介绍。 四, 基带处理单元: 基带处理单元 7的第一基带信号输出端 701与 DBF设置单元 8的第 一基带信号输入端 801相连接,基带处理单元 7的第一基带信号输入端 702 与 DBF设置单元 8的第一基带信号输出端 802相连接; 上述基带处理单元 7可用于载波映射(载波映射包括把合路的载波划 分成并行的载波, 以及将并行的载波进行载波合路) 。
在本发明实施例中, 可由一个基带处理单元 7为所有的远端基础单元 服务。 当然, 也可为每一个远端基础单元配置一个基带处理单元 7 , 乃至 为每一个基本单元配置一个基带处理单元 7 , 在此不作赘述。 基带处理单 元还可进一步包括收通道基带处理单元和发通道基带处理单元。 五, DBF设置单元:
DBF设置单元 8的第二基带信号输出端 803与数字中频处理器 1的基 带信号输入端 102相连接, DBF设置单元 8的第二基带信号输入端 804与 数字中频处理器 1的基带信号输出端 103相连接;
DBF设置单元 8可用于 DBF系数的配置。 DBF设置单元 8可设置发 送波束赋形系数组以及接收波束赋形系数组, 来调整上述 M列 N行天线 阵列的接收下倾角和方位角, 以及水平和垂直波宽, 更具体的:
对于 N*M路同一载波同频信号, DBF设置单元 8可通过在 N路上下 发不同的幅度和相位权值, 来获得垂直面上的不同下倾角。
同时, DBF设置单元 8可对不同载波下发不同的幅度和相位权值, 以 获得不同载波不同的下倾角。
此外, DBF设置单元 8还可在 M路上下发不同的幅度和相位权值, 以获得水平面上的不同方位角, 另外, 也可在不同的载波上下发水平面上 不同的 DBF系数, 以获得不同的波宽。 图 4a即示出了通过为两个载波设置不同的 M列的 DBF系数,获得了 不同的波宽和方位角; 而图 4b则示出了通过为两个载波(F1和 F2 )设置 不同的 M列的 DBF系数, 获得了不同的波宽; 至于图 4c, 则示出了通过 为两个载波(F1和 F2 )设置不同的 N行的 DBF系数, 获得了不同的下倾 角 (从而某载波可做热点覆盖) 。 在本发明提供的远端机中, 可由一个 DBF设置单元 8为所有的远端基础单元服务。 当然, 也可为每一个远端基 础单元乃至每一个基本单元配置一个 DBF设置单元 8 , 在此不作赘述。 此 夕卜, DBF设置单元还可进一步包括收通道 DBF设置单元(简称 RX DBF ) 和发通道 DBF设置单元 (简称 TX DBF ) 。 六, 校准电路: 校准电路 9分别与 DBF设置单元 8的校准电路端 805 , 以及耦合器 4 的校准电路端 401相连接。 更具体的, 校准电路可具体包括校正单元、 ADC/DAC (模数 /数模)、 收发信机和双工器。 在具体实现时, 上述 ADC/DAC的功能也可集成在校 正单元中。 并且, 与 DBF设置单元和基带处理单元相类似, 上述校正单 元也可进一步包括收通道校准单元 (简称 RX校准单元) 和发通道校准单 元 (简称 TX校准单元) 。 校准电路一般在系统重启时工作, 其中, 校正单元对通道误差校正的 实质是跟踪和补偿通道幅相特性, 减少通道间相对误差, 满足上、 下行波 束形成算法控制精度要求。 在进行通道误差校正时, 用于通道误差校正的收、 发通道校准信号都需 要釆用比业务信号低 20dB以上的伪随机信号, 即 SNR<-20dB, 以不影响业务 信号。 接收通道与发射通道可同时进行校准。 其中, 对于接收通道的校正过程包括: 根据到达业务接收通道的发通道 校准信号要比业务信号低 20dB的原则, 计算出发通道校准信号的发送功率的 大小并进行发送, 通过业务接收通道进行解调, 釆用长时间的相关积累来完 成接收通道特性提取, 并完成接收通道的校正。 而对于发射通道的校正过程包括: 由各业务发射通道发出幅度一致、 比业务发射通道中最小的输出功率值小 20dB的收通道校正信号, 收通道 校正信号随业务信号一起发射, 然后通过接收校准通道进行接收解调, 釆 用长时间的相关积累来完成发射通道特性提取并完成发射校准。
