WO2019165842A1 - 一种天线校准的方法、装置及设备 - Google Patents

一种天线校准的方法、装置及设备 Download PDF

Info

Publication number
WO2019165842A1
WO2019165842A1 PCT/CN2018/125391 CN2018125391W WO2019165842A1 WO 2019165842 A1 WO2019165842 A1 WO 2019165842A1 CN 2018125391 W CN2018125391 W CN 2018125391W WO 2019165842 A1 WO2019165842 A1 WO 2019165842A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
calibration
ref
calibration signal
downlink
Prior art date
Application number
PCT/CN2018/125391
Other languages
English (en)
French (fr)
Inventor
姜成玉
刘重军
刁穗东
付杰尉
Original Assignee
京信通信系统(中国)有限公司
京信通信系统(广州)有限公司
京信通信技术(广州)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司, 京信通信系统(广州)有限公司, 京信通信技术(广州)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2019165842A1 publication Critical patent/WO2019165842A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method, device, and device for antenna calibration.
  • MIMO Multiple-input multiple-output
  • the base station side can perform downlink joint precoding design by using channel reciprocity, and estimate the radio frequency response of the downlink channel according to the estimated channel state information of the uplink channel.
  • the complete communication channel includes not only the wireless channel in the air, but also the radio frequency circuit of the transmitting end and the receiving end, and the air channel transmitting and receiving satisfy the reciprocity, while receiving the radio frequency channel.
  • the response will change with time.
  • the gain, phase and other parameters of the amplifier and other components will change with temperature and other factors, resulting in different response of each RF channel in multi-channel transmission and reception, and the difference between such channels, This will lead to deterioration of system performance.
  • the data of each channel to be transmitted is orthogonal to each other, due to the difference between the RF channels, after the multi-channel receiving end, the data of each channel is no longer orthogonal, which will affect the data post-processing and channel estimation.
  • the existing large-scale multi-input multi-output antenna system calibration technique uses an estimation algorithm to calculate the calibration coefficient, and there is a problem that the calculation accuracy is insufficient, and the estimation algorithm has high computational complexity.
  • a method, apparatus, and apparatus for antenna calibration are provided.
  • An embodiment of the present application provides a method for antenna calibration, including:
  • the base station acquires a first uplink calibration signal from an uplink reference channel of the reference antenna by using the coupler;
  • the second downlink calibration signal is the calibration sent by the reference antenna received by the to-be-calibrated antenna in a downlink to-be-calibrated channel of the to-be-calibrated antenna Signal response signal;
  • the base station compensates the radio frequency response of the uplink and downlink channels of the to-be-calibrated antenna according to the calibration coefficient of the antenna to be calibrated.
  • the calibration coefficient of the reference antenna satisfies the following formula:
  • K ref is a calibration coefficient of the reference antenna
  • a calibration signal sent by the reference antenna of the base station to the coupler is z
  • the radio frequency response of the downlink channel of the reference antenna is T ref
  • the first downlink calibration signal is that the receiving end of the reference antenna is transmitted back through the downlink calibration loop connected to the coupler
  • the radio frequency response of the downlink calibration loop is H 1
  • the radio frequency response of the uplink channel of the reference antenna is R ref
  • An uplink calibration signal is a calibration signal sent by the coupler received by the receiving end of the reference antenna through an uplink reference channel of the reference antenna
  • the calibration signal is a transmitting end of the reference antenna and the coupler transmitting uplink calibration circuit is connected to said coupler
  • uplink radio frequency response of the correction loop is H 2.
  • the calibration coefficient of the antenna to be calibrated satisfies the following formula:
  • the base station is a distributed base station; and the coupler is located in a radio remote unit RRU of the base station.
  • the calibration signal is an orthogonal pilot signal.
  • An embodiment of the present application provides an apparatus for antenna calibration, including:
  • An acquiring unit configured to acquire a first downlink calibration signal returned by a coupler of a reference antenna of the base station; the first downlink calibration signal is obtained by the coupler from a downlink reference channel of the reference antenna Obtaining, by the coupler, a first uplink calibration signal from an uplink reference channel of the reference antenna; acquiring a second downlink calibration signal by using the antenna to be calibrated; the second downlink calibration signal is that the antenna to be calibrated is in the Aligning a response signal of the calibration signal sent by the reference antenna received in a downlink to be calibrated channel of the antenna; acquiring a second uplink calibration signal sent by the antenna to be calibrated; the second uplink calibration signal being the base station a response signal of the calibration signal sent by the reference antenna to be calibrated in an uplink channel of the antenna to be calibrated;
  • a processing unit configured to determine a calibration coefficient of the reference antenna according to the obtained ratio of the first downlink calibration signal and the first uplink calibration signal; and according to the second downlink calibration signal and the second uplink
  • the ratio of the calibration signal and the calibration coefficient of the reference antenna determine the calibration coefficient of the antenna to be calibrated; and compensate the radio frequency response of the uplink and downlink channels of the antenna to be calibrated according to the calibration coefficient of the antenna to be calibrated.
  • the calibration coefficient of the reference antenna satisfies the following formula:
  • K ref is a calibration coefficient of the reference antenna
  • a calibration signal sent by the reference antenna of the base station to the coupler is z
  • the radio frequency response of the downlink channel of the reference antenna is T ref
  • the first downlink calibration signal is that the receiving end of the reference antenna is transmitted back through the downlink calibration loop connected to the coupler
  • the radio frequency response of the downlink calibration loop is H 1
  • the radio frequency response of the uplink channel of the reference antenna is R ref
  • An uplink calibration signal is a calibration signal sent by the coupler received by the receiving end of the reference antenna through an uplink reference channel of the reference antenna
  • the calibration signal is a transmitting end of the reference antenna and the coupler transmitting uplink calibration circuit is connected to said coupler
  • uplink radio frequency response of the correction loop is H 2.
  • the calibration coefficient of the antenna to be calibrated satisfies the following formula:
  • the base station is a distributed base station; and the coupler is located at an RRU of the base station.
  • the calibration signal is an orthogonal pilot signal.
  • An embodiment of the present application further provides an antenna calibration apparatus, including a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor implements the computer program as described above The steps of the antenna calibration method described.
  • the embodiment of the present application further provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the steps of the antenna calibration method as described above.
  • FIG. 1 is a schematic structural diagram of a base station system according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a base station system provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an antenna provided in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for antenna calibration provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an antenna provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an antenna provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for antenna calibration according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an antenna calibration apparatus provided in an embodiment of the present application.
  • the users mentioned in the embodiments of the present application are user equipments, or user equipments used by users.
  • the base station may be a distributed base station, including a Base Band Unit (BBU) and a Radio Remote Unit (RRU).
  • the radio remote unit may be a multi-channel radio remote unit. Each receiving RF channel of the multi-channel receiving end responds when receiving the RF response, thereby receiving the RF response signal generated by the RF channel.
  • the transmitting end of the base station has N transmitting antennas X 1 -X N1 , X N1+1 -X N , and the radio frequency response of the downlink channel of the transmitting end of each antenna of the base station is T, and the uplink channel of the receiving end
  • the radio frequency response is R
  • the user equipment has L receiving antennas Y 1 ⁇ Y L1 , Y L1+1 ⁇ Y L .
  • the radio frequency response of the downlink channel of the transmitting end of each antenna of the user equipment is GT
  • the radio frequency response of the uplink channel of the receiving end is GR. In this embodiment, only the radio frequency response of the uplink/downlink channel of the multi-antenna of the base station is considered.
  • the calibration is as shown in Figure 2.
  • n is zero mean complex Gaussian white noise.
  • the radio frequency response of the spatial channel is h i,j ,i,j ⁇ 1,2,.. by any one of the transmitting antennas of the transmitting end of the base station to any receiving antenna j of the receiving end of the user equipment.
  • the radio frequency response of the downlink channel of the transmitting antenna X 1 in the transmitting end of the base station and the receiving antenna Y 1 of the receiving end of the user equipment may be represented as T 1 ⁇ h 1
  • the RF antenna in response to the user equipment to the base station antenna 1 X Y-1 uplink channel may be expressed as R 1 ⁇ h 1,1.
  • the vector matrix X is used to represent the matrix vector of the N transmit antenna transmit signals of the base station
  • the vector matrix Y is used to represent the matrix vector of the L receive antenna received signals of the user equipment.
  • the user equipment receive signal Y can be expressed as:
  • T diag (T 1 , T 2 , ..., T N ).
  • the radio frequency response H d of the downlink channel of the base station can be expressed as
  • n zero mean complex Gaussian white noise.
  • the vector matrix Y' is used to represent the matrix vector of the L transmit antenna transmit signals of the user equipment
  • the vector matrix X' is used to represent the matrix vector of the N receive antenna receive signals of the base station.
  • the signals received by the base station are:
  • R diag (R 1 , R 2 , ..., R N );
  • the radio frequency response of the uplink channel of the base station can be expressed as:
  • the radio frequency response of the downlink channel of the base station is equal to the radio frequency response of the uplink channel of the base station, and the calibration matrix K satisfies the following formula:
  • Diag(T 1 , T 2 ,...,T N ) diag(K 1 R 1 , K 2 R 2 ,...,K N R N )
  • the calibration matrix K satisfies the following formula:
  • the calibration matrix K' is such that the radio frequency response of the downlink channel of the base station is equal to the radio frequency response of the uplink channel of the base station, and the calibration matrix K' satisfies the following formula:
  • Diag(R 1 , R 2 ,..., R N ) diag(K' 1 T 1 , K' 2 T 2 ,...,K' N T N )
  • the calibration matrix K satisfies the following formula:
  • At least one power amplifier module such as a Low Noise Amplifier (LNA) or a Power Amplifier (PA) can be disposed on each transceiver channel, wherein the low noise amplifier can be used for uplink signals. Amplifying, the power amplifier can be used to amplify the downstream signal.
