WO2014094206A1 - 通道校正补偿方法、基带处理单元及系统 - Google Patents
通道校正补偿方法、基带处理单元及系统 Download PDFInfo
- Publication number
- WO2014094206A1 WO2014094206A1 PCT/CN2012/086764 CN2012086764W WO2014094206A1 WO 2014094206 A1 WO2014094206 A1 WO 2014094206A1 CN 2012086764 W CN2012086764 W CN 2012086764W WO 2014094206 A1 WO2014094206 A1 WO 2014094206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- power
- correction
- receiving
- ratio
- Prior art date
Links
- 238000012937 correction Methods 0.000 title claims abstract description 167
- 238000012545 processing Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000004044 response Effects 0.000 claims abstract description 114
- 230000005540 biological transmission Effects 0.000 claims description 87
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/16—Deriving transmission power values from another channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/21—Monitoring; Testing of receivers for calibration; for correcting measurements
Definitions
- Embodiments of the present invention relate to communication technologies, and in particular, to a channel correction compensation method, a baseband processing unit, and a system. Background technique
- BF Beam Forming
- the indoor baseband processing unit sends a correction signal to the radio remote unit (RRU), and the correction signal passes through the transmission channel, and then the RRU
- the receiving channel is fed back to the BBU for processing.
- the RF processing unit includes multiple sets of transmitting channels and receiving channels, and the receiving channel and the transmitting channel characteristics in the correction signal are extracted by the BBU to perform channel correction compensation for the receiving channel and the transmitting channel.
- the embodiment of the present invention provides a channel correction compensation method, a baseband processing unit, and a system for performing channel correction compensation with higher precision.
- a channel correction compensation method including:
- the number includes a response signal of the at least two transmitting channels, a response signal of the reference receiving channel, and a response signal of the coupler corresponding to each channel;
- the ratio of the power ratios between the channels is obtained, and the channel correction compensation is performed using the ratio of the power ratios.
- the obtaining a ratio of power ratios between the channels, and performing channel correction compensation by using the ratio of the power ratios includes:
- the amplitude difference between the receiving channels of each channel is obtained, and the channel correction compensation of the receiving channel is performed by using the amplitude difference between the receiving channels.
- the obtaining, according to the first correction feedback signal, the power of each transmission channel including: Calculate the power of each transmit channel:
- H iDL Tx i -C i -Rx c (1)
- ⁇ is the response signal of the i-th transmission channel
- ⁇ is the response signal of the coupler of the i-th channel
- ⁇ is the response signal of the reference receiving channel
- H CT is the power of the ith transmission channel.
- the obtaining, according to the second corrected feedback signal, the power of each receiving channel includes:
- H iUL Tx c -C i -Rx i (2) where is the response signal of the reference receiving channel, C, the response signal of the coupler of the i-th channel, and the response signal of the i-th receiving channel, The power of i receiving channels.
- the power ratio of the power of the receiving channel of each channel and the power of the transmitting channel is as follows:
- ⁇ is the power ratio of the power of the receiving channel of the i-th channel to the power of the transmitting channel.
- the ratio of power ratios between the channels is obtained, and the channel correction compensation is performed by using the ratio of the power ratios, including:
- ⁇ is the ratio of the power ratio between the ith receiving channel and the jth receiving channel.
- an embodiment of the present invention provides a baseband processing unit, including:
- a correction signal sending module configured to send a first correction signal to at least two transmission channels in the radio frequency processing unit; and further configured to send a second correction signal to a reference transmission channel in the radio frequency processing unit
- a correction signal receiving module configured to receive a correction feedback signal, the first correction feedback signal includes a response signal of the at least two transmission channels, a response signal of the reference receiving channel, and a response signal of a coupler corresponding to each channel; and is further configured to receive a second correction a feedback signal, the second correction feedback signal includes a response signal of the reference transmission channel, a response signal of the at least two receiving channels, and a response signal of a coupler corresponding to each channel;
- a correction compensation module configured to obtain power of each transmission channel according to the first correction feedback signal; obtain power of each receiving channel according to the second corrected feedback signal; obtain power of the receiving channel of each channel and send channel The power ratio of the power; the ratio of the power ratio between the channels is obtained, and the channel correction compensation is performed using the ratio of the power ratios.
- the correction compensation module is specifically configured to obtain an amplitude difference between receiving channels of each channel, and perform channel correction compensation of the receiving channel by using the amplitude difference between the receiving channels. .
- the correction compensation module specifically calculates the power of each transmission channel by using formula (1):
- H i DL Tx i - C i - Rx c ( 1 )
- ⁇ is the response signal of the i-th transmission channel
- ⁇ is the response signal of the coupler of the i-th channel
- ⁇ is the response signal of the reference receiving channel
- H CT is the power of the ith transmission channel.
- the correction compensation module specifically calculates the power of each receiving channel by using formula (2):
- H i UL Tx c - C i - Rx i ( 2 )
- ⁇ is the response signal of the coupler of the i-th channel
- H is the response signal of the i-th receiving channel
- H is the power of the ith receiving channel.
- the correction compensation module specifically calculates the power ratio of the power of the transmission channel of each channel and the power of the receiving channel by using formula (3) :
- the correction compensation module specifically calculates a ratio of power ratios between channels of each receiving channel by using formula (4):
- ) is the ratio of the power ratio between the i-th receiving channel and the j-th receiving channel.
- an embodiment of the present invention provides a channel correction compensation system, including a radio frequency processing unit and a baseband processing unit according to any one of the above.
- the channel correction compensation method, the baseband processing unit and the system provided by the embodiment of the present invention receive the first corrected feedback signal through the reference receiving channel in the base radio frequency processing unit, and the baseband processing unit obtains the power of each transmitting channel according to the first corrected feedback signal. . And transmitting, by the baseband processing unit, a second correction signal to the reference transmission channel in the radio frequency processing unit, and receiving the second correction feedback signal through at least two receiving channels in the radio frequency processing unit, where the baseband processing unit obtains the second correction feedback signal according to the second correction feedback signal. The power of each receiving channel.
- the baseband processing unit obtains, by the baseband processing unit, a power ratio of the power of the receiving channel of each channel and the power of the transmitting channel, thereby eliminating the response signals of the couplers included in the first corrected feedback signal and the second corrected feedback signal, thereby eliminating the couplers of the respective couplers
- the influence of the response signal on the correction accuracy of the receiving channel is corrected.
- the baseband processing unit obtains the ratio of the power ratio between the channels, and uses the ratio of the power ratio to perform the receiving channel correction compensation, thereby improving the accuracy of the correction of the receiving channel correction, and ensuring the accuracy.
- the BF weight of the downlink channel calculated by BF is accurate.
- FIG. 1 is a flowchart of a channel correction compensation method according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of obtaining power of each transmission channel by using the method embodiment shown in FIG. 1.
- FIG. 3 is a schematic diagram of obtaining power of each receiving channel by using the method embodiment shown in FIG. 1.
- FIG. 4 is a schematic diagram of an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a channel correction compensation system according to an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of Embodiment 2 of a baseband processing unit according to an embodiment of the present invention.
- the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
- the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
- FIG. 1 is a flowchart of a channel correction compensation method according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
- the execution body of this embodiment is a baseband processing unit, and the baseband processing unit may be, for example, a BBU.
- the radio frequency processing unit in this embodiment may be, for example, an RRU.
- the radio processing unit is an RRU.
- the RRU may include: at least two channels, a coupler corresponding to each channel, and a power splitter connected to each coupler, each channel including a transmitting channel and a receiving channel. The transmitting channel and the receiving channel are connected with corresponding couplers, and the corresponding coupler of each channel is connected with the power divider Each coupler is connected to one antenna unit for signal transmission and reception.
- FIG. 2 is a schematic diagram of obtaining the power of each transmission channel by using the method embodiment shown in FIG. 1.