施例还同时要求保护至少包括本发明实施例要求保护的远端机的直放站 系统。 在本发明其他实施例中, 上述公共单元还可包括转换单元。 转换单元 可包括基带信号输入接口和基带信号输出接口, 其中, 上述基带信号输入 接口与前述基带处理单元的第二基带信号输出端相连接, 而基带信号输出 接口则与基带处理单元的第二基带信号输入端相连接。 针对不同类型的直放站系统, 转换单元所具体包括的器件不尽相同。 例如, 针对釆用光纤连接近端机和远端机的光纤数字直放站系统, 转 换单元可包括相连接的光纤收发器和串行解串器, 并且, 光纤收发器与串 行解串器可通过 CPRI协调进行通讯。 其中, 串行解串器的基带信号输入 接口与上述基带处理单元的第二基带信号输出端相连接, 其基带信号输出 接口则与上述基带处理单元的第二基带信号输入端相连接。 图 5 即示出了用于构成光纤数字直放站系统的远端机的一种具体结 构。 在图 5中, 前述收发信机( TRX ) 由一对 RX (收信机)和 TX (发信 机)表示, 前述的双工器由一对滤波器 504表示。 因此, 在图 5中, 前述 校准电路 9包括 RX校准单元 91和 TX校准单元 92、 ADC、 DAC、 一对 RX和 TX和一对滤波器 504; 前述的耦合器在图 5中以 503标识, 耦合器通过射频线缆 502连接至 校准电路的滤波器 504; 前述数字中频处理器的功能由一 FPGA板实现, 并且, 该 FPGA板与一对独立的 ADC和 DAC相连接, 以完成数 /模相互 转换。 此外, 在图 5 中, 前述基带处理单元包括收通道基带处理单元 71和 发通道基带处理单元 72。 前述 DBF设置单元包括收通道 DBF设置单元 ( RX DBF ) 和发通道 DBF设置单元 ( TX DBF ) 。 在本发明其他实施例中, 上述转换单元还可包括相连接的射频接口和 射频转基带转换器。 其中, 射频转基带转换器的基带信号输入接口可与前 述基带处理单元的第二基带信号输出端相连接, 而射频转基带转换器的基 带信号输出接口可与前述基带处理单元的第二基带信号输入端相连接。 至 于上述射频接口, 其可通过射频电缆直接连接施主天线, 以构成无线可波 束赋形直放站系统。 由于在该无线可波束赋形直放站系统中, 使用施主天 线与转换单元的射频接口相连接即可, 因此将不必使用近端机。 还需要说明的是, 以上所有实施例中, 除天线振子外, 其他单元都可 以是集成芯片的形式, 因此, 可将各个单元集成在一块背板上。
或者, 也可利用一块 FPGA来实现除天线振子外的其他单元的功能。
固定在背板或 FPGA板上) , 因此, 本发明所提供的远端机, 乃至直放站 系统, 可集成度相当高。 最后, 需要说明的是, 针对目前容量要求越来越高的现况下, 本发明 上述所有实施例所提供的远端机或直放站系统可有效发挥载波容量极限, 高效利用载波资源, 间接提高基站容量。
另外, 一个运营商从 2G到 4G—般有多个频段的需求, 使用本发明 实施例所提供的远端机系统以及直放站系统, 可利用空间功率合成来实现 远端机大功率宽带化处理, 从而减少体积和降低重量, 降低了 CAPEX。 综上,本发明可带来如下有益效果: ( 1 )降低 CAPEX和 OPEX; ( 2 ) 提高网络性能, 提高网络容量; (3 ) 为进行 SON提供硬件基础; (4 ) 降低与天线集成的功耗, 从而降低体积和重量。 本说明书中各个实施例釆用递进的方式描述, 每个实施例重点说明的 都是与其他实施例的不同之处, 各个实施例之间相同相似部分互相参见即 可。
对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使 用本发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显 而易见的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的 情况下, 在其它实施例中实现。 因此, 本发明将不会被限制于本文所示的 这些实施例, 而是要符合与本文所公开的原理和新颖特点相一致的最宽的 范围。

