WO2018018466A1 - 一种有源天线系统、基站及通信系统 - Google Patents

一种有源天线系统、基站及通信系统 Download PDF

Info

Publication number
WO2018018466A1
WO2018018466A1 PCT/CN2016/091919 CN2016091919W WO2018018466A1 WO 2018018466 A1 WO2018018466 A1 WO 2018018466A1 CN 2016091919 W CN2016091919 W CN 2016091919W WO 2018018466 A1 WO2018018466 A1 WO 2018018466A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna array
rru
port
array
Prior art date
Application number
PCT/CN2016/091919
Other languages
English (en)
French (fr)
Inventor
冷舜
冯云
谭胜斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/091919 priority Critical patent/WO2018018466A1/zh
Priority to CN201680021513.8A priority patent/CN108886399B/zh
Publication of WO2018018466A1 publication Critical patent/WO2018018466A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of communications, and in particular, to an active antenna system, a base station, and a communication system.
  • the baseband parts of multiple base stations are concentrated in one equipment room, and one AAU (Active Antenna Unit) is set for each base station at the remote end, and the baseband part of each base station is used.
  • the AAU is connected to the optical fiber; the AAU is configured to receive the radio frequency signal, for example, to receive the radio frequency signal sent by the mobile phone, convert the radio frequency signal into a baseband signal, and send the baseband signal to the baseband portion, where the baseband portion is used to transmit the baseband signal The signal is processed.
  • the first type of AAU includes a first antenna array, a second antenna array, a combining unit, a first RRU (Radio Remote Unit), and a second RRU; the first antenna array and the first The two antenna arrays each include two antenna ports, and the combining unit includes four first ports and eight second ports, wherein two first ports are respectively connected to two antenna ports of the first antenna array, and the remaining two The first ports are respectively connected to the two antenna ports of the second antenna array; the first RRU operates in the frequency band 1, including four ports, and the four ports are respectively connected to the four second ports of the combining unit; The RRU operates in Band 2, including four ports, and the four ports are respectively connected to the other four second ports of the combining unit.
  • the first antenna array and the second antenna array are respectively configured to receive a mixed signal, where the mixed signal is a mixed signal of the radio frequency signal of the frequency band 1 and the radio frequency signal of the frequency band 2, and the two mixed signals are sent to the combining unit; the combining unit Separating four radio frequency signals of the frequency band 1 and the radio frequency signals of the four frequency bands 2 from the two mixed signals transmitted by the first antenna array and the two mixed signals sent by the second antenna array, and transmitting the four frequency bands to the first RRU
  • the radio frequency signal of 1 transmits the radio frequency signal of the four frequency bands 2 to the second RRU.
  • the second AAU includes a first antenna array, a second antenna array, a combining unit, a first RRU, and a second RRU; the first antenna array and the second antenna array each include two antenna ports, and the combining unit includes two a port and four second ports, wherein the two first ports are respectively connected to two antenna ports of the second antenna array; the first RRU includes four ports, and the four ports are respectively associated with the first day array The two antenna ports are connected to the two second ports of the combining unit; the second RRU operates in the frequency band 2, including two ports, and the two ports are respectively connected to the other two second ports of the combining unit.
  • the first antenna array and the second antenna array are respectively configured to receive a mixed signal, where the mixed signal is a mixed signal of the radio frequency signal of the frequency band 1 and the radio frequency signal of the frequency band 2; the first antenna array further sends the two-way mixing to the first RRU a signal, the second antenna array further sends the two mixed signals to the combining unit; the combining unit separates two RF signals of the frequency band 1 and two RF signals of the two frequency bands 2 from the two mixed signals sent by the second antenna array. Sending the two radio frequency signals of the two frequency bands 1 to the first RRU, and transmitting the two radio frequency signals of the two frequency bands 2 to the second RRU.
  • the combination unit is included, which increases the weight of the AAU, requires on-site installation of the combined unit, complicated on-site installation, and complicated production and production.
  • the embodiments of the present application provide an active antenna system, a base station, and a communication system.
  • the technical solution is as follows:
  • an active antenna system comprising:
  • the first antenna array is provided with two antenna ports;
  • the second antenna array is provided with four antenna ports: a first antenna port, a second antenna port, a third antenna port, and a fourth antenna port;
  • the first RRU is provided with four ports;
  • the four ports of the first RRU are respectively connected to two antenna ports of the first antenna array, the first antenna port of the second antenna array, and the third antenna port of the second antenna array;
  • the second antenna port and the fourth antenna port of the second antenna array are used to connect other RRUs than the first RRU.
  • the four ports of the first RRU can be respectively connected to the two antenna ports of the first antenna array and the two antenna ports of the second antenna array.
  • the first RRU can be connected to the first antenna array and the second antenna array without the combination unit, thereby eliminating the combination unit and reducing the overall weight of the active antenna system, thereby reducing The complexity of on-site installation and production of active antenna systems.
  • the second antenna array includes a first antenna radiating unit and a second antenna radiating unit, wherein the first antenna radiating unit includes the a first antenna port and the second antenna port, the second antenna radiating unit includes the third antenna port and the fourth antenna port;
  • the first antenna port and the third antenna port correspond to a first beam of the second antenna array, and the second antenna port and the fourth antenna port correspond to a second antenna array Beam.
  • the second antenna array since the second antenna array includes the first antenna radiating unit and the second antenna radiating unit, two antenna ports may be disposed on the first day radiating unit. Two antenna ports are provided on the two antenna radiating elements, so that four antenna ports are provided on the second antenna array.
  • the method includes at least one of the following:
  • the first antenna radiating unit is provided with a first power splitting unit; the first power splitting unit is respectively provided with the first antenna radiating unit and the two antenna ports provided by the first antenna radiating unit connection;
  • the second antenna radiating unit is provided with a second power split combining unit; the second power split combining unit and the second antenna radiating unit and the second antenna radiating unit respectively have two antenna ports connection.
  • the first antenna radiating unit and the two antenna ports disposed on the first antenna radiating unit are connected by the first power splitting unit, and the second power split is
  • the combining unit connects the two antenna ports on the second antenna radiating unit and the second antenna radiating unit, so that two antenna ports are disposed on the first antenna radiating unit, and two antenna ports are disposed on the second antenna radiating unit.
  • the first power split combination unit may be a power split combiner or a Butler matrix.
  • the second power split combination unit may be a power split combiner or a Butler matrix.
  • the first power split combining unit or the second power split combining unit is a Butler matrix, since the Butler matrix is light in weight, the weight of the active antenna system can be reduced.
  • the power split combiner is integrated on the first antenna radiating unit or the second antenna radiating unit, and the power splitting The road device only performs signal splitting or combining with the first antenna radiating unit or the second antenna radiating unit, compared to the entire antenna module. Blocks that combine signals or shunts are much smaller in size and weight, thus reducing the weight of the active antenna system.
  • the first RRU includes:
  • first transceiver TRX a first transceiver TRX, a second TRX, a first receiver RX, a second RX, a third RX, and a fourth RX;
  • the first TRX, the second TRX, the first RX, and the second RX operate in a first frequency band, and the third RX and the fourth RX operate in a second frequency band;
  • the first TRX and the third RX are connected to one antenna port of the first antenna array; the second TRX and the fourth RX are connected to another antenna port of the first antenna array;
  • the first RX is connected to the first antenna port of the second antenna array, and the second RX is connected to the third antenna port of the second antenna array.
  • the first RRU includes two TRXs, a first RX, and a second RX, forming a 2T4R module, and combining the third RX and the fourth RX to form a 2T4R+2R module. And since the first TRX, the second TRX, the first RX, and the second RX operate in the first frequency band, the third RX and the fourth RX operate in the second frequency band, so that the active antenna system can operate in a single frequency band and dual Switch between band operating modes.
  • the active antenna system further includes a second RRU
  • the second RRU includes two ports, and two ports of the second RRU are respectively connected to the second antenna port and the fourth antenna port of the second antenna array.
  • the two ports of the second RRU can be respectively connected to the other two antenna ports of the second antenna array, it is not necessary to provide the combining unit for the second RRU.
  • the overall weight is further reduced, and the active antenna system can be operated in the dual-band mode when accessing the second RRU.
  • the active antenna system further includes a second RRU, where the second RRU includes two ports, Two ports of the second RRU are respectively connected to the second antenna port and the fourth antenna port of the second antenna array;
  • the second RRU includes: a third TRX, a fourth TRX, a fifth RX, and a sixth RX; the third TRX and the fourth TRX operate in a second frequency band, the fifth RX and the The sixth RX operates in a first frequency band; the third TRX and the fifth RX are connected to the second antenna port, and the fourth TRX and the sixth RX are connected to the fourth antenna port.
  • the active antenna system operates in a single frequency band In the working mode, the second antenna port and the fourth antenna port of the second antenna array are vacant.
  • the second antenna port and the fourth antenna port of the second antenna array may be vacant or may be closed to the other RRUs connected to the second antenna port and the fourth antenna port.
  • the second antenna port and the fourth antenna port of the second antenna array are vacant;
  • the first antenna array and the second antenna array respectively receive a first mixed signal, where the first mixed signal includes a radio frequency signal of a first frequency band, and the first antenna array is configured to send to the first RRU Two first mixed signals, the second antenna array is configured to send two first mixed signals to the first RRU;
  • the first RRU is configured to receive two first mixed signals sent by the first antenna array and two first mixed signals sent by the second antenna array.
  • the second antenna port and the fourth antenna port of the second antenna array are vacant;
  • the first antenna array and the second antenna array respectively receive a first mixed signal, where the first mixed signal includes a radio frequency signal of a first frequency band;
  • the third RX and the fourth RX are turned off, and the first TRX, the second TRX, the first RX, and the second RX are turned on;
  • the first TRX and the second TRX are respectively configured to receive the radio frequency signal of the first frequency band in the first mixed signal sent by the first antenna array;
  • the first RX and the second RX are respectively used to receive the radio frequency signal of the first frequency band in the first mixed signal sent by the second antenna array.
  • the beam tilt angle corresponding to the first antenna array is the same as or different from the first beam tilt angle corresponding to the two antenna ports connected to the first RRU in the second antenna array.
  • the active antenna system works in a single-band working mode, and a beam tilt angle corresponding to the first antenna array corresponds to a second antenna port in the second antenna array that is connected to the first RRU.
  • a beam tilt is the same or different.
  • the single-band working mode includes a single-band V4R working mode and a single-band H4R working mode.
  • the active antenna unit operates in a single-band V4R working mode, and a corresponding beam tilt angle of the first antenna array corresponds to two antenna ports in the second antenna array that are connected to the first RRU.
  • the first beam has a different tilt angle.
  • the active antenna unit operates in a single-band H4R working mode, and a corresponding beam tilt angle of the first antenna array corresponds to two antenna ports in the second antenna array that are connected to the first RRU.
  • the first beam has the same tilt angle.
  • the second beam of the second antenna array is unused and does not affect system performance.
  • the first beam inclination angles corresponding to the two antenna ports connected to the first RRU are the same or different.
  • a first beam tilt angle corresponding to two antenna ports of the second antenna array connected to the first RRU may be adjusted.
  • the first antenna array and the second antenna array are respectively configured to receive a second mixed signal, where the second mixed signal includes a radio frequency signal of a first frequency band and a radio frequency signal of a second frequency band;
  • the first antenna array is further configured to send two second mixed signals to the first RRU;
  • the second antenna array is further configured to send two second mixed signals to the second RRU;
  • the first RRU is configured to receive two second mixed signals sent by the first antenna array
  • the second RRU is configured to receive two second mixed signals sent by the second antenna array number.
  • the first antenna array and the second antenna array are respectively configured to receive a second mixed signal, where the second mixed signal includes a radio frequency signal of a first frequency band and a radio frequency signal of a second frequency band;
  • the first RX and the second RX in the first RRU are turned off, and the first TRX, the second TRX, the third RX, and the fourth RX are turned on;
  • the first TRX and the second TRX are respectively configured to receive the radio frequency signal of the first frequency band in the second mixed signal sent by the first antenna array;
  • the third RX and the fourth RX are respectively configured to receive the radio frequency signal of the second frequency band in the second mixed signal sent by the first antenna array.
  • the third TRX and the fourth TRX are respectively configured to receive the radio frequency signal of the second frequency band in the second mixed signal sent by the second antenna array;
  • the fifth RX and the sixth RX are respectively configured to receive the radio frequency signal of the first frequency band in the second mixed signal sent by the second antenna array.
  • the first TRX and the second TRX are respectively configured to receive a baseband signal sent by a baseband module of the base station; the first TRX is further configured to convert the baseband signal into a radio frequency signal, and send the signal to the first antenna array. Transmitting the radio frequency signal by the first antenna array; the second TRX is further configured to convert the baseband signal into a radio frequency signal, and send the radio frequency signal to the first antenna array, The first antenna array transmits the radio frequency signal.
  • the third TRX and the fourth TRX are respectively configured to receive a baseband signal sent by the baseband module of the base station; the third TRX is further configured to convert the baseband signal into a radio frequency signal, and send the signal to the second antenna array. Transmitting the radio frequency signal by the second antenna array; the fourth TRX is further configured to convert the baseband signal into a radio frequency signal, and send the radio frequency signal to the second antenna array, A second antenna array transmits the radio frequency signal.
  • the beam tilt angle corresponding to the first antenna array is the same as the beam tilt angle corresponding to the two antenna ports connected to the second RRU in the second antenna array.
  • the beam tilt angle corresponding to the first antenna array is the same as the beam tilt angle corresponding to the two antenna ports connected to the second RRU in the second antenna array, and the active antenna can be used.
  • the system works in dual band mode of operation.
  • adjusting a beam tilt angle corresponding to two antenna ports connected to the second RRU in the second antenna array by adjusting a phase shifter in the second antenna array.
