WO2021035705A1 - 天线校正装置和天线校正方法 - Google Patents

天线校正装置和天线校正方法 Download PDF

Info

Publication number
WO2021035705A1
WO2021035705A1 PCT/CN2019/103763 CN2019103763W WO2021035705A1 WO 2021035705 A1 WO2021035705 A1 WO 2021035705A1 CN 2019103763 W CN2019103763 W CN 2019103763W WO 2021035705 A1 WO2021035705 A1 WO 2021035705A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
compensation parameter
antennas
correction
correction signal
Prior art date
Application number
PCT/CN2019/103763
Other languages
English (en)
French (fr)
Inventor
陈炜
陈敏
李侃
陈放
刘德正
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19943541.3A priority Critical patent/EP4016877A4/en
Priority to KR1020227008246A priority patent/KR102669932B1/ko
Priority to PCT/CN2019/103763 priority patent/WO2021035705A1/zh
Priority to CN201980099705.4A priority patent/CN114365432B/zh
Priority to JP2022513341A priority patent/JP7416915B2/ja
Publication of WO2021035705A1 publication Critical patent/WO2021035705A1/zh
Priority to US17/682,861 priority patent/US20220182156A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the communication field, and in particular to an antenna correction device and antenna correction method in the communication field.
  • multi-antenna technology has become one of the key technologies for wireless transmission. Because when the signal is transmitted in the radio frequency channel, the amplitude and phase of the signal will change due to the nonlinear characteristics of the channel itself, so the antenna correction function is designed.
  • the purpose of multi-channel antenna calibration is to obtain the amplitude and phase characteristics of the radio frequency channel, and to compensate for it, to ensure the consistency of the amplitude and phase between the transceiver channels and the reciprocity of the amplitude and phase.
  • the traditional antenna correction coupling port is located between the antenna feed filter and the antenna, that is, the antenna feed unit, and the antenna correction circuit is located in the radio frequency unit where the radio frequency link is located.
  • the antenna correction circuit needs to be connected to the antenna feed unit to receive or Acquire the signal, and then connect to the RF unit to process the signal.
  • the link of the antenna correction circuit needs to span the above-mentioned antenna feed unit and RF unit, and one or more cables (or connectors) and combining units need to be added, which increases the number of components. , The assembly process is complicated and the realization cost is high.
  • the present application provides an antenna correction device and an antenna correction method, which simplifies the assembly process of the antenna correction device, and helps reduce the implementation cost of the antenna correction device.
  • an antenna correction device including: l antennas, where l is an integer greater than or equal to 2; l antenna-feed filters, the first end of the l antenna-feed filters and the l One antenna connection; one radio frequency link, which is connected to the second end of the one antenna feeder filter; a correction circuit, which is connected to the second end of the one antenna feeder filter, and is used to: pass through the one The position between each antenna feeder filter and the radio frequency link connected to the second end of each antenna feeder filter sends or receives the first correction signal, and according to the first correction signal The correction signal is used to correct each of the l antennas.
  • the position of the antenna correction coupling port is set between the antenna feed filter and the radio frequency link, so that the correction circuit can directly send or receive the correction signal at the radio frequency unit, thereby performing antenna correction without
  • the addition of components such as cables, connectors, and combining units simplifies the assembly process of the antenna correction device and helps reduce the implementation cost of the antenna correction device.
  • the above-mentioned antenna may also be called an antenna element, an antenna-fed antenna or other names
  • the above-mentioned antenna channel may also be called a channel or other names
  • the above-mentioned correction circuit may also be called an antenna correction circuit or other names. This is not limited.
  • the antenna calibration coupling port is the connection port of the calibration circuit, and can also be called the antenna calibration interface or other names.
  • the position of the antenna correction coupling port of each antenna is between the antenna feed filter and the radio frequency link, so that the correction circuit can send or receive the first correction signal through the antenna correction coupling port.
  • the correction circuit can send or receive the first correction signal through the position between the antenna feed filter and the radio frequency link connected to the second end of the antenna feed filter.
  • the first correction signal refers to the correction signal generated during the operation of the existing network.
  • the correction circuit is specifically configured to: determine the first compensation parameter of each antenna; and according to the first compensation parameter and the first correction signal , Determine the second compensation parameter of each antenna; and perform correction on each antenna according to the second compensation parameter.
  • the antenna correction coupling port is located between the antenna feeder filter and the radio frequency link, the signal sent or received by the correction circuit may not pass through the antenna feeder filter.
  • errors in the link between the antenna and the antenna feeder filter It can include, for example, PCB trace error, connector error, antenna feed filter error, antenna feed network error, antenna element error, etc.
  • the purpose of preparing a meter is to compensate for the inconsistency of various hardware links.
  • the signal measurement is performed and the compensation parameters obtained are stored in the memory (for example, the memory) for subsequent correction and use.
  • the compensation parameter in the above-mentioned equipment metering process is called the first compensation parameter, but it should be understood that the first compensation parameter can also be referred to as the equipment metering compensation parameter or other names.
  • the embodiment of this application does not describe this. limited.
  • the above-mentioned first compensation parameters have been stored.
  • the above-mentioned first compensation parameter is stored in the memory in the form of a table (for example, an equipment table), but the embodiment of the present application does not limit this.
  • the correction circuit can obtain the first compensation parameter of each antenna from the memory, and combine the first compensation parameter with the first correction signal obtained from the antenna correction coupling port to determine the first compensation parameter of each antenna. Two compensation parameters, and then use the second compensation parameter to perform antenna calibration.
  • the above-mentioned second compensation parameter is a compensation parameter during the actual operation of the existing network, and the second compensation parameter may also be referred to as a correction compensation parameter or other names, which is not limited in the embodiment of the present application.
  • the i-th antenna among the l antennas is used as a reference antenna, and the first compensation parameter ⁇ j of the j-th antenna among the l antennas Satisfy:
  • the radio frequency link corresponding to the jth antenna includes a receiving link and a transmitting link, the receiving link is connected to the receiving module, the transmitting link is connected to the transmitting module, and the jth antenna is connected to the test Antenna connection, a j is the second correction signal received by the receiving module and sent by the test antenna, b j is the second correction signal received by the receiving module and sent by the correction circuit, and c j is the The second correction signal received by the test antenna and sent by the transmitting module, d j is the second correction signal received by the correction circuit and sent by the transmitting module, i is an integer, and 1 ⁇ i ⁇ l, j is Take an integer from 1 to 1.
  • the above-mentioned second correction signal refers to the correction signal generated in the process of making a watch.
  • a watch antenna which is also called a test antenna in this article.
  • each antenna of the l antennas can be scanned by adjusting the position of the device as a watch antenna each time.
  • the i-th antenna is the reference antenna.
  • the first correction signal includes e j and f j , and e j is received by the correction circuit and sent by the transmitting module corresponding to the jth antenna.
  • F j is the correction signal received by the receiving module corresponding to the jth antenna and sent by the correction circuit;
  • the second compensation parameter of the jth antenna includes the transmission corresponding to the jth antenna The second compensation parameter of the link The second compensation parameter of the receiving link corresponding to the jth antenna Taking the i-th antenna among the l antennas as the reference antenna, the second compensation parameter of the transmission link corresponding to the j-th antenna among the l antennas Satisfy: The second compensation parameter of the receiving link corresponding to the jth antenna among the l antennas Satisfy:
  • the above-mentioned first correction signal may include the correction signal e j corresponding to the transmitting link and the correction signal f j corresponding to the receiving link.
  • the second compensation parameter may include the compensation parameter corresponding to the transmission link Compensation parameters corresponding to the receiving link The second compensation parameter may be obtained by calculation based on the above-mentioned first compensation parameter and the first correction signal.
  • the correction circuit is configured to: obtain the first correction signals e j and f j corresponding to each antenna;
  • the first compensation parameter ⁇ j , the first correction signal e j corresponding to each antenna, and the second compensation parameter of the transmission link corresponding to each antenna is determined
  • Set the second compensation parameter of the transmit link corresponding to each antenna Compensate to the transmit link corresponding to each antenna, and set the second compensation parameter of the receive link corresponding to each antenna Compensation to the receiving link corresponding to each antenna.
  • the l antennas correspond to the first frequency band
  • the antenna correction device further includes: k antennas corresponding to the second frequency band, and k is greater than or equal to 2 Integer, k antenna feed filters, the first ends of the k antenna feed filters are connected to the k antennas; k radio frequency links are connected to the second ends of the k antenna feed filters;
  • the correction circuit is connected to the second end of the k antenna-feed filters, and is configured to: pass each antenna-feed filter of the k antenna-feed filters and communicate with the k antenna-feed filters. Send or receive a third correction signal at a position between the radio frequency links connected to the second end of each antenna feeder filter, and correct each of the k antennas according to the third correction signal .
  • the position of the antenna correction coupling port of each of the k antennas is between the antenna feed filter and the radio frequency link, so that the correction circuit can transmit through the antenna correction coupling port Or receive the third correction signal.
  • the correction circuit 140 may transmit or receive the third correction signal through a position between the antenna feed filter and the radio frequency link connected to the second end of the antenna feed filter.
  • the third correction signal refers to the correction signal generated during the operation of the existing network.
  • the correction circuit is specifically configured to: determine the first compensation parameter of each of the k antennas; Determine the second compensation parameter of each of the k antennas according to the first compensation parameter of each antenna and the third correction signal; and determine the second compensation parameter of each of the k antennas according to the second compensation parameter of each of the k antennas.
  • Each of the k antennas performs correction.
  • the second frequency band Similar to the first frequency band corresponding to l antennas, the second frequency band also needs to be equipped with a table to obtain the first compensation parameter, and write the first compensation parameter into the memory for subsequent calibration and use.
  • the equipment table and calibration process of k antennas is similar to the equipment table and calibration process in the first frequency band, and will not be repeated here.
  • the antenna correction device of the embodiment of the present application can simplify the assembly process of the antenna correction device and help reduce the implementation cost of the antenna correction device, realize the antenna correction of multiple frequencies and multiple antenna channels, and further reduce the development cost.
  • the reference antenna used to determine the first compensation parameter of each of the k antennas is the qth antenna of the k antennas, q is an integer, and 1 ⁇ q ⁇ k.
  • the reference antenna needs to be selected.
  • the reference antenna of each frequency band is different.
  • the first frequency band needs to be selected from its corresponding l antennas, and the second frequency band needs to be selected in its corresponding antennas.
  • the calibration circuit can obtain the second compensation parameter corresponding to one antenna, and then calibrate one antenna, or after obtaining all the antennas corresponding to the second compensation parameter. After the second compensation parameter is set, all antennas are uniformly calibrated, which is not limited in the embodiment of the present application.
  • an antenna correction method is provided, which is applied to an antenna correction device including l antennas, the l antennas are connected to the first end of l antenna feed filters, and the The second end is connected to the l radio frequency links and the correction circuit, and the method includes: acquiring a first correction signal, where the first correction signal is that the correction circuit passes through each of the l antenna feed filters. The position between the feed filter and the radio frequency link connected to the second end of each antenna feed filter is transmitted or received; the first compensation parameter of each antenna of the l antennas is determined; according to the The first compensation parameter and the first correction signal determine the second compensation parameter of each antenna; and the correction is performed on each antenna according to the second compensation parameter.
