WO2010017706A1 - 有源天线、基站、刷新幅度和相位的方法及信号处理方法 - Google Patents
有源天线、基站、刷新幅度和相位的方法及信号处理方法 Download PDFInfo
- Publication number
- WO2010017706A1 WO2010017706A1 PCT/CN2009/070866 CN2009070866W WO2010017706A1 WO 2010017706 A1 WO2010017706 A1 WO 2010017706A1 CN 2009070866 W CN2009070866 W CN 2009070866W WO 2010017706 A1 WO2010017706 A1 WO 2010017706A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- signal
- receiving
- digital
- calibration
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/267—Phased-array testing or checking devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/21—Monitoring; Testing of receivers for calibration; for correcting measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
Definitions
- Active antenna, base station, method and signal processing method for refreshing amplitude and phase are disclosed.
- the present application claims the method of "active antenna, base station, refresh amplitude and phase", filed on August 14, 2008, with the application number 200810145754.0
- the priority of the Chinese application of the "Signal Processing Method” is incorporated herein by reference.
- the present invention relates to the field of mobile communications, and in particular to an active antenna, a base station, a method for refreshing amplitude and phase, and a signal processing method. Background technique
- an antenna unit installed at the top of a tower is generally used to receive and transmit signals.
- the antenna unit is generally passive, and needs to be transmitted by a distributed base station (RRU, RF Remote Unit) to provide a high-power transmission signal.
- RRU transmits the signal through an antenna unit connected to the feeder.
- the antenna unit in the prior art includes an antenna oscillator array 5, a phase shifting network and a power splitting network 6, a multiplexing demultiplexing circuit module (BiasTee) 9, a transmission mechanism 7, and a remote control unit ( RCU, Remote Control Unit) 8.
- the distributed base station includes a transceiver and a digital processing unit. The distributed base station and the antenna unit are connected by a feeder. Wherein, when the signal is received, the electromagnetic wave signal transmitted by the mobile station is received by the antenna element array 5, and the signal received by the antenna element array 5 is weak, and the weak signal is phase-shifted by the phase shifting network, and is synthesized by the power splitting network.
- the signal through the multiplex demultiplexing circuit module 9, sends the received signal to the distributed base station through the feeder, and the received signal passes through the duplexer of the transceiver in the distributed base station, the low noise amplifier LNA and the down conversion processing, through the distributed
- the digital processing unit in the base station performs ADC conversion and filtering processing (coefficient decimation filter CIC, half-band filter HBF, finite impulse response filter FIR), etc., and transmits it to the baseband unit BBU, and transmits it to the base station controller BSC through the baseband unit BBU. .
- the signal of the baseband unit BBU is clipped by the clipper of the digital processing unit in the distributed base station (reduced peak factor) processing, DAC conversion, by the transceiver up-conversion processing in the distributed base station, the power amplifier PA And the duplexer is then transmitted to the phase shifting network and the power splitting network through the feeder and the multiplexing demultiplexing circuit module 9, and is divided into multiple antenna antenna arrays by the power splitting network to convert the signal into electromagnetic waves.
- the signal is transmitted and received by the mobile station.
- the phase shifting network adopts a motor-driven mechanical structure, and the multiplexing and demultiplexing circuit module 9 extracts DC power and control signaling required by the remote control unit 8 from the feeder, so that the remote control unit 8 controls the transmission mechanism. 7.
- the phase shifting network completes the amplitude and phase adjustment for each antenna element.
- the phase shifting network employs a mechanical structure, the structure is relatively complicated, and, in the process of adjusting the amplitude and phase of the antenna oscillator, it is not reliable.
- the embodiments of the present invention provide an active antenna or a base station, which is used to solve the problem that the phase shifting network has a complicated structure and is not reliable.
- An active antenna includes an antenna oscillator array, a transceiver unit array, a digital processing unit, and a transceiver calibration unit.
- the array of antenna elements includes an antenna element for converting electromagnetic wave signals and radio frequency signals;
- the transceiver unit array includes a transceiver unit, and when receiving a signal, the transceiver unit transmits the antenna elements
- the RF signal is down-converted into an IQ analog signal and output to the digital processing unit; when the signal is transmitted, the transceiver unit modulates the IQ analog signal of the digital processing unit to a radio frequency signal, and outputs the signal to the Antenna oscillator
- the digital processing unit when receiving a signal, the digital processing unit converts the down-converted demodulated IQ analog signal into an IQ digital signal, and digitally beamforms the IQ digital signal according to the transceiver calibration unit; And the digital processing unit converts the signal string of the baseband unit into an IQ digital signal, and reduces the peak factor processing on the serial/parallel converted IQ digital signal, and the digital processing unit reduces the calibration unit according to the transceiver. Small peak factor processed IQ digital signal digital beamforming.
- a method for refreshing the amplitude and phase of a receiving channel includes: Select a receiving channel;
- Receiving calibration IQ digital signal is converted into IQ analog signal, enters the receiving calibration channel, and the modulation is upconverted to receive the calibration RF signal;
- the receiving calibration radio frequency signal is coupled into the selected receiving channel, and the downconversion is demodulated into an IQ analog signal;
- the amplitude and phase of the selected receive channel are refreshed based on the amplitude and phase.
- the embodiment of the invention provides a method for refreshing the amplitude and phase of a transmission channel, including:
- the IQ digital signal is converted into an IQ analog signal into the selected transmit channel, and the modulation is upconverted to an RF signal;
- the radio frequency signal is coupled into the transmission calibration channel, and is down-converted into an IQ analog signal; the IQ analog signal is converted into an IQ digital signal, and the collected IQ digital signal and the converted IQ digital signal are compared to obtain the selected The amplitude and phase of the transmit channel;
- the amplitude and phase of the selected transmit channel are refreshed based on the amplitude and phase of the selected transmit channel.
- the IQ analog signal of the M channel receiving channel is converted into the M channel IQ digital signal, and each IQ digital signal is divided into N channel single mode receiving signals or N channel single carrier receiving signals by N way mode or carrier based digital controlled oscillator NCO;
- Each N-channel single-mode received signal of the M-channel receiving channel or each N-channel single-carrier received signal of the M-channel receiving channel is respectively subjected to digital beamforming processing;
- the single-mode reception signal of the M-receiving channel in each N-channel single-mode reception signal or the single-carrier reception signal of the crotch-receiving channel in each of the crotch single-carrier reception signals is combined by the combiner,
- the filter processing module processes to obtain N IQ digital signals;
- the N-channel IQ digital signal is synthesized by the combiner and transmitted to the baseband unit.
- a mode or carrier-based transmission signal processing method includes: transmitting a signal through serial/parallel conversion to obtain an N-way IQ digital signal, and each of the N-channel IQ digital signals passes a carrier-based or mode-based
- the digitally controlled oscillator NCO obtains each single-mode transmit IQ digital signal or each single-carrier transmit IQ digital signal;
- Each of the N-channel IQ digital signals transmits a single-mode transmit IQ digital signal or an N-channel IQ digital signal.
- Each of the single-carrier transmit IQ digital signals is processed by M DBF digital beamforming processes.
- M-channel IQ signal based on mode or carrier
- N single-mode transmit IQ digital signals in each M-channel transmit channel or N-channel single-carrier transmit IQ digital signals in each M-channel transmit channel are combined into one way through the combiner to obtain M-channel mode-based or carrier-based synthesis. transmit a signal;
- the M-channel-based or carrier-based composite transmit signal is processed by CFR and DPD, respectively, and then converted to IQ analog signals for output to the transmit channels of the transceiver unit.
- a base station includes an antenna oscillator array, a transceiver unit array, a digital processing unit, and a transceiver calibration unit.
- the array of antenna elements includes an antenna element for converting electromagnetic wave signals and radio frequency signals;
- the transceiver unit array includes a transceiver unit, and when receiving a signal, the transceiver unit transmits the antenna elements
- the RF signal is down-converted into an IQ analog signal and output to the digital processing unit; when the signal is transmitted, the transceiver unit modulates the IQ analog signal of the digital processing unit to a radio frequency signal, and outputs the signal to the Antenna oscillator
- the digital processing unit when receiving a signal, the digital processing unit converts the down-converted demodulated IQ analog signal into an IQ digital signal, and digitally beamforms the IQ digital signal according to the transceiving calibration unit; When the signal is received, the digital processing unit converts the signal string of the baseband unit into an IQ digital signal, and digitally beamforms the serial/parallel converted IQ digital signal according to the transceiving calibration unit.
- the digital processing unit digitally beamforms the IQ digital signal according to the transceiver calibration unit; when transmitting the signal, the digital processing unit performs the serial/parallel conversion IQ according to the transceiving calibration unit.
- Digital signal digital beamforming can avoid the complicated structure and less reliable problems caused by phase shifting networks.
- FIG. 1 is a schematic structural view of an antenna unit in the prior art
- FIG. 2 is a schematic structural diagram of an active antenna or a base station according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of an active antenna or a base station according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of another active antenna or a base station according to an embodiment of the present invention
- FIG. 5 is a flowchart of amplitude and phase of refreshing a receiving channel according to an embodiment of the present invention
- FIG. 6 is a flow chart of amplitude and phase of refreshing a transmission channel according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram of a local oscillator signal shared by each transmitting channel and each receiving channel in a transceiver unit array according to an embodiment of the present invention
- FIG. 8 is a schematic diagram of a mode or carrier-based receiving DBF processing module according to an embodiment of the present disclosure.
- FIG. 9 is a schematic diagram of a mode or carrier-based transmitting DBF processing module according to an embodiment of the present invention.
- FIG. 11 is a schematic structural view of a baseband unit integrated in an active antenna or a base station according to an embodiment of the present invention.
- FIG. 12 is a schematic flowchart of a method for refreshing a receiving channel according to an embodiment of the present disclosure
- FIG. 13 is a schematic flowchart of a method for refreshing a transmission channel according to an embodiment of the present invention
- FIG. 14 is a schematic flowchart of a method for processing a received signal DBF based on a mode or a carrier according to an embodiment of the present invention
- FIG. 15 is a schematic flowchart of a method for processing a signal based on a mode or a carrier based on a DBF according to an embodiment of the present invention. detailed description
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- FIG. 2 is a schematic structural diagram of an active antenna or a base station according to Embodiment 1 of the present invention.
- the active antenna includes an antenna element array 11, a transceiver unit array 12, a digital processing unit 13, and a transceiving calibration unit 14, wherein
- the antenna element array 11 includes an antenna element for converting electromagnetic wave signals and radio frequency signals.
- the transceiver unit array 12 includes a transceiver unit. When receiving a signal, the transceiver unit RF signals the antenna element. Downconverting and demodulating into an IQ analog signal, outputting to the digital processing unit 13; when transmitting the signal, the transceiver unit modulates the IQ analog signal of the digital processing unit 13 to a radio frequency signal, and outputs the signal to the antenna vibrator;
- the digital processing unit 13 converts the down-converted and demodulated IQ analog signal into an IQ digital signal, and digitally beamforms the IQ digital signal according to the transceiver calibration unit; When the signal is received, the digital processing unit 13 converts the signal sequence of the baseband unit into an IQ digital signal, and reduces the peak factor processing on the serial/parallel converted IQ digital signal, and the digital processing unit 13 performs the transmission and reception according to the The calibration unit reduces peak factor processing of the IQ digital signal digital beamforming.
- the digital processing unit when receiving a signal, the digital processing unit receives The calibration unit performs digital beamforming on the IQ digital signal; when transmitting the signal, the digital processing unit digitally beamforms the serial/parallel converted IQ digital signal according to the transceiving calibration unit.
- the amplitude and phase of the transmitted and received RF signals can be adjusted to avoid the complicated structure and less reliable problems caused by the phase shifting network.
- the transceiver calibration unit 14 is connected to the transceiver unit and the digital processing unit 13.
- the transceiver calibration unit 14 is configured to up-modulate the received calibration IQ analog signal in the digital processing unit 13 to receive a calibration RF signal.
- the transceiver calibration unit 14 is configured to down-convert the radio frequency signal of the transceiver unit into a transmit calibration IQ analog signal.
- the IQ signal is a dedicated signal of modern digital communication systems.
- a pulse sequence is serial/parallel converted to form an in-phase signal (I signal) and a quadrature signal (Q signal), and the I and Q signals are respectively orthogonal to each other (the phase difference is 90 degrees).
- the I and Q signals do not interfere with the modulation of the information.
- the occupied frequency band is still the frequency band occupied by one signal, which improves the utilization of the spectrum.
- IQ signals include IQ analog signals and IQ digital signals.
- FIG. 3 is a schematic structural diagram of an active antenna or a base station according to Embodiment 1 of the present invention.
- the antenna array 11 includes an antenna element 111.
- the transceiver unit of the transceiver unit array 12, each transceiver unit includes a duplexer (Duplex) 221A, a low noise amplifier (LNA) 222 A, and a power amplifier (PA, Power Amplifier) 223A.
- Duplex duplex
- LNA low noise amplifier
- PA Power Amplifier
- the duplexer 221A, the LNA 222A and the receive downconversion module 224A in the transceiver unit may constitute a receiving channel; the duplexer 221A, the PA223A and the transmit upconversion module 225A in the transceiver unit may constitute a transmitting channel.
- the receiving channel and the transmitting channel of the transceiver unit are connected to the antenna element 111.
- one transceiver unit may include one receiving channel and one transmitting channel, that is, one receiving channel and one transmitting channel share the same antenna element through the duplexer; two receiving channels in the transceiver unit array may also correspond to one The transmitting channel, that is, one receiving channel and one transmitting channel share the same antenna element through the duplexer, and the other receiving channel is connected through the receiving filter to the antenna element perpendicular to the polarization direction of the shared antenna element.
- the receiving channel and the transmitting channel including the duplexer 221A can be understood as: the receiving channel includes a receiving filter; and the transmitting channel includes a transmitting filter.
- the duplexer can be constructed by the receive filter and the transmit filter, and then the receive channel and the transmit channel can share the antenna element.
- the receiving channel may include a receiving filter, an LNA, and a receiving down-conversion module; and for the transmitting channel, the transmitting filter, the PA, and the transmitting up-conversion module may be included.
- each module can function as:
- Duplexer 221A When transmitting a signal, it is used to ensure that the high-power RF signal transmitted from PA223 A can only reach the antenna oscillator, and will not reach the LNA222A through the duplexer 221A, causing the LNA222A to burn or block; when receiving the signal, Used to ensure that the antenna RF oscillator 111 receives the weak RF signal from the mobile station, and can smoothly pass through the duplexer 221A to reach the LNA 222A;
- the duplexer 221A can use a small surface mount dielectric duplexer or a surface acoustic wave duplexer.
- the low noise amplifier LNA222A is used to amplify the weak RF signal received from the antenna element 111.
- the receiving sensitivity of the antenna is largely determined by the loss of the interconnection between the duplexer and the antenna element (connector, cable or other transmission line) at the front end of the LNA 222A, since the active antenna transceiver unit of the embodiment of the present invention directly The antenna elements 111 are connected, and the loss is low, which equivalently reduces the noise figure of the receiving channel, that is, improves the receiving sensitivity of the antenna.
- the transceiver unit is connected to the antenna element 111.
- the transceiver unit is integrated with the antenna element.
- the power amplifier PA223A is used to amplify the low-power radio frequency signal to be transmitted by the transmitting up-conversion module 225A.
- the receiving down-conversion module 224A is configured to demodulate the RF signal output by the LNA222A to obtain an IQ analog signal.
- the up-conversion module 225A is used to adjust the IQ analog signal of the digital processing unit The RF signal is obtained.
- the digital processing unit 13 includes an ADC 231A, a digital beamforming DBF (Digital Beam-forming) receiving module 232A, a filtering processing module 233 A, a combiner 238, and an S/P (serial/parallel conversion). 239, CFR (Chopper) 234A, DBF Transmitter Module 235A, DPD Module 236A, and DAC 237A.
- the ADC 231A, the digital beamforming (DBF) receiving module 232A, and the filtering processing module 233 A may constitute a receiving processing channel;
- the CFR (Chopper) 234A, the DBF transmitting module 235A, the DPD module 236A, and the DAC 237A may Forming a transmission processing channel.
- the digital processing unit 13 includes: a receiving processing channel, a transmitting processing channel, a combiner 238, and an S/P 239, wherein the receiving processing channel of the digital processing unit 13 can be connected to a receiving channel of the transceiver unit, the digital processing unit The transmit processing channel of 13 can be coupled to the transmit channel of the transceiver unit.