  • a base station comprising the active antenna system of any one of the first to the seventeenth aspects of the first aspect or the first aspect.
  • a communication system comprising the base station of the second aspect.
  • FIG. 1 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • 2-1 is a schematic structural diagram of an active antenna system according to an embodiment of the present application.
  • FIG. 2-2 is a schematic structural diagram of another active antenna system according to an embodiment of the present disclosure.
  • 2-3 are schematic diagrams showing different beam tilt angles and first beam tilt angles of the first antenna array according to the embodiment of the present disclosure
  • 2-4 are schematic diagrams showing the same beam tilt angle and the first beam tilt angle of the first antenna array provided by the embodiment of the present application;
  • 2-5 are schematic diagrams showing the same beam tilt angle and second beam tilt angle of the first antenna array provided by the embodiment of the present application;
  • FIGS. 2-6 are schematic structural diagrams of another active antenna system according to an embodiment of the present application.
  • FIGS. 2-7 are schematic structural diagrams of another active antenna system according to an embodiment of the present application.
  • FIGS. 2-8 are schematic structural diagrams of another active antenna system according to an embodiment of the present application.
  • FIGS. 2-9 are schematic structural diagrams of another active antenna system provided by an embodiment of the present application.
  • the antenna module and the baseband module of the base station can be separated at present, so that the baseband modules of the multiple base stations can be concentrated in one equipment room, and the antenna modules of each base station can be set elsewhere, and the antenna modules of each base station
  • the baseband module is connected to a line such as an optical fiber.
  • the antenna module of the base station may be an active antenna system, which may be used to receive a radio frequency signal, which may be sent by the terminal, such as a mobile phone, and then convert the received radio frequency signal into a baseband signal. And transmitting the converted baseband signal to the baseband module of the base station, and the baseband signal is processed by the baseband module.
  • an embodiment of the present application provides an active antenna system 200, which may be the active antenna system provided in FIG. 1 above, and the active antenna system 200 includes:
  • the first antenna array 201 is provided with two antenna ports, and the second antenna array 202 is provided with a first antenna port a, a second antenna port b, a third antenna port c and a fourth antenna port d;
  • the first RRU 203 is provided with four ports;
  • the four ports of the first RRU 203 are respectively connected to the two antenna ports of the first antenna array 201, the first antenna port a and the third antenna port c of the second antenna array 202;
  • the second antenna port b and the fourth antenna port d of the second antenna array 202 are used to connect other RRUs than the first RRU 203.
  • the second antenna array 202 includes antenna radiating units of two polarization directions, which are a first antenna radiating unit 2021 and a second antenna radiating unit 2022, respectively.
  • the first antenna radiating unit 2021 is provided.
  • the second antenna radiating unit 2022 is provided with a third antenna port c and a fourth antenna port d
  • the first antenna port a and the third antenna port c correspond to the second antenna array 202
  • the first beam, the second antenna port b and the fourth antenna port d correspond to the second beam of the second antenna array 202.
  • the first antenna array 201 also includes antenna radiating units of two polarization directions, which are a third antenna radiating unit 2011 and a fourth antenna radiating unit 2012, respectively, and the first antenna array 201 includes The two antenna ports are respectively a fifth antenna port e and a sixth antenna port f; wherein the third antenna port e is disposed on the third antenna radiating unit 2011, and the sixth antenna is disposed on the fourth antenna radiating unit 2012.
  • the port f, the fifth antenna port e and the sixth antenna port f correspond to a beam of the first antenna array 201, and the beam may be a first beam or a second beam.
  • the first antenna array 201, the second antenna array 202, and the first RRU 203 are integrated into one active antenna device, where the active antenna device is provided with two external antenna ports, respectively The two antenna ports b and the fourth antenna port d are used for connection with other RRUs than the first RRU 203.
  • the active antenna system 200 further includes a second RRU 204;
  • the second RRU 204 includes two ports, and two ports of the second RRU 204 are connected to the second antenna port b and the fourth antenna port d of the second antenna array 202, respectively.
  • the active antenna system 200 can operate in a cell band mode or a dual band mode.
  • the second antenna port b and the fourth antenna port d of the second antenna array 202 are vacant. That is, the second RRU 204 may not be accessed or the second RRU 204 may be turned off.
  • the first antenna array 201 and the second antenna array 202 are respectively configured to receive a first mixed signal, where the first mixed signal includes a radio frequency signal of a first frequency band, and the first antenna array 201 is further configured to send two paths to the first RRU 203.
  • the second antenna array 202 is further configured to send two first mixed signals to the first RRU 203.
  • the first RRU 203 is configured to receive two first mixed signals sent by the first antenna array 201 and two first mixed signals sent by the second antenna array 202.
  • the first RRU 203 may separately filter out the first four received first mixed signals.
  • the RF signal of the frequency band converts the filtered RF signal of the first frequency band into a first baseband signal, and sends the converted first baseband signal to the baseband module of the base station.
  • the baseband module of the base station can then receive the first baseband signal and perform baseband processing on the first baseband signal.
  • the active antenna system 200 operates in a single-band operation mode, and a beam tilt angle corresponding to the first antenna array 201 is the same as or different from a beam tilt angle corresponding to two antenna ports in the second antenna array 202 connected to the first RRU 203.
  • the single-band mode of operation includes a single-band V4R (Vertical 4 Receive) mode of operation and a single-band H4R (Horizontal 4 Receive) mode of operation.
  • V4R Very 4 Receive
  • H4R Holontal 4 Receive
  • the active antenna system 200 operates in a single-band V4R mode of operation, and the beam tilt angle corresponding to the first antenna array 201 is different from the first beam tilt angle corresponding to the two antenna ports of the second antenna array 202 connected to the first RRU 203.
  • the active antenna system 200 operates in a single-band V4R operating mode, and the corresponding beam tilt angle of the first antenna array 201 corresponds to the first antenna port a and the third antenna port d of the second antenna array 202.
  • the first beam has a different tilt angle.
  • the second beam of the second antenna array 202 is stopped and has no effect on system performance.
  • the active antenna system 200 operates in a single-band H4R mode of operation, and the beam tilt angle corresponding to the first antenna array 201 is the same as the first beam tilt angle corresponding to the two antenna ports of the second antenna array 202 connected to the first RRU 203.
  • the active antenna system 200 operates in a single-band H4R operating mode, and the corresponding beam tilt angle of the first antenna array 201 corresponds to the first antenna port a and the third antenna port c of the second antenna array 202.
  • the first beam has the same tilt angle.
  • the second beam of the second antenna array 202 is stopped and has no effect on system performance.
  • the first antenna array 201 and the second antenna array 202 each include a phase shifter, and the first antenna array 201 can be correspondingly connected by the phase shifter of the first antenna array 201 or the phase shifter of the second antenna array 202.
  • the beam tilt angle is the same as or different from the first beam tilt angle corresponding to the two antenna ports of the second antenna array 202 that are connected to the first RRU 203.
  • there are two implementation methods including:
  • the first mode is: adjusting the first beam tilt angle corresponding to the two antenna ports connected to the first RRU 203 in the second antenna array 202 by adjusting the phase shifter of the second antenna array 202 to make the beam corresponding to the first antenna array 201
  • the tilt angle is the same as or different from the first beam tilt angle corresponding to the two antenna ports of the second antenna array 202 that are connected to the first RRU 203.
  • the first antenna port a and the third antenna port c corresponding to the first RRU 203 connected to the second antenna array 202 are adjusted by adjusting the phase shifter of the second antenna array 202.
  • Beam tilt angle such that the beam tilt angle of the first antenna array 201 corresponds to the second antenna array 202
  • the first beam tilt angles corresponding to the first antenna port a and the third antenna port c are the same or different.
  • the second mode is: adjusting the beam tilt angle of the first antenna array 201 by adjusting the phase shifter of the first antenna array 201, so that the corresponding beam tilt angle of the first antenna array 201 is connected to the first RRU 203 in the second antenna array 202.
  • the first beam angles corresponding to the two antenna ports are the same or different.
  • the first beam inclination angle corresponding to the first antenna port a and the third antenna port c of 202 is the same or different.
  • the second RRU 204 is accessed and turned on.
  • the first antenna array 201 and the second antenna array 202 are respectively configured to receive a second mixed signal, where the second mixed signal includes a radio frequency signal of a first frequency band and a radio frequency signal of a second frequency band;
  • the first antenna array 201 is further configured to send two second mixed signals to the first RRU 203
  • the second antenna array 202 is further configured to send two second mixed signals to the second RRU 204;
  • a first RRU 203 configured to receive two second mixed signals sent by the first antenna array 201;
  • the second RRU 204 is configured to receive two second mixed signals sent by the second antenna array 202.
  • the first RRU 203 may filter the radio frequency signal of the first frequency band and the radio frequency signal of the second frequency band from the received two second mixed signals, and convert the filtered radio frequency signal of the first frequency band into the first baseband signal. Converting the filtered radio frequency signal of the second frequency band into a second baseband signal, and transmitting the converted first baseband signal and the second baseband signal to the baseband module of the base station.
  • the second RRU 204 may filter the radio frequency signal of the first frequency band and the radio frequency signal of the second frequency band from the received two second mixed signals, and convert the filtered radio frequency signal of the first frequency band into the first baseband signal, and the filtered The two-band RF signal is converted into a second baseband signal, and the converted first baseband signal and the converted second baseband signal are transmitted to the baseband module of the base station.
  • the baseband module of the base station can receive the first baseband signal and the second baseband signal sent by the first RRU 203, and receive the first baseband signal and the second baseband signal sent by the second RRU 204, and receive the first baseband signal and the first The baseband signal is subjected to baseband processing.
  • the active antenna system 200 operates in a dual-band operation mode, and a corresponding beam inclination angle of the first antenna array 201 is the same as a second beam inclination angle corresponding to two antenna ports of the second antenna array 202 connected to the second RRU 204.
  • the active antenna system 200 operates in a dual band H4R mode of operation.
  • the active antenna system 200 operates in a dual-band mode of operation, the corresponding beam tilt angle of the first antenna array 201 and the second antenna port b and the fourth antenna port d of the second antenna array 202.
  • the corresponding second beam tilt angle is the same.
  • the first beam of the second antenna array 202 is unused and does not affect system performance.
  • the beam tilt angle corresponding to the two antenna ports of the first antenna array 201 and the second antenna array 202 and the second RRU 204 are performed by the phase shifter of the first antenna array 201 or the phase shifter of the second antenna array 202.
  • the second beam angles corresponding to the two connected antenna ports are the same. Specifically, there are two implementation methods, including:
  • the second beam angle corresponding to the two antenna ports connected to the second RRU 203 in the second antenna array 202 is adjusted by adjusting the phase shifter of the second antenna array 202 to make the beam corresponding to the first antenna array 201
  • the tilt angle is the same as the second beam tilt angle corresponding to the two antenna ports of the second antenna array 202 that are connected to the second RRU 204.
  • adjusting the second beam angle corresponding to the second antenna port b and the fourth antenna port d of the second antenna array 202 by adjusting the phase shifter of the second antenna array 202 to make the first antenna array The beam tilt angle corresponding to 201 is the same as the second beam tilt angle corresponding to the second antenna port b and the fourth antenna port d of the second antenna array 202.
  • the second mode is: adjusting the beam tilt angle of the first antenna array 201 by adjusting the phase shifter of the first antenna array 201, so that the corresponding beam tilt angle of the first antenna array 201 is connected to the second RRU 204 in the second antenna array 202.
  • the two antenna ports correspond to the same second beam tilt angle.
  • the beam tilt angle of the first antenna array 201 is adjusted by adjusting the phase shifter of the first antenna array 201 so that the corresponding beam tilt angle of the first antenna array 201 and the second antenna array 202 are the same.
  • the second beam angle corresponding to the two antenna ports b and the fourth antenna port d is the same.
  • the first antenna radiating unit 2021 is further provided with a first power splitting unit g, a first power splitting unit g and a first antenna radiating unit 2021, and a first antenna radiating unit 2021.
  • the first antenna port a and the second antenna port b provided are connected.
  • the first power splitting unit g When the active antenna system 200 operates in the single-band operation mode, the first power splitting unit g is configured to send the first antenna radiating unit 2021 to the first RRU 203 by using the first antenna port a connected to the first RRU 203. The first mixed signal. When the active antenna system 200 operates in the dual-band mode of operation, the first power splitting unit g is configured to transmit the first antenna radiating unit 2021 to the second RRU 204 by using the second antenna port b connected to the second RRU 204. The second mixed signal.
  • the first power splitting unit g may be integrated on the first antenna radiating unit 2021.
  • the second antenna radiating unit 2022 is further provided with a second power splitting unit h, a second power splitting unit h and a second antenna radiating unit 2022, and a second antenna radiating unit. 2022 The third antenna port c and the fourth antenna port d are connected.
  • the second power splitting unit h When the active antenna system 200 operates in the single-band operation mode, the second power splitting unit h is configured to receive, by using the third antenna port c connected to the first RRU 203, the second antenna radiating unit 2022 to receive the first RRU 203. The first mixed signal.
  • the second power splitting unit h When the active antenna system 200 operates in the dual-band mode of operation, the second power splitting unit h is configured to receive, by the fourth antenna port h connected to the second RRU 204, the second antenna radiating unit 2022 to receive the second antenna. The second mixed signal.
  • the second power splitting unit h may be integrated on the second antenna radiating unit 2022.
  • the first power splitting unit g may be a power split combiner or a Butler matrix.
  • the second power split unit h can be a power split combiner or a Butler matrix.
  • the first power splitting unit unit g or the second power splitting unit h is a power split combiner, since the power split combiner is integrated in the first antenna radiating unit 2021 or On the second antenna radiating element 2022, the volume and weight of the power split combiner are smaller than the current combining unit.
  • the four ports of the first RRU 203 are a first port 1, a second port 2, a third port 3, and a fourth port 4, respectively, and the first port 1 and the second port 2 are respectively.
  • the fifth antenna port e of the first antenna array 201 and the sixth antenna port f are connected, and the third port 3 and the fourth port 4 are respectively in the first antenna port a and the second antenna radiating unit 2022 in the first antenna radiating unit 2021.
  • the third antenna port c is connected.