  • the i-th antenna among the l antennas is used as the reference antenna, and the first compensation parameter ⁇ j of the j-th antenna among the l antennas Satisfy:
  • the radio frequency link corresponding to the jth antenna includes a receiving link and a transmitting link, the receiving link is connected to the receiving module, the transmitting link is connected to the transmitting module, and the jth antenna is connected to the test Antenna connection, a j is the second correction signal received by the receiving module and sent by the test antenna, b j is the second correction signal received by the receiving module and sent by the correction circuit, and c j is the The second correction signal received by the test antenna and sent by the transmitting module, d j is the second correction signal received by the correction circuit and sent by the transmitting module, i is an integer, and 1 ⁇ i ⁇ l, j is Take an integer from 1 to 1.
  • the first correction signal includes e j and f j , and e j is received by the correction circuit and sent by the transmitting module corresponding to the jth antenna.
  • F j is the correction signal received by the receiving module corresponding to the jth antenna and sent by the correction circuit;
  • the second compensation parameter of the jth antenna includes the transmission corresponding to the jth antenna The second compensation parameter of the link The second compensation parameter of the receiving link corresponding to the jth antenna Taking the i-th antenna among the l antennas as the reference antenna, the second compensation parameter of the transmission link corresponding to the j-th antenna among the l antennas Satisfy: The second compensation parameter of the receiving link corresponding to the jth antenna among the l antennas Satisfy:
  • the acquiring the first correction signal includes: acquiring the first correction signal e j and f j corresponding to each antenna;
  • the first compensation parameter and the first correction signal to determine the second compensation parameter of each antenna includes: according to the first compensation parameter ⁇ j of each antenna, the first compensation parameter corresponding to each antenna Correction signal e j to determine the second compensation parameter of the transmission link corresponding to each antenna Determine the second compensation parameter of the receiving link corresponding to each antenna according to the first compensation parameter ⁇ j of each antenna and the first correction signal f j corresponding to each antenna
  • the correcting each antenna according to the second compensation parameter includes: setting the second compensation parameter of the transmission link corresponding to each antenna Compensate to the transmit link corresponding to each antenna, and set the second compensation parameter of the receive link corresponding to each antenna Compensation to the receiving link corresponding to each antenna.
  • the 1 antenna corresponds to the first frequency band
  • the antenna correction device further includes k antennas corresponding to the second frequency band, and k is an integer greater than or equal to 2.
  • the k antennas are connected to the first ends of the k antenna feed filters, and the second ends of the k antenna feed filters are connected to the k radio frequency links and the correction circuit; the method further includes: Obtain the third correction signal, the third correction signal is that the correction circuit passes through each of the k antenna filters and interacts with each of the k antenna filters.
  • the second end of the antenna feed filter is connected to the position between the radio frequency link to send or receive; determine the first compensation parameter of each of the k antennas; according to each of the k antennas Determining the second compensation parameter of each of the k antennas; according to the second compensation parameter of each of the k antennas, the Each of the k antennas performs correction.
  • the reference antenna used to determine the first compensation parameter of each of the k antennas is the qth antenna of the k antennas, q is an integer, and 1 ⁇ q ⁇ k.
  • a base station including the antenna correction device in the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • Fig. 1 shows a schematic structural diagram of an antenna correction device according to an embodiment of the present application.
  • Fig. 2 shows a schematic structural diagram of an antenna correction device in the process of making a table of equipment according to an embodiment of the present application.
  • FIG. 3 shows a schematic structural diagram of another antenna calibration device in the process of making a table of equipment according to an embodiment of the present application.
  • FIG. 4 shows a schematic flowchart of an antenna calibration method according to an embodiment of the present application.
  • the first, second, third, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application. For example, distinguish different signals, distinguish different parameters, and so on.
  • "including” and “having” and any variations thereof are intended to cover non-exclusive inclusions, for example, other steps or units inherent in a process, method, system, product, or device that include a series of steps or units.
  • LTE long term evolution
  • FDD frequency division duplex
  • LTE time division duplex LTE time division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future 5th generation
  • NR New radio
  • FIG. 1 is a schematic block diagram of an antenna calibration device 100 according to an embodiment of the present application.
  • the antenna correction device 100 includes: one antenna 110, one antenna feed filter 120, one radio frequency link 130, and a correction circuit 140, where l is an integer greater than or equal to 2.
  • l antennas 110 are antenna 1, antenna 2,..., antenna 1, l antenna 110 and l antenna feed filter 120 (respectively antenna feed filter 1, antenna feed filter 2, ..., antenna feeder filter 1, not marked in the figure) and 1 radio frequency link 130 (respectively radio frequency link 1, radio frequency link 2, ..., radio frequency link 1, not marked in the figure), thereby Form l antenna channels.
  • one radio frequency link 130 may include one radio frequency transmitting link 131 and one radio frequency receiving link 132, which respectively form one antenna transmitting channel and one antenna receiving channel with the above-mentioned antenna and antenna feed filter.
  • one antenna 110 is connected to the first end of one antenna feeder filter 120, and one radio frequency link 130 is connected to the second end of one antenna feeder filter 120.
  • the second ends of the 1 antenna feeder filters are also connected to the correction circuit 140 respectively.
  • antenna 1 is connected to the first end of antenna feeder filter 1
  • the second end of antenna feeder filter 1 is connected to radio frequency link 1
  • the second end of antenna feeder filter 1 is also connected to a correction circuit 140. connection.
  • the second ends of the l antenna filters are all connected to the correction circuit 140.
  • the above-mentioned antenna may also be called an antenna element, an antenna-fed antenna or other names
  • the above-mentioned antenna channel may also be called a channel or other names
  • the above-mentioned correction circuit may also be called an antenna correction circuit or other names. This is not limited.
  • the antenna calibration coupling port is the connection port of the calibration circuit, and can also be called the antenna calibration interface or other names.
  • the position of the antenna correction coupling port of each antenna is between the antenna feed filter and the radio frequency link.
  • the correction circuit 140 can transmit or transmit through the antenna correction coupling port. Receive the first correction signal.
  • the correction circuit 140 may transmit or receive the first correction signal through a position between the antenna feed filter and the radio frequency link connected to the second end of the antenna feed filter.
  • the first correction signal refers to the correction signal generated during the operation of the existing network.
  • the position of the antenna correction coupling port is set between the antenna feed filter and the radio frequency link, so that the correction circuit can directly send or receive the correction signal at the radio frequency unit, thereby performing antenna correction without
  • the addition of components such as cables, connectors, and combining units simplifies the assembly process of the antenna correction device and helps reduce the implementation cost of the antenna correction device.
  • the above-mentioned correction circuit may be specifically a printed circuit board (printed circuit board, PCB), or may be composed of other components, or may be integrated into a chip system. It should be understood that the above-mentioned correction circuit may include an input circuit or interface for sending a signal, and an output circuit or interface for receiving a signal. Further, the above-mentioned correction circuit may further include a memory and a processor, and the memory may store the signal obtained by the correction circuit and a corresponding processing program, and the processor may perform correction processing according to the processing program stored in the memory. Optionally, there may be one or more processors, and there may be one or more memories. Optionally, the memory and the processor may be integrated together, or may be provided separately, which is not limited in the embodiment of the present application.
  • the above-mentioned antenna correction device may be any multi-antenna device capable of realizing the above-mentioned functions, which is not limited in the embodiment of the present application.
  • the above-mentioned antenna correction device is a base station, for example, an evolved NodeB (evolved NodeB, eNB or eNodeB), a home base station (for example, home evolved NodeB, or home NodeB, HNB) in an LTE system , Or gNB in the new radio system (new radio, NR) system, etc.
  • the above-mentioned correction circuit is specifically configured to determine the first compensation parameter of each antenna of the l antennas, and determine the first compensation parameter of each antenna according to the first compensation parameter and the first correction signal. A second compensation parameter, and, according to the second compensation parameter, the correction is performed on each antenna.
  • the antenna correction coupling port is located between the antenna feeder filter and the radio frequency link, the signal sent or received by the correction circuit may not pass through the antenna feeder filter.
  • errors in the link between the antenna and the antenna feeder filter It can include, for example, PCB trace error, connector error, antenna feed filter error, antenna feed network error, antenna element error, etc.
  • the purpose of preparing a meter is to compensate for the inconsistency of various hardware links.
  • the signal measurement is performed and the compensation parameters obtained are stored in the memory (for example, the memory) for subsequent correction and use.
  • the compensation parameter in the above-mentioned equipment metering process is called the first compensation parameter, but it should be understood that the first compensation parameter can also be referred to as the equipment metering compensation parameter or other names.
  • the embodiment of this application does not describe this. limited.
  • the above-mentioned first compensation parameters have been stored.
  • the above-mentioned first compensation parameter is stored in the memory in the form of a table (for example, an equipment table), but the embodiment of the present application does not limit this.
  • the calibration circuit can obtain the first compensation parameter of each antenna from the memory, and combine the first compensation parameter with the first compensation parameter obtained from the antenna calibration coupling port.
  • a calibration signal determines the second compensation parameter of each antenna, and then uses the second compensation parameter to perform antenna calibration.
  • the above-mentioned second compensation parameter is a compensation parameter during the actual operation of the existing network, and the second compensation parameter may also be referred to as a correction compensation parameter or other names, which is not limited in the embodiment of the present application.
  • the first compensation parameter ⁇ j of the j-th antenna among the l antennas satisfies:
  • the radio frequency link corresponding to the jth antenna includes a receiving link and a transmitting link, the receiving link is connected to the receiving module, the transmitting link is connected to the transmitting module, and the jth antenna is connected to the test antenna, a j is the second correction signal received by the receiving module and sent by the test antenna, b j is the second correction signal received by the receiving module and sent by the correction circuit, and c j is the second correction signal received by the test antenna and sent by the transmitting module.
  • D j is the second correction signal received by the correction circuit and sent by the transmitting module, i is an integer, and 1 ⁇ i ⁇ l, j is an integer from 1 to 1.
  • the above-mentioned second correction signal refers to the correction signal generated in the process of making a watch.
  • a watch antenna which is also called a test antenna in this article.
  • each antenna of the l antennas can be scanned by adjusting the position of the device as a watch antenna each time.
  • the i-th antenna is the reference antenna.
  • h j the jth antenna
  • C j the system transfer function of the common part of the jth antenna (which can include the PCB trace error after the transceiver link is combined, and the connection Antenna error, antenna filter error, antenna network error, antenna element error, etc.)
  • R j the transfer function of the j-th antenna receiving link
  • T j the transfer function of the j-th antenna transmitting link
  • D j the transfer function of the link between the jth antenna and the correction circuit.
  • FIG. 2 shows the antenna calibration device in the process of equipping and making a watch.
  • antenna 1 as the reference antenna (that is, the first antenna) as an example, first scan the equipment as antenna 10 to antenna 1, and perform the following steps:
  • the above description only takes antenna 1 as the reference antenna as an example.
  • the reference antenna may be any one of the l antennas.
  • Figure 2 only takes one piece of equipment as a watch antenna as an example, and introduces the process of making a watch on each of the l antennas in turn.
  • the number of equipped watch antennas can be More, for example, the number of antennas equipped for watch making is 1, so that all or part of the antennas in l antennas can be equipped for watch making in parallel at the same time, which helps to improve the efficiency of making watch.