- the receiving processing channel includes:
- the analog-to-digital conversion module ADC231A is used for performing ADC conversion on the received IQ analog signal and converting it into an IQ digital signal;
- a digital beamforming (DBF) receiving module 232A for performing digital beamforming on the converted IQ digital signal of the ADC 231A;
- the filter processing module 233A is configured to filter the IQ digital signal processed by the digital beamforming DBF receiving module 232A.
- the filter processing module 233A includes a coefficient decimation filter CIC (Cascaded Integral Comb), a half band filter HBF (Half Band Filter), and a Finite Impulse Response Filter (Frequency Impulse Response Filter).
- the receiving processing channel and the transmitting processing channel may configure corresponding receiving processing channels and transmitting processing channels according to the number of transceiver units in the transceiver array, that is, one transceiver unit.
- the receiving channel corresponds to one receiving processing channel
- the transmitting channel of one transceiver unit corresponds to one transmitting processing channel.
- the analog-to-digital conversion module ADC231A, the DBF receiving module 232A, and the filtering processing module 233A may be sequentially connected according to the transmission direction of the signal, and the IQ simulation is performed.
- the signal is converted to an IQ digital signal, and the DBF receiving module 232A and the filtering processing module 233A are configured to process the IQ digital signal in the digital domain.
- the combiner 238 After each of the receiving processing channels in the digital processing unit 13 processes the IQ analog signal, the combiner 238 accumulates the IQ digital signals of the receiving processing channels according to the correlation algorithm, and combines them to transmit to the baseband unit BBU (Base Band Unit).
- BBU Base Band Unit
- the correlation algorithm can be understood as: From the multiplexed parallel signals, the correlated signals can be extracted and the unrelated signals (such as interference and noise signals) can be removed.
- the transmission processing channel includes:
- Clipper CFR234A used to reduce the Crest Factor Reduction process of the S/P converted IQ digital signal
- the DBF transmitting module 235A is configured to perform digital beamforming on the IQ digital signal processed by the clipper 234A;
- the DPD module 236A is configured to perform digital pre-distortion processing on the IQ digital signal processed by the DBF transmitting module 235A to improve nonlinearity of the power amplifier PA of the transmitting channel in the transceiver unit, so that the transceiver The transmit channel in the unit is linearized.
- the digital-to-analog conversion module DAC237A is used to convert the IQ digital signal processed by the DPD module 236A into a DAC analog signal.
- the signal generated from the baseband unit BBU is first output by the S/P conversion (serial/parallel) 239 to multi-channel the IQ digital signal into each of the transmission processing channels.
- the clipper CFR234A, the DBF transmitting module 235A, the DPD module 236A, and the digital-to-analog conversion module DAC237A are sequentially connected in accordance with the signal transmission direction for processing the transmitted IQ digital signal in the digital domain.
- the transmission processing channel may have no DPD module.
- an antenna unit that can be connected to the transceiver unit by a transceiver unit, and a receiving processing channel and a transmission processing channel in the digital processing unit connected to the transceiver unit.
- the number of modules can be increased or decreased according to actual needs, and the base station can be flexibly configured into various antenna gains.
- the digital processing unit 13 of the active antenna of the embodiment of the present invention further includes: a receiving calibration algorithm module 301A, configured to generate a receiving calibration IQ digital signal, and when the receiving and calibrating IQ digital signal is converted into an IQ analog signal, The transceiver calibration unit 14 enters the selected receiving channel, and is down-converted into an IQ analog signal, and then converted into an IQ digital signal, the receiving calibration algorithm module 301A compares the converted IQ digital signal with the received calibration IQ digital signal to obtain The amplitude and phase of the selected receive channel refresh the amplitude and phase of the selected receive channel.
- a receiving calibration algorithm module 301A configured to generate a receiving calibration IQ digital signal, and when the receiving and calibrating IQ digital signal is converted into an IQ analog signal, The transceiver calibration unit 14 enters the selected receiving channel, and is down-converted into an IQ analog signal, and then converted into an IQ digital signal, the receiving calibration algorithm module 301A compares the converted IQ digital signal with the received calibration IQ digital signal
- the receive calibration algorithm module 301A refreshes the amplitude and phase of all receive channels
- the receive calibration algorithm module 301 A is based on all receive channels.
- the amplitude and phase of the received amplitude and phase values are obtained.
- the receive calibration algorithm module 301A compares the amplitude and phase of each receive channel with the received amplitude and phase values to obtain a receive correction factor for the amplitude and phase of each receive channel. ;
- the receiving DBF algorithm module 302 is configured to configure the receiving correction factor in the digital beamforming DBF receiving module 232A in each receiving processing channel; the digital beamforming DBF receiving module 232A, converting the down analog demodulated IQ analog signal Digital beamforming of IQ digital signals.
- the transmit calibration algorithm module 401 is configured to collect the IQ digital signal, and when the IQ digital signal is converted into an IQ analog signal, the selected transmit channel modulation is up-converted into a radio frequency signal, and the transceiver calibration unit 14 collects the RF signal, and down-converts Demodulating into an IQ analog signal, the transmit calibration algorithm module 401 compares the IQ digital signal converted by the down-converted IQ analog signal with the collected IQ digital signal to obtain the amplitude and phase of the selected transmit channel, and refreshes the The amplitude and phase of the selected transmit channel, when the transmit calibration algorithm module 401 refreshes the amplitude and phase of all transmit channels to obtain the transmit amplitude and phase values, the transmit calibration algorithm module 401 transmits each transmit channel according to the transmit amplitude and phase values. Comparing the amplitude and phase of the channel to obtain the emission correction factor of the amplitude and phase of each channel;
- the DBF algorithm module 405 is configured to configure the transmission correction factor in the DBF transmitting module 235A in each channel of the processing channel;
- the DBF transmitting module 235A is configured for digital beamforming of the clipped IQ digital signal.
- the receive calibration algorithm module 301A and the receive DBF algorithm module 302 can be integrated into one module 300;
- the transmit calibration algorithm module 401 includes a DPD algorithm module, and the transmit DBF algorithm module 405 can be integrated into a module 400.
- the receive amplitude and phase values may be: an average of the amplitude and phase of all receive channels; or: According to the amplitude and phase of all receive channels, the receive calibration algorithm module 301A finds the minimum amplitude and phase of all receive channels. a value or a maximum value, which may be the received amplitude and phase value; or may also be: The receive calibration algorithm module 301A receives the amplitude and phase of any of the receive channels based on the amplitude and phase of all receive channels. Amplitude and phase values.
- the transmit amplitude and phase values can be: an average of the amplitude and phase of all transmit channels; or: According to the amplitude and phase of all transmit channels, the transmit calibration algorithm module 401 finds all transmit channel amplitudes and phases. Minimum or maximum value, which may be the transmit amplitude and phase value; or may also be: according to the amplitude and phase of all transmit channels, the transmit calibration algorithm module 401 takes the amplitude and phase of any transmit channel As the emission amplitude and phase value.
- the digital beamforming DBF receiving module 232A is coupled to the filtering module 233 A and the ADC 231A, respectively; the DBF transmitting module 235A is coupled to the CFR 234A and the DPD 236A, respectively.
- the process of receiving and transmitting signals of the active antenna is as follows:
- the antenna oscillator 111 converts the electromagnetic wave signal received by the mobile station into a radio frequency signal, and is down-converted by the Duplex 221A, LNA 222A, and the receiving down-conversion module 224A.
- the IQ analog signal is demodulated, and the IQ analog signal is converted by the ADC 231A, the DBF receiving module 232A is digitally beamformed, and after the filter module 233A such as the coefficient decimation filter CIC, the half-band filter HBF, and the finite impulse response filter FIR filter, Synthesized by COMBINER238, transmitted to BBU;
- the filter module 233A such as the coefficient decimation filter CIC, the half-band filter HBF, and the finite impulse response filter FIR filter, Synthesized by COMBINER238, transmitted to BBU;
- the signal sent to BBU is first output by serial/parallel conversion (S/P) 239 to output multi-channel IQ digital signal, enter each transmission processing channel, and cut by CFR234A
- the digital beamforming is implemented by the DBF transmitting module 235A, and then digitally pre-distorted by the DPD236A, converted by the DAC237A, modulated by the transmitting up-conversion module 225A to obtain the
- the transceiver calibration unit 14 includes:
- the receiving calibration channel 241 is connected to the receiving calibration algorithm module 301A through a DAC in the digital processing unit, and one end is connected to the switch matrix 243.
- the receiving calibration is performed.
- the channel is used for up-modulating the IQ analog signal to receive a calibration RF signal;
- the transmitting calibration channel 242 is connected to the transmitting calibration algorithm module 401 through an ADC in the digital processing unit, and one end is connected to the switch matrix 243 for down-converting and demodulating the RF signal of the transmitting channel in the transceiver unit array into a transmitting calibration.
- IQ analog signal
- the switch matrix 243 is connected to the transmit calibration channel 242 and the receive calibration channel 241, and one end is coupled to the front end of the receive channel and the transmit channel in the transceiver unit array through the coupler 402 for time-sharing switching of the transceiver unit.
- the receiving channel and the transmitting channel in the array enable each receiving channel to share a receiving calibration channel, and each transmitting channel shares a transmitting calibration channel.
- the front end of the receiving channel and the transmitting channel in the transceiver unit array may be between the antenna vibrator and the duplexer (ie, between the duplexer and the antenna vibrator in the receiving channel, or the duplexer in the transmitting channel) Between the antenna and the antenna.
- the switch matrix 243 selects the receive channel and the transmit channel, and can be controlled by a switch matrix control module 244.
- the switch matrix control module 244 can be integrated with the switch matrix 243 in a module.
- the switch matrix control module 244 can also be located in the digital processing unit DPU13. Inside.
- the switch matrix 234 can be replaced by the duplexer 261 and the combiner 262. This has the advantage that a switch matrix control module 244 is no longer needed, and all transceiver channels can be simultaneously calibrated, which can shorten the calibration time. .
- all receive channels are calibrated simultaneously.
- a receiving calibration signal is sent out, and then the receiving calibration channel 241 is upconverted to a radio frequency signal, through the duplexer 261, the combiner 262, the coupler 402 in the calibration channel, and simultaneously coupled into all the receiving signals.
- the signal is down-converted in all receiving channels, and the ADC is converted into an IQ digital signal, and then input to receive.
- the calibration algorithm module 301 A the calibration signals of the M receiving channels are respectively solved.
- the receiving calibration algorithm module 301 A Comparing the difference between the solved calibration signals of the M receiving channels and the original receiving calibration signals to obtain a receiving amplitude and a phase value, the receiving calibration algorithm module 301 A according to the receiving amplitude phase and the delay value and the amplitude of each receiving channel Comparing with the phase to obtain a receiving correction factor for the amplitude and phase of each receiving channel;
- an M-channel transmit calibration signal (each signal differs only in the initial phase) is sent to the M transmit processing channels, and then modulated by the transmit channel to be converted into a radio frequency signal, and then the signal is passed from the power amplifier PA223A via the coupler.
- 402 coupled to the combiner 262 and the duplexer 261, enters the transmit calibration channel 242, and then downconverted into an IQ signal input to the transmit calibration algorithm module 401, respectively, to solve the calibration signals of the M transmit channels.
- the transmitting calibration algorithm module 401 is based on the amplitude and phase value of each transmitting channel and the amplitude of each transmitting channel. The phases are compared to obtain the emission correction factor for the amplitude and phase of each transmit channel.
- Figure 5 shows the flow and phase flow diagram for refreshing the receive channel.
- the process of refreshing the amplitude and phase of the receiving channel includes:
- Step 501 The switch matrix selects one receiving channel
- Step 502 The receiving calibration algorithm module 301A generates a receiving calibration IQ digital signal;
- Step 503 converting the DAC into an IQ analog signal, the IQ analog signal enters the receiving calibration channel, and the modulation is upconverted to receive the calibration RF signal;
- Step 504 The received calibration RF signal passes through the switch matrix 243, is coupled into the receiving channel through the coupler 402, and is restored to the IQ analog signal by down-conversion demodulation in the selected calibration receiving channel.
- Step 505 The IQ analog signal is digitally processed.
- the ADC of the unit is converted into an IQ digital signal;
- Step 506 The receiving calibration algorithm module 301 A compares the ADC-converted IQ digital signal with the received calibration IQ digital signal generated by the receiving calibration algorithm module 301A to obtain the amplitude of the receiving channel. Degree and phase, refreshing the amplitude and phase of the selected receive channel.
- the process of refreshing the amplitude and phase of the receive channel is repeated, and the amplitude and phase of the next receive channel are refreshed.
- the down-conversion demodulation to the IQ analog signal in the selected calibration receiving channel is to reduce the received calibration RF signal down-conversion to the IQ analog signal by the receiving down-conversion module 224 in the transceiver unit.
- the process of refreshing the amplitude and phase of the receiving channel further comprises: refreshing the amplitude and phase of all the receiving channels, the receiving calibration algorithm module 301 ⁇ obtaining the receiving amplitude and phase values according to the amplitude and phase of all the receiving channels, the receiving amplitude and The phase value is compared with the amplitude and phase of each receive channel to obtain a receive correction factor for the amplitude and phase of each receive channel; the receive DBF algorithm module 302 configures the receive correction factor for digital beamforming in each receive processing channel. DBF receiving module.
- the receive amplitude and phase values may be: an average of the amplitude and phase of all receive channels; or: According to the amplitude and phase of all receive channels, the receive calibration algorithm module 301A finds the minimum amplitude and phase of all receive channels. a value or a maximum value, which may be the received amplitude and phase value; or may also be: The receive calibration algorithm module 301A receives the amplitude and phase of any of the receive channels based on the amplitude and phase of all receive channels. Amplitude and phase values.
- the digital signal A1 is transmitted from the digital processing unit DPU13 (A1 may be a special signal such as a monophonic sinusoidal signal, a pseudorandom signal, a pseudo noise signal, etc.), and A1 is subjected to DAC conversion by the DPU 13, and is received in the calibration channel 241.
- the modulation is upconverted into a radio frequency signal, and the RF signal is coupled between the antenna element and the duplexer to one of the receiving channels of the transceiver unit array via the switch matrix 243, and the coupled signal passes through the duplexer, the LNA, and the receiving
- the down-conversion module is processed by the ADC to obtain a digital signal A2. After comparing A1 and A2, the amplitude and phase of the receiving channel are obtained. Because the coupling point is before the duplexer, the amplitude of the received signal that can be introduced by the duplexer And the effects of phase are also taken into account.
- Figure 6 shows the flow and phase flow diagram for refreshing the transmit channel.
- the process of refreshing the amplitude and phase of the transmit channel includes:
- Step 601 The switch matrix selects one transmit channel
- Step 602 The transmit calibration algorithm module collects the IQ digital signal
- Step 603 The IQ digital signal is converted into an IQ analog signal by the DAC, and the IQ analog signal is up-converted into a radio frequency signal through the transmitting channel;
- Step 604 The coupler 402 coupled to the transmitting channel samples the up-converted modulated RF signal, and performs a down-conversion of the transmitting calibration channel to transmit a calibration IQ analog signal through the switch matrix.
- Step 605 The transmit calibration IQ analog signal is converted into an IQ digital signal by the ADC.
- Step 606 The transmit calibration algorithm module 401 compares the collected IQ digital signal with the ADC converted to the IQ digital signal to obtain the amplitude of the transmit channel. Phase, refreshes the amplitude and phase of the selected transmit channel.
- the switch matrix selects the next transmit channel, repeating step 602 to begin a new round of refreshing the transmit channel amplitude and phase.
- the signal transmitted from the baseband unit is converted to XI by S/P, and after XI is processed by the DAC in the DPU (Digital Processing Unit), the modulation is modulated into a radio frequency signal by the transmitting up-conversion module, and then passed through the PA, duplexer, and coupler.
- the switch matrix into the transmission calibration channel down-conversion demodulation in the transmission calibration channel is reduced to IQ analog signal into the DPU, after ADC conversion, the digital signal Y1 is obtained, and XI and Y1 are compared to obtain the amplitude and phase of the transmission channel. Since the coupling point is after the duplexer, the effect of the duplexer on the amplitude and phase of the transmitted signal can also be taken into account.
- the process of refreshing the amplitude and phase of the transmit channel further includes: when refreshing the amplitude and phase of all the transmit channels, the transmit calibration algorithm module 401 obtains the transmit amplitude and phase values according to the amplitude and phase of all transmit channels, and the transmit calibration algorithm module 401 According to the emission amplitude and phase value The amplitude and phase of each transmit channel are compared to obtain a transmit correction factor for the amplitude and phase of each transmit channel; the transmit DBF algorithm module 405 configures the transmit correction factor for the DBF transmit module in each transmit transmit channel.