  • the two ports of the second RRU 204 are the fifth port 5 and the sixth port 6, respectively, and the fifth port 5 and the sixth port 6 are respectively connected to the second antenna port b and the second in the first antenna radiating unit 2021.
  • the fourth antenna port d in the antenna radiating unit 2022 is connected.
  • the process in which the first antenna array 201 and the second antenna array 202 send the first mixed signal to the first RRU 203 may be:
  • the first antenna array 201 may send a first mixed signal to the first RRU 203 through the fifth antenna port e, and send a first mixed signal to the first RRU 203 through the sixth antenna port f; correspondingly, the first RRU 203 passes the first
  • the port 1 receives a first mixed signal sent by the first antenna array 201 through the fifth antenna port e, and receives a first mixed signal sent by the first antenna array 201 through the sixth antenna port f through the second port 2, to implement The two first mixed signals transmitted by the first antenna array 201 are received.
  • the second antenna array 202 can transmit a first mixed signal to the first RRU 203 through the first antenna port a on the first antenna radiating unit 2021, and to the first RRU 203 through the third antenna port c on the second antenna radiating unit 2022.
  • the RRU 203 transmits two first mixed signals.
  • the first RRU 203 receives a first mixed signal sent by the second antenna array 202 through the first antenna port a through the third port 3, and receives the second antenna array 202 through the fourth port 4 and transmits through the third antenna port c.
  • the first mixed signal is received to receive the two first mixed signals sent by the second antenna array 202.
  • the process of the first antenna array 201 and the second antenna array 202 transmitting the second mixed signal to the first RRU 203 and the second RRU 204 may be:
  • the first antenna array 201 can send a second mixed signal to the first RRU 203 through the fifth antenna port e, and send a second mixed signal to the first RRU 203 through the sixth antenna port f to implement sending two paths to the first RRU 203.
  • the second mixed signal correspondingly, the first RRU 203 receives a second mixed signal sent by the first antenna array 201 through the fifth antenna port e through the first port 1, and receives the first antenna array 201 through the second port 2 and transmits through the sixth antenna port f.
  • a second mixed signal is implemented to receive the two second mixed signals transmitted by the first antenna array 201.
  • the second antenna array 202 can transmit a second mixed signal to the second RRU 204 through the second antenna port b on the first antenna radiating unit 2021, and to the second RRU 204 through the fourth antenna port d on the second antenna radiating unit 2022.
  • a second mixed signal is sent to transmit two second mixed signals to the second RRU 204.
  • the second RRU 203 receives a second mixed signal sent by the second antenna array 202 through the second antenna port b through the fifth port 5, and receives the second antenna array 202 through the sixth port 6 and transmits through the fourth antenna port d.
  • a second mixed signal is implemented to receive the two second mixed signals transmitted by the second antenna array 202.
  • the structure of the first RRU 203 includes:
  • the first TRX 2031, the second TRX 2032, the first RX 2033, the second RX 2034, the third RX 2035, and the fourth RX 2036 operate in the first frequency band
  • the third RX 2035 and the fourth RX 2036 operate in the second frequency band
  • the first TRX 2031 and the third RX 2035 are connected to the first port 1
  • the second TRX 2032 and the fourth RX 2036 are connected to the second port 2
  • the first RX 2033 and the second RX 2034 are connected to the third port 3 and the fourth port 4, respectively.
  • the second antenna port b and the fourth antenna port d of the second antenna array 202 are vacant.
  • the third RX2035 and the fourth RX2036 are turned off, and the first TRX 2031, the second TRX 2032, the first RX 2033, and the second RX 2034 are turned on;
  • the first TRX 2031 and the second TRX 2032 are respectively configured to receive the first antenna array 201 and send a first frequency signal of the first frequency band included in the first mixed signal;
  • the first RX 2033 and the second RX 2034 are respectively configured to receive the radio frequency signals of the first frequency band included in the first mixed signal sent by the first antenna array 201.
  • the first TRX2031 and the second TRX2032 are respectively configured to receive a baseband signal sent by the baseband module of the base station; the first TRX2031 is further configured to convert the baseband signal into a radio frequency signal, and send the radio frequency to the first antenna array 201.
  • the signal is transmitted by the first antenna array 201; the second TRX2032 is further configured to convert the baseband signal into a radio frequency signal, and send the radio frequency signal to the first antenna array 201, and the radio frequency is transmitted by the first antenna array 201.
  • the radio frequency signal may be a radio frequency signal in a first frequency band.
  • the first RRU 203 further includes a first filter 203a, a second filter 203b, a third filter 203c, a fourth filter 203d, a fifth filter 203e, and a sixth filter 203f.
  • the first filter 203a is connected to the first port 1 and the first TRX 2031
  • the second filter 203b is connected to the third port 3 and the first RX 2033, respectively
  • the third filter 203c is connected to the fourth port 4 and the second RX 2034, respectively.
  • the fourth filter 203d is connected to the second port 2 and the second TRX, respectively
  • the fifth filter 203e is connected to the first port 1 and the third RX 2035, respectively
  • the sixth filter 203f is connected to the second port 2 and the fourth RX2036, respectively. connection.
  • the first filter 203a is configured to receive, by using the first port 1, a first mixed signal sent by the first antenna array 201, from the first mixed signal.
  • the radio frequency signal of the first frequency band is filtered, and the radio frequency signal of the first frequency band is sent to the first TRX.
  • the second filter 203b is configured to receive, by using the third port 3, a first mixed signal sent by the second antenna array 202, filter the radio frequency signal of the first frequency band from the first mixed signal, and send the first frequency band to the first RX. RF signal.
  • the third filter 203c is configured to receive, by the fourth port 4, a first mixed signal sent by the second antenna array 202, filter the radio frequency signal of the first frequency band from the first mixed signal, and send the first frequency band to the second RX. RF signal.
  • the fourth filter 203d is configured to receive, by using the second port 2, a first mixed signal sent by the first antenna array 201, filter the radio frequency signal of the first frequency band from the first mixed signal, and send the first frequency band to the second TRX. RF signal.
  • each TRX corresponding filter in the first RRU 203 may be separately integrated in each TRX in the form of software and/or hardware, or may be independent software and/or hardware modules;
  • the filters corresponding to each RX in the RRU 203 may be separately integrated in each RX in the form of software and/or hardware, or may be independent software and/or hardware modules.
  • the first TRX 2031, the second TRX 2032, the first RX 2033, the second RX 2034, the third RX 2035, and the fourth RX 2036 are respectively connected to the baseband module of the base station through a line such as an optical fiber.
  • the first TRX 2031, the second TRX 2032, the first RX 2033, and/or the second RX 2034 receive the radio frequency signal of the first frequency band, convert the radio frequency signal of the first frequency band into the first baseband signal, and pass through the baseband module with the base station.
  • the line transmits the converted first baseband signal to the baseband module of the base station.
  • the second RRU 204 includes:
  • the third TRX 2041, the fourth TRX 2042, the fifth RX2043, and the sixth RX2044, the third TRX2041 and the fourth TRX2042 operate in the second frequency band
  • the fifth RX2043 and the sixth RX2044 operate in the first frequency band
  • the third TRX2041 and the fifth RX2043 The fifth port 5 is connected
  • the fourth TRX 2042 and the sixth RX 2044 are connected to the sixth port 6.
  • the active antenna system 200 when the active antenna system 200 operates in the dual-band operation mode, the first RX 2033 and the second RX 2034 are turned off, the first TRX 2031, the second TRX 2032, the third RX 2035, and the fourth RX 2036 are turned on; and the third TRX 2041 The fourth TRX 2042, the fifth RX2043, and the sixth RX 2044 are also turned on.
  • the first TRX 2031 and the second TRX 2032 are respectively configured to receive the radio frequency signals of the first frequency band included in the second mixed signal sent by the first antenna array 201;
  • the third RX2035 and the fourth RX2036 are respectively configured to receive the radio frequency signals of the second frequency band included in the second mixed signal sent by the first antenna array 201;
  • the third TRX 2041 and the fourth TRX 2042 are respectively configured to receive a baseband signal of a second frequency band included in a second mixed signal sent by the second antenna array 202;
  • the fifth RX2043 and the sixth RX2044 are respectively configured to receive the radio frequency signals of the first frequency band included in the second mixed signal sent by the second antenna array 202.
  • the second RRU 204 further includes a seventh filter 204a, an eighth filter 204b, a ninth filter 204c, and a tenth filter 204d.
  • the seventh filter 204a is connected to the fifth port 5 and the third TRX 2041, respectively, the eighth filter 204b is connected to the sixth port and the fourth TRX, respectively, and the ninth filter 204c is connected to the fifth port 5 and the fifth RX2043, respectively.
  • the tenth filter 204d is connected to the sixth port 6 and the sixth RX 2044, respectively.
  • the first filter 203a receives a second mixed signal sent by the first antenna array 201 through the first port 1, and filters the first frequency band from the second mixed signal.
  • the radio frequency signal transmits the radio frequency signal of the first frequency band to the first TRX2031.
  • the fourth filter 203d receives a second mixed signal sent by the first antenna array 201 through the second port 2, filters the radio frequency signal of the first frequency band from the second mixed signal, and transmits the radio frequency signal of the first frequency band to the second TRX2032. .
  • the fifth filter 203e receives a second mixed signal sent by the first antenna array 201 through the first port 1, filters the radio frequency signal of the second frequency band from the second mixed signal, and transmits the radio frequency signal of the second frequency band to the third RX2035. .
  • the sixth filter 203f receives a second mixed signal sent by the first antenna array 201 through the second port 2, filters the radio frequency signal of the second frequency band from the second mixed signal, and transmits the radio frequency signal of the second frequency band to the fourth RX2036. .
  • the seventh filter 204a receives a second mixed signal sent by the second antenna array 202 through the fifth port 5, filters the radio frequency signal of the second frequency band from the second mixed signal, and transmits the radio frequency signal of the second frequency band to the third TRX2041. .
  • the eighth filter 204b receives a second mixed signal sent by the second antenna array 202 through the sixth port 6, filters the radio frequency signal of the second frequency band from the second mixed signal, and transmits the radio frequency signal of the second frequency band to the fourth TX 2042. .
  • the ninth filter 204c receives a second mixed signal sent by the second antenna array 202 through the fifth port 5, filters the radio frequency signal of the first frequency band from the second mixed signal, and transmits the radio frequency signal of the first frequency band to the fifth RX2043. .
  • the tenth filter 204d receives a second mixed signal sent by the second antenna array 202 through the sixth port 6, filters the radio frequency signal of the first frequency band from the second mixed signal, and transmits the radio frequency signal of the first frequency band to the sixth RX2044. .
  • each TRX corresponding filter in the second RRU 204 may be separately integrated in each TRX in the form of software and/or hardware, or may be a separate software and/or hardware module; in the second RRU 204
  • Each RX-corresponding filter may be integrated in each RX in the form of software and/or hardware, or it may be a separate software and/or hardware module.
  • the third TRX 2041, the fourth TRX 2042, the fifth RX2043, and the sixth RX2044 are respectively connected to the baseband module of the base station through a line such as an optical fiber.
  • the first TRX 2031, the second TRX 2032, the fifth RX2043, and/or the sixth RX 2034 will receive
  • the RF signal of the first frequency band is converted into a first baseband signal, and the converted first baseband signal is sent to the baseband module of the base station through a line between the baseband module and the baseband module of the base station.
  • the third TRX 2041, the fourth TRX 2042, the third RX 2035, and the fourth RX 2036 convert the received radio frequency signal of the second frequency band into a second baseband signal, and transmit the converted second baseband signal through a line with the baseband module of the base station.
  • Baseband module for the base station for the base station.
  • the third TRX2041 and the fourth TRX2024 are respectively configured to receive a baseband signal sent by the baseband module of the base station, and the third TRX2041 is further configured to convert the baseband signal into a radio frequency signal, and send the baseband signal to the second antenna array 202.
  • the radio frequency signal is transmitted by the second antenna array 202; the fourth TRX2042 is further configured to convert the baseband signal into a radio frequency signal, send the radio frequency signal to the second antenna array 202, and transmit the radio frequency by the second antenna array 202.
  • the radio frequency signal may be a radio frequency signal in a second frequency band.
  • four ports of the first RRU 203 are inserted into two antenna ports of the first antenna array 201, an antenna port of the first antenna radiating unit 2041, and a second antenna by plugging.
  • the two ports of the second RRU 204 are respectively connected to another antenna port of the first antenna radiating unit 2041 and another antenna port of the second antenna radiating unit 2042 through jumpers.
  • the four ports of the first RRU 203 can also be connected to the two antenna ports of the first antenna array 201, one antenna port of the first antenna radiating unit 2041, and one antenna port of the second antenna radiating unit 2042 through jumpers.
  • the signal loss generated between the first RRU 203 and the first antenna array 201 and the second antenna array 202 is small. Less than the signal loss generated between the first RRU 203 and the first antenna array 201 and the second antenna array 202 when the four ports of the first RRU 203 are connected to the first antenna array 201 and the second antenna array 202 by jumpers.
  • the second antenna array is provided with four antenna ports, and the four ports of the first RRU may be respectively connected to the two antenna ports of the first antenna array and the two antenna ports of the first antenna array.
  • the two ports of the two RRUs can be respectively connected to the other two antenna ports of the first antenna array; thus, when the active antenna system operates in the single-band operation mode, the first RRU can receive the first antenna array and send through the two antenna ports.
  • the two first mixed signals, the second RRU can receive the two first mixed signals sent by the second antenna array through the two antenna ports, thereby eliminating the combined unit; when the active antenna system works in the dual frequency mode
  • the first RRU may receive two second mixed signals sent by the first antenna array through the two antenna ports, and the second RRU may receive the second
  • the two antenna arrays transmit two second mixed signals through two antenna ports connected to the second RRU, so that in the dual-band operation mode, the first RRU and the second RRU also do not need to connect the combining unit to the first antenna array.
  • the second antenna array thereby eliminating the combination unit, reducing the weight of the active antenna system, and reducing the complexity of the active antenna system on-site installation and production.
  • the first RRU can be directly plugged in two antenna ports of the first antenna array, one antenna port of the first antenna radiating unit, and one antenna port of the second antenna radiating unit, which can be effective. Reduce signal loss.
  • An embodiment of the present application provides a base station, where the base station includes any one of the active antenna systems as shown in FIGS. 2-1 to 2-9.
  • Embodiments of the present application provide a communication system including a base station as described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供了一种有源天线系统、基站及通信系统,涉及通信领域,所述有源天线系统包括:第一天线阵列、第二天线阵列和第一射频拉远单元RRU;其中,所述第一天线阵列设有两个天线端口;所述第二天线阵列设有第一天线端口、第二天线端口、第三天线端口和第四天线端口四个天线端口;所述第一RRU设有四个端口;所述第一RRU的四个端口分别与所述第一天线阵列的两个天线端口、所述第二天线阵列的第一天线端口以及所述第二天线阵列的第三天线端口连接;所述第二天线阵列的第二天线端口和第四天线端口用于连接除所述第一RRU外的其他RRU。本申请能够减少有源天线单元的整机重量、降低有源天线单元的现场安装和生产制作的复杂度。