- channel correction compensation is performed for each receiving channel, and the BBU 10 can be to the RRU.
- At least two of the transmission channels 11 transmit the first correction signal.
- the BBU 10 may transmit the first correction signal to the first transmission channel 110a, the second transmission channel 111a, the third transmission channel 112a, and the fourth transmission channel 113a.
- the outgoing signals of the respective transmitting channels are correspondingly sent to the couplers, that is, the first coupler 114, the second coupler 115, the third coupler 117, and the fourth coupler 118 in FIG.
- each signal is sent to the power splitter, that is, the power splitter 116 in FIG. 2, and the power splitter 116 feeds back the first corrected feedback signal to the BBU through the second receiving channel 11 lb.
- the second receiving channel 111b is a reference receiving channel. It can be understood that one of the first receiving channel 110b, the third receiving channel 112b or the fourth receiving channel 113b in FIG. 2 can also replace the second receiving channel 111b. It is connected to the power divider 116 as a reference receiving channel.
- the first corrected feedback signal received by the BBU 10 includes a response signal of each transmission channel, a response signal of the reference receiving channel, and a response signal of the coupler corresponding to each channel.
- the power of each transmission channel can be calculated by using formula (1):
- H i DL Tx i - C i - Rx c ( 1 )
- ⁇ is the response signal of the i-th transmission channel
- ⁇ is the response signal of the coupler corresponding to the i-th channel
- ⁇ is the response of the reference receiving channel Signal, the power of the ith transmit channel.
- the power of the first transmission channel 7 ⁇ ⁇ ⁇ ⁇ ⁇ , where 7 is the response signal of the first transmission channel 110a, ⁇ is the response signal of the first coupler, and ⁇ is the response signal of the reference receiving channel .
- FIG. 3 is a schematic diagram of obtaining power of each receiving channel by using the method embodiment shown in FIG.
- the BBU 10 may send a second correction signal to a reference transmission channel in the RRU 11, for example, a second transmission channel 11la, the second The correction signal is transmitted to the power splitter 116 through the second transmitting channel 111a through the second coupler 115.
- the power splitter 116 passes through each receiving channel, such as the first receiving channel 110b and the second receiving channel 111b in FIG.
- the third receiving channel 112b and the fourth receiving channel 113b are sent to the BBU 10, so that the second corrected feedback signal received by the BBU 10 can include a response signal of the reference transmitting channel, a response signal of at least two receiving channels, and a coupler corresponding to each channel. Response signal.
- the baseband processing unit such as the BBU 10 shown in FIG. 2 or FIG. 3, can calculate the power of each receiving channel by using the formula (2):
- H i]JL Tx c - C i - Rx i ( 2 )
- ⁇ is the response signal of the coupler of the i-th channel
- HDT is the power of the i-th receiving channel.
- 3 ⁇ 4c 2 where 73 ⁇ 4 is the response signal of the reference transmitting channel, That is, the response signal of the second transmission channel 111a, C 2 is the signal response of the second coupler 115 connected to the second transmission channel 11 la, and the signal is the response signal of the second reception channel 1 ib.
- the baseband processing unit sends a correction signal, and when the receiving channel performs the correction compensation, the correction signal passes through the coupler to the power divider through a reference transmission channel, and then generates a correction feedback signal by using the power divider, and A baseband processing unit is transmitted from each receiving channel, and the baseband processing unit extracts a response signal of the reference transmitting channel, a response signal of each receiving channel, and a response signal of the coupler connected to each receiving channel from the corrected feedback signal. And calculating the power of each receiving channel according to the above response signal. And obtaining a power ratio between each receiving channel, and performing channel correction compensation for each group of channels according to each power ratio. For example, in FIG.
- the BBU 10 sends a correction signal to the reference transmitting channel in the RRU 11, assuming that the reference transmitting channel is the first
- the second transmission channel 111a the correction signal is transmitted to the power divider 116 through the second coupler 115, and the power divider 116 generates a correction feedback signal, respectively, through the first receiving channel 110b, the second receiving channel 111b, the third receiving channel 112b,
- the fourth receiving channel 113b is transmitted to the BBU 10, and the power of each receiving channel is obtained by the BBU 10, thereby obtaining a power ratio between the receiving channels, and performing channel correction compensation on the receiving channel according to each power ratio.
- the prior art performs channel correction compensation on the receiving channel according to each power ratio.
- the difference between each coupler is not taken into consideration, and the influence of the response signal of each coupler on the compensation accuracy is not eliminated in the calculation process, resulting in a decrease in the compensation accuracy, resulting in the downlink channel calculated according to BF.
- the BF weight is not accurate.
- the baseband processing unit can calculate the transmission channel of each channel by using, for example, formula (3). Power ratio of the power to the power of the receiving channel:
- the power ratio of the power of the receiving channel of the i-th channel to the power of the transmitting channel is p H i DL Tx l ⁇ C x ⁇ Rx c Tx l ⁇ Rx c
- the response signal of the first coupler of the first transmitting channel 110a and the first receiving channel 110b is approximated, thus avoiding The response signal of the first coupler in subsequent calculations reduces the accuracy of the calculation.
- the power ratio of the second transmitting channel 1 1 la and the second receiving channel 11 lb, the power ratio of the third transmitting channel 1 12a and the third receiving channel 112 b, and the fourth in FIG. 2 or FIG. 3 can be respectively obtained.
- the present embodiment can perform the receiving channel correction compensation by using the ratio of the power ratio between each of the two channels.
- 106 may specifically be:
- the amplitude difference between the receiving channels of each channel is obtained, and the channel correction compensation of the receiving channel is performed by using the amplitude difference between the receiving channels.
- the amplitude difference between the receiving channels of each channel can be obtained by the ratio of the power ratios between the channels, and the amplitude difference reflects the difference between the receiving channels, so the baseband processing unit can be based on This amplitude difference enables channel correction compensation for the receive channel.
- the baseband processing unit for example, the BBU 10 can calculate the ratio of the power ratio between the channels of each receiving channel by using formula (4):
- the ratio of the power ratio between the ith receiving channel and the jth receiving channel is divided by the power ratio corresponding to the first receiving channel 110b, respectively, to obtain a ratio of power ratio between each receiving channel and the first receiving channel 11 Ob.
- the power ratio corresponding to the first receiving channel 11 Ob is:
- the power ratio corresponding to the second receiving channel 111b is:
- the response signal 7 ⁇ of the first transmission channel 110a and the response signal ⁇ 2 of the second transmission channel 111a may be approximately equal, so D R ⁇ L .
- Rx 2 are characteristic of the D R is between 11 lb 110b difference between the first and the second receiving channel receiving channel - a factor multiplied by the second receiving channel 111b of the signal by a reciprocal factor, can be realized Compensation for the second receiving channel 111b.
- the compensation for other receiving channels is similar, and will not be described here.
- the ratio of the power ratio between the channels of each transmission channel is calculated, or the ratio of the power ratio between the channels of each receiving channel is calculated, which is the first in FIG. 2 or FIG.
- the transmission channel 110a and the first reception channel 110b are referenced. It can be understood by those skilled in the art that, in this embodiment, the calculation of the ratio of the power ratio between the transmission channels and the reception channels may be selected by using any other set of transmission channels and the reception channels as reference, for channel correction, where Limited.
- the channel correction compensation method provided in this embodiment sends a first correction signal to at least two transmission channels of the radio frequency processing unit through the baseband processing unit, and receives a first correction feedback signal through a reference receiving channel in the radio frequency processing unit, the baseband processing unit The power of each transmission channel is obtained according to the first corrected feedback signal. And transmitting, by the baseband processing unit, a second correction signal to the reference transmission channel in the radio frequency processing unit, and receiving the second correction feedback signal by using at least two receiving channels in the radio frequency processing unit, where the baseband processing unit obtains the second correction feedback signal according to the second correction feedback signal. The power of each receiving channel.