- the transmit amplitude and phase values may be: an average of the amplitude and phase of all transmit channels; or: according to the amplitude and phase of all transmit channels, the transmit calibration algorithm module 401 finds the amplitude and phase of all transmit channels. a minimum or maximum value, which may be the transmit amplitude and phase value; or may also be: according to the amplitude and phase of all transmit channels, the transmit calibration algorithm module 401 takes the amplitude and phase of any transmit channel As the emission amplitude and phase value.
- the transmit signal is coupled to the transmit calibration channel at the front end (between the antenna element and the duplexer) or the receive calibration RF signal is coupled to the receive channel, which eliminates the amplitude introduced by the duplexer and Phase inconsistency, and the transceiver calibration share the same coupling channel, simplifying the circuit design and reducing the PCB area.
- switching using the switch matrix 243 can be based on these reasons: On the one hand, since there are multiple transceiver units, if the receiving channel and the transmitting channel are both configured with a receiving calibration channel and a transmitting calibration channel, the circuit can be very complicated; If the calibration channel is not shared, the receiving calibration algorithm module 301A only knows the total amplitude and the total phase of the loop formed by the receiving calibration channel and the receiving channel, and cannot know the amplitude and phase of each of the receiving calibration channel and the receiving channel. Similarly, the transmission calibration algorithm Module 405 only knows the total amplitude and total phase of the loop formed by the transmit calibration channel and the transmit channel.
- each receiving channel in the transceiver unit array shares a receiving local oscillator signal; in order to ensure the transceiver unit array
- the amplitude and phase of the RF signals transmitted by the various transmitting channels have a common reference, and each transmitting channel in the transceiver unit array shares a transmitting local oscillator signal. This can be achieved by sharing a Voltage Control Oscillator (VCO).
- VCO Voltage Control Oscillator
- a schematic diagram of the local oscillator signals is shared for each transmit channel and each receive channel in the transceiver unit array.
- the output signal of the transmit channel voltage controlled oscillator TX-VCO is divided into TX-L01, TX L02 TX-LOM, TX-LO-C signals through the clock-driven distribution network.
- TX-L01 TX L02 TX LOM is connected to the M-channel transmit up-conversion circuit as the local oscillator signal of the transmit channel
- TX-LO-C is connected to the transmit calibration channel as the local oscillator signal
- Receiver-channel voltage-controlled oscillator RX-VCO output The signal is distributed by the clock-driven distribution network, and is divided into RX-L01, RX_L02 RX-LOM, RX-LO-C signals.
- RX-L01, RX_L02 RX_LOM are respectively connected to the M-channel receiving down-conversion circuit.
- RX_LO_C is connected to the receiving calibration channel as the local oscillator signal receiving the calibration channel.
- the digital predistortion DPD module in each of the transmit processing channels of the digital processing unit 13 is used for linearization of the power amplifier PA of each of the transmit channels in the transceiver unit array.
- a separate DPD feedback channel can be used (see Figure 4), or the transmit calibration channel can be used as a DPD feedback channel (see Figure 3).
- the algorithm flow of DPD is similar to the amplitude and phase flow of the refresh transmit channel, except that the result of amplitude and phase comparison reflects the nonlinear characteristics of the transmit channel, and according to this nonlinear feature, the IQ digital signal is corrected to linearize the transmit channel. Therefore, the DPD feedback channel can also utilize all the hardware circuits of the transmission calibration channel, but the DPD algorithm (DPD Algorithm) and the DPD module need to be implemented in the digital processing unit 13, and will not be described here.
- DPD Algorithm DPD Algorithm
- the DPD switch control module 251 controls the DPD channel switch matrix 253 to select a transmit channel, and the DPD feedback channel 252 passes through the coupler 401 and the transceiver unit array.
- the power amplifier PA output end of each of the transmission channels is coupled to switch the transmission channels in a time-sharing manner so that the respective transmission channels share the DPD feedback channel.
- DPD is a large signal for improving the power amplifier PA (such as a signal with a power greater than 2W)
- PA power amplifier
- the digital processing unit when receiving a signal, digitally beam-forms the IQ digital signal according to the transceiving calibration unit; when transmitting the signal, the digital processing unit performs the serial/parallel converted IQ digital signal digital beam according to the transceiving calibration unit. Forming.
- the amplitude and phase of the transmitted and received RF signals can be adjusted to avoid the complicated structure and less reliable problems caused by the phase shifting network.
- the transceiver calibration unit can implement digital beamforming in conjunction with DBF algorithm modules 235A and 232A.
- DBF algorithm modules 235A and 232A When the digital processing unit 13 processes the received IQ analog signal, it is necessary to correct the received IQ digital signal converted by the DAC 231 A in advance, so that the combiner 238 accumulates and receives the IQ digital signal according to the correlation algorithm; at the same time, the digital processing unit 13 processes the transmitted IQ analog signal.
- the transmitted IQ digital signal is corrected in advance by the DBF algorithm module 235A to adjust the amplitude and phase of the transmitted RF signal, so that the correct transmission pattern and the reception pattern can be obtained.
- the DBF processing module (digital beamforming DBF receiving module, DBF transmitting module) in the digital processing unit 13 is based on a mode or a carrier, and can process multi-mode multi-carrier transmitting and receiving IQ analog signals.
- the IQ analog signal of each receiving channel (assumed to be the M channel) is converted into an M-channel IQ digital signal by the ADC, and each of the M-channel receiving channel's IQ digital signals and the mode- or carrier-based digitally controlled oscillator NC01, NC02
- the signal output by NCON is multiplied (digital down-converted), and is divided into N-channel single-mode reception signals or N-channel single-carrier reception signals;
- the first single mode reception signal of the M channel receiving channel or the first channel single carrier receiving signal of the M channel receiving channel is respectively processed by digital beamforming DBF 1.1, DBF2.1 DBFM.1, and passed through the combiner (in FIG. 8 Combinl) processing, after CIC, HBF and FIR processing, get the first road letter No. f 1 (f 1 in Fig. 8)
- the second single mode received signal or the second single carrier received signal passes through DBF 1.2, respectively.
- Each signal fl f2 ?? fN is combined with the combiner 238 to output a signal to the baseband unit.
- fl, f2...fN can be single carrier or single mode IQ digital signals.
- the signal sent by the BBU is subjected to serial/parallel conversion (S/P) 239 to obtain an N-channel IQ digital signal (ie, the N-channel IQ digital signal corresponds to the N-channel digitally controlled oscillator), and each of the N-channel IQ digital signals.
- S/P serial/parallel conversion
- the IQ digital signal is multiplied by the output signal of the carrier- or mode-based digitally controlled oscillator NC01, NC02 NCON (digital down-conversion) to obtain N-channel single-mode transmit signals or N-channel single-carrier transmit signals (f ⁇ in Figure 9: .... fN ) , N-channel single-mode transmit signal or N-channel single-carrier transmit signal
- the N-channel single-mode transmit signal or the N-channel single-carrier transmit signal (fl ⁇ ⁇ ?? fN ) are processed by DBF2.1, DBF2.2 DBF2.N, respectively, and combined processing according to a predetermined algorithm. , get the second way (that is, the signal through the Combine is the second way) based on the mode or carrier synthesis of the transmitted signal.
- N-channel single-mode transmit signal or N-channel single-carrier transmit signal ( fl ⁇ ⁇ After being processed by DBFM.1, DBFM.2 DBFM.N, and performing combined processing according to a predetermined algorithm, the M-channel (that is, the signal through the CombinerM combined signal is the M-th path) is synthesized based on the mode or carrier.
- the N-channel single-mode transmit signal or the N-channel single-carrier transmit signal (fl f2 ⁇ ... fN ) finally synthesizes the chopped transmit signal.
- each of the loop transmission signals is subjected to CFR and DPD processing, and finally the DAC is converted into an IQ analog signal output to each transmission channel of the transceiver unit.
- the processing of the multi-mode multi-carrier transmitting and receiving signals can be implemented.
- the active antenna or the base station in the embodiment of the present invention can obtain the antenna radiation pattern of different modes or carriers.
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- FIG. 10 is an active antenna provided by an embodiment of the present invention. Schematic diagram of the structure of the base station.
- the third embodiment of the present invention differs from the first embodiment in that a power splitting and combining network 75 is added between the antenna element array 71 and the transceiver unit array 72.
- the power splitting network 75 can Combining the weak signals received by the plurality of antenna elements into one transceiver unit in the transceiver unit array 72; when transmitting the signals, the radio frequency signals of the transceiver units in the transceiver unit array 72 pass the work
- the split network is transmitted to multiple antenna elements.
- the power splitting and combining network in the embodiment of the present invention can be composed of a Wilkinson power splitting network, so that the cable or the printed circuit board PCB (PCB) has simple interconnection and low loss.
- PCB printed circuit board
- each transceiver unit is connected to more than one antenna element, preferably each transceiver unit is connected to two or three antenna elements, or various combinations, so that the transceiver can be transmitted and received.
- the number of machine units is greatly reduced.
- Embodiment 4 is a diagrammatic representation of Embodiment 4:
- the baseband unit BBU can also be integrated in the active antenna or base station. Internal, as shown in Figure 11.
- the fourth embodiment of the present invention has a simpler installation scheme.
- the embodiment of the present invention provides a method for refreshing a receiving channel, as shown in FIG. 12, including:
- Step 901 selecting a receiving channel
- Step 902 receiving the calibration IQ analog signal into the receiving calibration channel, and modulating the up-conversion to the radio frequency signal;
- Step 903 the RF signal is coupled into the selected receiving channel, and the down-conversion is demodulated into an IQ analog signal;
- Step 904 comparing the IQ analog signal with the received calibration IQ analog signal to obtain the amplitude and phase of the selected receiving channel;
- Step 905 refreshing the amplitude and phase of the selected receiving channel according to the amplitude and phase.
- the embodiment of the present invention further provides a method for refreshing a transmission channel, as shown in FIG. 13, including:
- Step 1010 selecting a transmission channel
- Step 1020 collecting the IQ digital signal, converting the IQ digital signal into an IQ analog signal into the selected transmitting channel, and modulating the up-conversion to the radio frequency signal;
- Step 1030 the RF signal is coupled into the transmit calibration channel, and the downconversion is demodulated into a transmit calibration IQ analog signal;
- Step 1040 The transmit calibration IQ analog signal is converted into an IQ digital signal, and the collected IQ digital signal and the converted IQ digital signal are compared to obtain the amplitude and phase of the selected transmit channel.
- Step 1050 according to the amplitude and phase, The amplitude and phase of the selected transmit channel are refreshed.
- the method for refreshing the receiving channel and the transmitting channel provided by the embodiment of the invention can pre-calibrate the IQ digital signal to eliminate the amplitude and phase inconsistency of each receiving channel or the transmitting channel, so that the digital processing unit can accumulate each according to the relevant algorithm.
- the wife receives the IQ digital signal to obtain the correct receiving pattern, or to distribute the amplitude and phase of the RF signal arriving at the antenna array. Get the correct emission pattern.
- the embodiment of the present invention further provides a method for processing a received signal based on a mode or a carrier. As shown in FIG. 14, the method includes:
- Step 1110 The IQ analog signal of the M channel receiving channel is converted into an M channel IQ digital signal, and each of the IQ digital signals is divided into an N channel single mode receiving signal or an N channel single carrier receiving signal by a mode or carrier based digital controlled oscillator NCO. ;
- Step 1120 performing a digital beamforming process for each N-channel single-mode receiving signal of the M-channel receiving channel or each N-way single-carrier receiving signal of the M-channel receiving channel;
- Step 1130 The single-mode receiving signal of the M-channel receiving channel or the single-carrier receiving signal of the M-channel receiving channel in each of the N-channel single-mode receiving signals is combined by the combiner through the combined mode.
- Step 1140 the N-channel IQ digital signal is synthesized by the combiner and transmitted to the baseband unit.
- the M channel receiving channel can be a 3-20 channel.
- the M channel can be 4-12 channels;
- the N channel can be 1-8 channels, and the preferred N channel can be 1-4 channels.
- the embodiment of the present invention further provides a mode or carrier-based transmission signal processing method, as shown in FIG. 15, including:
- Step 1210 The transmit signal is serial/parallel converted to obtain an N-way IQ digital signal, and each of the N-way IQ digital signals passes through a carrier- or mode-based digitally controlled oscillator NCO to obtain a single-mode transmit IQ digital signal or One-way single-carrier transmitting IQ digital signal;
- Step 1220 Each of the single-mode transmit IQ digital signals or the N-way IQ digital signals of each of the N-way IQ digital signals is subjected to M DBF digital beamforming processing to obtain an M-channel based mode or carrier.
- IQ digital signal
- Step 1230 N-way single-mode transmit IQ digital signals in each M-channel transmit channel or N-channel single-carrier transmit IQ digital signals in each M-channel transmit channel are combined into one path through a combiner;
- Step 1240 The M-channel based composite transmission signal of the mode or the carrier is processed by CFR and DPD respectively, and converted into an IQ analog signal and outputted to each transmission channel of the transceiver unit.
- the M channel receiving channel may be a 3-20 channel.
- the M channel may be 4-12 channels;
- the N channel may be 1-8 channels, and the preferred N channel may be 1-4 channels.
- the mode or carrier-based signal processing method provided by the embodiment of the present invention can be applied to the digital processing unit of the active antenna or the base station provided by the embodiment of the present invention to implement multi-mode multi-carrier transceiving signal processing, and obtain different modes or carriers.
- the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory.
- the active antenna or the base station, the signal calibration method of the transceiver channel, and the signal processing method based on the mode or the carrier are provided in the foregoing embodiments of the present invention.
