WO2015035948A1 - 一种远端射频单元通道校正方法、装置和系统 - Google Patents

一种远端射频单元通道校正方法、装置和系统 Download PDF

Info

Publication number
WO2015035948A1
WO2015035948A1 PCT/CN2014/086480 CN2014086480W WO2015035948A1 WO 2015035948 A1 WO2015035948 A1 WO 2015035948A1 CN 2014086480 W CN2014086480 W CN 2014086480W WO 2015035948 A1 WO2015035948 A1 WO 2015035948A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
remote radio
correction signal
service transmission
transmission channel
Prior art date
Application number
PCT/CN2014/086480
Other languages
English (en)
French (fr)
Inventor
易雄书
张超超
官鹭
刘云
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14844362.5A priority Critical patent/EP3043524B1/en
Publication of WO2015035948A1 publication Critical patent/WO2015035948A1/zh
Priority to US15/068,502 priority patent/US10164799B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/12Channels characterised by the type of signal the signals being represented by different phase modulations of a single carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a remote radio unit channel correction method, apparatus, and system.
  • a CL-MIMO Closed-Loop Multiple-Input Multiple-Output
  • the terminal measures the channel state, and in a given PMI (Precoding Matrix Indication) codebook set, selects the PMI codebook with the best channel matching degree according to a certain criterion and reports it to the PMI codebook.
  • the base station selects a corresponding precoding matrix according to the PMI codebook reported by the terminal to weight the downlink transmission data, thereby obtaining an array gain of the transmitting end.
  • the RRU Remote Radio Unit
  • the transmitting end can adopt a 2T2R (ie, two receiving channels and two receiving channels) structures or a 4T4R (ie, 4 transmitting channels and 4 receiving channels) structures.
  • a 2T2R ie, two receiving channels and two receiving channels
  • a 4T4R ie, 4 transmitting channels and 4 receiving channels
  • the existing LTE system most of them adopt the 2T2R structure.
  • the system is configured as a 4T4R structure.
  • the RRU doubles into a RRU with 4T4R functionality.
  • FIG. 1 it is a schematic diagram of a channel correction method for a dual-stack RRU in an existing TDD system.
  • RRU0 and RRU1 complete self-correction first, then RRU0 and RRU1 transmit a correction signal through the service transmission channel of one of the RRUs, and the service receiving channel of the RRU receives the correction signal looped through the antenna, and is corrected by loopback.
  • the signal completes the joint correction between the channels of RRU0 and RRU1.
  • the joint channel correction method between RRUs provided by the prior art can only be applied to the TDD system, but cannot be applied to the FDD (Frequency Division Duplex, Joint correction between RRUs of a frequency division duplex system.
  • FDD Frequency Division Duplex
  • the service frequency of the service transmission channel and the service receiving channel are inconsistent, and the service receiving channel cannot receive the correction signal transmitted by the service transmission channel. Therefore, the above method cannot be applied to the channel between the RRUs in the FDD system. Correction.
  • there is no RTU channel correction method for 2T2R in the FDD mode so that the delay consistency between the RRU channels cannot be guaranteed for the dual-stack RRU, which affects the performance of the system.
  • an embodiment of the present invention provides a method, a device, and a system for correcting a remote radio unit channel, which can implement correction between remote radio unit channels in FDD mode to implement time between remote radio unit channels. Consistent extension to improve system performance.
  • a first remote radio unit RRU is disclosed.
  • the first remote radio unit RRU is applied to a base station, and the base station further includes a baseband unit BBU, the first far
  • the terminal radio unit RRU has a communication connection with the baseband unit BBU,
  • the first remote radio unit RRU includes a service transmission channel and at least one standing wave detection channel, and the service frequency of the service transmission channel is the same as the working frequency of the standing wave detection channel, where:
  • the service transmission channel is configured to transmit a correction signal, where the correction signal is sent by the baseband unit BBU to the first remote radio unit RRU;
  • the standing wave detecting channel is configured to receive a correction signal looped back through the antenna, and send the correction signal of the antenna loopback to the baseband unit BBU, so that the baseband unit BBU calculates each according to the correction signal of the antenna loopback a correction coefficient of the service transmission channel, and channel correction for each service transmission channel;
  • the correction signal of the antenna loopback includes at least a correction signal of the antenna loopback transmitted by each service transmission channel of the first remote radio unit RRU .
  • the present invention also has a first possibility, wherein the baseband unit BBU is also in communication connection with a second remote radio unit RRU, and the second remote radio unit RRU includes a service transmission channel.
  • the service transmission channel is configured to transmit a correction signal, and the correction signal is sent by the baseband unit BBU to the second remote radio unit RRU;
  • the correction signal of the loopback of the antenna further includes a correction signal of the antenna loopback transmitted by each service transmission channel of the second remote radio unit RRU;
  • the standing wave detection channel is specifically used for:
  • the antenna loopback Receiving, by the antenna loopback, a correction signal transmitted by each service transmission channel of the first remote radio unit RRU and a correction signal transmitted by each antenna of the second remote radio unit RRU through the antenna loopback Transmitting, to the baseband unit BBU, the correction signal transmitted by the antenna loopback of each service transmission channel of the first remote radio unit RRU and the services of the antenna loopback at the second remote radio unit RRU a correction signal transmitted by the transmission channel, such that the baseband unit BBU transmits a correction signal according to the antenna loopback of each service transmission channel of the second remote radio unit RRU and the antenna loopback at the first
  • the correction signal transmitted by each service transmission channel of the remote radio unit RRU calculates the correction coefficient of each service transmission channel, and performs channel correction for each service transmission channel.
  • a baseband unit BBU is disclosed, the baseband The unit BBU is applied to the base station, the baseband unit BBU is communicatively coupled to the at least one remote radio unit, and the at least one remote radio unit has at least one standing wave detection channel and a service transmission channel, and the standing wave detection channel works.
  • the frequency point is the same as the working frequency of the service transmission channel, where the baseband unit BBU includes:
  • a sending unit configured to send a correction signal to a remote radio unit RRU that is in communication connection with the baseband unit BBU;
  • a receiving unit configured to receive, by the antenna loopback fed by the standing wave detecting channel, a correction signal transmitted by each service transmitting channel of the remote radio unit RRU;
  • a first correcting unit configured to calculate, according to the correction signal sent by each of the service transmission channels of the remote radio unit RRU of the antenna loopback received by the receiving unit, a correction coefficient of each service transmission channel, and respectively transmit to each service The channel is channel corrected.
  • the present invention has a second possibility, wherein the baseband unit BBU is communicatively coupled to at least two remote radio units, and at least one of the at least two remote radio units is remotely coupled
  • the radio frequency unit has a standing wave detection channel.
  • the present invention also has a third possibility, wherein the first correcting unit is further configured to:
  • the receiving unit When it is determined that the quality of the correction signal of the first group of antenna loopbacks received by the receiving unit is unreliable, acquiring a correction signal of the second group of antenna loopbacks, and using the obtained correction signals of the first group of antenna loopbacks and the second group
  • the correction signal of the loopback of the antenna calculates the correction coefficient of each service transmission channel to perform channel correction on each service transmission channel.
  • the present invention also has a fourth possibility, wherein when the remote radio unit connected to the baseband unit BBU has only one standing wave detecting channel, The sending unit is further configured to:
  • the first correcting unit determines that the quality of the correction signal of the first group of antenna loopbacks received by the receiving unit is not authentic, transmitting a second group of correction signals to the remote radio unit RRU communicatively connected to the baseband unit BBU;
  • the first correcting unit acquires the correction signal of the second group of antenna loopbacks
  • the first correcting unit is specifically configured to:
  • the first correcting unit acquires a second set of correction signals sent by the remote radio unit RRU of the antenna loopback received by the receiving unit as a correction signal of the second group of antenna loopbacks, and uses the acquired first group
  • the correction signal of the loopback of the antenna and the correction signal of the loopback of the second group of antennas calculate a correction coefficient of each service transmission channel to perform channel correction for each service transmission channel.
  • the invention also has a fifth possibility, wherein the first correction unit utilizes the acquired correction of the first set of antenna loopbacks When the signal and the correction signal of the second group of antenna loopbacks calculate the correction coefficient of the service transmission channel, the first correcting unit is specifically configured to:
  • the correction signal of the group antenna loopback acquires a second channel set, where the second channel set is composed of a service transmission channel that performs channel correction and corrects correction by using the correction signal looped back by the second group antenna; acquiring the first channel And collecting, by using the correction coefficient corresponding to any service transmission channel in the intersection, a correction coefficient of a service transmission channel corresponding to the correction signal with unreliable signal quality, to obtain a service transmission channel of all services Correction coefficient.
  • the present invention also has a sixth possibility, wherein the first correcting unit transmits according to the service transmission channel of the remote radio unit RRU according to the antenna loopback received by the receiving unit
  • the correction signal is used to calculate the correction coefficient of the service transmission channel, and when the channel is corrected for the service transmission channel, the first correction unit is specifically configured to:
  • each service transmission channel and reference according to the channel response value of each service transmission channel a delay difference of the transmission channel;
  • the reference transmission channel is a service transmission channel in each service transmission channel;
  • the correction coefficient is obtained by using the obtained delay difference, and the channel is compensated for each service transmission channel by using the correction coefficient.
  • the present invention also has a seventh possibility, wherein, when the first correcting unit obtains a service transmission according to a channel response value of each service transmission channel When the delay of the channel and the reference transmitting channel is different, the first correcting unit is specifically configured to:
  • the first correcting unit is specifically configured to transform a channel response value of each service transmission channel into a time domain, and obtain a time domain sample corresponding to a maximum modulus value of each service transmission channel response value as a delay of the service transmission channel. In order to obtain the delay difference between each service transmission channel and the reference transmission channel.
  • a baseband unit BBU is disclosed, the baseband unit BBU being applied to a base station, the baseband unit BBU being communicatively coupled to at least one remote radio unit, the at least one remote radio unit having a service transmission channel and at least one correction signal receiving channel, the baseband unit BBU comprising:
  • a sending unit configured to send a correction signal to a remote radio unit RRU that is in communication connection with the baseband unit BBU;
  • a receiving unit configured to receive, by the antenna loopback fed by the correction signal receiving channel, a correction signal transmitted by each service transmitting channel of the remote radio unit RRU;
  • a second correcting unit configured to calculate a correction coefficient according to the correction signal sent by each of the service transmission channels of the remote radio unit RRU of the antenna loopback received by the receiving unit, when determining that the receiving unit receives the first When the quality of the correction signal of the group antenna loopback is not reliable, obtain the second The group antenna loops back the correction signal, and uses the obtained first group antenna loopback correction signal and the second group antenna loopback correction signal to calculate the correction coefficient of each service transmission channel to perform channel correction on each service transmission channel.
  • the present invention also has an eighth possibility, wherein when the baseband unit BBU is applied in a frequency division duplex transmission mode, the remote radio unit communicably connected to the baseband unit BBU has The at least one correction signal receiving channel is specifically a standing wave detecting channel, and the standing wave detecting channel is the same as the working frequency of the service transmitting channel of the remote radio unit RRU, and the receiving unit is specifically configured to:
  • the present invention also has a ninth possibility, wherein when the baseband unit BBU is applied in a frequency division duplex transmission mode, the remote radio unit communicably connected to the baseband unit BBU has The at least one correction signal receiving channel is specifically a calibration receiving channel, and the correcting receiving channel is the same as the working frequency of the service transmitting channel of the remote radio unit RRU, and the correcting receiving channel is different from the service receiving channel.
  • the receiving unit is specifically configured to:
  • the present invention also has a tenth possibility, wherein when the baseband unit BBU is applied in a time division duplex transmission mode, the remote radio unit communicably connected to the baseband unit BBU has The at least one correction signal receiving channel is specifically a service receiving channel, and the receiving unit is specifically configured to:
  • a base station comprising a baseband unit BBU and at least one remote radio unit RRU, the remote radio unit RRU and a baseband unit BBU And having a communication connection, the remote radio unit RRU includes a service transmission channel and at least one standing wave detection channel, where a service frequency of the service transmission channel is the same as a working frequency of the standing wave detection channel, where:
  • the baseband unit is configured to send a correction signal to a remote radio unit RRU communicatively coupled to the baseband unit BBU; and receive each service of the remote radio unit RRU of the antenna loopback fed by the standing wave detection channel a correction signal transmitted by the transmitting channel; calculating a correction coefficient of each service transmitting channel according to the received correction signal transmitted by each of the service transmitting channels of the remote radio unit RRU of the antenna loopback, and respectively performing channel correction on each service transmitting channel;
  • the remote radio unit RRU is configured to transmit a correction signal sent by the baseband unit through the service transmission channel; and receive a correction signal looped back through the antenna, and send the correction signal of the antenna loopback to the baseband unit BBU.
  • a base station comprising a baseband unit BBU and at least two remote radio unit RRUs, the at least two remote radio unit RRUs comprising a first remote radio unit and a a remote radio unit, the first remote radio unit has at least one standing wave detecting channel, and a working frequency of the standing wave detecting channel and a working frequency of each service transmitting channel of the at least two remote radio units
  • the base station comprising a baseband unit BBU and at least two remote radio unit RRUs, the at least two remote radio unit RRUs comprising a first remote radio unit and a a remote radio unit, the first remote radio unit has at least one standing wave detecting channel, and a working frequency of the standing wave detecting channel and a working frequency of each service transmitting channel of the at least two remote radio units
  • the baseband unit is configured to send a correction signal to a first remote radio unit and a second remote radio unit communicably connected to the baseband unit BBU; and receive the antenna loopback fed by the standing wave detection channel in the a correction signal transmitted by each service transmission channel of the first remote radio unit RRU and a correction signal transmitted by the antenna loopback of each service transmission channel of the second remote radio unit RRU according to the antenna loopback
  • a correction signal transmitted by each service transmission channel of the second remote radio unit RRU and a correction signal transmitted by each of the service transmission channels of the first remote radio unit RRU of the antenna loopback calculate a correction coefficient of each service transmission channel, Channel correction for each service transmission channel;
  • the first remote radio unit is configured to transmit a correction signal sent by the baseband unit through the service transmission channel; and receive, by using the standing wave detection channel, a correction signal looped through the antenna, and
  • the baseband unit BBU sends the correction signal of the antenna loopback;
  • the correction signal of the antenna loopback includes a correction signal of the antenna loopback transmitted by each service transmission channel of the first remote radio unit RRU and the loopback of the antenna a correction signal transmitted by each service transmission channel of the second remote radio unit RRU;
  • the second remote radio unit is configured to transmit a correction signal sent by the baseband unit through the service transmission channel.
  • the present invention further has an eleventh aspect, wherein the second remote radio frequency unit has at least one standing wave detecting channel, and the second remote radio frequency unit is further configured to:
  • the correction signal of the antenna loopback includes the antenna loopback at the first far A correction signal transmitted by each service transmission channel of the terminal radio unit RRU and a correction signal transmitted by the antenna loopback of each service transmission channel of the second remote radio unit RRU.
  • a remote radio unit channel correction method is disclosed, which is applied to a first remote radio unit RRU side, and the first remote radio unit RRU has a communication connection with a baseband unit BBU.
  • the first remote radio unit RRU includes a service transmission channel and at least one standing wave detection channel, where the working frequency of the service transmission channel is the same as the working frequency of the standing wave detection channel, and the method includes:
  • Each service transmission channel of the first remote radio unit RRU transmits a correction signal, and the correction signal is sent by the baseband unit BBU to the first remote radio unit RRU;
  • the standing wave detection channel of the first remote radio unit RRU receives the correction signal looped back through the antenna, and sends the correction signal of the antenna loopback to the baseband unit BBU, so that the baseband unit BBU is according to the antenna ring.
  • the correction signal of the back is calculated for the correction coefficient of each service transmission channel, and the channel correction is performed for each service transmission channel;
  • the correction signal of the antenna loopback includes at least the services of the antenna loopback in the first remote radio unit RRU Correction signal transmitted by the transmitting channel number.
  • the present invention also has a twelfth aspect, wherein the baseband unit BBU further has a communication connection with a second remote radio unit RRU, and the second remote radio unit RRU includes a service transmission Channel, the service transmission channel is configured to transmit a correction signal, and the correction signal is sent by the baseband unit BBU to the second remote radio unit RRU;
  • the standing wave detection channel of the first remote radio unit RRU receives the correction signal looped back through the antenna, and sends the correction signal of the antenna loopback to the baseband unit BBU, so that the baseband unit BBU is according to the antenna.
  • the correction signal of the loopback calculates the correction coefficient of each service transmission channel, and performs channel correction for each service transmission channel as follows:
  • the standing wave detecting channel of the first remote radio unit RRU receives a correction signal transmitted by each of the service transmitting channels of the first remote radio unit RRU that is looped back through the antenna, and is looped back through the antenna in the second a correction signal transmitted by each service transmission channel of the remote radio unit RRU, and transmitting, to the baseband unit BBU, a correction signal and antenna loopback transmitted by each of the service transmission channels of the first remote radio unit RRU of the antenna loopback a correction signal transmitted by each service transmission channel of the second remote radio unit RRU, such that the baseband unit BBU loops back according to the antenna to each service transmission channel of the second remote radio unit RRU
  • the corrected correction signal and the correction signal transmitted by each of the service transmission channels of the first remote radio unit RRU of the antenna loopback calculate a correction coefficient of each service transmission channel, and perform channel correction for each service transmission channel.
  • a remote radio unit channel correction method is disclosed, which is applied to a baseband unit BBU side, the baseband unit BBU and at least one remote radio unit are communicably connected, and the at least one remote radio unit
  • the method includes: at least one standing wave detecting channel and a service transmitting channel, where the working frequency of the standing wave detecting channel is the same as the working frequency of the service transmitting channel, the method includes:
  • the baseband unit BBU sends a correction signal to a remote radio unit RRU communicatively coupled to the baseband unit BBU;
  • the baseband unit BBU receives a correction signal transmitted by each of the service transmission channels of the remote radio unit RRU of the antenna loopback fed by the standing wave detecting channel;
  • the baseband unit BBU calculates a correction coefficient of each service transmission channel according to the received correction signal transmitted by each antenna transmission loop of the remote radio unit RRU, and performs channel correction for each service transmission channel.
  • the present invention also has a thirteenth possibility, wherein the baseband unit BBU is communicatively coupled to at least two remote radio units, and at least one of the at least two remote radio units is far
  • the terminal radio unit has a standing wave detection channel.
  • the present invention further has a fourteenth possibility, wherein the method further comprises:
  • the correction signal calculates the correction coefficient of each service transmission channel to perform channel correction for each service transmission channel.
  • the present invention further has a fifteenth aspect, wherein when the remote radio unit connected to the baseband unit BBU has only one standing wave detecting channel, the method further includes:
  • the obtaining the correction signal of the second group of antenna loopbacks includes:
  • the present invention also has a sixteenth aspect, wherein the utilizing the acquired first set of antenna loopbacks
  • the correction signal and the correction signal of the second set of antenna loopbacks calculate the calibration of each service transmission channel Positive coefficients include:
  • the correction signal of the group antenna loopback acquires a second channel set, where the second channel set is composed of a service transmission channel that performs channel correction and corrects correction by using the correction signal looped back by the second group antenna; acquiring the first channel And collecting, by using the correction coefficient corresponding to any service transmission channel in the intersection, a correction coefficient of a service transmission channel corresponding to the correction signal with unreliable signal quality, to obtain a service transmission channel of all services
  • the correction coefficient uses the correction system of all the service transmission channels obtained to perform channel correction on each service transmission channel.
  • the present invention also has a seventeenth aspect, wherein the calculating, according to the received antenna loopback, a correction signal transmitted by each service transmission channel of the remote radio unit RRU
  • the channel correction coefficients are separately corrected for each service transmission channel including:
  • the reference transmission channel is a service transmission channel in each service transmission channel, and the service transmission channel meets Preset condition
  • the correction coefficient is obtained by using the obtained delay difference, and the channel is compensated for each service transmission channel by using the correction coefficient.
  • the present invention has an eighteenth aspect, wherein the service transmission channel and the reference are obtained according to the channel response value of each service transmission channel.
  • the delay difference of the transmit channel includes:
  • a remote radio unit channel correction method is disclosed, which is applied to a baseband unit BBU, where the baseband unit BBU is applied to a base station, the baseband unit BBU and at least one remote radio frequency.
  • a unit communication connection the at least one remote radio unit has a service transmission channel and at least one correction signal receiving channel, and the method includes:
  • the present invention also has a nineteenth aspect, wherein when the baseband unit BBU is applied to a frequency division duplex transmission mode, a remote radio unit communicably coupled to the baseband unit BBU
  • the at least one correction signal receiving channel is specifically a standing wave detecting channel, and the standing wave detecting channel is the same as the working frequency of the service transmitting channel of the remote radio unit RRU, and the receiving the correction signal is received.
  • the correction signals transmitted by the channel-fed antenna loops at the service transmission channels of the remote radio unit RRU include:
  • the present invention also has a twentieth possibility, wherein when the baseband unit BBU is applied to the frequency division duplex transmission mode, the remote radio unit communicably connected to the baseband unit BBU
  • the at least one correction signal receiving channel is specifically a correction receiving channel, and the correcting receiving channel is the same as the working frequency of the service transmitting channel of the remote radio unit RRU, and the corrected receiving channel is different from the service receiving a channel, wherein the correction signal transmitted by each of the service transmission channels of the remote radio unit RRU that receives the antenna loopback fed by the correction signal receiving channel includes:
  • the present invention also has a twenty-first possibility, wherein when the baseband unit BBU is applied in a time division duplex transmission mode, a remote radio unit communicably connected to the baseband unit BBU
  • the at least one correction signal receiving channel is specifically a service receiving channel, and the correction signal transmitted by each of the service transmitting channels of the remote radio unit RRU that includes the antenna loopback fed by the correction signal receiving channel includes: :
  • the remote radio unit RRU communicatively coupled to the baseband unit has at least one standing wave detecting channel, and the standing wave detecting channel
  • the working frequency is the same as the working frequency of the RRU's service transmission channel, so that the standing wave detection channel can receive the correction signal transmitted by the RRU's service transmission channels looped back through the antenna, so that the BBU can be looped back according to the antenna.
  • the correction signal transmitted by each service transmission channel of the RRU calculates the correction coefficient of each service transmission channel, and performs channel correction for each service transmission channel, thereby realizing the correction between the remote radio unit channels in the FDD mode, and realizing the remote radio frequency. Consistent delays between unit channels significantly improve system performance.
  • FIG. 1 is a schematic diagram of a channel correction method for a dual-stitch RRU in a TDD system of the prior art
  • FIG. 2 is a schematic diagram of a first embodiment of a base station according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a second embodiment of a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a third embodiment of a base station according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a first embodiment of a remote radio unit RRU according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a second embodiment of a remote radio unit RRU according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a third embodiment of a remote radio unit RRU according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a first embodiment of a baseband unit BBU according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a second embodiment of a baseband unit BBU according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a third embodiment of a baseband unit BBU according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a first embodiment of a method for correcting a remote radio unit channel according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a second embodiment of a method for correcting a remote radio unit channel according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a third embodiment of a method for correcting a remote radio unit channel according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a fourth embodiment of a base station according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a fifth embodiment of a base station according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a sixth embodiment of a base station according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a first embodiment of a base station according to an embodiment of the present invention.
  • the base station provided by the present invention can be applied to, but not limited to, an FDD system, a COMP system, or other communication systems.