  • the first correction signal e j and F j comprises, e j correction signal correction circuit for receiving the j-th transmission antenna corresponding to the transmission module, j for the j-th F
  • the second compensation parameter of the jth antenna includes the second compensation parameter of the transmission link corresponding to the jth antenna
  • the second compensation parameter of the receiving link corresponding to the jth antenna Taking the i-th antenna among the l antennas as the reference antenna, the second compensation parameter of the transmission link corresponding to the j-th antenna among the l antennas Satisfy:
  • the above-mentioned first correction signal may include the correction signal e j corresponding to the transmitting link and the correction signal f j corresponding to the receiving link.
  • the second compensation parameter may include the compensation parameter corresponding to the transmission link Compensation parameters corresponding to the receiving link The second compensation parameter may be obtained by calculation based on the above-mentioned first compensation parameter and the first correction signal.
  • the correction circuit is used to: obtain the first correction signals e j and f j corresponding to each antenna; according to the first compensation parameter ⁇ j of each antenna, the corresponding antenna The first correction signal e j , and determine the second compensation parameter of the transmit link corresponding to each antenna According to the first compensation parameter ⁇ j of each antenna and the first correction signal f j corresponding to each antenna, the second compensation parameter of the receiving link corresponding to each antenna is determined The second compensation parameter of the transmit link corresponding to each antenna Compensate to the transmit link corresponding to each antenna, and the second compensation parameter of the receive link corresponding to each antenna Compensate to the receiving link corresponding to each antenna.
  • the above-mentioned correction of the receiving link and the correction of the transmitting link are two independent correction processes, which can be performed in a first-to-last order or can be processed in parallel, which is not limited in the embodiment of the present application.
  • the error of equipment metering (also called the accuracy of equipment metering) will affect the value of ⁇ j , which only affects condition one and has nothing to do with condition two.
  • the correction algorithm will affect the value of ⁇ j , and will affect condition one and condition two.
  • the error of the equipment metering only affects, but has no effect on the uplink and downlink reciprocity. Since the shaping accuracy of the open loop beam has a weaker impact on the multi-antenna system, the antenna calibration device of the embodiment of the present application The accuracy requirements for the equipment table are not high, and it is relatively easy to meet the requirements.
  • the frequency bands of the l antennas are the same, and all correspond to the first frequency band.
  • the antenna correction device also includes other frequency bands.
  • the antenna correction device is multi-frequency and multi-antenna channels.
  • the l antennas correspond to the first frequency band
  • the antenna correction device further includes: k antennas corresponding to the second frequency band, k is an integer greater than or equal to 2, and k antenna feed filters.
  • the first ends of the k antenna feed filters are connected to the k antennas; the k radio frequency links are connected to the second ends of the k antenna feed filters; the correction circuit is connected to the first ends of the k antenna feed filters.
  • Two-terminal connection for: passing through each of the k antenna-feed filters and the radio frequency link connected to the second end of each of the k antenna-feed filters
  • a third correction signal is sent or received between the positions, and each of the k antennas is corrected according to the third correction signal.
  • the above-mentioned antenna correction device also includes k antennas corresponding to the second frequency band. Similar to the first frequency band, the k antennas are connected with k antenna feed filters and k radio frequency links, thereby forming k antenna channels. Further, the k radio frequency links may include k radio frequency transmission links and k radio frequency reception links, which form k antenna transmission channels and k antenna reception channels with the above k antennas and k antenna feed filters, respectively.
  • the k antennas are connected to the first ends of the k antenna feed filters, and the k radio frequency links are connected to the second ends of the k antenna feed filters. The second ends of the k antenna-fed filters are also connected to the correction circuit respectively.
  • the position of the antenna correction coupling port of each of the k antennas is between the antenna feed filter and the radio frequency link, so that the correction circuit can transmit through the antenna correction coupling port Or receive the third correction signal.
  • the correction circuit 140 may transmit or receive the third correction signal through a position between the antenna feed filter and the radio frequency link connected to the second end of the antenna feed filter.
  • the third correction signal refers to the correction signal generated during the operation of the existing network.
  • the correction circuit is specifically configured to: determine the first compensation parameter of each of the k antennas; according to the first compensation parameter of each of the k antennas and the third The correction signal determines the second compensation parameter of each of the k antennas; and corrects each of the k antennas according to the second compensation parameter of each of the k antennas.
  • the second frequency band Similar to the first frequency band corresponding to l antennas, the second frequency band also needs to be equipped with a table to obtain the first compensation parameter, and write the first compensation parameter into the memory for subsequent calibration and use.
  • the equipment table and calibration process of k antennas is similar to the equipment table and calibration process in the first frequency band, and will not be repeated here.
  • the antenna correction device of the embodiment of the present application can simplify the assembly process of the antenna correction device and help reduce the implementation cost of the antenna correction device, realize the antenna correction of multi-frequency and multi-antenna channels, and further reduce the development cost.
  • the reference antenna used to determine the first compensation parameter of each of the k antennas is the qth antenna among the k antennas, q is an integer, and 1 ⁇ q ⁇ k .
  • the reference antenna needs to be selected.
  • the reference antenna of each frequency band is different.
  • the first frequency band needs to be selected from its corresponding l antennas, and the second frequency band needs to be selected in its corresponding antennas.
  • Fig. 3 shows a schematic structural diagram of another antenna correction device in the process of equipping and making a watch.
  • the antenna correction device shown in FIG. 3 includes N frequency bands, and N is an integer greater than or equal to 2.
  • the number of antennas included in each of the N frequency bands may be the same or different, which is not limited in the embodiment of the present application.
  • frequency band 1 corresponds to the first frequency band and includes l antennas
  • frequency band 2 corresponds to the second frequency band and includes k antennas.
  • the frequency band N includes m antennas, and m is an integer greater than or equal to 2.
  • the reference antenna of frequency band 1 is antenna 1.
  • formulas (20) and (24), namely the second compensation parameter can be obtained.
  • the reference antenna of frequency band 2 may be antenna 1+1
  • the reference antenna of frequency band N may be antenna 1+k+1, which is the same as frequency band 1.
  • the second compensation parameter corresponding to each frequency band can be obtained, and the second compensation parameter corresponding to each frequency band can be obtained.
  • the second compensation parameter corresponding to each frequency band is compensated to the corresponding receiving link and transmitting link, thereby completing the antenna correction.
  • FIG. 3 only shows one equipment as a watch antenna, and each antenna of the l+k+m antennas can be scanned by adjusting the position of the equipment as a watch antenna each time.
  • one or more equipment watch antennas may also be provided for each frequency band mentioned above, so that the equipment watch making process of each frequency band is performed in parallel, which helps to improve the efficiency of equipment making watch.
  • the calibration circuit can obtain the second compensation parameter corresponding to one antenna, and then calibrate one antenna, or after obtaining all the antennas corresponding to the second compensation parameter. After the second compensation parameter is set, all antennas are uniformly calibrated, which is not limited in the embodiment of the present application.
  • the antenna calibration device according to the embodiment of the present application is described in detail above with reference to FIGS. 1 to 3, and the antenna calibration method according to the embodiment of the present application will be described in detail below in conjunction with FIG. 4.
  • FIG. 4 is a schematic flowchart of the antenna calibration method 400 proposed in this application.
  • the method 400 is applied to an antenna correction device including one antenna, the one antenna is connected to the first end of one antenna feeder filter, and the second end of the one antenna feeder filter is connected to one radio frequency link and correction circuit. connection.
  • the method 400 includes:
  • S420 Determine a first compensation parameter of each antenna of the l antennas.
  • S430 Determine a second compensation parameter of each antenna according to the first compensation parameter and the first correction signal
  • the position of the antenna correction coupling port is set between the antenna feed filter and the radio frequency link, so that the correction circuit can directly send or receive the correction signal at the radio frequency unit, thereby performing antenna correction without
  • the addition of components such as cables, connectors, and combining units simplifies the assembly process of the antenna correction device and helps reduce the implementation cost of the antenna correction device.
  • the foregoing method 400 may be applied to the antenna calibration apparatus shown in FIG. 1 to FIG. 3, but the embodiment of the present application is not limited thereto.
  • the specific calibration process please refer to the relevant description of the above antenna calibration device, which will not be repeated here.
  • the radio frequency link corresponding to the jth antenna includes a receiving link and a transmitting link
  • the receiving link is connected to the receiving module
  • the transmitting link is connected to the transmitting module
  • the jth antenna is connected to the test antenna
  • a j is the second correction signal received by the receiving module and sent by the test antenna
  • b j is the second correction signal received by the receiving module and sent by the correction circuit
  • c j is the second correction signal received by the test antenna and sent by the transmitting module.
  • D j is the second correction signal received by the correction circuit and sent by the transmitting module
  • i is an integer
  • j is an integer from 1 to 1.
  • the first correction signal e j and F j comprises, e j correction signal correction circuit for receiving the j-th transmission antenna corresponding to the transmission module, j for the j-th F
  • the second compensation parameter of the jth antenna includes the second compensation parameter of the transmission link corresponding to the jth antenna
  • the second compensation parameter of the receiving link corresponding to the jth antenna Taking the i-th antenna among the l antennas as the reference antenna, the second compensation parameter of the transmission link corresponding to the j-th antenna among the l antennas Satisfy:
  • the acquiring the first correction signal includes: acquiring the first correction signal e j and f j corresponding to each antenna; and determining according to the first compensation parameter and the first correction signal
  • the second compensation parameter of each antenna includes: according to the first compensation parameter ⁇ j of each antenna and the first correction signal e j corresponding to each antenna, determining the second compensation parameter of the transmission link corresponding to each antenna 2.
  • Compensation parameter ⁇ Tj determine the second compensation parameter of the receiving link corresponding to each antenna according to the first compensation parameter ⁇ j of each antenna and the first correction signal f j corresponding to each antenna
  • the correcting each antenna according to the second compensation parameter includes: the second compensation parameter of the transmission link corresponding to each antenna Compensate to the transmit link corresponding to each antenna, and the second compensation parameter of the receive link corresponding to each antenna Compensate to the receiving link corresponding to each antenna.
  • the l antennas correspond to the first frequency band
  • the antenna correction device further includes k antennas corresponding to the second frequency band, where k is an integer greater than or equal to 2, and the k antennas and k antenna feeders The first end of the filter is connected, and the second ends of the k antenna-fed filters are connected to the k radio frequency links and the correction circuit; the method further includes: obtaining the third correction signal, the third correction signal being the The correction circuit transmits through the position between each of the k antenna-feed filters and the radio frequency link connected to the second end of each of the k antenna-feed filters.
  • the reference antenna used to determine the first compensation parameter of each of the k antennas is the qth antenna among the k antennas, q is an integer, and 1 ⁇ q ⁇ k .
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated object, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c or a-b-c, where a, b, and c can be single or multiple.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线校正装置和天线校正方法,简化了天线校正装置的装配工艺,有利于降低天线校正装置的实现成本。该天线校正装置包括:l个天线;l个天馈滤波器,该l个天馈滤波器的第一端与该l个天线连接;l个射频链路,与该l个天馈滤波器的第二端连接;校正电路,与该l个天馈滤波器的第二端连接,用于:通过该l个天馈滤波器中的每个天馈滤波器和与该每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收第一校正信号,以及根据该第一校正信号,对该每个天线进行校正。