  • LNA Low Noise Amplifier
  • PA Power Amplifier
  • the radio frequency response of each downlink channel of the base station and the radio frequency response of the uplink channel are unknown, and will change according to the application environment, such as time variation, and the gain, phase, and other parameters of the amplifier and the like will follow the temperature.
  • the change of other factors therefore, it is necessary to determine the RF response of each downlink channel and the RF response value of the uplink channel in time, and then perform compensation correction on the receiving end of each RF channel to avoid the accuracy of the process used by the multi-channel receiver.
  • the problem has an impact. Real-time and convenient acquisition of the response of each receiving RF channel in various application scenarios.
  • the embodiment of the present invention provides a method and a device for calibrating an antenna, which are used to solve the technical problem of low multi-channel delay calibration accuracy in the prior art, and improve the calibration accuracy of the multi-channel response.
  • the embodiment of the present application provides a method for antenna calibration, including:
  • Step 401 The base station acquires a first downlink calibration signal returned by a coupler of the reference antenna of the base station.
  • the first downlink calibration signal is obtained by the coupler from an uplink channel of the reference antenna
  • Step 402 The base station acquires a first uplink calibration signal from an uplink channel of the reference antenna by using the coupler.
  • Step 403 The base station determines a calibration coefficient of the reference antenna according to the obtained ratio of the first downlink calibration signal and the first uplink calibration signal.
  • Step 404 The base station acquires a second downlink calibration signal by using an antenna to be calibrated.
  • the second downlink calibration signal is a response signal of the calibration signal sent by the reference antenna received by the to-be-calibrated antenna in a downlink to-be-calibrated channel of the to-be-calibrated antenna;
  • Step 405 The base station acquires a second uplink calibration signal sent by the to-be-calibrated antenna.
  • the second uplink calibration signal is a response signal of the calibration signal sent by the reference antenna to the calibration antenna in an uplink channel of the antenna to be calibrated;
  • Step 406 The base station determines, according to a ratio of the second downlink calibration signal and the second uplink calibration signal, and a calibration coefficient of the reference antenna, a calibration coefficient of the antenna to be calibrated;
  • the calibration coefficient of the antenna to be calibrated compensates for the RF response of the uplink and downlink channels of the antenna to be calibrated.
  • any one of the multiple antennas is selected as a reference antenna, and a coupler is disposed in the reference antenna.
  • the coupler may be disposed at a radio remote unit RRU where the reference antenna is located, and the coupler may establish a calibration loop through a radio frequency cable, and the calibration loop is used to a calibration signal z transmitted by a transmitting end of the reference antenna in a downlink reference channel of the reference antenna is transmitted back to a receiving end of the reference antenna; and the reference antenna transmits a calibration signal z through the calibration loop, so that The coupler transmits the calibration signal z to the receiving end of the reference antenna through an uplink reference channel of the reference antenna.
  • the first downlink calibration signal is a calibration signal z sent by the coupler from a reference antenna acquired in an uplink channel of the reference antenna;
  • the calibration signal may be in the form of a chirp signal, a pseudo noise sequence (Pseudo-noise Sequence) signal, or an Orthogonal Frequency Division Multiplexing signal.
  • a predictive signal and can be a signal on a baseband, intermediate frequency, or radio frequency. The signals specifically used in the present application are not limited.
  • Step 1 The base station sends a calibration signal z to the coupler on the downlink reference channel through the transmitting end where the reference antenna is located;
  • Step 2 The receiving end of the reference antenna of the base station receives the first downlink calibration signal y cal, ref returned by the coupler;
  • the calibration signal is sent to the coupler on a downlink reference channel, and after being passed through the coupler, is sent back to the receiving end where the reference antenna is located by the downlink calibration loop;
  • the calibration loop is a channel of a return signal to which the transmitting end of the reference antenna is connected to the coupler.
  • the calibration circuit downlink channel response can be represented by H 1.
  • the reference antenna X ref sends a calibration signal z to the coupler, the calibration signal z passing through the transmitting end of the reference antenna Xref, being received by the coupler, and passing back through the downlink calibration loop to the receiving end where the reference antenna is located,
  • the first downlink calibration signal y cal,ref can be expressed as:
  • the T ref is a downlink radio frequency response of the transmitting end of the reference antenna.
  • a possible implementation may include the following steps:
  • Step 1 The base station sends the calibration signal z to the coupler through a transmitting end where the reference antenna is located;
  • the transmitting end where the reference antenna is located may send the calibration signal z to the coupler through the uplink calibration loop.
  • Step 2 the coupler of the base station sends the calibration signal z to the receiving end of the reference antenna through the uplink reference channel of the reference antenna by receiving the calibration signal z;
  • Step 3 The receiving end of the base station acquires the first uplink calibration signal y ref,cal ; the first uplink calibration signal y ref,cal is an uplink channel of the base station from the reference antenna through the coupler Obtained
  • the channel response of the uplink calibration loop may be represented by H 2 .
  • the R ref is an uplink radio frequency response of the receiving end of the reference antenna X ref .
  • step 403 in a possible implementation manner, the calibration coefficient of the reference antenna satisfies the following formula:
  • the calibration coefficient of the reference antenna is K ref
  • the calibration signal sent by the reference antenna of the base station to the coupler is z
  • the radio frequency response of the downlink channel of the reference antenna is T ref ;
  • the first downlink calibration signal y cal, ref is returned by the receiving end of the reference antenna through a downlink calibration loop connected to the coupler; the radio frequency response of the downlink calibration loop is H 1 ;
  • the first uplink calibration signal y ref,cal is received by the receiving end of the reference antenna a calibration signal sent by the coupler through an uplink reference channel of the reference antenna; the calibration signal is sent to the coupler by an uplink calibration loop connected to the coupler through a transmit end of the reference antenna;
  • the RF response of the upstream calibration loop is H 2 .
  • the calibration coefficient of the reference antenna can be determined according to the following manner:
  • the radio frequency response of the downlink channel is T ref ;
  • the first downlink calibration signal is returned by the receiving end of the reference antenna through a downlink calibration loop connected to the coupler;
  • the radio frequency response of the downlink calibration loop is H 1 ;
  • the first uplink calibration signal is the reception of the reference antenna a calibration signal sent by the coupler through an uplink reference channel of the reference antenna;
  • the calibration signal is sent to the coupler through an uplink calibration loop connected to the coupler
  • the RF response of the upstream calibration loop is H 2 .
  • the determining, by the base station, the calibration coefficient of the reference antenna according to the ratio of the received first downlink calibration signal and the first uplink calibration signal specifically:
  • the first downlink calibration signal and the first uplink calibration signal are sent and received by the coupler in the radio frequency cable by the calibration signal z. Therefore, in the embodiment of the present application, the first The downlink calibration signal and the first uplink calibration signal do not pass through the air interface channel, and the influence of noise can be ignored. Therefore, the calibration coefficient K ref of the reference antenna can be expressed as:
  • the relationship between the channel response H 1 of the downlink calibration loop and the channel response H 2 of the uplink calibration loop can be obtained by measurement.
  • the specific implementation manner is not limited herein.
  • the determining, by the base station, the calibration coefficient of the reference antenna according to the ratio of the received first downlink calibration signal and the first uplink calibration signal specifically:
  • the first downlink calibration signal and the first uplink calibration signal are sent and received by the coupler in the radio frequency cable by the calibration signal z. Therefore, in the embodiment of the present application, the first The downlink calibration signal and the first uplink calibration signal do not pass through the air interface channel, and the influence of noise can be ignored. Therefore, the calibration coefficient K' ref of the reference antenna can be expressed as:
  • the relationship between the channel response H 1 of the downlink calibration loop and the channel response H 2 of the uplink calibration loop can be obtained by measurement.
  • the specific implementation manner is not limited herein.
  • the multi-channel of the base station further includes a downlink to-be-calibrated channel of the plurality of antennas to be calibrated.
  • the antenna X m to be calibrated for any one of the plurality of to-be-calibrated antennas may include the following steps:
  • step 404 a possible implementation may include the following steps:
  • a step of receiving the downlink side, the base station X ref reference antenna by the antenna to be calibrated X m of the channel to be calibrated X m to be calibrated antenna transmits the calibration signal
  • Step 2 The receiving end of the antenna Xm to be calibrated of the base station acquires a response signal of the calibration signal, that is, the second downlink calibration signal.
  • the reference antenna transmits a calibration signal X ref to be calibrated antenna z X m, X m of the antenna to be calibrated downlink received second calibration signal y m
  • step 405 a possible implementation may include the following steps:
  • Step 1 The antenna X m to be calibrated sends the calibration signal z to the receiving end of the reference antenna X ref through the uplink to be calibrated channel of the antenna X m to be calibrated;
  • Step 2 The receiving end of the reference antenna X ref obtains a response signal of the calibration signal z, that is, the second uplink calibration signal y ref .
  • the antenna to be calibrated transmit calibration signal z X m to X ref reference antenna, the reference antenna X ref received second uplink calibration signal can be expressed as y ref
  • g m, ref is the to be calibrated antenna X m to spatial channel reference antenna X ref response;
  • R ref is a radio frequency uplink channel receiving end reference antenna X ref response;
  • the ratio of the second downlink calibration signal to the second uplink calibration signal by the base station includes:
  • the reference antenna X ref transmits the same calibration signal as the antenna X m to be calibrated, and therefore, the radio frequency response of the reference antenna X ref to the downlink air channel of the antenna X m to be calibrated is The radio frequency response of the uplink air channel of the calibration antenna X m to the reference antenna X ref is equal.