  • the base station, the RRU, and the BBU provided by the present invention are applied to the FDD transmission mode unless otherwise specified.
  • a base station comprising a baseband unit BBU and at least one remote radio unit RRU, the remote radio unit RRU having a communication connection with a baseband unit BBU, the remote radio unit RRU comprising one or more service transmission channels And a standing wave detecting channel, wherein a working frequency of the service transmitting channel is the same as a working frequency of the standing wave detecting channel, wherein:
  • the baseband unit is configured to send a correction signal to a remote radio unit RRU communicatively coupled to the baseband unit BBU; and receive each service of the remote radio unit RRU of the antenna loopback fed by the standing wave detection channel a correction signal transmitted by the transmitting channel; calculating a correction coefficient of each service transmitting channel according to the received correction signal transmitted by each of the service transmitting channels of the remote radio unit RRU of the antenna loopback, and respectively performing channel correction on each service transmitting channel;
  • the remote radio unit RRU is configured to transmit a correction signal sent by the baseband unit through the service transmission channel; and receive a correction signal looped back through the antenna, and send the correction signal of the antenna loopback to the baseband unit BBU.
  • the baseband unit BBU1 is communicatively coupled to a remote radio unit RRU1.
  • the RRU1 shown is a 4T4R RRU with 4 service transmission channels ( ) and 4 service receiving channels ( ).
  • the illustrated RRU has at least one standing wave detection channel (not shown) that may be integrated or physically separated. The following is a brief introduction to the standing wave detection channel.
  • the standing wave detection channel has a corresponding association relationship with the service transmission channel, and a standing wave detection channel corresponds to a service transmission channel, and is used for detecting the standing wave ratio of the corresponding service transmission channel.
  • the radio frequency signal sent by the RRU forward is reflected back through the discontinuous transmission medium, and the reflected signal is called a standing wave.
  • the reflected signal and the transmitted signal are superimposed.
  • the amplitude of the signal is different, the amplitude of the same phase is the largest, the amplitude of the opposite phase is the smallest, and the amplitude is the largest.
  • the ratio of the value to the minimum is called the standing wave ratio.
  • the standing wave detection channel is used to calculate the standing wave ratio of the reflected signal of the corresponding service transmission channel.
  • other paths, circuits, devices or modules for realizing the function of the standing wave detecting channel are also within the protection scope of the present invention as long as their working frequency is the same as the service transmitting channel.
  • the RRU can have only one standing wave detection channel shared by each service transmission channel (for example, a bidirectional switch is set in the standing wave detection channel, and the communication transmission channel is connected to one of the service transmission channels by the closing of the bidirectional switch or In the case of disconnection, but not limited to this, it is also possible that each service transmission channel corresponds to one standing wave detection channel.
  • the number of service transmission channels is greater than or equal to the number of standing wave detection channels.
  • the service transmission channel of RRU1 There is a corresponding standing wave detection channel (the standing wave detection channel is not shown in the figure, but the correction signal of the antenna loopback passes through the service transmission channel
  • the corresponding standing wave detection channel is sent to the BBU), the working frequency of the standing wave detecting channel and the service transmitting channel
  • the working frequency is the same.
  • the correction signal can pass through the four service transmitting channels of the RRU1 ( ) transmitting, and then receiving, by the standing wave detection channel, four service transmission channels in the RRU1 looped back through the antenna ( Transmitting a correction signal, and feeding the received antenna loopback correction signal to the BBU1, so that the BBU1 calculates each service according to the received correction signal transmitted by the antenna loopback of each of the service channels of the remote radio unit RRU.
  • the correction coefficient of the transmission channel is channel corrected for each service transmission channel. It should be noted that the RRU shown in FIG.
  • each service transmission channel has one standing wave detection channel. Of course, it can also be two service transmissions.
  • the channel shares a standing wave detection channel.
  • the dotted line indicates the emission direction of the correction signal, and the reception direction of the correction signal indicated by the dotted line.
  • FIG. 3 is a schematic diagram of a second embodiment of a base station according to an embodiment of the present invention.
  • a base station the base station includes a baseband unit BBU and at least two remote radio units RRU, and the at least two remote radio unit RRUs include a first remote radio unit RRU1 and a second remote radio unit RRU2,
  • the first remote radio unit has a standing wave detecting channel, and the working frequency of the standing wave detecting channel and each service transmitting channel of the at least two remote radio units
  • the working frequency is the same, among which:
  • the baseband unit is configured to send a correction signal to a first remote radio unit and a second remote radio unit communicably connected to the baseband unit BBU; and receive the antenna loopback fed by the standing wave detection channel in the a correction signal transmitted by each service transmission channel of the first remote radio unit RRU and a correction signal transmitted by the antenna loopback of each service transmission channel of the second remote radio unit RRU according to the antenna loopback
  • a correction signal transmitted by each service transmission channel of the second remote radio unit RRU and a correction signal transmitted by each of the service transmission channels of the first remote radio unit RRU of the antenna loopback calculate a correction coefficient of each service transmission channel, Channel correction is performed for each service transmission channel.
  • the first remote radio unit is configured to transmit a correction signal sent by the baseband unit through the service transmission channel; and receive a correction signal looped through the antenna through the standing wave detection channel, and send the antenna loopback to the baseband unit BBU Correction signal;
  • the correction signal of the antenna loopback includes a correction signal transmitted by each antenna of the first remote radio unit RRU1 and an antenna loopback at the second remote radio unit The correction signal transmitted by each service transmission channel of RRU2.
  • the second remote radio unit is configured to transmit a correction signal sent by the baseband unit through the service transmission channel.
  • the second remote radio frequency unit has at least one standing wave detection channel, and the second remote radio frequency unit is further configured to:
  • the correction signal of the antenna loopback includes the antenna loopback at the first far A correction signal transmitted by each service transmission channel of the terminal radio unit RRU and a correction signal transmitted by the antenna loopback of each service transmission channel of the second remote radio unit RRU.
  • the base station may have multiple RRUs, and at least one RRU has at least one standing wave detection channel.
  • Figure 3 shows the situation in which the base station includes two remote radio unit RRUs.
  • the two remote radio units include a first remote radio unit RRU1 and a second remote radio unit RRU2.
  • the first remote radio unit RRU1 includes two service transmission channels ( ) and 2 service receiving channels ( ), where the business launch channel There is a corresponding standing wave detection channel, which can receive the correction signal looped back through the antenna.
  • it can also be a service transmission channel.
  • the second remote radio unit RRU2 includes two service transmission channels ( ) and 2 service receiving channels ( ), where the business launch channel There is a corresponding standing wave detection channel, which can receive the correction signal looped back through the antenna. As shown in FIG.
  • the correction signal can pass through the service transmission channel of the RRU1 ( ) and the service transmission channel of RRU2 ( ) fired out, then by the business launch channel
  • the corresponding standing wave detection channel receives the correction signal transmitted by the two loops of the RRU1 and the correction signals transmitted by the two service transmission channels of the RRU2, and corrects the set of the received antenna loopback.
  • both RRU1 and RRU2 can have multiple standing wave detecting channels, for example, each service transmitting channel has a corresponding standing wave detecting channel.
  • the first remote radio unit RRU1 and the second remote radio unit RRU2 may also have only one RRU having a standing wave detection channel.
  • the baseband unit BBU is directly connected to the first remote radio unit RRU1 and the second remote radio unit RRU2 through a fiber.
  • the baseband unit BBU can be directly connected to the first remote radio unit RRU1 and indirectly connected to the second remote radio unit RRU2.
  • the baseband unit BBU can be indirectly connected to the first remote radio unit RRU1.
  • the BBU is directly connected to the first remote radio unit RRU1, and the first remote radio unit RRU1 is connected to the second remote radio unit RRU2, thereby implementing an indirect communication connection between the BBU and the second remote radio unit RRU2.
  • the BBU can be connected to one of the RRUs 1 and RRU2 via an optical fiber, and the RRU is connected to another RRU through another optical fiber.
  • the RRU with RRU1 and RRU2 being 2T2R is still taken as an example.
  • the BBU sends the correction signal it first goes directly to the BBU.
  • the RRU1 connected to the communication connection sends two correction signals (corresponding to the two service transmission channels of the RRU1), and then, after a period of time, sends two correction signals corresponding to the RRU2 (corresponding to two service transmission channels of the RRU2), corresponding to the RRU2.
  • the two-way correction signal will be sent to RRU2 via RRU1.
  • both RRUs can receive the correction signals corresponding thereto. Then, the correction signals are respectively transmitted on the respective service transmission channels, and the correction signals of the antenna loops are fed to the BBU through the standing wave detection channels.
  • FIG. 4 is a schematic diagram of a third embodiment of a base station according to an embodiment of the present invention.
  • the base station includes a plurality of remote radio unit RRUs (RRU1, RRU2 ... RRUN). At least one RRU has at least one standing wave detection channel. Of course, it is also possible that each RRU has a standing wave detection channel.
  • FIG. 5 is a schematic diagram of a first embodiment of a remote radio unit RRU according to an embodiment of the present invention.
  • a first remote radio unit RRU is applied to the base station, the base station further includes a baseband unit BBU, and the first remote radio unit RRU has a communication connection with the baseband unit BBU.
  • the first remote radio unit RRU includes one or more service transmission channels and a standing wave detection channel, and the service frequency of the service transmission channel is the same as the working frequency of the standing wave detection channel, where:
  • the service transmission channel is configured to transmit a correction signal, and the correction signal is sent by the baseband unit BBU to the first remote radio unit RRU.
  • the standing wave detecting channel is configured to receive a correction signal looped back through the antenna, and send the correction signal of the antenna loopback to the baseband unit BBU, so that the baseband unit BBU calculates each according to the correction signal of the antenna loopback
  • the correction coefficient of the service transmission channel is respectively corrected for each service transmission channel; the correction signal of the antenna loopback includes at least the correction signal of the antenna loopback transmitted by each service transmission channel of the first remote radio unit RRU .
  • the first remote radio unit RRU has a service transmission channel and at least one standing wave detection channel.
  • FIG. 5 shows a case where the first remote radio unit RRU has four service transmission channels and four service reception channels.
  • the baseband unit BBU may transmit a correction signal to the RRU connected thereto by using a frequency division manner, a code division manner, or other manner.
  • the correction signals transmitted by the BBU on the service transmission channel of the RRU may be the same or different.
  • the correction signal may be a common reference signal (CRS, Common Reference Signal), or may be a redesigned other correction signal having excellent characteristics, which is not limited herein.
  • Each service transmission channel of the first remote radio unit RRU transmits the received correction signal.
  • the RRU converts the correction signal sent by the BBU to a DAC (Digital to Analog Convertor) process, converts the digital signal into an analog signal, and then filters the acquired analog signal to filter out unwanted signal components, and then filters out the unwanted signal components.
  • the processed correction signal is output to the antenna feeder unit (antenna).
  • the antenna feeder unit radiates the correction signal through the air interface, and the correction signal is coupled between the antennas, that is, the correction signal is transmitted through the wireless space between the antenna and the antenna.
  • each antenna can receive the correction of other antennas.
  • the signal, while the correction signal emitted by each antenna is also fed to its own loop.
  • the working frequency of the standing wave detecting channel Since the working frequency of the standing wave detecting channel is consistent with the working frequency of the service transmitting channel, it can receive the correction signal transmitted by the antenna loopback in each service transmitting channel, and can feed the correction signal of the antenna loopback.
  • baseband unit BBU For example, as shown in FIG. 5, the RRU of 4T4R assumes that the BBU sends four correction signals (s1, s2, s3, and s4), and the RRU transmits the correction signals on the four transmission channels respectively, and the standing wave detection channel. Four correction signals capable of loopback of the antenna air gap can be received, and then the four correction signals are fed to the baseband unit BBU.
  • the baseband unit BBU calculates a correction coefficient of each service transmission channel according to the correction signal of the antenna loopback, and performs channel correction on each service transmission channel.
  • a specific implementation of the baseband unit BBU side will be described in detail in the embodiment provided later.
  • FIG. 6 is a schematic diagram of a second embodiment of a remote radio unit RRU according to an embodiment of the present invention.
  • the first remote radio unit RRU1 is applied to the base station as shown in FIG. 2 or FIG.
  • the base station includes a baseband unit BBU, which is in communication connection with the first remote radio unit RRU1, and the baseband unit BBU also has a communication connection with the second remote radio unit RRU2, the second far
  • the radio frequency unit RRU2 includes one or more service transmission channels for transmitting a correction signal, and the correction signal is transmitted by the baseband unit BBU to the second remote radio unit RRU.
  • the standing wave detecting channel of the first remote radio unit RRU1 is also capable of receiving the correction signal transmitted by the antenna loopback of each service transmitting channel of the second remote radio unit RRU.
  • the standing wave detecting unit is specifically configured to: receive, by the antenna, a correction signal transmitted by each of the service transmitting channels of the first remote radio unit RRU and loopback of the second remote radio unit RRU through the antenna a correction signal transmitted by each service transmission channel, and transmitting, to the baseband unit BBU, a correction signal transmitted by the antenna loopback of each service transmission channel of the first remote radio unit RRU and an antenna loopback at the second a correction signal transmitted by each service transmission channel of the remote radio unit RRU, such that the baseband unit BBU performs a correction signal and an antenna transmitted by each of the service transmission channels of the second remote radio unit RRU according to the antenna loopback
  • the correction signal transmitted by each service transmission channel of the first remote radio unit RRU of the loopback calculates a correction coefficient of each service transmission channel, and performs channel correction for each service transmission channel.
  • FIG. 7 is a schematic diagram of a third embodiment of a remote radio unit RRU according to an embodiment of the present invention.
  • FIG. 7 illustrates a structure of a remote radio unit RRU according to another embodiment of the present invention, including at least one processor 701 (eg, a CPU), a memory 702, and at least one communication bus 703 for implementing a connection between the devices. Communication.
  • the processor 701 is configured to execute executable modules, such as computer programs, stored in the memory 702.
  • the memory 702 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory such as at least one disk memory.
  • RAM Random Access Memory
  • the memory 702 stores a program 7021, and the program 7021 can be executed by the processor 701.
  • the program includes: transmitting a correction signal through each service transmission channel, the correction signal being connected to the first remote radio unit RRU
  • the baseband unit BBU transmits to the first remote radio unit RRU; receives a correction signal looped back through the antenna by using at least one standing wave detection channel, and transmits the correction signal of the antenna loop back to the baseband unit BBU, so that
  • the baseband unit BBU calculates a correction coefficient of each service transmission channel according to the correction signal of the antenna loopback, and performs channel correction on each service transmission channel respectively;
  • the correction signal of the antenna loopback includes at least the antenna loopback in the A correction signal transmitted by each service transmission channel of the first remote radio unit RRU.
  • the program 7021 may further include: when the baseband unit BBU that is in communication connection with the remote radio unit RRU further has a communication connection with the second remote radio unit RRU, and the second remote radio unit RRU Include one or more service transmission channels for transmitting a correction signal, and the correction signal is transmitted by the baseband unit BBU to the second remote radio unit RRU, using at least one standing wave
  • the detecting unit receives the correction signal transmitted by each of the service transmitting channels of the first remote radio unit RRU looped through the antenna to a correction signal transmitted by each of the service transmission channels of the second remote radio unit RRU by the antenna loopback, and transmitting, to the baseband unit BBU, the services of the antenna loopback at the first remote radio unit RRU a correction signal transmitted by the transmitting channel and a correction signal transmitted by the antenna loopback at each of the service transmitting channels of the second remote radio unit RRU, so that the baseband unit BBU is looped according to the antenna in the second Correcting signals transmitted by the service transmitting channels of the remote radio unit R
  • FIG. 8 is a schematic diagram of a first embodiment of a baseband unit BBU according to an embodiment of the present invention.
  • a baseband unit BBU the baseband unit BBU being applied to a base station, the baseband unit BBU being communicatively coupled to at least one remote radio unit, the at least one remote radio unit having at least one standing wave detection channel and one or more a service transmission channel, the working frequency of the standing wave detecting channel is the same as the working frequency of the service transmitting channel, wherein the baseband unit BBU includes a sending unit 801, a receiving unit 802, and a correcting unit 803, where:
  • the sending unit 801 is configured to send a correction signal to the remote radio unit RRU that is in communication connection with the baseband unit BBU.
  • the sending unit 801 may transmit a correction signal to the RRU connected thereto by using a frequency division manner, a code division manner, or other manner.
  • the correction signals transmitted by the BBU on the service transmission channel of the RRU may be the same or different.
  • the correction signal may be a common reference signal (CRS, Common Reference Signal), or may be a redesigned other correction signal having excellent characteristics, which is not limited herein.
  • the receiving unit 802 is configured to receive, by the antenna loopback fed by the standing wave detecting channel, a correction signal transmitted by each service transmitting channel of the remote radio unit RRU.
  • a first correcting unit 803 configured to calculate, according to the correction signal sent by each of the service transmission channels of the remote radio unit RRU of the antenna loopback received by the receiving unit, a correction coefficient of each service transmission channel, respectively, for each service transmission
  • the channel is channel corrected.
  • the first correcting unit 803 is specifically configured to: perform channel estimation on each service transmission channel according to the correction signal transmitted by each antenna transmission loop of the remote radio unit RRU received by the receiving unit. Obtaining a channel response value of each service transmission channel; obtaining a delay difference between each service transmission channel and a reference transmission channel according to the channel response value of each service transmission channel; obtaining a correction coefficient by using the obtained delay difference, and utilizing The correction coefficient performs channel compensation for each service transmission channel.
  • the reference transmission channel is a service transmission channel in each service transmission channel, and the service transmission channel meets a preset condition.
  • the correction factor of the reference transmit channel can be one.
  • a transmission channel may be determined as a reference transmission channel from each service transmission channel according to a certain principle.
  • one transmission channel may be determined as a reference transmission channel from the foregoing service transmission channels according to the principle of minimum delay.
  • the service transmission channel with the lowest number can be selected as the reference transmission channel according to the principle of minimum number, for example, the service transmission channel As a reference transmission channel; or one of the service transmission channels can be randomly determined as a reference transmission channel, which is not limited by the present invention.
  • a possible implementation manner includes: the first correction unit according to the channel response of each service transmission channel The value obtains the phase difference between each service transmission channel and the reference transmission channel, and obtains the delay difference between each service transmission channel and the reference transmission channel by using the acquired phase difference.
  • the correction signal sent by the BBU to the RRU includes S1, S2, S3, and S4, and the correction signals S1, S2, S3, and S4 are respectively transmitted on the service transmission channels 0-3 of the RRU, and the receiving unit 802 receives the correction signals S1, S2, S3, and S4.
  • the correction signals of the antenna loopback are S1', S2', S3' and S4', wherein S1' is a signal that S1 loops back through the service transmitting channel 1 and the standing wave detecting channel, and S2' is S2 through the service transmitting channel 2
  • S1' is a signal that S1 loops back through the service transmitting channel 1 and the standing wave detecting channel
  • S2' is S2 through the service transmitting channel 2
  • S3' is a signal that S3 loops back through the transmitting channel 3 and the standing wave detecting channel
  • S4' is a signal that S4 loops back through the service transmitting channel 4 and the standing wave detecting channel.
  • the correcting unit 803 first performs channel estimation on the service transmitting channels 0-3 according to the correction signal of the antenna loopback fed by the standing wave detecting channel received by the receiving unit 802, and obtains the channel response values of the service transmitting channels respectively, which are respectively recorded as h ( 0,0,k), h(0,1,k), h(0,2,k),h(0,3,k).
  • the following is the reference transmission channel as the service transmission channel. This example shows how to calculate the delay difference between service transmit channel 0 and service transmit channel 1.
  • h(0, 0, k) represents the channel response value of the kth subcarrier of the service transmission channel 0 of the standing wave detection channel 0
  • h(0, 1, k) represents the standing wave detection channel.
  • the channel response value of the kth subcarrier of the service transmission channel 1 of 0, h(0, 2, k) represents the channel response value of the kth subcarrier of the service transmission channel 2 of the standing wave detection channel 0, h (0, 3) , k) represents the channel response value of the kth subcarrier of the service transmission channel 3 of the standing wave detection channel 0.
  • the conjugate multiplication processing of h(0,0,k) and h(0,1,k) is performed to obtain a multiplication result, that is, the phase difference between the service transmission channel 0 and the service transmission channel 1 on the subcarrier is k.
  • ⁇ 2 (k) then calculate an equivalent ⁇ 2 on all subcarriers. Then, the obtained phase difference is used to calculate the delay difference, and the calculation method is:
  • f represents the frequency domain width of the subcarrier.
  • the delay difference between each service transmission channel and the reference transmission channel is calculated separately.
  • the delay difference is used as the correction coefficient.
  • the correction factor can also be obtained as follows:
  • f denotes the subcarrier frequency domain width
  • k denotes a subcarrier index number
  • denotes a delay difference of the jth transmission channel of the i th RRU with respect to the reference channel.
  • a possible implementation manner includes: the correcting unit transmits each service transmission channel.
  • the channel response value is transformed into the time domain, and the time domain samples corresponding to the maximum modulus value of the response values of the service transmission channels are respectively obtained as the delays of the service transmission channel, thereby obtaining the time of each service transmission channel and the reference transmission channel. Delay.
  • the correction signal sent by the BBU to the RRU includes S1, S2, S3, and S4, and the correction signals S1, S2, S3, and S4 are respectively transmitted on the service transmission channels 0-3 of the RRU, and the receiving unit 802 receives the correction signals S1, S2, S3, and S4.
  • the correction signals of the antenna loopback are S1', S2', S3' and S4', wherein S1' is a signal that S1 loops back through the service transmitting channel 1 and the standing wave detecting channel, and S2' is S2 through the service transmitting channel 2
  • S1' is a signal that S1 loops back through the service transmitting channel 1 and the standing wave detecting channel
  • S2' is S2 through the service transmitting channel 2
  • S3' is a signal that S3 loops back through the transmitting channel 3 and the standing wave detecting channel
  • S4' is a signal that S4 loops back through the service transmitting channel 4 and the standing wave detecting channel.
  • the correcting unit 803 first performs channel estimation on the service transmitting channels 0-3 according to the correction signal of the antenna loopback fed by the standing wave detecting channel received by the receiving unit 802, and obtains the channel response values of the service transmitting channels respectively, which are respectively recorded as h ( 0,0,k), h(0,1,k), h(0,2,k),h(0,3,k).
  • the following is the reference transmission channel as the service transmission channel. This example shows how to calculate the delay difference between service transmit channel 0 and service transmit channel 1.
  • h(0, 0, k) represents the channel response value of the kth subcarrier of the service transmission channel 0 of the standing wave detection channel 0
  • h(0, 1, k) represents the standing wave detection channel.
  • the channel response value of the kth subcarrier of the service transmission channel 1 of 0, h(0, 2, k) represents the channel response value of the kth subcarrier of the service transmission channel 2 of the standing wave detection channel 0, h (0, 3) , k) represents the channel response value of the kth subcarrier of the service transmission channel 3 of the standing wave detection channel 0.
  • the correcting unit transforms the channel response value of each service transmitting channel into the time domain by Fourier transform, and then calculates the delay difference between each transmitting channel and the reference transmitting channel in the time domain.
  • the service transmission channel 0 is used as a reference transmission channel, and the channel correction device respectively performs h(0, 0, k), h(0, 1, k), h(0, 2, k) by Fourier transform.
  • h(0,3,k) is transformed into the time domain, denoted as h(0,0,n), h(0,1,n), h(0,2,n) and h(0,3,n ), where n represents a time domain sample, and then searches for the maximum modulus value on h(0, 0, n), and the time domain sample corresponding to the maximum modulus value is taken as the delay ⁇ 0 of the service transmission channel 0 , Search for the maximum modulus value on h(0,1,n), and use the time domain sample corresponding to the maximum modulus value as the delay ⁇ 1 of the transmission channel 1, and search for the maximum modulus value on h(0, 2, n).
  • the time domain sample corresponding to the maximum modulus value is used as the delay ⁇ 2 of the transmission channel 3, and the maximum modulus value is searched for h(0, 3, n), and the time domain sample corresponding to the maximum modulus value is used as the transmission channel.
  • the delay of 4 is ⁇ 3 .
  • the delay difference is obtained by subtracting the delays of the two channels respectively.
  • [tau] 1 and [tau] 0 are subtracted, to obtain the transmission channel 1 and channel 0 transmit delay difference ⁇ ⁇ 1; [tau] 0 to [tau] 2 and subtracted to obtain a difference ⁇ ⁇ delay firing channel and transmit channel 2 0 2; a 3 [tau] [tau] 0 and subtracted to obtain the transmission channel 3 and the channel 0 transmit delay difference of ⁇ ⁇ 3.
  • ⁇ 1 , ⁇ 2 and ⁇ 3 are respectively used as factors for calculating the correction coefficients of the transmission channel 1, the transmission channel 2 and the transmission channel 3, and the correction coefficient of the transmission channel 0 is 1.
  • the first correction unit When the first correction unit performs channel correction on each service transmission channel by using the obtained correction coefficient, the transmission data of each service transmission channel is corrected by the calculated correction coefficient to achieve correction of each service transmission channel. The details will be described below.
  • the received signal can be expressed as:
  • r is the received signal and [h 0 h 1 h 2 h 3 ] is the response value of the four service transmit channels. Is the transmitted signal, and n 0 is the noise.
  • [h 0 h 1 h 2 h 3 ] represents the response value of the service transmission channel.
  • the factor ⁇ i thus obtaining an equivalent channel response [ ⁇ 0 h 0 ⁇ 1 h 1 ⁇ 2 h 2 ⁇ 3 h 3 ].
  • the purpose of channel correction can be achieved by correcting the transmitted data, which is expressed as:
  • the correction coefficient indicating the jth transmission channel of the i-th RRU can be calculated as shown in the formula (2).
  • D i,j (k) represents the frequency domain response of the kth carrier of the jth transmission channel of the i-th RRU before compensation, The frequency domain response of the kth carrier of the jth transmit channel of the i-th RRU after compensation is shown. At this point, the correction of the service transmission channel is completed.
  • the inventors have found that the signal quality of a certain transmission channel received by the standing wave detection channel may be unreliable for some reason. Wherein, when it is determined that the signal to noise ratio of the received correction signal is less than a preset threshold, it is determined that the signal quality of the correction signal is not authentic.
  • the preset threshold can be set as needed.
  • the inventors have found through research that one of the reasons may be: due to the signal received by the current standing wave detection channel (ie, the correction signal transmitted by the service transmission channel corresponding to the standing wave detection channel), it may be through the RRU and the RF line. The interface of the cable or the signal reflected from the interface between the RF cable and the antenna. At this time, the signal is not transmitted through the RF cable or transmitted through the antenna and the air interface between the antennas. Therefore, the signal is transmitted as a useful signal. It may cause the calculated delay difference error to become large, resulting in deterioration of system performance.
  • the correction signal is generally attenuated between 30-50dB and even 70-80dB. Therefore, it may happen that a certain received signal received by the antenna may be very small after being filtered by the medium RF filter. Even if it is completely lower than the noise power, the signal quality of a certain transmitting antenna received by the receiving antenna is very poor, and the correction coefficient is not calculated. Therefore, it is necessary to adopt a bridge operation to complete the joint channel school of all origins. positive.
  • the first correcting unit is further configured to: when determining that the quality of the corrected signal of the first group of antenna loopbacks received by the receiving unit is untrustworthy, acquiring the correction of the loopback of the second group of antennas The signal is used to calculate the correction coefficient of each service transmission channel by using the obtained correction signal of the first group of antenna loopbacks and the correction signal of the second group of antenna loopbacks to perform channel correction for each service transmission channel.
  • the sending unit is further configured to: when the correcting unit determines the first group received by the receiving unit When the quality of the correction signal of the antenna loopback is not reliable, the second group of correction signals are sent to the remote radio unit RRU that is in communication with the baseband unit BBU.
  • the correction unit is specifically configured to acquire the antenna ring received by the receiving unit. Returning the second set of correction signals sent by the remote radio unit RRU as a correction signal of the second group of antenna loopbacks, and using the obtained correction signals of the first group of antenna loopbacks and the correction of the second group of antenna loopbacks The signal calculates the correction coefficient of each service transmission channel to perform channel correction for each service transmission channel.
  • the first correcting unit calculates the correction coefficient of each service transmission channel by using the acquired correction signal of the first group of antenna loopbacks and the correction signal of the second group of antenna loopbacks, which may include: loopback according to the first group of antennas
  • the correction signal acquires a first channel set, the first channel set is composed of a service transmission channel that performs channel correction and corrects the correction by using the correction signal looped back by the first group antenna; and acquires the first according to the correction signal of the second group antenna loopback a set of two channels, the second set of channels is composed of a service transmission channel that performs channel correction and corrects correction by using a correction signal looped back by the second group of antennas; and acquires an intersection of the first channel set and the second channel set,
  • the correction coefficient corresponding to the service transmission channel corresponding to the correction signal with unreliable signal quality is obtained by using the correction coefficient corresponding to any service transmission channel in the intersection to obtain the correction coefficient of all service transmission channels.
  • correction coefficient corresponding to any service transmission channel in the intersection uses the correction coefficient corresponding to any service transmission channel in the intersection to obtain a corresponding correction coefficient calculated in another set of correction signals by the transmission channel in which the correction signal quality is not authentic in one group is obtained.
  • Correction factor for all service transmission channels It should be noted that if the correction coefficient of the first group of antenna loopbacks and the correction signal of the second group of antenna loopbacks are used to calculate the correction coefficient of each service transmission channel is still unsuccessful, the third group of antenna loopbacks needs to be acquired. The correction signal, the correction signal of the fourth set of antenna loopbacks, and similar processing are performed until all service transmission channels can be successfully corrected. The following examples are given.
  • the standing wave detection channel of service transmission channel 0 is recorded as RX0, and can receive the service transmission channel 0/1/2/3.
  • Correction signal if there is a very large isolation between the service transmission channel 1 and RX0, RX0 can only complete the 0/2/3 channel correction, and cannot complete the correction of all 4 transmission channels.
  • the bridging mode is as follows: the receiving channels RX0 and RX2 use the intersection in the set of transmission channels completed by the two as the bridging point.
  • the union of the two completed transmission channels, the specific operation is to find the intersection 0 and the intersection 1 from the two sets from the R0CalibSet and the R2CalibSet, and obtain the signal quality by using the correction coefficient corresponding to any service transmission channel in the intersection.
  • the correction coefficient of the service transmission channel corresponding to the correction signal of the letter is obtained to obtain the correction coefficient of all service transmission channels. For example, the calculation of the correction coefficient can be performed based on the service transmission channel 0, respectively.
  • the correction coefficient of the service transmission channel 0 on the standing wave detection channel RX0 is used as a reference, that is, all the stations are The coefficients on the wave detection channel RX2 are multiplied by a factor:
  • the correction coefficient of the service transmission channel 1 can be obtained, so the correction coefficients of the four service transmission channels are:
  • the newly spliced RRU must have a standing wave detection channel, otherwise the correction signal cannot be looped back to the BBU. That is to say, for a double-stitched RRU or more RRUs to be spliced together, at least one RRU must have a standing wave detection channel, so that channel correction can be completed.
  • the RRU needs to be divided twice in time, so that the RRU with the standing wave detection channel passes the received channel correction signals received on the two antennas through the standing wave detection channel in time order, so that the BBU also receives Two correction signals are reached.
  • the two bridge correction signals are calculated by the respective calculations, and the bridge flow after the delay difference is consistent with the above-mentioned bridge flow.
  • the BBU needs to send the correction signal twice.
  • the standing wave detection channel receives the correction signal received by the first antenna. This is the first The correction signal received by the group; the second time the correction signal is transmitted, the standing wave detection channel receives the correction signal received by the second antenna, which is the received second group of correction signals.
  • the two sets of received correction signals all include a four-way correction signal. That is to say, each group of received correction signals is a correction signal containing four transmission channels.
  • the baseband unit BBU is communicatively coupled to the at least two remote radio units, and at least one of the at least two remote radio units has a standing wave detection channel. That is, it is applied to the base station as shown in FIG.
  • FIG. 9 is a schematic diagram of a second embodiment of a baseband unit BBU according to an embodiment of the present invention.
  • the inventors have found in the course of implementing the invention that the signal quality of a certain transmission channel received may be unreliable for some reason.
  • the inventors have found through research that one of the reasons may be: due to the signal received by the current standing wave detection channel (ie, the correction signal transmitted by the service transmission channel corresponding to the standing wave detection channel), it may be through the RRU and the RF line.
  • the interface of the cable or the signal reflected from the interface between the RF cable and the antenna.
  • the signal is not transmitted through the RF cable or transmitted through the antenna and the air interface between the antennas. Therefore, the signal is transmitted as a useful signal. It may cause the calculated delay difference error to become large, resulting in deterioration of system performance.
  • the correction signal is generally attenuated between 30-50dB and even 70-80dB. Therefore, it may happen that a certain received signal received by the antenna may be very small after being filtered by the medium RF filter. Even if it is completely lower than the noise power, the signal quality of a certain transmitting antenna received by the receiving antenna is very poor, and the correction coefficient is not calculated. Therefore, a bridge operation is required to complete the joint channel correction for all origins.
  • a baseband unit BBU the baseband unit BBU being applied to a base station, the baseband unit BBU being communicatively coupled to at least one remote radio unit, the at least one remote radio unit having a service transmission channel and at least one correction signal receiving channel, the baseband unit BBU comprising:
  • the sending unit 901 is configured to send a correction signal to the remote radio unit RRU that is communicably connected to the baseband unit BBU.
  • the receiving unit 902 is configured to receive, by the antenna loopback fed by the correction signal receiving channel, a correction signal transmitted by each service transmitting channel of the remote radio unit RRU.
  • a second correcting unit 903 configured to determine, according to the correction signal transmitted by each of the service transmitting channels of the remote radio unit RRU of the antenna loopback received by the receiving unit, when determining the first group of antenna rings received by the receiving unit
  • the correction signal of the second group of antenna loops is obtained, and the corrected correction signals of the first group of antenna loops and the correction signals of the second group of loop loops are used to calculate the correction of each service transmission channel. Coefficient to correct the channel for each service transmit channel.
  • the second correcting unit when determining that the quality of the correction signal of the first group of antenna loopbacks received by the receiving unit is unreliable, acquires a correction signal of the second group of antenna loopbacks, and uses the acquired first set of antenna loops.
  • the corrected signal of the back and the corrected signal of the second set of antenna loopbacks calculate the correction coefficient of each service transmission channel to perform channel correction for each service transmission channel.
  • the base station shown in FIG. 14 is applied to the frequency division duplex transmission mode, and the correction signal receiving channel of the remote radio unit connected to the baseband unit BBU is specifically a standing wave detection channel; as shown in FIG.
  • the base station is applied to the frequency division duplex transmission mode, and the correction signal receiving channel of the remote radio unit connected to the baseband unit BBU is specifically configured as a correction receiving channel, which is different from the service receiving channel and the service sending channel.
  • the detection signal receiving channel of the remote radio unit connected to the baseband unit BBU is specifically a service receiving channel.
  • the base station shown in FIG. 16 is applied to the time division duplex transmission mode. . The details will be described below.
  • FIG. 14 is a schematic diagram of a fourth embodiment of a base station according to an embodiment of the present invention.
  • the base station includes a baseband unit BBU as shown in FIG. 9, and the BBU can be connected to at least one remote radio unit RRU having at least one standing wave detecting channel (corresponding to a correction signal receiving channel), the station The wave detection channel is the same as the frequency of operation of the service transmission channel of the remote radio unit RRU.
  • the standing wave detecting channel is configured to receive a correction signal looped back through the antenna, and Transmitting, by the baseband unit BBU, the correction signal of the antenna loopback, so that the baseband unit BBU calculates a correction coefficient of each service transmission channel according to the correction signal of the antenna loopback, and performs channel correction on each service transmission channel;
  • the correction signal of the antenna loopback includes at least a correction signal of the antenna loopback transmitted by each service transmission channel of the first remote radio unit RRU.
  • the remote radio unit connected to the baseband unit BBU has at least one standing wave detecting channel, and the standing wave detecting channel and the service transmitting channel of the remote radio unit RRU work.
  • the receiving unit 902 is specifically configured to: receive a correction signal transmitted by each of the service transmitting channels of the remote radio unit RRU of the antenna loopback fed by the standing wave detecting channel.
  • FIG. 15 is a schematic diagram of a fifth embodiment of a base station according to an embodiment of the present invention.
  • the base station includes a baseband unit BBU as shown in FIG. 9, and the BBU can be connected to at least one remote radio unit RRU, and at least one of the RRUs shown has at least one correcting channel (corresponding to a correction signal receiving channel),
  • the correcting and receiving channel is the same as the working frequency of the service transmitting channel of the remote radio unit RRU, and is used for receiving the correction signal sent by the R05 service transmitting channel of the antenna loopback.
  • the remote radio unit that is in communication with the baseband unit BBU has at least one correcting channel, and the correcting receiving channel and the service transmitting channel of the remote radio unit RRU The working frequency is the same, and the correcting and receiving channel is different from the service receiving channel, and the receiving unit 902 is specifically configured to: receive the service loop of the remote loop unit RRU of the antenna loopback of the corrected receiving channel feed Correction signal transmitted by the channel.
  • FIG. 16 is a schematic diagram of a sixth embodiment of a base station according to an embodiment of the present invention.
  • the illustrated base station can be applied to a TDD system.
  • the base station includes a baseband unit BBU as shown in FIG. 9, and the BBU can be connected to at least one remote radio unit RRU, where the RRU includes a service transmission channel and a service receiving channel (corresponding to a correction signal receiving channel).
  • the service transmission channel is configured to send a correction signal
  • the service receiving channel is configured to receive a correction signal sent by each RTU service transmission channel of the antenna loopback.
  • the remote radio unit that is in communication with the baseband unit BBU has at least two service receiving channels, and the receiving unit 902 is specifically configured to: receive the service receiving channel feed.
  • the antenna loops back the correction signal transmitted at each of the service transmission channels of the remote radio unit RRU.
  • the BBU shown in FIG. 9 can also be applied to the TDD system.
  • FIG. 10 is a schematic diagram of a third embodiment of a baseband unit BBU according to an embodiment of the present invention.
  • an embodiment of the present invention further provides a baseband unit BBU including at least one processor 1001 (for example, a CPU), a memory 1002, and at least one communication bus 1003 for implementing these devices. Connection communication between.
  • the processor 1001 is configured to execute an executable module, such as a computer program, stored in the memory 1002.
  • the memory 1002 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • the memory 1002 stores a program 10021 that can be executed by the processor 1001, the program comprising: transmitting a correction signal to a remote radio unit RRU communicatively coupled to the baseband unit BBU; receiving the remote end a correction signal transmitted by each of the service transmission channels of the remote radio unit RRU by the antenna of the radio frequency unit RRU, which is fed by the standing wave detection channel; and the services of the remote radio unit RRU according to the received antenna loopback
  • the correction signal transmitted by the transmitting channel calculates the correction coefficient of each service transmission channel, and performs channel correction for each service transmission channel.
  • the program 10021 may further include: when determining that the quality of the corrected signal of the received first group of antenna loopbacks is unreliable, acquiring a correction signal of the second group of antenna loopbacks, and using the obtained correction signals of the first group of antenna loopbacks And a correction signal of the second group of antenna loopbacks is used to calculate a correction coefficient of each service transmission channel to perform channel correction on each service transmission channel.
  • the program 10021 may further include: when the remote radio unit connected to the baseband unit BBU has only one standing wave detection channel, when the quality of the correction signal of the first group of antenna loops received by the receiving unit is determined to be unreliable Transmitting, to the remote radio unit RRU communicatively coupled to the baseband unit BBU, a second set of correction signals; and acquiring a second set of correction signals transmitted by the remote radio unit RRU of the received antenna loopback as a second Correction signal for group antenna loopback.
  • the program 10021 may further include: acquiring a first correction coefficient set according to the correction signal of the first group of antenna loopbacks; acquiring a second correction coefficient set according to the correction signal of the second group of antenna loopbacks; acquiring the first correction coefficient set And an intersection of the second set of correction coefficients, using a correction coefficient corresponding to any service transmission channel in the intersection to obtain a correction coefficient of a service transmission channel corresponding to a correction signal whose signal quality is untrustworthy, to obtain a service transmission channel of all
  • the correction coefficient uses the correction system of all the service transmission channels obtained to perform channel correction on each service transmission channel.
  • the program 10021 may further include: shooting at the remote end according to the received loopback of the antenna a correction signal transmitted by each service transmission channel of the frequency unit RRU, performing channel estimation on each service transmission channel, and obtaining a channel response value of each service transmission channel;
  • each service transmission channel is a service transmission channel in each service transmission channel;
  • the correction coefficient is obtained by using the obtained delay difference, and the channel response value of each service transmission channel after compensation is obtained by using the correction coefficient to perform channel compensation.
  • the program 10021 may further include: obtaining a phase difference between each service transmission channel and a reference transmission channel by using a channel response value of each service transmission channel, and obtaining a delay difference between each service transmission channel and the reference transmission channel by using the acquired phase difference; or Transmitting the channel response value of each service transmission channel to the time domain, and obtaining the time domain sample corresponding to the maximum modulus value of the response value of each service transmission channel as the delay of the service transmission channel, thereby obtaining each service transmission channel.
  • FIG. 11 is a schematic diagram of a first embodiment of a method for correcting a remote radio unit channel according to an embodiment of the present invention.
  • a remote radio unit channel correction method is applied to the first remote radio unit RRU side, the first remote radio unit RRU has a communication connection with the baseband unit BBU, and the first remote radio unit RRU includes a service transmission.
  • Each service transmission channel of the first remote radio unit RRU transmits a correction signal, and the correction signal is sent by the baseband unit BBU to the first remote radio unit RRU.
  • the standing wave detection channel of the first remote radio unit RRU receives the correction signal looped back through the antenna, and sends the correction signal of the antenna loopback to the baseband unit BBU, so that the baseband unit BBU is according to the
  • the correction signal of the loopback of the antenna calculates a correction coefficient of each service transmission channel, and performs channel correction on each service transmission channel respectively;
  • the correction signal of the antenna loopback includes at least the loopback of the antenna at the first remote radio unit RRU A correction signal transmitted by each service transmission channel.
  • the baseband unit BBU further has a communication connection with the second remote radio unit RRU, the second remote radio unit RRU includes a service transmission channel, and the service transmission channel is configured to transmit a correction signal, the correction signal Is from the baseband unit BBU to the second distal end Transmitted by the radio unit RRU;
  • the standing wave detection channel of the first remote radio unit RRU receives the correction signal looped back through the antenna, and sends the correction signal of the antenna loopback to the baseband unit BBU, so that the baseband unit BBU is according to the antenna.
  • the correction signal of the loopback calculates the correction coefficient of each service transmission channel, and the channel correction for each service transmission channel is specifically as follows:
  • the standing wave detecting channel of the first remote radio unit RRU receives a correction signal transmitted by each of the service transmitting channels of the first remote radio unit RRU looped back through the antenna, and the second loop of the antenna loopback a correction signal transmitted by each service transmission channel of the radio frequency unit RRU, and transmitting, to the baseband unit BBU, a correction signal transmitted by each of the service transmission channels of the first remote radio unit RRU and the antenna loopback of the antenna loopback a correction signal transmitted by each service transmission channel of the second remote radio unit RRU, such that the baseband unit BBU transmits according to the service loop of the second remote radio unit RRU according to the antenna loopback
  • the correction signal and the correction signal transmitted by each of the service transmission channels of the first remote radio unit RRU of the antenna loopback calculate a correction coefficient of each service transmission channel, and perform channel correction for each service transmission channel.
  • FIG. 12 is a schematic diagram of a second embodiment of a method for correcting a remote radio unit channel according to an embodiment of the present invention.
  • a method for correcting a remote radio unit channel is applied to a BBU side of a baseband unit, wherein the baseband unit BBU is communicatively coupled to at least one remote radio unit, and the at least one remote radio unit has a standing wave detection channel and a service transmission channel.
  • the working frequency of the standing wave detecting channel is the same as the working frequency of the service transmitting channel, and the method includes:
  • the baseband unit BBU sends a correction signal to a remote radio unit RRU communicatively coupled to the baseband unit BBU.
  • the baseband unit BBU receives a correction signal transmitted by each of the service transmission channels of the remote radio unit RRU of the antenna loopback fed by the standing wave detecting channel.
  • the baseband unit BBU calculates a correction coefficient of each service transmission channel according to the received correction signal sent by each antenna transmission channel of the remote radio unit RRU, and performs channel correction on each service transmission channel.
  • the baseband unit BBU is communicatively coupled to at least two remote radio units, and at least one of the at least two remote radio units has a standing wave detection channel.
  • the method further includes:
  • the correction signal calculates the correction coefficient of each service transmission channel to perform channel correction for each service transmission channel.
  • the method further includes:
  • the obtaining the correction signal of the second group of antenna loopbacks includes:
  • the calculating the correction coefficients of each service transmission channel by using the acquired correction signals of the first group of antenna loops and the correction signals of the second group of antenna loopbacks include:
  • the correction signal of the group antenna loopback acquires a second channel set, where the second channel set is composed of a service transmission channel that performs channel correction and corrects correction by using the correction signal looped back by the second group antenna; acquiring the first channel And collecting, by using the correction coefficient corresponding to any service transmission channel in the intersection, a correction coefficient of a service transmission channel corresponding to the correction signal with unreliable signal quality, to obtain a service transmission channel of all services
  • the correction coefficient uses the correction system of all the service transmission channels obtained to perform channel correction on each service transmission channel.
  • the calculating a correction coefficient of each service transmission channel according to the received correction signal sent by each of the service transmission channels of the remote radio unit RRU of the antenna loopback, and performing channel correction for each service transmission channel respectively includes:
  • the correction coefficient is obtained by using the obtained delay difference, and the channel is compensated for each service transmission channel by using the correction coefficient.
  • obtaining a delay difference between each service transmission channel and the reference transmission channel includes:
  • FIG. 13 is a schematic diagram of a third embodiment of a method for correcting a remote radio unit channel according to an embodiment of the present invention.
  • a remote radio unit channel correction method is applied to a baseband unit BBU, where the baseband unit BBU is applied to a base station, and the baseband unit BBU is communicably connected to at least one remote radio unit, and the at least one remote radio unit Having a service transmission channel and a correction signal receiving channel, the method comprising:
  • the remote signal unit connected to the baseband unit BBU has a correction signal receiving channel, which is specifically a standing wave detection channel.
  • the remote radio unit has at least one standing wave detecting channel, and the standing wave detecting channel is opposite to the working frequency of the service transmitting channel of the remote radio unit RRU.
  • the correction signal transmitted by each of the service transmission channels of the remote radio unit RRU that receives the antenna loopback fed by the correction signal receiving channel includes:
  • a correction signal transmitted by each of the service transmission channels of the remote radio unit RRU is received by the antenna loopback fed by the standing wave detection channel.
  • the above method embodiment can be applied to the base station shown in FIG.
  • the remote signal unit that is communicably connected to the baseband unit BBU has the correction signal receiving channel, specifically, a correction channel
  • the remote radio unit has at least one correcting channel, the correcting channel is the same as the working frequency of the service transmitting channel of the remote radio unit RRU, and the correcting channel is different from the service receiving channel
  • Receiving, by the correction signal receiving channel, the antenna loopback, the correction signal transmitted by each of the service transmitting channels of the remote radio unit RRU includes: receiving the antenna loopback of the corrected channel feed at the remote radio unit RRU The correction signal transmitted by each service transmission channel.
  • the remote signal unit that is in communication with the baseband unit BBU has the correction signal receiving channel, which is specifically a service receiving channel, and the far The radio frequency unit has a service receiving channel
  • the correction signal transmitted by each of the service transmitting channels of the remote radio unit RRU that receives the antenna loop back fed by the correction signal receiving channel includes: receiving the service receiving channel feed The antenna loops back the correction signal transmitted at each of the service transmission channels of the remote radio unit RRU.
  • the invention may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.
  • the various embodiments in the specification are described in a progressive manner, and the same or similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from the other embodiments.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及通信技术领域,特别是一种远端射频单元通道校正方法和装置,第一远端射频单元与基带单元具有通信连接,第一远端射频单元包括业务发射通道以及驻波检测通道,业务发射通道的工作频点与驻波检测通道的工作频点相同,其中:业务发射通道用于发射校正信号,所述校正信号是由所述基带单元向所述第一远端射频单元发送的;驻波检测通道用于接收通过天线环回的校正信号,并向基带单元发送所述天线环回的校正信号,以使得基带单元根据所述天线环回的校正信号计算各业务发射通道的校正系数,并对各业务发射通道进行通道校正;所述天线环回的校正信号至少包括天线环回的在所述第一远端射频单元的各业务发射通道发射的校正信号。

Description

一种远端射频单元通道校正方法、装置和系统
本申请要求2013年09月13日提交中国专利局、申请号为201310419696.7,发明名称为《一种远端射频单元通道校正方法、装置和系统》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别是涉及一种远端射频单元通道校正方法、装置和系统。
背景技术
在LTE(Long Term Evolution,长期演进)系统中,引入了CL-MIMO(Closed-Loop Multiple-Input Multiple-Output,闭环复用多路输入输出)技术。在CL-MIMO中,终端对信道状态进行测量,在给定的PMI(Precoding Matrix Indication,预编码矩阵指示符)码本集合中按照某种准则选择与信道匹配程度最好的PMI码本上报给基站,由基站根据终端上报的PMI码本选择对应的预编码矩阵对下行发射数据进行加权,以此来获得发射端的阵列增益。在CL-MIMO中,如果发射端RRU(Remote Radio Unit,远端射频单元)的通道之间存在着不同的时延差,将严重恶化系统性能。因此,为了提升系统性能,必须进行RRU的通道校正。
在CL-MIMO中,发射端可以采用2T2R(即两个发射通道两个接收通道)结构或者4T4R(即4个发射通道4个接收通道)结构。在现有LTE系统中,大部分采用2T2R结构。为了提升系统的性能,将系统配置成4T4R的结构,存在两种可行的实现方式:一种是直接使用具有4T4R的新RRU替换现有的2T2R的RRU;一种是将现有的两个2T2R的RRU双拼成一个具有4T4R功能的RRU。对于第一种实现方式,直接替换现有RRU将会带来成本的上升以及资源浪费;对于第二种实现方式,由于不同RRU的通道 之间具有较大的时延差,将会造成系统性能的下降。因此需要对双拼的两个RRU进行联合通道校正,以使得不同的RRU的通道之间的时延差保持一致。
现有技术存在一种RRU间的联合通道校正方法,应用于TDD(Time Division Duplex,时分双工)系统中。如图1所示,为现有的TDD系统下双拼RRU的通道校正方法示意图。在这种方法中,RRU0和RRU1先完成自校正,然后RRU0和RRU1通过其中一个RRU的业务发射通道发射校正信号,由RRU的业务接收通道接收通过天线环回的校正信号,通过环回的校正信号完成RRU0和RRU1的通道间的联合校正。
在实现本发明的过程中,发明人发现现有技术至少存在以下缺陷:现有技术提供的RRU间的联合通道校正方法,只能适用于TDD系统中,却无法适用于FDD(Frequency Division Duplex,频分双工)系统的RRU间的联合校正。这是因为,在FDD系统中,业务发射通道和业务接收通道的工作频点不一致,无法使用业务接收通道接收业务发送通道发射的校正信号,因此上述方法无法应用到FDD系统中的RRU间的通道校正。现有技术并不存在FDD模式下的2T2R的RRU通道校正方法,这样对于双拼RRU来说就无法保证RRU通道间的时延一致性,影响了系统的性能。
发明内容
为解决上述技术问题,本发明实施例提供了一种远端射频单元通道校正方法、装置和系统,可以实现FDD模式下远端射频单元通道间的校正,以实现远端射频单元通道间的时延一致,以提高系统性能。
技术方案如下:
根据本发明实施例的第一方面,公开了一种第一远端射频单元RRU,所述第一远端射频单元RRU应用于基站中,所述基站还包括基带单元BBU,所述第一远端射频单元RRU与基带单元BBU具有通信连接,所述 第一远端射频单元RRU包括业务发射通道以及至少一个驻波检测通道,所述业务发射通道的工作频点与所述驻波检测通道的工作频点相同,其中:
所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第一远端射频单元RRU发送的;
所述驻波检测通道用于接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算各业务发射通道的校正系数,并对各业务发射通道进行通道校正;所述天线环回的校正信号至少包括天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号。
结合本发明的第一方面,本发明还具有第一种可能,其中,所述基带单元BBU还与第二远端射频单元RRU具有通信连接,所述第二远端射频单元RRU包括业务发射通道,所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第二远端射频单元RRU发送的;
则所述天线环回的校正信号还包括天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号;
则所述驻波检测通道具体用于:
接收通过天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及通过天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,并向基带单元BBU发送所述天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,以使得所述基带单元BBU根据所述天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,并分别对各业务发射通道进行通道校正。
根据本发明实施例的第二方面,公开了一种基带单元BBU,所述基带 单元BBU应用于基站中,所述基带单元BBU与至少一个远端射频单元通信连接,所述至少一个远端射频单元具有至少一个驻波检测通道以及业务发射通道,所述驻波检测通道的工作频点与所述业务发射通道的工作频点相同,其中,所述基带单元BBU包括:
发送单元,用于向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;
接收单元,用于接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号;
第一校正单元,用于根据所述接收单元接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别并对各业务发射通道进行通道校正。
结合本发明的第二方面,本发明还具有第二种可能,其中,所述基带单元BBU与至少两个远端射频单元通信连接,所述至少两个远端射频单元中至少有一个远端射频单元具有驻波检测通道。
结合本发明的第二方面,本发明还具有第三种可能,其中,所述第一校正单元还用于:
当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
结合本发明的第二方面和本发明的第三种可能,本发明还具有第四种可能,其中,当与所述基带单元BBU相连的远端射频单元仅有一个驻波检测通道时,则所述发送单元还用于:
当所述第一校正单元判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,向与所述基带单元BBU通信连接的远端射频单元RRU发送第二组校正信号;
则当所述第一校正单元获取第二组天线环回的校正信号时,所述第一校正单元具体用于:
所述第一校正单元获取所述接收单元接收的天线环回的在所述远端射频单元RRU发送的第二组校正信号作为第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
结合本发明的第二方面和本发明的第三种可能和第四种可能,本发明还具有第五种可能,其中,当所述第一校正单元利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算业务发射通道的校正系数时,所述第一校正单元具体用于:
根据第一组天线环回的校正信号获取第一通道集合,所述第一通道集合由利用所述第一组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;根据第二组天线环回的校正信号获取第二通道集合,所述第二通道集合由利用所述第二组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;获取所述第一通道集合与所述第二通道集合的交集,利用所述交集中的任一业务发射通道对应的校正系数获取信号质量不可信的校正信号对应的业务发射通道的校正系数,以获得全部业务发射通道的校正系数。
结合本发明的第二方面,本发明还具有第六种可能,其中,当所述第一校正单元根据所述接收单元接收的所述天线环回的在远端射频单元RRU的业务发射通道发射的校正信号计算业务发射通道的校正系数,并对业务发射通道进行通道校正时,则所述第一校正单元具体用于:
根据所述接收单元接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号,对各业务发射通道进行通道估计,获得所述各业务发射通道的通道响应值;
根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准 发射通道的时延差;所述基准发射通道为各业务发射通道中的一个业务发射通道;
利用获得的时延差获得校正系数,利用所述校正系数对各业务发射通道进行通道补偿。
结合本发明的第二方面和本发明的第六种可能,本发明还具有第七种可能,其中,当所述第一校正单元根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差时,则所述第一校正单元具体用于:
利用各业务发射通道的通道响应值获得各业务发射通道与基准发射通道的相位差,利用获取的相位差获得各业务发射通道与基准发射通道的时延差;
或者
所述第一校正单元具体用于将各业务发射通道的通道响应值变换到时域,分别获得各业务发射通道响应值的最大模值对应的时域样点作为所述业务发射通道的时延,以此获得各业务发射通道与基准发射通道的时延差。
根据本发明的第三方面,公开了一种基带单元BBU,所述基带单元BBU应用于基站中,所述基带单元BBU与至少一个远端射频单元通信连接,所述至少一个远端射频单元具有业务发射通道以及至少一个校正信号接收通道,所述基带单元BBU包括:
发送单元,用于向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;
接收单元,用于接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号;
第二校正单元,用于根据所述接收单元接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号来计算校正系数,当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二 组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
结合本发明的第三方面,本发明还具有第八种可能,其中,当所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述至少一个校正信号接收通道具体为驻波检测通道,所述驻波检测通道与所述远端射频单元RRU的业务发射通道的工作频点相同,则所述接收单元具体用于:
接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
结合本发明的第三方面,本发明还具有第九种可能,其中,当所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述至少一个校正信号接收通道具体为校正收通道,所述校正收通道与所述远端射频单元RRU的业务发射通道的工作频点相同,所述校正收通道不同于所述业务接收通道,则所述接收单元具体用于:
接收所述校正收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
结合本发明的第三方面,本发明还具有第十种可能,其中,当所述基带单元BBU应用于时分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述至少一个校正信号接收通道具体为业务接收通道,则所述接收单元具体用于:
接收所述业务接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
根据本发明的第四方面,公开了一种基站,所述基站包括基带单元BBU和至少一个远端射频单元RRU,所述远端射频单元RRU与基带单元BBU 具有通信连接,所述远端射频单元RRU包括业务发射通道以及至少一个驻波检测通道,所述业务发射通道的工作频点与所述驻波检测通道的工作频点相同,其中:
所述基带单元用于向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;以及接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号;根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正;
所述远端射频单元RRU用于通过所述业务发射通道发射基带单元发送的校正信号;以及接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号。
根据本发明的第五方面,公开了一种基站,所述基站包括基带单元BBU和至少两个远端射频单元RRU,所述至少两个远端射频单元RRU包括第一远端射频单元和第二远端射频单元,所述第一远端射频单元具有至少一个驻波检测通道,所述驻波检测通道的工作频点与所述至少两个远端射频单元的各业务发射通道的工作频点相同,其中:
所述基带单元用于向与所述基带单元BBU通信连接的第一远端射频单元和第二远端射频单元发送校正信号;以及接收所述驻波检测通道馈送的天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,根据所述天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别并对各业务发射通道进行通道校正;
所述第一远端射频单元用于通过业务发射通道发射基带单元发送的校正信号;以及通过所述驻波检测通道接收通过天线环回的校正信号,并向 基带单元BBU发送所述天线环回的校正信号;所述天线环回的校正信号包括天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号;
所述第二远端射频单元用于通过业务发射通道发射基带单元发送的校正信号。
结合本发明的第五方面,本发明还具有第十一种可能,其中,所述第二远端射频单元具有至少一个驻波检测通道,则所述第二远端射频单元还用于:
通过所述驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号;所述天线环回的校正信号包括天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号。
根据本发明的第六方面,公开了一种远端射频单元通道校正方法,应用于第一远端射频单元RRU侧,所述第一远端射频单元RRU与基带单元BBU具有通信连接,所述第一远端射频单元RRU包括业务发射通道以及至少一个驻波检测通道,所述业务发射通道的工作频点与所述驻波检测通道的工作频点相同,则所述方法包括:
所述第一远端射频单元RRU的各业务发射通道发射校正信号,所述校正信号是由所述基带单元BBU向所述第一远端射频单元RRU发送的;
所述第一远端射频单元RRU的驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算各业务发射通道的校正系数,并对各业务发射通道进行通道校正;所述天线环回的校正信号至少包括天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信 号。
结合本发明的第六方面,本发明还具有第十二种可能,其中,所述基带单元BBU还与第二远端射频单元RRU具有通信连接,所述第二远端射频单元RRU包括业务发射通道,所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第二远端射频单元RRU发送的;
则所述第一远端射频单元RRU的驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算各业务发射通道的校正系数,并对各业务发射通道进行通道校正具体为:
所述第一远端射频单元RRU的驻波检测通道接收通过天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及通过天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,并向基带单元BBU发送所述天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,以使得所述基带单元BBU根据所述天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,并分别对各业务发射通道进行通道校正。
根据本发明的第七方面,公开了一种远端射频单元通道校正方法,应用于基带单元BBU侧,所述基带单元BBU和至少一个远端射频单元通信连接,所述至少一个远端射频单元具有至少一个驻波检测通道以及业务发射通道,所述驻波检测通道的工作频点与所述业务发射通道的工作频点相同,则所述方法包括:
所述基带单元BBU向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;
所述基带单元BBU接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号;
所述基带单元BBU根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别并对各业务发射通道进行通道校正。
结合本发明的第七方面,本发明还具有第十三种可能,其中,所述基带单元BBU与至少两个远端射频单元通信连接,所述至少两个远端射频单元中至少有一个远端射频单元具有驻波检测通道。
结合本发明的第七方面,本发明还具有第十四种可能,其中,所述方法还包括:
当判断接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
结合本发明的第七方面,本发明还具有第十五种可能,其中,当与所述基带单元BBU相连的远端射频单元仅有一个驻波检测通道时,则所述方法还包括:
当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,向与所述基带单元BBU通信连接的远端射频单元RRU发送第二组校正信号;
则所述获取第二组天线环回的校正信号包括:
获取接收的天线环回的在所述远端射频单元RRU发送的第二组校正信号作为第二组天线环回的校正信号。
结合本发明的第七方面、本发明的第十四种可能以及本发明的第一十五种可能,本发明还具有第十六种可能,其中,所述利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校 正系数包括:
根据第一组天线环回的校正信号获取第一通道集合,所述第一通道集合由利用所述第一组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;根据第二组天线环回的校正信号获取第二通道集合,所述第二通道集合由利用所述第二组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;获取所述第一通道集合与所述第二通道集合的交集,利用所述交集中的任一业务发射通道对应的校正系数获取信号质量不可信的校正信号对应的业务发射通道的校正系数,以获得全部业务发射通道的校正系数,利用获得的全部业务发射通道的校正系对各业务发射通道进行通道校正。
结合本发明的第七方面,本发明还具有第十七种可能,其中,所述根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别并对各业务发射通道进行通道校正包括:
根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号,对各业务发射通道进行通道估计,获得所述各业务发射通道的通道响应值;
根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差;所述基准发射通道为各业务发射通道中的一个业务发射通道,且所述业务发射通道满足预设条件;
利用获得的时延差获得校正系数,利用所述校正系数对各业务发射通道进行通道补偿。
结合本发明的第七方面和本发明的第十七种可能,本发明还具有第十八种可能,其中,所述根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差包括:
利用各业务发射通道的通道响应值获得各业务发射通道与基准发射通 道的相位差,利用获取的相位差获得各业务发射通道与基准发射通道的时延差;
或者
将各业务发射通道的通道响应值变换到时域,分别获得各业务发射通道的响应值的最大模值对应的时域样点作为所述业务发射通道的时延,以此获得各业务发射通道与基准发射通道的时延差。
根据本发明实施例的第八方面,公开了一种远端射频单元通道校正方法,应用于基带单元BBU侧,所述基带单元BBU应用于基站中,所述基带单元BBU与至少一个远端射频单元通信连接,所述至少一个远端射频单元具有业务发射通道以及至少一个校正信号接收通道,所述方法包括:
向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;
接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号;
根据所述接收单元接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号,当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
结合本发明的第八方面,本发明还具有第十九种可能,其中,当所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述至少一个校正信号接收通道具体为驻波检测通道,所述驻波检测通道与所述远端射频单元RRU的业务发射通道的工作频点相同,则所述接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号包括:
接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
结合本发明的第八方面,本发明还具有第二十种可能,其中,当所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述至少一个校正信号接收通道具体为校正收通道,所述校正收通道与所述远端射频单元RRU的业务发射通道的工作频点相同,所述校正收通道不同于所述业务接收通道,则所述接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号包括:
接收所述校正收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
结合本发明的第八方面,本发明还具有第二十一种可能,其中,当所述基带单元BBU应用于时分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述至少一个校正信号接收通道具体为业务接收通道,则所述接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号包括:
接收所述业务接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
本发明实施例的一个方面能够达到的有益效果为:在本发明提供的方法和装置中,与基带单元通信连接的远端射频单元RRU具有至少一个驻波检测通道,所述驻波检测通道的工作频点与RRU的业务发射通道的工作频点相同,从而使得驻波检测通道能够接收通过天线环回的在RRU的各业务发射通道发射的校正信号,从而使得BBU能够根据天线环回的在RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正,从而实现了FDD模式下远端射频单元通道间的校正,并实现了远端射频单元通道间的时延一致,显著提高了系统性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术的TDD系统下双拼RRU的通道校正方法示意图;
图2为本发明实施例提供的基站第一实施例示意图;
图3为本发明实施例提供的基站第二实施例示意图;
图4为本发明实施例提供的基站第三实施例示意图;
图5为本发明实施例提供的远端射频单元RRU第一实施例示意图;
图6为本发明实施例提供的远端射频单元RRU第二实施例示意图;
图7为本发明实施例提供的远端射频单元RRU第三实施例示意图;
图8为本发明实施例提供的基带单元BBU第一实施例示意图;
图9为本发明实施例提供的基带单元BBU第二实施例示意图;
图10为本发明实施例提供的基带单元BBU第三实施例示意图;
图11为本发明实施例提供的远端射频单元通道校正方法第一实施例示意图;
图12为本发明实施例提供的远端射频单元通道校正方法第二实施例示意图;
图13为本发明实施例提供的远端射频单元通道校正方法第三实施例示意图;
图14为本发明实施例提供的基站第四实施例示意图;
图15为本发明实施例提供的基站第五实施例示意图;
图16为本发明实施例提供的基站第六实施例示意图。
需要说明的是,上述附图中,由虚线表示的是校正信号的发射走向,由点虚线表示的校正信号的接收走向。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明实施例提供了一种基站。如图2所示,为本发明实施例提供的基站第一实施例示意图。本发明提供的基站可以应用于包括但不限于FDD系统、COMP系统或者其他通信系统中。如无特别说明,本发明提供的基站、RRU、BBU应用于FDD传输模式下。
一种基站,所述基站包括基带单元BBU和至少一个远端射频单元RRU,所述远端射频单元RRU与基带单元BBU具有通信连接,所述远端射频单元RRU包括一个或多个业务发射通道以及驻波检测通道,所述业务发射通道的工作频点与所述驻波检测通道的工作频点相同,其中:
所述基带单元用于向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;以及接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号;根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正;
所述远端射频单元RRU用于通过所述业务发射通道发射基带单元发送的校正信号;以及接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号。
在图2所示的基站中,基带单元BBU1与一个远端射频单元RRU1通信连接。所示RRU1为4T4R的RRU,其具有4个业务发射通道(
Figure PCTCN2014086480-appb-000001
)和4个业务接收通道(
Figure PCTCN2014086480-appb-000002
)。所示RRU具有至少一个驻波检测通道(图中未示出),所述驻波检测通道和所述业务发射通道可以集成在一起,也可以在物理上分离。下面对驻波检测通道进行简单介绍。通常而言,驻波检测通道与业务发射通道具有对应关联关系,一个驻波检测通道与一个业务发射通道对应,用于检测对应业务发射通道的驻波比。其中,RRU前向发送的射频信号在经过不连续的传输介质时,射频信号会反射回来,反射回的信号称之为驻波。反射回来的信号与发射的信号会进行叠加,叠加时由于反射信号与发射信号的相位不同而导致信号幅值不同,相位相同的 地方幅值最大,相位相反的地方幅值最小,幅值的最大值与最小值的比称之为驻波比。驻波检测通道即用于计算对应的业务发射通道反射信号的驻波比。当然,其他用于实现驻波检测通道功能的通路、电路、装置或模块,只要其工作频点与业务发射通道相同,也属于本发明的保护范围。本领域技术人员可以理解的是,RRU可以仅有一个驻波检测通道为各业务发射通道共用(例如在驻波检测通道中设置双向开关,通过双向开关的闭合实现和其中一个业务发射通道相连或断开的情形,但不限于此),也可以是每一个业务发射通道均对应一个驻波检测通道。其中,业务发射通道的数量大于等于驻波检测通道的数量。
如图所示,RRU1的业务发射通道
Figure PCTCN2014086480-appb-000003
具有对应的一个驻波检测通道(图中未示出驻波检测通道,但天线环回的校正信号经由与业务发射通道
Figure PCTCN2014086480-appb-000004
对应的驻波检测通道发送至BBU),所述驻波检测通道的工作频点与业务发射通道
Figure PCTCN2014086480-appb-000005
的工作频点相同。这样,由于驻波检测通道的工作频点与业务发射通道的工作频点相同,当BBU1向与其相连的RRU1发射校正信号时,校正信号可以通过RRU1的4个业务发射通道(
Figure PCTCN2014086480-appb-000006
)发射出去,然后由驻波检测通道接收通过天线环回的在RRU1的4个业务发射通道(
Figure PCTCN2014086480-appb-000007
)发射的校正信号,并将接收的天线环回的校正信号馈送至BBU1,以使得BBU1根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。需要说明的是,图2所示的RRU具有一个驻波检测通道,即仅有业务发射通道
Figure PCTCN2014086480-appb-000008
具有对应的驻波检测通道,本领域技术人员可以理解的是,RRU可以具有多个驻波检测通道,例如每个业务发射通道均具有一个驻波检测通道,当然,也可以是两个业务发射通道共用一个驻波检测通道。图中,由虚线表示的是校正信号的发射走向,由点虚线表示的校正信号的接收走向。
本发明实施例还提供了一种基站。如图3所示,为本发明实施例提供的基站第二实施例示意图。
一种基站,所述基站包括基带单元BBU和至少两个远端射频单元RRU,所述至少两个远端射频单元RRU包括第一远端射频单元RRU1和第二远端射频单元RRU2,所述第一远端射频单元具有驻波检测通道,所述驻波检测通道的工作频点与所述至少两个远端射频单元的各业务发射通道的 工作频点相同,其中:
所述基带单元用于向与所述基带单元BBU通信连接的第一远端射频单元和第二远端射频单元发送校正信号;以及接收所述驻波检测通道馈送的天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,根据所述天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。
所述第一远端射频单元用于通过业务发射通道发射基带单元发送的校正信号;以及通过所述驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号;所述天线环回的校正信号包括天线环回的在所述第一远端射频单元RRU1的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU2的各业务发射通道发射的校正信号。
所述第二远端射频单元用于通过业务发射通道发射基带单元发送的校正信号。
进一步地,在一种可能的实现方式中,所述第二远端射频单元具有至少一个驻波检测通道,则所述第二远端射频单元还用于:
通过所述驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号;所述天线环回的校正信号包括天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号。
具体实现时,所述基站可以具有多个RRU,其中至少一个RRU具有至少一个驻波检测通道。图3所示的是,基站包括两个远端射频单元RRU的情形。其中,所述两个远端射频单元包括第一远端射频单元RRU1和第二远端射频单元RRU2。如图3所示,第一远端射频单元RRU1包括两个业务发射通道(
Figure PCTCN2014086480-appb-000009
)和2个业务接收通道(
Figure PCTCN2014086480-appb-000010
),其中,业务发射通道
Figure PCTCN2014086480-appb-000011
具有对应的驻波检测通道,可以接收通过天线环回的校正信号。当然,本领域技术人员可以理解的是,具体实现时,也可以是业务发射通道
Figure PCTCN2014086480-appb-000012
具有 对应的驻波检测通道,或者是两个业务发射通道均具有对应的驻波检测通道,或者,两个业务发射通道共用一个驻波检测通道。第二远端射频单元RRU2包括两个业务发射通道(
Figure PCTCN2014086480-appb-000013
)和2个业务接收通道(
Figure PCTCN2014086480-appb-000014
),其中,业务发射通道
Figure PCTCN2014086480-appb-000015
具有对应的驻波检测通道,可以接收通过天线环回的校正信号。如图3所示,当BBU1向与其相连的RRU1和RRU2发射校正信号,校正信号可以通过RRU1的业务发射通道(
Figure PCTCN2014086480-appb-000016
)以及RRU2的业务发射通道(
Figure PCTCN2014086480-appb-000017
)发射出去,然后由业务发射通道
Figure PCTCN2014086480-appb-000018
对应的的驻波检测通道接收通过天线环回的在RRU1的2个业务发射通道发射的校正信号以及在RRU2的两个业务发射通道发射的校正信号,并将接收的天线环回的一组校正信号(包括4路校正信号)馈送至BBU1,以使得BBU1根据天线环回的在所述第二远端射频单元RRU2的各业务发射通道发射的校正信号以及在所述第一远端射频单元BBU1的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。其中,所述各业务发射通道包括RRU1的业务发射通道(
Figure PCTCN2014086480-appb-000019
)以及RRU2的业务发射通道(
Figure PCTCN2014086480-appb-000020
)。需要说明的是,图2所示的RRU1和RRU2均具有一个驻波检测通道,即业务发射通道
Figure PCTCN2014086480-appb-000021
Figure PCTCN2014086480-appb-000022
具有对应的驻波检测通道,本领域技术人员可以理解的是,RRU1和RRU2均可以具有多个驻波检测通道,例如每个业务发射通道均具有一个对应的驻波检测通道。当然,第一远端射频单元RRU1和第二远端射频单元RRU2也可以仅有一个RRU具有驻波检测通道。
需要说明的是,如图3所示的基站中,基带单元BBU分别与第一远端射频单元RRU1和第二远端射频单元RRU2通过光纤直连实现通信连接。具体实现时,基带单元BBU可以与第一远端射频单元RRU1直接通信连接,而与第二远端射频单元RRU2间接通信连接;或者,基带单元BBU可以与第一远端射频单元RRU1间接通信连接,而与第二远端射频单元RRU2直接通信连接。具体设置时,BBU与第一远端射频单元RRU1直接通信连接,第一远端射频单元RRU1与第二远端射频单元RRU2连接,从而实现了BBU与第二远端射频单元RRU2的间接通信连接。例如,BBU可以通过光纤与RRU1和RRU2其中一个RRU相连,该RRU通过另外一个光纤与另外一个RRU相连。在这一实现方式中,仍以RRU1和RRU2为2T2R的RRU为例进行说明,BBU在发送校正信号时,先向与BBU直 接通信连接的RRU1发送两路校正信号(对应RRU1的两个业务发射通道),然后经过一段时间,再发送与RRU2对应的两路校正信号(对应RRU2的两个业务发射通道),与RRU2对应的两路校正信号将通过RRU1发送至RRU2。由于BBU发送给两个RRU的信号在时间上是错开的,因此两个RRU均能接收到与其对应的校正信号。然后,分别在各自的业务发射通道上发射校正信号,天线环回的校正信号通过驻波检测通道馈送至BBU。
参见图4,为本发明实施例提供的基站第三实施例示意图。在图4中,基站包括多个远端射频单元RRU(RRU1,RRU2……RRUN)。其中,至少有一个RRU具有至少一个驻波检测通道。当然,也可以是每个RRU均具有驻波检测通道。
下面对基站中的基带单元BBU和远端射频单元RRU具体实现进行详细地说明。
参见图5,为本发明实施例提供的远端射频单元RRU第一实施例示意图。
一种第一远端射频单元RRU,所述第一远端射频单元RRU应用于基站中,所述基站还包括基带单元BBU,所述第一远端射频单元RRU与基带单元BBU具有通信连接,所述第一远端射频单元RRU包括一个或多个业务发射通道以及驻波检测通道,所述业务发射通道的工作频点与所述驻波检测通道的工作频点相同,其中:
所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第一远端射频单元RRU发送的。
所述驻波检测通道用于接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正;所述天线环回的校正信号至少包括天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号。
具体实现时,第一远端射频单元RRU具有业务发射通道以及至少一个驻波检测通道。图5所示的是,第一远端射频单元RRU具有4个业务发射通道和4个业务接收通道的情形。在本发明实施例中,基带单元BBU可以采用频分方式、码分方式或者其它方式向与其相连的RRU发射校正信号。BBU在RRU的业务发射通道上发射的校正信号可以相同,也可以不同。上 述校正信号可以是公共参考信号(CRS,Common Reference Signal),也可以是重新设计的其他具有优良特性的校正信号,此处不作限定。所述第一远端射频单元RRU的各业务发射通道发射接收的校正信号。较佳地,RRU把BBU发送的校正信号经过DAC(Digital to Analog Convertor)处理后将数字信号转换成模拟信号,然后再对获取的模拟信号进行滤波处理,以滤除不需要的信号分量,而后将处理后的校正信号输出给天馈单元(天线)。然后,天馈单元将校正信号通过空口辐射,校正信号在天线之间进行耦合,即校正信号通过天线与天线之间的无线空间进行传输,这时,每根天线均能收到其他天线的校正信号,同时每根天线发射的校正信号也会馈送到自身的回路。由于驻波检测通道的工作频点与业务发射通道的工作频点一致,因此其能够接收到天线环回的在各业务发射通道发射的校正信号,并能够将所述天线环回的校正信号馈送至基带单元BBU。举例说明,如图5所示的4T4R的RRU,假设BBU发送了4个校正信号(s1,s2,s3和s4),由RRU分别在4个发射通道上发射校正信号,这时驻波检测通道能够接收到天线空口环回的4个校正信号,然后将所述4个校正信号馈送至基带单元BBU。由于传输过程中信道衰落等原因,BBU接收到的4个校正信号与之前发射的4个校正信号将有所差异,即,此时BBU接收到的4个校正信号将分别为s1′,s2′,s3′和s4′。然后,基带单元BBU根据所述天线环回的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。基带单元BBU侧的具体实现将在稍后提供的实施例中进行详细地介绍。
参见图6,为本发明实施例提供的远端射频单元RRU第二实施例示意图。
在这一实施例中,第一远端射频单元RRU1应用至如图2或者图3所示的基站中。这时,基站包括基带单元BBU,所述基带单元BBU除了与第一远端射频单元RRU1通信连接外,所述基带单元BBU还与第二远端射频单元RRU2具有通信连接,所述第二远端射频单元RRU2包括一个或多个业务发射通道,所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第二远端射频单元RRU发送的。这时,第一远端射频单元RRU1的驻波检测通道还能够接收到天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号。具体实现时,则所述 驻波检测单元具体用于:接收通过天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及通过天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,并向基带单元BBU发送所述天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,以使得所述基带单元BBU根据所述天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。
图7为本发明实施例提供的远端射频单元RRU第三实施例示意图。
图7描述了本发明另一个实施例提供的远端射频单元RRU的结构,包括至少一个处理器701(例如CPU),存储器702,和至少一个通信总线703,用于实现这些装置之间的连接通信。处理器701用于执行存储器702中存储的可执行模块,例如计算机程序。存储器702可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。
在一些实施方式中,存储器702存储了程序7021,程序7021可以被处理器701执行,这个程序包括:通过各业务发射通道发射校正信号,所述校正信号是由与第一远端射频单元RRU相连的基带单元BBU向所述第一远端射频单元RRU发送的;利用至少一个驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正;所述天线环回的校正信号至少包括天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号。
其中,所述程序7021还可以包括:当与所述远端射频单元RRU进行通信连接的基带单元BBU还与第二远端射频单元RRU具有通信连接时,且所述第二远端射频单元RRU包括一个或多个业务发射通道,所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第二远端射频单元RRU发送的时,利用至少一个驻波检测单元接收通过天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以 及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,并向基带单元BBU发送所述天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,以使得所述基带单元BBU根据所述天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。
图8为本发明实施例提供的基带单元BBU第一实施例示意图。
一种基带单元BBU,所述基带单元BBU应用于基站中,所述基带单元BBU与至少一个远端射频单元通信连接,所述至少一个远端射频单元具有至少一个驻波检测通道以及一个或多个业务发射通道,所述驻波检测通道的工作频点与所述业务发射通道的工作频点相同,其中,所述基带单元BBU包括发送单元801、接收单元802和校正单元803,其中:
发送单元801,用于向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号。具体实现时,发送单元801可以采用频分方式、码分方式或者其它方式向与其相连的RRU发射校正信号。BBU在RRU的业务发射通道上发射的校正信号可以相同,也可以不同。上述校正信号可以是公共参考信号(CRS,Common Reference Signal),也可以是重新设计的其他具有优良特性的校正信号,此处不作限定。
接收单元802,用于接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
第一校正单元803,用于根据所述接收单元接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。
具体实现时,第一校正单元803具体用于:根据所述接收单元接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号,对各业务发射通道进行通道估计,获得所述各业务发射通道的通道响应值;根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差;利用获得的时延差获得校正系数,利用所述校正系数对各业务发射通道进行通道补偿。其中,所述基准发射通道为各业务发射通道 中的一个业务发射通道,所述业务发射通道满足预设条件。基准发射通道的校正系数可以为1。在本发明实施例中,可以根据某种原则从各业务发射通道中确定一个发射通道作为基准发射通道,例如,可以按照时延最小原则从上述各业务发射通道中确定一个发射通道作为基准发射通道;或者,可以按照编号最小原则选择编号最小的业务发射通道作为基准发射通道,例如将业务发射通道
Figure PCTCN2014086480-appb-000023
作为基准发射通道;或者,可以随机从各业务发射通道中确定一个作为基准发射通道,本发明对此不进行限定。
当第一校正单元利用各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差时,一种可能的实现方式包括:第一校正单元根据各业务发射通道的通道响应值获得各业务发射通道与基准发射通道的相位差,利用获取的相位差获得各业务发射通道与基准发射通道的时延差。举例进行说明,假设BBU向RRU发送的校正信号包括S1,S2,S3,S4,在RRU的各业务发射通道0-3上分别发射校正信号S1,S2,S3,S4,则接收单元802接收到的天线环回的校正信号为S1′,S2′,S3′和S4′,其中,S1′为S1经过业务发射通道1与驻波检测通道环回的信号,S2′为S2经过业务发射通道2与驻波检测通道环回的信号,S3′为S3经过发射通道3与驻波检测通道环回的信号,S4′为S4经过业务发射通道4与驻波检测通道环回的信号。校正单元803首先根据接收单元802接收到的驻波检测通道馈送的天线环回的校正信号,对业务发射通道0-3分别进行信道估计得到各业务发射通道的通道响应值,分别记为h(0,0,k)、h(0,1,k)、h(0,2,k),h(0,3,k)。以下以基准发射通道为业务发射通道
Figure PCTCN2014086480-appb-000024
为例说明如何计算业务发射通道0和业务发射通道1的时延差。以LTE系统为例,假设由h(0,0,k)表示驻波检测通道0的业务发射通道0的第k个子载波的通道响应值,h(0,1,k)表示驻波检测通道0的业务发射通道1的第k个子载波的通道响应值,h(0,2,k)表示驻波检测通道0的业务发射通道2的第k个子载波的通道响应值,h(0,3,k)表示驻波检测通道0的业务发射通道3的第k个子载波的通道响应值。将h(0,0,k)和h(0,1,k)进行共轭相乘处理,得到相乘结果,即得到业务发射通道0与业务发射通道1上子载波为k的相位差△θ2(k),然后在所有的子载波上计算一个等效的△θ2。然后,再利用获得的相位差计算得到时延差,计算方式为:
Figure PCTCN2014086480-appb-000025
其中,f表示子载波的频域宽度。
以此类推,分别计算得到各业务发射通道与基准发射通道的时延差。一种可能的实现方式中,将时延差作为校正系数。当然,也可以采用如下方式获得校正系数:
以在数据的频域进行补偿为例,校正系数的计算公式为:
Figure PCTCN2014086480-appb-000026
其中f表示子载波频域宽度,k表示子载波索引号,△τ表示第i个RRU的第j个发射通道相对于基准通道的时延差。
需要说明的是,当第一校正单元利用各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差时,一种可能的实现方式包括:校正单元将各业务发射通道的通道响应值变换到时域,分别获得各业务发射通道响应值的最大模值对应的时域样点作为所述业务发射通道的时延,以此获得各业务发射通道与基准发射通道的时延差。举例进行说明,假设BBU向RRU发送的校正信号包括S1,S2,S3,S4,在RRU的各业务发射通道0-3上分别发射校正信号S1,S2,S3,S4,则接收单元802接收到的天线环回的校正信号为S1′,S2′,S3′和S4′,其中,S1′为S1经过业务发射通道1与驻波检测通道环回的信号,S2′为S2经过业务发射通道2与驻波检测通道环回的信号,S3′为S3经过发射通道3与驻波检测通道环回的信号,S4′为S4经过业务发射通道4与驻波检测通道环回的信号。校正单元803首先根据接收单元802接收到的驻波检测通道馈送的天线环回的校正信号,对业务发射通道0-3分别进行信道估计得到各业务发射通道的通道响应值,分别记为h(0,0,k)、h(0,1,k)、h(0,2,k),h(0,3,k)。以下以基准发射通道为业务发射通道
Figure PCTCN2014086480-appb-000027
为例说明如何计算业务发射通道0和业务发射通道1的时延差。以LTE系统为例,假设由h(0,0,k)表示驻波检测通道0的业务发射通道0的第k个子载波的通道响应值,h(0,1,k)表示驻波检测通道0的业务发射通道1的第k个子载波的通道响应值,h(0,2,k)表示驻波检测通道0的业务发射通道2的第k个子载波的通道响应值,h(0,3,k)表示驻波检测通道0的业务发射通道3的第k个子载波的通道响应值。校正单元通过傅里叶变换将各业务发射通道的通道响应值变换到时域,然后在时域上计算各个发射通道与基准发射通道的时延差。举例说明,将业务发射通道0作为基准发射通道,通 道校正装置通过傅里叶变换分别将h(0,0,k)、h(0,1,k)、h(0,2,k),h(0,3,k)变换到时域,分别记为h(0,0,n),h(0,1,n),h(0,2,n)和h(0,3,n),其中,n表示时域样点,之后在h(0,0,n)上搜索最大模值,将这个最大模值对应的时域样点作为业务发射通道0的时延τ0,在h(0,1,n)上搜索最大模值,将这个最大模值对应的时域样点作为发射通道1的时延τ1,在h(0,2,n)上搜索最大模值,将这个最大模值对应的时域样点作为发射通道3的时延τ2,在h(0,3,n)上搜索最大模值,将这个最大模值对应的时域样点作为发射通道4的时延τ3。分别将两两通道的时延相减即得到时延差。例如,将τ1与τ0相减,得到发射通道1与发射通道0的时延差△τ1;将τ2与τ0相减,得到发射通道2与发射通道0的时延差△τ2;将τ3与τ0相减,得到发射通道3与发射通道0的时延差△τ3。之后将△τ1,△τ2和△τ3分别作为计算发射通道1,发射通道2和发射通道3的校正系数的因子,发射通道0的校正系数为1。
当第一校正单元利用获取的校正系数对各业务发射通道进行通道校正时,是通过计算得到的校正系数修正每个业务发射通道的发射数据以此实现对各业务发射通道的校正。下面进行详细地说明。
对于一个通信系统而言,在不进行校正的情形下,接收信号可以表示为:
Figure PCTCN2014086480-appb-000028
其中,r是接收信号,[h0 h1 h2 h3]是四个业务发射通道的响应值,
Figure PCTCN2014086480-appb-000029
是发射信号,n0表示噪声。
其中,[h0 h1 h2 h3]表示业务发射通道的响应值,为了实现对RRU各业务发射通道的校正,因此需要[h0 h1 h2 h3]的每个元素乘以校正因子βi,因此可以得到等效的通道响应[β0h0 β1h1 β2h2 β3h3]。
具体实现时,可以分别乘以
Figure PCTCN2014086480-appb-000030
这样就可以达到对通道响应进行修 正的目的。具体处理如公式(4)所示:
Figure PCTCN2014086480-appb-000031
具体实现时,可以通过修正发射数据来达到实现通道校正的目的,表示为:
Figure PCTCN2014086480-appb-000032
其中
Figure PCTCN2014086480-appb-000033
表示第i个RRU的第j个发射通道的校正系数,具体计算方法可以如公式(2)所示。Di,j(k)表示补偿前第i个RRU的第j个发射通道的第k个载波的频域响应,
Figure PCTCN2014086480-appb-000034
示补偿后第i个RRU的第j个发射通道的第k个载波的频域响应。至此,业务发射通道的校正完成。
发明人在实现本发明的过程中发现,由于某种原因可能导致驻波检测通道接收到的某个发射通道的信号质量不可信。其中,当判断接收的校正信号的信噪比小于预设门限时,确定所述校正信号的信号质量不可信。所述预设的门限可以根据需要设定。发明人经过研究发现,其中一种原因可以包括:由于当前的驻波检测通道接收到的自身的信号(即驻波检测通道对应的业务发射通道发射的校正信号),可能是经过RRU与射频线缆的接口或者射频线缆与天线之间的接口反射回来的信号,此时该信号没有经过射频线缆的传输或者没有经过天线以及天线间空口的传输,因此该信号如果当作有用信号进行传输,可能会造成计算得到的时延差误差变大,导致系统性能恶化。
发明人经过研究发现,另外一种原因可以包括:由于天线间的隔离度造成校正信号质量不可信。校正信号在天线间传输一般会衰减在30-50dB,甚至达到70-80dB,因此可能会出现某个接收通过天线接收到的校正信号经过中射频的滤波采样处理后,可能会变得非常小,甚至于完全低于噪声功率,此时该接收接天线接收到的某个发天线的信号质量非常差而导致校正系数计算不准。因此需要采用搭桥操作,以完成所有发端的联合通道校 正。
在本发明一种可能的实现方式中,第一校正单元还用于:当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
具体实现时,当与所述基带单元BBU相连的远端射频单元仅有一个驻波检测通道时,则所述发送单元还用于:当所述校正单元判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,向与所述基带单元BBU通信连接的远端射频单元RRU发送第二组校正信号;则所述校正单元具体用于获取所述接收单元接收的天线环回的在所述远端射频单元RRU发送的第二组校正信号作为第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
具体实现时,所述第一校正单元利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数可以包括:根据第一组天线环回的校正信号获取第一通道集合,所述第一通道集合由利用第一组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;根据第二组天线环回的校正信号获取第二通道集合,所述第二通道集合由利用第二组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;获取所述第一通道集合与所述第二通道集合的交集,利用所述交集中的任一业务发射通道对应的校正系数获取信号质量不可信的校正信号对应的业务发射通道的校正系数,以获得全部业务发射通道的校正系数。也就是说,利用所述交集中的任一业务发射通道对应的校正系数来获取其中一组中校正信号质量不可信的发射通道在另外一组校正信号中计算出来的对应的校正系数,以获得全部业务发射通道的校正系数。需要说明的是,如果利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数仍然不成功时,则需要获取第三组天线环回的校正信号、第四组天线环回的校正信号,并执行类似的处理,直到全部业务发射通道均能校正成功。下面举例进行说明。假设业务发射通道0的驻波检测通道记为RX0,可以接收到业务发射通道0/1/2/3的 校正信号,如果存在业务发射通道1与RX0之间的隔离度非常大,则RX0只能完成0/2/3的发通道校正,无法完成所有4个发通道的校正,这里记完成校正的业务发射通道集合为R0CalibSet={0 2 3},各自的校正系数为CalibCoefR0={Calib0Coef0 Calib0Coef2 Calib0Coef3},因为发通道1的接收信号质量不可信。而此时业务发射通道2的驻波检测通道记为RX2,也会同时接收到业务发射通道0/1/2/3的校正信号,且RX2接收到的业务发射通道3的校正信号不可信,因此在RX2上,可以完成业务发射通道0/1/2的联合通道校正,记完成校正的业务发射通道集合为R2CalibSet={0 1 2},各自的校正系数为CalibCoefR 2={Calib2Coef0 Calib2Coef1 Calib2Coef2}。此时通过把驻波检测通道0和2的结果进行搭桥操作才能完成所有发通道的校正,搭桥方式为:接收通道RX0和RX2以两者完成的发通道集合中的交集作为搭桥点,来实现两个完成校正的发通道的并集,具体操作为从R0CalibSet和R2CalibSet从发现两个集合中存在交集0和交集1,利用所述交集中的任一业务发射通道对应的校正系数获取信号质量不可信的校正信号对应的业务发射通道的校正系数,以获得全部业务发射通道的校正系数。例如,可以分别以业务发射通道0为基准进行校正系数的计算。如果按照发通道0的校正系数进行计算,也就是所有的驻波检测通道RX2上的校正系数,以驻波检测通道RX0上的业务发射通道0的校正系数为基准进行计算,即把所有的驻波检测通道RX2上的系数分别乘以一个因子:
Figure PCTCN2014086480-appb-000035
则接收通道2上的校正系数变为:
Figure PCTCN2014086480-appb-000036
因此业务发射通道1的校正系数即可得到,所以四个业务发射通道校正系数分别为:
Figure PCTCN2014086480-appb-000037
此时所有的业务发射通道联合校正完成。
最后需要说明的是:如果现有的RRU中不存在驻波检测通道,那么新拼接的RRU必须存在驻波检测通道,否则发校正信号无法环回到BBU。也就是说,对于双拼的RRU或者更多的RRU拼接在一起,必须至少存在一个RRU具有驻波检测通道,这样才能完成通道校正。此时,对于2T2R的 RRU,需要在时间上分两次,使得带有驻波检测通道的RRU,把两个天线上接收到的发通道校正信号,分别按照时间的先后顺序通过驻波检测通道,这样,BBU同样接收到了两路校正信号。这两路的校正信号通过各自计算得出时延差之后的搭桥流程与上面所说的搭桥流程一致。
当与BBU相连的RRU仅有一个驻波检测通道时,需要BBU发送两次校正信号,第一次发送校正信号时,驻波检测通道接收第一个天线接收到的校正信号,这是第一组接收到的校正信号;第二次发送校正信号时,驻波检测通道接收第二个天线接收到的校正信号,这是接收到的第二组校正信号。其中,这两组接收校正信号,均包含四路发校正信号。也就是说,每一组接收到的校正信号,都是包含4个发射通道的发校正信号。
在另外一种可能的实现方式中,基带单元BBU与至少两个远端射频单元通信连接,所述至少两个远端射频单元中至少有一个远端射频单元具有驻波检测通道。即应用于如图3所示的基站。
图9为本发明实施例提供的基带单元BBU第二实施例示意图。
发明人在实现本发明的过程中发现,由于某种原因可能导致接收到的某个发射通道的信号质量不可信。发明人经过研究发现,其中一种原因可以包括:由于当前的驻波检测通道接收到的自身的信号(即驻波检测通道对应的业务发射通道发射的校正信号),可能是经过RRU与射频线缆的接口或者射频线缆与天线之间的接口反射回来的信号,此时该信号没有经过射频线缆的传输或者没有经过天线以及天线间空口的传输,因此该信号如果当作有用信号进行传输,可能会造成计算得到的时延差误差变大,导致系统性能恶化。
发明人经过研究发现,另外一种原因可以包括:由于天线间的隔离度造成校正信号质量不可信。校正信号在天线间传输一般会衰减在30-50dB,甚至达到70-80dB,因此可能会出现某个接收通过天线接收到的校正信号经过中射频的滤波采样处理后,可能会变得非常小,甚至于完全低于噪声功率,此时该接收接天线接收到的某个发天线的信号质量非常差而导致校正系数计算不准。因此需要采用搭桥操作,以完成所有发端的联合通道校正。
一种基带单元BBU,所述基带单元BBU应用于基站中,所述基带单元BBU与至少一个远端射频单元通信连接,所述至少一个远端射频单元具有 业务发射通道以及至少一个校正信号接收通道,所述基带单元BBU包括:
发送单元901,用于向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号。
接收单元902,用于接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
第二校正单元903,用于根据所述接收单元接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号,当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
具体实现时,第二校正单元在判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正时。具体实现可以参照图8所示实施例中介绍的原理实现。具体校正的实现过程可以参照前一实施例中介绍的步骤实现,在此不再赘述。
需要说明的是,本发明这一实施例中的基带单元可以应用于多种应用场景下。下面对可能的几种应用场景进行介绍。如图14所示的基站应用于频分双工传输模式下,与基带单元BBU通信连接的远端射频单元所具有的所述校正信号接收通道具体为驻波检测通道;如图15所示的基站应用于频分双工传输模式下,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为专门设置的校正收通道,不同于业务接收通道、业务发送通道也不同于驻波检测通道;如图16所示的基站应用于时分双工传输模式下,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为业务接收通道。下面进行详细地说明。
如图14所示,本发明实施例提供的基站第四实施例示意图。在图14中,基站包括如图9所示的基带单元BBU,BBU可以与至少一个远端射频单元RRU连接,所示RRU具有至少一个驻波检测通道(对应校正信号接收通道),所述驻波检测通道与所述远端射频单元RRU的业务发射通道的工作频点相同。所述驻波检测通道用于接收通过天线环回的校正信号,并 向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算各业务发射通道的校正系数,并对各业务发射通道进行通道校正;所述天线环回的校正信号至少包括天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号。在一种可能的实现方式中,与所述基带单元BBU通信连接的远端射频单元具有至少一个驻波检测通道,所述驻波检测通道与所述远端射频单元RRU的业务发射通道的工作频点相同,则所述接收单元902具体用于:接收驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
参见图15,为本发明实施例提供的基站第五实施例示意图。在图15中,基站包括如图9所示的基带单元BBU,BBU可以与至少一个远端射频单元RRU连接,所示RRU中至少一个RRU具有至少一个校正收通道(对应校正信号接收通道),所述校正收通道与所述远端射频单元RRU的业务发射通道的工作频点相同,用于接收天线环回的在RRU的各业务发射通道发送的校正信号。
具体地,在一种可能的实现方式中,与所述基带单元BBU通信连接的远端射频单元具有至少一个校正收通道,所述校正收通道与所述远端射频单元RRU的业务发射通道的工作频点相同,所述校正收通道不同于所述业务接收通道,则所述接收单元902具体用于:接收校正收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
图16为本发明实施例提供的基站第六实施例示意图。需要说明的是,所示基站可以应用于TDD系统中。在图15中,基站包括如图9所示的基带单元BBU,BBU可以与至少一个远端射频单元RRU连接,所示RRU中包括业务发射通道和业务接收通道(对应校正信号接收通道),所示业务发射通道用于发送校正信号,所示业务接收通道用于接收天线环回的在RRU的各业务发射通道发送的校正信号。
具体地,在一种可能的实现方式中,与所述基带单元BBU通信连接的远端射频单元具有至少两个业务接收通道,则所述接收单元902具体用于:接收所述业务接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。在这种实现方式中,图9所示的BBU还可以应用到TDD系统中。
图10为本发明实施例提供的基带单元BBU第三实施例示意图。
根据本发明实施例的又一方面,本发明实施例还提供了一种基带单元BBU,包括至少一个处理器1001(例如CPU),存储器1002,和至少一个通信总线1003,用于实现这些装置之间的连接通信。处理器1001用于执行存储器1002中存储的可执行模块,例如计算机程序。存储器1002可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。
在一些实施方式中,存储器1002存储了程序10021,程序10021可以被处理器1001执行,这个程序包括:向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;接收所述远端射频单元RRU的驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号;根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。
其中,程序10021还可以包括:当判断接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
其中,程序10021还可以包括:当与所述基带单元BBU相连的远端射频单元仅有一个驻波检测通道时,当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,向与所述基带单元BBU通信连接的远端射频单元RRU发送第二组校正信号;以及获取接收的天线环回的在所述远端射频单元RRU发送的第二组校正信号作为第二组天线环回的校正信号。
其中,程序10021还可以包括:根据第一组天线环回的校正信号获取第一校正系数集合;根据第二组天线环回的校正信号获取第二校正系数集合;获取所述第一校正系数集合与所述第二校正系数集合的交集,利用所述交集中的任一业务发射通道对应的校正系数获取信号质量不可信的校正信号对应的业务发射通道的校正系数,以获得全部业务发射通道的校正系数,利用获得的全部业务发射通道的校正系对各业务发射通道进行通道校正。
其中,程序10021还可以包括:根据接收的所述天线环回的在远端射 频单元RRU的各业务发射通道发射的校正信号,对各业务发射通道进行信道估计,获得所述各业务发射通道的通道响应值;
根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差;所述基准发射通道为各业务发射通道中的一个业务发射通道;
利用获得的时延差获得校正系数,利用所述校正系数获得补偿后的各业务发射通道的通道响应值以进行通道补偿。
其中,程序10021还可以包括:利用各业务发射通道的通道响应值获得各业务发射通道与基准发射通道的相位差,利用获取的相位差获得各业务发射通道与基准发射通道的时延差;或者,将各业务发射通道的通道响应值变换到时域,分别获得各业务发射通道响应值的最大模值对应的时域样点作为所述业务发射通道的时延,以此获得各业务发射通道与基准发射通道的时延差。
图11为本发明实施例提供的远端射频单元通道校正方法第一实施例示意图。
一种远端射频单元通道校正方法,应用于第一远端射频单元RRU侧,所述第一远端射频单元RRU与基带单元BBU具有通信连接,所述第一远端射频单元RRU包括业务发射通道以及驻波检测通道,所述业务发射通道的工作频点与所述驻波检测通道的工作频点相同,则所述方法包括:
S1101,所述第一远端射频单元RRU的各业务发射通道发射校正信号,所述校正信号是由所述基带单元BBU向所述第一远端射频单元RRU发送的。
S1102,所述第一远端射频单元RRU的驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正;所述天线环回的校正信号至少包括天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号。
进一步的,所述基带单元BBU还与第二远端射频单元RRU具有通信连接,所述第二远端射频单元RRU包括业务发射通道,所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第二远端 射频单元RRU发送的;
则所述第一远端射频单元RRU的驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正具体为:
所述第一远端射频单元RRU的驻波检测通道接收通过天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,并向基带单元BBU发送所述天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号,以使得所述基带单元BBU根据所述天线环回的在所述第二远端射频单元RRU的各业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。
图12为本发明实施例提供的远端射频单元通道校正方法第二实施例示意图。
一种远端射频单元通道校正方法,应用于基带单元BBU侧,所述基带单元BBU和至少一个远端射频单元通信连接,所述至少一个远端射频单元具有驻波检测通道以及业务发射通道,所述驻波检测通道的工作频点与所述业务发射通道的工作频点相同,则所述方法包括:
S1201,所述基带单元BBU向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号。
S1202,所述基带单元BBU接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。
S1203,所述基带单元BBU根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正。
进一步的,所述基带单元BBU与至少两个远端射频单元通信连接,所述至少两个远端射频单元中至少有一个远端射频单元具有驻波检测通道。
进一步的,所述方法还包括:
当判断接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
进一步的,当与所述基带单元BBU相连的远端射频单元仅有一个驻波检测通道时,则所述方法还包括:
当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,向与所述基带单元BBU通信连接的远端射频单元RRU发送第二组校正信号;
则所述获取第二组天线环回的校正信号包括:
获取接收的天线环回的在所述远端射频单元RRU发送的第二组校正信号作为第二组天线环回的校正信号。
进一步的,所述利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数包括:
根据第一组天线环回的校正信号获取第一通道集合,所述第一通道集合由利用所述第一组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;根据第二组天线环回的校正信号获取第二通道集合,所述第二通道集合由利用所述第二组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;获取所述第一通道集合与所述第二通道集合的交集,利用所述交集中的任一业务发射通道对应的校正系数获取信号质量不可信的校正信号对应的业务发射通道的校正系数,以获得全部业务发射通道的校正系数,利用获得的全部业务发射通道的校正系对各业务发射通道进行通道校正。
进一步的,所述根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号计算各业务发射通道的校正系数,分别对各业务发射通道进行通道校正包括:
根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号,对各业务发射通道进行信道估计,获得所述各业务发射通道的通道响应值;
根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差;所述基准发射通道为各业务发射通道中的一个业务发 射通道;
利用获得的时延差获得校正系数,利用所述校正系数对各业务发射通道进行通道补偿。
进一步的,所述根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差包括:
利用各业务发射通道的通道响应值获得各业务发射通道与基准发射通道的相位差,利用获取的相位差获得各业务发射通道与基准发射通道的时延差;
或者
将各业务发射通道的通道响应值变换到时域,分别获得各业务发射通道的最大模值对应的时域样点作为所述业务发射通道的时延,以此获得各业务发射通道与基准发射通道的时延差。
图13为本发明实施例提供的远端射频单元通道校正方法第三实施例示意图。
一种远端射频单元通道校正方法,应用于基带单元BBU侧,所述基带单元BBU应用于基站中,所述基带单元BBU与至少一个远端射频单元通信连接,所述至少一个远端射频单元具有业务发射通道以及校正信号接收通道,所述方法包括:
S1301,向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号。
S1302,接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号;
S1303,根据所述接收单元接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号,当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数,以对各业务发射通道进行通道校正。
进一步的,当所述所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为驻波检测通道,则远端射频单元具有至少一个驻波检测通道,所述驻波检测通道与所述远端射频单元RRU的业务发射通道的工作频点相 同,则所述接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号包括:
接收驻波检测通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。上述方法实施例可以应用于图14所示的基站中。
进一步的,当所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为校正收通道,则所述远端射频单元具有至少一个校正收通道,所述校正收通道与所述远端射频单元RRU的业务发射通道的工作频点相同,所述校正收通道不同于所述业务接收通道,则所述接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号包括:接收校正收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。上述方法实施例可以应用于图15所示的基站中。
进一步的,当所述基带单元BBU应用于时分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为业务接收通道,则所述远端射频单元具有业务接收通道,则所述接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号包括:接收所述业务接收通道馈送的天线环回的在所述远端射频单元RRU的各业务发射通道发射的校正信号。上述方法实施例可以应用于图16所示的基站中。
需要说明的是,由于对装置实施例进行详细的阐述,对方法实施例的描述较为简单,本领域技术人员可以理解的是,可以参照装置实施例的具体实现原理实现本发明的方法实施例。本领域技术人员在不付出创造性劳动下获取的其他实现方式均属于本发明的保护范围。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定 的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本发明,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (29)

  1. 一种第一远端射频单元RRU,其特征在于,所述第一远端射频单元RRU应用于基站中,所述基站还包括基带单元BBU,所述第一远端射频单元RRU与基带单元BBU具有通信连接,所述第一远端射频单元RRU包括业务发射通道以及驻波检测通道,所述业务发射通道的工作频点与所述驻波检测通道的工作频点相同,其中:
    所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第一远端射频单元RRU发送的;
    所述驻波检测通道用于接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算业务发射通道的校正系数,并对业务发射通道进行通道校正;所述天线环回的校正信号至少包括天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号。
  2. 根据权利要求1所述的第一远端射频单元RRU,其特征在于,所述基带单元BBU还与第二远端射频单元RRU具有通信连接,所述第二远端射频单元RRU包括业务发射通道,所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第二远端射频单元RRU发送的;
    则所述天线环回的校正信号还包括天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号;
    则所述驻波检测通道具体用于:
    接收通过天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号以及通过天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号,并向基带单元BBU发送所述天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号,以使得所述基带单元BBU根据所述天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号计算业务发射通道的校正系数,并对业务发射 通道进行通道校正。
  3. 一种基带单元BBU,其特征在于,所述基带单元BBU应用于基站中,所述基带单元BBU与远端射频单元通信连接,所述远端射频单元具有驻波检测通道以及业务发射通道,所述驻波检测通道的工作频点与所述业务发射通道的工作频点相同,其中,所述基带单元BBU包括:
    发送单元,用于向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;
    接收单元,用于接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号;
    第一校正单元,用于根据所述接收单元接收的所述天线环回的在远端射频单元RRU的业务发射通道发射的校正信号计算业务发射通道的校正系数,并对业务发射通道进行通道校正。
  4. 根据权利要求3所述的基带单元BBU,其特征在于,所述基带单元BBU与至少两个远端射频单元通信连接,所述至少两个远端射频单元中至少有一个远端射频单元具有驻波检测通道。
  5. 根据权利要求3所述的基带单元BBU,其特征在于,所述第一校正单元还用于:
    当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算业务发射通道的校正系数,以对业务发射通道进行通道校正。
  6. 根据权利要求5所述的基带单元BBU,其特征在于,当与所述基带单元BBU相连的远端射频单元仅有一个驻波检测通道时,则所述发送单元还用于:
    当所述第一校正单元判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,向与所述基带单元BBU通信连接的远端射频单元RRU发送第二组校正信号;
    则当所述第一校正单元获取第二组天线环回的校正信号时,所述第一校正单元具体用于:
    获取所述接收单元接收的天线环回的在所述远端射频单元RRU发送的第二组校正信号作为第二组天线环回的校正信号。
  7. 根据权利要求5或6所述的基带单元BBU,其特征在于,当所述第一校正单元利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算业务发射通道的校正系数时,所述第一校正单元具体用于:
    根据第一组天线环回的校正信号获取第一通道集合,所述第一通道集合由利用所述第一组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;根据第二组天线环回的校正信号获取第二通道集合,所述第二通道集合由利用所述第二组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;获取所述第一通道集合与所述第二通道集合的交集,利用所述交集中的任一业务发射通道对应的校正系数获取信号质量不可信的校正信号对应的业务发射通道的校正系数,以获得全部业务发射通道的校正系数。
  8. 根据权利要求3所述的基带单元BBU,其特征在于,当所述第一校正单元根据所述接收单元接收的所述天线环回的在远端射频单元RRU的业务发射通道发射的校正信号计算业务发射通道的校正系数,并对业务发射通道进行通道校正时,则所述第一校正单元具体用于:
    根据所述接收单元接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号,对各业务发射通道进行通道估计,获得所述各业务发射通道的通道响应值;
    根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差;所述基准发射通道为各业务发射通道中的一个业务发射通道;
    利用获得的时延差获得校正系数,利用所述校正系数对各业务发射通道进行通道补偿。
  9. 根据权利要求8所述的基带单元BBU,其特征在于,当所述第一校正单元根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差时,则所述第一校正单元具体用于:
    利用各业务发射通道的通道响应值获得各业务发射通道与基准发射通道的相位差,利用获取的相位差获得各业务发射通道与基准发射通道的时延差;
    或者
    所述第一校正单元具体用于将各业务发射通道的通道响应值变换到时 域,分别获得各业务发射通道响应值的最大模值对应的时域样点作为所述业务发射通道的时延,以此获得各业务发射通道与基准发射通道的时延差。
  10. 一种基带单元BBU,其特征在于,所述基带单元BBU应用于基站中,所述基带单元BBU与至少一个远端射频单元通信连接,所述至少一个远端射频单元具有业务发射通道以及校正信号接收通道,所述基带单元BBU包括:
    发送单元,用于向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;
    接收单元,用于接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号;
    第二校正单元,用于根据所述接收单元接收的所述天线环回的在远端射频单元RRU的业务发射通道发射的校正信号来计算校正系数,当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算业务发射通道的校正系数,以对业务发射通道进行通道校正。
  11. 根据权利要求10所述的基带单元BBU,其特征在于,当所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为驻波检测通道,所述驻波检测通道与所述远端射频单元RRU的业务发射通道的工作频点相同,则所述接收单元具体用于:
    接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号。
  12. 根据权利要求10所述的基带单元BBU,其特征在于,当所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为校正收通道,所述校正收通道与所述远端射频单元RRU的业务发射通道的工作频点相同,所述校正收通道不同于所述业务接收通道,则所述接收单元具体用于:
    接收所述校正收通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号。
  13. 根据权利要求10所述的基带单元BBU,其特征在于,当所述基带 单元BBU应用于时分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为业务接收通道,则所述接收单元具体用于:
    接收所述业务接收通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号。
  14. 一种基站,其特征在于,所述基站包括基带单元BBU和远端射频单元RRU,所述远端射频单元RRU与基带单元BBU具有通信连接,所述远端射频单元RRU包括业务发射通道以及驻波检测通道,所述业务发射通道的工作频点与所述驻波检测通道的工作频点相同,其中:
    所述基带单元用于向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;以及接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号;根据接收的所述天线环回的在远端射频单元RRU的业务发射通道发射的校正信号计算业务发射通道的校正系数,分别对业务发射通道进行通道校正;
    所述远端射频单元RRU用于通过所述业务发射通道发射基带单元发送的校正信号;以及接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号。
  15. 一种基站,其特征在于,所述基站包括基带单元BBU和至少两个远端射频单元RRU,所述至少两个远端射频单元RRU包括第一远端射频单元和第二远端射频单元,所述第一远端射频单元具有驻波检测通道,所述驻波检测通道的工作频点与所述至少两个远端射频单元的各业务发射通道的工作频点相同,其中:
    所述基带单元用于向与所述基带单元BBU通信连接的第一远端射频单元和第二远端射频单元发送校正信号;以及接收所述驻波检测通道馈送的天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号,根据所述天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号计算业务发射通道的校正系数,并对业务发射通道进行通道校正;
    所述第一远端射频单元用于通过业务发射通道发射基带单元发送的校 正信号;以及通过所述驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号;所述天线环回的校正信号包括天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号;
    所述第二远端射频单元用于通过业务发射通道发射基带单元发送的校正信号。
  16. 根据权利要求15所述的基站,其特征在于,所述第二远端射频单元具有驻波检测通道,则所述第二远端射频单元还用于:
    通过所述驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号;所述天线环回的校正信号包括天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号。
  17. 一种远端射频单元通道校正方法,其特征在于,应用于第一远端射频单元RRU侧,所述第一远端射频单元RRU与基带单元BBU具有通信连接,所述第一远端射频单元RRU包括业务发射通道以及驻波检测通道,所述业务发射通道的工作频点与所述驻波检测通道的工作频点相同,则所述方法包括:
    所述第一远端射频单元RRU的业务发射通道发射校正信号,所述校正信号是由所述基带单元BBU向所述第一远端射频单元RRU发送的;
    所述第一远端射频单元RRU的驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基带单元BBU根据所述天线环回的校正信号计算业务发射通道的校正系数,并对业务发射通道进行通道校正;所述天线环回的校正信号至少包括天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号。
  18. 根据权利要求17所述的方法,其特征在于,所述基带单元BBU还与第二远端射频单元RRU具有通信连接,所述第二远端射频单元RRU包括业务发射通道,所述业务发射通道用于发射校正信号,所述校正信号是由所述基带单元BBU向所述第二远端射频单元RRU发送的;
    则所述第一远端射频单元RRU的驻波检测通道接收通过天线环回的校正信号,并向基带单元BBU发送所述天线环回的校正信号,以使得所述基 带单元BBU根据所述天线环回的校正信号计算业务发射通道的校正系数,并对业务发射通道进行通道校正具体为:
    所述第一远端射频单元RRU的驻波检测通道接收通过天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号以及通过天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号,并向基带单元BBU发送所述天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号以及天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号,以使得所述基带单元BBU根据所述天线环回的在所述第二远端射频单元RRU的业务发射通道发射的校正信号以及天线环回的在所述第一远端射频单元RRU的业务发射通道发射的校正信号计算业务发射通道的校正系数,并分别对业务发射通道进行通道校正。
  19. 一种远端射频单元通道校正方法,其特征在于,应用于基带单元BBU侧,所述基带单元BBU和远端射频单元通信连接,所述远端射频单元具有驻波检测通道以及业务发射通道,所述驻波检测通道的工作频点与所述业务发射通道的工作频点相同,则所述方法包括:
    所述基带单元BBU向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;
    所述基带单元BBU接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号;
    所述基带单元BBU根据接收的所述天线环回的在远端射频单元RRU的业务发射通道发射的校正信号计算业务发射通道的校正系数,并对业务发射通道进行通道校正。
  20. 根据权利要求19所述的方法,其特征在于,所述基带单元BBU与至少两个远端射频单元通信连接,所述至少两个远端射频单元中至少有一个远端射频单元具有驻波检测通道。
  21. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    当判断接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算业务发射通道的校正系数,以对业务发射通道进行通道校正。
  22. 根据权利要求19所述的方法,其特征在于,当与所述基带单元 BBU相连的远端射频单元仅有一个驻波检测通道时,则所述方法还包括:
    当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,向与所述基带单元BBU通信连接的远端射频单元RRU发送第二组校正信号;
    则所述获取第二组天线环回的校正信号包括:
    获取接收的天线环回的在所述远端射频单元RRU发送的第二组校正信号作为第二组天线环回的校正信号。
  23. 根据权利要求21或22所述的方法,其特征在于,所述利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算各业务发射通道的校正系数包括:
    根据第一组天线环回的校正信号获取第一通道集合,所述第一通道集合由利用所述第一组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;根据第二组天线环回的校正信号获取第二通道集合,所述第二通道集合由利用所述第二组天线环回的校正信号进行通道校正且校正成功的业务发射通道组成;获取所述第一通道集合与所述第二通道集合的交集,利用所述交集中的任一业务发射通道对应的校正系数获取信号质量不可信的校正信号对应的业务发射通道的校正系数,以获得全部业务发射通道的校正系数,利用获得的全部业务发射通道的校正系对各业务发射通道进行通道校正。
  24. 根据权利要求19所述的方法,其特征在于,所述根据接收的所述天线环回的在远端射频单元RRU的业务发射通道发射的校正信号计算业务发射通道的校正系数,并对业务发射通道进行通道校正包括:
    根据接收的所述天线环回的在远端射频单元RRU的各业务发射通道发射的校正信号,对各业务发射通道进行通道估计,获得所述各业务发射通道的通道响应值;
    根据所述各业务发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差;所述基准发射通道为各业务发射通道中的一个业务发射通道,且所述业务发射通道满足预设条件;
    利用获得的时延差获得校正系数,利用所述校正系数对各业务发射通道进行通道补偿。
  25. 根据权利要求24所述的方法,其特征在于,所述根据所述各业务 发射通道的通道响应值,获得各业务发射通道与基准发射通道的时延差包括:
    利用各业务发射通道的通道响应值获得各业务发射通道与基准发射通道的相位差,利用获取的相位差获得各业务发射通道与基准发射通道的时延差;
    或者
    将各业务发射通道的通道响应值变换到时域,分别获得各业务发射通道的响应值的最大模值对应的时域样点作为所述业务发射通道的时延,以此获得各业务发射通道与基准发射通道的时延差。
  26. 一种远端射频单元通道校正方法,其特征在于,应用于基带单元BBU侧,所述基带单元BBU应用于基站中,所述基带单元BBU与至少一个远端射频单元通信连接,所述至少一个远端射频单元具有业务发射通道以及校正信号接收通道,所述方法包括:
    向与所述基带单元BBU通信连接的远端射频单元RRU发送校正信号;
    接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号;
    根据所述接收单元接收的所述天线环回的在远端射频单元RRU的业务发射通道发射的校正信号,当判断所述接收单元接收的第一组天线环回的校正信号质量不可信时,获取第二组天线环回的校正信号,并利用获取的第一组天线环回的校正信号和第二组天线环回的校正信号计算业务发射通道的校正系数,以对业务发射通道进行通道校正。
  27. 根据权利要求26所述的方法,其特征在于,当所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为驻波检测通道,所述驻波检测通道与所述远端射频单元RRU的业务发射通道的工作频点相同,则所述接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号包括:
    接收所述驻波检测通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号。
  28. 根据权利要求26所述的方法,其特征在于,当所述基带单元BBU应用于频分双工传输模式下时,与所述基带单元BBU通信连接的远端射频 单元具有的所述校正信号接收通道具体为校正收通道,所述校正收通道与所述远端射频单元RRU的业务发射通道的工作频点相同,所述校正收通道不同于所述业务接收通道,则所述接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号包括:
    接收所述校正收通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号。
  29. 根据权利要求26所述的方法,其特征在于,当所述基带单元BBU应用于时分双工传输模式下时,与所述基带单元BBU通信连接的远端射频单元具有的所述校正信号接收通道具体为业务接收通道,则所述接收所述校正信号接收通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号包括:
    接收所述业务接收通道馈送的天线环回的在所述远端射频单元RRU的业务发射通道发射的校正信号。
PCT/CN2014/086480 2013-09-13 2014-09-15 一种远端射频单元通道校正方法、装置和系统 WO2015035948A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14844362.5A EP3043524B1 (en) 2013-09-13 2014-09-15 Remote radio frequency unit channel correction method, device and system
US15/068,502 US10164799B2 (en) 2013-09-13 2016-03-11 Method, apparatus, and system for correcting channel of remote radio unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310419696.7 2013-09-13
CN201310419696.7A CN104468425B (zh) 2013-09-13 2013-09-13 一种远端射频单元通道校正方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/068,502 Continuation US10164799B2 (en) 2013-09-13 2016-03-11 Method, apparatus, and system for correcting channel of remote radio unit

Publications (1)

Publication Number Publication Date
WO2015035948A1 true WO2015035948A1 (zh) 2015-03-19

Family

ID=52665095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086480 WO2015035948A1 (zh) 2013-09-13 2014-09-15 一种远端射频单元通道校正方法、装置和系统

Country Status (4)

Country Link
US (1) US10164799B2 (zh)
EP (1) EP3043524B1 (zh)
CN (1) CN104468425B (zh)
WO (1) WO2015035948A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000895A3 (zh) * 2015-06-30 2017-02-16 华为技术有限公司 通道联合校正的方法和相关装置及系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244296B (zh) * 2013-06-13 2018-02-06 华为技术有限公司 多rru间通道校正方法及装置
CN106603447B (zh) * 2015-10-15 2020-01-17 华为技术有限公司 信号通道校正补偿方法、装置和系统
WO2018039926A1 (zh) * 2016-08-30 2018-03-08 华为技术有限公司 一种校正方法及通信设备
US10687329B2 (en) * 2017-01-06 2020-06-16 Board Of Regents, The University Of Texas System Coherence diversity in frequency and time
CN109039488B (zh) 2017-06-12 2021-02-26 华为技术有限公司 通道校正的方法、网络设备及计算机可读介质
CN111492600B (zh) 2017-12-29 2021-07-09 华为技术有限公司 一种射频通道连接检测方法及装置
CN108599876B (zh) * 2018-04-25 2021-07-27 西北农林科技大学 一种天线校正方法、装置及系统
CN112369085A (zh) * 2018-07-13 2021-02-12 华为技术有限公司 用于网络系统中定位移动设备的装置和方法
CN111130582B (zh) * 2018-11-01 2022-02-25 华为技术有限公司 一种相干联合发射jt中计算发射权值的方法及相应装置
CN113055058B (zh) * 2019-12-27 2023-09-08 中兴通讯股份有限公司 一种基站、多天线收发装置及其控制方法
CN113949468B (zh) * 2020-07-17 2022-12-30 华为技术有限公司 发射通道的初相校正方法、基站及计算机存储介质
CN114079517B (zh) * 2020-08-20 2024-01-26 北京佰才邦技术股份有限公司 一种天线校准的方法、装置及控制设备
EP4020823A1 (en) * 2020-12-22 2022-06-29 INTEL Corporation A distributed radiohead system
EP4020853A1 (en) * 2020-12-24 2022-06-29 INTEL Corporation A distributed radiohead system
CN116016044A (zh) * 2021-10-22 2023-04-25 上海华为技术有限公司 一种信号传输装置以及信号传输方法
CN114040485A (zh) * 2021-12-01 2022-02-11 罗森伯格技术有限公司 用于远端单元开站的方法、基带单元、通信系统和介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621842A (zh) * 2009-08-05 2010-01-06 华为技术有限公司 Mimo基站系统、校正通道间时延偏差的方法及装置
CN102315868A (zh) * 2010-07-08 2012-01-11 中兴通讯股份有限公司 一种分布式基站的天线校正方法及系统

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2302289C (en) * 1996-08-29 2005-11-08 Gregory G. Raleigh Spatio-temporal processing for communication
US6895230B1 (en) * 2000-08-16 2005-05-17 Kathrein-Werke Kg System and method for delay equalization of multiple transmission paths
US7486740B2 (en) * 2004-04-02 2009-02-03 Qualcomm Incorporated Calibration of transmit and receive chains in a MIMO communication system
WO2006005228A1 (fr) * 2004-07-13 2006-01-19 Utstarcom Telecom Co., Ltd. Procede d'interfaçage entre une unite a distance et une station de base centralisee
US7239659B2 (en) * 2004-11-04 2007-07-03 Motorola, Inc. Method and apparatus for channel feedback
US20060098580A1 (en) * 2004-11-08 2006-05-11 Qinghua Li Apparatus and method capable of beam forming adjustments
US7596355B2 (en) * 2004-11-29 2009-09-29 Intel Corporation System and method capable of closed loop MIMO calibration
US7830980B2 (en) * 2004-12-07 2010-11-09 Intel Corporation System and method capable of implicit feedback for the devices with an unequal number of transmitter and receiver chains in a wireless local area network
US7719993B2 (en) * 2004-12-30 2010-05-18 Intel Corporation Downlink transmit beamforming
US7542454B2 (en) * 2005-01-21 2009-06-02 Intel Corporation MIMO channel feedback protocols
US8515359B2 (en) * 2005-03-09 2013-08-20 Intel Corporation Method and apparatus to provide low cost transmit beamforming for network devices
US20070064665A1 (en) * 2005-08-23 2007-03-22 Interdigital Technology Corporation Method and apparatus for accessing an uplink random access channel in a single carrier frequency division multiple access system
US20070206686A1 (en) * 2006-01-05 2007-09-06 Vook Frederick W Method and apparatus for performing cyclic-shift diversity with beamforming
US7804800B2 (en) * 2006-03-31 2010-09-28 Intel Corporation Efficient training schemes for MIMO based wireless networks
JP4356756B2 (ja) * 2006-04-27 2009-11-04 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
US7720470B2 (en) * 2006-06-19 2010-05-18 Intel Corporation Reference signals for downlink beamforming validation in wireless multicarrier MIMO channel
US8131218B2 (en) * 2007-04-13 2012-03-06 General Dynamics C4 Systems, Inc. Methods and apparatus for wirelessly communicating signals that include embedded synchronization/pilot sequences
JP5249227B2 (ja) * 2007-08-13 2013-07-31 シャープ株式会社 基地局装置および無線通信方法
US8005131B2 (en) * 2007-09-21 2011-08-23 Intel Corporation Delay compensation for transmit/receive chain calibration and multiuser MIMO
WO2011050491A1 (en) * 2009-10-29 2011-05-05 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a communication system
US8553796B2 (en) * 2009-12-23 2013-10-08 Intel Corporation Distortion-aware multiple input multiple output precoding
CN101958756B (zh) * 2010-02-11 2013-04-24 华为技术有限公司 驻波检测方法、驻波检测装置及基站
JP2012010202A (ja) * 2010-06-25 2012-01-12 Sony Corp 通信装置及び通信方法、並びに通信システム
CN104205659A (zh) * 2011-10-21 2014-12-10 奥普蒂斯蜂窝技术有限责任公司 阵列天线系统中的天线设备校准方法、处理装置、计算机程序、计算机程序产品和天线设备
GB2510997B (en) * 2012-05-21 2014-11-05 Aceaxis Ltd Detection of Intermodulation Products in a Wireless Network
CN102891708A (zh) * 2012-09-17 2013-01-23 华为技术有限公司 收发通道响应的校正方法、装置、系统及bbu
US9596676B2 (en) * 2013-02-13 2017-03-14 Qualcomm Incorporated Calibration of a downlink transmit path of a base station
US9497047B2 (en) * 2013-07-02 2016-11-15 Samsung Electronics Co., Ltd. Methods and apparatus for sounding channel operation in millimeter wave communication systems
EP2889957A1 (en) * 2013-12-30 2015-07-01 Clemens Rheinfelder Active antenna system with distributed transceiver system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621842A (zh) * 2009-08-05 2010-01-06 华为技术有限公司 Mimo基站系统、校正通道间时延偏差的方法及装置
CN102315868A (zh) * 2010-07-08 2012-01-11 中兴通讯股份有限公司 一种分布式基站的天线校正方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3043524A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000895A3 (zh) * 2015-06-30 2017-02-16 华为技术有限公司 通道联合校正的方法和相关装置及系统
US10320464B2 (en) 2015-06-30 2019-06-11 Huawei Technologies Co., Ltd. Joint channel correction method, related apparatus, and system

Also Published As

Publication number Publication date
EP3043524B1 (en) 2020-02-12
EP3043524A1 (en) 2016-07-13
US10164799B2 (en) 2018-12-25
EP3043524A4 (en) 2016-08-24
US20160197745A1 (en) 2016-07-07
CN104468425B (zh) 2019-02-26
CN104468425A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2015035948A1 (zh) 一种远端射频单元通道校正方法、装置和系统
EP3741066B1 (en) User equipment in wireless communication system
KR102310974B1 (ko) 전이중 통신 시스템에서 자기 간섭 제거 방법 및 장치
US20200052762A1 (en) Method and device for channel information feedback
US20200162134A1 (en) User equipment and method of channel state information (csi) acquisition
US10129010B2 (en) Dual-mode radio system having a full-duplex mode and a half-duplex mode
WO2016074585A1 (zh) 一种射频通道的校正方法及装置
WO2018028464A1 (zh) 信道状态信息的反馈方法及装置
US20160301484A1 (en) Methods and apparatus for antenna calibration
WO2017177459A1 (zh) 用于基站的方法、用于用户设备的方法、基站、以及用户设备
CN103428125A (zh) 远端射频单元间的通道校正方法、相关装置及系统
CN110741568A (zh) 用于无线通信系统中的天线校准的方法和装置
US20200007213A1 (en) Method of csi reporting
US20220376860A1 (en) Transmission of reference signals from a terminal device
CN111971906B (zh) 压缩抽头位置信息用于新无线电中时域显式信道状态信息反馈
CN111566983A (zh) 无线通信系统中的信道状态信息(csi)报告方法
US20110065449A1 (en) Adaptive use of polarization as a means of increased wireless channel capacity
CN105207723A (zh) 通道校正方法、基站、用户设备和通信系统
WO2016074442A1 (zh) 大规模多入多出系统中下行校正方法及装置
US8843167B2 (en) Method and user equipment for transmitting uplink signal, and method and base station for receiving uplink signal
KR20200003007A (ko) 빔 제어 방법, 기지국 및 단말
US11431403B2 (en) Radio frequency repeater circuitry
US10917140B2 (en) Dynamic signaling of coherence levels
EP2742626A1 (en) Tae/fae compensation for antenna ports in comp transmissio
CN106130620A (zh) 同时同频信号收发系统中辅助接收天线自干扰抑制系统及天线布置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014844362

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844362

Country of ref document: EP