Description

天线校正装置和天线校正方法 技术领域
本申请涉及通信领域,特别涉及通信领域中的一种天线校正装置和天线校正方法。
背景技术
随着无线通信技术越来越广泛地应用,多天线技术成为无线传输的关键技术之一。由于信号在射频通道中传输的时候,会因为信道本身的非线性特征导致信号的幅度和相位发生变化,因此设计天线校正功能。多通道天线校正的目的是获得射频通道的幅度相位特性,并对其进行补偿,保证各收发通道之间幅度相位的一致性和幅度相位的互易性。
传统的天线校正耦合口的位置在天馈滤波器和天线之间,即位于天馈单元,而天线校正电路在射频链路所在的射频单元,这样,天线校正电路需要连接到天馈单元接收或获取信号,再连接到射频单元处理信号,天线校正电路的链路需要横跨上述天馈单元和射频单元,需要增加一根或多根线缆(或连接器)以及合路单元,使得组件增多,装配工艺复杂,实现成本较高。
发明内容
本申请提供一种天线校正装置和天线校正方法,简化了天线校正装置的装配工艺,有利于降低天线校正装置的实现成本。
第一方面,提供了一种天线校正装置,包括:l个天线,l为大于或等于2的整数;l个天馈滤波器,所述l个天馈滤波器的第一端与所述l个天线连接;l个射频链路,与所述l个天馈滤波器的第二端连接;校正电路,与所述l个天馈滤波器的第二端连接,用于:通过所述l个天馈滤波器中的每个天馈滤波器和与所述每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收第一校正信号,以及根据所述第一校正信号,对所述l个天线的每个天线进行校正。
本申请实施例的天线校正装置,通过将天线校正耦合口的位置设置在天馈滤波器和射频链路之间,使得校正电路可以直接在射频单元发送或接收校正信号,从而进行天线校正,无需增加线缆、接器以及合路单元等组件,简化了天线校正装置的装配工艺,有利于降低天线校正装置的实现成本。
应理解,上述天线也可以称为天线振子、天馈天线或其他名称,上述天线通道也可以称为通道或其他名称,上述校正电路也可以称为天线校正电路或其他名称,本申请实施例对此不作限定。
还应理解,天线和天馈滤波器属于天馈单元,射频链路和校正电路属于射频单元。天线校正耦合口是校正电路的连接口,也可以称为天线校正接口或其他名称。在本申请实施例中,每个天线的天线校正耦合口的位置均在天馈滤波器和射频链路之间,这样,校正电路就可以通过天线校正耦合口发送或接收第一校正信号。换句话说,校正电路可以通过天 馈滤波器和与该天馈滤波器的第二端连接的射频链路之间的位置发送或接收第一校正信号。该第一校正信号指的是现网运行过程中产生的校正信号。
结合第一方面,在第一方面的某些实现方式中,所述校正电路具体用于:确定所述每个天线的第一补偿参数;根据所述第一补偿参数和所述第一校正信号,确定所述每个天线的第二补偿参数;根据所述第二补偿参数,对所述每个天线进行校正。
应理解,由于天线校正耦合口的位置在天馈滤波器和射频链路之间,校正电路发送或接收的信号可以不经过天馈滤波器,对于天线和天馈滤波器之间链路的误差(可以包括例如,PCB走线误差、连接器误差、天馈滤波器误差、天馈网络误差、天线振子误差等等)则需要通过装备做表获得。换句话说,装备做表是为了补偿各硬件链路不一致,在装置的生产过程中进行信号测量将获得的补偿参数存入内存(例如存储器)中,以便后续校正使用。本申请实施例将上述装备做表过程中的补偿参数称为第一补偿参数,但应理解,该第一补偿参数还可以称为装备做表补偿参数或其他名称,本申请实施例对此不作限定。装置一旦出厂,便已经存储了上述第一补偿参数。在一种可能的实现方式中,上述第一补偿参数是通过表格(例如装备表)的形式存储在内存中的,但本申请实施例对此不作限定。
在实际现网运行过程中,校正电路可以从内存中获取每个天线的第一补偿参数,并结合该第一补偿参数和从天线校正耦合口获取的第一校正信号,确定每个天线的第二补偿参数,进而采用该第二补偿参数进行天线校正。上述第二补偿参数为实际现网运行过程中的补偿参数,该第二补偿参数还可以称为校正补偿参数或其他名称,本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,以所述l个天线中的第i个天线作为参考天线,所述l个天线中的第j个天线的第一补偿参数δ j满足:
Figure PCTCN2019103763-appb-000001
其中,所述第j个天线对应的射频链路包括接收链路和发射链路,所述接收链路与接收模块连接,所述发射链路与发射模块连接,所述第j个天线与测试天线连接,a j为所述接收模块接收的、所述测试天线发送的第二校正信号,b j为所述接收模块接收的、所述校正电路发送的第二校正信号,c j为所述测试天线接收的、所述发射模块发送的第二校正信号,d j为所述校正电路接收的、所述发射模块发送的第二校正信号,i为整数,且1≤i≤l,j为取遍1至l的整数。
上述第二校正信号指的是装备做表过程中产生的校正信号。在装备做表的过程中,需要一根或多根装备做表天线,本文又称为测试天线。应理解,若只有一根装备做表天线,可以每次通过调整装备做表天线的位置扫描l个天线中的每一根天线。此外,需要从l个天线中选择一根天线作为参考天线,计算其他天线与该参考天线之间的误差,在本申请实施例中,第i个天线为参考天线。
结合第一方面,在第一方面的某些实现方式中,所述第一校正信号包括e j和f j,e j为所述校正电路接收的、所述第j个天线对应的发射模块发送的校正信号,f j为所述第j个天线对应的接收模块接收的、所述校正电路发送的校正信号;所述第j个天线的第二补偿参数包括所述第j个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000002
和所述第j个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000003
以所述l个天线中的第i个天线作为参考天线,所述l个天线中 的第j个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000004
满足:
Figure PCTCN2019103763-appb-000005
所述l个天线中的第j个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000006
满足:
Figure PCTCN2019103763-appb-000007
在实际现网运行过程中,需要对天线的接收通道和发射通道分别进行校正。因此,上述第一校正信号可以包括发射链路对应的校正信号e j和接收链路对应的校正信号f j。则对应地,第二补偿参数可以包括发射链路对应的补偿参数
Figure PCTCN2019103763-appb-000008
和接收链路对应的补偿参数
Figure PCTCN2019103763-appb-000009
第二补偿参数可以根据上述第一补偿参数和第一校正信号计算获得。
结合第一方面,在第一方面的某些实现方式中,所述校正电路用于:获取所述每个天线对应的所述第一校正信号e j和f j;根据所述每个天线的第一补偿参数δ j、所述每个天线对应的第一校正信号e j,确定所述每个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000010
根据所述每个天线的第一补偿参数δ j、所述每个天线对应的第一校正信号f j,确定所述每个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000011
将所述每个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000012
补偿到所述每个天线对应的发射链路,将所述每个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000013
补偿到所述每个天线对应的接收链路。
结合第一方面,在第一方面的某些实现方式中,所述l个天线对应第一频段,所述天线校正装置还包括:k个天线,对应第二频段,k为大于或等于2的整数,k个天馈滤波器,所述k个天馈滤波器的第一端与所述k个天线连接;k个射频链路,与所述k个天馈滤波器的第二端连接;所述校正电路与所述k个天馈滤波器的第二端连接,用于:通过所述k个天馈滤波器中的每个天馈滤波器和与所述k个天馈滤波器中的每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收第三校正信号,以及根据所述第三校正信号,对所述k个天线中的每个天线进行校正。
与l个天线对应的第一频段类似,k个天线中每个天线的天线校正耦合口的位置均在天馈滤波器和射频链路之间,这样,校正电路就可以通过天线校正耦合口发送或接收第三校正信号。换句话说,校正电路140可以通过天馈滤波器和与该天馈滤波器的第二端连接的射频链路之间的位置发送或接收第三校正信号。该第三校正信号指的是现网运行过程中产生的校正信号。关于第二频段中k个天线的相关描述可以参考上述第一频段中的l个天线,此处不再赘述。
结合第一方面,在第一方面的某些实现方式中,所述校正电路具体用于:确定所述k个天线中的每个天线的第一补偿参数;根据所述k个天线中的每个天线的第一补偿参数和所述第三校正信号,确定所述k个天线中的每个天线的第二补偿参数;根据所述k个天线中的每个天线的第二补偿参数,对所述k个天线中的每个天线进行校正。
与l个天线对应的第一频段类似,第二频段也需要进行装备做表,获得第一补偿参数,将该第一补偿参数写入内存中,以便后续校正使用。在第二频段中,k个天线的装备做表和校正过程与第一频段中的装备做表和校正过程类似,此处不再赘述。
本申请实施例的天线校正装置,能够在简化天线校正装置的装配工艺,有利于降低天线校正装置的实现成本的基础之上,实现多频多天线通道的天线校正,进一步降低开发成本。
结合第一方面,在第一方面的某些实现方式中,用于确定所述k个天线中的每个天线的第一补偿参数的参考天线为所述k个天线中的第q个天线,q为整数,且1≤q≤k。
应理解,在装备做表和校正的过程中,需要选择参考天线,这里每个频段的参考天线是不同的,第一频段需要在其对应的l个天线中选择,第二频段需要在其对应的k个天线中选择。
还应理解,本申请对上述各个频段中的各个天线的校正过程的先后顺序不作任何限定,校正电路可以获取一个天线对应的第二补偿参数,就校正一个天线,也可以在获取了所有天线对应的第二补偿参数后,统一对所有天线进行校正,本申请实施例对此不作限定。
第二方面,提供了一种天线校正方法,应用于包括l个天线的天线校正装置,所述l个天线与l个天馈滤波器的第一端连接,所述l个天馈滤波器的第二端与l个射频链路和校正电路连接,所述方法包括:获取第一校正信号,所述第一校正信号是所述校正电路通过所述l个天馈滤波器中的每个天馈滤波器和与所述每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收的;确定所述l个天线的每个天线的第一补偿参数;根据所述第一补偿参数和所述第一校正信号,确定所述每个天线的第二补偿参数;根据所述第二补偿参数,对所述每个天线进行校正。
结合第二方面,在第二方面的某些实现方式中,以所述l个天线中的第i个天线作为参考天线,所述l个天线中的第j个天线的第一补偿参数δ j满足:
Figure PCTCN2019103763-appb-000014
其中,所述第j个天线对应的射频链路包括接收链路和发射链路,所述接收链路与接收模块连接,所述发射链路与发射模块连接,所述第j个天线与测试天线连接,a j为所述接收模块接收的、所述测试天线发送的第二校正信号,b j为所述接收模块接收的、所述校正电路发送的第二校正信号,c j为所述测试天线接收的、所述发射模块发送的第二校正信号,d j为所述校正电路接收的、所述发射模块发送的第二校正信号,i为整数,且1≤i≤l,j为取遍1至l的整数。
结合第二方面,在第二方面的某些实现方式中,所述第一校正信号包括e j和f j,e j为所述校正电路接收的、所述第j个天线对应的发射模块发送的校正信号,f j为所述第j个天线对应的接收模块接收的、所述校正电路发送的校正信号;所述第j个天线的第二补偿参数包括所述第j个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000015
和所述第j个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000016
以所述l个天线中的第i个天线作为参考天线,所述l个天线中的第j个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000017
满足:
Figure PCTCN2019103763-appb-000018
所述l个天线中的第j个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000019
满足:
Figure PCTCN2019103763-appb-000020