  • the calibration signal may be selected as a pilot signal with a high signal to noise ratio, and therefore, the influence of noise may be ignored. Change the above formula
  • the calibration factor K X ref of the reference antenna ref is determined to be calibrated antenna calibration coefficients X m of K m, the calibration factor K m can be expressed as:
  • the ratio of the second downlink calibration signal to the second uplink calibration signal by the base station includes:
  • the g ref,m is a radio frequency response of the downlink air channel of the reference antenna X ref to the antenna X m to be calibrated;
  • the g m, ref is a radio frequency response of the uplink air channel of the antenna to be calibrated to the reference antenna ;
  • g ref,m g m,ref .
  • step 406 one possible implementation, K m of the radio frequency response of the base station downlink channel to be calibrated to compensate for the antenna according to the calibration factor.
  • the radio frequency response H dm of the downlink channel of the antenna X m to be calibrated is determined by the calibration coefficient K m as the radio frequency response KH um of the uplink channel of the compensated antenna X m to be calibrated, ,It can be expressed as:
  • the H um is the radio frequency response of the uplink channel of the to-be-calibrated antenna.
  • the H um may be determined by the uplink channel quality measured by the terminal, and details are not described herein again.
  • the calibration matrix K can be determined as:
  • K T ref /R ref H 2 /H 1 diag(y 1 /y ref ,y 2 /y ref ,...,y N /y ref )
  • the calibration matrix K can be expressed as:
  • the channel to be calibrated of all the antennas to be calibrated of the base station is compensated
  • the calibration matrix K can be used, so that the radio frequency response H d of the downlink channel of the base station can be represented as the compensated radio frequency response KH u of the uplink channel of the base station. Specifically, the following formula can be satisfied:
  • the H u is the radio frequency response matrix of the uplink channel of all the to-be-calibrated antennas of the base station.
  • the H u may be determined by the uplink channel quality measured by the terminal, and details are not described herein again.
  • the radio frequency response of the uplink and downlink channels of the to-be-calibrated antenna of the base station is compensated according to the calibration coefficient K′ m ;
  • the radio frequency response H um of the uplink channel of the to-be-calibrated antenna is determined by the calibration coefficient K′ m as the radio frequency response K′H dm of the downlink channel of the compensated antenna to be calibrated Specifically, it can be expressed as:
  • the H um is the radio frequency response of the uplink channel of the to-be-calibrated antenna.
  • the H um may be determined by the uplink channel quality measured by the terminal, and details are not described herein again.
  • the calibration matrix K' may be determined as:
  • K' R ref /T ref H 1 /H 2 diag(y ref /y 1 ,y ref /y 2 ,...,y ref /y N )
  • the calibration matrix K' can be expressed as:
  • the calibration matrix K' may be adopted, so that the radio frequency response H u of the uplink channel of the base station may be represented as the compensated radio frequency response K′H d of the downlink channel of the base station, and specifically, the following may be satisfied.
  • the H u is the radio frequency response matrix of the uplink channel of all the to-be-calibrated antennas of the base station.
  • the H u may be determined by the uplink channel quality measured by the terminal, and details are not described herein again.
  • an apparatus for antenna calibration including:
  • An acquiring unit 701 configured to acquire a first downlink calibration signal returned by a coupler of a reference antenna of the base station, where the first downlink calibration signal is obtained by the coupler from a downlink reference channel of the reference antenna Obtaining, by the coupler, a first uplink calibration signal from an uplink reference channel of the reference antenna; acquiring a second downlink calibration signal by using the antenna to be calibrated; the second downlink calibration signal is a response signal of the calibration signal sent by the reference antenna received in a downlink to be calibrated channel of the antenna to be calibrated; acquiring a second uplink calibration signal sent by the antenna to be calibrated; the second uplink calibration signal is the base station a response signal of the calibration signal sent by the reference antenna obtained by the antenna to be calibrated in an uplink channel of the antenna to be calibrated;
  • the processing unit 702 is configured to determine, according to the obtained ratio of the first downlink calibration signal and the first uplink calibration signal, a calibration coefficient of the reference antenna, according to the second downlink calibration signal and the second The ratio of the uplink calibration signal and the calibration coefficient of the reference antenna determine the calibration coefficient of the antenna to be calibrated; and compensate the radio frequency response of the uplink and downlink channels of the antenna to be calibrated according to the calibration coefficient of the antenna to be calibrated.
  • the calibration coefficient of the reference antenna satisfies the following formula:
  • K ref is a calibration coefficient of the reference antenna
  • a calibration signal sent by the reference antenna of the base station to the coupler is z
  • the radio frequency response of the downlink channel of the reference antenna is T ref
  • the first downlink calibration signal is that the receiving end of the reference antenna is transmitted back through the downlink calibration loop connected to the coupler
  • the radio frequency response of the downlink calibration loop is H 1
  • the radio frequency response of the uplink channel of the reference antenna is R ref
  • An uplink calibration signal is a calibration signal sent by the coupler received by the receiving end of the reference antenna through an uplink reference channel of the reference antenna
  • the calibration signal is a transmitting end of the reference antenna and the coupler transmitting uplink calibration circuit is connected to said coupler
  • uplink radio frequency response of the correction loop is H 2.
  • the calibration coefficient of the antenna to be calibrated satisfies the following formula:
  • the base station is a distributed base station; and the coupler is located at an RRU of the base station.
  • the calibration signal is an orthogonal pilot signal.
  • the embodiment of the present application further provides a computer device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor implements the computer program as described above The steps of the antenna calibration method described.
  • the embodiment of the present application further provides a base station, where the base station includes the antenna calibration apparatus involved in any of the foregoing embodiments, where the antenna calibration apparatus is used to perform the antenna calibration provided by the foregoing implementation.
  • the present application provides an apparatus for antenna calibration, comprising at least one processor; and a memory communicatively coupled to the at least one processor; the memory storing instructions executable by the at least one processor The instructions are executed by the at least one processor to enable the at least one processor to perform the method of antenna calibration in the above embodiments.
  • FIG. 8 is a schematic structural diagram of an antenna calibration apparatus provided by the present application.
  • the antenna calibration apparatus 800 includes a processor 801, a memory 802, and a communication interface 803; wherein the processor 801, the memory 802, and the communication interface 803 are connected to each other through a bus 804.
  • the memory 802 is used to store programs.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 802 can be a volatile memory, such as a random-access memory (RAM), or a non-volatile memory, such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • Memory 802 stores the following elements, executable modules or data structures, or subsets thereof, or their extended sets:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the bus 804 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 803 can be a wired communication access port, a wireless communication interface, or a combination thereof, wherein the wired communication interface can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless communication interface can be a WLAN interface.
  • the processor 801 can be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP. It can also be a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination.
  • the memory 802 can also be integrated with the processor 801.
  • the memory 802 is configured to store one or more executable programs, and may store data used by the processor 401 when performing operations.
  • the processor 801 is configured to determine, according to the channel quality information and the information of the to-be-processed data packet, a configuration parameter to be allocated, and if it is determined that the configuration parameter to be allocated is different from the current configuration parameter, according to the waiting
  • the assigned configuration parameters allocate semi-static scheduling resources to the terminal.
  • the configuration parameter includes: a semi-persistent scheduling resource block location; a semi-static scheduling resource block size; a modulation and coding policy MCS index value.
  • the processor 801 is configured to determine, in each subband of the channel quality information, a subband with the largest channel quality value and is not occupied, and the channel quality value is the largest and unoccupied.
  • the location of the resource block corresponding to the sub-band is used as the location of the semi-persistent scheduling resource block; and the channel quality value corresponding to one sub-band with the largest channel quality value and the unoccupied channel is determined according to the information of the to-be-processed data packet
  • the processor 801 is further configured to: when the configuration parameter to be allocated is determined to be the same as the current configuration parameter, transmit the to-be-processed data packet according to the semi-persistent scheduling resource corresponding to the current configuration parameter.
  • the processor 801 is configured to periodically determine, according to the channel quality information and information about the to-be-processed data packet, the configuration parameter to be allocated.
  • Yet another aspect of an embodiment of the present application provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the methods described in the various aspects described above.
  • the base station determines, according to the ratio of the received radio frequency response of the first downlink calibration signal and the radio frequency response of the first uplink calibration signal, a calibration coefficient of the uplink channel and the downlink channel of the reference antenna; Receiving, by the antenna to be calibrated, the second downlink calibration signal sent by the reference antenna, and receiving, by the reference antenna, the second uplink calibration signal sent by the antenna to be calibrated; the reference antenna received by the base station according to the antenna to be calibrated Determining a ratio of a second downlink calibration signal sent to a second uplink calibration signal sent by the reference antenna to the second uplink calibration signal, and a calibration coefficient of the reference antenna, determining a calibration coefficient of the antenna to be calibrated; Determining the calibration coefficient of the calibrated antenna, and compensating for the radio frequency response of the uplink and downlink channels of the antenna to be calibrated.
  • the technical problem of low calibration accuracy of antenna reciprocity in the prior art is effectively solved, the calibration precision of multi-channel reciprocity is improved, and the complexity

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,尤其公开了一种天线校准的方法、装置及设备;所述方法包括:基站获取基站的参考天线的耦合器传回的第一下行校准信号;基站通过耦合器从参考天线的上行参考通道获取第一上行校准信号;基站根据获取的第一下行校准信号和第一上行校准信号的比值,确定参考天线的校准系数;基站通过待校准天线获取第二下行校准信号;基站获取待校准天线发送的第二上行校准信号;基站根据第二下行校准信号与第二上行校准信号的比值,以及参考天线的校准系数,确定待校准天线的校准系数;基站根据待校准天线的校准系数,对待校准天线上行信道或下行信道的射频响应进行补偿。

Description

一种天线校准的方法、装置及设备
本申请要求在2018年03月02日提交中华人民共和国知识产权局、申请号为201810174241.6,申请名称为“一种天线校准的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种天线校准的方法、装置及设备。
背景技术
采用多天线发送和多天线接收的大规模多输入多输出天线系统(Multiple-Input Multiple-Output,MIMO)传输技术是利用空间维度资源、提高频谱效率和能量效率的主流技术之一。
在大规模多输入多输出天线系统中,例如,分布式基站,时分双工将成为主要的通信方式。基站端可以利用信道互易性进行下行联合预编码的设计,根据估计得到的上行信道的信道状态信息来估计下行信道的射频响应。
然而,在实际大规模多输入多输出天线系统中,完整的通信信道不仅包括空中的无线信道,还包括发送端和接收端的射频电路,空中信道发送与接收满足互易性,而接收射频通道的响应会随时间变化,放大器等器件的增益、相位等参数会随着温度等因素的变化而变化,导致在多通道收发中,各射频通道的响应不同,而这种通道之间的差异性,将导致系统性能的恶化。比如若原本待发射各通道数据相互正交,由于各射频通道间的差异性,经过多通道接收端后,各路数据不再正交,将会对数据后处理、信道估计等造成影响。
因此,在大规模多输入多输出天线系统中,需要对基站端的射频响应进 行补偿,以使大规模多输入多输出天线系统中的发送信道与接收信道满足互易性。但是,现有大规模多输入多输出天线系统校准技术采用估计算法计算校准系数,存在计算精度不足的问题,并且采用估计算法计算复杂度高。
发明内容
根据本申请公开的各种实施例,提供一种天线校准的方法、装置及设备。
本申请实施例提供一种天线校准的方法,包括:
基站获取所述基站的参考天线的耦合器传回的第一下行校准信号;所述第一下行校准信号为所述耦合器从所述参考天线的下行参考通道中获取的;
所述基站通过所述耦合器从所述参考天线的上行参考通道获取第一上行校准信号;
所述基站根据获取的所述第一下行校准信号和所述第一上行校准信号的比值,确定所述参考天线的校准系数;
所述基站通过待校准天线获取第二下行校准信号;所述第二下行校准信号为所述待校准天线在所述待校准天线的下行待校准通道中接收的所述参考天线发送的所述校准信号的响应信号;
所述基站获取所述待校准天线发送的第二上行校准信号;所述第二上行校准信号为所述基站的参考天线获取的所述待校准天线在所述待校准天线的上行通道中发送的所述校准信号的响应信号;
所述基站根据所述第二下行校准信号与所述第二上行校准信号的比值,以及所述参考天线的校准系数,确定所述待校准天线的校准系数;
所述基站根据所述待校准天线的校准系数,对所述待校准天线上下行信道的射频响应进行补偿。
一种可能的实现方式,所述参考天线的校准系数满足以下公式:
Figure PCTCN2018125391-appb-000001
其中,K ref为所述参考天线的校准系数,所述基站的参考天线向所述耦合器发送的校准信号为z;所述基站接收到的所述第一下行校准信号为y cal,ref=H 1T refz;所述参考天线的下行信道的射频响应为T ref;所述第一下行校准信号为所述参考天线的接收端通过与所述耦合器连接的下行校准回路传回的;所述下行校准回路的射频响应为H 1;所述第一上行校准信号为y ref,cal=R refH 2z,所述参考天线的上行信道的射频响应为R ref;所述第一上行校准信号为所述参考天线的接收端接收的所述耦合器通过所述参考天线的上行参考通道发送的校准信号;所述校准信号为所述参考天线的发送端通过与所述耦合器连接的上行校准回路发送至所述耦合器的;所述上行校准回路的射频响应为H 2
一种可能的实现方式,所述待校准天线的校准系数满足以下公式:
Figure PCTCN2018125391-appb-000002
其中,K m为所述待校准天线的校准系数,所述第二下行校准信号y m为:y m=T refg ref,mR mz;所述第二上行校准信号y ref为y ref=T mg m,refR refz;所述g ref,m为所述参考天线至所述待校准天线的下行空中信道的射频响应;所述g m,ref为所述待校准天线至所述参考天线的上行空中信道的射频响应;g ref,m=g m,ref
一种可能的实现方式,所述基站为分布式基站;所述耦合器位于所述基站的射频拉远单元RRU。
一种可能的实现方式,所述校准信号为正交导频信号。
本申请实施例提供一种天线校准的装置,包括:
获取单元,用于获取所述基站的参考天线的耦合器传回的第一下行校准信号;所述第一下行校准信号为所述耦合器从所述参考天线的下行参考通道 中获取的;通过所述耦合器从所述参考天线的上行参考通道获取第一上行校准信号;通过待校准天线获取第二下行校准信号;所述第二下行校准信号为所述待校准天线在所述待校准天线的下行待校准通道中接收的所述参考天线发送的所述校准信号的响应信号;获取所述待校准天线发送的第二上行校准信号;所述第二上行校准信号为所述基站的参考天线获取的所述待校准天线在所述待校准天线的上行通道中发送的所述校准信号的响应信号;
处理单元,用于根据获取的所述第一下行校准信号和所述第一上行校准信号的比值,确定所述参考天线的校准系数;根据所述第二下行校准信号与所述第二上行校准信号的比值,以及所述参考天线的校准系数,确定所述待校准天线的校准系数;根据所述待校准天线的校准系数,对所述待校准天线上下行信道的射频响应进行补偿。
一种可能的实现方式,所述参考天线的校准系数满足以下公式:
Figure PCTCN2018125391-appb-000003
其中,K ref为所述参考天线的校准系数,所述基站的参考天线向所述耦合器发送的校准信号为z;所述基站接收到的所述第一下行校准信号为y cal,ref=H 1T refz;所述参考天线的下行信道的射频响应为T ref;所述第一下行校准信号为所述参考天线的接收端通过与所述耦合器连接的下行校准回路传回的;所述下行校准回路的射频响应为H 1;所述第一上行校准信号为y ref,cal=R refH 2z,所述参考天线的上行信道的射频响应为R ref;所述第一上行校准信号为所述参考天线的接收端接收的所述耦合器通过所述参考天线的上行参考通道发送的校准信号;所述校准信号为所述参考天线的发送端通过与所述耦合器连接的上行校准回路发送至所述耦合器的;所述上行校准回路的射频响应为H 2
一种可能的实现方式,所述待校准天线的校准系数满足以下公式:
Figure PCTCN2018125391-appb-000004
其中,K m为所述待校准天线的校准系数,所述第二下行校准信号y m为:y m=T refg ref,mR mz;所述第二上行校准信号y ref为y ref=T mg m,refR refz;所述g ref,m为所述参考天线至所述待校准天线的下行空中信道的射频响应;所述g m,ref为所述待校准天线至所述参考天线的上行空中信道的射频响应;g ref,m=g m,ref
一种可能的实现方式,所述基站为分布式基站;所述耦合器位于所述基站的RRU。
一种可能的实现方式,所述校准信号为正交导频信号。
本申请实施例还提供了一种天线校准设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的所述天线校准方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的所述天线校准方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中提供的一种基站系统的架构示意图;
图2为本申请实施例中提供的一种基站系统的架构示意图;
图3为本申请实施例中提供的一种天线的结构示意图;
图4为本申请实施例中提供的一种天线校准的方法的流程示意图;
图5为本申请实施例中提供的一种天线的架构示意图;
图6为本申请实施例中提供的一种天线的架构示意图;
图7为本申请实施例中提供的一种天线校准的装置的结构示意图;
图8为本申请实施例中提供的一种天线校准设备的结构示意图。
具体实施方式
为了使本申请的技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
应理解,本申请实施例中提及的用户,包括边缘用户、中心用户等均为用户设备,或者说是用户所使用的用户设备。
本申请实施例中,如图1所示,基站可以为分布式基站,包括基带单元(Base band Unit,BBU),射频拉远单元(Radio Remote Unit,RRU)。所述射频拉远单元可以为多通道射频拉远单元。多通道接收端的每个接收射频通道在接收射频响应时会产生响应,从而接收到射频通道产生的射频响应信号。所述基站的发送端有N根发射天线X 1~X N1,X N1+1~X N,所述基站的每根天线的所在的发送端的下行信道的射频响应为T,接收端的上行信道的射频响应为R,所述用户设备有L根接收天线Y 1~Y L1,Y L1+1~Y L。所述用户设备的每根天线的发送端的下行信道的射频响应为GT,接收端的上行信道的射频响应为GR,本实施例中只考虑对所述基站的多天线的上/下行信道的射频响应的校准,如图2所示,即用户设备的上下行射频响应可以设置为GT=1,GR=1。
本申请实施例中,所述基站向所述用户设备发射信号x j(j=1,2,...,N),所述 用户设备接收到的信号为y i(i=1,2,...,K),二者的关系满足以下公式:
y 1=h 1,1T 1x 1+h 1,2T 2x 2+...+h 1,NT Nx N+n
y 2=h 2,1T 1x 1+h 2,2T 2x 2+...+h 2,NT Nx N+n
...
y L=h L,1T 1x 1+h L,2T 2x 2+...+h L,NT Nx N+n
其中,n表示零均值复高斯白噪声。通过所述基站的发送端的任意一根发射天线i至所述用户设备的接收端的任意一根接收天线j,在空间信道的射频响应为h i,j,i,j∈1,2,...,N;举例来说,如图3所示,所述基站的发送端中的发射天线X 1与用户设备的接收端的接收天线Y 1的下行信道的射频响应可以表示为T 1×h 1,1,所述用户设备的天线X 1至所述基站的天线Y 1的上行信道的射频响应可以表示为R 1×h 1,1
用向量矩阵X表示基站的N个发射天线发送信号的矩阵向量,用向量矩阵Y表示用户设备L个接收天线接收信号的矩阵向量,所述用户设备接收信号Y可以表示为:
Y=HTX+n
其中,T=diag(T 1,T 2,...,T N)。
所述基站的下行信道的射频响应H d可以表示为
H d=HT
用户设备发送信号y' i(i=1,2,...,L)。所述基站接收到的信号为x' j(j=1,2,...,N),
y' 1=R 1h 1,1x' 1+R 2h 1,2x' 2+...+R Nh 1,Nx' N+n
y' 2=R 1h 2,1x' 1+R 2h 2,2x' 2+...+R Nh 2,Nx' N+n
...
y' L=R 1h L,1x' 1+R 2h L,2x' 2+...+R Nh L,Nx' N+n
其中,n表示零均值复高斯白噪声。
用向量矩阵Y'表示用户设备L个发送天线发送信号的矩阵向量,用向量矩阵X'表示所述基站的N个接收天线接收信号的矩阵向量,所述基站接收的 信号为:
X'=RHY'+n
其中,R=diag(R 1,R 2,...,R N);
所述基站的上行信道的射频响应可以表示为:
H u=RH
一种可能的实现方式,通过校准矩阵K,可以使所述基站的下行信道的射频响应等于所述基站的上行信道的射频响应,所述校准矩阵K满足以下公式:
H d=KH u
即,所述下行信道的射频响应与所述上行信道的射频响应的关系满足以下公式:
diag(T 1,T 2,...,T N)=diag(K 1R 1,K 2R 2,...,K NR N)
因此,所述校准矩阵K满足以下公式:
K=diag(K 1,K 2,...,K N)=diag(T 1/R 1,T 2/R 2,...,T N/R N)
一种可能的实现方式,通过校准矩阵K’,使得基站的下行信道的射频响应等于所述基站的上行信道的射频响应,所述校准矩阵K’满足以下公式:
H u=K'H d
即,所述下行信道的射频响应与所述上行信道的射频响应的关系满足以下公式:
diag(R 1,R 2,...,R N)=diag(K' 1T 1,K' 2T 2,...,K' NT N)
因此,所述校准矩阵K满足以下公式:
K'=diag(K' 1,K' 2,...,K' N)=diag(R 1/T 1,R 2/T 2,...,R N/T N)
在实际应用中,每个收发通道上可以至少设置一诸如低噪声放大器(Low Noise Amplifier,LNA)或者功率放大器(Power Amplifier,PA)的功放模块,其中,所述低噪声放大器可用于对上行信号进行放大,所述功率放大器可用于对下行信号进行放大。通常情况下基站的每个下行信道的射频响应与上行 信道的射频响应是未知的,并且会随着应用环境的变化而变化,比如时间变化,放大器等器件的增益、相位等参数会随着温度等因素的变化,因此,需要及时确定出每个下行信道的射频响应与上行信道的射频响应值,然后对各射频通道的接收端进行补偿校正,以避免对多通道接收端使用过程精确度等问题产生影响。实时、方便的在各种应用场景中准确的获取各接收射频通道的响应。本申请实施例提供一种天线校准的方法及装置,用于解决现有技术中的多通道时延校准精度低的技术问题,提高了多通道响应的校准精度。
如图4所示,本申请实施例提供了一种天线校准的方法,包括:
步骤401:基站获取所述基站的参考天线的耦合器传回的第一下行校准信号;
其中,所述第一下行校准信号为所述耦合器从所述参考天线的上行通道中获取的;
步骤402:所述基站通过所述耦合器从所述参考天线的上行通道获取第一上行校准信号;
步骤403:所述基站根据获取的所述第一下行校准信号和所述第一上行校准信号的比值,确定所述参考天线的校准系数;
步骤404:所述基站通过待校准天线获取第二下行校准信号;
其中,所述第二下行校准信号为所述待校准天线在所述待校准天线的下行待校准通道中接收的所述参考天线发送的所述校准信号的响应信号;
步骤405:所述基站获取所述待校准天线发送的第二上行校准信号;
其中,所述第二上行校准信号为所述参考天线接收的所述待校准天线在所述待校准天线的上行通道中发送的所述校准信号的响应信号;
步骤406:所述基站根据所述第二下行校准信号与所述第二上行校准信号 的比值,以及所述参考天线的校准系数,确定所述待校准天线的校准系数;所述基站根据所述待校准天线的校准系数,对所述待校准天线的上下行信道的射频响应进行补偿。
本申请实施例中,选取所述多天线中的任一天线,作为参考天线,并在所述参考天线中,设置有耦合器。可选的,如图5所示,可以在所述参考天线所在的射频拉远单元RRU设置所述耦合器,所述耦合器可以通过射频线缆,建立校准回路,通过所述校准回路将所述参考天线的发送端在所述参考天线的下行参考通道中发射的校准信号z传回所述参考天线的接收端;并将所述参考天线通过所述校准回路发送校准信号z,以使所述耦合器通过所述参考天线的上行参考通道发送所述校准信号z至所述参考天线的接收端。
在步骤401中,一种可能的实现方式,所述第一下行校准信号为所述耦合器从所述参考天线的上行通道中获取的参考天线发送的校准信号z;
需要说明的是,在本申请实施例中,所述校准信号的形式可以是线性调频信号、伪噪声序列(Pseudo-noise Sequence)信号或正交频分复用(Orthogonal Frequency Division Multiplexing)信号等任一种预知信号,并且可以是基带、中频、射频上的信号。本申请实施例中并不限定具体所采用的信号。
在具体实施过程中,可以包括以下步骤:
步骤一、所述基站通过所述参考天线所在的发送端,在下行参考通道上向所述耦合器发送校准信号z;
步骤二、所述基站的参考天线所在的接收端接收经所述耦合器传回的所述第一下行校准信号y cal,ref
一种可能的实现方式,所述在下行参考通道上向所述耦合器发送校准信号,在经所述耦合器后,由下行校准回路传回至所述参考天线所在的接收端; 所述下行校准回路为所述参考天线所在的发送端与所述耦合器连接的回传信号的通道。
具体的,所述下行校准回路的信道响应可以用H 1表示。参考天线X ref向耦合器发送校准信号z,所述校准信号z经过参考天线Xref的发送端,由所述耦合器接收,并通过所述下行校准回路传回所述参考天线所在的接收端,所述第一下行校准信号y cal,ref可以表示为:
y cal,ref=H 1T refz+n。
其中,所述T ref为所述参考天线的发送端的下行射频响应。
在步骤402中,一种可能的实现方式,可以包括以下步骤:
步骤一、所述基站通过所述参考天线所在的发送端向所述耦合器发送所述校准信号z;
一种可能的实现方式,所述参考天线所在的发送端可以通过所述上行校准回路向所述耦合器发送所述校准信号z。
步骤二、所述基站的耦合器通过接收所述校准信号z,将所述校准信号z通过所述参考天线的上行参考通道发送至所述参考天线所在的接收端;
步骤三、所述基站的接收端获取所述第一上行校准信号y ref,cal;所述第一上行校准信号y ref,cal为所述基站通过所述耦合器从所述参考天线的上行通道获取的;
在具体实施过程中,所述上行校准回路的信道响应可以用H 2表示。所述参考天线所在的发送端可以通过所述上行校准回路向所述耦合器发送所述校准信号z;因此,所述第一上行校准信号为y ref,cal=R refH 2z+n;其中,所述R ref为所述参考天线X ref的接收端的上行射频响应。
在步骤403中,一种可能的实现方式,所述参考天线的校准系数满足以 下公式:
Figure PCTCN2018125391-appb-000005
其中,所述参考天线的校准系数为K ref,所述基站的参考天线向所述耦合器发送的校准信号为z;所述基站接收到的所述第一下行校准信号为y cal,ref=H 1T refz;所述参考天线的下行信道的射频响应为T ref
所述第一下行校准信号y cal,ref为所述参考天线的接收端通过与所述耦合器连接的下行校准回路传回的;所述下行校准回路的射频响应为H 1;所述第一上行校准信号为y ref,cal=R refH 2z,所述参考天线的上行信道的射频响应为R ref;所述第一上行校准信号y ref,cal为所述参考天线的接收端接收的所述耦合器通过所述参考天线的上行参考通道发送的校准信号;所述校准信号为所述参考天线的发送端通过与所述耦合器连接的上行校准回路发送至所述耦合器的;所述上行校准回路的射频响应为H 2
一种可能的实现方式,所述参考天线的校准系数可以根据以下方式确定:
根据接收的所述第一下行校准信号y cal,ref,和接收的所述第一上行校准信号y ref,cal,确定所述参考天线的校准系数K' ref
Figure PCTCN2018125391-appb-000006
其中,所述基站的参考天线向所述耦合器发送的校准信号为z;所述基站接收到的所述第一下行校准信号为y cal,ref=H 1T refz;所述参考天线的下行信道的射频响应为T ref;所述第一下行校准信号为所述参考天线的接收端通过与所述耦合器连接的下行校准回路传回的;所述下行校准回路的射频响应为H 1;所述第一上行校准信号为y ref,cal=R refH 2z,所述参考天线的上行信道的射频响应为R ref;所述第一上行校准信号为所述参考天线的接收端接收的所述耦合器通过所述 参考天线的上行参考通道发送的校准信号;所述校准信号为所述参考天线的发送端通过与所述耦合器连接的上行校准回路发送至所述耦合器的;所述上行校准回路的射频响应为H 2
一种可能的实现方式,所述基站根据接收的所述第一下行校准信号和所述第一上行校准信号的比值,确定所述参考天线的校准系数,具体包括:
根据所述第一下行校准信号y cal,1=H 1T 1z+n和所述第一上行校准信号y 1,cal=R 1H 2z+n的比值,即
Figure PCTCN2018125391-appb-000007
所述第一下行校准信号与所述第一上行校准信号是由所述校准信号z在射频线缆内通过所述耦合器发送与接收的,因此,本申请实施例中,所述第一下行校准信号和所述第一上行校准信号并不经过空口信道,可以忽略噪声的影响,因此,所述参考天线的校准系数K ref可以表示为:
Figure PCTCN2018125391-appb-000008
其中,所述下行校准回路的信道响应H 1和所述上行校准回路的信道响应H 2的关系可以通过测量获得。具体实现方式,在此不做限定。
一种可能的实现方式,所述基站根据接收的所述第一下行校准信号和所述第一上行校准信号的比值,确定所述参考天线的校准系数,具体包括:
根据所述第一下行校准信号y cal,1=H 1T 1z+n和所述第一上行校准信号y 1,cal=R 1H 2z+n的比值,即
Figure PCTCN2018125391-appb-000009
所述第一下行校准信号与所述第一上行校准信号是由所述校准信号z在射频线缆内通过所述耦合器发送与接收的,因此,本申请实施例中,所述第 一下行校准信号和所述第一上行校准信号并不经过空口信道,可以忽略噪声的影响,因此,所述参考天线的校准系数K' ref可以表示为:
Figure PCTCN2018125391-appb-000010
其中,所述下行校准回路的信道响应H 1和所述上行校准回路的信道响应H 2的关系可以通过测量获得。具体实现方式,在此不做限定。
如图6所示,所述基站的多通道中还包括多个待校准天线的下行待校准通道。针对所述多个待校准天线中的任一个待校准天线X m,可以包括以下步骤:
在步骤404中,一种可能的实现方式,可以包括以下步骤:
步骤一、所述基站的参考天线X ref通过待校准天线X m的下行待校准通道向待校准天线X m的接收端发送所述校准信号;
步骤二、所述基站的待校准天线X m的接收端获取所述校准信号的响应信号,即所述第二下行校准信号。
具体的,参考天线X ref向待校准天线X m发送校准信号z,待校准天线X m接收的所述第二下行校准信号为y m
y m=T refg ref,mR mz+n
其中,g ref,m为参考天线X ref至待校准天线X m的空间信道响应;T ref为参考天线X ref的发送端的下行信道的射频响应;所述R m为待校准天线X m的接收端的上行信道的射频响应。
在步骤405中,一种可能的实现方式,可以包括以下步骤:
步骤一、待校准天线X m通过待校准天线X m的上行待校准通道向参考天线X ref的接收端发送所述校准信号z;
步骤二、参考天线X ref的接收端获取校准信号z的响应信号,即所述第二 上行校准信号y ref
具体的,待校准天线X m向参考天线X ref发送校准信号z,参考天线X ref接收的所述第二上行校准信号信号y ref可以表示为
y ref=T mg m,refR refz+n
其中,g m,ref为待校准天线X m至参考天线X ref的空间信道响应;R ref为参考天线X ref的接收端的上行信道的射频响应;所述T m为所述待校准天线Xm的发送端的下行信道的射频响应。
在步骤406中,一种可能的实现方式,所述基站根据所述第二下行校准信号与所述第二上行校准信号的比值,包括:
Figure PCTCN2018125391-appb-000011
在上式中,参考天线X ref与所述待校准天线X m发送相同的校准信号,因此,所述参考天线X ref至所述待校准天线X m的下行空中信道的射频响应与所述待校准天线X m至所述参考天线X ref的上行空中信道的射频响应相等,本申请实施例中,所述校准信号可以选为高信噪比的导频信号,因此,可以忽略噪声的影响,将上式变为
Figure PCTCN2018125391-appb-000012
根据参考天线X ref的校准系数K ref,确定待校准天线X m的校准系数K m,所述校准系数K m可以表示为:
Figure PCTCN2018125391-appb-000013
一种可能的实现方式,所述基站根据所述第二下行校准信号与所述第二上行校准信号的比值,包括:
根据所述第二下行校准信号y m与所述第二上行校准信号y ref,以及所述参考天线的校准系数K ref,确定所述待校准天线的校准系数K' m
Figure PCTCN2018125391-appb-000014
其中,所述第二下行校准信号y m为:y m=T refg ref,mR mz;所述第二上行校准信号y ref为y ref=T mg m,refR refz;其中,所述g ref,m为参考天线X ref至待校准天线X m的下行空中信道的射频响应;所述g m,ref为所述待校准天线至所述参考天线的上行空中信道的射频响应;g ref,m=g m,ref
在步骤406中,一种可能的实现方式,根据所述校准系数K m对所述基站的所述待校准天线的上下行信道的射频响应进行补偿。
一种可能的实现方式,可以通过所述校准系数K m,确定待校准天线X m的下行信道的射频响应H dm为补偿后的待校准天线X m的上行信道的射频响应KH um,具体的,可以表示为:
H dm=K mH m
其中,H um为所述待校准天线的上行信道的射频响应,在具体实施过程中,所述H um可以通过终端测量的上行信道质量确定,在此不再赘述。
一种可能的实现方式,针对所述基站的所有待校准天线中,可以确定校准矩阵K为:
K=T ref/R refH 2/H 1diag(y 1/y ref,y 2/y ref,...,y N/y ref)
即所述校准矩阵K可以表示为:
Figure PCTCN2018125391-appb-000015
一种可能的实现方式,根据所述校准矩阵K对所述基站的所有待校准天线的待校准通道进行补偿;
一种可能的实现方式,可以通过校准矩阵K,使得基站的下行信道的射频响应H d可以表示为补偿后的所述基站的上行信道的射频响应KH u,具体的,可以满足以下公式:
H d=KH u
其中,H u为所述基站的所有待校准天线的上行信道的射频响应矩阵,在具体实施过程中,所述H u可以通过终端测量的上行信道质量确定,在此不再赘述。
一种可能的实现方式,根据所述校准系数K' m对所述基站的所述待校准天线的上下行信道的射频响应进行补偿;
一种可能的实现方式,可以通过所述校准系数K' m,确定所述待校准天线的上行信道的射频响应H um为补偿后的所述待校准天线的下行信道的射频响应K'H dm,具体的,可以表示为:
H um=K' mH dm
其中,H um为所述待校准天线的上行信道的射频响应,在具体实施过程中,所述H um可以通过终端测量的上行信道质量确定,在此不再赘述。
一种可能的实现方式,针对所述基站的所有待校准天线中,可以确定校准矩阵K'为:
K'=R ref/T refH 1/H 2diag(y ref/y 1,y ref/y 2,...,y ref/y N)
即所述校准矩阵K’可以表示为:
Figure PCTCN2018125391-appb-000016
一种可能的实现方式,根据所述校准矩阵K'对所述基站的所有待校准天线的待校准通道进行补偿;
一种可能的实现方式,可以通过校准矩阵K',使得基站的上行信道的射频响应H u可以表示为补偿后的所述基站的下行信道的射频响应K'H d,具体的,可以满足以下公式:
H u=K'H d
其中,H u为所述基站的所有待校准天线的上行信道的射频响应矩阵,在 具体实施过程中,所述H u可以通过终端测量的上行信道质量确定,在此不再赘述。
如图7所示,本申请实施例提供一种天线校准的装置,包括:
获取单元701,用于获取所述基站的参考天线的耦合器传回的第一下行校准信号;所述第一下行校准信号为所述耦合器从所述参考天线的下行参考通道中获取的;通过所述耦合器从所述参考天线的上行参考通道获取第一上行校准信号;通过待校准天线获取第二下行校准信号;所述第二下行校准信号为所述待校准天线在所述待校准天线的下行待校准通道中接收的所述参考天线发送的所述校准信号的响应信号;获取所述待校准天线发送的第二上行校准信号;所述第二上行校准信号为所述基站的参考天线获取的所述待校准天线在所述待校准天线的上行通道中发送的所述校准信号的响应信号;
处理单元702,用于根据获取的所述第一下行校准信号和所述第一上行校准信号的比值,确定所述参考天线的校准系数;根据所述第二下行校准信号与所述第二上行校准信号的比值,以及所述参考天线的校准系数,确定所述待校准天线的校准系数;根据所述待校准天线的校准系数,对所述待校准天线上下行信道的射频响应进行补偿。
一种可能的实现方式,所述参考天线的校准系数满足以下公式:
Figure PCTCN2018125391-appb-000017
其中,K ref为所述参考天线的校准系数,所述基站的参考天线向所述耦合器发送的校准信号为z;所述基站接收到的所述第一下行校准信号为y cal,ref=H 1T refz;所述参考天线的下行信道的射频响应为T ref;所述第一下行校准信号为所述参考天线的接收端通过与所述耦合器连接的下行校准回路传回的;所述下行校准回路的射频响应为H 1;所述第一上行校准信号为y ref,cal=R refH 2z, 所述参考天线的上行信道的射频响应为R ref;所述第一上行校准信号为所述参考天线的接收端接收的所述耦合器通过所述参考天线的上行参考通道发送的校准信号;所述校准信号为所述参考天线的发送端通过与所述耦合器连接的上行校准回路发送至所述耦合器的;所述上行校准回路的射频响应为H 2
一种可能的实现方式,所述待校准天线的校准系数满足以下公式:
Figure PCTCN2018125391-appb-000018
其中,K m为所述待校准天线的校准系数,所述第二下行校准信号y m为:y m=T refg ref,mR mz;所述第二上行校准信号y ref为y ref=T mg m,refR refz;所述g ref,m为所述参考天线至所述待校准天线的下行空中信道的射频响应;所述g m,ref为所述待校准天线至所述参考天线的上行空中信道的射频响应;g ref,m=g m,ref
一种可能的实现方式,所述基站为分布式基站;所述耦合器位于所述基站的RRU。
一种可能的实现方式,所述校准信号为正交导频信号。
本申请实施例还提供了一种计算机装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的所述天线校准方法的步骤。
基于上述实施例及相同构思,本申请实施例还提供的一种基站,该基站包括上述任一实施例中涉及的天线校准的装置,该天线校准的装置用于执行上述实施提供的天线校准的的方法。
基于相同构思,本申请提供一种天线校准的装置,包括至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述实施例中的天线校准的的方法。
以一个处理器为例,图8为本申请提供的一种天线校准设备的结构示意 图。如图8所示,该天线校准设备800包括处理器801、存储器802,通信接口803;其中,处理器801、存储器802和通信接口803通过总线804相互连接。
其中,存储器802用于存储程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器802可以为易失性存储器(volatile memory),例如随机存取存储器(random-access memory,简称RAM);也可以为非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid-state drive,简称SSD);还可以为上述任一种或任多种易失性存储器和非易失性存储器的组合。
存储器802存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
总线804可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口803可以为有线通信接入口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为WLAN接口。
处理器801可以是中央处理器(central processing unit,简称CPU),网络处理器(network processor,简称NP)或者CPU和NP的组合。还可以是硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,简称ASIC),可编程逻辑器件(programmable logic device,简称PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic  device,简称CPLD),现场可编程逻辑门阵列(field-programmable gate array,简称FPGA),通用阵列逻辑(generic array logic,简称GAL)或其任意组合。一种可能的设计中,存储器802也可以和处理器801集成在一起。
所述存储器802,用于存储一个或多个可执行程序,可以存储所述处理器401在执行操作时所使用的数据。
处理器801,用于根据所述信道质量信息和待处理数据包的信息,确定待分配的配置参数;在确定所述待分配的配置参数与当前的配置参数不同的情况下,根据所述待分配的配置参数为终端分配半静态调度资源。
可选地,所述配置参数包括:半静态调度资源块位置;半静态调度资源块的大小;调制与编码策略MCS索引值。
可选地,处理器801,用于确定出所述信道质量信息中的各个子带中信道质量值最大、且未被占用的一个子带,将所述信道质量值最大、且未被占用的一个子带对应的资源块的位置作为半静态调度资源块位置;根据所述待处理数据包的信息和所述信道质量值最大、且未被占用的一个子带对应的信道质量值,确定出所述半静态调度资源块的大小;根据所述半静态调度资源块位置对应的信道质量值,确定出所述MCS索引值。
可选地,处理器801,还用于在确定所述待分配的配置参数与当前的配置参数相同的情况下,按照当前的配置参数对应的半静态调度资源传输待处理数据包。
可选地,处理器801,用于根据所述信道质量信息和待处理数据包的信息,周期性确定待分配的配置参数。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例的又一方面提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述各方面所述的方 法。
本申请实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:
在本申请实施例中,基站根据接收的所述第一下行校准信号的射频响应和所述第一上行校准信号的射频响应的比值,确定参考天线的上行通道和下行通道的校准系数;所述基站通过待校准天线接收参考天线发送的第二下行校准信号;并通过所述参考天线接收所述待校准天线发送的第二上行校准信号;所述基站根据所述待校准天线接收的参考天线发送的第二下行校准信号与所述参考天线接收的所述待校准天线发送的第二上行校准信号的比值,以及所述参考天线的校准系数,确定所述待校准天线的校准系数;根据所述待校准天线的校准系数,对所述待校准天线的上下行信道的射频响应进行补偿。有效解决了现有技术中的天线互易性校准精度低的技术问题,提高了多通道互易性校准精度,并且计算校准系数的复杂度低,容易实现。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种天线校准的方法,包括:
    基站获取所述基站的参考天线的耦合器传回的第一下行校准信号;所述第一下行校准信号为所述耦合器从所述参考天线的下行参考通道中获取的;
    所述基站通过所述耦合器从所述参考天线的上行参考通道获取第一上行校准信号;
    所述基站根据获取的所述第一下行校准信号和所述第一上行校准信号的比值,确定所述参考天线的校准系数;
    所述基站通过待校准天线获取第二下行校准信号;所述第二下行校准信号为所述待校准天线在所述待校准天线的下行待校准通道中接收的所述参考天线发送的所述校准信号的响应信号;
    所述基站获取所述待校准天线发送的第二上行校准信号;所述第二上行校准信号为所述基站的参考天线获取的所述待校准天线在所述待校准天线的上行通道中发送的所述校准信号的响应信号;
    所述基站根据所述第二下行校准信号与所述第二上行校准信号的比值,以及所述参考天线的校准系数,确定所述待校准天线的校准系数;及
    所述基站根据所述待校准天线的校准系数,对所述待校准天线上行信道或下行信道的射频响应进行补偿。
  2. 如权利要求1所述的方法,其特征在于,所述参考天线的校准系数满足以下公式:
    Figure PCTCN2018125391-appb-100001
    其中,K ref为所述参考天线的校准系数,所述基站的参考天线向所述耦合器发送的校准信号为z;所述基站接收到的所述第一下行校准信号为y cal,ref=H 1T refz;所述参考天线的下行信道的射频响应为T ref;所述第一下行校准信号为所述参考天线的接收端通过与所述耦合器连接的下行校准回路传回的; 所述下行校准回路的射频响应为H 1;所述第一上行校准信号为y ref,cal=R refH 2z,所述参考天线的上行信道的射频响应为R ref;所述第一上行校准信号为所述参考天线的接收端接收的所述耦合器通过所述参考天线的上行参考通道发送的校准信号;所述校准信号为所述参考天线的发送端通过与所述耦合器连接的上行校准回路发送至所述耦合器的;所述上行校准回路的射频响应为H 2
  3. 如权利要求1所述的方法,其特征在于,所述待校准天线的校准系数满足以下公式:
    Figure PCTCN2018125391-appb-100002
    其中,K m为所述待校准天线的校准系数,所述第二下行校准信号y m为:y m=T refg ref,mR mz;所述第二上行校准信号y ref为y ref=T mg m,refR refz;所述g ref,m为所述参考天线至所述待校准天线的下行空中信道的射频响应;所述g m,ref为所述待校准天线至所述参考天线的上行空中信道的射频响应;g ref,m=g m,ref
  4. 如权利要求1所述的方法,其特征在于,所述基站为分布式基站;所述耦合器位于所述基站的射频拉远单元RRU。
  5. 如权利要求1所述的方法,其特征在于,所述校准信号为正交导频信号。
  6. 一种天线校准的装置,包括:
    获取单元,用于获取所述基站的参考天线的耦合器传回的第一下行校准信号;所述第一下行校准信号为所述耦合器从所述参考天线的下行参考通道中获取的;通过所述耦合器从所述参考天线的上行参考通道获取第一上行校准信号;通过待校准天线获取第二下行校准信号;所述第二下行校准信号为所述待校准天线在所述待校准天线的下行待校准通道中接收的所述参考天线发送的所述校准信号的响应信号;获取所述待校准天线发送的第二上行校准信号;所述第二上行校准信号为所述基站的参考天线获取的所述待校准天线在所述待校准天线的上行通道中发送的所述校准信号的响应信号;及
    处理单元,用于根据获取的所述第一下行校准信号和所述第一上行校准信号的比值,确定所述参考天线的校准系数;根据所述第二下行校准信号与所述第二上行校准信号的比值,以及所述参考天线的校准系数,确定所述待校准天线的校准系数;根据所述待校准天线的校准系数,对所述待校准天线上下行信道的射频响应进行补偿。
  7. 如权利要求6所述的装置,其特征在于,所述参考天线的校准系数满足以下公式:
    Figure PCTCN2018125391-appb-100003
    其中,K ref为所述参考天线的校准系数,所述基站的参考天线向所述耦合器发送的校准信号为z;所述基站接收到的所述第一下行校准信号为y cal,ref=H 1T refz;所述参考天线的下行信道的射频响应为T ref;所述第一下行校准信号为所述参考天线的接收端通过与所述耦合器连接的下行校准回路传回的;所述下行校准回路的射频响应为H 1;所述第一上行校准信号为y ref,cal=R refH 2z,所述参考天线的上行信道的射频响应为R ref;所述第一上行校准信号为所述参考天线的接收端接收的所述耦合器通过所述参考天线的上行参考通道发送的校准信号;所述校准信号为所述参考天线的发送端通过与所述耦合器连接的上行校准回路发送至所述耦合器的;所述上行校准回路的射频响应为H 2
  8. 如权利要求6所述的装置,其特征在于,所述待校准天线的校准系数满足以下公式:
    Figure PCTCN2018125391-appb-100004
    其中,K m为所述待校准天线的校准系数,所述第二下行校准信号y m为:y m=T refg ref,mR mz;所述第二上行校准信号y ref为y ref=T mg m,refR refz;所述g ref,m为所述参考天线至所述待校准天线的下行空中信道的射频响应;所述g m,ref为所述待校准天线至所述参考天线的上行空中信道的射频响应;g ref,m=g m,ref
  9. 如权利要求6所述的装置,其特征在于,所述基站为分布式基站;所述耦合器位于所述基站的RRU。
  10. 如权利要求6所述的装置,其特征在于,所述校准信号为正交导频信号。
  11. 一种计算机可读存储介质,所述存储介质存储有指令,当所述指令在计算机上运行时,使得计算机实现执行权利要求1至5中任一项所述的方法。
  12. 一种天线校准设备,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行如权利要求1至5任一权利要求所述的方法。
PCT/CN2018/125391 2018-03-02 2018-12-29 一种天线校准的方法、装置及设备 WO2019165842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810174241.6 2018-03-02
CN201810174241.6A CN108540181B (zh) 2018-03-02 2018-03-02 一种天线校准的方法及装置

Publications (1)

Publication Number Publication Date
WO2019165842A1 true WO2019165842A1 (zh) 2019-09-06

Family

ID=63485970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125391 WO2019165842A1 (zh) 2018-03-02 2018-12-29 一种天线校准的方法、装置及设备

Country Status (2)

Country Link
CN (1) CN108540181B (zh)
WO (1) WO2019165842A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117169801A (zh) * 2023-11-02 2023-12-05 成都德辰博睿科技有限公司 一种电磁环境监测校准系统、方法、装置及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540181B (zh) * 2018-03-02 2020-04-14 京信通信系统(中国)有限公司 一种天线校准的方法及装置
CN112312535A (zh) * 2019-07-31 2021-02-02 中兴通讯股份有限公司 基站多通道相位同步装置、方法及基站
KR102669932B1 (ko) 2019-08-30 2024-05-27 후아웨이 테크놀러지 컴퍼니 리미티드 안테나 교정 장치 및 안테나 교정 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054144A1 (zh) * 2009-11-04 2011-05-12 上海贝尔股份有限公司 基于CoMP的TDD无线通信系统中天线校准的方法和装置
CN102149123A (zh) * 2011-04-15 2011-08-10 北京邮电大学 一种CoMP系统中基站间天线校准方案和校准装置及基站
CN103916176A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种无线直放站及其天线校准方法
CN104980232A (zh) * 2015-06-30 2015-10-14 上海交通大学 一种大规模天线阵列的互易性和同步性的一致性测量装置和方法
US20180048361A1 (en) * 2016-08-11 2018-02-15 National Instruments Corporation Intra-node channel reciprocity compensation for radio access in mimo wireless communication systems
CN108540181A (zh) * 2018-03-02 2018-09-14 京信通信系统(中国)有限公司 一种天线校准的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054144A1 (zh) * 2009-11-04 2011-05-12 上海贝尔股份有限公司 基于CoMP的TDD无线通信系统中天线校准的方法和装置
CN102149123A (zh) * 2011-04-15 2011-08-10 北京邮电大学 一种CoMP系统中基站间天线校准方案和校准装置及基站
CN103916176A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种无线直放站及其天线校准方法
CN104980232A (zh) * 2015-06-30 2015-10-14 上海交通大学 一种大规模天线阵列的互易性和同步性的一致性测量装置和方法
US20180048361A1 (en) * 2016-08-11 2018-02-15 National Instruments Corporation Intra-node channel reciprocity compensation for radio access in mimo wireless communication systems
CN108540181A (zh) * 2018-03-02 2018-09-14 京信通信系统(中国)有限公司 一种天线校准的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117169801A (zh) * 2023-11-02 2023-12-05 成都德辰博睿科技有限公司 一种电磁环境监测校准系统、方法、装置及介质
CN117169801B (zh) * 2023-11-02 2024-03-19 成都德辰博睿科技有限公司 一种电磁环境监测校准系统、方法、装置及介质

Also Published As

Publication number Publication date
CN108540181B (zh) 2020-04-14
CN108540181A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
US20230396381A1 (en) System and Method for Transmitting a Sub-Space Selection
WO2019165842A1 (zh) 一种天线校准的方法、装置及设备
WO2015192777A1 (zh) 一种数据传输的方法和装置
US20230361842A1 (en) Improving precoding
EP3565134B1 (en) Antenna correction method and device
CN103249080B (zh) 一种确定基站的天线校准系数的方法、系统以及装置
US20230291441A1 (en) Signaling to aid enhanced nr type ii csi feedback
CN110313134A (zh) 电子设备、通信装置和信号处理方法
CN111937318A (zh) 频分双工(fdd)系统中存在干扰源时的辐射图修改
US20240022306A1 (en) Communication Method, Apparatus, Chip, Storage Medium, and Program Product
WO2018127126A1 (zh) 一种信道状态信息上报方法、基站和用户设备
WO2021037563A1 (en) Uplink beam management
WO2014171129A1 (ja) 通信システムおよび通信制御方法
US12003353B2 (en) Coverage enhanced reciprocity-based precoding scheme
KR20220149515A (ko) 무선 기지국 및 무선 단말기
CN112740564B (zh) 通信方法、装置及系统
WO2022083412A1 (zh) 一种csi-rs增强传输方法及装置
WO2017166432A1 (zh) 用户辅助的时分双工多天线小基站信道校准方法
CN113676196B (zh) 一种通信方法及装置
WO2023011436A1 (zh) 通信处理方法和通信处理装置
WO2023274101A1 (zh) 一种获得预编码矩阵的方法及装置
WO2022150941A1 (en) Transmitting channel state information reference signal for unequal subband size
CN118120154A (zh) 针对类型ii信道状态信息的信道状态信息省略

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18907765

Country of ref document: EP

Kind code of ref document: A1