Claims

权 利 要 求 书
1、 一种远端机, 其特征在于, 包括: 一个公共单元以及至少一个远端基础单元;
所述公共单元包括一个校准电路, 至少一个数字波束赋形 DBF设置 单元, 以及至少一个基带处理单元; 每一远端基础单元包括至少一个基本单元, 以及至少一个天线振子; 每一基本单元包括一个数字中频处理器,一个收发信机,一个双工器, 以及一个耦合器; 其中:
所述基带处理单元的第一基带信号输出端与所述 DBF设置单元的第 一基带信号输入端相连接, 所述基带处理单元的第一基带信号输入端与所 述 DBF设置单元的第一基带信号输出端相连接; 所述 DBF设置单元的第二基带信号输出端与所述数字中频处理器的 基带信号输入端相连接, 所述 DBF设置单元的第二基带信号输入端与所 述数字中频处理器的基带信号输出端相连接; 所述数字中频处理器的中频输入 \输出端与所述收发信机的接收信号 输出端 \发射信号输入端相连接; 所述收发信机的接收信号输入端与所述双工器的接收信号输出端相 连接, 所述收发信机的发射信号输出端与所述双工器的发射信号输入端相 连接;
所述双工器的公共端与所述天线振子的射频端口相连接; 所述校准电路分别与所述 DBF设置单元的校准电路端, 以及耦合器 的校准电路端相连接。
2、 如权利要求 1 所述的远端机, 其特征在于, 所述远端机中的所有 的天线振子呈垂直面分布、 水平面分布或阵列分布。
3、 如权利要求 1 所述的远端机, 其特征在于, 所述远端基础单元中 的所有的天线振子呈垂直面分布、 水平面分布或阵列分布。
4、 如权利要求 1-3任一项所述的远端机, 其特征在于, 所述远端基础 单元中的天线振子具体为单极化天线振子。
5、 如权利要求 1-3任一项所述的远端机, 其特征在于, 所述远端基础 单元中的天线振子具体为双极化天线振子, 所述双极化天线振子包括两个 单极化天线振子, 所述远端基础单元包括至少两个基本单元, 所述两个单 极化天线振子的射频端口分别连接不同基本单元的公共端。
6、 如权利要求 1 所述远端机, 其特征在于, 还包括幅相分配网络, 所述公共端通过所述幅相分配网络与所述天线振子的射频端口间接连接。
7、 如权利要求 1 所述远端机, 其特征在于, 所述公共单元还包括一 个转换单元, 所述基带处理单元的第二基带信号输出端与所述转换单元的 基带信号输入接口相连接, 所述基带处理单元的第二基带信号输入端与所 述转换单元的基带信号输出接口相连接。
8、 如权利要求 7 所述的远端机, 其特征在于, 所述转换单元包括相 连接的光纤收发器和串行解串器, 所述串行解串器的基带信号输入接口与 所述基带处理单元的第二基带信号输出端相连接, 所述串行解串器的基带 信号输出接口与所述基带处理单元的第二基带信号输入端相连接。
9、 如权利要求 7 所述的远端机, 其特征在于, 所述转换单元包括相 连接的射频接口和射频转基带转换器, 所述射频接口与施主天线相连接, 所述射频转基带转换器的基带信号输入接口与所述基带处理单元的第二 基带信号输出端相连接, 所述射频转基带转换器的基带信号输出接口与所 述基带处理单元的第二基带信号输入端相连接。
10、 一种直放站系统, 其特征在于, 包括如权利要求 1-9任一项所述 的远端机。
PCT/CN2013/077364 2012-07-10 2013-06-18 远端机和直放站系统 WO2014008801A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220332015.4 2012-07-10
CN 201220332015 CN202713297U (zh) 2012-07-10 2012-07-10 远端机和直放站系统