结合第二方面,在第二方面的某些实现方式中,所述获取第一校正信号,包括:获取所述每个天线对应的所述第一校正信号e j和f j;所述根据所述第一补偿参数和所述第一校正信号,确定所述每个天线的第二补偿参数,包括:根据所述每个天线的第一补偿参数δ j、所述每个天线对应的第一校正信号e j,确定所述每个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000021
根据所述每个天线的第一补偿参数δ j、所述每个天线对应的第一校正信号f j,确定所述每个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000022
所述根据所述第二补偿参数,对所述 每个天线进行校正,包括:将所述每个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000023
补偿到所述每个天线对应的发射链路,将所述每个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000024
补偿到所述每个天线对应的接收链路。
结合第二方面,在第二方面的某些实现方式中,所述l个天线对应第一频段,所述天线校正装置还包括对应第二频段的k个天线,k为大于或等于2的整数,所述k个天线与k个天馈滤波器的第一端连接,所述k个天馈滤波器的第二端与k个射频链路和所述校正电路连接;所述方法还包括:获取所述第三校正信号,所述第三校正信号是所述校正电路通过所述k个天馈滤波器中的每个天馈滤波器和与所述k个天馈滤波器中的每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收的;确定所述k个天线中的每个天线的第一补偿参数;根据所述k个天线中的每个天线的第一补偿参数和所述第三校正信号,确定所述k个天线中的每个天线的第二补偿参数;根据所述k个天线中的每个天线的第二补偿参数,对所述k个天线中的每个天线进行校正。
结合第二方面,在第二方面的某些实现方式中,用于确定所述k个天线中的每个天线的第一补偿参数的参考天线为所述k个天线中的第q个天线,q为整数,且1≤q≤k。
第三方面,提供了一种基站,包括上述第一方面或第一方面的任一种可能的实现方式中的天线校正装置。
附图说明
图1示出了本申请实施例的天线校正装置的结构示意图。
图2示出了本申请实施例的处于装备做表过程中的天线校正装置的结构示意图。
图3示出了本申请实施例的另一处于装备做表过程中的天线校正装置的结构示意图。
图4示出了本申请实施例的天线校正方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在下文示出的实施例中第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信号、区分不同的参数等。此外,“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备固有的其他步骤或单元。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统、新无线(new radio,NR)或其他演进的通信系统等。
图1是本申请实施例的天线校正装置100的示意性框图。如图1所示,天线校正装置100包括:l个天线110、l个天馈滤波器120、l个射频链路130以及校正电路140,l为大于或等于2的整数。
如图1所示,l个天线110分别为天线1、天线2、…、天线l,l个天线110与l个天 馈滤波器120(分别为天馈滤波器1、天馈滤波器2、…、天馈滤波器l,图中未标记出)和l个射频链路130(分别为射频链路1、射频链路2、…、射频链路l,图中未标记出)连接,从而形成l个天线通道。进一步地,l个射频链路130可以包括l个射频发射链路131和l个射频接收链路132,分别与上述天线和天馈滤波器形成l个天线发射通道和l个天线接收通道。
在图1中,l个天线110与l个天馈滤波器120的第一端连接,l个射频链路130与l个天馈滤波器120的第二端连接。该l个天馈滤波器的第二端还分别与校正电路140连接。以天线1为例,天线1与天馈滤波器1的第一端连接,天馈滤波器1的第二端与射频链路1连接,天馈滤波器1的第二端还与校正电路140连接。l个天馈滤波器的第二端均与校正电路140连接。
应理解,上述天线也可以称为天线振子、天馈天线或其他名称,上述天线通道也可以称为通道或其他名称,上述校正电路也可以称为天线校正电路或其他名称,本申请实施例对此不作限定。
还应理解,天线和天馈滤波器属于天馈单元,射频链路和校正电路属于射频单元。天线校正耦合口是校正电路的连接口,也可以称为天线校正接口或其他名称。在本申请实施例中,如图1所示,每个天线的天线校正耦合口的位置均在天馈滤波器和射频链路之间,这样,校正电路140就可以通过天线校正耦合口发送或接收第一校正信号。换句话说,校正电路140可以通过天馈滤波器和与该天馈滤波器的第二端连接的射频链路之间的位置发送或接收第一校正信号。该第一校正信号指的是现网运行过程中产生的校正信号。
本申请实施例的天线校正装置,通过将天线校正耦合口的位置设置在天馈滤波器和射频链路之间,使得校正电路可以直接在射频单元发送或接收校正信号,从而进行天线校正,无需增加线缆、接器以及合路单元等组件,简化了天线校正装置的装配工艺,有利于降低天线校正装置的实现成本。
示例性地,上述校正电路可以具体为印刷电路板(printed circuit board,PCB),或者由其他元器件组成,或者可以集成到芯片系统。应理解,上述校正电路可以包括用于发送信号的输入电路或者接口,以及用于接收信号的输出电路或者接口。进一步地,上述校正电路还可以包括存储器和处理器,该存储器可以存储校正电路获取的信号以及相应的处理程序,该处理器可以根据存储器存储的处理程序执行校正处理。可选地,该处理器可以为一个或多个,该存储器可以为一个或多个。可选地,该存储器与处理器可以集成在一起,也可以分离设置,本申请实施例对此不作限定。
此外,上述天线校正装置可以是任意能够实现上述功能的多天线装置,本申请实施例对此不作限定。在一种可能的实现方式中,上述天线校正装置为基站,例如,LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、或者新型无线系统(new radio,NR)系统中的gNB等。
作为一个可选的实施例,上述校正电路具体用于:确定该l个天线的每个天线的第一补偿参数,根据该第一补偿参数和该第一校正信号,确定该每个天线的第二补偿参数,以及,根据该第二补偿参数,对该每个天线进行校正。
应理解,由于天线校正耦合口的位置在天馈滤波器和射频链路之间,校正电路发送或接收的信号可以不经过天馈滤波器,对于天线和天馈滤波器之间链路的误差(可以包括例 如,PCB走线误差、连接器误差、天馈滤波器误差、天馈网络误差、天线振子误差等等)则需要通过装备做表获得。换句话说,装备做表是为了补偿各硬件链路不一致,在装置的生产过程中进行信号测量将获得的补偿参数存入内存(例如存储器)中,以便后续校正使用。本申请实施例将上述装备做表过程中的补偿参数称为第一补偿参数,但应理解,该第一补偿参数还可以称为装备做表补偿参数或其他名称,本申请实施例对此不作限定。装置一旦出厂,便已经存储了上述第一补偿参数。在一种可能的实现方式中,上述第一补偿参数是通过表格(例如装备表)的形式存储在内存中的,但本申请实施例对此不作限定。
基于图1所示的天线校正装置,在实际现网运行过程中,校正电路可以从内存中获取每个天线的第一补偿参数,并结合该第一补偿参数和从天线校正耦合口获取的第一校正信号,确定每个天线的第二补偿参数,进而采用该第二补偿参数进行天线校正。上述第二补偿参数为实际现网运行过程中的补偿参数,该第二补偿参数还可以称为校正补偿参数或其他名称,本申请实施例对此不作限定。
作为一个可选的实施例,以该l个天线中的第i个天线作为参考天线,该l个天线中的第j个天线的第一补偿参数δ j满足:
Figure PCTCN2019103763-appb-000025
其中,该第j个天线对应的射频链路包括接收链路和发射链路,该接收链路与接收模块连接,该发射链路与发射模块连接,该第j个天线与测试天线连接,a j为该接收模块接收的、该测试天线发送的第二校正信号,b j为该接收模块接收的、该校正电路发送的第二校正信号,c j为该测试天线接收的、该发射模块发送的第二校正信号,d j为该校正电路接收的、该发射模块发送的第二校正信号,i为整数,且1≤i≤l,j为取遍1至l的整数。
上述第二校正信号指的是装备做表过程中产生的校正信号。在装备做表的过程中,需要一根或多根装备做表天线,本文又称为测试天线。应理解,若只有一根装备做表天线,可以每次通过调整装备做表天线的位置扫描l个天线中的每一根天线。此外,需要从l个天线中选择一根天线作为参考天线,计算其他天线与该参考天线之间的误差,在本申请实施例中,第i个天线为参考天线。
本申请实施例假设a j=h jC jR j,b j=D jR j,c j=T jC jh j,d j=T jD j,其中,h j表示第j个天线与装备做表天线之间的耦合度(又称为耦合插损),C j表示第j个天线的公共部分的系统传输函数(其中可以包括收发链路合路后的PCB走线误差、连接器误差、天馈滤波器误差、天馈网络误差、天线振子误差等等),R j表示第j个天线的接收链路的传输函数,T j表示第j个天线的发射链路的传输函数,D j表示第j个天线与校正电路之间的链路的传输函数。
应理解,
Figure PCTCN2019103763-appb-000026
即为
Figure PCTCN2019103763-appb-000027
为了简化描述,在接下来的实施例中,将省略其中的“×”。
还应理解,
Figure PCTCN2019103763-appb-000028
是在满足一定量化范围内的情况下,并不是绝对的相等,本文中的“=”均指满足一定量化范围的相等,后续不再赘述。
图2示出了处于装备做表过程的天线校正装置。以参考天线是天线1(即第1个天线) 为例,首先将装备做表天线10扫描到天线1,分别执行下列步骤:
装备做表天线10发送第二校正信号,接收模块接收并获得测量结果a 1=h 1C 1R 1(1);
校正电路通过天线校正耦合口发送第二校正信号,接收模块接收并获得测量结果b 1=D 1R 1(2);
发射模块发送第二校正信号,装备做表天线10接收并获得测量结果c 1=T 1C 1h 1(3);
发射模块发送第二校正信号,校正电路通过天线校正耦合口接收并获得测量结果d 1=T 1D 1(4)。
接着,将装备做表天线10扫描到天线2,执行类似上述步骤,获得测量结果a 2=h 2C 2R 2(5),b 2=D 2R 2(6),c 2=T 2C 2h 2(7),d 2=T 2D 2(8)。
根据上述公式(1)和(5)可得:
Figure PCTCN2019103763-appb-000029
根据上述公式(2)和(6)可得:
Figure PCTCN2019103763-appb-000030
根据上述公式(3)和(7)可得:
Figure PCTCN2019103763-appb-000031
根据上述公式(4)和(8)可得:
Figure PCTCN2019103763-appb-000032
进一步地,根据公式(9)和(10)可得:
Figure PCTCN2019103763-appb-000033
根据公式(11)和(12)可得:
Figure PCTCN2019103763-appb-000034
因此,根据公式(13)和(14)可得:
Figure PCTCN2019103763-appb-000035
(15),表示天线2相对于天线1的第一补偿参数。本实施例假设装备做表天线与每个天线的耦合度相等,即h 1=h 2
以此类推,计算l个天线中的每一个天线相对于天线1的第一补偿参数
Figure PCTCN2019103763-appb-000036
可以获得与l个天线一一对应的l个第一补偿参数,存入内存中,例如写入装备表中。
应理解,上面仅仅以天线1作为参考天线为例进行了说明,在实际应用中,参考天线可以为该l个天线中的任一根天线。此外,图2仅仅以一根装备做表天线为例,介绍了依次对l个天线中的每一根天线装备做表的过程,在其他可能的实现方式中,装备做表天线的数量可以为更多,例如装备做表天线的数量为l,这样,l个天线中的全部或部分天线可以同时并行地进行装备做表,有助于提高装备做表的效率。
作为一个可选的实施例,该第一校正信号包括e j和f j,e j为该校正电路接收的、该第j个天线对应的发射模块发送的校正信号,f j为该第j个天线对应的接收模块接收的、该校正电路发送的校正信号;该第j个天线的第二补偿参数包括该第j个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000037
和该第j个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000038
以该l个天线中的第i个天线作为参考天线,该l个天线中的第j个天线对应的发射链路的第二补偿参 数