Description

一种有源天线系统、基站及通信系统 技术领域
本申请涉及通信领域,特别涉及一种有源天线系统、基站及通信系统。
背景技术
在蜂窝通信网络中,为了减少运营成本将多个基站的基带部分集中在一个机房中,在远端为每个基站设置一个AAU(Active Antenna Unit,有源天线单元),每个基站的基带部分和AAU通过光纤相连;该AAU用于接收射频信号,例如用于接收手机发送的射频信号,将该射频信号转换成基带信号,再向该基带部分发送该基带信号,由该基带部分对该基带信号进行处理。
目前有两种AAU结构,第一种AAU包括第一天线阵列、第二天线阵列、合路单元、第一RRU(Radio Remote Unit,射频拉远单元)和第二RRU;第一天线阵列和第二天线阵列均包括两个天线端口,合路单元包括四个第一端口和八个第二端口,其中有两个第一端口分别与第一天线阵列的两个天线端口连接,剩下的两个第一端口分别与第二天线阵列的两个天线端口连接;第一RRU工作在频段1,包括四个端口,且该四个端口分别与合路单元的四个第二端口连接;第二RRU工作在频段2,包括四个端口,且该四个端口分别与合路单元的另外四个第二端口连接。
第一天线阵列和第二天线阵列,分别用于接收混合信号,该混合信号是频段1的射频信号和频段2的射频信号的混合信号,向合路单元发送两路该混合信号;合路单元从第一天线阵列发送的两路混合信号和第二天线阵列发送的两路混合信号中分离出四路频段1的射频信号和四路频段2的射频信号,向第一RRU发送该四路频段1的射频信号,向第二RRU发送该四路频段2的射频信号。
第二种AAU包括第一天线阵列、第二天线阵列、合路单元、第一RRU和第二RRU;第一天线阵列和第二天线阵列均包括两个天线端口,合路单元包括两个第一端口和四个第二端口,其中、该两个第一端口分别与第二天线阵列的两个天线端口连接;第一RRU包括四个端口,该四个端口分别与第一天阵列 的两个天线端口和合路单元中的两个第二端口连接;第二RRU工作在频段2,包括两个端口,且该两个端口分别与合路单元的另外两个第二端口连接。
第一天线阵列和第二天线阵列,分别用于接收混合信号,该混合信号是频段1的射频信号和频段2的射频信号的混合信号;第一天线阵列还向第一RRU发送该两路混合信号,第二天线阵列还向合路单元发送该两路混合信号;合路单元从第二天线阵列发送的两路混合信号分离出两路频段1的射频信号和两路频段2的射频信号,向第一RRU发送该两路频段1的射频信号,向第二RRU发送该两路频段2的射频信号。
在实现本申请的过程中,发明人发现现有技术至少存在以下问题:
在上述两种AAU中均包括合路单元,增加了AAU的整机重量,需要现场安装合路单元,现场安装复杂,以及生产制作复杂。
发明内容
为了减少有源天线系统的整机重量、降低有源天线系统的现场安装和生产制作的复杂度,本申请实施例提供了一种有源天线系统、基站及通信系统。所述技术方案如下:
第一方面,提供了一种有源天线系统,所述有源天线系统包括:
第一天线阵列、第二天线阵列和第一射频拉远单元RRU;其中,
所述第一天线阵列设有两个天线端口;
所述第二天线阵列设有第一天线端口、第二天线端口、第三天线端口和第四天线端口四个天线端口;
所述第一RRU设有四个端口;
所述第一RRU的四个端口分别与所述第一天线阵列的两个天线端口、所述第二天线阵列的第一天线端口以及所述第二天线阵列的第三天线端口连接;
所述第二天线阵列的第二天线端口和第四天线端口用于连接除所述第一RRU外的其他RRU。
在第一方面中,由于在第二天线阵列上设有四个天线端口,第一RRU的四个端口可以分别与第一天线阵列的两个天线端口、第二天线阵列的两个天线端口连接;这样第一RRU可以不需要合路单元连接到第一天线阵列和第二天线阵列,从而可以省去合路单元,减轻了有源天线系统的整机重量,进而降低 有源天线系统的现场安装和生产制作的复杂度。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第二天线阵列包括第一天线辐射单元和第二天线辐射单元,其中,所述第一天线辐射单元包括所述第一天线端口和所述第二天线端口,所述第二天线辐射单元包括所述第三天线端口和所述第四天线端口;
其中,所述第一天线端口和所述第三天线端口对应所述第二天线阵列的第一波束,所述第二天线端口和所述第四天线端口对应所述第二天线阵列的第二波束。
在第一方面的第一种可能的实现方式中,由于第二天线阵列包括第一天线辐射单元和第二天线辐射单元,因此可以在第一天辐射单元上设有两个天线端口,在第二天线辐射单元上设有两个天线端口,从而能够实现在第二天线阵列上设有四个天线端口。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,包括如下情况中的至少一种:
所述第一天线辐射单元设有第一功分合路单元;所述第一功分合路单元分别与所述第一天线辐射单元以及所述第一天线辐射单元设有的两个天线端口连接;
所述第二天线辐射单元设有第二功分合路单元;所述第二功分合路单元分别与所述第二天线辐射单元以及所述第二天线辐射单元设有的两个天线端口连接。
在第一方面的第二种可能的实现方式中,由于通过第一功分合路单元连接第一天线辐射单元和第一天线辐射单元上设有的两个天线端口,以及通过第二功分合路单元连接第二天线辐射单元和第二天线辐射单元上的两个天线端口,这样实现在第一天线辐射单元上设置两个天线端口,以及在第二天线辐射单元上设置两个天线端口。
可选的,第一功分合路单元可以为功分合路器或Bulter矩阵。第二功分合路单元可以为功分合路器或Bulter矩阵。当第一功分合路单元或第二功分合路单元为Bulter矩阵时,由于Bulter矩阵重量较轻,从而可以减少有源天线系统的重量。当第一功分合路单元或第二功分合路单元为功分合路器时,该功分合路器集成在第一天线辐射单元或第二天线辐射单元上,且该功分合路器只是对第一天线辐射单元或第二天线辐射单元做信号分路或合路,相比对整个天线模 块做信号合路或分路的合路单元,体积和重量都要小很多,从而可以减少有源天线系统的重量。
结合第一方面、第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,
所述第一RRU包括:
第一收发器TRX、第二TRX、第一接收器RX、第二RX、第三RX和第四RX;
其中,所述第一TRX、第二TRX、第一RX和第二RX工作在第一频段,所述第三RX和第四RX工作在第二频段;
所述第一TRX和所述第三RX与所述第一天线阵列的一天线端口连接;所述第二TRX和所述第四RX与所述第一天线阵列的另一天线端口连接;
所述第一RX与所述第二天线阵列的所述第一天线端口连接,所述第二RX与所述第二天线阵列的所述第三天线端口连接。
在第一方面的第三种可能的实现方式中,第一RRU包括两个TRX、第一RX和第二RX,形成一个2T4R模块,再结合第三RX和第四RX形成2T4R+2R模块,且由于第一TRX、第二TRX、第一RX和第二RX工作在第一频段,第三RX和第四RX工作在第二频段,这样可以使有源天线系统在单频段工作模式和双频段工作模式之间切换。
结合第一方面或者第一方面的第一种至第三种中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,
所述有源天线系统还包括第二RRU;
所述第二RRU包括两个端口,所述第二RRU的两个端口分别与所述第二天线阵列的所述第二天线端口和第四天线端口连接。
在第一方面的第四种可能的实现方式中,由于第二RRU的两个端口可以分别与第二天线阵列的另外两个天线端口连接,因此也不需要为第二RRU设置合路单元,进一步减少整机重量,且在接入第二RRU时还能使有源天线系统工作在双频段工作模式。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,所述有源天线系统还包括第二RRU,所述第二RRU包括两个端口,所述第二RRU的两个端口分别与所述第二天线阵列的所述第二天线端口和第四天线端口连接;
其中,所述第二RRU包括:第三TRX、第四TRX、第五RX和第六RX;所述第三TRX和所述第四TRX工作在第二频段,所述第五RX和所述第六RX工作在第一频段;所述第三TRX和所述第五RX与所述第二天线端口连接,所述第四TRX和所述第六RX与所述第四天线端口连接。
结合第一方面或第一方面的第一种至第五种中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述有源天线系统工作在单频段工作模式时,所述第二天线阵列的第二天线端口和第四天线端口空置。
其中,所述第二天线阵列的第二天线端口和第四天线端口空置可以为关闭与所述第二天线端口和第四天线端口相连的所述其他RRU,或者不接入所述其他RRU。
结合第一方面或第一方面的第一种至第六种中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,
所述第二天线阵列的第二天线端口和第四天线端口空置;
所述第一天线阵列和所述第二天线阵列分别接收第一混合信号,所述第一混合信号中包含第一频段的射频信号,所述第一天线阵列用于向所述第一RRU发送两路所述第一混合信号,所述第二天线阵列用于向所述第一RRU发送两路所述第一混合信号;
所述第一RRU,用于接收所述第一天线阵列发送的两路所述第一混合信号和所述第二天线阵列发送的两路所述第一混合信号。
结合第一方面的第三可能的实现方式,在第一方面的第八种可能的实现方式中,所述第二天线阵列的第二天线端口和第四天线端口空置;
所述第一天线阵列和所述第二天线阵列分别接收第一混合信号,所述第一混合信号中包含第一频段的射频信号;
所述第三RX和所述第四RX关断,所述第一TRX、第二TRX、第一RX和第二RX开通;
所述第一TRX和第二TRX,分别用于接收所述第一天线阵列发送的第一混合信号中的所述第一频段的射频信号;
所述第一RX和第二RX,分别用于接收所述第二天线阵列发送的第一混合信号中的所述第一频段的射频信号。
结合第一方面或第一方面的第一种至第八种中的任一种可能的实现方式,在第一方面的第九种可能的实现方式中,
所述第一天线阵列对应的波束倾角与所述第二天线阵列中与所述第一RRU相连的两个天线端口对应的第一波束倾角相同或不同。
可选的,所述有源天线系统工作在单频段工作模式,所述第一天线阵列对应的波束倾角与所述第二天线阵列中与所述第一RRU相连的两个天线端口对应的第一波束倾角相同或不同。
可选的,所述单频段工作模式包括单频段V4R工作模式和单频段H4R工作模式。
可选的,所述有源天线单元工作在单频段V4R工作模式,所述第一天线阵列对应的波束倾角与所述第二天线阵列中与所述第一RRU相连的两个天线端口对应的第一波束倾角不同。
可选的,所述有源天线单元工作在单频段H4R工作模式,所述第一天线阵列对应的波束倾角与所述第二天线阵列中与所述第一RRU相连的两个天线端口对应的第一波束倾角相同。
可以理解的,在所述有源天线单元工作在单频段工作模式时,第二天线阵列的第二波束未使用并且不会对系统性能产生影响。
结合第一方面的第九种可能的实现方式,在第一方面的第十种可能的实现方式中,
通过调整所述第二天线阵列与所述第一RRU相连的两个天线端口对应的第一波束倾角,以使所述第一天线阵列对应的波束倾角与所述第二天线阵列中与所述第一RRU相连的两个天线端口对应的第一波束倾角相同或不同。
可选的,通过调整所述第二天线阵列的移相器,可以调整所述第二天线阵列与所述第一RRU相连的两个天线端口对应的第一波束倾角。
结合第一方面的第四种或第五种可能的实现方式,在第一方面的第十一种可能的实现方式中,
所述第一天线阵列和所述第二天线阵列,分别用于接收第二混合信号,所述第二混合信号中包含第一频段的射频信号和第二频段的射频信号;
所述第一天线阵列,还用于向所述第一RRU发送两路所述第二混合信号;
所述第二天线阵列,还用于向所述第二RRU发送两路所述第二混合信号;
所述第一RRU,用于接收所述第一天线阵列发送的两路所述第二混合信号;
所述第二RRU,用于接收所述第二天线阵列发送的两路所述第二混合信 号。
结合第一方面的第五种可能的实现方式,在第一方面的第十二种可能的实现方式中,
所述第一天线阵列和所述第二天线阵列,分别用于接收第二混合信号,所述第二混合信号中包含第一频段的射频信号和第二频段的射频信号;
所述第一RRU中的第一RX和第二RX关断,第一TRX、第二TRX、第三RX和第四RX开通;
所述第一TRX和第二TRX,分别用于接收所述第一天线阵列发送的第二混合信号中的所述第一频段的射频信号;
所述第三RX和第四RX,分别用于接收所述第一天线阵列发送的第二混合信号中的所述第二频段的射频信号。
结合第一方面的第十二种可能的实现方式,在第一方面的第十三种可能的实现方式中,
所述第三TRX和所述第四TRX,分别用于接收所述第二天线阵列发送的第二混合信号中的所述第二频段的射频信号;
所述第五RX和所述第六RX,分别用于接收所述第二天线阵列发送的第二混合信号中的所述第一频段的射频信号。
结合第一方向的第一方面的第三种、第五种、第八种和第十二种中的任一种可能的实现方式,在第一方面的第十四种可能的实现方式中,
所述第一TRX和第二TRX,还分别用于接收基站的基带模块发送的基带信号;所述第一TRX,还用于将所述基带信号转换成射频信号,向第一天线阵列发送所述射频信号,由所述第一天线阵列发射所述射频信号;所述第二TRX,还用于将所述基带信号转换成射频信号,向第一天线阵列发送所述射频信号,由所述第一天线阵列发射所述射频信号。
结合第一方面的第五种或第十三种可能的实现方式,在第一方面的第十五种可能的实现方式中,
所述第三TRX和第四TRX,还分别用于接收基站的基带模块发送的基带信号;所述第三TRX,还用于将所述基带信号转换成射频信号,向第二天线阵列发送所述射频信号,由所述第二天线阵列发射所述射频信号;所述第四TRX,还用于将所述基带信号转换成射频信号,向第二天线阵列发送所述射频信号,由所述第二天线阵列发射所述射频信号。
结合第一方面的第十二种或第十三种可能的实现方式,在第一方面的第十六种可能的实现方式中,
所述第一天线阵列对应的波束倾角与所述第二天线阵列中与所述第二RRU相连的两个天线端口对应的波束倾角相同。
在第一方面的第十六种可能的实现方式中,第一天线阵列对应的波束倾角与第二天线阵列中与第二RRU相连的两个天线端口对应的波束倾角相同,可以使有源天线系统工作在双频段工作模式。
结合第一方面的第十四种可能的实现方式,在第一方面的第十七种可能的实现方式中,
调整所述第二天线阵列中与所述第二RRU相连的两个天线端口对应的波束倾角,以使所述第一天线阵列的两个天线端口对应的波束倾角与所述第二天线阵列中与所述第二RRU相连的两个天线端口对应的第二波束倾角相同。
可选的,通过调整所述第二天线阵列中的移相器调整所述第二天线阵列中与所述第二RRU相连的两个天线端口对应的波束倾角。
第二方面,提供了一种基站,所述基站包括上述第一方面或第一方面的第一种至第十七种中的任一种可能的实现方式所述的有源天线系统。
第三方面,提供了一种通信系统,所述通信系统包括所述第二方面所述的基站。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种基站架构示意图;
图2-1是本申请实施例提供的一种有源天线系统的结构示意图;
图2-2是本申请实施例提供的另一种有源天线系统的结构示意图;
图2-3是本申请实施例提供的第一天线阵列对应的波束倾角与第一波束倾角不同示意图;
图2-4是本申请实施例提供的第一天线阵列对应的波束倾角与第一波束倾角相同示意图;
图2-5是本申请实施例提供的第一天线阵列对应的波束倾角与第二波束倾角相同示意图;
图2-6是本申请实施例提供的另一种有源天线系统的结构示意图;
图2-7是本申请实施例提供的另一种有源天线系统的结构示意图;
图2-8是本申请实施例提供的另一种有源天线系统的结构示意图;
图2-9是本申请实施例提供的另一种有源天线系统的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
参见图1,在目前可以将基站的天线模块和基带模块分离,这样多个基站的基带模块可以集中在一个机房内,每个基站的天线模块可以设置在其他地方,且每个基站的天线模块和基带模块通过光纤等线路相连接。
在本申请实施例中,基站的天线模块可以为有源天线系统,其可以用于接收射频信号,该射频信号可以为终端发送的,如手机发送的,然后将接收的射频信号转换成基带信号,再向基站的基带模块发送转换的基带信号,由该基带模块对该基带信号进行处理。
参见图2-1,本申请实施例提供了一种有源天线系统200,该有源天线系统200可以为上述图1提供的有源天线系统,该有源天线系统200包括:
第一天线阵列201、第二天线阵列202和第一RRU203;其中,
第一天线阵列201设有两个天线端口,第二天线阵列202设有第一天线端口a、第二天线端口b、第三天线端口c和第四天线端口d;
第一RRU203设有四个端口;
第一RRU203的四个端口分别与第一天线阵列201的两个天线端口、第二天线阵列202的第一天线端口a和第三天线端口c连接;
第二天线阵列202的第二天线端口b和第四天线端口d用于连接除第一RRU203外的其他RRU。
可选的,参见图2-1,第二天线阵列202包括两个极化方向的天线辐射单元,分别为第一天线辐射单元2021和第二天线辐射单元2022,第一天线辐射单元2021设有第一天线端口a和第二天线端口b,第二天线辐射单元2022设有第三天线端口c和第四天线端口d,第一天线端口a和第三天线端口c对应第二天线阵列202的第一波束,第二天线端口b和第四天线端口d对应第二天线阵列202的第二波束。
可选的,仍参见图2-1,第一天线阵列201也包括两个极化方向的天线辐射单元,分别为第三天线辐射单元2011和第四天线辐射单元2012,第一天线阵列201包括的两个天线端口分别为第五天线端口e和第六天线端口f;其中,第三天线辐射单元2011上设有该第五天线端口e,第四天线辐射单元2012上设有该第六天线端口f,第五天线端口e和第六天线端口f对应第一天线阵列201的一波束,该波束可以为第一波束或第二波束。
可选的,在本实施例中,第一天线阵列201、第二天线阵列202和第一RRU203集成为一个有源天线装置,该有源天线装置设有两个对外的天线端口,分别为第二天线端口b和第四天线端口d,用于与除第一RRU203以外的其他RRU连接。
可选的,参见图2-2,该有源天线系统200还包括第二RRU204;
第二RRU204包括两个端口,第二RRU204的两个端口分别与第二天线阵列202的第二天线端口b和第四天线端口d连接。
其中,该有源天线系统200可以工作在单元频段工作模式或双频段工作模式。
当有源天线系统200工作在单频段工作模式时,第二天线阵列202的第二天线端口b和第四天线端口d空置。即可以不接入第二RRU204或者关闭第二RRU204。
第一天线阵列201和第二天线阵列202,分别用于接收第一混合信号,第一混合信号包含第一频段的射频信号;第一天线阵列201还用于向第一RRU203发送两路第一混合信号,第二天线阵列202,还用于向第一RRU203发送两路第一混合信号;
第一RRU203,用于接收第一天线阵列201发送的两路第一混合信号和第二天线阵列202发送的两路第一混合信号。
可选的,第一RRU203可以分别从接收的四路第一混合信号中滤波出第一 频段的射频信号,将滤波的第一频段的射频信号转换成第一基带信号,向基站的基带模块发送转换的第一基带信号。然后基站的基带模块可以接收该第一基带信号,并对该第一基带信号进行基带处理。
可选的,有源天线系统200工作在单频段工作模式,第一天线阵列201对应的波束倾角与第二天线阵列202中与第一RRU203相连的两个天线端口对应的波束倾角相同或不同。
可选的,单频段工作模式包括单频段V4R(Vertical 4 Receive,垂直4接收)工作模式和单频段H4R(Horizontal 4 Receive,水平4接收)工作模式。
有源天线系统200工作在单频段V4R工作模式,第一天线阵列201对应的波束倾角与第二天线阵列202中与第一RRU203相连的两个天线端口对应的第一波束倾角不同。例如,参见图2-3,有源天线系统200工作在单频段V4R工作模式,第一天线阵列201对应的波束倾角与第二天线阵列202的第一天线端口a和第三天线端口d对应的第一波束倾角不同。此时,第二天线阵列202的第二波束停止使用,且对系统性能不会产生影响。
有源天线系统200工作在单频段H4R工作模式,第一天线阵列201对应的波束倾角与第二天线阵列202中与第一RRU203相连的两个天线端口对应的第一波束倾角相同。例如,参见图2-4,有源天线系统200工作在单频段H4R工作模式,第一天线阵列201对应的波束倾角与第二天线阵列202的第一天线端口a和第三天线端口c对应的第一波束倾角相同。此时,第二天线阵列202的第二波束停止使用,且对系统性能不会产生影响。
其中,第一天线阵列201和第二天线阵列202均包括移相器,可以通过第一天线阵列201的移相器或第二天线阵列202的移相器,来使第一天线阵列201对应的波束倾角与第二天线阵列202中与第一RRU203相连的两个天线端口对应的第一波束倾角相同或不同。具体有如下两种实现方式,包括:
第一种方式:通过调整第二天线阵列202的移相器调整第二天线阵列202中与第一RRU203相连的两个天线端口对应的第一波束倾角,以使第一天线阵列201对应的波束倾角与第二天线阵列202中与第一RRU203相连的两个天线端口对应的第一波束倾角相同或不同。
例如,参见图2-3和2-4,通过调整第二天线阵列202的移相器调整第二天线阵列202与第一RRU203相连的第一天线端口a和第三天线端口c对应的第一波束倾角,以使第一天线阵列201对应的波束倾角与第二天线阵列202的 第一天线端口a和第三天线端口c对应的第一波束倾角相同或不同。
第二种方式:通过调整第一天线阵列201的移相器调整第一天线阵列201对应的波束倾角,以使第一天线阵列201对应的波束倾角与第二天线阵列202中与第一RRU203相连的两个天线端口对应的第一波束倾角相同或不同。
例如,参见图2-3和2-4,通过调整第一天线阵列201的移相器调整第一天线阵列201对应的波束倾角,以使第一天线阵列201对应的波束倾角与第二天线阵列202的第一天线端口a和第三天线端口c对应的第一波束倾角相同或不同。
当有源天线系统200工作在双频段工作模式时,接入并开启第二RRU204。
第一天线阵列201和第二天线阵列202,分别用于接收第二混合信号,第二混合信号包含第一频段的射频信号和第二频段的射频信号;
第一天线阵列201,还用于向第一RRU203发送两路第二混合信号,以及第二天线阵列202,还用于向第二RRU204发送两路第二混合信号;
第一RRU203,用于接收第一天线阵列201发送的两路第二混合信号;
第二RRU204,用于接收第二天线阵列202发送的两路第二混合信号。
可选的,第一RRU203可以从接收的两路第二混合信号中滤波出第一频段的射频信号和第二频段的射频信号,将滤波的第一频段的射频信号转换成第一基带信号,将滤波的第二频段的射频信号转换成第二基带信号,向基站的基带模块发送转换的第一基带信号和第二基带信号。第二RRU204可以从接收的两路第二混合信号中滤波出第一频段的射频信号和第二频段的射频信号,将滤波的第一频段的射频信号转换成第一基带信号,将滤波的第二频段的射频信号转换成第二基带信号,向基站的基带模块发送转换的第一基带信号和转换的第二基带信号。
然后,基站的基带模块可以接收第一RRU203发送的第一基带信号和第二基带信号,以及接收第二RRU204发送的第一基带信号和第二基带信号,并对接收的第一基带信号和第二基带信号进行基带处理。
可选的,有源天线系统200工作在双频段工作模式,第一天线阵列201对应的波束倾角与第二天线阵列202中与第二RRU204相连的两个天线端口对应的第二波束倾角相同,所述有源天线系统200工作在双频段H4R工作模式。例如,参见图2-5,有源天线系统200工作在双频段工作模式,第一天线阵列201对应的波束倾角与第二天线阵列202的第二天线端口b和第四天线端口d 对应的第二波束倾角相同。此时第二天线阵列202的第一波束未使用,且不会对系统性能产生影响。
其中,通过第一天线阵列201的移相器或第二天线阵列202的移相器,来使第一天线阵列201的两个天线端口对应的波束倾角与第二天线阵列202中与第二RRU204相连的两个天线端口对应的第二波束倾角相同。具体有如下两种实现方式,包括:
第一种方式:通过调整第二天线阵列202的移相器调整第二天线阵列202中与第二RRU203相连的两个天线端口对应的第二波束倾角,以使第一天线阵列201对应的波束倾角与第二天线阵列202中与第二RRU204相连的两个天线端口对应的第二波束倾角相同。
例如,参见图2-5,通过调整第二天线阵列202的移相器调整第二天线阵列202的第二天线端口b和第四天线端口d对应的第二波束倾角,以使第一天线阵列201对应的波束倾角与第二天线阵列202的第二天线端口b和第四天线端口d对应的第二波束倾角相同。
第二种方式:通过调整第一天线阵列201的移相器调整第一天线阵列201对应的波束倾角,以使第一天线阵列201对应的波束倾角与第二天线阵列202中与第二RRU204相连的两个天线端口对应的第二波束倾角相同。
例如,仍参见图2-5,通过调整第一天线阵列201的移相器调整第一天线阵列201对应的波束倾角,以使第一天线阵列201对应的波束倾角与第二天线阵列202的第二天线端口b和第四天线端口d对应的第二波束倾角相同。
可选的,参见图2-6,第一天线辐射单元2021还设有第一功分合路单元g,第一功分合路单元g与第一天线辐射单元2021、第一天线辐射单元2021上设有的第一天线端口a和第二天线端口b连接。
当有源天线系统200工作在单频段工作模式时,第一功分合路单元g,用于通过与第一RRU203相连的第一天线端口a,向第一RRU203发送第一天线辐射单元2021接收的第一混合信号。当有源天线系统200工作在双频段工作模式时,第一功分合路单元g,用于通过与第二RRU204相连的第二天线端口b,向第二RRU204发送第一天线辐射单元2021接收的第二混合信号。
可选的,第一功分合路单元g可以集成在第一天线辐射单元2021上。
可选的,仍参见图2-6,第二天线辐射单元2022还设有第二功分合路单元h,第二功分合路单元h与第二天线辐射单元2022、第二天线辐射单元2022 设有的第三天线端口c和第四天线端口d连接。
当有源天线系统200工作在单频段工作模式时,第二功分合路单元h,用于通过与第一RRU203相连的第三天线端口c,向第一RRU203发送第二天线辐射单元2022接收的第一混合信号。当有源天线系统200工作在双频段工作模式时,第二功分合路单元h,用于通过与第二RRU204相连的第四天线端口h,向第二RRU204发送第二天线辐射单元2022接收的第二混合信号。
可选的,第二功分合路单元h可以集成在第二天线辐射单元2022上。
其中,第一功分合路单元g可以为功分合路器或Bulter矩阵。第二功分合路单元h可以为功分合路器或Bulter矩阵。在本实施例中,当第一功分合路单元单元g或第二功分合中单元h为功分合路器时,由于该功分合路器是集成在第一天线辐射单元2021或第二天线辐射单元2022上,该功分合路器的体积和重量都比目前的合路单元小。
可选的,参见图2-2,第一RRU203的四个端口分别为第一端口1、第二端口2、第三端口3和第四端口4,第一端口1和第二端口2分别与第一天线阵列201的第五天线端口e和第六天线端口f连接,第三端口3和第四端口4分别第一天线辐射单元2021中的第一天线端口a和第二天线辐射单元2022中的第三天线端口c连接。
可选的,第二RRU204的两个端口分别为第五端口5和第六端口6,第五端口5和第六端口6分别与第一天线辐射单元2021中的第二天线端口b和第二天线辐射单元2022中的第四天线端口d连接。
可选的,当有源天线系统200工作在单频段工作模式时,第一天线阵列201和第二天线阵列202向第一RRU203发送第一混合信号的过程可以为:
第一天线阵列201可以通过第五天线端口e向第一RRU203发送一路第一混合信号,以及通过第六天线端口f向第一RRU203发送一路第一混合信号;相应的,第一RRU203通过第一端口1接收第一天线阵列201通过第五天线端口e发送的一路第一混合信号,以及通过第二端口2接收第一天线阵列201通过第六天线端口f发送的一路第一混合信号,以实现接收第一天线阵列201发送的两路第一混合信号。
第二天线阵列202可以通过第一天线辐射单元2021上的第一天线端口a向第一RRU203发送一路第一混合信号,以及通过第二天线辐射单元2022上的第三天线端口c向第一RRU203发送一路第一混合信号,以实现向第一 RRU203发送两路第一混合信号。相应的,第一RRU203通过第三端口3接收第二天线阵列202通过第一天线端口a发送的一路第一混合信号,以及通过第四端口4接收第二天线阵列202通过第三天线端口c发送的一路第一混合信号,以实现接收第二天线阵列202发送的两路第一混合信号。
当有源天线系统工作在双频段工作模式时,第一天线阵列201和第二天线阵列202向第一RRU203和第二RRU204发送第二混合信号的过程可以为:
第一天线阵列201可以通过第五天线端口e向第一RRU203发送一路第二混合信号,以及通过第六天线端口f向第一RRU203发送一路第二混合信号,以实现向第一RRU203发送两路第二混合信号。相应的,第一RRU203通过第一端口1接收第一天线阵列201通过第五天线端口e发送的一路第二混合信号,以及通过第二端口2接收第一天线阵列201通过第六天线端口f发送的一路第二混合信号,以实现接收第一天线阵列201发送的两路第二混合信号。
第二天线阵列202可以通过第一天线辐射单元2021上的第二天线端口b向第二RRU204发送一路第二混合信号,以及通过第二天线辐射单元2022上的第四天线端口d向第二RRU204发送一路第二混合信号,以实现向第二RRU204发送两路第二混合信号。相应的,第二RRU203通过第五端口5接收第二天线阵列202通过第二天线端口b发送的一路第二混合信号,以及通过第六端口6接收第二天线阵列202通过第四天线端口d发送的一路第二混合信号,以实现接收第二天线阵列202发送的两路第二混合信号。
可选的,参见图2-7,第一RRU203的结构,包括:
第一TRX2031、第二TRX2032、第一RX2033、第二RX2034、第三RX2035和第四RX2036。其中,第一TRX2031、第二TRX2032、第一RX2033和第二RX2034工作在第一频段,第三RX2035和第四RX2036工作在第二频段;
第一TRX2031和第三RX2035与第一端口1连接,第二TRX2032和第四RX2036与第二端口2连接,第一RX2033和第二RX2034分别与第三端口3和第四端口4连接。
当有源天线系统工作在单频段工作模式,第二天线阵列202的第二天线端口b和第四天线端口d空置。
第三RX2035和第四RX2036关断,第一TRX2031、第二TRX2032、第一RX2033和第二RX2034开通;
第一TRX2031和第二TRX2032,分别用于接收第一天线阵列201发送的 一路第一混合信号包括的第一频段的射频信号;
第一RX2033和第二RX2034,分别用于接收第一天线阵列201发送的一路第一混合信号包括的第一频段的射频信号。
可选的,第一TRX2031和第二TRX2032,还分别用于接收基站的基带模块发送的基带信号;第一TRX2031,还用于将基带信号转换成射频信号,向第一天线阵列201发送该射频信号,由第一天线阵列201发射该射频信号;第二TRX2032,还用于将该基带信号转换成射频信号,向第一天线阵列201发送该射频信号,由该第一天线阵列201发射该射频信号。可选的,所述射频信号可以是第一频段的射频信号。
参见图2-8,第一RRU203还包括第一滤波器203a、第二滤波器203b、第三滤波器203c、第四滤波器203d、第五滤波器203e和第六滤波器203f。
第一滤波器203a分别与第一端口1和第一TRX2031连接,第二滤波器203b分别与第三端口3和第一RX2033连接,第三滤波器203c分别与第四端口4和第二RX2034连接,第四滤波器203d分别与第二端口2和第二TRX连接,第五滤波器203e分别与第一端口1和第三RX2035连接,第六滤波器203f分别与第二端口2与第四RX2036连接。
可选的,当有源天线系统200工作在单频段工作模式时,第一滤波器203a,用于通过第一端口1接收第一天线阵列201发送的一路第一混合信号,从第一混合信号中滤波出第一频段的射频信号,向第一TRX发送第一频段的射频信号。
第二滤波器203b,用于通过第三端口3接收第二天线阵列202发送的一路第一混合信号,从第一混合信号中滤波出第一频段的射频信号,向第一RX发送第一频段的射频信号。
第三滤波器203c,用于通过第四端口4接收第二天线阵列202发送的一路第一混合信号,从第一混合信号中滤波出第一频段的射频信号,向第二RX发送第一频段的射频信号。
第四滤波器203d,用于通过第二端口2接收第一天线阵列201发送的一路第一混合信号,从第一混合信号中滤波出第一频段的射频信号,向第二TRX发送第一频段的射频信号。
可选的,第一RRU203中的每个TRX对应的滤波器可以是软件和/或硬件的形式分别集成在每个TRX中,也可以是独立的软件和/或硬件模块;第一 RRU203中的每个RX对应的滤波器可以是软件和/或硬件的形式分别集成在每个RX中,也可以是独立的软件和/或硬件模块。
进一步地,参见图2-9,第一TRX2031、第二TRX2032、第一RX2033、第二RX2034、第三RX2035、第四RX2036均分别通过光纤等线路与基站的基带模块连接。
第一TRX2031、第二TRX2032、第一RX2033和/或第二RX2034在接收到第一频段的射频信号,将第一频段的射频信号转换成第一基带信号,并通过与基站的基带模块之间的线路,将转换的第一基带信号发送给基站的基带模块。
可选的,见图2-7,第二RRU204包括:
第三TRX2041、第四TRX2042、第五RX2043和第六RX2044,第三TRX2041和第四TRX2042工作在第二频段,第五RX2043和第六RX2044工作在第一频段;第三TRX2041和第五RX2043与第五端口5连接,第四TRX2042和第六RX2044与第六端口6连接。
可选的,当有源天线系统200工作在双频段工作模式时,第一RX2033和第二RX2034关断,第一TRX2031、第二TRX2032、第三RX2035和第四RX2036开通;以及第三TRX2041、第四TRX2042、第五RX2043和第六RX2044也开通。
第一TRX2031和第二TRX2032,分别用于接收第一天线阵列201发送的一路第二混合信号包括的第一频段的射频信号;
第三RX2035和第四RX2036,分别用于接收第一天线阵列201发送的一路第二混合信号包括的第二频段的射频信号;
第三TRX2041和第四TRX2042,分别用于接收第二天线阵列202发送的一路第二混合信号包括的第二频段的基带信号;
第五RX2043和第六RX2044,分别用于接收第二天线阵列202发送的一路第二混合信号包括的第一频段的射频信号。
进一步地,参见图2-8,第二RRU204还包括第七滤波器204a、第八滤波器204b、第九滤波器204c和第十滤波器204d。
第七滤波器204a分别与第五端口5和第三TRX2041连接,第八滤波器204b分别与第六端口和第四TRX连接,第九滤波器204c分别与第五端口5和第五RX2043连接,第十滤波器204d分别与第六端口6和第六RX2044连接。
当有源天线系统200工作在双频段工作模式时,第一滤波器203a通过第一端口1接收第一天线阵列201发送的一路第二混合信号,从第二混合信号中滤波出第一频段的射频信号,向第一TRX2031发送第一频段的射频信号。
第四滤波器203d通过第二端口2接收第一天线阵列201发送的一路第二混合信号,从第二混合信号中滤波出第一频段的射频信号,向第二TRX2032发送第一频段的射频信号。
第五滤波器203e通过第一端口1接收第一天线阵列201发送的一路第二混合信号,从第二混合信号中滤波出第二频段的射频信号,向第三RX2035发送第二频段的射频信号。
第六滤波器203f通过第二端口2接收第一天线阵列201发送的一路第二混合信号,从第二混合信号中滤波出第二频段的射频信号,向第四RX2036发送第二频段的射频信号。
第七滤波器204a通过第五端口5接收第二天线阵列202发送的一路第二混合信号,从第二混合信号中滤波出第二频段的射频信号,向第三TRX2041发送第二频段的射频信号。
第八滤波器204b通过第六端口6接收第二天线阵列202发送的一路第二混合信号,从第二混合信号中滤波出第二频段的射频信号,向第四TX2042发送第二频段的射频信号。
第九滤波器204c通过第五端口5接收第二天线阵列202发送的一路第二混合信号,从第二混合信号中滤波出第一频段的射频信号,向第五RX2043发送第一频段的射频信号。
第十滤波器204d通过第六端口6接收第二天线阵列202发送的一路第二混合信号,从第二混合信号中滤波出第一频段的射频信号,向第六RX2044发送第一频段的射频信号。
可选的,第二RRU204中的每个TRX对应的滤波器可以是软件和/或硬件的形式分别集成在每个TRX中,也可以是独立的软件和/或硬件模块;第二RRU204中的每个RX对应的滤波器可以是软件和/或硬件的形式分别集成在每个RX中,也可以是独立的软件和/或硬件模块。
进一步地,参见图2-9,第三TRX2041、第四TRX2042、第五RX2043和第六RX2044均分别通过光纤等线路与基站的基带模块连接。
第一TRX2031、第二TRX2032、第五RX2043和/或第六RX2034将接收 的第一频段的射频信号转换成第一基带信号,通过与基站的基带模块之间的线路,将转换的第一基带信号发送给基站的基带模块。
第三TRX2041、第四TRX2042、第三RX2035和第四RX2036将接收的第二频段的射频信号转换成第二基带信号,通过与基站的基带模块之间的线路,将转换的第二基带信号发送给基站的基带模块。
可选的,第三TRX2041和第四TRX2024,还分别用于接收基站的基带模块发送的基带信号;第三TRX2041,还用于将该基带信号转换成射频信号,向第二天线阵列202发送该射频信号,由第二天线阵列202发射该射频信号;第四TRX2042,还用于将该基带信号转换成射频信号,向第二天线阵列202发送该射频信号,由第二天线阵列202发射该射频信号。可选的,所述射频信号可以是第二频段的射频信号。
可选的,在本申请实施例中,第一RRU203的四个端口通过插接的方式插在第一天线阵列201的两个天线端口、第一天线辐射单元2041的一天线端口和第二天线辐射单元2042的一天线端口上。第二RRU204的两个端口通过跳线分别与第一天线辐射单元2041的另一天线端口和第二天线辐射单元2042的另一天线端口连接。当然,第一RRU203的四个端口也可以通过跳线分别与第一天线阵列201的两个天线端口、第一天线辐射单元2041的一天线端口和第二天线辐射单元2042的一天线端口连接。
其中,第一RRU203的四个端口插接在第一天线阵列201和第二天线阵列202时,第一RRU203与第一天线阵列201和第二天线阵列202之间产生的信号损耗较小,要小于第一RRU203的四个端口通过跳线与第一天线阵列201和第二天线阵列202相连时第一RRU203与第一天线阵列201和第二天线阵列202之间产生的信号损耗。
在本申请实施例中,第二天线阵列设有四个天线端口,第一RRU的四个端口可以分别与第一天线阵列的两个天线端口、第一天线阵列的两个天线端口连接,第二RRU的两个端口可以分别与第一天线阵列的另外两个天线端口连接;这样当有源天线系统工作在单频段工作模式时,第一RRU可以接收到第一天线阵列通过两天线端口发送的两路第一混合信号,第二RRU可以接收到第二天线阵列通过两个天线端口发送的两路第一混合信号,从而可以省去合路单元;当有源天线系统工作双频段工作模式时,第一RRU可以接收第一天线阵列通过两个天线端口发送的两路第二混合信号,以及第二RRU可以接收第 二天线阵列通过与第二RRU相连的两个天线端口发送的两路第二混合信号,这样在双频段工作模式下,第一RRU和第二RRU也不需要合路单元连接到第一天线阵列和第二天线阵列,从而可以省去合路单元,减轻了有源天线系统的重量,降低了有源天线系统现场安装和生产制作的复杂度。另外,在本申请实施例中,第一RRU可以直接插接在第一天线阵列的两个天线端口、第一天线辐射单元的一天线端口和第二天线辐射单元的一天线端口上,可以有效地减少信号损耗。
本申请实施例提供了一种基站,所述基站包括如图2-1至2-9所示的任一种有源天线系统。
本申请实施例提供了一种通信系统,所述通信系统包括如所述的基站。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种有源天线系统,其特征在于,所述有源天线系统包括:
    第一天线阵列、第二天线阵列和第一射频拉远单元RRU;其中,
    所述第一天线阵列设有两个天线端口;
    所述第二天线阵列设有第一天线端口、第二天线端口、第三天线端口和第四天线端口四个天线端口;
    所述第一RRU设有四个端口;
    所述第一RRU的四个端口分别与所述第一天线阵列的两个天线端口、所述第二天线阵列的第一天线端口以及所述第二天线阵列的第三天线端口连接;
    所述第二天线阵列的第二天线端口和第四天线端口用于连接除所述第一RRU外的其他RRU。
  2. 如权利要求1所述的有源天线系统,其特征在于,
    所述第二天线阵列包括第一天线辐射单元和第二天线辐射单元,其中,所述第一天线辐射单元包括所述第一天线端口和所述第二天线端口,所述第二天线辐射单元包括所述第三天线端口和所述第四天线端口;
    其中,所述第一天线端口和所述第三天线端口对应所述第二天线阵列的第一波束,所述第二天线端口和所述第四天线端口对应所述第二天线阵列的第二波束。
  3. 如权利要求2所述的有源天线系统,其特征在于,包括如下情况中的至少一种:
    所述第一天线辐射单元设有第一功分合路单元,所述第一功分合路单元分别与所述第一天线辐射单元以及所述第一天线辐射单元设有的两个天线端口连接;
    所述第二天线辐射单元设有第二功分合路单元,所述第二功分合路单元分别与所述第二天线辐射单元以及所述第二天线辐射单元设有的两个天线端口连接。
  4. 如权利要求1至3任一项权利要求所述的有源天线系统,其特征在于, 所述第一RRU包括:
    第一收发器TRX、第二TRX、第一接收器RX、第二RX、第三RX和第四RX;
    其中,所述第一TRX、第二TRX、第一RX和第二RX工作在第一频段,所述第三RX和第四RX工作在第二频段;
    所述第一TRX和所述第三RX与所述第一天线阵列的一天线端口连接;所述第二TRX和所述第四RX与所述第一天线阵列的另一天线端口连接;
    所述第一RX与所述第二天线阵列的所述第一天线端口连接,所述第二RX与所述第二天线阵列的所述第三天线端口连接。
  5. 如权利要求1至4任一项权利要求所述的有源天线系统,其特征在于,所述有源天线系统还包括第二RRU;
    所述第二RRU包括两个端口,所述第二RRU的两个端口分别与所述第二天线阵列的所述第二天线端口和第四天线端口连接。
  6. 如权利要求4所述的有源天线系统,其特征在于,所述有源天线系统还包括第二RRU,所述第二RRU包括两个端口,所述第二RRU的两个端口分别与所述第二天线阵列的所述第二天线端口和第四天线端口连接;
    其中,所述第二RRU包括:第三TRX、第四TRX、第五RX和第六RX;所述第三TRX和所述第四TRX工作在第二频段,所述第五RX和所述第六RX工作在第一频段;所述第三TRX和所述第五RX与所述第二天线端口连接,所述第四TRX和所述第六RX与所述第四天线端口连接。
  7. 如权利要求1至4任一项所述的有源天线系统,其特征在于,
    所述第二天线阵列的第二天线端口和第四天线端口空置;
    所述第一天线阵列和所述第二天线阵列分别接收第一混合信号,所述第一混合信号中包含第一频段的射频信号,所述第一天线阵列用于向所述第一RRU发送两路所述第一混合信号,所述第二天线阵列用于向所述第一RRU发送两路所述第一混合信号;
    所述第一RRU,用于接收所述第一天线阵列发送的两路所述第一混合信号和所述第二天线阵列发送的两路所述第一混合信号。
  8. 如权利要求4所述的有源天线系统,其特征在于,
    所述第二天线阵列的第二天线端口和第四天线端口空置;
    所述第一天线阵列和所述第二天线阵列分别接收第一混合信号,所述第一混合信号中包含第一频段的射频信号;
    所述第三RX和所述第四RX关断,所述第一TRX、第二TRX、第一RX和第二RX开通;
    所述第一TRX和第二TRX,分别用于接收所述第一天线阵列发送的第一混合信号中的所述第一频段的射频信号;
    所述第一RX和第二RX,分别用于接收所述第二天线阵列发送的第一混合信号中的所述第一频段的射频信号。
  9. 如权利要求7或8所述的有源天线系统,其特征在于,所述第一天线阵列对应的波束倾角与所述第二天线阵列中与所述第一RRU相连的两个天线端口对应的波束倾角相同或者不同。
  10. 如权利要求9所述的有源天线系统,其特征在于,
    调整所述第二天线阵列中与所述第一RRU相连的两个天线端口对应的波束倾角,以使所述第一天线阵列对应的波束倾角与所述第二天线阵列中与所述第一RRU相连的两个天线端口对应的波束倾角相同或不同。
  11. 如权利要求5或6所述的有源天线系统,其特征在于,
    所述第一天线阵列和所述第二天线阵列,分别用于接收第二混合信号,所述第二混合信号中包含第一频段的射频信号和第二频段的射频信号;
    所述第一天线阵列,还用于向所述第一RRU发送两路所述第二混合信号;
    所述第二天线阵列,还用于向所述第二RRU发送两路所述第二混合信号;
    所述第一RRU,用于接收所述第一天线阵列发送的两路所述第二混合信号;
    所述第二RRU,用于接收所述第二天线阵列发送的两路所述第二混合信号。
  12. 如权利要求6所述的有源天线系统,其特征在于,
    所述第一天线阵列和所述第二天线阵列,分别用于接收第二混合信号,所 述第二混合信号中包含第一频段的射频信号和第二频段的射频信号;
    所述第一RRU中的第一RX和第二RX关断,第一TRX、第二TRX、第三RX和第四RX开通;
    所述第一TRX和第二TRX,分别用于接收所述第一天线阵列发送的第二混合信号中的所述第一频段的射频信号;
    所述第三RX和第四RX,分别用于接收所述第一天线阵列发送的第二混合信号中的所述第二频段的射频信号。
  13. 如权利要求12所述的有源天线系统,其特征在于,
    所述第三TRX和所述第四TRX,分别用于接收所述第二天线阵列发送的第二混合信号中的所述第二频段的射频信号;
    所述第五RX和所述第六RX,分别用于接收所述第二天线阵列发送的第二混合信号中的所述第一频段的射频信号。
  14. 如权利要求11至13任一项所述的有源天线系统,其特征在于,所述第一天线阵列对应的波束倾角与所述第二天线阵列中与所述第二RRU相连的两个天线端口对应的波束倾角相同。
  15. 如权利要求14所述的有源天线系统,其特征在于,
    调整所述第二天线阵列中与所述第二RRU相连的两个天线端口对应的波束倾角,以使所述第一天线阵列的两个天线端口对应的波束倾角与所述第二天线阵列中与所述第二RRU相连的两个天线端口对应的第二波束倾角相同。
  16. 一种基站,其特征在于,所述基站包括如权利要求1至15任一项权利要求所述的有源天线系统。
  17. 一种通信系统,其特征在于,所述通信系统包括如权利要求16所述的基站。
PCT/CN2016/091919 2016-07-27 2016-07-27 一种有源天线系统、基站及通信系统 WO2018018466A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/091919 WO2018018466A1 (zh) 2016-07-27 2016-07-27 一种有源天线系统、基站及通信系统
CN201680021513.8A CN108886399B (zh) 2016-07-27 2016-07-27 一种有源天线系统、基站及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091919 WO2018018466A1 (zh) 2016-07-27 2016-07-27 一种有源天线系统、基站及通信系统

Publications (1)

Publication Number Publication Date
WO2018018466A1 true WO2018018466A1 (zh) 2018-02-01

Family

ID=61015347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091919 WO2018018466A1 (zh) 2016-07-27 2016-07-27 一种有源天线系统、基站及通信系统

Country Status (2)

Country Link
CN (1) CN108886399B (zh)
WO (1) WO2018018466A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787080B (zh) * 2019-11-07 2024-01-02 Oppo广东移动通信有限公司 天线模组及电子设备
CN112152682B (zh) * 2020-08-13 2021-09-21 南京熊猫电子股份有限公司 用二路天线实现双/多路捆绑通信的mimo通信装置
CN116742341A (zh) * 2022-03-04 2023-09-12 华为技术有限公司 天线组件、阵列天线及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122975A (zh) * 2010-01-07 2011-07-13 中国移动通信集团公司 一种信号处理装置和信号处理方法
CN103874076A (zh) * 2014-03-26 2014-06-18 华为技术有限公司 基站
CN103916153A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种有源一体化天线微站
CN104660320A (zh) * 2015-02-06 2015-05-27 大唐移动通信设备有限公司 一种信号传输装置、系统及方法
US9369881B1 (en) * 2014-11-14 2016-06-14 Sprint Communications Company L.P. Modification of antenna dipole element orientation for enhanced radio transmission

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888023B (zh) * 2009-05-15 2013-02-13 中国移动通信集团公司 一种多系统共用的天线设备
CN102570064B (zh) * 2011-12-31 2016-08-24 南京中兴软件有限责任公司 有源天线装置及其收发信号的方法
WO2014040250A1 (en) * 2012-09-13 2014-03-20 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for antenna calibration
EP3021638B1 (en) * 2013-07-08 2017-08-30 Huawei Technologies Co., Ltd. Remote radio unit and associated device
CN203632668U (zh) * 2013-10-15 2014-06-04 深圳市云海通讯股份有限公司 一种mimo通信系统
US9698889B2 (en) * 2014-09-24 2017-07-04 Intel Corporation Scheduling in a multiple user multiple-input and multiple output communications network
CN105656815B (zh) * 2014-11-11 2019-01-25 华为技术有限公司 一种射频通道的校正方法及装置
US9999073B2 (en) * 2014-11-18 2018-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Signaling adapted CSI-RS periodicities in active antenna systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122975A (zh) * 2010-01-07 2011-07-13 中国移动通信集团公司 一种信号处理装置和信号处理方法
CN103916153A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种有源一体化天线微站
CN103874076A (zh) * 2014-03-26 2014-06-18 华为技术有限公司 基站
US9369881B1 (en) * 2014-11-14 2016-06-14 Sprint Communications Company L.P. Modification of antenna dipole element orientation for enhanced radio transmission
CN104660320A (zh) * 2015-02-06 2015-05-27 大唐移动通信设备有限公司 一种信号传输装置、系统及方法

Also Published As

Publication number Publication date
CN108886399A (zh) 2018-11-23
CN108886399B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
US10498039B2 (en) Base station
US10826555B2 (en) Multi-band multi-path receiving and transmitting device and method, and base station system
CN203225337U (zh) 一种Ku/Ka四频段多极化馈源
CN102089933B (zh) 用于发送和优选地接收信号、尤其是移动无线信号的装置
WO2018018466A1 (zh) 一种有源天线系统、基站及通信系统
WO2022143453A1 (zh) 射频电路及电子设备
US9735854B2 (en) Systems for antenna swapping switching and methods of operation thereof
WO2018219219A1 (zh) Tdd/fdd可配置装置、方法、射频模块及通信设备
EP2086244B1 (en) Signal combination method, device and system having different system, same band and antenna sharing
CN103747447A (zh) 一种数传电台与电力td-lte专网共天线的系统及其实现方法
US9209939B2 (en) Microwave communications device and microwave communications system
CN104639216B (zh) 一种电调天线
US8923923B2 (en) Multi-frequency band antenna feeder sharing method and base station radio frequency unit
CN203340293U (zh) 小功率多天线隧道分布覆盖系统
WO2014008801A1 (zh) 远端机和直放站系统
WO2023098244A1 (zh) 射频前端器件和射频系统
CN207517893U (zh) 双频共口面卫星通信天线
KR101784582B1 (ko) 다중 대역 능동 안테나
CN205847266U (zh) 一种天线分布系统
CN107800460B (zh) 用于跨频段载波聚合的射频拉远单元rru及传输方法
US9548852B2 (en) Antenna cross connect scheme for LTE
CN102122975A (zh) 一种信号处理装置和信号处理方法
CN110572833A (zh) 室内分布系统及网络侧设备
CN106058401A (zh) 一种用于mimo系统的lte多系统合路平台
KR20150140151A (ko) 소방무선과 이동통신망을 통합한 다중대역 컴바이너

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910047

Country of ref document: EP

Kind code of ref document: A1