- the description of the embodiments is only used to help understand the method and the idea of the present invention;
- the present invention is not limited by the scope of the present invention, and the details of the present invention are not limited by the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Transceivers (AREA)
- Radio Transmission System (AREA)
Description
有源天线、 基站、 刷新幅度和相位的方法及信号处理方法 本申请要求了 2008年 8月 14日提交的、 申请号为 200810145754.0、 发 明名称为 "有源天线、 基站、 刷新幅度和相位的方法及信号处理方法" 的中 国申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及移动通信领域, 具体而言是涉及一种有源天线、 基站、 刷新 幅度和相位的方法及信号处理方法。 背景技术
在移动通信系统中, 通常使用安装在塔顶的天线单元来接收和发射信号, 天线单元一般是无源的, 需要由分布式基站( RRU, RF Remote Unit )提供大 功率发射信号, 再由与 RRU通过馈线连接的天线单元将该信号发射出去。
参见图 1 , 现有技术中的天线单元, 包括天线振子阵列 5、 移相网絡和功 分合路网絡 6、 复用解复用电路模块(BiasTee ) 9、 传动机构 7和远端控制单 元(RCU, Remote Control Unit ) 8。 分布式基站包括收发信机和数字处理单 元。 分布式基站与天线单元通过馈线连接。 其中, 接收信号时, 移动台发射 的电磁波信号, 通过天线振子阵列 5接收, 天线振子阵列 5接收到的信号很 微弱, 此微弱信号经过移相网絡移相, 通过功分合路网絡合成一路接收信号, 经过复用解复用电路模块 9通过馈线将接收信号送到分布式基站, 该接收信 号通过分布式基站中收发信机的双工器、低噪声放大器 LNA以及下变频处理, 通过分布式基站中数字处理单元进行 ADC转换、 滤波处理 (系数抽取滤波器 CIC、 半波带滤波器 HBF、 有限冲击响应滤波器 FIR )等, 传送到基带单元 BBU, 通过基带单元 BBU传送给基站控制器 BSC。 发射信号时, 基带单元 BBU的信号通过分布式基站中的数字处理单元的削波器削波(减小峰值因子) 处理、 DAC转换, 通过分布式基站中的收发信机上变频处理、 功率放大器 PA
以及双工器, 然后通过馈线、 复用解复用电路模块 9, 传送给移相网絡和功分 合路网絡, 通过功分合路网絡分为多路到达天线振子阵列, 将信号转换为电 磁波信号发射出去, 由移动台接收。
其中, 移相网絡釆用电机驱动的机械结构, 复用解复用电路模块 9从馈 线中提取远端控制单元 8 需要的直流电源和控制信令, 从而使该远端控制单 元 8控制传动机构 7,进而使移相网絡完成对每个天线振子的幅度和相位调整。
在实现本发明过程中, 发明人发现现有技术中至少存在这样的问题: 移相网絡釆用机械结构, 结构比较复杂, 而且, 在对天线振子幅度和相 位调整过程中, 不太可靠。 发明内容
本发明实施例提供了一种有源天线或基站, 用于解决移相网絡结构复杂, 不太可靠的问题。
本发明实施例一种有源天线, 包括天线振子阵列、 收发信机单元阵列、 数字处理单元和收发校准单元,
所述天线振子阵列, 包括天线振子, 用于电磁波信号和射频信号的转换; 所述收发信机单元阵列, 包括收发信机单元, 接收信号时, 所述收发信 机单元将所述天线振子的射频信号下变频解调为 IQ模拟信号, 输出给所述数 字处理单元; 发送信号时, 所述收发信机单元将所述数字处理单元的 IQ模拟 信号调制上变频为射频信号, 输出给所述天线振子;
所述数字处理单元, 接收信号时, 所述数字处理单元对所述下变频解调 的 IQ模拟信号转换为 IQ数字信号,根据所述收发校准单元对所述 IQ数字信 号数字波束成形; 发送信号时, 所述数字处理单元对基带单元的信号串 /并转 换为 IQ数字信号, 对所述串 /并转换的 IQ数字信号减小峰值因子处理, 所述 数字处理单元根据所述收发校准单元减小峰值因子处理的 IQ数字信号数字波 束成形。
本发明实施例一种刷新接收通道的幅度和相位的方法, 包括:
选择一路接收通道;
接收校准 IQ数字信号转换为 IQ模拟信号, 进入接收校准通道, 调制上 变频为接收校准射频信号;
所述接收校准射频信号耦合进入选择的接收通道, 下变频解调为 IQ模拟 信号;
所述 IQ模拟信号转换为 IQ数字信号 , 比较所述 IQ数字信号与所述接收 校准 IQ数字信号, 得到所述选择的接收通道的幅度和相位;
根据所述幅度和相位, 刷新所述选择的接收通道的幅度和相位。
本发明实施例一种刷新发射通道的幅度和相位的方法, 包括:
选择一路发射通道;
釆集 IQ数字信号;
IQ数字信号转化为 IQ模拟信号进入选择的发射通道,调制上变频为射频 信号;
所述射频信号耦合进入发射校准通道, 下变频解调为 IQ模拟信号; 所述 IQ模拟信号转化为 IQ数字信号, 比较釆集的 IQ数字信号与转化后 的 IQ数字信号, 得到所述选择的发射通道的幅度和相位;
根据所述选择的发射通道的幅度和相位, 刷新所述选择的发射通道的幅 度和相位。
本发明实施例一种基于模式或者载波的接收信号处理方法, 包括:
M路接收通道的 IQ模拟信号转化为 M路 IQ数字信号, 每一路 IQ数字 信号通过 N路基于模式或者载波的数字控制振荡器 NCO分为 N路单模接收 信号或者 N路单载波接收信号;
M路接收通道的每一 N路单模接收信号或者 M路接收通道的每一 N路 单载波接收信号分别进行数字波束成形处理;
每一 N路单模接收信号中的 M 妻收通道的单模接收信号或者每一 Ν路 单载波接收信号中的 Μ路接收通道的单载波接收信号经过合路器合路, 通过
滤波处理模块处理, 得到 N路 IQ数字信号;
N路 IQ数字信号通过合路器合成一路, 传输给基带单元。
本发明实施例一种基于模式或者载波的发射信号处理方法, 包括: 发射信号经过串 /并转换得到 N路 IQ数字信号, N路 IQ数字信号中的每 一路 IQ数字信号通过基于载波或者模式的数字控制振荡器 NCO, 得到每一 路单模发射 IQ数字信号或者每一路单载波发射 IQ数字信号;
N路 IQ数字信号中的每一路单模发射 IQ数字信号或者 N路 IQ数字信号 中的每一路单载波发射 IQ数字信号经过 M个 DBF数字波束成形处理, 得到
M路基于模式或者载波的 IQ数字信号;
每一 M路发射通道中的 N路单模发射 IQ数字信号或者每一 M路发射通 道中的 N路单载波发射 IQ数字信号通过合路器合为一路, 得到 M路基于模 式或者载波的合成发射信号;
M路基于模式或者载波的合成发射信号分别通过 CFR和 DPD处理, 然 后转换为 IQ模拟信号输出给收发信机单元的各路发射通道。
本发明实施例一种基站, 包括天线振子阵列、 收发信机单元阵列、 数字 处理单元和收发校准单元,
所述天线振子阵列, 包括天线振子, 用于电磁波信号和射频信号的转换; 所述收发信机单元阵列, 包括收发信机单元, 接收信号时, 所述收发信 机单元将所述天线振子的射频信号下变频解调为 IQ模拟信号, 输出给所述数 字处理单元; 发送信号时, 所述收发信机单元将所述数字处理单元的 IQ模拟 信号调制上变频为射频信号, 输出给所述天线振子;
所述数字处理单元, 接收信号时, 所述数字处理单元对所述下变频解调 的 IQ模拟信号转换为 IQ数字信号,并根据所述收发校准单元对所述 IQ数字 信号数字波束成形; 发送信号时, 所述数字处理单元对基带单元的信号串 /并 转换为 IQ数字信号, 并根据所述收发校准单元对所述串 /并转换的 IQ数字信 号数字波束成形。
由以上技术方案可知, 有源天线或基站中, 接收信号时, 数字处理单元 根据收发校准单元对 IQ数字信号数字波束成形; 发送信号时, 数字处理单元 根据收发校准单元对串 /并转换的 IQ数字信号数字波束成形, 可以避免釆用移 相网絡带来的结构复杂, 而且不太可靠的问题。 附图说明 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中天线单元的结构示意图;
图 2为本发明实施例提供的有源天线或基站结构示意图;
图 3为本发明实施例提供的有源天线或基站详细结构示意图;
图 4为本发明实施例提供的另一种有源天线或基站详细结构示意图; 图 5为本发明实施例刷新接收通道的幅度和相位流程图;
图 6为本发明实施例刷新发射通道的幅度和相位流程图;
图 7 为本发明实施例收发信机单元阵列中各发射通道、 各接收通道分别 共用本振信号的示意图;
图 8为本发明实施例提供的基于模式或载波的接收 DBF处理模块的原理 图;
图 9为本发明实施例提供的基于模式或载波的发射 DBF处理模块的原理 图; 示意图;
图 11 为本发明实施例基带单元集成在有源天线或基站内部的结构示意 图;
图 12为本发明实施例提供的一种刷新接收通道的方法流程示意图;
图 13为本发明实施例提供的一种刷新发射通道的方法流程示意图; 图 14为本发明实施例提供的一种基于模式或者载波的接收信号 DBF处 理方法流程示意图;
图 15为本发明实施例提供的一种基于模式或者载波的发射信号 DBF处 理方法流程示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
实施例一:
参见图 2, 为本发明实施例一提供的有源天线或基站结构示意图。 该有源 天线包括天线振子阵列 11、 收发信机单元阵列 12、 数字处理单元 13和收发 校准单元 14, 其中,
该天线振子阵列 11 , 包括天线振子, 用于电磁波信号和射频信号的转换; 该收发信机单元阵列 12, 包括收发信机单元, 接收信号时, 该收发信机 单元将该天线振子的射频信号下变频解调为 IQ模拟信号, 输出给该数字处理 单元 13; 发送信号时, 该收发信机单元将该数字处理单元 13的 IQ模拟信号 调制上变频为射频信号, 输出给该天线振子;
该数字处理单元 13 ,接收信号时, 所述数字处理单元 13对所述下变频解 调的 IQ模拟信号转换为 IQ数字信号,根据所述收发校准单元对所述 IQ数字 信号数字波束成形; 发送信号时, 所述数字处理单元 13对基带单元的信号串 /并转换为 IQ数字信号, 对所述串 /并转换的 IQ数字信号减小峰值因子处理, 所述数字处理单元 13根据所述收发校准单元减小峰值因子处理的 IQ数字信 号数字波束成形。
由上可以看出, 有源天线或基站中, 接收信号时, 数字处理单元根据收
发校准单元对 IQ数字信号数字波束成形; 发送信号时, 数字处理单元根据收 发校准单元对串 /并转换的 IQ数字信号数字波束成形。从而对发射和接收射频 信号的幅度和相位进行调整, 可以避免釆用移相网絡带来的结构复杂, 而且 不太可靠的问题。
其中,该收发校准单元 14,与该收发信机单元和该数字处理单元 13连接, 该收发校准单元 14用于对该数字处理单元 13中的接收校准 IQ模拟信号调制 上变频为接收校准射频信号; 该收发校准单元 14用于对该收发信机单元的射 频信号下变频解调为发射校准 IQ模拟信号。
其中, IQ信号是现代数字通信系统的专用信号。 一个脉冲序列经过串 / 并转换后形成一路同相信号( I信号)和一路正交信号( Q信号), I和 Q信号 分别和两个互为正交(相位差为 90度)的载波相乘进行调制, 所以 I和 Q信 号对信息的调制互不干扰, 将调制后的信号合路后, 所占频带仍为一路信号 占用的频带,提高了频谱的利用率。 IQ信号包括 IQ模拟信号和 IQ数字信号。
请参阅图 3 , 为本发明实施例一中有源天线或基站详细结构示意图。 该天 线振子阵列 11包括天线振子 111。 该收发信机单元阵列 12的收发信机单元, 每个收发信机单元包括双工器( Duplex )221A、低噪声放大器( LNA, Low Noise Amplifier ) 222 A, 功率放大器(PA, Power Amplifier ) 223A、 接收下变频模 块 224A、 和发射上变频模块 225A。 其中, 该收发信机单元中双工器 221A、 LNA222A和接收下变频模块 224A可以构成接收通道; 该收发信机单元中双 工器 221A、 PA223A和发射上变频模块 225A可以构成发射通道。该收发信机 单元的接收通道与发射通道与天线振子 111相连。
其中, 一个收发信机单元可以包括一个接收通道和一个发射通道, 即一 个接收通道与一个发射通道通过双工器共用同一个天线振子; 该收发信机单 元阵列中两个接收通道也可以对应一个发射通道, 即其中一个接收通道与一 个发射通道通过双工器共用同一个天线振子, 另一个接收通道通过接收滤波 器连接到与共用的天线振子极化方向垂直的天线振子上。
需要说明的是,本发明实施例中接收通道和发射通道包括双工器 221A可 以理解为: 接收通道包括接收滤波器; 发射通道包括发射滤波器。
由接收滤波器和发射滤波器可以构成双工器, 那么, 接收通道和发射通 道可以共用天线振子。 当接收信号和发射信号不共用天线振子时, 针对接收 通道, 可以包括接收滤波器、 LNA和接收下变频模块; 针对发射通道, 可以 包括发射滤波器、 PA和发射上变频模块。
该收发信机单元中, 各模块的作用可以为:
双工器 221A: 发射信号时, 用于保证从 PA223 A发射出去的大功率射频 信号, 只能到达天线振子, 不会通过双工器 221A 到达 LNA222A, 造成 LNA222A的烧毁或堵塞; 接收信号时, 用于保证天线振子 111从移动台接收 到的微弱射频信号, 能够顺利通过双工器 221A到达 LNA222A;
其中,该双工器 221A可以釆用体积小的表面贴介质双工器或声表面波双 工器。
低噪声放大器 LNA222A, 用于放大从天线振子 111接收到的微弱射频信 号。
天线的接收灵敏度,很大程度上取决于 LNA222A前端的双工器与天线振 子间互连(连接器、 电缆或其它传输线) 的损耗, 由于本发明实施例的有源 天线收发信机单元直接与天线振子 111 相连, 损耗低, 等效降低了接收通道 的噪声系数, 即提高了天线的接收灵敏度。
其中, 该收发信机单元与天线振子 111 相连可以为: 该收发信机单元与 天线振子集成为一体。
功率放大器 PA223A, 用于放大发射上变频模块 225A待发射的小功率射 频信号。
接收下变频模块 224A, 用于将 LNA222A输出的射频信号, 经过下变频 解调得到 IQ模拟信号。
发射上变频模块 225A, 用于将数字处理单元的 IQ模拟信号, 上变频调
制得到射频信号。
续请参阅图 3 , 数字处理单元 13 包括 ADC231A、 数字波束成形 DBF ( Digital Beam-forming )接收模块 232A、 滤波处理模块 233 A、 combiner (合 路器 ) 238、 S/P (串 /并转换 ) 239、 CFR (削波器 ) 234A、 DBF发射模块 235A、 DPD模块 236A和 DAC237A。其中,该 ADC231A、数字波束成形 DBF( Digital Beam-forming )接收模块 232A和滤波处理模块 233 A可以构成接收处理通道; 该 CFR (削波器) 234A、 DBF发射模块 235A、 DPD模块 236A和 DAC237A 可以构成发射处理通道。 这样, 该数字处理单元 13包括: 接收处理通道、 发 射处理通道、 combiner238和 S/P239, 其中, 该数字处理单元 13的接收处理 通道可以与收发信机单元的接收通道相接, 该数字处理单元 13的发射处理通 道可以与收发信机单元的发射通道相连。
其中, 该接收处理通道包括:
模数转换模块 ADC231A, 用于对接收 IQ模拟信号进行 ADC转换, 转换 为 IQ数字信号;
数字波束成形 DBF ( Digital Beam-forming )接收模块 232A, 用于对该 ADC231A转换后的 IQ数字信号进行数字波束成形;
滤波处理模块 233A,用于对数字波束成形 DBF接收模块 232A处理后的 IQ数字信号进行滤波处理。 其中该滤波处理模块 233A包括系数抽取滤波器 CIC ( Cascaded Integral Comb )、 半波带滤波器 HBF ( Half Band Filter )、 以及 有限冲击响应滤波器 FIR ( Finite Impulse Response Filter )等。
需要说明的是, 在数字处理单元 13中, 接收处理通道和发射处理通道可 以根据收发信机阵列中收发信机单元的个数配置相应的接收处理通道和发射 处理通道, 即一个收发信机单元的接收通道对应一路接收处理通道, 一个收 发信机单元的发射通道对应一路发射处理通道。
续请参阅图 3 , 在接收处理通道中, 模数转换模块 ADC231A、 DBF接收 模块 232A、 滤波处理模块 233A可以按照信号的传输方向依次相连, IQ模拟
信号转换为 IQ数字信号, DBF接收模块 232A、 滤波处理模块 233A用于在 数字域内处理 IQ数字信号。
数字处理单元 13 中的各路接收处理通道对 IQ 模拟信号处理后, 由 combiner238按照相关算法累加各路接收处理通道的 IQ数字信号, 合路后传 输给基带单元 BBU ( Base Band Unit )。
其中, 该相关算法可以理解为: 从多路并行信号中, 可以提取出具有相 关性的信号而除掉不相关的信号 (如干扰和噪声信号)等。
其中, 该发射处理通道包括:
削波器 CFR234A, 用于对 S/P变换后的 IQ数字信号进行减小峰值因子 ( Crest Factor Reduction ) 处理;
DBF发射模块 235A, 用于对削波器 234A处理后的 IQ数字信号进行数 字波束成形;
DPD模块 236A, 用于对 DBF发射模块 235A处理后的 IQ数字信号进行 数字预失真( Digital Pre-distortion )处理, 以改善收发信机单元中发射通道的 功率放大器 PA的非线性, 使收发信机单元中发射通道线性化。
数模转换模块 DAC237A, 用于对 DPD模块 236A处理后的 IQ数字信号 进行 DAC转换 , 转换为发射 IQ模拟信号。
由上可以看出,从基带单元 BBU产生的信号首先由 S/P变换(串 /并) 239 输出多路发射 IQ数字信号,进入每路发射处理通道。在每路发射处理通道中, 削波器 CFR234A、 DBF发射模块 235A、 DPD模块 236A、 数模转换模块 DAC237A按照信号传输方向依次相连, 用于在数字域内处理发射 IQ数字信 号。
需要说明的是, 当收发信机单元中的功放 PA线性度比较好时, 发射处理 通道可以没有 DPD模块。
需要说明的是, 一个收发信机单元可与收发信机单元相连的天线振子, 以及与收发信机单元相连的数字处理单元中的接收处理通道和发射处理通道
可以构成一体化的模块, 所以, 在本发明实施例的有源天线中, 可以根据实 际需要增减模块的数量, 灵活配置成各种天线增益的基站。
续请参阅图 3 , 本发明实施例有源天线的数字处理单元 13还包括: 接收校准算法模块 301A, 用于生成接收校准 IQ数字信号, 当该接收校 准 IQ数字信号转换为 IQ模拟信号,通过该收发校准单元 14进入选择的接收 通道, 下变频解调为 IQ模拟信号, 然后转化为 IQ数字信号时, 该接收校准 算法模块 301A根据转化的 IQ数字信号与该接收校准 IQ数字信号比较,得到 该选择的接收通道的幅度和相位, 刷新该选择的接收通道的幅度和相位, 当 该接收校准算法模块 301A刷新所有的接收通道的幅度和相位,该接收校准算 法模块 301 A根据所有的接收通道的幅度和相位, 得到接收幅度和相位值, 该 接收校准算法模块 301A根据该接收幅度和相位值与每一路接收通道的幅度 和相位进行比较, 得到每一路接收通道的幅度和相位的接收校正因子;