Publications (1)

Publication Number Publication Date
WO2014008801A1 true WO2014008801A1 (zh) 2014-01-16

Family

ID=47593554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077364 WO2014008801A1 (zh) 2012-07-10 2013-06-18 远端机和直放站系统

Country Status (2)

Country Link
CN (1) CN202713297U (zh)
WO (1) WO2014008801A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202713297U (zh) * 2012-07-10 2013-01-30 华为技术有限公司 远端机和直放站系统
WO2015066883A1 (en) * 2013-11-08 2015-05-14 Telefonaktiebolaget L M Ericsson (Publ) Radio unit with internal parallel antenna calibration
CN105637778B (zh) * 2014-07-11 2019-02-19 华为技术有限公司 一种电子设备
CN104954071B (zh) * 2015-07-07 2017-10-03 中邮科通信技术股份有限公司 一种LTE‑Advanced全数字光纤中继系统及其实现方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326293A (zh) * 2009-04-22 2012-01-18 华为技术有限公司 一种校准方法及有源天线
CN202231722U (zh) * 2011-10-18 2012-05-23 华为技术有限公司 直放站
CN102571175A (zh) * 2011-12-22 2012-07-11 华为技术有限公司 一种有源天线及有源天线的信号处理方法
CN202713297U (zh) * 2012-07-10 2013-01-30 华为技术有限公司 远端机和直放站系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326293A (zh) * 2009-04-22 2012-01-18 华为技术有限公司 一种校准方法及有源天线
CN202231722U (zh) * 2011-10-18 2012-05-23 华为技术有限公司 直放站
CN102571175A (zh) * 2011-12-22 2012-07-11 华为技术有限公司 一种有源天线及有源天线的信号处理方法
CN202713297U (zh) * 2012-07-10 2013-01-30 华为技术有限公司 远端机和直放站系统

Also Published As

Publication number Publication date
CN202713297U (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
Xingdong et al. Design and implementation of an active multibeam antenna system with 64 RF channels and 256 antenna elements for massive MIMO application in 5G wireless communications
WO2020013878A1 (en) Reconfigurable and modular active repeater device
WO2016090909A1 (zh) 一种天线及有源天线系统
US11659409B2 (en) Non-line-of-sight (NLOS) coverage for millimeter wave communication
KR101803342B1 (ko) 무선 네트워크에서 운용되는 다중대역 라디오 장치 및 방법
KR101638808B1 (ko) 이동 무선 신호의 송·수신 장치
CN107078399B (zh) 多扇区mimo有源天线系统和通信设备
KR20050083785A (ko) 모바일 무선 기지국
US20200389227A1 (en) Radio frequency signal boosters serving as outdoor infrastructure in high frequency cellular networks
JP6526080B2 (ja) マルチバンドのアクティブ‐パッシブ基地局アンテナ
EP2814115B1 (en) Antenna system, base station system and communication system
CN102571175B (zh) 一种有源天线及有源天线的信号处理方法
WO2014008801A1 (zh) 远端机和直放站系统
CN114430119A (zh) 多波束相控阵天线及通信设备
US8787763B2 (en) Repeater
EP2822100B1 (en) Transceiver module, antenna, base station and signal reception method
CN103401079B (zh) 一种天线
WO2018018466A1 (zh) 一种有源天线系统、基站及通信系统
CN102122975A (zh) 一种信号处理装置和信号处理方法
US9166664B2 (en) Active antenna system and method for combining signals
RU2452090C2 (ru) Система и способ разнесенного приема/передачи радиосигналов (варианты)
CN108282165A (zh) 一种无线通信系统架构
CN203288755U (zh) 适用于FDD系统的RoF型相控有源一体化天线阵列
US20220200690A1 (en) Repeater system
WO2024077500A1 (zh) 一种通信设备及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817151

Country of ref document: EP

Kind code of ref document: A1