Figure PCTCN2019103763-appb-000039
满足:
Figure PCTCN2019103763-appb-000040
该l个天线中的第j个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000041
满足:
Figure PCTCN2019103763-appb-000042
在实际现网运行过程中,需要对天线的接收通道和发射通道分别进行校正。因此,上述第一校正信号可以包括发射链路对应的校正信号e j和接收链路对应的校正信号f j。则对应地,第二补偿参数可以包括发射链路对应的补偿参数
Figure PCTCN2019103763-appb-000043
和接收链路对应的补偿参数
Figure PCTCN2019103763-appb-000044
第二补偿参数可以根据上述第一补偿参数和第一校正信号计算获得。
本申请实施例假设e j=T′ jD′ j,f j=D′ jR′ j,其中,R′ j表示第j个天线的接收链路在实际运行时的传输函数,T′ j表示第j个天线在实际运行时的发射链路的传输函数,D′ j表示第j个天线与校正电路之间的链路在实际运行时的传输函数。
作为一个可选的实施例,该校正电路用于:获取该每个天线对应的该第一校正信号e j和f j;根据该每个天线的第一补偿参数δ j、该每个天线对应的第一校正信号e j,确定该每个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000045
根据该每个天线的第一补偿参数δ j、该每个天线对应的第一校正信号f j,确定该每个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000046
将该每个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000047
补偿到该每个天线对应的发射链路,将该每个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000048
补偿到该每个天线对应的接收链路。
参考上述图2示出的例子,以参考天线是天线1(即第1个天线)为例,为了获取发射链路对应的第二补偿参数,执行下列步骤:
发射模块发送第一校正信号,校正电路通过天线校正耦合口接收并获得测量结果e 1=T′ 1D′ 1(17)和e j=T′ jD′ j(18);
根据上述公式(17)和(18)可得:
Figure PCTCN2019103763-appb-000049
将第一补偿参数的结果乘以上述公式(19),可得:
Figure PCTCN2019103763-appb-000050
(20),表示天线j相对于天线1的发射链路对应的第二补偿参数。本实施例假设T j=T′ j,D j=D′ j
同理,为了获取接收链路对应的第二补偿参数,执行下列步骤:
校正电路通过天线校正耦合口发送第一校正信号,接收模块接收并获得测量结果f 1=D′ 1R′ 1(21)和f j=D′ jR′ j(22);
根据上述公式(21)和(22)可得:
Figure PCTCN2019103763-appb-000051
将第一补偿参数的结果乘以上述公式(23),可得:
Figure PCTCN2019103763-appb-000052
(24),表示天线j相对于天线1的接收链路对应的第二补偿参数。本实施例假设D j=D′ j,C j=C′ j
最后,将公式(20)和(24)的结果分别补充到对应的接收链路和发射链路中,从而完成天线校正。
应理解,上述接收链路的校正和发射链路的校正是两个独立的校正过程,可以按照先 后顺序执行,也可以并行处理,本申请实施例对此不作限定。
此外,由公式(20)和(24)可得条件一:
Figure PCTCN2019103763-appb-000053
Figure PCTCN2019103763-appb-000054
将(25)和(26)相除,可得条件二:
Figure PCTCN2019103763-appb-000055
装备做表的误差(也可称为装备做表的精度)会影响δ j的值,仅影响条件一,与条件二无关。而校正算法会影响σ j的值,会影响条件一和条件二。综上所述,装备做表的误差仅影响,而对上下行互易性无影响,由于开环波束的赋形精度对多天线系统的影响较弱,因此,本申请实施例的天线校正装置对装备做表的精度要求不高,比较容易满足要求。
在上述实施例中,l个天线的频段是相同的,均对应第一频段。本申请不排除该天线校正装置还包括其他频段,换句话说,该天线校正装置是多频多天线通道的。
作为一个可选的实施例,该l个天线对应第一频段,该天线校正装置还包括:k个天线,对应第二频段,k为大于或等于2的整数,k个天馈滤波器,该k个天馈滤波器的第一端与该k个天线连接;k个射频链路,与该k个天馈滤波器的第二端连接;该校正电路与该k个天馈滤波器的第二端连接,用于:通过该k个天馈滤波器中的每个天馈滤波器和与该k个天馈滤波器中的每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收第三校正信号,以及根据该第三校正信号,对该k个天线中的每个天线进行校正。
上述天线校正装置还包括与第二频段对应的k个天线,与第一频段类似,k个天线与k个天馈滤波器和k个射频链路连接,从而形成k个天线通道。进一步地,k个射频链路可以包括k个射频发射链路和k个射频接收链路,分别与上述k个天线和k个天馈滤波器形成k个天线发射通道和k个天线接收通道。k个天线与k个天馈滤波器的第一端连接,k个射频链路与k个天馈滤波器的第二端连接。该k个天馈滤波器的第二端还分别与校正电路连接。
与l个天线对应的第一频段类似,k个天线中每个天线的天线校正耦合口的位置均在天馈滤波器和射频链路之间,这样,校正电路就可以通过天线校正耦合口发送或接收第三校正信号。换句话说,校正电路140可以通过天馈滤波器和与该天馈滤波器的第二端连接的射频链路之间的位置发送或接收第三校正信号。该第三校正信号指的是现网运行过程中产生的校正信号。关于第二频段中k个天线的相关描述可以参考上述第一频段中的l个天线,此处不再赘述。
作为一个可选的实施例,该校正电路具体用于:确定该k个天线中的每个天线的第一补偿参数;根据该k个天线中的每个天线的第一补偿参数和该第三校正信号,确定该k个天线中的每个天线的第二补偿参数;根据该k个天线中的每个天线的第二补偿参数,对该k个天线中的每个天线进行校正。
与l个天线对应的第一频段类似,第二频段也需要进行装备做表,获得第一补偿参数,将该第一补偿参数写入内存中,以便后续校正使用。在第二频段中,k个天线的装备做表和校正过程与第一频段中的装备做表和校正过程类似,此处不再赘述。
本申请实施例的天线校正装置,能够在简化天线校正装置的装配工艺,有利于降低天 线校正装置的实现成本的基础之上,实现多频多天线通道的天线校正,进一步降低开发成本。
作为一个可选的实施例,用于确定该k个天线中的每个天线的第一补偿参数的参考天线为该k个天线中的第q个天线,q为整数,且1≤q≤k。
应理解,在装备做表和校正的过程中,需要选择参考天线,这里每个频段的参考天线是不同的,第一频段需要在其对应的l个天线中选择,第二频段需要在其对应的k个天线中选择。
图3示出了另一处于装备做表过程中的天线校正装置的结构示意图。图3所示的天线校正装置包括N个频段,N为大于或等于2的整数。N个频段中的每个频段包括的天线数量可以相同,也可以不同,本申请实施例对此不作限定。其中,频段1对应上述第一频段,包括l个天线,频段2对应上述第二频段,包括k个天线。此外,频段N包括m个天线,m为大于或等于2的整数。
在图2的示例中,频段1的参考天线为天线1,按照图2对应的描述,可得公式(20)和(24),即第二补偿参数。示例性地,频段2的参考天线可以为天线l+1,频段N的参考天线可以为天线l+k+1,与频段1相同,可以得到每个频段对应的第二补偿参数,分别将每个频段对应的第二补偿参数补偿到对应的接收链路和发射链路中,从而完成天线校正。
应理解,图3仅仅示出了一根装备做表天线,每次可以通过调整装备做表天线的位置扫描l+k+m个天线中的每一根天线。在其他可能的实现方式中,也可以为上述每个频段分别设置一根或多根装备做表天线,使得各个频段的装备做表过程并行进行,有助于提高装备做表的效率。
还应理解,本申请对上述各个频段中的各个天线的校正过程的先后顺序不作任何限定,校正电路可以获取一个天线对应的第二补偿参数,就校正一个天线,也可以在获取了所有天线对应的第二补偿参数后,统一对所有天线进行校正,本申请实施例对此不作限定。
上文中结合图1至图3,详细描述了根据本申请实施例的天线校正装置,下面将结合图4,详细描述根据本申请实施例的天线校正方法。
图4是本申请提出的天线校正方法400的示意性流程图。方法400应用于包括l个天线的天线校正装置,该l个天线与l个天馈滤波器的第一端连接,该l个天馈滤波器的第二端与l个射频链路和校正电路连接。该方法400包括:
S410,获取第一校正信号,该第一校正信号是该校正电路通过该l个天馈滤波器中的每个天馈滤波器和与该每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收的;
S420,确定该l个天线的每个天线的第一补偿参数;
S430,根据该第一补偿参数和该第一校正信号,确定该每个天线的第二补偿参数;
S440,根据该第二补偿参数,对该每个天线进行校正。
本申请实施例的天线校正方法,通过将天线校正耦合口的位置设置在天馈滤波器和射频链路之间,使得校正电路可以直接在射频单元发送或接收校正信号,从而进行天线校正,无需增加线缆、接器以及合路单元等组件,简化了天线校正装置的装配工艺,有利于降低天线校正装置的实现成本。
上述方法400可以应用于图1至图3所示的天线校正装置,但本申请实施例不限于此。具体校正流程可参考上述天线校正装置的相关描述,此处不再赘述。
作为一个可选的实施例,以该l个天线中的第i个天线作为参考天线,该l个天线中的第j个天线的第一补偿参数δ j满足:
Figure PCTCN2019103763-appb-000056
其中,该第j个天线对应的射频链路包括接收链路和发射链路,该接收链路与接收模块连接,该发射链路与发射模块连接,该第j个天线与测试天线连接,a j为该接收模块接收的、该测试天线发送的第二校正信号,b j为该接收模块接收的、该校正电路发送的第二校正信号,c j为该测试天线接收的、该发射模块发送的第二校正信号,d j为该校正电路接收的、该发射模块发送的第二校正信号,i为整数,且1≤i≤l,j为取遍1至l的整数。
作为一个可选的实施例,该第一校正信号包括e j和f j,e j为该校正电路接收的、该第j个天线对应的发射模块发送的校正信号,f j为该第j个天线对应的接收模块接收的、该校正电路发送的校正信号;该第j个天线的第二补偿参数包括该第j个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000057
和该第j个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000058
以该l个天线中的第i个天线作为参考天线,该l个天线中的第j个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000059
满足:
Figure PCTCN2019103763-appb-000060
该l个天线中的第j个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000061
满足:
Figure PCTCN2019103763-appb-000062
作为一个可选的实施例,该获取第一校正信号,包括:获取该每个天线对应的该第一校正信号e j和f j;该根据该第一补偿参数和该第一校正信号,确定该每个天线的第二补偿参数,包括:根据该每个天线的第一补偿参数δ j、该每个天线对应的第一校正信号e j,确定该每个天线对应的发射链路的第二补偿参数τ Tj;根据该每个天线的第一补偿参数δ j、该每个天线对应的第一校正信号f j,确定该每个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000063
该根据该第二补偿参数,对该每个天线进行校正,包括:将该每个天线对应的发射链路的第二补偿参数
Figure PCTCN2019103763-appb-000064
补偿到该每个天线对应的发射链路,将该每个天线对应的接收链路的第二补偿参数
Figure PCTCN2019103763-appb-000065
补偿到该每个天线对应的接收链路。