接收 DBF算法模块 302, 用于将该接收校正因子配置于每一路接收处理 通道中的数字波束成形 DBF接收模块 232A; 该数字波束成形 DBF接收模块 232A, 对该下变频解调的 IQ模拟信号转换的 IQ数字信号数字波束成形。
发射校准算法模块 401 ,用于釆集 IQ数字信号, 当该 IQ数字信号转换为 IQ模拟信号, 进入选择的发射通道调制上变频为射频信号, 该收发校准单元 14釆集该射频信号, 下变频解调为 IQ模拟信号, 该发射校准算法模块 401 根据下变频解调的 IQ模拟信号转换后的 IQ数字信号与该釆集的 IQ数字信号 比较, 得到选择的发射通道的幅度和相位, 刷新该选择的发射通道的幅度和 相位, 当该发射校准算法模块 401 刷新所有的发射通道的幅度和相位, 得到 发射幅度和相位值, 该发射校准算法模块 401 根据该发射幅度和相位值与每 一路发射通道的幅度和相位进行比较, 得到每一路发射通道的幅度和相位的 发射校正因子;
发射 DBF算法模块 405, 用于将该发射校正因子配置于每一路发射处理 通道中的 DBF发射模块 235A;
该 DBF发射模块 235A,用于对削波处理后的 IQ数字信号数字波束成形。 参见图 3和图 4, 接收校准算法模块 301A和接收 DBF算法模块 302可 以集成在一个模块 300内; 发射校准算法模块 401包括 DPD算法模块, 以及 发射 DBF算法模块 405可以集成在一个模块 400内。
其中, 接收幅度和相位值可以为: 所有的接收通道的幅度和相位的平均 值; 也可以为: 根据所有接收通道的幅度和相位, 该接收校准算法模块 301A 找到所有接收通道幅度和相位的最小值或最大值, 此最小值或最大值可以作 为接收幅度和相位值; 或还可以为: 根据所有接收通道的幅度和相位, 该接 收校准算法模块 301A以任一接收通道的幅度和相位作为接收幅度和相位值。
同理, 该发射幅度和相位值可以为: 所有的发射通道的幅度和相位的平 均值; 也可以为: 根据所有发射通道的幅度和相位, 该发射校准算法模块 401 找到所有发射通道幅度和相位的最小值或最大值, 此最小值或最大值可以作 为发射幅度和相位值; 或还可以为: 根据所有发射通道的幅度和相位, 该发 射校准算法模块 401以任一发射通道的幅度和相位作为发射幅度和相位值。
其中, 该数字波束成形 DBF接收模块 232A分别与滤波模块 233 A和 ADC231A连接; 该 DBF发射模块 235A分别与 CFR234A和 DPD236A连接。
本发明实施例提供的有源天线的接收信号和发射信号过程如下: 接收信号时, 天线振子 111 将接收到移动台的电磁波信号转换为射频信 号, 经过 Duplex221A、 LNA222A, 接收下变频模块 224A下变频解调得到 IQ 模拟信号, 该 IQ模拟信号通过 ADC231A转换、 DBF接收模块 232A数字波 束成形, 经系数抽取滤波器 CIC、 半波带滤波器 HBF以及有限冲击响应滤波 器 FIR滤波等滤波模块 233A后,由合成器 COMBINER238合成,传输给 BBU; 发射信号时, 对 BBU发出的信号, 首先由串 /并转换(S/P ) 239输出多 路发射 IQ数字信号, 进入每个发射处理通道, 经 CFR234A削波后, 由 DBF 发送模块 235A实现数字波束成形,再经过 DPD236A数字预失真, DAC237A 转换, 经发射上变频模块 225A调制上变频得到射频信号, PA223A放大后,
最后到 Duplex221 A , 由天线振子 111发射出去。
续请参阅图 3 , 该收发校准单元 14包括:
接收校准通道 241 , —端通过数字处理单元中的 DAC与接收校准算法模 块 301A相连, 一端与开关矩阵 243相连, 当该接收校准算法模块 301A产生 的 IQ数字信号转换为 IQ模拟信号 ,该接收校准通道用于将该 IQ模拟信号上 变频调制为接收校准射频信号;
发射校准通道 242, —端通过数字处理单元中的 ADC与发射校准算法模 块 401相连, 一端与开关矩阵 243相连, 用于将收发信机单元阵列中发射通 道的射频信号下变频解调为发射校准 IQ模拟信号;
开关矩阵 243 , —端与该发射校准通道 242和该接收校准通道 241相连, 一端通过耦合器 402与收发信机单元阵列中接收通道和发射通道的前端耦合, 用于分时切换收发信机单元阵列中接收通道和发射通道, 使各路接收通道共 用接收校准通道, 各路发射通道共用发射校准通道。
其中, 该收发信机单元阵列中接收通道和发射通道的前端可以为, 天线 振子与双工器之间 (即接收通道中的双工器与天线振子之间, 或发射通道中 的双工器与天线振子之间)。
开关矩阵 243对接收通道和发射通道的选择, 可由一个开关矩阵控制模 块 244控制, 开关矩阵控制模块 244可以和开关矩阵 243集成于一个模块内, 该开关矩阵控制模块 244也可以位于数字处理单元 DPU13内。
参见图 3和图 4, 开关矩阵 234可以由双工器 261和合路器 262代替, 这 种做法的优点是不再需要一个开关矩阵控制模块 244控制, 所有收发通道可 以同时校准, 能够缩短校准时间。
接收校准时, 所有接收通道同时校准。 从接收校准算法模块 301A中, 发 出一路接收校准信号, 再由接收校准通道 241 上变频为射频信号, 通过校准 通道中的双工器 261、 合路器 262, 耦合器 402, 同时耦合进所有接收通道中, 信号在所有接收通道中下变频、 ADC转换后成 IQ数字信号后, 输入至接收
校准算法模块 301 A中, 分别解出 M个接收通道的校准信号。
比较解出的 M个接收通道的校准信号与原始的接收校准信号的差异, 得 到接收幅度和相位值,该接收校准算法模块 301 A根据该接收幅度相位和延时 值与每一路接收通道的幅度和相位进行比较, 得到每一路接收通道的幅度和 相位的接收校正因子;
发射校准时, 所有发射通道同时校准。 从发射校准算法模块 401 中, 发 出 M路发射校准信号 (每一路信号只有初相不同)到 M个发射处理通道中, 再经过发射通道调制上变频为射频信号, 然后信号从功放 PA223A 经耦合器 402, 耦合至合路器 262和双工器 261 , 进入发射校准通道 242, 然后再下变 频转换为 IQ信号输入至发射校准算法模块 401 ,分别解出 M个发射通道的校 准信号。
比较解出的 M个发射通道的校准信号与原始的 M路发射校准信号的差 异, 得到发射幅度和相位值, 该发射校准算法模块 401 根据该发射幅度和相 位值与每一路发射通道的幅度和相位进行比较, 得到每一路发射通道的幅度 和相位的发射校正因子。
图 5 所示为刷新接收通道的幅度和相位流程图。 其中, 刷新接收通道的 幅度和相位流程包括:
步骤 501: 开关矩阵选择一路接收通道;
步骤 502: 接收校准算法模块 301A生成接收校准 IQ数字信号; 步骤 503: 经过 DAC转换为 IQ模拟信号, 此 IQ模拟信号进入接收校准 通道, 调制上变频为接收校准射频信号;
步骤 504: 此接收校准射频信号经过开关矩阵 243 , 通过耦合器 402耦合 进入接收通道,在选择校准的接收通道内通过下变频解调还原为 IQ模拟信号; 步骤 505:此 IQ模拟信号经过数字处理单元的 ADC转换为 IQ数字信号; 步骤 506:接收校准算法模块 301 A比较 ADC转换后的 IQ数字信号与由 接收校准算法模块 301A生成的接收校准 IQ数字信号, 得到此接收通道的幅
度和相位 , 刷新选择的接收通道的幅度和相位。
重复上面刷新接收通道的幅度和相位的流程,开始刷新下一路接收通道的 幅度和相位。
其中, 在选择校准的接收通道内通过下变频解调还原为 IQ模拟信号是通 过收发信机单元中的接收下变频模块 224Α将接收校准射频信号下变频解调 还原为 IQ模拟信号。
需要说明的是, 该刷新接收通道的幅度和相位流程开始时, 需要先上电 启动。
更进一步, 刷新接收通道的幅度和相位流程还包括, 刷新所有的接收通 道的幅度和相位,该接收校准算法模块 301 Α根据所有接收通道的幅度和相位 得到接收幅度和相位值, 该接收幅度和相位值与每一路接收通道的幅度和相 位进行比较, 得到每一路接收通道的幅度和相位的接收校正因子; 接收 DBF 算法模块 302将该接收校正因子配置于每一路接收处理通道中的数字波束成 形 DBF接收模块。
其中, 接收幅度和相位值可以为: 所有的接收通道的幅度和相位的平均 值; 也可以为: 根据所有接收通道的幅度和相位, 该接收校准算法模块 301A 找到所有接收通道幅度和相位的最小值或最大值, 此最小值或最大值可以作 为接收幅度和相位值; 或还可以为: 根据所有接收通道的幅度和相位, 该接 收校准算法模块 301A以任一接收通道的幅度和相位作为接收幅度和相位值。
例如, 从数字处理单元 DPU13发送数字信号 Al ( A1可以是个特殊的信 号, 如: 单音正弦信号、 伪随机信号、 伪噪声信号等), A1 经过 DPU13 的 DAC变换后, 在接收校准通道 241内调制上变频为射频信号, 经过开关矩阵 243 , 在天线振子和双工器之间将该射频信号耦合到收发信机单元阵列中其中 一路接收通道内, 耦合的信号经过双工器、 LNA、 接收下变频模块, 再经过 ADC处理, 得到数字信号 A2, 比较 A1和 A2后, 得到该接收通道的幅度和 相位。 因为耦合点在双工器之前, 所以能将双工器引入的对接收信号的幅度
和相位的影响也考虑进来。
图 6所示为刷新发射通道的幅度和相位流程图。 刷新发射通道的幅度和 相位流程包括:
步骤 601: 开关矩阵选择一路发射通道;
步骤 602: 发射校准算法模块釆集 IQ数字信号;
步骤 603: IQ数字信号经过 DAC转化为 IQ模拟信号, 此 IQ模拟信号经 过发射通道上变频调制为射频信号;
步骤 604:与发射通道耦合的耦合器 402釆样该上变频调制后的射频信号, 经过开关矩阵, 通过发射校准通道下变频解调为发射校准 IQ模拟信号;
步骤 605: 此发射校准 IQ模拟信号经过 ADC转换为 IQ数字信号; 步骤 606: 发射校准算法模块 401根据釆集的 IQ数字信号与经过 ADC 转换为 IQ数字信号进行比较, 得到此发射通道的幅度和相位, 刷新选择的发 射通道的幅度和相位。
开关矩阵选择下一路发射通道, 重复步骤 602, 开始新一轮刷新发射通道 幅度和相位的过程。
需要说明的是, 刷新发射通道的幅度和相位流程开始时, 需要先上电启 动。
例如, 从基带单元发送信号经过 S/P转换为 XI , XI在 DPU (数字处理 单元)内经过 DAC处理以后,到发射上变频模块调制为射频信号,然后经 PA, 双工器, 耦合器检出, 从开关矩阵进入发射校准通道, 在发射校准通道内下 变频解调还原为 IQ模拟信号进入 DPU, 经过 ADC变换, 得到数字信号 Y1, 比较 XI和 Y1 , 得到该发射通道的幅度和相位。 因为耦合点在双工器之后, 所以能将双工器引入的对发射信号的幅度和相位的影响也考虑进来。
更进一步, 刷新发射通道的幅度和相位流程还包括, 当刷新所有的发射 通道的幅度和相位, 发射校准算法模块 401 根据所有发射通道的幅度和相位 得到发射幅度和相位值, 发射校准算法模块 401 根据该发射幅度和相位值与
每一路发射通道的幅度和相位进行比较, 得到每一路发射通道的幅度和相位 的发射校正因子; 发射 DBF算法模块 405将该发射校正因子配置于每一路发 射处理通道中的 DBF发射模块。
其中, 该发射幅度和相位值可以为: 所有的发射通道的幅度和相位的平 均值; 也可以为: 根据所有发射通道的幅度和相位, 该发射校准算法模块 401 找到所有发射通道幅度和相位的最小值或最大值, 此最小值或最大值可以作 为发射幅度和相位值; 或还可以为: 根据所有发射通道的幅度和相位, 该发 收校准算法模块 401以任一发射通道的幅度和相位作为发射幅度和相位值。
由上可以看出, 在前端 (天线振子和双工器之间)将发射信号耦合到发 射校准通道, 或者把接收校准射频信号耦合到接收通道, 这样能够消除由于 双工器所引入的幅度和相位的不一致性, 并使收发校准共用同一个耦合通道, 简化了电路设计, 降低 PCB板的面积。
其中, 使用开关矩阵 243 进行切换可以基于这些原因: 一方面, 由于有 多个收发信机单元, 如果接收通道和发射通道都配置一个接收校准通道和发 射校准通道, 电路会非常复杂; 另一方面, 如果校准通道不共用, 则接收校 准算法模块 301A 只知道接收校准通道和接收通道构成环路的总幅度和总相 位, 无法知道接收校准通道和接收通道各自的幅度和相位, 同样, 发射校准 算法模块 405 只知道发射校准通道和发射通道构成环路的总幅度和总相位, 无法知道发射校准通道和发射通道各自的幅度和相位, 因此无法准确进行校 准; 再一方面, 有源电路的幅度和相位特征变化虽然一直存在, 但随时间的 变化率很小, 所以只需要一路收发校准通道, 利用时分复用的方法, 就能正 确跟踪这种变化率。
为了保证收发信机单元阵列中各路接收通道接收的射频信号的幅度和相 位有共同的参考, 收发信机单元阵列中各路接收通道共用一个接收本振信号; 为了保证收发信机单元阵列中各路发射通道发射的射频信号的幅度和相位有 共同的参考, 收发信机单元阵列中各路发射通道共用一个发射本振信号。 这
些可以通过共用压控振荡器 VCO ( Voltage Control Oscillator )来实现。
如图 7 所示, 为收发信机单元阵列中各发射通道、 各接收通道分别共用 本振信号的示意图。 发射通道压控振荡器 TX— VCO的输出信号通过时钟驱动 分配网絡, 分为 TX— L01、 TX L02 TX— LOM、 TX— LO— C信号, 这些 信号之间是并列关系, 其中, TX— L01、 TX L02 TX LOM 分别接至 M 路发射上变频电路, 作为发射通道的本振信号, TX— LO— C则接至发射校准通 道作为本振信号; 接收通道压控振荡器 RX— VCO的输出信号通过时钟驱动分 配网絡, 分为 RX— L01、 RX_L02 RX— LOM、 RX— LO— C信号, 这些信 号之间也是并列关系, 其中 RX— L01、 RX_L02 RX_LOM分别接至 M路 接收下变频电路,作为接收通道的本振信号, RX_LO_C则接至接收校准通道, 作为接收校准通道的本振信号。
数字处理单元 13 中各路发射处理通道中的数字预失真 DPD模块, 用于 对收发信机单元阵列中各路发射通道的功率放大器 PA的线性化处理。可以使 用独立的 DPD反馈通道(参见附图 4 ), 也可以把发射校准通道当作 DPD反 馈通道(参见附图 3 )。
DPD的算法流程与刷新发射通道的幅度和相位流程相似, 只是幅度和相 位比较的结果是反映发射通道的非线性特征, 并依据此非线性特征, 校正 IQ 数字信号, 使发射通道线性化。 所以 DPD反馈通道也可以利用发射校准通道 的全部硬件电路, 但需要在数字处理单元 13 内增加 DPD 算法 (DPD Algorithm ), DPD模块来实现, 在此不再赘述。
如果 DPD反馈通道与发射校准通道共用,则可以减少一半的耦合器数量。 DPD反馈通道与发射校准通道也可以不共用, 参见附图 4, 由 DPD开关控制 模块 251控制 DPD通道开关矩阵 253 , 进行发射通道的选择, DPD反馈通道 252通过耦合器 401与收发信机单元阵列中的每路发射通道的功放 PA输出端 相耦合, 用于分时切换发射通道, 以使各路发射通道共用 DPD反馈通道。
由于 DPD是用于改善功率放大器 PA的大信号(如功率大于 2W的信号)
的非线性, 所以接收通道不需要 DPD。
本发明实施例的有源天线, 接收信号时, 数字处理单元根据收发校准单 元对 IQ数字信号数字波束成形; 发送信号时, 数字处理单元根据收发校准单 元对串 /并转换的 IQ数字信号数字波束成形。从而对发射和接收射频信号的幅 度和相位进行调整, 可以避免釆用移相网絡带来的结构复杂, 而且不太可靠 的问题。
更进一步, 由于构成收发信机单元阵列 12的各元器件具有分散性, 使得 同一个信号同时输入到两个收发信机单元中, 最后得到的两路信号的幅度和 相位特征是不同的, 增加的收发校准单元可以配合 DBF 算法模块 235A 和 232A实现数字波束成形。 使数字处理单元 13在处理接收 IQ模拟信号时, 需 要预先纠正 DAC231 A转换后的接收 IQ数字信号, 以使 combiner238按照相 关算法累加接收 IQ数字信号; 同时使数字处理单元 13在处理发射 IQ模拟信 号时, 通过 DBF算法模块 235A预先纠正发射 IQ数字信号, 以调整发射射频 信号的幅度和相位, 从而可以得到正确的发射方向图和接收方向图。
实施例二,
在本发明实施例中, 数字处理单元 13 中 DBF处理模块(数字波束成形 DBF接收模块、 DBF发射模块)是基于模式或者载波进行的, 可以处理多模 多载波的收发 IQ模拟信号。
参见图 8, 为基于模式或载波的接收 DBF处理模块的原理图:
各接收通道 (假设为 M路接收通道 )的 IQ模拟信号通过 ADC转换为 M 路 IQ数字信号, M路接收通道的 IQ数字信号中的每一路与基于模式或者载 波的数字控制振荡器 NC01、 NC02 NCON输出的信号相乘(数字下变 频), 分为 N路单模接收信号或者 N路单载波接收信号;
M路接收通道的第一路单模接收信号或 M路接收通道的第一路单载波接 收信号分别进行数字波束成形 DBF 1.1、 DBF2.1 DBFM.1处理, 经过合路 器(图 8中的 combinerl )处理, 经过 CIC、 HBF和 FIR处理, 得到第一路信
号 f 1 (图 8中的 f 1 )
同理,第二路单模接收信号或者第二路单载波接收信号分别经过 DBF 1.2、
DBF2.2 DBFM.2处理, 然后通过 combiner2 (图 8所示 )合路, 经过 CIC、
HBF和 FIR处理, 得到第二路信号 β (图 8所示); 以此类推, 第 Ν 路单模接收信号或者多路单载波接收信号分别经过
DBF1.N、 DBF2.N DBFM.N处理, 然后通过 combinerN (图 8所示 )合路, 经过 CIC、 HBF和 FIR处理, 得到第 N路信号 fN (图 8所示);
每一路信号 fl f2 ...... fN通过 combiner238, 合成一路信号输出给基带单 元。
其中, fl、 f2...... fN可以为单载波或单模 IQ数字信号。
参见图 9, 为基于模式或载波的发射 DBF处理模块的原理图:
BBU发送的信号经过串 /并转换(S/P ) 239, 得到 N路 IQ数字信号 (即 N路 IQ数字信号与 N路数字控制振荡器相对应), N路 IQ数字信号中每一路
IQ数字信号与基于载波或者模式的数字控制振荡器 NC01、NC02 NCON 的输出信号相乘(数字下变频), 得到 N路单模发射信号或者 N路单载波发 射信号 (图 9中 fl β ...... fN ) , N路单模发射信号或者 N路单载波发射信号
(图 8中 fl f2 fN )分别经过 DBF1.1、 DBF 1.2 DBF1.N处理, 按照预 定的算法进行合路处理, 得到第一路(图 9中, 即通过 Combinerl合路的信 号为第一路)基于模式或者载波的合成发射信号。