- the final baseband processing unit obtains the ratio of the power ratio between the channels, and uses the ratio of the power ratio to perform the receiving channel correction compensation, thereby improving the accuracy of the correction of the receiving channel correction compensation. It ensures the accuracy of the BF weight of the downlink channel calculated by BF.
- the baseband processing unit includes: a correction signal sending module 107, a correction compensation module 108, and a correction signal receiving module 109.
- the correction signal sending module 107 is configured to send the first correction signal to at least two transmission channels in the radio frequency processing unit; and send the second correction signal to the reference transmission channel in the radio frequency processing unit.
- the correction signal receiving module 109 is configured to receive a first correction feedback signal, where the first correction feedback signal includes a response signal of at least two transmission channels, a response signal of the reference receiving channel, and a response signal of the coupler corresponding to each channel;
- the feedback signal is corrected, and the second correction feedback signal includes a response signal of the reference transmission channel, a response signal of the at least two receiving channels, and a response signal of the coupler corresponding to each channel.
- the correction compensation module 108 is configured to obtain power of each transmission channel according to the first correction feedback signal; obtain power of each reception channel according to the second correction feedback signal; obtain power of the reception channel of each channel and power of the transmission channel Ratio; obtain the ratio of the power ratio between the channels, and use the ratio of the power ratio to perform the receiving channel correction compensation.
- the correction compensation module 108 is specifically configured to obtain an amplitude difference between the receiving channels of each channel, and perform channel correction compensation of the receiving channel by using the amplitude difference between the receiving channels.
- the correction compensation module 108 can calculate the power of each transmission channel by using formula (1):
- H i DL Tx i - C i - Rx c ( 1 )
- ⁇ is the response signal of the coupler of the i-th channel
- ⁇ is the response signal of the reference receiving channel
- Htile is the power of the i-th transmission channel.
- the correction compensation module 108 can calculate the power of each transmission channel by using formula (2):
- H i]JL Tx c -C 1 -Rx i (2)
- ⁇ is the response signal of the coupler of the i-th channel
- the response signal of the i-th receiving channel is The power of the i-th receiving channel.
- the correction compensation module 108 can calculate the power ratio of the power of the receiving channel of each channel and the power of the transmitting channel by using formula (3):
- ⁇ is the power ratio of the power of the receiving channel of the i-th channel to the power of the transmitting channel.
- the correction compensation module 108 can calculate the ratio of the power ratios between the channels of each receiving channel using equation (4):
- ) is the ratio of the power ratio between the i-th receiving channel and the j-th receiving channel.
- the baseband processing unit of this embodiment may be, for example, the BBU 10 shown in FIG. 2 or FIG. 3, which may be specifically used to implement the technical solution of the method embodiment shown in FIG. 1.
- the implementation principle and the technical effect are similar. Narration.
- FIG. 5 is a schematic structural diagram of a channel correction compensation system according to an embodiment of the present invention.
- the channel correction compensation system of this embodiment may include: BBU 10 and RRU 11 , and optionally, an antenna feed system. 12, wherein the baseband processing unit is the BBU 10 shown in FIG. 2 or FIG. 3, and the BBU 10 can use the structure shown in FIG.
- the radio processing unit is the RRU 11 shown in FIG. 2 or FIG. 3.
- the RRU 11 includes: a first sending channel 110a, a first receiving channel 110b, a second sending channel 111a, a second receiving channel 111b, and a third sending channel.
- the couplers are respectively coupled to the power divider 116.
- the antenna feeder system 12 may include multiple sets of antenna units, and the antenna units are respectively connected to the couplers, after the BBU 10 compensates the transmit channel and the receive channel.
- FIG. 6 is a schematic structural diagram of Embodiment 2 of a baseband processing unit according to the present invention.
- the baseband processing unit includes: a transmitter 207, a processor 208, and a receiver 209.
- the transmitter 207 is configured to send a first correction signal to at least two transmit channels in the radio frequency processing unit, and send a second correction signal to the reference transmit channel in the radio frequency processing unit.
- the receiver 209 is configured to receive a first correction feedback signal, where the first correction feedback signal includes a response signal of the at least two transmission channels, a response signal of the reference receiving channel, and a response signal of the coupler corresponding to each channel; receiving the second correction feedback
- the second correction feedback signal includes a response signal of the reference transmission channel, a response signal of the at least two receiving channels, and a response signal of the coupler corresponding to each channel.
- the processor 208 is configured to obtain power of each transmit channel according to the first corrected feedback signal, obtain power of each receive channel according to the second corrected feedback signal, and obtain a power ratio of a power of the receive channel of each channel and a power of the transmit channel. ; Obtain the ratio of the power ratio between the channels, and use the ratio of the power ratio to perform the receive channel correction compensation.
- the processor 208 is specifically configured to obtain an amplitude difference between the receiving channels of each channel, and perform channel correction compensation of the receiving channel by using the amplitude difference between the receiving channels.
- the processor 208 can calculate the power of each transmission channel by using formula (1):
- H i DL Tx i - C i - Rx c ( 1 )
- ⁇ is the response signal of the i-th transmission channel
- ⁇ is the response signal of the coupler of the i-th channel
- ⁇ is the response signal of the reference receiving channel
- H CT is the power of the ith transmission channel.
- the processor 208 can calculate the power of each transmission channel by using formula (2):
- H i]JL Tx c - C i - Rx i ( 2 )
- ⁇ is the response signal of the coupler of the i-th channel
- H235 is the power of the ith receiving channel.
- the processor 208 can calculate the power ratio of the power of the receiving channel of each channel to the power of the transmitting channel using equation (3):
- ⁇ is the power ratio of the power of the receiving channel of the i-th channel to the power of the transmitting channel.
- the processor 208 can calculate the ratio of the power ratio between the channels of each receiving channel by using formula (4): , ⁇ ,
- ) is the ratio of the power ratio between the i-th receiving channel and the j-th receiving channel.
- the baseband processing unit of this embodiment may be, for example, the BBU 10 shown in FIG. 2 or FIG. 3, which may be specifically used to implement the technical solution of the method embodiment shown in FIG. 1.
- the implementation principle and the technical effect are similar. Narration.
- Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
- the storage medium can be any available medium that the computer can access.
- computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
- any connection can be suitably computer readable.