作为一个可选的实施例,该l个天线对应第一频段,该天线校正装置还包括对应第二频段的k个天线,k为大于或等于2的整数,该k个天线与k个天馈滤波器的第一端连接,该k个天馈滤波器的第二端与k个射频链路和该校正电路连接;该方法还包括:获取该第三校正信号,该第三校正信号是该校正电路通过该k个天馈滤波器中的每个天馈滤波器和与该k个天馈滤波器中的每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收的;确定该k个天线中的每个天线的第一补偿参数;根据该k个天线中的每个天线的第一补偿参数和该第三校正信号,确定该k个天线中的每个天线的第二补偿参数;根据该k个天线中的每个天线的第二补偿参数,对该k个天线中的每个天线进行校正。
作为一个可选的实施例,用于确定该k个天线中的每个天线的第一补偿参数的参考天线为该k个天线中的第q个天线,q为整数,且1≤q≤k。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种天线校正装置,其特征在于,包括:
    l个天线,l为大于或等于2的整数;
    l个天馈滤波器,所述l个天馈滤波器的第一端与所述l个天线连接;
    l个射频链路,与所述l个天馈滤波器的第二端连接;
    校正电路,与所述l个天馈滤波器的第二端连接,用于:通过所述l个天馈滤波器中的每个天馈滤波器和与所述每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收第一校正信号,以及根据所述第一校正信号,对所述l个天线的每个天线进行校正。
  2. 根据权利要求1所述的装置,其特征在于,所述校正电路具体用于:
    确定所述每个天线的第一补偿参数;
    根据所述第一补偿参数和所述第一校正信号,确定所述每个天线的第二补偿参数;
    根据所述第二补偿参数,对所述每个天线进行校正。
  3. 根据权利要求2所述的装置,其特征在于,以所述l个天线中的第i个天线作为参考天线,所述l个天线中的第j个天线的第一补偿参数δ j满足:
    Figure PCTCN2019103763-appb-100001
    其中,所述第j个天线对应的射频链路包括接收链路和发射链路,所述接收链路与接收模块连接,所述发射链路与发射模块连接,所述第j个天线与测试天线连接,a j为所述接收模块接收的、所述测试天线发送的第二校正信号,b j为所述接收模块接收的、所述校正电路发送的第二校正信号,c j为所述测试天线接收的、所述发射模块发送的第二校正信号,d j为所述校正电路接收的、所述发射模块发送的第二校正信号,i为整数,且1≤i≤l,j为取遍1至l的整数。
  4. 根据权利要求3所述的装置,其特征在于,所述第一校正信号包括e j和f j,e j为所述校正电路接收的、所述第j个天线对应的发射模块发送的校正信号,f j为所述第j个天线对应的接收模块接收的、所述校正电路发送的校正信号;
    所述第j个天线的第二补偿参数包括所述第j个天线对应的发射链路的第二补偿参数
    Figure PCTCN2019103763-appb-100002
    和所述第j个天线对应的接收链路的第二补偿参数
    Figure PCTCN2019103763-appb-100003
    以所述l个天线中的第i个天线作为参考天线,所述l个天线中的第j个天线对应的发射链路的第二补偿参数
    Figure PCTCN2019103763-appb-100004
    满足:
    Figure PCTCN2019103763-appb-100005
    所述l个天线中的第j个天线对应的接收链路的第二补偿参数
    Figure PCTCN2019103763-appb-100006
    满足:
    Figure PCTCN2019103763-appb-100007
  5. 根据权利要求4所述的装置,其特征在于,所述校正电路用于:
    获取所述每个天线对应的所述第一校正信号e j和f j
    根据所述每个天线的第一补偿参数δ j、所述每个天线对应的第一校正信号e j,确定所 述每个天线对应的发射链路的第二补偿参数
    Figure PCTCN2019103763-appb-100008
    根据所述每个天线的第一补偿参数δ j、所述每个天线对应的第一校正信号f j,确定所述每个天线对应的接收链路的第二补偿参数
    Figure PCTCN2019103763-appb-100009
    将所述每个天线对应的发射链路的第二补偿参数
    Figure PCTCN2019103763-appb-100010
    补偿到所述每个天线对应的发射链路,将所述每个天线对应的接收链路的第二补偿参数
    Figure PCTCN2019103763-appb-100011
    补偿到所述每个天线对应的接收链路。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,所述l个天线对应第一频段,所述装置还包括:
    k个天线,对应第二频段,k为大于或等于2的整数,
    k个天馈滤波器,所述k个天馈滤波器的第一端与所述k个天线连接;
    k个射频链路,与所述k个天馈滤波器的第二端连接;
    所述校正电路与所述k个天馈滤波器的第二端连接,用于:
    通过所述k个天馈滤波器中的每个天馈滤波器和与所述k个天馈滤波器中的每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收第三校正信号,以及根据所述第三校正信号,对所述k个天线中的每个天线进行校正。
  7. 根据权利要求6所述的装置,其特征在于,所述校正电路具体用于:
    确定所述k个天线中的每个天线的第一补偿参数;
    根据所述k个天线中的每个天线的第一补偿参数和所述第三校正信号,确定所述k个天线中的每个天线的第二补偿参数;
    根据所述k个天线中的每个天线的第二补偿参数,对所述k个天线中的每个天线进行校正。
  8. 根据权利要求7所述的装置,其特征在于,用于确定所述k个天线中的每个天线的第一补偿参数的参考天线为所述k个天线中的第q个天线,q为整数,且1≤q≤k。
  9. 一种天线校正方法,其特征在于,应用于包括l个天线的天线校正装置,所述l个天线与l个天馈滤波器的第一端连接,所述l个天馈滤波器的第二端与l个射频链路和校正电路连接,所述方法包括:
    获取第一校正信号,所述第一校正信号是所述校正电路通过所述l个天馈滤波器中的每个天馈滤波器和与所述每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收的;
    确定所述l个天线的每个天线的第一补偿参数;
    根据所述第一补偿参数和所述第一校正信号,确定所述每个天线的第二补偿参数;
    根据所述第二补偿参数,对所述每个天线进行校正。
  10. 根据权利要求9所述的方法,其特征在于,以所述l个天线中的第i个天线作为参考天线,所述l个天线中的第j个天线的第一补偿参数δ j满足:
    Figure PCTCN2019103763-appb-100012
    其中,所述第j个天线对应的射频链路包括接收链路和发射链路,所述接收链路与接收模块连接,所述发射链路与发射模块连接,所述第j个天线与测试天线连接,a j为所述接收模块接收的、所述测试天线发送的第二校正信号,b j为所述接收模块接收的、所述校 正电路发送的第二校正信号,c j为所述测试天线接收的、所述发射模块发送的第二校正信号,d j为所述校正电路接收的、所述发射模块发送的第二校正信号,i为整数,且1≤i≤l,j为取遍1至l的整数。
  11. 根据权利要求10所述的方法,其特征在于,所述第一校正信号包括e j和f j,e j为所述校正电路接收的、所述第j个天线对应的发射模块发送的校正信号,f j为所述第j个天线对应的接收模块接收的、所述校正电路发送的校正信号;
    所述第j个天线的第二补偿参数包括所述第j个天线对应的发射链路的第二补偿参数
    Figure PCTCN2019103763-appb-100013
    和所述第j个天线对应的接收链路的第二补偿参数
    Figure PCTCN2019103763-appb-100014
    以所述l个天线中的第i个天线作为参考天线,所述l个天线中的第j个天线对应的发射链路的第二补偿参数
    Figure PCTCN2019103763-appb-100015
    满足:
    Figure PCTCN2019103763-appb-100016
    所述l个天线中的第j个天线对应的接收链路的第二补偿参数
    Figure PCTCN2019103763-appb-100017
    满足:
    Figure PCTCN2019103763-appb-100018
  12. 根据权利要求11所述的方法,其特征在于,所述获取第一校正信号,包括:
    获取所述每个天线对应的所述第一校正信号e j和f j
    所述根据所述第一补偿参数和所述第一校正信号,确定所述每个天线的第二补偿参数,包括:
    根据所述每个天线的第一补偿参数δ j、所述每个天线对应的第一校正信号e j,确定所述每个天线对应的发射链路的第二补偿参数
    Figure PCTCN2019103763-appb-100019
    根据所述每个天线的第一补偿参数δ j、所述每个天线对应的第一校正信号f j,确定所述每个天线对应的接收链路的第二补偿参数
    Figure PCTCN2019103763-appb-100020
    所述根据所述第二补偿参数,对所述每个天线进行校正,包括:
    将所述每个天线对应的发射链路的第二补偿参数
    Figure PCTCN2019103763-appb-100021
    补偿到所述每个天线对应的发射链路,将所述每个天线对应的接收链路的第二补偿参数
    Figure PCTCN2019103763-appb-100022
    补偿到所述每个天线对应的接收链路。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述l个天线对应第一频段,所述天线校正装置还包括对应第二频段的k个天线,k为大于或等于2的整数,所述k个天线与k个天馈滤波器的第一端连接,所述k个天馈滤波器的第二端与k个射频链路和所述校正电路连接;
    所述方法还包括:
    获取所述第三校正信号,所述第三校正信号是所述校正电路通过所述k个天馈滤波器中的每个天馈滤波器和与所述k个天馈滤波器中的每个天馈滤波器的第二端连接的射频链路之间的位置发送或接收的;
    确定所述k个天线中的每个天线的第一补偿参数;
    根据所述k个天线中的每个天线的第一补偿参数和所述第三校正信号,确定所述k个天线中的每个天线的第二补偿参数;
    根据所述k个天线中的每个天线的第二补偿参数,对所述k个天线中的每个天线进行 校正。
  14. 根据权利要求13所述的方法,其特征在于,用于确定所述k个天线中的每个天线的第一补偿参数的参考天线为所述k个天线中的第q个天线,q为整数,且1≤q≤k。
PCT/CN2019/103763 2019-08-30 2019-08-30 天线校正装置和天线校正方法 WO2021035705A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19943541.3A EP4016877A4 (en) 2019-08-30 2019-08-30 ANTENNA CORRECTION DEVICE AND METHOD
KR1020227008246A KR102669932B1 (ko) 2019-08-30 안테나 교정 장치 및 안테나 교정 방법
PCT/CN2019/103763 WO2021035705A1 (zh) 2019-08-30 2019-08-30 天线校正装置和天线校正方法
CN201980099705.4A CN114365432B (zh) 2019-08-30 2019-08-30 天线校正装置和天线校正方法
JP2022513341A JP7416915B2 (ja) 2019-08-30 2019-08-30 アンテナ較正装置およびアンテナ較正方法
US17/682,861 US20220182156A1 (en) 2019-08-30 2022-02-28 Antenna calibration apparatus and antenna calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103763 WO2021035705A1 (zh) 2019-08-30 2019-08-30 天线校正装置和天线校正方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/682,861 Continuation US20220182156A1 (en) 2019-08-30 2022-02-28 Antenna calibration apparatus and antenna calibration method

Publications (1)

Publication Number Publication Date
WO2021035705A1 true WO2021035705A1 (zh) 2021-03-04

Family

ID=74684405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103763 WO2021035705A1 (zh) 2019-08-30 2019-08-30 天线校正装置和天线校正方法

Country Status (5)

Country Link
US (1) US20220182156A1 (zh)
EP (1) EP4016877A4 (zh)
JP (1) JP7416915B2 (zh)
CN (1) CN114365432B (zh)
WO (1) WO2021035705A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1418028A (zh) * 2001-11-06 2003-05-14 深圳市中兴通讯股份有限公司上海第二研究所 智能天线子系统的校正方法和装置
CN101335966A (zh) * 2008-06-30 2008-12-31 华为技术有限公司 多天线校正方法、多天线收发装置及基站系统
CN101548479A (zh) * 2006-12-08 2009-09-30 诺基亚公司 扩频通信系统中的校准
EP2053759B1 (en) * 2007-10-22 2011-06-29 British Broadcasting Corporation Improvements relating to on-channel repeaters
CN102520419A (zh) * 2011-11-22 2012-06-27 航天恒星科技有限公司 一种gnss海洋反射信号接收系统及接收方法
CN204177963U (zh) * 2014-11-15 2015-02-25 安徽四创电子股份有限公司 一种基于全数字阵列的有源相控阵天气雷达系统
CN108476035A (zh) * 2016-01-26 2018-08-31 株式会社村田制作所 高频前端电路、通信装置
CN209232944U (zh) * 2018-10-30 2019-08-09 苏州科可瑞尔航空技术有限公司 一种片式双频机载卫星通信天线
WO2019161101A1 (en) * 2018-02-15 2019-08-22 Space Exploration Technologies Corp. Antenna aperture in phased array antenna systems
CN110166134A (zh) * 2019-05-07 2019-08-23 中国电子科技集团公司第三十八研究所 光正交调制解调系统、基于该系统的数字化综合射频系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002337354B2 (en) 2001-11-14 2006-06-22 Quintel Technology Limited Antenna system
JP2008035286A (ja) 2006-07-28 2008-02-14 Kyocera Corp 無線通信装置及び故障推定方法
JP4015180B2 (ja) 2007-07-27 2007-11-28 株式会社東芝 到来方向推定装置、到来方向推定方法及び障害物推定装置
JP5703709B2 (ja) 2010-11-19 2015-04-22 富士通株式会社 無線通信システム、送信機、無線通信方法及び送信機の制御方法
US9172454B2 (en) * 2013-11-01 2015-10-27 Magnolia Broadband Inc. Method and system for calibrating a transceiver array
CN103997352B (zh) * 2014-05-14 2016-02-24 电信科学技术研究院 有源天线相关设备、系统及收发校准方法
KR101727600B1 (ko) * 2015-01-26 2017-05-02 한국전자통신연구원 배열 안테나 시스템의 오차 보정 장치 및 그 방법
CN108140932B (zh) * 2015-10-29 2020-07-24 康普技术有限责任公司 具有增强的带间隔离的校准电路板的天线
WO2018093176A2 (ko) 2016-11-16 2018-05-24 주식회사 케이엠더블유 적층구조의 mimo 안테나 어셈블리
KR101854309B1 (ko) * 2016-11-16 2018-05-03 주식회사 케이엠더블유 Mimo 안테나 어셈블리
CN110447146A (zh) 2016-12-21 2019-11-12 英特尔公司 无线通信技术、装置和方法
EP3565134B1 (en) * 2017-01-24 2020-08-05 Huawei Technologies Co., Ltd. Antenna correction method and device
CN107248868B (zh) * 2017-06-09 2019-08-16 福州智程信息科技有限公司 基于神经网络算法的宽带有源天线阵列自适应校正方法
CN108540181B (zh) * 2018-03-02 2020-04-14 京信通信系统(中国)有限公司 一种天线校准的方法及装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1418028A (zh) * 2001-11-06 2003-05-14 深圳市中兴通讯股份有限公司上海第二研究所 智能天线子系统的校正方法和装置
CN101548479A (zh) * 2006-12-08 2009-09-30 诺基亚公司 扩频通信系统中的校准
EP2053759B1 (en) * 2007-10-22 2011-06-29 British Broadcasting Corporation Improvements relating to on-channel repeaters
CN101335966A (zh) * 2008-06-30 2008-12-31 华为技术有限公司 多天线校正方法、多天线收发装置及基站系统
CN102520419A (zh) * 2011-11-22 2012-06-27 航天恒星科技有限公司 一种gnss海洋反射信号接收系统及接收方法
CN204177963U (zh) * 2014-11-15 2015-02-25 安徽四创电子股份有限公司 一种基于全数字阵列的有源相控阵天气雷达系统
CN108476035A (zh) * 2016-01-26 2018-08-31 株式会社村田制作所 高频前端电路、通信装置
WO2019161101A1 (en) * 2018-02-15 2019-08-22 Space Exploration Technologies Corp. Antenna aperture in phased array antenna systems
CN209232944U (zh) * 2018-10-30 2019-08-09 苏州科可瑞尔航空技术有限公司 一种片式双频机载卫星通信天线
CN110166134A (zh) * 2019-05-07 2019-08-23 中国电子科技集团公司第三十八研究所 光正交调制解调系统、基于该系统的数字化综合射频系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4016877A4 *

Also Published As

Publication number Publication date
CN114365432A (zh) 2022-04-15
EP4016877A4 (en) 2022-08-31
CN114365432B (zh) 2023-04-11
EP4016877A1 (en) 2022-06-22
KR20220044590A (ko) 2022-04-08
US20220182156A1 (en) 2022-06-09
JP2022545932A (ja) 2022-11-01
JP7416915B2 (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
US10432327B2 (en) Antenna array calibration method and apparatus
US20230064117A1 (en) Channel measurement method and communications apparatus
CN102149123B (zh) 一种CoMP系统中基站间天线校准方案和校准装置及基站
US10812159B2 (en) Antenna calibration method and apparatus
EP3320629B1 (en) Method and apparatus for calibration in radio frequency module
EP3429105B1 (en) Channel state information feedback method and device
CN103107836A (zh) 一种天线校准方法及装置
CN109951215B (zh) 一种获取下行信道信息的方法及装置
CN103378886A (zh) 一种rru天线校准方法、装置及系统
WO2017166977A1 (zh) 信道状态信息反馈的获取方法、相关设备及系统
CN102201849B (zh) 一种信道信息获取和反馈方法、系统及装置
EP3614583B1 (en) Channel correction method and network device
CN111130661B (zh) 一种天线校正方法及装置
CN112088499B (zh) 校准阵列天线
WO2019165842A1 (zh) 一种天线校准的方法、装置及设备
WO2021035705A1 (zh) 天线校正装置和天线校正方法
CN112585884B (zh) 通信方法、装置、网络设备、终端设备及系统
WO2022151859A1 (zh) 一种信息处理方法、装置、终端及网络侧设备
KR102669932B1 (ko) 안테나 교정 장치 및 안테나 교정 방법
EP4207650A1 (en) Information transmission method, related apparatus, and device
EP3116146B1 (en) Channel correction apparatus and method
EP4362530A1 (en) Channel information obtaining method and communication apparatus
US20230318717A1 (en) Ue aided antenna calibration
CN115842755A (zh) 一种时延校正方法及相关设备
CN105103468B (zh) 确定预编码矩阵的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513341

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008246

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019943541

Country of ref document: EP

Effective date: 20220314