同理, N路单模发射信号或者 N路单载波发射信号 (fl β β ...... fN )分 别经过 DBF2.1、 DBF2.2 DBF2.N处理, 按照预定的算法进行合路处理, 得到第二路(即通过 Combine 合路的信号为第二路)基于模式或者载波的 合成发射信号。 以此类推, N路单模发射信号或者 N路单载波发射信号( fl β β
分别经过 DBFM.1、 DBFM.2 DBFM.N处理, 按照预定的算法进行合路处 理, 得到第 M路(即通过 CombinerM合路的信号为第 M路)基于模式或者 载波的合成发射信号。
由上可以看出, N 路单模发射信号或者 N 路单载波发射信号 (fl f2 β ...... fN )最后合成了 Μ路发射信号。 然后, 各 Μ路发射信号分别进行 CFR 和 DPD处理,最后 DAC转换为 IQ模拟信号输出给收发信机单元的各路发射 通道。
按照上述的基于模式或载波进行的 DBF算法, 可以实现多模多载波收发 信号的处理, 本发明实施例的有源天线或基站可以得到不同模式或载波的天 线辐射方向图。
实施例三:
在本发明实施例一和 /或实施例二提供的有源天线或基站的基础上, 可以 增加简单的功分合路网絡, 参见图 10, 图 10为本发明实施例提供的有源天线 或基站的结构示意图。
本发明实施例三与实施例一的区别在于, 在该天线振子阵列 71和该收发 信机单元阵列 72之间增加了功分合路网絡 75,接收信号时, 该功分合路网絡 75可以将多个天线振子接收的微弱信号合路为一路传输给收发信机单元阵列 72中的收发信机单元; 发射信号时, 该收发信机单元阵列 72中的收发信机单 元的射频信号通过功分合路网絡传输给多个天线振子。
本发明实施例中的功分合路网絡可由威尔金森功分合路网絡构成, 因此 电缆或印制电路板 PCB ( Painted Circuit Board ) 互连简单, 损耗很小。
釆用本发明实施例三的有源天线, 每个收发信机单元连接一个以上的天 线振子, 优选每个收发信机单元连接 2个或 3个天线振子, 或者各种组合, 可以使得收发信机单元的数量大幅度减少。
实施例四:
在以上实施例的基础上, 也可以将基带单元 BBU集成在有源天线或基站
内部, 如图 11所示。
本发明实施例四较以上实施例, 安装方案更为简单。
在以上实施例的基础上, 本发明实施例提供了一种刷新接收通道的方法, 如图 12所示, 包括:
步骤 901 , 选择一路接收通道;
步骤 902, 接收校准 IQ模拟信号进入接收校准通道, 调制上变频为射频 信号;
步骤 903, 该射频信号耦合进入选择的接收通道, 下变频解调为 IQ模拟 信号;
步骤 904, 比较该 IQ模拟信号与该接收校准 IQ模拟信号,得到该选择的 接收通道的幅度和相位;
步骤 905, 根据该幅度和相位, 刷新该选择的接收通道的幅度和相位。 在以上实施例的基础上, 本发明实施例还提供了一种刷新发射通道的方 法, 如图 13所示, 包括:
步骤 1010, 选择一路发射通道;
步骤 1020, 釆集 IQ数字信号, IQ数字信号转化为 IQ模拟信号进入选择 的发射通道, 调制上变频为射频信号;
步骤 1030, 该射频信号耦合进入发射校准通道, 下变频解调为发射校准 IQ模拟信号;
步骤 1040, 该发射校准 IQ模拟信号转化为 IQ数字信号, 比较釆集的 IQ 数字信号与转化后的 IQ数字信号, 得到该选择的发射通道的幅度和相位; 步骤 1050, 根据该幅度和相位, 刷新该选择的发射通道的幅度和相位。 本发明实施例提供的刷新接收通道和发射通道的方法, 可以预先校准 IQ 数字信号, 消除各路接收通道或发射通道的幅度和相位不一致性 , 使得在数 字处理单元中可以按照相关算法累加各 ^妻收 IQ数字信号, 以得到正确的接 收方向图, 或者使到达该天线振子阵列的射频信号的幅度和相位按规律分布,
得到正确的发射方向图。
本发明实施例还提供了一种基于模式或者载波的接收信号处理方法, 如 图 14所示, 包括:
步骤 1110, M路接收通道的 IQ模拟信号转化为 M路 IQ数字信号,每一 路 IQ数字信号通过基于模式或者载波的数字控制振荡器 NCO分为 N路单模 接收信号或者 N路单载波接收信号;
步骤 1120, M路接收通道的每一 N路单模接收信号或者 M路接收通道 的每一 N路单载波接收信号分别进行数字波束成形处理;
步骤 1130,每一 N路单模接收信号中的 M路接收通道的单模接收信号或 者每一 N路单载波接收信号中的 M路接收通道的单载波接收信号经过合路器 合路, 通过 CIC、 HBF和 FIR处理, 得到 N路 IQ数字信号;
步骤 1140, N路 IQ数字信号通过合路器合成一路, 传输给基带单元。 其中, M路接收通道可以为 3-20路接收通道, 优选的, M路可以为 4-12 路; N路可以为 1-8路, 优选的 N路可以为 1-4路。
本发明实施例还提供了一种基于模式或者载波的发射信号处理方法, 如 图 15所示, 包括:
步骤 1210,发射信号经过串 /并转换得到 N路 IQ数字信号, N路 IQ数字 信号中的每一路 IQ数字信号通过基于载波或者模式的数字控制振荡器 NCO, 得到一路单模发射 IQ数字信号或者一路单载波发射 IQ数字信号;
步骤 1220, N路 IQ数字信号中的每一路单模发射 IQ数字信号或者 N路 IQ数字信号中的每一路单载波发射 IQ数字信号经过 M个 DBF数字波束成形 处理, 得到 M路基于模式或者载波的 IQ数字信号;
步骤 1230, 每一 M路发射通道中的 N路单模发射 IQ数字信号或者每一 M路发射通道中的 N路单载波发射 IQ数字信号通过合路器合为一路;
步骤 1240, M路基于模式或者载波的合成发射信号分别通过 CFR和 DPD 处理, 转换为 IQ模拟信号输出给收发信机单元的各路发射通道。
其中, M路接收通道可以为 3-20路接收通道, 优选的, M路可以为 4-12 路; N路可以为 1-8路, 优选的 N路可以为 1-4路。
本发明实施例提供的基于模式或者载波的信号处理方法, 可以应用到本 发明实施例提供的有源天线或基站的数字处理单元中, 实现多模多载波收发 信号的处理, 得到不同模式或载波的天线辐射方向图。
需要说明的是, 本领域普通技术人员可以理解实现上述实施例方法中的 全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 该的程 序可存储于一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各 方法的实施例的流程。 其中, 该的存储介质可为磁碟、 光盘、 只读存储记忆
RAM )等。
以上对本发明实施例提供的有源天线或基站、 收发通道的信号校准方法 及基于模式或者载波的信号处理方法进行了介绍, 实施例的说明只是用于帮 助理解本发明的方法及其思想; 对于本领域的一般技术人员, 依据本发明的 思想, 在具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书 内容不应理解为对本发明的限制。
Claims
1、 一种有源天线, 其特征在于, 包括天线振子阵列、 收发信机单元阵列、 数字处理单元和收发校准单元,
所述天线振子阵列, 包括天线振子, 用于电磁波信号和射频信号的转换; 所述收发信机单元阵列, 包括收发信机单元, 接收信号时, 所述收发信机 单元将所述天线振子的射频信号下变频解调为 IQ模拟信号, 输出给所述数字处 理单元; 发送信号时, 所述收发信机单元将所述数字处理单元的 IQ模拟信号调 制上变频为射频信号, 输出给所述天线振子;
所述数字处理单元, 接收信号时, 所述数字处理单元对所述下变频解调的 IQ模拟信号转换为 IQ数字信号 , 根据所述收发校准单元对所述 IQ数字信号数 字波束成形; 发送信号时, 所述数字处理单元对基带单元的信号串 /并转换为 IQ 数字信号,对所述串 /并转换的 IQ数字信号减小峰值因子处理, 所述数字处理单 元根据所述收发校准单元减小峰值因子处理的 IQ数字信号数字波束成形。
2、根据权利要求 1所述的有源天线, 其特征在于, 所述数字处理单元包括: 接收校准算法模块, 用于生成接收校准 IQ数字信号, 当所述 IQ数字信号 转换为 IQ模拟信号, 通过所述收发校准单元进入选择的接收通道, 下变频解调 为 IQ模拟信号, 然后转化为 IQ数字信号时, 所述接收校准算法模块根据所述 转化的 IQ数字信号与所述生成的接收校准 IQ数字信号比较, 得到所述选择的 接收通道的幅度和相位, 刷新所述选择的接收通道的幅度和相位, 当所述接收 校准算法模块刷新所有的接收通道的幅度和相位, 所述接收校准算法模块根据 所有的接收通道的幅度和相位, 得到接收幅度和相位值, 接收校准算法模块根 据所述接收幅度和相位值与每一路接收通道的幅度和相位比较, 得到每一路接 收通道的幅度和相位的接收校正因子;
接收 DBF算法模块, 用于将所述接收校正因子配置于每一路接收处理通道 中的数字波束成形 DBF接收模块;
所述数字波束成形 DBF接收模块, 用于对所述下变频解调的 IQ模拟信号 转换的 IQ数字信号数字波束成形;
发射校准算法模块, 用于釆集 IQ数字信号, 当所述 IQ数字信号转换为 IQ 模拟信号, 进入选择的发射通道调制上变频为射频信号, 所述收发校准单元釆 集所述射频信号, 下变频解调为 IQ模拟信号, 所述发射校准算法模块根据下变 频解调的 IQ模拟信号转换后的 IQ数字信号与所述釆集的 IQ数字信号比较,得 到选择的发射通道的幅度和相位, 刷新所述选择的发射通道的幅度和相位, 当 所述发射校准算法模块刷新所有的发射通道的幅度和相位, 所述发射校准算法 模块根据所有的发射通道的幅度和相位, 得到发射幅度和相位值, 所述发射校 准算法模块根据所述发射幅度和相位值与每一路发射通道的幅度和相位进行比 较, 得到每一路发射通道的幅度和相位的发射校正因子;
发射 DBF算法模块, 用于将所述发射校正因子配置于每一路发射处理通道 中的 DBF发射模块;
所述 DBF发射模块, 用于对削波处理后的 IQ数字信号数字波束成形。
3、根据权利要求 2所述的有源天线, 其特征在于, 所述收发校准单元包括: 接收校准通道, 一端通过数字处理单元的 DAC与所述接收校准算法模块相 连, 一端与开关矩阵相连, 当所述接收校准算法模块产生的 IQ数字信号, 通过 所述 DAC转换为 IQ模拟信号,所述接收校准通道用于将所述 IQ模拟信号调制 上变频为接收校准射频信号;
发射校准通道,一端通过数字处理单元中的 ADC与发射校准算法模块相连, 一端与所述开关矩阵相连, 用于将收发信机单元阵列中的发射通道的射频信号 下变频解调为发射校准 IQ模拟信号;
所述开关矩阵, 一端与所述发射校准通道和所述接收校准通道相连, 一端 通过耦合器与所述收发信机单元阵列中的接收通道和发射通道的前端耦合, 用 于分时切换所述收发信机单元阵列中的接收通道和发射通道。
4、 根据权利要求 2所述的有源天线, 其特征在于, 所述收发校准单元包括
合路器、 双工器、 接收校准通道和发射校准通道, 其中,
所述接收校准通道, 一端通过数字处理单元的 DAC与所述接收校准算法模 块相连,一端与所述双工器相连,当所述接收校准算法模块产生的 IQ数字信号, 通过所述 DAC转换为 IQ模拟信号,所述接收校准通道用于将所述 IQ模拟信号 调制上变频为接收校准射频信号;
所述发射校准通道, 一端通过数字处理单元中的 ADC与发射校准算法模块 相连, 一端与所述双工器相连, 用于将收发信机单元阵列中的发射通道的射频 信号下变频解调为发射校准 IQ模拟信号;
所述合路器, 一端与双工器相连, 一端通过耦合器与所述收发信机单元阵 列中的接收通道和发射通道的前端耦合, 用于同时校准所述收发信机单元阵列 中的接收通道和发射通道。
5、 根据权利要求 1 所述的有源天线, 其特征在于, 所述收发信机单元阵列 中各路接收通道共用一个接收本振信号; 所述收发信机单元阵列中各路发射通 道共用一个发射本振信号。
6、 根据权利要求 2 所述的有源天线, 其特征在于, 所述数字处理单元中的 数字波束成形 DBF接收模块和 DBF发射模块基于模式或载波进行,用于形成不 同模式或载波的辐射方向图。
7、 根据权利要求 1所述的有源天线, 其特征在于, 所述有源天线还包括功 分合路网絡, 与所述天线振子阵列的至少两个天线振子和所述收发信机单元阵 列中的至少一个收发信机单元连接, 接收信号时, 所述功分合路网絡将所述至 少两个天线振子接收的微弱信号合路为一路传输给所述收发信机单元阵列中的 至少一个收发信机单元; 发射信号时, 所述收发信机单元阵列中的至少一个收 发信机单元的射频信号通过功分合路网絡传输给所述至少两个天线振子。
8、 根据权利要求 1所述的有源天线, 其特征在于, 所述有源天线还包括基 带单元 BBU, 所述基带单元与所述数字处理单元连接。
9、 根据权利要求 1所述的有源天线, 其特征在于, 所述天线振子、 与所述
天线振子相连的收发信机单元的接收通道和发射通道, 以及与收发信机单元的 接收通道和发射通道相连的数字处理单元中接收处理通道和发射处理通道为一 体化的模块。
10、 一种刷新接收通道的幅度和相位的方法, 其特征在于, 包括: 选择一路接收通道;
接收校准 IQ数字信号转换为 IQ模拟信号, 进入接收校准通道, 调制上变 频为接收校准射频信号;
所述接收校准射频信号耦合进入选择的接收通道, 下变频解调为 IQ模拟信 号;
所述 IQ模拟信号转换为 IQ数字信号, 比较所述 IQ数字信号与所述接收校 准 IQ数字信号, 得到所述选择的接收通道的幅度和相位;
根据所述幅度和相位, 刷新所述选择的接收通道的幅度和相位。
11、 根据权利要求 10所述的刷新接收通道的幅度和相位的方法, 其特征在 于, 所述方法还包括: 当刷新所有的接收通道的幅度和相位, 根据所有接收通 道的幅度和相位得到接收幅度和相位值, 所述接收幅度和相位值与每一路接收 通道的幅度和相位进行比较, 得到每一路接收通道的幅度和相位的接收校正因 子;
将所述接收校正因子配置于每一路接收处理通道中的数字波束成形 DBF接 收模块。
12、 一种刷新发射通道的幅度和相位的方法, 其特征在于, 包括: 选择一路发射通道;
釆集 IQ数字信号;
IQ数字信号转化为 IQ模拟信号进入选择的发射通道,调制上变频为射频信 号;
所述射频信号耦合进入发射校准通道, 下变频解调为 IQ模拟信号; 所述 IQ模拟信号转化为 IQ数字信号, 比较釆集的 IQ数字信号与转化后的
IQ数字信号, 得到所述选择的发射通道的幅度和相位;
根据所述选择的发射通道的幅度和相位, 刷新所述选择的发射通道的幅度 和相位。
13、 根据权利要求 12所述的刷新发射通道的幅度和相位的方法, 其特征在 于, 所述方法还包括: 当刷新所有的发射通道的幅度和相位, 根据所有发射通 道的幅度和相位得到发射幅度和相位值, 所述发射幅度和相位值与每一路发射 通道的幅度和相位进行比较, 得到每一路发射通道的幅度和相位的发射校正因 子;
将所述发射校正因子配置于每一路发射处理通道中的 DBF发射模块。
14、 一种基于模式或者载波的接收信号处理方法, 其特征在于, 包括:
M路接收通道的 IQ模拟信号转化为 M路 IQ数字信号, 每一路 IQ数字信 号通过 N路基于模式或者载波的数字控制振荡器 NCO分为 N路单模接收信号 或者 N路单载波接收信号;
M路接收通道的每一 N路单模接收信号或者 M路接收通道的每一 N路单 载波接收信号分别进行数字波束成形处理;
每一 N路单模接收信号中的 M路接收通道的单模接收信号或者每一 N路单 载波接收信号中的 M路接收通道的单载波接收信号经过合路器合路, 通过滤波 处理模块处理, 得到 N路 IQ数字信号;
N路 IQ数字信号通过合路器合成一路, 传输给基带单元。
15、 根据权利要求 14所述基于模式或者载波的接收信号处理方法, 其特征 在于, 所述 M为 3-20路, 所述 N为 1-8路。
16、 一种基于模式或者载波的发射信号处理方法, 其特征在于, 包括: 发射信号经过串 /并转换得到 N路 IQ数字信号, N路 IQ数字信号中的每一 路 IQ数字信号通过基于载波或者模式的数字控制振荡器 NCO,得到每一路单模 发射 IQ数字信号或者每一路单载波发射 IQ数字信号;
N路 IQ数字信号中的每一路单模发射 IQ数字信号或者 N路 IQ数字信号中
的每一路单载波发射 IQ数字信号经过 M个 DBF数字波束成形处理,得到 M路 基于模式或者载波的 IQ数字信号;
每一 M路发射通道中的 N路单模发射 IQ数字信号或者每一 M路发射通道 中的 N路单载波发射 IQ数字信号通过合路器合为一路, 得到 M路基于模式或 者载波的合成发射信号;
M路基于模式或者载波的合成发射信号分别通过 CFR和 DPD处理, 然后 转换为 IQ模拟信号输出给收发信机单元的各路发射通道。
17、 根据权利要求 16所述基于模式或者载波的发射信号处理方法, 其特征 在于, 所述 M为 3-20路, 所述 N为 1-8路。
18、 一种基站, 其特征在于, 包括天线振子阵列、 收发信机单元阵列、 数 字处理单元和收发校准单元,
所述天线振子阵列, 包括天线振子, 用于电磁波信号和射频信号的转换; 所述收发信机单元阵列, 包括收发信机单元, 接收信号时, 所述收发信机 单元将所述天线振子的射频信号下变频解调为 IQ模拟信号, 输出给所述数字处 理单元; 发送信号时, 所述收发信机单元将所述数字处理单元的 IQ模拟信号调 制上变频为射频信号, 输出给所述天线振子;
所述数字处理单元, 接收信号时, 所述数字处理单元对所述下变频解调的 IQ模拟信号转换为 IQ数字信号 , 根据所述收发校准单元对所述 IQ数字信号数 字波束成形; 发送信号时, 所述数字处理单元对基带单元的信号串 /并转换为 IQ 数字信号,对所述串 /并转换的 IQ数字信号减小峰值因子处理, 所述数字处理单 元根据所述收发校准单元减小峰值处理的 IQ数字信号数字波束成形。
19、 根据权利要求 18所述的基站, 其特征在于, 所述数字处理单元包括: 接收校准算法模块, 用于生成接收校准 IQ数字信号, 当所述 IQ数字信号 转换为 IQ模拟信号, 通过所述收发校准单元进入选择的接收通道下变频解调为 IQ模拟信号, 然后转化为 IQ数字信号时,所述接收校准算法模块根据所述转化 的 IQ数字信号与所述接收校准 IQ数字信号比较, 得到所述选择的接收通道的
幅度和相位, 刷新所述选择的接收通道的幅度和相位, 当所述接收校准算法模 块刷新所有的接收通道的幅度和相位, 所述接收校准算法模块根据所有的接收 通道的幅度和相位, 得到接收幅度和相位值, 接收校准算法模块根据所述接收 幅度和相位值与每一路接收通道的幅度和相位比较, 得到每一路接收通道的幅 度和相位的接收校正因子;
接收 DBF算法模块, 用于将所述接收校正因子配置于每一路接收处理通道 中的数字波束成形 DBF接收模块;
所述数字波束成形 DBF接收模块, 对所述下变频解调的 IQ模拟信号转换 的 IQ数字信号数字波束成形;
发射校准算法模块, 用于釆集 IQ数字信号, 当所述 IQ数字信号转换为 IQ 模拟信号, 进入选择的发射通道调制上变频为射频信号, 所述收发校准单元釆 集所述射频信号, 下变频解调为 IQ模拟信号, 所述发射校准算法模块根据下变 频解调的 IQ模拟信号转换后的 IQ数字信号与所述釆集的 IQ数字信号比较,得 到选择的发射通道的幅度和相位, 刷新所述选择的发射通道的幅度和相位, 当 所述发射校准算法模块刷新所有的发射通道的幅度和相位, 所述发射校准算法 模块根据所有的发射通道的幅度和相位, 得到发射幅度和相位值, 所述发射校 准算法模块根据所述发射幅度和相位值与每一路发射通道的幅度和相位进行比 较, 得到每一路发射通道的幅度和相位的发射校正因子;
发射 DBF算法模块, 用于将所述发射校正因子配置于每一路发射处理通道 中的 DBF发射模块;
所述 DBF发射模块, 用于对削波处理后的 IQ数字信号数字波束成形。