- the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
- coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
- a disk and a disc include a compact disc (CD), a laser disc, a disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
- Transmitters (AREA)
Abstract
本发明提供一种通道校正补偿方法、基带处理单元及系统,本发明通道校正补偿方法,包括向每个发送通道发送第一校正信号,并通过参考接收通道接收至少包括每个发送通道的响应信号以及各耦合器的响应信号的第一校正反馈信号,获得各发送通道的功率;向参考发送通道发送第二校正信号,并通过每个接收通道接收至少包括每个接收通道的响应信号以及各耦合器的响应信号的第二校正反馈信号,获得各接收通道的功率;获得各通道的接收通道的功率和发送通道的功率的功率比,消除了耦合器的响应信号;获得通道间的功率比的比值,并利用功率比的比值进行通道校正补偿,从而提高了进行通道校正补偿的精度精度,保证了BF计算的下行信道的BF权值的准确。
Description
通道校正补偿方法、 基带处理单元及系统
技术领域
本发明实施例涉及通信技术, 尤其涉及一种通道校正补偿方法、 基带处 理单元及系统。 背景技术
随着通信技术的发展, 波束成形(Beam Forming, BF )应用越来越广泛。 BF技术就是重构源信号 ,通过增加期望信源的贡献或抑制干扰源实现信号 的分离。 BF技术能够提升长期演进 (Long Term Evolution, LTE)系统的性能 和容量, 目前已广泛应用于 LTE基站中。
在进行 BF 时, 需要保证接收通道及发送通道的信道响应幅度和相位一 致, 以便通过上行信道估计来计算下行信道的 BF权值。 为了保证各接收通 道和发送通道的幅度和相位保持一致, 在进行 BF之前, 基站需要对接收通 道和发送通道进行通道校正补偿。 现有技术主要釆用如下方式进行通道校正 补偿: 室内基带处理单元(Building Baseband Unit, BBU ) 向射频拉远单元 ( Radio Remote Unit, RRU )发送校正信号, 该校正信号经过发送通道, 再 由 RRU经接收通道反馈给 BBU进行处理, 该射频处理单元中包括多组发送 通道与接收通道,通过 BBU提取该校正信号中的接收通道以及发送通道特性 从而对接收通道以及发送通道进行通道校正补偿。
但是, 釆用上述现有技术进行通道校正补偿的精度较低, 从而导致根据 BF计算的下行信道的 BF权值不准确。 发明内容
有鉴于此, 本发明实施例提供了一种通道校正补偿方法、 基带处理单元 及系统, 以进行精度较高的通道校正补偿。
一方面, 提供一种通道校正补偿方法, 包括:
向射频处理单元中至少两个发送通道发送第一校正信号, 并通过所述射 频处理单元中的参考接收通道接收第一校正反馈信号, 所述第一校正反馈信
号包括所述至少两个发送通道的响应信号、 所述参考接收通道的响应信号以 及各通道对应的耦合器的响应信号;
根据所述第一校正反馈信号, 获得各发送通道的功率;
向射频处理单元中的参考发送通道发送第二校正信号, 并通过所述射频 处理单元中的至少两个接收通道接收第二校正反馈信号, 所述第二校正反馈 信号包括所述参考发送通道的响应信号、 所述至少两个接收通道的响应信号 以及各通道对应的耦合器的响应信号;
根据所述第二校正反馈信号, 获得各接收通道的功率;
获得各通道的接收通道的功率和发送通道的功率的功率比;
获得通道间的功率比的比值, 并利用所述功率比的比值进行通道校正补 偿。
在第一方面的第一种可能实现方式中,所述获得通道间的功率比的比值 , 并利用所述功率比的比值进行通道校正补偿, 包括:
获得各通道的接收通道间的幅度差, 并利用所述接收通道间的幅度差进 行接收通道的通道校正补偿。
结合第一方面或第一方面的第一种可能实现方式, 在第二种可能实现方 式中, 所述根据所述第一校正反馈信号, 获得各发送通道的功率, 包括: 釆用公式( 1 )计算获取各发送通道的功率:
HiDL=Txi-Ci-Rxc (1) 其中, Γχ,为第 i个发送通道的响应信号、 ς为第 i个通道的耦合器的响 应信号、 ε为参考接收通道的响应信号, H„为第 i个发送通道的功率。
结合第一方面的第二种可能实现方式,在第三种可能实现方式中, 所 述根据所述第二校正反馈信号, 获得各接收通道的功率, 包括:
釆用公式(2)计算获取各发送通道的功率:
HiUL=Txc-Ci-Rxi (2) 其中, 为参考接收通道的响应信号、 C,为第 i个通道的耦合器的响应 信号、 为第 i个接收通道的响应信号, 为第 i个接收通道的功率。
结合第一方面的第三种可能实现方式, 在第四种可能实现方式中, 所 述获得各通道的接收通道的功率和发送通道的功率的功率比, 包括:
釆用公式(3 )计算各通道的接收通道的功率和发送通道的功率的功率比:
p Hi DL Txi · C. · Rxc Txi · Rxc ( 3 )
1 Hi UL Txc - C. - Rxi Txc - Rxi
其中, ^为第 i个通道的接收通道的功率和发送通道的功率的功率比。 结合第一方面的第四种可能实现方式, 在第五种可能实现方式中, 所 述获得通道间的功率比的比值,并利用所述功率比的比值进行通道校正补偿, 包括:
釆用公式(4 )计算获取各接收通道的通道间的功率比的比值:
P Tx.■Rxj Rxf , Λ、
其中, Ζ)为第 i接收通道与第 j接收通道之间的功率比的比值。
第二方面, 本发明实施例提供一种基带处理单元, 包括:
校正信号发送模块, 用于向射频处理单元中至少两个发送通道发送第一 校正信号; 还用于向射频处理单元中的参考发送通道发送第二校正信号; 校正信号接收模块, 用于接收第一校正反馈信号, 所述第一校正反馈信 号包括所述至少两个发送通道的响应信号、 所述参考接收通道的响应信号以 及各通道对应的耦合器的响应信号; 还用于接收第二校正反馈信号, 所述第 二校正反馈信号包括所述参考发送通道的响应信号、 所述至少两个接收通道 的响应信号以及各通道对应的耦合器的响应信号;
校正补偿模块, 用于根据所述第一校正反馈信号, 获得各发送通道的功 率; 根据所述第二校正反馈信号, 获得各接收通道的功率; 获得各通道的接 收通道的功率和发送通道的功率的功率比; 获得通道间的功率比的比值, 并 利用所述功率比的比值进行通道校正补偿。
在第二方面的第一种可能实现方式中, 所述校正补偿模块, 具体用于 获得各通道的接收通道间的幅度差, 并利用所述接收通道间的幅度差进行接 收通道的通道校正补偿。
结合第二方面或第二方面的第一种可能实现方式, 在第二种可能实现 方式中,所述校正补偿模块,具体釆用公式( 1 )计算获取各发送通道的功率:
Hi DL = Txi - Ci - Rxc ( 1 ) 其中, Γχ,为第 i个发送通道的响应信号、 ς为第 i个通道的耦合器的响 应信号、 ε为参考接收通道的响应信号, H„为第 i个发送通道的功率。
结合第二方面的第二种可能实现方式, 在第三种可能实现方式中, 所
述校正补偿模块, 具体釆用公式(2 )计算获取各接收通道的功率:
Hi UL = Txc - Ci - Rxi ( 2 ) 其中, 为参考发送通道的响应信号、 ς为第 i个通道的耦合器的响应 信号、 为第 i个接收通道的响应信号, H„为第 i个接收通道的功率。
结合第二方面的第三种可能实现方式, 在第四种可能实现方式中, 所 述校正补偿模块, 具体釆用公式 ( 3 )计算各通道的发送通道的功率和接收通 道的功率的功率比:
p _ Hi DL― Τχ. · , · Rxc _ Txt · Rxc ( 3 )
' Ht UL Txc · C, · Rxt Txc · Rxt
其中, ^为第 i个通道的接收通道的功率和发送通道的功率的功率比。 结合第二方面的第四可能实现方式, 在第五种可能实现方式中, 所述 校正补偿模块, 具体釆用公式(4 )计算获取各接收通道的通道间的功率比的 比值:
P. Tx.■Rxj Rxf , Λ、
其中, )为第 i接收通道与第 j接收通道之间的功率比的比值。
第三方面, 本发明实施例提供一种通道校正补偿系统, 包括射频处理单 元以及上述任一所述的基带处理单元。
本发明实施例提供的通道校正补偿方法、基带处理单元及系统, 通过基 射频处理单元中的参考接收通道接收第一校正反馈信号, 基带处理单元根据 第一校正反馈信号, 获得各发送通道的功率。 再通过基带处理单元向射频处 理单元中的参考发送通道发送第二校正信号, 并通过射频处理单元中的至少 两个接收通道接收第二校正反馈信号,基带处理单元根据第二校正反馈信号, 获得各接收通道的功率。 由基带处理单元获得各通道的接收通道的功率和发 送通道的功率的功率比, 以此消除第一校正反馈信号以及第二校正反馈信号 包含的各耦合器的响应信号, 从而消除各耦合器的响应信号对接收通道校正 补偿精度的影响, 最后基带处理单元获得通道间的功率比的比值, 并利用功 率比的比值进行接收通道校正补偿, 从而提高了进行接收通道校正补偿的精 度精度, 保证了 BF计算的下行信道的 BF权值的准确。
