WO2015034313A1 - 원격 무선 장비 - Google Patents

원격 무선 장비 Download PDF

Info

Publication number
WO2015034313A1
WO2015034313A1 PCT/KR2014/008385 KR2014008385W WO2015034313A1 WO 2015034313 A1 WO2015034313 A1 WO 2015034313A1 KR 2014008385 W KR2014008385 W KR 2014008385W WO 2015034313 A1 WO2015034313 A1 WO 2015034313A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital
transmission
connection terminal
output
Prior art date
Application number
PCT/KR2014/008385
Other languages
English (en)
French (fr)
Inventor
김덕용
정배묵
강상효
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130117762A external-priority patent/KR102116539B1/ko
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Priority to JP2016540817A priority Critical patent/JP6223582B2/ja
Priority to CN201480045856.9A priority patent/CN105556876B/zh
Publication of WO2015034313A1 publication Critical patent/WO2015034313A1/ko
Priority to US15/062,651 priority patent/US9871593B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre

Definitions

  • the present invention relates to a wireless access node system such as a base station, a relay station, a small base station, etc. in a wireless communication (PCS, Cellular, CDMA, GSM, LTE, etc.) network, in particular, the antenna side in a wireless access node system It relates to a remote radio head (RRH) installed in.
  • a wireless access node system such as a base station, a relay station, a small base station, etc. in a wireless communication (PCS, Cellular, CDMA, GSM, LTE, etc.) network, in particular, the antenna side in a wireless access node system It relates to a remote radio head (RRH) installed in.
  • RRH remote radio head
  • a wireless access node system such as a base station has been divided into a base station main body portion for transmitting and receiving signal processing and an antenna for transmitting and receiving wireless signals having a plurality of radiating elements.
  • the base station part is installed at a low position on the ground, and the antenna part is installed at a high position such as a rooftop or a tower of the building, and they may be connected through a feed cable or the like.
  • the base station body part for transmitting and receiving signal processing is divided into an RF signal processing part and a baseband signal processing part, and only the baseband signal processing part is provided in the base station main body part, and the RF signal processing part is provided in the remote wireless equipment.
  • the base station body part may be regarded as 'baseband signal processing equipment'.
  • an optical cable for transmitting and receiving signals and the like in an optical communication method and a power supply for supplying operating power of the remote wireless device are typically provided between the base station main body (baseband signal processing equipment) and the remote wireless device to prevent mutual transmission signal loss.
  • cables they are interconnected via coaxial cables.
  • FIG. 1 is a schematic block diagram of a general base station of a base station in which a remote radio device is installed.
  • a structure in which a base station divides a cell into three sectors and provides a service is shown. It is becoming.
  • first to third antennas 11, 12, and 13 are installed at each column of a tower, and each of the first to third antennas 11, 12, and 13 is provided for each sector.
  • Remote radio equipment 21, 22, 23 is installed.
  • First to third coaxial cables 214, 224, 234 for supply are connected.
  • the three-sector base station for example, three optical cables 213, 223, and 233 are connected between the baseband signal processing equipment 1 and the remote wireless equipment 21, 22, and 23. And three coaxial cables (214, 224, 234) are installed, it can be seen that a relatively large number of a total of six cables should be installed. As such, an increase in the number of installation cables makes it more difficult for the cable connection work for which the aerial work is made, and in particular, the provisioning cost and the installation cost of the cable are significantly increased.
  • FIG. 2 is a bottom configuration diagram of the first remote radio equipment 21 of FIG. 1. 2, at least one optical cable connection terminal (socket) 211 and at least one optical cable connection terminal (socket) 211 for connecting at least one optical cable (a connector) to a remote wireless device 21 and a coaxial for connecting a coaxial cable (a connector) may be used.
  • a cable connection terminal (socket) 212 is provided.
  • four optical cable connection terminals 211 are illustrated as being provided.
  • a plurality of optical cable connection terminals 211 are provided. It is the structure that installed optical cable of dog).
  • each of the remote wireless equipment (21, 22, 23) can be connected to a plurality of optical cables, in that case, it can be seen that the problem of the cable connection work and the installation and installation cost of the cable is further increased.
  • an object of the present invention is to provide a remote wireless equipment for reducing the number of baseband signal processing equipment and connection cables, thereby reducing installation work and costs.
  • the present invention to achieve the above object in the remote wireless equipment; At least one integrated connection terminal for receiving and supplying at least one optical signal and at least one power source; A power supply unit receiving the power from the integrated connection terminal and converting the power into an internal driving power of the corresponding remote wireless device; A photoelectric / electric photoelectric conversion unit which receives the optical signal from the integrated connection terminal and converts the electrical signal; A framer for restoring the electrical signal converted by the photoelectric / electric light conversion unit according to a preset signal demodulation format; A digital signal processor which receives a signal output from the framer and performs level control and waveform control at a digital level; And a transceiving signal conversion module for converting the signal output from the digital signal processing unit into a high frequency transmission wireless signal and amplifying the signal to a high power output to the antenna side.
  • the remote wireless device can reduce the number of baseband signal processing equipment and connection cables, thereby reducing installation work and cost.
  • FIG. 1 is a schematic diagram of an overall schematic block diagram of a base station installed with a general remote radio equipment
  • FIG. 2 is a bottom configuration diagram of the first remote wireless device in FIG.
  • FIG. 3 is a schematic overall block diagram of a base station installed with remote radio equipment according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional structural view of the photoelectric composite cable of FIG.
  • FIG. 5 is a bottom configuration diagram of the first remote wireless device of FIG.
  • FIG. 6 is a detailed block diagram of a remote wireless device according to an embodiment of the present invention.
  • FIG. 3 is a schematic overall block diagram of a base station installed with a remote wireless device according to an embodiment of the present invention.
  • a structure in which a base station divides a corresponding cell into three sectors and provides a service is shown.
  • first to third antennas 11, 12, and 13 are installed in a pillar of a tower, and each of the first to third antennas 11, 12, 13, one for each sector.
  • the first to third remote radio equipment 31, 32, 33 are installed.
  • the first to third remote radio equipment 31, 32, 33 and the baseband signal processing equipment 1 are connected via first to third photoelectric composite cables 41, 42, 43, respectively.
  • Each of the first to third photoelectric composite cables 41, 42, and 43 is composed of a combination of an optical fiber and a power supply line, and transmits and receives signals through an optical communication method through an optical fiber, and supplies power using a power supply line. It has a structure that provides
  • the first photoelectric composite cable 41 is provided with a pair of power supply lines 411 at an inner center thereof, and a plurality of power supply lines 411 are provided around the power supply lines 411 (in the example of FIG. 5, 4). 2) optical fibers 412 are configured to be properly spaced apart from each other by the filler 413. In addition, the outermost side is wrapped by the coating 413.
  • the plurality of optical fibers 412 may be substantially implemented as a bundle of optical fibers, respectively.
  • the number of the plurality of optical fibers 412 may be appropriately set according to the structure of the antenna and the signal transmission standard.
  • the first photoelectric composite cable 41 may be configured, and the second and third photoelectric composite cables 42 and 43 may also be configured in the same manner. .
  • FIG. 5 is a bottom configuration diagram of the first remote radio equipment 31 of FIG. 3.
  • the remote wireless equipment 31 has one integrated connection terminal (socket) 311 for connecting with the photoelectric composite cable (the connector) 41 as shown in FIG. 4. ).
  • the bar disclosed in the patent application No. 2009-0115539 name: photoelectric composite connector, applicant: POSTECH, inventor: Lee Soo-young, application date: November 27, 2009
  • the first remote radio equipment 31 may be configured, while the second and third remote radio equipment 32 and 33 shown in FIG. 3 may be configured as well. .
  • one remote wireless device is a structure that is connected to the baseband signal processing equipment through one photoelectric composite cable, compared to the conventional, It can be seen that substantially only one (photoelectric composite) cable is required between the radio and the baseband signal processing equipment. At this time, both ends of the optoelectric composite cable is configured with a photoelectric composite connector for transmitting power and optical signals through the power supply line and the optical fibers.
  • an integrated connection terminal is also provided in the baseband signal processing equipment, and in operation, the installation may be completed by combining the photoelectric composite connectors at both ends of the photoelectric composite cable with the photoelectric composite connection terminals of the baseband signal processing equipment and the remote wireless equipment. have.
  • FIG. 6 is a detailed block diagram of a remote radio device according to an embodiment of the present invention.
  • FIG. 6 illustrates a detailed internal structure of the first remote radio device 31 of FIG.
  • FIG. 6 the configuration of the transmission signal and the power supply from the baseband signal processing equipment to the remote wireless device 31 will be described. Referring to FIG.
  • the remote wireless device 31 may be a photoelectric composite cable ( An integrated connection terminal 311 having a structure that is engaged with the photoelectric composite connector 411 of 41, and which is configured to receive an optical signal and power supplied from the baseband signal processing equipment; A power supply unit 314 which receives power from the integrated connection terminal 311 and converts the power into internal driving power of the corresponding remote wireless device 31 and supplies it to respective internal functional units; A photoelectric / electric light conversion unit 313 for receiving an optical signal output from the integrated connection terminal 311 and converting an electrical signal; A framer (315) for reconstructing the electrical signal converted by the photoelectric / optical conversion unit (313) according to a signal demodulation format set in advance (ie, corresponding to a signal modulation format in the baseband signal processing module); The digital signal processor 317 receives a signal output from the framer 315 and performs level adjustment and waveform adjustment at a digital level, and the digital signal output from the digital signal processor 317 transmits and receives a signal conversion module.
  • An integrated connection terminal 311
  • the photoelectric / electric photoelectric conversion unit 313 may be implemented by, for example, a structure of a small form-factor pluggable (SFP) optical transceiver, and the framer 315 may be, for example, in compliance with a common public radio interface (CPRI) standard. It can have a structure of a parallel-to-parallel (serial-parallel / parallel-serial) converter.
  • the photoelectric / optical conversion unit 313 may be implemented with a plurality of SFP optical transmitters to respectively correspond to a plurality of optical fibers in the photoelectric composite cable.
  • the framer 315 may include a plurality of linear / parallel converters. It can be implemented as.
  • the digital signal processor 317 performs a digital up-conversion function for amplifying the level of the digital signal, a crest factor reduction (CRF) function for reducing the crest factor, and a digital pre-distortion (DPD) function for pre-distorting the digital signal. It may include sub-components.
  • the digital signal processor 317 may be implemented as a digital signal processor (DSP) device or a field programmable gate array (FPGA). In this case, the digital signal processor 317 may further include a feedback circuit (not shown) for providing a feedback signal from the amplified transmission signal of the rear stage to perform the DPD function.
  • the transmission and reception signal conversion module for converting the digital signal output from the digital signal processing unit 317 into a high frequency transmission wireless signal to convert the output signal of the digital signal processing unit 317 into an analog signal of the intermediate frequency (IF) and outputs it.
  • a digital / analog converter 320 A digital / analog converter 320; A frequency up converter 322 for mixing the intermediate frequency (IF) signal output from the digital / analog converter 322 with the local oscillation signal and converting the signal into a high frequency signal of a corresponding transmission frequency band; A high output transmit amplifier 324 which receives the output of the frequency up converter 322 and amplifies a high frequency signal at a transmit power level; A high frequency transmission signal output from the transmission amplifier 324 is provided to the antenna side through the antenna connection terminal 33, and the received signal provided from the antenna side through the antenna connection terminal 33 is separated from the path of the transmission signal.
  • IF intermediate frequency
  • the analog / digital converter 336 may convert the signal changed by the frequency down converter 334 to the digital signal processor 317 by analog-to-digital conversion.
  • the transmission and reception separation unit 328 may be implemented through a duplexer for separating transmission and reception frequency bands.
  • the antenna may have a MIMO (Multi Input Multi Output) structure, and thus the antenna connection terminal is implemented as a plurality of terminals, and similarly implemented as a plurality of duplexers as the transmission and reception separation unit 328,
  • the transmit amplifier 324, the receive amplifier 332, and the like may also be configured with a plurality of amplifying elements.
  • the received signal to the digital signal processor 317 is provided to the framer 315 through digital level adjustment, etc.
  • the framer 315 modulates and outputs the received signal in accordance with a preset transmission format.
  • 313 generates an optical signal according to the modulated signal output from the framer 315 and transmits the optical signal to the baseband signal processing equipment through the integrated connection terminal 311.
  • the integrated connection terminal 311 and the sub integrated connection terminal 312 connected in parallel with the optical signal and the power source are further installed.
  • the sub integrated connection terminal 312 may be configured to be coupled with the optical signal and the power supply path of the integrated connection terminal 311 to form a parallel signal path.
  • Such a structure is particularly suitable for being applied to a repeater or the like, and the repeaters may form a network in which a plurality of antennas and remote wireless devices installed therein are connected in parallel in a daisy chain form. In this case, it is possible to simply connect adjacent remote wireless devices through the sub integrated connection terminal 312. Compared with the conventional structure shown in FIG.
  • the remote wireless device of the present invention is described as the same as the RRH, but in addition, the remote wireless device of the present invention is installed at the antenna side or the front end of the antenna, and is separated from the remote baseband signal processing equipment, and the RF signal It will be appreciated that it may be considered the same as any named equipment in charge of processing.

Abstract

본 발명은 원격 무선 장비에 있어서; 적어도 하나 이상의 광신호와, 적어도 하나 이상의 전원을 통합하여 공급받기 위한 적어도 하나 이상의 통합 연결 단자와; 통합 연결 단자로부터 전원을 제공받아, 해당 원격 무선 장비의 내부 구동 전원으로 변환하여 공급하는 전원공급부와; 통합 연결 단자로부터 광신호를 제공받아 전기적 신호 변환하는 광전/전광 변환부와; 광전/전광 변환부에서 변환된 전기적 신호를 미리 설정된 신호 복조 포맷에 따라 복원하는 프레이머와; 프레이머에서 출력되는 신호를 제공받아, 디지털 레벨에서 레벨 조절 및 파형 조절을 수행하는 디지털 신호 처리부와; 디지털 신호 처리부에서 출력되는 신호를 고주파의 송신 무선 신호로 변환하고 고출력으로 증폭되어 안테나측으로 출력하는 송수신 신호 변환 모듈을 구비한다.

Description

원격 무선 장비
본 발명은 무선 통신(PCS, Cellular, CDMA, GSM, LTE 등) 네트워크에서, 기지국, 중계국, 소형 기지국 등과 같은 무선 접속 노드(Wireless Access node) 시스템에 관한 것으로, 특히, 무선 접속 노드 시스템에서 안테나 측에 설치되는 원격 무선 장비(RRH: Remote Radio Head)에 관한 것이다.
통상적으로, 기지국 등과 같은 무선 접속 노드 시스템은 송수신 신호 처리를 위한 기지국 본체 부분과, 다수의 방사소자들을 구비하여 무선 신호를 송수신하는 안테나로 구분되어 왔다. 통상 기지국 파트는 지상의 낮은 위치에 설치되며, 안테나 파트는 건물 옥상이나 타워 등의 높은 위치에 설치되고 이들간에는 급전케이블 등을 통해 연결될 수 있다.
최근 들어, 무선 신호 처리를 위한 각 장치들의 소형, 경량화에 따른 타워 설치의 용이성 증대에 힘입어, 안테나와 기지국 본체 부분간의 신호 전송시의 케이블 손실 등을 보상할 수 있도록, 송수신 무선 신호의 처리를 담당하는 원격 무선 장비(RRH)를 안테나 전단에 설치하는 구조가 널리 적용되고 있다.
즉, 송수신 신호 처리를 위한 기지국 본체 부분을 다시 RF 신호 처리 부분과 베이스밴드 신호 처리 부분으로 분리하여, 베이스밴드 신호 처리 부분만을 기지국 본체 부분에 구비하며, RF 신호 처리 부분은 원격 무선 장비에 구비한다. 이 경우에 기지국 본체 부분은 '베이스밴드 신호 처리 장비'로 간주할 수 있다. 이때, 통상 기지국 본체 부분(베이스밴드 신호 처리 장비)과 원격 무선 장비간에는 상호 전송 신호 손실을 방지하기 위해 광통신 방식으로 송수신 신호 등을 전달하는 광케이블과, 원격 무선 장비의 동작 전원을 공급하기 위한 전원 공급 케이블로서, 동축 케이블을 통해 상호 연결된다.
도 1은 일반적인, 원격 무선 장비가 설치된 기지국의 개략적인 전체 블록 구성의 예시도로서, 도 1의 예에서는 기지국이 해당 셀(cell)을 3섹터(sector)로 구분하여 서비스를 제공하는 구조가 도시되고 있다. 도 1을 참조하면, 각 섹터별로 하나씩 제1 내지 제3안테나(11, 12, 13)가 타워의 지주 등에 설치되며, 제1 내지 제3안테나(11, 12, 13)별로 각각 제1 내지 제3 원격 무선 장비(21, 22, 23)가 설치된다. 제1 내지 제3 원격 무선 장비(21, 22, 23)와 베이스밴드 신호 처리 장비(1) 사이에는 광통신 방식으로 송수신 신호 전송을 위한 제1 내지 제3 광케이블(213, 223, 233)과, 전원 공급을 위한 제1 내지 제3 동축 케이블(214, 224, 234)이 연결된다.
상기 도 1에 도시된 바와 같이, 3섹터 구조의 기지국에서는 예를 들어, 베이스밴드 신호 처리 장비(1)와 원격 무선 장비(21, 22, 23) 사이에 3개의 광케이블(213, 223, 233)과 3개의 동축 케이블(214, 224, 234)이 설치되어, 비교적 많은 수의 총 6개의 케이블이 설치되어야 함을 알 수 있다. 이와 같이, 설치 케이블 수의 증가는 고소 작업이 이루어지는 케이블 연결 작업을 더욱 어렵게 하며, 특히 케이블의 구비 비용 및 설치 비용이 상당히 증가하게 된다.
도 2는 도 1 중 제1 원격 무선 장비(21)의 저면 구성도이다. 도 2를 참조하면, 원격 무선 장비(21)에는 적어도 하나의 광케이블(의 커넥터)이 연결되기 위한 적어도 하나 이상의 광케이블 연결 단자(소켓)(211)와, 동축 케이블(의 커넥터)이 연결되기 위한 동축케이블 연결 단자(소켓)(212)가 구비된다. 도 2의 예에서는, 광케이블 연결 단자(211)가 4개 구비되는 것으로 도시되고 있는데, 이는 예를 들어 LTE-A 서비스 지원 등을 위해 요구되는 대용량의 데이터 전송 규격을 만족시키기 위해 다수(즉, 4개)의 광케이블을 설치한 구조이다.
이와 같이, 각각의 원격 무선 장비(21, 22, 23)에는 광케이블이 다수개씩 연결될 수 있으며, 그럴 경우에, 케이블 연결 작업 및 케이블의 구비 및 설치 비용에 대한 문제점은 더욱 커짐을 알 수 있다.
따라서, 본 발명의 목적은 베이스밴드 신호 처리 장비와 연결 케이블의 수를 줄일 수 있어서, 설치 작업 및 비용을 줄일 수 있도록 하기 위한 원격 무선 장비를 제공함에 있다.
상기한 목적을 달성하기 위하여 본 발명은 원격 무선 장비에 있어서; 적어도 하나 이상의 광신호와, 적어도 하나 이상의 전원을 통합하여 공급받기 위한 적어도 하나 이상의 통합 연결 단자와; 상기 통합 연결 단자로부터 상기 전원을 제공받아, 해당 원격 무선 장비의 내부 구동 전원으로 변환하여 공급하는 전원공급부와; 상기 통합 연결 단자로부터 상기 광신호를 제공받아 전기적 신호 변환하는 광전/전광 변환부와; 상기 광전/전광 변환부에서 변환된 전기적 신호를 미리 설정된 신호 복조 포맷에 따라 복원하는 프레이머와; 상기 프레이머에서 출력되는 신호를 제공받아, 디지털 레벨에서 레벨 조절 및 파형 조절을 수행하는 디지털 신호 처리부와; 상기 디지털 신호 처리부에서 출력되는 신호를 고주파의 송신 무선 신호로 변환하고 고출력으로 증폭되어 안테나측으로 출력하는 송수신 신호 변환 모듈을 포함함을 특징으로 한다.
상기한 바와 같이, 본 발명에 따른 원격 무선 장비는, 베이스밴드 신호 처리 장비와 연결 케이블의 수를 줄일 수 있어서, 설치 작업 및 비용을 줄일 수 있다.
도 1은 일반적인, 원격 무선 장비가 설치된 기지국의 개략적인 전체 블록 구성의 예시도
도 2에서는 도 1 중 제1 원격 무선 장비의 저면 구성도
도 3은 본 발명의 일 실시예에 따른 원격 무선 장비가 설치된 기지국의 개략적인 전체 블록 구성도
도 4는 도 3 중 광전 복합 케이블의 내부 단면 구조도
도 5는 도 3 중 제1 원격 무선 장비의 저면 구성도
도 6은 본 발명의 일 실시예에 따른 원격 무선 장비의 상세 블록 구성도
이하 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 하기 설명에서는 구체적인 구성 소자 등과 같은 특정 사항들이 나타나고 있는데 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들이 본 발명의 범위 내에서 소정의 변형이나 혹은 변경이 이루어질 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다.
도 3은 본 발명의 일 실시예에 따른 원격 무선 장비가 설치된 기지국의 개략적인 전체 블록 구성도로서, 도 3의 예에서는 기지국이 해당 셀을 3섹터로 구분하여 서비스를 제공하는 구조가 도시되고 있다. 도 1을 참조하면, 각 섹터별로 하나씩 제1 내지 제3안테나(11, 12, 13)가 타워의 지주 등에 설치되며, 제1 내지 제3안테나(11, 12, 13)별로 각각 본 발명의 일 실시예에 따른 제1 내지 제3 원격 무선 장비(31, 32, 33)가 설치된다. 제1 내지 제3 원격 무선 장비(31, 32, 33)와 베이스밴드 신호 처리 장비(1)는 각각 제1 내지 제3 광전 복합 케이블(41, 42, 43)을 통해 연결된다.
제1 내지 제3 광전 복합 케이블(41, 42, 43)은 각각 광섬유와 전원공급 선로가 복합적으로 구성되는 것으로서, 광섬유를 통해서는 광통신 방식으로 송수신 신호를 전송하며, 전원공급 선로를 이용하여 전원 공급을 제공하는 구조를 가진다.
도 4는 도 3 중 제1 광전 복합 케이블(41)의 내부 단면 구조도이다. 도 4를 참조하면, 제1 광전 복합 케이블(41)은 내부 중심부에 한 쌍의 전원공급 선로(411)가 마련되어 있으며, 그 전원공급 선로(411)의 주변으로 다수(도 5의 예에서는, 4개)의 광섬유(412)가 충진제(413)에 의해 상호 적절히 이격되어 위치하도록 구성된다. 또한, 최외측은 피복(413)에 의해 감싸진다. 상기에서 다수의 광섬유(412)는 각각 실질적으로 광섬유의 다발로 구현될 수 있다. 또한 다수의 광섬유(412)의 개수는 해당 안테나의 구조 및 신호 전송 규격에 맞추어 적절히 설정될 수 있다.
상기 도 4에 도시된 바와 같이, 제1 광전 복합 케이블(41)이 구성될 수 있으며, 한편, 상기 도 3에 도시된 제2 및 제3 광전 복합 케이블(42, 43)도 마찬가지로 구성될 수 있다.
도 5는 도 3 중 제1 원격 무선 장비(31)의 저면 구성도이다. 도 5를 참조하면, 원격 무선 장비(31)에는 종래와는 달리, 상기 도 4에 도시된 바와 같은 광전 복합 케이블(의 커넥터)(41)과 연결되기 위한 하나의 통합 연결 단자(소켓)(311)를 구비한다. 상기 통합 연결 단자(311)에 관한 기술로는 국내 선출원된 특허 출원번호 제2009-0115539호(명칭: 광전 복합 커넥터, 출원인: 포스텍, 발명자: 이수영, 출원일: 2009년 11월 27일)에 개시된 바를 예로 들 수 있다.
상기 도 5에 도시된 바와 같이, 제1 원격 무선 장비(31)가 구성될 수 있으며, 한편, 상기 도 3에 도시된 제2 및 제3 원격 무선 장비(32, 33)도 마찬가지로 구성될 수 있다.
상기 도 3 내지 도 5에 도시된 바와 같이, 본 발명의 일 실시예에서는, 하나의 원격 무선 장비는 하나의 광전 복합 케이블을 통해 베이스밴드 신호 처리 장비와 연결되는 구조로서, 종래와 비교하여, 원격 무선 장비와 베이스밴드 신호 처리 장비 사이에는 실질적으로 하나의 (광전 복합) 케이블만 요구됨을 알 수 있다. 이때, 상기 광전 복합 케이블의 양단에는 전원 공급 선로와 광섬유들을 통한 전원 및 광신호를 전달하기 위한 광전 복합 커넥터들이 구성된다. 또한 베이스밴드 신호 처리 장비에서도 통합 연결 단자가 마련되어, 작업시, 상기 광전 복합 케이블 양단의 광전 복합 커넥터들이 각각 베이스밴드 신호 처리 장비 및 원격 무선 장비의 광전 복합 연결 단자와 결합하는 것으로 설치가 완료될 수 있다.
도 6은 본 발명의 일 실시예에 따른 원격 무선 장비의 상세 블록 구성도로서, 예를 들어 도 3의 제1 원격 무선 장비(31)의 내부 상세 구조를 나타내고 있다. 도 6을 참조하여 먼저 베이스밴드 신호 처리 장비에서 원격 무선 장비(31)로 송신신호 및 전원 공급 측면에서 구성을 설명하면, 본 발명의 일 실시예에 따른 원격 무선 장비(31)는 광전 복합 케이블(41)의 광전 복합 커넥터(411)와 체결되는 구조를 가져서, 베이스밴드 신호 처리 장비로부터 제공된 광신호와 전원을 통합하여 공급받기 위한 통합 연결 단자(311)와; 상기 통합 연결 단자(311)로부터 전원을 제공받아, 해당 원격 무선 장비(31)의 내부 구동 전원으로 변환하여 내부 각 기능부들에 공급하는 전원공급부(314)와; 상기 통합 연결 단자(311)에서 출력되는 광신호를 제공받아 전기적 신호 변환하는 광전/전광 변환부(313)와; 상기 광전/전광 변환부(313)에서 변환된 전기적 신호를 미리 설정된(즉, 상기 베이스밴드 신호 처리 모듈에서 신호 변조 포맷에 대응되는) 신호 복조 포맷에 따라 복원하는 프레이머(315: framer)와; 상기 프레이머(315)에서 출력되는 신호를 제공받아, 디지털 레벨에서 레벨 조절 및 파형 조절을 수행하는 디지털 신호 처리부(317)를 포함하며, 디지털 신호 처리부(317)에서 출력되는 디지털 신호는 송수신 신호 변환 모듈을 통해 고주파의 송신 무선 신호로 변환되고 고출력으로 증폭되어 안테나측으로 출력된다.
상기 광전/전광 변환부(313)는 예를 들어, SFP(Small Form-factor Pluggable) 광송수신기의 구조로 구현될 수 있으며, 상기 프레이머(315)는 예를 들어 CPRI(Common Public Radio Interface) 규격에 따른 직병/병직(직렬-병렬/병렬-직렬)변환기의 구조를 가질 수 있다. 이때 상기 광전/전광 변환부(313)는 광전 복합 케이블 내부의 다수의 광섬유에 각각 대응하기 위해 다수의SFP 광송신기들로 구현될 수 있으며, 마찬가지로, 상기 프레이머(315)는 다수의 직병/병직 변환기로 구현될 수 있다.
상기 디지털 신호 처리부(317)는 디지털 신호의 레벨을 증폭하는 디지털 업 변환 기능과, 파고율 감소를 위한 CRF(Crest Factor Reduction) 기능 및 디지털 신호를 사전 왜곡하는 DPD(Digital Pre-Distortion) 기능 등을 수행하는 서브 구성부들을 포함할 수 있다. 이러한 디지털 신호 처리부(317)는 DSP(Digital Signal Processor) 소자 또는 FPGA(Field Programmable Gate Array)로 구현될 수 있다. 또한 이 경우에 디지털 신호 처리부(317)에 상기 DPD 기능 수행을 위해 후단의 증폭된 송신 신호로부터 피드백 신호를 제공하는 피드백 회로(미도시)가 더 구비될 수 있다.
한편, 디지털 신호 처리부(317)에서 출력되는 디지털 신호를 고주파의 송신 무선 신호로 변환하는 송수신 신호 변환 모듈은 디지털 신호처리부(317)의 출력 신호를 중간 주파수(IF)의 아날로그 신호로 변환하여 출력하는 디지털/아날로그 컨버터(320)와; 디지털/아날로그 컨버터(322)에서 출력되는 중간 주파수(IF) 신호를 국부 발진 신호와 혼합하여 해당 송신 주파수 대역의 고주파 신호로 변환하는 주파수 업 컨버터(322)와; 상기 주파수 업 컨버터(322))의 출력을 제공받아 송신 전력 레벨로 고주파 신호를 증폭하는 고출력의 송신 증폭기(324)와; 송신 증폭기(324)에서 출력되는 고주파수의 송신 신호를 안테나 연결 단자(33)를 통해 안테나측으로 제공하며, 상기 안테나측으로부터 상기 안테나 연결 단자(33)를 통해 제공되는 수신 신호를 송신 신호의 경로와 분리하여 출력하는 송수신 분리부(328)와; 상기 송수신 분리부(328)에서 분리되어 출력되는 수신 신호를 저잡음 증폭하는 수신 증폭기(LNA: Low Noise Amplifier)(332)와; 수신 증폭기에서 출력되는 고주파의 수신 신호를 국부 발진 신호와 혼합하여 중간 주파수의 신호로 변환하는 주파수 다운 컨버터(334)와; 주파수 다운 컨버터(334)에서 변화된 신호를 아날로그/디지털 변환하여 상기 디지털 신호 처리부(317)로 제공하는 아날로그/디지털 컨버터(336)를 포함할 수 있다.
상기에서, 송수신 분리부(328)는 송신 및 수신 주파수 대역의 분리하기 위한 듀플렉서 등을 통해 구현될 수 있다. 또한 상기에서, 해당 안테나는 MIMO(Multi Input Multi Output) 구조를 가질 수 있으며, 그에 따라 상기 안테나 연결단자는 복수의 단자들로 구현되며, 마찬가지로 송수신 분리부(328)로 복수의 듀플렉서로 구현되며, 송신 증폭기(324), 수신 증폭기(332) 등도 복수의 증폭 소자들로 구성될 수 있다.
한편, 디지털 신호 처리부(317)에 수신 신호는 디지털 레벨 조절 등을 거쳐 프레이머(315)로 제공되며, 프레이머(315)는 수신 신호를 미리 설정된 전송 포맷에 따라 변조하여 출력하며, 광전/전광 변환부(313)는 프레이머(315)에서 출력되는 변조된 신호에 따른 광신호를 발생하여 통합 연결 단자(311)를 통해 베이스밴드 신호 처리 장비측으로 전송한다.
상기와 같이 본 발명의 일 실시예에 따른 원격 무선 장비의 구성 및 동작이 이루어질 수 있으며, 한편 상기한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나 여러 가지 변형이 본 발명의 범위를 벗어나지 않고 실시될 수 있다.
예를 들어, 도 6의 예에서는 통합 연결 단자(311)와 광신호 및 전원과 병렬로 연결된 서브 통합 연결 단자(312)가 더 설치됨이 도시되고 있다. 이러한 서브 통합 연결 단자(312)는 통합 연결 단자(311)의 광신호 및 전원의 제공 경로와 각각 커플링되어 병렬적인 신호 경로를 형성하도록 구성할 수 있다. 이러한 구조는 특히, 중계기 등에 적용되기에 적합 구조로서, 중계기들은 다수의 안테나 및 이에 설치되는 원격 무선 장비들은 데이지 체인 형태로 병렬로 연결되는 네트워크를 형성할 수도 있다. 이 경우에 상기 서브 통합 연결 단자(312)를 통해 인접한 원격 무선 장비를 간단히 연결할 수 있게 된다. 도 2에 도시된 종래의 구조와 비교해 볼 경우에, 종래에서는 데이지 체인 형태로 원격 무선 장비들을 연결하려고 할 경우에, 예를 들어 복수의 추가적인 광케이블 연결 단자와, 추가적인 동축케이블 연결 단자를 구비하여야 하는데, 해당 원격 무선 장비에서 그러한 연결 단자를 마련할 장소를 확보하는 것도 용이하지 않음을 알 수 있다.
또한, 상기의 설명에서는 본 발명의 원격 무선 장비가 RRH와 동일한 것으로 설명하였으나, 이외에도 본 발명의 원격 무선 장비는 안테나측 또는 안테나 전단에 설치되며, 원격의 베이스밴드 신호 처리 장비와 분리되어, RF 신호 처리를 담당하는 어떠한 명칭의 장비와 동일하게 간주될 수 있음을 이해할 것이다.
이외에도 본 발명의 다양한 변형 및 변경이 있을 수 있으며, 따라서 본 발명의 범위는 설명된 실시예에 의하여 정할 것이 아니고 청구범위와 청구범위의 균등한 것에 의하여 정하여져야 할 것이다.

Claims (6)

  1. 원격 무선 장비에 있어서,
    적어도 하나 이상의 광신호와, 적어도 하나 이상의 전원을 통합하여 공급받기 위한 적어도 하나 이상의 통합 연결 단자와;
    상기 통합 연결 단자로부터 상기 전원을 제공받아, 해당 원격 무선 장비의 내부 구동 전원으로 변환하여 공급하는 전원공급부와;
    상기 통합 연결 단자부터 상기 광신호를 제공받아 전기적 신호 변환하는 광전/전광 변환부와;
    상기 광전/전광 변환부에서 변환된 전기적 신호를 미리 설정된 신호 복조 포맷에 따라 복원하는 프레이머와;
    상기 프레이머에서 출력되는 신호를 제공받아, 디지털 레벨에서 레벨 조절 및 파형 조절을 수행하는 디지털 신호 처리부와;
    상기 디지털 신호 처리부에서 출력되는 신호를 고주파의 송신 무선 신호로 변환하고 고출력으로 증폭되어 안테나측으로 출력하는 송수신 신호 변환 모듈을 포함함을 특징으로 하는 원격 무선 장비.
  2. 제1항에 있어서, 상기 광전/전광 변환부는 적어도 하나 이상의 SFP(Small Form-factor Pluggable) 광송수신기의 구조로 구현되며,
    상기 프레이머는 CPRI(Common Public Radio Interface) 규격에 따른 적어도 하나 이상의 직병/병직 변환기의 구조를 가짐을 특징으로 하는 원격 무선 장비.
  3. 제1항에 있어서, 상기 디지털 신호 처리부는 디지털 신호의 레벨을 증폭하는 디지털 업 변환 기능과, 파고율 감소를 위한 CRF(Crest Factor Reduction) 기능 및 디지털 신호를 사전 왜곡하는 DPD(Digital Pre-Distortion) 기능 등을 수행하는 서브 구성부들을 포함함을 특징으로 하는 원격 무선 장비.
  4. 제1항에 있어서, 상기 통합 연결 단자의 광신호 및 전원과 병렬로 연결된 서브 통합 커넥터를 더 포함하는 원격 무선 장비.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 송수신 신호 변환 모듈은,
    상기 디지털 신호처리부의 출력 신호를 중간 주파수의 아날로그 신호로 변환하여 출력하는 디지털/아날로그 컨버터와;
    상기 디지털/아날로그 컨버터에서 출력되는 중간 주파수 신호를 송신 주파수 대역의 고주파 신호로 변환하는 주파수 업 컨버터와;
    상기 주파수 업 컨버터의 출력을 제공받아 송신 전력 레벨로 증폭하는 송신 증폭기와;
    상기 송신 증폭기에서 출력을 안테나 연결 단자를 통해 안테나측으로 제공하며, 상기 안테나측으로부터 상기 안테나 연결 단자를 통해 제공되는 수신 신호를 송신 신호의 경로와 분리하여 출력하는 송수신 분리부와;
    상기 송수신 분리부에서 분리되어 출력되는 수신 신호를 증폭하는 수신 증폭기와;
    상기 수신 증폭기에서 출력되는 고주파의 수신 신호를 중간 주파수의 신호로 변환하는 주파수 다운 컨버터와;
    상기 주파수 다운 컨버터에서 변화된 신호를 아날로그/디지털 변환하여 상기 디지털 신호 처리부로 제공하는 아날로그/디지털 컨버터를 포함함을 특징으로 하는 원격 무선 장비.
  6. 제5항에 있어서, 상기 디지털 신호 처리부는 상기 아날로그/디지털 컨버터에서 제공되는 수신 신호를 상기 프레이머로 제공하며,
    상기 프레이머는 상기 디지털 신호 처리부로부터 제공되는 수신 신호를 미리 설정된 전송 포맷에 따라 변조하여 출력하며,
    상기 광전/전광 변환부는 상기 프레이머에서 출력되는 변조된 신호에 따른 광신호를 발생하여 상기 광전 복합 연결 단자를 통해 상기 베이스밴드 신호 처리 장비측으로 전송함을 특징으로 하는 원격 무선 장비.
PCT/KR2014/008385 2013-09-06 2014-09-05 원격 무선 장비 WO2015034313A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016540817A JP6223582B2 (ja) 2013-09-06 2014-09-05 遠隔無線装置
CN201480045856.9A CN105556876B (zh) 2013-09-06 2014-09-05 远程无线装备
US15/062,651 US9871593B2 (en) 2013-09-06 2016-03-07 Remote radio head

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130107476 2013-09-06
KR10-2013-0107476 2013-09-06
KR1020130117762A KR102116539B1 (ko) 2013-09-06 2013-10-02 원격 무선 장비
KR10-2013-0117762 2013-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/062,651 Continuation US9871593B2 (en) 2013-09-06 2016-03-07 Remote radio head

Publications (1)

Publication Number Publication Date
WO2015034313A1 true WO2015034313A1 (ko) 2015-03-12

Family

ID=52628685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008385 WO2015034313A1 (ko) 2013-09-06 2014-09-05 원격 무선 장비

Country Status (1)

Country Link
WO (1) WO2015034313A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7047028B2 (en) * 2002-11-15 2006-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Optical fiber coupling configurations for a main-remote radio base station and a hybrid radio base station
US20090215492A1 (en) * 2008-02-25 2009-08-27 Vodafone Holding Gmbh Mobile radio station and hybrid cable for a mobile radio station
US20110310881A1 (en) * 2010-06-17 2011-12-22 Peter Kenington Remote radio head
KR101105193B1 (ko) * 2010-04-15 2012-01-13 주식회사 이너트론 무선주파수 전력감시 모듈을 집적한 송수신 전단부를 포함하는 리모트 라디오 헤드 및 그의 무선주파수 전력감시 방법
KR101292580B1 (ko) * 2007-01-22 2013-08-12 삼성전자주식회사 광대역 무선 통신 시스템의 기지국에서 디지털 장치와 원격알에프 장치간의 통신 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7047028B2 (en) * 2002-11-15 2006-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Optical fiber coupling configurations for a main-remote radio base station and a hybrid radio base station
KR101292580B1 (ko) * 2007-01-22 2013-08-12 삼성전자주식회사 광대역 무선 통신 시스템의 기지국에서 디지털 장치와 원격알에프 장치간의 통신 장치 및 방법
US20090215492A1 (en) * 2008-02-25 2009-08-27 Vodafone Holding Gmbh Mobile radio station and hybrid cable for a mobile radio station
KR101105193B1 (ko) * 2010-04-15 2012-01-13 주식회사 이너트론 무선주파수 전력감시 모듈을 집적한 송수신 전단부를 포함하는 리모트 라디오 헤드 및 그의 무선주파수 전력감시 방법
US20110310881A1 (en) * 2010-06-17 2011-12-22 Peter Kenington Remote radio head

Similar Documents

Publication Publication Date Title
KR102116539B1 (ko) 원격 무선 장비
US20220295454A1 (en) Neutral host architecture for a distributed antenna system
US9356697B2 (en) Distributed antenna system and method
CN102308437B (zh) 一种天线装置
KR102160865B1 (ko) 무선 액세스 시스템
EP3681111A1 (en) Remotely reconfigurable remote radio head unit
WO2011013943A2 (ko) 송수신모듈을 내장한 기지국 안테나장치
JP2000341744A (ja) 無線装置
CN105406925B (zh) 多频段数字光纤分布式天线系统
WO2012092810A1 (zh) 多模数字射频拉远系统
CN106454560A (zh) 一种多业务数字光分布系统及多业务容量调度方法
KR20160126612A (ko) 분산 안테나 시스템
CN102377027A (zh) 一种有源天线及校准有源天线的方法
WO2017171120A1 (ko) 기지국 신호 정합 장치, 이를 포함하는 기지국 인터페이스 유닛 및 분산 안테나 시스템
CN102315880A (zh) 一种光路传输的方法及装置
US7463905B1 (en) Cellular telephony mast cable reduction
CN101998518A (zh) 基站ir接口数据传输系统及方法
WO2015034313A1 (ko) 원격 무선 장비
WO2021115234A1 (zh) 中心单元和拉远单元
WO2015064938A1 (ko) 도우너 유니트, 리모트 유니트 및 이를 구비한 이동통신 기지국 시스템
CN202077030U (zh) WiFi远端接入点及光载无线交换系统
CN102148644A (zh) WiFi射频交换机及其信号交换方法及采用该机的系统
WO2015093710A1 (ko) 아날로그 분산 안테나 시스템에서의 중계 장치
AU2015301469A1 (en) System for coupling wireless repeater donor and server units over cable
KR101766254B1 (ko) 멀티스몰셀 멀티밴드 분산 안테나 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045856.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842451

Country of ref document: EP

Kind code of ref document: A1