20、 根据权利要求 19所述的基站, 其特征在于, 所述收发校准单元包括: 接收校准通道, 一端通过数字处理单元的 DAC与所述接收校准算法模块相 连, 一端与开关矩阵相连, 当所述接收校准算法模块产生的 IQ数字信号, 通过 所述 DAC转换为 IQ模拟信号,所述接收校准通道用于将所述 IQ模拟信号调制 上变频为接收校准射频信号;
发射校准通道,一端通过数字处理单元中的 ADC与发射校准算法模块相连, 一端与所述开关矩阵相连, 用于将收发信机单元阵列中的发射通道的射频信号 下变频解调为发射校准 IQ模拟信号;
所述开关矩阵, 一端与所述发射校准通道和所述接收校准通道相连, 一端 通过耦合器与所述收发信机单元阵列中的接收通道和发射通道的前端耦合, 用 于分时切换所述收发信机单元阵列中的接收通道和发射通道。
21、 根据权利要求 20所述的基站, 其特征在于, 所述收发校准单元包括合 路器、 双工器、 接收校准通道和发射校准通道, 其中,
所述接收校准通道, 一端通过数字处理单元的 DAC与所述接收校准算法模 块相连,一端与所述双工器相连,当所述接收校准算法模块产生的 IQ数字信号, 通过所述 DAC转换为 IQ模拟信号,所述接收校准通道用于将所述 IQ模拟信号 调制上变频为接收校准射频信号;
所述发射校准通道, 一端通过数字处理单元中的 ADC与发射校准算法模块 相连, 一端与所述双工器相连, 用于将收发信机单元阵列中的发射通道的射频 信号下变频解调为发射校准 IQ模拟信号;
所述合路器, 一端与双工器相连, 一端通过耦合器与所述收发信机单元阵 列中的接收通道和发射通道的前端耦合, 用于同时校准所述收发信机单元阵列 中的接收通道和发射通道。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES09806309.2T ES2605483T3 (es) | 2008-08-14 | 2009-03-18 | Antena activa, estación base, método de actualización de la amplitud y de la fase y método para procesamiento de señales |
EP15181042.1A EP2981151B1 (en) | 2008-08-14 | 2009-03-18 | Active antenna |
EP09806309.2A EP2299774B1 (en) | 2008-08-14 | 2009-03-18 | Active antenna, base station, method for updating amplitude and phase and method for signal processing |
US13/026,914 US8391377B2 (en) | 2008-08-14 | 2011-02-14 | Active antenna, base station, method for refreshing amplitudes and phases, and method for processing signals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810145754.0 | 2008-08-14 | ||
CN2008101457540A CN101651480B (zh) | 2008-08-14 | 2008-08-14 | 有源天线、基站、刷新幅度和相位的方法及信号处理方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/026,914 Continuation US8391377B2 (en) | 2008-08-14 | 2011-02-14 | Active antenna, base station, method for refreshing amplitudes and phases, and method for processing signals |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010017706A1 true WO2010017706A1 (zh) | 2010-02-18 |
Family
ID=41668662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/070866 WO2010017706A1 (zh) | 2008-08-14 | 2009-03-18 | 有源天线、基站、刷新幅度和相位的方法及信号处理方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8391377B2 (zh) |
EP (2) | EP2299774B1 (zh) |
CN (2) | CN103259074B (zh) |
ES (1) | ES2605483T3 (zh) |
PT (1) | PT2299774T (zh) |
WO (1) | WO2010017706A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012074446A1 (en) * | 2010-12-01 | 2012-06-07 | Telefonaktiebolaget L M Ericsson (Publ) | Method, antenna array, computer program and computer program product for obtaining at least one calibration parameter |
US8416126B2 (en) | 2010-12-01 | 2013-04-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Obtaining a calibration parameter for an antenna array |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102340786B (zh) * | 2010-07-26 | 2015-12-16 | 中兴通讯股份有限公司 | 一种用于波束成形校准和能力测试的方法和装置 |
US9362973B2 (en) * | 2011-04-11 | 2016-06-07 | Telefonaktiebolaget L M Ericsson (Publ) | Radio module, radio assembly and corresponding method |
WO2012149027A1 (en) | 2011-04-25 | 2012-11-01 | Aviat Networks, Inc. | Systems and methods for reduction of triple transit effects in transceiver communications |
US8842788B2 (en) | 2011-10-17 | 2014-09-23 | Aviat U.S., Inc. | Systems and methods for improved high capacity in wireless communication systems |
US9337879B2 (en) | 2011-04-25 | 2016-05-10 | Aviat U.S., Inc. | Systems and methods for multi-channel transceiver communications |
CN102185809B (zh) * | 2011-05-06 | 2015-02-11 | 京信通信系统(中国)有限公司 | 一种射频拉远系统 |
JP5993005B2 (ja) * | 2011-07-08 | 2016-09-14 | ゼットティーイー コーポレイション | アンテナおよびベースバンドプロセッサ間のアナログ信号の無線伝送方法およびそのシステム |
CN102426300B (zh) * | 2011-08-31 | 2013-08-28 | 西安空间无线电技术研究所 | 一种星载波束形成接收通道幅相误差校准系统及其方法 |
SG11201401543RA (en) | 2011-10-17 | 2014-05-29 | Aviat Networks Inc | Systems and methods for signal frequency division in wireless communication systems |
JP5869682B2 (ja) * | 2011-10-21 | 2016-02-24 | オプティス セルラー テクノロジー, エルエルシーOptis Cellular Technology,LLC | アンテナアレイシステムにおけるアンテナ装置のキャリブレーションのための方法、処理装置、コンピュータプログラム、及びアンテナ装置 |
CN102570064B (zh) * | 2011-12-31 | 2016-08-24 | 南京中兴软件有限责任公司 | 有源天线装置及其收发信号的方法 |
CN102594426B (zh) * | 2012-02-21 | 2014-09-10 | 中兴通讯股份有限公司 | 一种有源天线多收发通道同步校准的装置和方法 |
CN102624472B (zh) * | 2012-03-13 | 2016-08-31 | 南京中兴软件有限责任公司 | 一种实现有源天线多通道链路校准的方法及装置 |
CN103326979B (zh) * | 2012-03-21 | 2016-05-25 | 华为技术有限公司 | 一种多载波接收装置及方法 |
CN102694758B (zh) * | 2012-04-11 | 2015-02-04 | 上海聚星仪器有限公司 | 射频前端收发链路在线校准办法 |
CN102832982B (zh) * | 2012-08-08 | 2015-01-07 | 华为技术有限公司 | 带有mimo加速器的基站及其控制方法 |
EP2698870A1 (en) * | 2012-08-14 | 2014-02-19 | Alcatel-Lucent | Antenna feed |
CN103634034B (zh) * | 2012-08-23 | 2019-01-08 | 上海中兴软件有限责任公司 | 波束赋形处理方法及装置 |
CN105099972B (zh) * | 2012-12-11 | 2018-05-04 | 华为技术有限公司 | 发射机的发射通道间干扰消除方法及装置 |
WO2014094206A1 (zh) * | 2012-12-17 | 2014-06-26 | 华为技术有限公司 | 通道校正补偿方法、基带处理单元及系统 |
WO2014101177A1 (zh) * | 2012-12-31 | 2014-07-03 | 华为技术有限公司 | 有源天线方向图测试系统和方法 |
US10439684B2 (en) * | 2012-12-31 | 2019-10-08 | Futurewei Technologies, Inc. | Smart antenna platform for indoor wireless local area networks |
EP2755341B1 (en) * | 2013-01-11 | 2016-01-06 | Telefonaktiebolaget L M Ericsson (publ) | Timing for radio reconfiguration |
CN103973396B (zh) | 2013-01-29 | 2019-09-13 | 南京中兴新软件有限责任公司 | 传输无线基带数据的方法、装置和射频拉远模块rru |
US20140256376A1 (en) * | 2013-03-11 | 2014-09-11 | Qualcomm Incorporated | Wireless device with built-in self test (bist) capability for transmit and receive circuits |
CN104159282B (zh) * | 2013-05-15 | 2018-12-14 | 华为技术有限公司 | 一种信号调整方法及装置、小区 |
CN104219020B (zh) * | 2013-05-31 | 2019-10-11 | 中兴通讯股份有限公司 | 射频拉远单元的iq数据的处理方法、系统及射频拉远单元 |
WO2014205640A1 (zh) * | 2013-06-25 | 2014-12-31 | 华为技术有限公司 | 一种数据处理的方法、装置及系统 |
GB2517217B (en) | 2013-08-16 | 2018-03-21 | Analog Devices Global | Communication unit, integrated circuit and method for generating a plurality of sectored beams |
GB2517218B (en) | 2013-08-16 | 2017-10-04 | Analog Devices Global | Communication unit and method of antenna array calibration |
GB2519946A (en) | 2013-10-29 | 2015-05-13 | Socowave Technologies Ltd | Active antenna system and methods of testing |
CN104639216B (zh) * | 2013-11-07 | 2018-12-04 | 中国移动通信集团设计院有限公司 | 一种电调天线 |
WO2015066883A1 (en) * | 2013-11-08 | 2015-05-14 | Telefonaktiebolaget L M Ericsson (Publ) | Radio unit with internal parallel antenna calibration |
EP2889957A1 (en) | 2013-12-30 | 2015-07-01 | Clemens Rheinfelder | Active antenna system with distributed transceiver system |
US10056685B2 (en) * | 2014-03-06 | 2018-08-21 | Samsung Electronics Co., Ltd. | Antenna array self-calibration |
CN105089646B (zh) * | 2014-05-07 | 2019-01-01 | 中国石油化工股份有限公司 | 一种集成有数据传输功能的随钻电阻率测量装置及方法 |
CN103997352B (zh) | 2014-05-14 | 2016-02-24 | 电信科学技术研究院 | 有源天线相关设备、系统及收发校准方法 |
CN105024143B (zh) * | 2015-08-06 | 2018-08-28 | 中国电子科技集团公司第三十八研究所 | 一种片式Ka频段宽角扫描卫星通信天线 |
KR102006583B1 (ko) * | 2015-09-08 | 2019-10-01 | 빔웨이브 에이비 | 대용량-mimo를 위한 아날로그 처리 시스템 |
GB2543563B (en) | 2015-10-23 | 2020-02-12 | Cambium Networks Ltd | Method and Apparatus for Controlling Equivalent Isotropic Radiated Power |
CN106877944B (zh) | 2015-12-10 | 2019-07-19 | 电信科学技术研究院 | 一种有源天线设备及其测试方法 |
CN106888466B (zh) * | 2015-12-15 | 2021-05-18 | 中兴通讯股份有限公司 | 一种实现移动基站远距离通信的方法及装置 |
JP2018538759A (ja) | 2015-12-22 | 2018-12-27 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 通信装置及び無線通信機器 |
US9972893B2 (en) | 2015-12-29 | 2018-05-15 | Commscope Technologies Llc | Duplexed phased array antennas |
WO2017157471A1 (en) * | 2016-03-18 | 2017-09-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Communication circuit for multi-antenna apparatus |
CN107370524A (zh) * | 2016-05-13 | 2017-11-21 | 电信科学技术研究院 | 一种信号发送方法、装置及设备 |
EP3267579B1 (en) * | 2016-07-04 | 2020-03-04 | Nokia Solutions and Networks Oy | Linearizing power amplifiers outputs in multi-antenna system |
US10439851B2 (en) * | 2016-09-20 | 2019-10-08 | Ohio State Innovation Foundation | Frequency-independent receiver and beamforming technique |
EP3327949A1 (en) * | 2016-11-25 | 2018-05-30 | Alcatel Lucent | Mimo precoding |
CN106680601A (zh) * | 2016-11-25 | 2017-05-17 | 上海华为技术有限公司 | 一种信号处理的方法、有源天线及信号处理系统 |
CN106533582A (zh) * | 2016-12-28 | 2017-03-22 | 广东晖速通信技术股份有限公司 | 一种含多路调制信号的一体耦合校准网络 |
US10418722B2 (en) * | 2017-04-27 | 2019-09-17 | Texas Instruments Incorporated | Dipole antenna arrays |
CN109088639A (zh) * | 2017-06-14 | 2018-12-25 | 北京遥感设备研究所 | 一种通用可配置数字下变频ip核及其方法 |
EP3989447A1 (en) * | 2017-09-15 | 2022-04-27 | Telefonaktiebolaget LM Ericsson (publ) | Multi-antenna communication data-converter clocking |
EP3706338B1 (en) * | 2017-10-30 | 2023-10-04 | Sony Semiconductor Solutions Corporation | Transmission/reception circuit, communication device, and method for controlling transmission/reception circuit |