附图说明
实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明实施例提供的通道校正补偿方法的流程图;
图 2为釆用图 1所示方法实施例获得各发送通道的功率的示意图; 图 3为釆用图 1所示方法实施例获得各接收通道的功率的示意图; 图 4为本发明实施例提供的基带处理单元实施例一的结构示意图; 图 5为本发明实施例提供的通道校正补偿系统的结构示意图;
图 6为本发明实施例提供的基带处理单元实施例二的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明实施例提供的通道校正补偿方法的流程图, 如图 1所示, 该方法包括:
101、 向射频处理单元中至少两个发送通道发送第一校正信号, 并接收来 自射频处理单元的参考接收通道的第一校正反馈信号, 第一校正反馈信号包 括至少两个发送通道的响应信号、 参考接收通道的响应信号以及各通道对应 的耦合器的响应信号。
具体的, 本实施例的执行主体为基带处理单元, 该基带处理单元例如可 以是 BBU。本实施例中的射频处理单元例如可以是 RRU。 以射频处理单元为 RRU举例来说, 该 RRU可以包括: 至少两个通道、 与每个通道对应连接的 耦合器、 与各耦合器连接的功分器, 每个通道包括发送通道和接收通道, 发 送通道与接收通道与对应的耦合器连接, 各通道对应的耦合器再与功分器连
接, 每个耦合器均与一个天线单元相连接以便进行信号收发。
图 2为釆用图 1所示方法实施例获得各发送通道的功率的示意图, 如图 2 所示, 为了获取第一校正反馈信号, 以对各接收通道进行通道校正补偿, BBU 10可以向 RRU 11中至少两个发送通道发送第一校正信号, 例如, BBU 10可以向第一发送通道 110a, 第二发送通道 111a, 第三发送通道 112a, 第 四发送通道 113a发送第一校正信号。 经过各发送通道的信号响应, 各发送通 道的发出信号被对应发送给各耦合器, 即图 2 中的第一耦合器 114、 第二耦 合器 115、 第三耦合器 117以及第四耦合器 118, 经各耦合器的耦合后, 各路 信号被发送至功分器, 即图 2中的功分器 116, 该功分器 116通过第二接收 通道 11 lb将第一校正反馈信号反馈给 BBU 10,该第二接收通道 111b即为参 考接收通道,可以理解的是,图 2中的第一接收通道 110b、第三接收通道 112b 或者第四接收通道 113b之一亦可以代替第二接收通道 111b与功分器 116连 接, 以作为参考接收通道。
需要说明的是, 尽管图 2中仅给出了四组发送通道和接收通道, 但是本 实施例对于发送通道和接收通道的组数不予限制。
由上述信号传输过程可知, 本实施例中, BBU 10接收到的第一校正反馈 信号包括各发送通道的响应信号、 参考接收通道的响应信号以及各通道对应 的耦合器的响应信号。
102、 根据第一校正反馈信号, 获得各发送通道的功率。
具体的, 基带处理单元, 例如图 2中的 BBU 10在接收到第一校正反馈 信号之后, 例如可以釆用公式(1 )计算获取各发送通道的功率:
Hi DL = Txi - Ci - Rxc ( 1 ) 其中, Γχ,为第 i个发送通道的响应信号、 ς为第 i个通道对应的耦合器的 响应信号、 ε为参考接收通道的响应信号, 为第 i个发送通道的功率。 参照图 2, 例如, 第一发送通道的功率 = 7 ·ς · Λ ε , 其中 7 为第一发送 通道 110a的响应信号, ς为第一耦合器的响应信号, ε为参考接收通道的响 应信号。
103、 向射频处理单元中的参考发送通道发送第二校正信号, 并通过射频 处理单元中的至少两个接收通道接收第二校正反馈信号。
具体的, 图 3为釆用图 1所示方法实施例获得各接收通道的功率的示意图,
参照图 3 , 为了获取第二校正反馈信号, 以对各接收通道进行通道校正补偿 , BBU 10可以向 RRU 11中的参考发送通道,例如第二发送通道 11 la发送第二校 正信号, 该第二校正信号通过第二发送通道 111a, 经过第二耦合器 115传送给 功分器 116, 功分器 116通过各接收通道, 例如图 3中的第一接收通道 110b、 第 二接收通道 l l lb、 第三接收通道 112b、 第四接收通道 113b发送给 BBU 10, 这 样 BBU 10接收的第二校正反馈信号即可包括参考发送通道的响应信号、 至少 两个接收通道的响应信号以及各通道对应的耦合器的响应信号。
104、 根据第二校正反馈信号, 获得各接收通道的功率。
具体的, 基带处理单元, 例如图 2或图 3所示的 BBU 10即可釆用公式 ( 2 )计算获取各接收通道的功率:
Hi]JL = Txc - Ci - Rxi ( 2 ) 其中, 为参考发送通道的响应信号、 ς为第 i个通道的耦合器的响应 信号、 为第 i个接收通道的响应信号, H„为第 i个接收通道的功率。例如, 参照图 3 , 第二接收通道 l l lb的功率为 H2 f/i = rx£ .C2. ¾c2 , 其中 7¾为参考发送 通道的响应信号,即第二发送通道 111a的响应信号, C2为与第二发送通道 11 la 连接的第二耦合器 115的信号响应, Λ¾为第二接收通道 l ib的响应信号。
105、 获得各通道的接收通道的功率和发送通道的功率的功率比。
现有技术中, 进行 BF之前, 基带处理单元发送校正信号, 接收通道进 行校正补偿时, 该校正信号通过一条参考发送通道经耦合器至功分器, 再用 功分器产生一个校正反馈信号, 并由各接收通道传送个基带处理单元, 基带 处理单元从该校正反馈信号中提取出参考发送通道的响应信号、 各接收通道 的响应信号以及各接收通道连接的耦合器的响应信号。 并根据上述响应信号 计算得到各接收通道的功率。 并获得各接收通道之间的功率比, 根据各功率 比对各组通道进行通道校正补偿, 例如, 图 3中, BBU 10向 RRU 11中的参 考发送通道发送校正信号, 假设参考发送通道为第二发送通道 111a, 校正信 号通过第二耦合器 115传送给功分器 116, 功分器 116产生校正反馈信号, 分别通过第一接收通道 110b、 第二接收通道 l l lb、 第三接收通道 112b、 第 四接收通道 113b传送给 BBU 10, 由 BBU 10获得各接收通道的功率, 从而 获得各接收通道之间的功率比,根据各功率比对接收通道进行通道校正补偿。
由此可知, 现有技术在根据各功率比对接收通道进行通道校正补偿的过
程中, 并没有考虑到每一个耦合器之间的差异, 没有在计算过程中消除每一 个耦合器的响应信号对补偿精度的影响, 造成了补偿精度降低, 从而导致根 据 BF计算的下行信道的 BF权值不准确。
为此, 在本实施例中, 在基带处理单元, 例如 BBU 10获得了各通道的 接收通道的功率和发送通道的功率后, 基带处理单元例如可以釆用公式(3 ) 计算各通道的发送通道的功率和接收通道的功率的功率比:
p _ Hi,DL _ Txt · C, · Rxc _ Txt · Rxc ( 3 ) ' Ht UL Txc · C, · Rxt Txc · Rxt
其中, 为第 i个通道的接收通道的功率和发送通道的功率的功率比。 例 如, 参照图 2或图 3 , 第一发送通道 110a与第一接收通道 110b为一组, 均与第 一耦合器 114连接。 并且通过第一校正反馈信号与第二校正反馈信号, 基带处 理单元, 即图 2或图 3中 BBU 10获得第一发送通道 110a的功率根据公式(1 ) 为 H、DL = Txl - Cl - Rxc ,第一接收通道 110b的功率根据公式( 2 )为 Hl UL = Txc Cx■Rxl。 在根据公式(3 )得到第一发送通道 110a与第一接收通道 110b的功率比为 p Hi DL Txl · Cx · Rxc Txl · Rxc
1 Hl UL Txc - Cy - Rxy Txc - Rxl 根据公式 (3 ) , 第一发送通道 110a与第一接收通道 110b的第一耦合器 的响应信号 ς被约去, 这样就避免了在后续的计算中第一耦合器的响应信 号 ς降低计算的精确度。 根据上述公式, 可以分别得到图 2或图 3中, 第二 发送通道 1 1 la与第二接收通道 11 lb的功率比、 第三发送通道 1 12a与第三接 收通道 112b的功率比、 第四发送通道 113a与第四接收通道 113b的功率比。
106、 获得通道间的功率比的比值, 并利用功率比的比值进行通道校正补 偿。
基于上述各通道的功率比, 本实施例可以利用每两个通道间的功率比的 比值进行接收通道校正补偿。
在具体实现时, 106具体可以为:
获得各通道的接收通道间的幅度差, 并利用所述接收通道间的幅度差进 行接收通道的通道校正补偿。
具体的, 通过通道间的功率比的比值, 即可获得各通道的接收通道间的 幅度差, 幅度差体现了各接收通道间的差异性, 所以基带处理单元可以根据
该幅度差实现对接收通道的通道校正补偿。
在具体实现时,针对接收通道进行校正补偿,基带处理单元,例如 BBU 10 可以釆用公式(4 )计算获取各接收通道的通道间的功率比的比值:
P Tx.■Rxj Rxf , Λ、
其中, 为第 i接收通道与第 j接收通道之间的功率比的比值。具体的, 参照图 2或图 3 , 其中各接收通道对应的功率比分别于第一接收通道 110b对 应的功率比相除得到各接收通道与第一接收通道 11 Ob之间的功率比的比值。
第二接收通道 111b对应的功率比为:
p H2 DL Tx2 · C2 · Rxc Tx2 · Rxc
H2 m Txc · C2 · Rx2 Txc · Rx2
P{ Rx2 · ΤΧί 时,第一发送通道 110a的响应信号 7\以及第二发送通道 111 a的响应信号 Γχ2 可以近似相等, 所以 DR ^L 。
Rx2 该 DR为体现第一接收通道 110b与第二接收通道 11 lb之间特性差异的 ― 个系数, 通过将该系数求倒数后与第二接收通道 111b中的信号相乘, 即可实 现对第二接收通道 111b的补偿。
针对其它接收通道的补偿类似, 此处不再赘述。
需要说明的是, 上述 106中, 计算获取各发送通道的通道间的功率比的 比值, 或者, 计算获取各接收通道的通道间的功率比的比值, 均以图 2或图 3 中的第一发送通道 110a以及第一接收通道 110b为基准。 本领域技术人员可以 理解的是, 本实施例, 也可以选择其它任意一组发送通道以及接收通道为基 准进行发送通道间以及接收通道间功率比的比值的计算, 以进行通道校正, 此处不予限定。
本实施例提供的通道校正补偿方法, 通过基带处理单元向射频处理单元 中至少两个发送通道发送第一校正信号, 并通过射频处理单元中的参考接收 通道接收第一校正反馈信号, 基带处理单元根据第一校正反馈信号, 获得各 发送通道的功率。 再通过基带处理单元向射频处理单元中的参考发送通道发 送第二校正信号, 并通过射频处理单元中的至少两个接收通道接收第二校正 反馈信号, 基带处理单元根据第二校正反馈信号, 获得各接收通道的功率。 由基带处理单元获得各通道的接收通道的功率和发送通道的功率的功率比, 以此消除第一校正反馈信号以及第二校正反馈信号包含的各耦合器的响应信 号, 从而消除各耦合器的响应信号对进行接收通道校正补偿的精度的影响, 最后基带处理单元获得通道间的功率比的比值, 并利用功率比的比值进行接 收通道校正补偿, 从而提高了进行接收通道校正补偿的精度精度, 保证了 BF 计算的下行信道的 BF权值的准确。
图 4为本发明实施例提供的基带处理单元实施例一的结构示意图, 如图 4 所示, 基带处理单元包括: 校正信号发送模块 107、 校正补偿模块 108、 校正 信号接收模块 109。
校正信号发送模块 107, 用于向射频处理单元中至少两个发送通道发送 第一校正信号; 向射频处理单元中的参考发送通道发送第二校正信号。
校正信号接收模块 109, 用于接收第一校正反馈信号, 第一校正反馈信 号包括至少两个发送通道的响应信号、 参考接收通道的响应信号以及各通道 对应的耦合器的响应信号; 接收第二校正反馈信号, 第二校正反馈信号包括 参考发送通道的响应信号、 至少两个接收通道的响应信号以及各通道对应的 耦合器的响应信号。
校正补偿模块 108 , 用于根据第一校正反馈信号, 获得各发送通道的功 率; 根据第二校正反馈信号, 获得各接收通道的功率; 获得各通道的接收通 道的功率和发送通道的功率的功率比; 获得通道间的功率比的比值, 并利用 功率比的比值进行接收通道校正补偿。
在具体实现时, 校正补偿模块 108, 具体用于获得各通道的接收通道间的 幅度差, 并利用接收通道间的幅度差进行接收通道的通道校正补偿。
校正补偿模块 108可以釆用公式( 1 )计算获取各发送通道的功率:
Hi DL = Txi - Ci - Rxc ( 1 )
其中, Γχ,为第 i个发送通道的响应信号、 ς为第 i个通道的耦合器的响应 信号、 ε为参考接收通道的响应信号, H„为第 i个发送通道的功率。
校正补偿模块 108可以釆用公式(2)计算获取各发送通道的功率:
Hi]JL=Txc-C1-Rxi (2) 其中, 为参考接收通道的响应信号、 ς为第 i个通道的耦合器的响应 信号、 为第 i个接收通道的响应信号, 为第 i个接收通道的功率。
校正补偿模块 108可以釆用公式( 3 )计算各通道的接收通道的功率和发 送通道的功率的功率比:
p = Hi,DL = Txt · C, · Rxc = Txi · Rxc (3) ' Hi UL Txc · C, · Rxt Txc · Rxt
其中, ^为第 i个通道的接收通道的功率和发送通道的功率的功率比。 校正补偿模块 108可以釆用公式(4)计算获取各接收通道的通道间的功 率比的比值:
P Tx.■Rxj Rxf , Λ、
DR=^ =」 ~~ J-^^ (4) Pj Rx TXj Rxi
其中, )为第 i接收通道与第 j接收通道之间的功率比的比值。
本实施例的基带处理单元, 例如可以是图 2或者图 3所示 BBU 10, 其具体 可以用于执行图 1所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 5为本发明实施例提供的通道校正补偿系统的结构示意图, 如图 5所 示, 本实施例的通道校正补偿系统, 可以包括: BBU10和 RRU11, 可选地, 还可以包括:天馈系统 12 ,其中,该基带处理单元即为图 2或图 3所示的 BBU 10, 该 BBU 10可以釆用图 4所示的结构。 该射频处理单元即为图 2或图 3 所示的 RRU 11, 该 RRU 11包括: 第一发送通道 110a, 第一接收通道 110b, 第二发送通道 llla、 第二接收通道 lllb、 第三发送通道 112a、 第三接收通道 112b、第四发送通道 113a、第四接收通道 113b,各通道分别与第一耦合器 114、 第二耦合器 115、 第三耦合器 117、 第四耦合器 118连接, 各耦合器分别与功 分器 116连接。 天馈系统 12, 可以包括多组天线单元, 天线单元分别与各耦 合器连接, 在 BBU 10对发送通道以及接收通道进行补偿后。
本实施例的系统, 可以用于执行图 1所示方法实施例的技术方案, 其实现 原理和技术效果类似, 此处不再赘述。
图 6为本发明基带处理单元实施例二的结构示意图, 如图 6所示, 基带处 理单元包括: 发送器 207、 处理器 208、 接收器 209。
发送器 207, 用于向射频处理单元中至少两个发送通道发送第一校正信 号; 向射频处理单元中的参考发送通道发送第二校正信号。
接收器 209, 用于接收第一校正反馈信号, 第一校正反馈信号包括至少 两个发送通道的响应信号、 参考接收通道的响应信号以及各通道对应的耦合 器的响应信号; 接收第二校正反馈信号, 第二校正反馈信号包括参考发送通 道的响应信号、 至少两个接收通道的响应信号以及各通道对应的耦合器的响 应信号。
处理器 208, 用于根据第一校正反馈信号, 获得各发送通道的功率; 根 据第二校正反馈信号, 获得各接收通道的功率; 获得各通道的接收通道的功 率和发送通道的功率的功率比; 获得通道间的功率比的比值, 并利用功率比 的比值进行接收通道校正补偿。
在具体实现时,处理器 208,具体用于获得各通道的接收通道间的幅度差, 并利用接收通道间的幅度差进行接收通道的通道校正补偿。
处理器 208可以釆用公式( 1 )计算获取各发送通道的功率:
Hi DL = Txi - Ci - Rxc ( 1 ) 其中, Γχ,为第 i个发送通道的响应信号、 ς为第 i个通道的耦合器的响应 信号、 ε为参考接收通道的响应信号, H„为第 i个发送通道的功率。
处理器 208可以釆用公式( 2 )计算获取各发送通道的功率:
Hi]JL = Txc - Ci - Rxi ( 2 ) 其中, 为参考接收通道的响应信号、 ς为第 i个通道的耦合器的响应 信号、 为第 i个接收通道的响应信号, H„为第 i个接收通道的功率。
处理器 208可以釆用公式( 3 )计算各通道的接收通道的功率和发送通道 的功率的功率比:
p _ Hi,DL _ Txt · C, · Rxc _ Txt · Rxc ( 3 ) ' Ht UL Txc · C, · Rxt Txc · Rxt
其中, ^为第 i个通道的接收通道的功率和发送通道的功率的功率比。 处理器 208可以釆用公式( 4 )计算获取各接收通道的通道间的功率比的 比值:
, Λ、
其中, )为第 i接收通道与第 j接收通道之间的功率比的比值。
本实施例的基带处理单元, 例如可以是图 2或者图 3所示 BBU 10, 其具体 可以用于执行图 1所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到 本发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用 软件实现时, 可以将上述功能存储在计算机可读介质中或作为计算机可读 介质上的一个或多个指令或代码进行传输。 计算机可读介质包括计算机存 储介质和通信介质, 其中通信介质包括便于从一个地方向另一个地方传送 计算机程序的任何介质。 存储介质可以是计算机能够存取的任何可用介 质。以此为例但不限于:计算机可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、 或者能够 用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计 算机存取的任何其他介质。 此外。 任何连接可以适当的成为计算机可读介 质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线( DSL ) 或者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他 远程源传输的, 那么同轴电缆、 光纤光缆、双绞线、 DSL或者诸如红外线、 无线和微波之类的无线技术包括在所属介质的定影中。 如本发明所使用 的, 盘 (Disk ) 和碟(disc ) 包括压缩光碟( CD ) 、 激光碟、 光碟、 数字 通用光碟(DVD ) 、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而碟 则用激光来光学的复制数据。 上面的组合也应当包括在计算机可读介质的 保护范围之内。
总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限 定本发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种通道校正补偿方法, 其特征在于, 包括:
向射频处理单元中至少两个发送通道发送第一校正信号, 并通过所述射 频处理单元中的参考接收通道接收第一校正反馈信号, 所述第一校正反馈信 号包括所述至少两个发送通道的响应信号、 所述参考接收通道的响应信号以 及各所述通道对应的耦合器的响应信号;
根据所述第一校正反馈信号, 获得各所述发送通道的功率;
向所述射频处理单元中的参考发送通道发送第二校正信号, 并通过所述 射频处理单元中的至少两个接收通道接收第二校正反馈信号, 所述第二校正 反馈信号包括所述参考发送通道的响应信号、 所述至少两个接收通道的响应 信号以及各所述通道对应的耦合器的响应信号;
根据所述第二校正反馈信号 , 获得各所述接收通道的功率;
获得各通道的发送通道的功率和接收通道的功率的功率比;
获得通道间的功率比的比值, 并利用所述功率比的比值进行通道校正补 偿。
2、 根据权利要求 1所述的方法, 其特征在于, 所述获得通道间的功率比 的比值, 并利用所述功率比的比值进行通道校正补偿, 包括:
获得各通道的接收通道间的幅度差, 并利用所述接收通道间的幅度差进 行接收通道的通道校正补偿。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述根据所述第一校 正反馈信号, 获得各发送通道的功率, 包括:
釆用公式( 1 )计算获取各发送通道的功率:
HiDL=Txi-Ci-Rxc (1) 其中, Γχ,为第 i个发送通道的响应信号、 ς为第 i个通道的耦合器的响 应信号、 ε为参考接收通道的响应信号, H„为第 i个发送通道的功率。
4、 根据权利要求 3所述的方法, 其特征在于, 所述根据所述第二校正反 馈信号, 获得各接收通道的功率, 包括:
釆用公式(2)计算获取各发送通道的功率:
HiUL=Txc-Ci-Rxi (2) 其中, 为参考接收通道的响应信号、 ς为第 i个通道的耦合器的响应
信号、 为第 i个接收通道的响应信号, H„为第 i个接收通道的功率。
5、 根据权利要求 4所述的方法, 其特征在于, 所述获得各通道的接收通 道的功率和发送通道的功率的功率比, 包括:
釆用公式( 3 )计算各通道的接收通道的功率和发送通道的功率的功率比: p _ H DL _ Txi · C. · Rxc _ Txi · Rxc ( 3 )
1 Hi UL Txc · C. · Rxi Txc · Rxi
其中, ^为第 i个通道的发送通道的功率和接收通道的功率的功率比。
6、 根据权利要求 5所述的方法, 其特征在于, 所述获得通道间的功率比 的比值, 并利用所述功率比的比值进行通道校正补偿, 包括:
釆用公式(4 )计算获取各接收通道的通道间的功率比的比值:
其中, )为第 i接收通道与第 j接收通道之间的功率比的比值。
7、 一种基带处理单元, 其特征在于, 包括:
校正信号发送模块, 用于向射频处理单元中至少两个发送通道发送第一 校正信号, 向所述射频处理单元中的参考发送通道发送第二校正信号;
校正信号接收模块, 用于接收第一校正反馈信号, 所述第一校正反馈信 号包括所述至少两个发送通道的响应信号、 所述参考接收通道的响应信号以 及各通道对应的耦合器的响应信号; 接收第二校正反馈信号, 所述第二校正 反馈信号包括所述参考发送通道的响应信号、 所述至少两个接收通道的响应 信号以及各通道对应的耦合器的响应信号;
校正补偿模块, 用于根据所述第一校正反馈信号, 获得各发送通道的功 率; 根据所述第二校正反馈信号, 获得各接收通道的功率; 获得各通道的接 收通道的功率和发送通道的功率的功率比; 获得通道间的功率比的比值, 并 利用所述功率比的比值进行通道校正补偿。
8、 根据权利要求 7所述的单元, 其特征在于, 所述校正补偿模块, 具体 用于获得各通道的接收通道间的幅度差, 并利用所述接收通道间的幅度差进 行接收通道的通道校正补偿。
9、 根据权利要求 7或 8所述的单元, 其特征在于, 所述校正补偿模块, 具体釆用公式( 1 )计算获取各发送通道的功率:
Hi DL = Txi - Ci - Rxc ( 1 )
其中, Γχ,为第 i个发送通道的响应信号、 ς为第 i个通道的耦合器的响 应信号、 ε为参考接收通道的响应信号, H„为第 i个发送通道的功率。
10、 根据权利要求 9所述的单元, 其特征在于, 所述校正补偿模块, 具 体釆用公式(2)计算获取各接收通道的功率:
Hi]JL=Txc-C1-Rxi (2) 其中, 为参考发送通道的响应信号、 ς为第 i个通道的耦合器的响应 信号、 为第 i个接收通道的响应信号, H„为第 i个接收通道的功率。
11、 根据权利要求 10所述的单元, 其特征在于, 所述校正补偿模块, 具 体釆用公式(3)计算各通道的发送通道的功率和接收通道的功率的功率比: p = Hi,DL = Txt · C, · Rxc = Txi · Rxc (3 ) ' Ht UL Txc · C, · Rxt Txc · Rxt
其中, ^为第 i个通道的接收通道的功率和发送通道的功率的功率比。
12、 根据权利要求 11所述的单元, 其特征在于, 所述校正补偿模块, 具 体釆用公式(4)计算获取各接收通道的通道间的功率比的比值:
P Txf ■Rxj Rxf ( .、
DR=^ =」 ~~ J-^^ (4) Pj Rx Txj Rxt
其中, )为第 i接收通道与第 j接收通道之间的功率比的比值。
13、 一种通道校正补偿系统, 其特征在于, 包括: 射频处理单元以及权 利要求 7〜12中任一项所述的基带处理单元。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280002727.2A CN103229471B (zh) | 2012-12-17 | 2012-12-17 | 通道校正补偿方法、基带处理单元及系统 |
PCT/CN2012/086764 WO2014094206A1 (zh) | 2012-12-17 | 2012-12-17 | 通道校正补偿方法、基带处理单元及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/086764 WO2014094206A1 (zh) | 2012-12-17 | 2012-12-17 | 通道校正补偿方法、基带处理单元及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014094206A1 true WO2014094206A1 (zh) | 2014-06-26 |
Family
ID=48838354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/086764 WO2014094206A1 (zh) | 2012-12-17 | 2012-12-17 | 通道校正补偿方法、基带处理单元及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103229471B (zh) |
WO (1) | WO2014094206A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103229471B (zh) * | 2012-12-17 | 2016-06-15 | 华为技术有限公司 | 通道校正补偿方法、基带处理单元及系统 |
CN105656815B (zh) * | 2014-11-11 | 2019-01-25 | 华为技术有限公司 | 一种射频通道的校正方法及装置 |
CN106330350B (zh) * | 2015-06-30 | 2019-06-14 | 华为技术有限公司 | 多远程射频单元联合通道校正的方法和相关装置 |
JP6702605B2 (ja) * | 2016-06-17 | 2020-06-03 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | チャネル補正方法及びチャネル補正装置並びに通信システム |
CN107315183B (zh) * | 2017-06-01 | 2020-06-26 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 导航卫星阵列天线接收系统的校准方法 |
CN111512568B (zh) * | 2017-12-29 | 2021-10-22 | 华为技术有限公司 | 一种用于校正多个传输通道间偏差的装置及方法 |
CN111726172B (zh) | 2019-03-22 | 2021-10-26 | 华为技术有限公司 | 通道校正的方法和装置 |
CN114026802B (zh) | 2019-06-28 | 2023-01-06 | 华为技术有限公司 | 一种用于校正多个传输通道间偏差的装置及无线通信设备 |
CN114041268B (zh) * | 2019-06-28 | 2023-06-27 | 华为技术有限公司 | 一种传输通道校准装置及无线通信设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102594426A (zh) * | 2012-02-21 | 2012-07-18 | 中兴通讯股份有限公司 | 一种有源天线多收发通道同步校准的装置和方法 |
US20120252366A1 (en) * | 2009-12-16 | 2012-10-04 | Kabushiki Kaisha Toshiba | Wireless signal processor and wireless apparatus |
CN103229471A (zh) * | 2012-12-17 | 2013-07-31 | 华为技术有限公司 | 通道校正补偿方法、基带处理单元及系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100337485C (zh) * | 2003-07-17 | 2007-09-12 | 华为技术有限公司 | 一种无线通信系统收发通道的校正装置及方法 |
KR101009781B1 (ko) * | 2006-07-11 | 2011-01-19 | 삼성전자주식회사 | 통신 시스템에서 캘리브레이션 장치 및 방법 |
KR20080077755A (ko) * | 2007-02-21 | 2008-08-26 | 삼성전자주식회사 | 다중 안테나 시스템에서 신호 보정 장치 및 방법 |
US20090093222A1 (en) * | 2007-10-03 | 2009-04-09 | Qualcomm Incorporated | Calibration and beamforming in a wireless communication system |
CN101335966B (zh) * | 2008-06-30 | 2012-10-03 | 华为技术有限公司 | 多天线校正方法、多天线收发装置及基站系统 |
CN103259074B (zh) * | 2008-08-14 | 2015-09-23 | 华为技术有限公司 | 有源天线、刷新幅度和相位的方法及信号处理方法 |
-
2012
- 2012-12-17 CN CN201280002727.2A patent/CN103229471B/zh active Active
- 2012-12-17 WO PCT/CN2012/086764 patent/WO2014094206A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120252366A1 (en) * | 2009-12-16 | 2012-10-04 | Kabushiki Kaisha Toshiba | Wireless signal processor and wireless apparatus |
CN102594426A (zh) * | 2012-02-21 | 2012-07-18 | 中兴通讯股份有限公司 | 一种有源天线多收发通道同步校准的装置和方法 |
CN103229471A (zh) * | 2012-12-17 | 2013-07-31 | 华为技术有限公司 | 通道校正补偿方法、基带处理单元及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN103229471B (zh) | 2016-06-15 |
CN103229471A (zh) | 2013-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014094206A1 (zh) | 通道校正补偿方法、基带处理单元及系统 | |
WO2019134555A1 (zh) | 用于终端设备的定位方法、装置及系统 | |
US10536924B2 (en) | Apparatus and method for positioning terminal in wireless communication system | |
EP3245824B1 (en) | Location reporting for extremely high frequency (ehf) devices | |
US8208963B2 (en) | Communication method and system | |
US9008718B2 (en) | Method, apparatus, and network device for power control | |
CN103733540B (zh) | 用于在波束成形的无线通信系统中支持多天线传输的装置和方法 | |
US8830861B2 (en) | Wireless communication method and apparatus for transmitting and receiving frame through relay | |
CN113316902B (zh) | 用于确定相控阵天线的动态波束对应的方法和装置 | |
WO2018086246A1 (zh) | 一种功率控制方法及终端 | |
WO2015035948A1 (zh) | 一种远端射频单元通道校正方法、装置和系统 | |
EP3039445A1 (en) | Passive positioning utilizing round trip time information | |
JP6545259B2 (ja) | 端末機器測位の方法、システム及び装置 | |
WO2018137148A1 (zh) | 一种天线校正方法及装置 | |
US20170085362A1 (en) | Full duplex technique | |
EP2991412A1 (en) | Signal adjusting method, apparatus, and cell | |
WO2015184638A1 (zh) | 阵列天线校准方法、装置和系统 | |
US20230269033A1 (en) | Methods for operating hybrid automatic repeat request with disabling per hybrid automatic repeat request process | |
WO2014101808A1 (zh) | 通道校正装置、方法及系统 | |
WO2020006123A1 (en) | Method and apparatus for determining a position of a terminal | |
WO2015135117A1 (zh) | 处理信号的装置和方法 | |
CN107852393A (zh) | 发送、解调数据的方法、设备及系统 | |
CN115942454A (zh) | 用于定位的方法及装置 | |
WO2018157318A1 (zh) | 一种调度的方法、基站及终端 | |
WO2014019171A1 (zh) | 数据解调方法与系统、以及用户设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12890627 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12890627 Country of ref document: EP Kind code of ref document: A1 |