WO2019090693A1 (zh) * | 2017-11-10 | 2019-05-16 | 上海诺基亚贝尔股份有限公司 | 一种在波束赋形中进行数字预失真处理的方法和装置 |
US10382094B2 (en) | 2017-11-28 | 2019-08-13 | International Business Machines Corporation | Cable tracking by electromagnetic emission |
CN108072862A (zh) * | 2017-12-11 | 2018-05-25 | 广东黑林通信技术有限公司 | 一种无源子阵天线的信号合成装置 |
CN108254722B (zh) * | 2017-12-25 | 2021-04-27 | 广东纳睿雷达科技股份有限公司 | 一种双频相控阵雷达系统及其实现方法 |
CN110166329A (zh) * | 2018-02-13 | 2019-08-23 | 华为技术有限公司 | 一种通信方法、装置及系统 |
CN110324833B (zh) * | 2018-03-31 | 2021-06-22 | 华为技术有限公司 | 信号处理方法、装置及系统 |
FR3080249B1 (fr) * | 2018-04-11 | 2020-03-20 | Thales | Procede et systeme d'etalonnage de decalage temporel entre voies d'un systeme de reception multivoies |
FR3080244B1 (fr) * | 2018-04-11 | 2020-03-20 | Thales | Procede et systeme d'etalonnage de decalage temporel entre voies d'un systeme de reception miltivoies de signaux radioelectriques |
CN109343010A (zh) * | 2018-08-22 | 2019-02-15 | 北京遥感设备研究所 | 一种多种类应答机微波链路测试装置 |
CN109193132B (zh) * | 2018-09-13 | 2021-08-10 | 上海垣信卫星科技有限公司 | 一种紧凑型低功耗Ka频段发射多波束相控阵天线 |
CN110957578B (zh) * | 2018-09-27 | 2022-01-14 | 华为技术有限公司 | 一种天线装置 |
DE102018130570B4 (de) * | 2018-11-30 | 2022-10-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Mobilfunkantenne zum Anschluss an zumindest eine Mobilfunkbasisstation |
US11792684B2 (en) | 2018-12-06 | 2023-10-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and apparatuses for signal processing at base station |
CN111510229B (zh) * | 2019-01-30 | 2022-12-27 | 华为技术有限公司 | 射频通道的校正方法和装置及天线和基站 |
CN110121218B (zh) * | 2019-04-22 | 2022-02-01 | 福州智程信息科技有限公司 | 一种5g智能前端系统及其使用方法 |
US11190284B2 (en) * | 2019-06-20 | 2021-11-30 | Rohde & Schwarz Gmbh & Co. Kg | Switching system and method for sequential switching of radio frequency paths |
CN112152691B (zh) * | 2019-06-28 | 2023-01-31 | 中兴通讯股份有限公司 | 一种滤波天线及基站设备 |
CN111181892A (zh) * | 2019-12-09 | 2020-05-19 | 成都天奥集团有限公司 | 一种多载波超宽带射频拉远单元中频处理的装置 |
US11956111B2 (en) * | 2020-02-14 | 2024-04-09 | Huawei Technologies Co., Ltd. | Multi-rate crest factor reduction |
CN113395115B (zh) | 2020-03-11 | 2022-12-27 | 华为技术有限公司 | 一种光载无线通信系统和非线性补偿方法 |
CN111464228B (zh) * | 2020-03-18 | 2020-12-15 | 上海航天电子通讯设备研究所 | 一种基于星载dbf的多通道vdes收发预处理系统 |
CN111525948A (zh) * | 2020-04-02 | 2020-08-11 | 广州辰创科技发展有限公司 | 一种子阵级数字波束合成收发系统 |
CN111416649A (zh) * | 2020-05-22 | 2020-07-14 | 西安电子科技大学 | 基于零中频架构的数字波束形成方法 |
CN116349091A (zh) * | 2020-12-29 | 2023-06-27 | 华为技术有限公司 | 一种基站天线及基站设备 |
CN112911619A (zh) * | 2021-02-03 | 2021-06-04 | 成都中科合迅科技有限公司 | 基于dbf系统多通道随机相位的校准系统及其方法 |
CN113162705B (zh) * | 2021-04-01 | 2023-02-03 | 广州海格通信集团股份有限公司 | 一种智能天线和智能天线校准方法 |
CN113189627B (zh) * | 2021-04-29 | 2022-05-06 | 中国电子科技集团公司第五十四研究所 | 一种基于北斗卫星的通信定位一体化双模机载系统 |
CN113296800B (zh) * | 2021-06-21 | 2023-03-31 | 中国电子科技集团公司第二十九研究所 | 一种具备复用功能的宽带射频接收系统及其使用方法 |
CN115276678B (zh) * | 2022-05-25 | 2023-09-01 | 北京理工大学 | 一种可重构的相位一致性阵列发射系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0901184A1 (fr) * | 1997-09-04 | 1999-03-10 | Alcatel | Procédé de calibrage de chaínes de réception et/ou d'émission pilotant un réseau d'antennes actives, et station mobile correspondante |
CN1784813A (zh) * | 2003-05-02 | 2006-06-07 | 诺基亚有限公司 | 天线设备和基站收发信台 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7092352B2 (en) * | 1993-07-23 | 2006-08-15 | Aquity, Llc | Cancellation systems for multicarrier transceiver arrays |
US5826180A (en) * | 1994-08-08 | 1998-10-20 | Nice Systems Ltd. | Near homodyne radio frequency receiver |
EP1239536B1 (en) | 1994-11-04 | 2005-01-12 | Andrew Corporation | Cellular base station telecommunication system, method for downtilting a beam and antenna control arrangement |
US6996418B2 (en) * | 2000-12-29 | 2006-02-07 | Nortel Networks Limited | Apparatus and method for OFDM data communications |
SE0102885D0 (en) * | 2001-08-28 | 2001-08-28 | Ericsson Telefon Ab L M | Calibration of an adaptive signal conditioning systern |
CA2434123C (en) | 2001-11-10 | 2007-06-12 | Samsung Electronics Co., Ltd. | Stfbc coding/decoding apparatus and method in an ofdm mobile communication system |
KR100545645B1 (ko) | 2002-09-12 | 2006-01-24 | 엘지전자 주식회사 | 무선통신 단말기의 통신품질 개선 장치 |
US7280848B2 (en) * | 2002-09-30 | 2007-10-09 | Andrew Corporation | Active array antenna and system for beamforming |
US7385914B2 (en) * | 2003-10-08 | 2008-06-10 | Atheros Communications, Inc. | Apparatus and method of multiple antenna transmitter beamforming of high data rate wideband packetized wireless communication signals |
US20060128310A1 (en) * | 2004-12-14 | 2006-06-15 | Michael Leabman | Transmit/receive compensation in smart antenna systems |
US7453934B2 (en) * | 2005-06-27 | 2008-11-18 | Nokia Corporation | Automatic receiver calibration with noise and fast fourier transform |
CN101542938B (zh) * | 2006-09-18 | 2012-12-12 | 马维尔国际贸易有限公司 | 用于无线mimo通信系统中的隐式波束形成的校准校正 |
WO2008144151A2 (en) * | 2007-05-15 | 2008-11-27 | Rambus Inc. | Multi-antenna transmitter for multi-tone signaling |
-
2008
- 2008-08-14 CN CN201310097309.2A patent/CN103259074B/zh active Active
- 2008-08-14 CN CN2008101457540A patent/CN101651480B/zh active Active
-
2009
- 2009-03-18 EP EP09806309.2A patent/EP2299774B1/en active Active
- 2009-03-18 EP EP15181042.1A patent/EP2981151B1/en active Active
- 2009-03-18 ES ES09806309.2T patent/ES2605483T3/es active Active
- 2009-03-18 PT PT98063092T patent/PT2299774T/pt unknown
- 2009-03-18 WO PCT/CN2009/070866 patent/WO2010017706A1/zh active Application Filing
-
2011
- 2011-02-14 US US13/026,914 patent/US8391377B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0901184A1 (fr) * | 1997-09-04 | 1999-03-10 | Alcatel | Procédé de calibrage de chaínes de réception et/ou d'émission pilotant un réseau d'antennes actives, et station mobile correspondante |
CN1784813A (zh) * | 2003-05-02 | 2006-06-07 | 诺基亚有限公司 | 天线设备和基站收发信台 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012074446A1 (en) * | 2010-12-01 | 2012-06-07 | Telefonaktiebolaget L M Ericsson (Publ) | Method, antenna array, computer program and computer program product for obtaining at least one calibration parameter |
US8416126B2 (en) | 2010-12-01 | 2013-04-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Obtaining a calibration parameter for an antenna array |
Also Published As
Publication number | Publication date |
---|---|
ES2605483T3 (es) | 2017-03-14 |
US20110134972A1 (en) | 2011-06-09 |
EP2299774A1 (en) | 2011-03-23 |
CN101651480B (zh) | 2013-04-24 |
CN103259074B (zh) | 2015-09-23 |
US8391377B2 (en) | 2013-03-05 |
PT2299774T (pt) | 2016-11-01 |
EP2299774A4 (en) | 2011-08-03 |
EP2299774B1 (en) | 2016-09-07 |
EP2981151A1 (en) | 2016-02-03 |
CN103259074A (zh) | 2013-08-21 |
EP2981151B1 (en) | 2019-10-16 |
CN101651480A (zh) | 2010-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010017706A1 (zh) | 有源天线、基站、刷新幅度和相位的方法及信号处理方法 | |
EP2396851B1 (en) | Communication system, apparatus and methods for calibrating an antenna array | |
EP2396854B1 (en) | Communication system, network element and method for antenna array calibration | |
CN106068579B (zh) | 具有分布式收发器系统的有源天线系统 | |
US9231676B2 (en) | Low effort massive MIMO antenna arrays and their use | |
TWI737035B (zh) | 使用混合波束成形並執行天線校準方法的收發器 | |
WO2015172730A1 (zh) | 有源天线相关设备、系统及收发校准方法 | |
EP1102394A2 (en) | System and method for producing amplified signals | |
KR20080096202A (ko) | 무선통신시스템에서 저출력 증폭을 수행하기 위한 장치 및방법 | |
WO2013123753A1 (zh) | 一种有源天线多收发通道同步校准的装置和方法 | |
WO2007046245A1 (ja) | 無線通信装置、アンテナ・キャリブレーション方法、並びにコンピュータ・プログラム | |
KR101763970B1 (ko) | 무선 통신을 위한 고효율의 원격으로 구성 가능한 원격 무선 헤드 유닛 시스템 | |
CN103368718A (zh) | 一种全双工无线通信装置、方法及系统 | |
KR20030030878A (ko) | 적응형 배열 안테나 시스템의 캘리브레이션 장치 및 그 방법 | |
WO2012103853A2 (zh) | 接收和发送信号的方法、发射机、接收机及其系统 | |
CN114039636B (zh) | 网络设备、波束成形方法及无线通信系统 | |
EP2017956A1 (en) | Radio signal amplifying device and method for generating and for amplifying a radio frequency signal | |
JP5696622B2 (ja) | 無線送信装置 | |
Quitin et al. | Distributed receive beamforming: A scalable architecture and its proof of concept | |
CN102377440A (zh) | 射频前端电路 | |
KR100705504B1 (ko) | 직교 주파수 분할 다중화 시스템에서 기지국 스마트 안테나무선 송신 장치의 캘리브레이션 장치 및 방법 | |
JP2007295331A (ja) | 無線基地局装置 | |
CN114553245B (zh) | 一种射频芯片以及通过射频芯片的信号反馈方法 | |
EP3465952B1 (en) | Method and apparatus for antenna array calibration using on-board receiver | |
JPH05129980A (ja) | 平面状アンテナを備えた無線通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09806309 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2009806309 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009806309 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |