WO2015172610A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2015172610A1
WO2015172610A1 PCT/CN2015/075061 CN2015075061W WO2015172610A1 WO 2015172610 A1 WO2015172610 A1 WO 2015172610A1 CN 2015075061 W CN2015075061 W CN 2015075061W WO 2015172610 A1 WO2015172610 A1 WO 2015172610A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air passage
compartment
shutter
blower
Prior art date
Application number
PCT/CN2015/075061
Other languages
English (en)
French (fr)
Inventor
田岛博志
和田芳彦
小野田岳史
Original Assignee
海尔亚洲国际株式会社
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔亚洲国际株式会社, 青岛海尔股份有限公司 filed Critical 海尔亚洲国际株式会社
Publication of WO2015172610A1 publication Critical patent/WO2015172610A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation

Definitions

  • the present invention relates to a refrigerator for cooling and storing foods and the like in a storage compartment, and more particularly to a refrigerator capable of suppressing freezing of room temperature.
  • the known method is as follows: a damper is provided in the cooling air passage, and the damper is closed during the defrosting; or a shutter is provided in the fan to be closed during the defrosting process.
  • the shutter for example, see Patent Document 1: Japanese Laid-Open Patent Publication No. 2009-250476, thereby preventing hot air in the defrosting process from entering the storage compartment.
  • FIG. 9 is a front view showing the air passage structure of the refrigerator 100 disclosed in Patent Document 1.
  • the inlet air dampers 105, 106, 107, and 108 are respectively provided in the cold air supply air passages 101, 102, 103, and 104 for conveying the air cooled by the cooler to the storage compartment.
  • outlet dampers 113, 114, and 115 are provided on the cool air return air passages 109, 110, 111 for returning air from the storage chamber to the cooler portion, respectively.
  • an air outlet return air passage (not shown) from the freezing compartment 112 has an outlet damper 116. Further, when the defrosting operation is performed, all or part of the inlet dampers 105 to 108 and the outlet dampers 113 to 116 are closed.
  • FIG. 9 is a schematic view showing the structure around the fan 117 of the refrigerator 100.
  • the fan 117 is provided with a shutter 118 that prevents hot air from entering the cold air supply air passages 101 to 104 by closing the shutter 118 during defrosting.
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 2013-200074.
  • the partition 40 separates a part of the supply air passage 16 to form a space portion 14 which is connected to the cooling chamber 13 via the air blowing opening portion 13a.
  • a first opening portion 19 is provided in the partition portion of the space portion 14 and the supply air passage 16
  • the second opening portion 20 is provided in the partition portion of the space portion 14 and the return air passage 29 or the space portion 14 and the cooling chamber 13. .
  • the air in the space portion 14 and the cooling chamber 13 can be circulated and cooled as the air circulation path by the air being conveyed while the first opening portion 19 is in the closed state and the second opening portion 20 is in the open state.
  • the prior art refrigerator provided with the damper or the shutter described in Patent Document 1 has a problem that although the defrosting hot air can be prevented from entering the storage chamber during the defrosting process, at the beginning of the cooling process after the defrosting process is finished The temperature in the storage room will rise. That is, in such a prior art refrigerator, after the defrosting process is finished, at the start of the cooling process, the air heated by the defrosting in the cooling chamber or the air passage flows into the storage chamber, causing the temperature in the storage chamber to rise.
  • the temperature of the frozen product such as food or the like may increase after the defrosting process is completed. Therefore, the temperature of the frozen food or the like is higher than the room temperature of the freezing compartment, thereby causing a problem of freeze-drying (or freeze-burning) in which the moisture sublimation causes the food to become dry. Further, if the temperature of the food stored in the freezing compartment changes greatly, the ice crystals inside the food will become large, thereby destroying the food cells and generating a large amount of water droplets.
  • an object of the present invention is to provide a refrigerator capable of preventing problems such as freeze drying by controlling the temperature rise in the freezing chamber to a low level.
  • the refrigerator of the present invention includes: a refrigerating chamber, a freezing chamber, and a cooling chamber, the cooling chamber being provided with a cooler configured to cool air supplied to the refrigerating chamber and the freezing chamber; a defrosting device Configuring a defrosting operation on the cooling chamber; a blower configured to feed cold air cooled by the cooler into the refrigerating chamber or the freezing chamber; a first air passage switch disposed to connect a blower and an air passage of the refrigerating compartment; and a second airway shutter disposed in an air passage connecting the blower and the freezing compartment; wherein, when the defroster operates a defrosting process, The first air passage shutter and the second air passage switch are both in a closed state; in a period of time after the defrosting process ends, the first air passage switch is closed and Running the blower in a state where the second air passage shutter is open, supplying cold air to the freezing chamber; after the lapse of the period of time, at the first air passage switch and the second air passage The blower is
  • the blower is operated in a state where the first air passage shutter on the side of the refrigerating compartment is closed and the second air passage shutter located on the side of the freezing compartment is opened, and the storage can be suppressed.
  • the temperature of the frozen material in the freezer compartment rises, thereby preventing the problem of freeze drying. Further, by suppressing the temperature rise of the object to be frozen, the temperature change can be reduced, and thus water droplets can be prevented from being generated.
  • FIG. 1 is a front elevational view of a refrigerator in accordance with an embodiment of the present invention.
  • FIG. 2 is a side cross-sectional view showing a schematic structure of a refrigerator in accordance with an embodiment of the present invention.
  • FIG. 3 is a front view for explaining a cooling air passage of a refrigerator in accordance with an embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view showing the structure around a cooling chamber of a refrigerator in accordance with an embodiment of the present invention.
  • Fig. 5 is a timing chart showing the control of the operation control of the refrigerator in accordance with an embodiment of the present invention.
  • Fig. 6 is a schematic view showing a refrigerator according to another embodiment of the present invention, wherein (A) of Fig. 6 is a side sectional view showing a periphery of a wind passage shutter provided at an upper portion, and (B) of Fig. 6 is a view showing A side cross-sectional view of the airway shutter disposed at the lower portion.
  • Figure 7 is a side cross-sectional view showing the structure around a cooling chamber of a refrigerator in accordance with another embodiment of the present invention.
  • Fig. 8 is a timing chart showing the control of the operation control of the refrigerator in accordance with another embodiment of the present invention.
  • Fig. 9 is a schematic view showing an example of a prior art refrigerator, wherein (A) in Fig. 9 is a front view of the air passage structure of the refrigerator, and (B) in Fig. 9 is a front view showing a structure around the blower.
  • 2d vacuum insulation material
  • 3 cold storage room
  • 4 ice making room
  • 5 upper freezing room
  • 13a, 13b opening portion; 14: space portion; 15 to 16: supply air path;
  • 35 dividing wall; 36: insulating partition wall; 37: dividing wall; 38: wind dividing wall;
  • 49 mechanical room
  • 50 air circuit shutter
  • the refrigerator 1 has a heat insulating box 2 as a main body, and a storage chamber for storing foods and the like is formed inside the heat insulating box 2.
  • the interior of the storage compartment is divided into a plurality of storage compartments depending on the storage temperature and the use.
  • the layout of each storage room is: the uppermost floor is the refrigerating room 3, The lower side of the lower layer is the ice making compartment 4, the right side is the upper freezing compartment 5, the lower layer is the lower freezing compartment 6, and the lowermost layer is the vegetable compartment 7.
  • the front surface of the heat insulating box 2 is opened, and the openable and closable doors 8a, 8b, 9, 10, 11, and 12 are respectively provided in the opening part corresponding to each storage chamber, such as the refrigerator compartment 3.
  • the doors 8a, 8b serve to partition and close the front surface of the refrigerating compartment 3, and the upper left and lower portions of the door 8a and the right upper and lower portions of the door 8b are rotatably supported by the heat insulating box 2.
  • the doors 9 to 12 are integrally combined with each of the storage containers which will be described later, and the doors 9 to 12 are respectively supported by the heat insulating box 2 and can be pulled out toward the front of the refrigerator 1.
  • the basic function of the refrigerator 1 is to cool the stored objects such as foods stored in the respective storage compartments to a predetermined temperature.
  • the indoor temperature of the refrigerating compartment 3 is in the range of 3 ° C to 6 ° C
  • the indoor temperature of the freezing compartment (the lower freezing compartment 6 or the like) is in the range of -16 ° C to -22 ° C
  • the indoor temperature of the vegetable compartment 7 is 3 From °C to 8 °C.
  • the heat insulating box 2 as the main body of the refrigerator 1 is composed of an outer box 2a, an inner box 2c, and a heat insulating material 2b, wherein the outer box 2a is made of a steel plate, and the front surface thereof has an opening portion;
  • the case 2c is made of synthetic resin, the front surface thereof has an opening portion, and is disposed to be spaced apart from the inner side of the outer case 2a;
  • the heat insulating material 2b is made of a foamed polyurethane which is filled in the outer case 2a by a foaming process In the gap between the inner box 2c and the inner box 2c.
  • the back wall portion of the heat insulating box 2 has a vacuum heat insulating material 2d.
  • the storage compartment is divided into a plurality of storage compartments, and the refrigerating compartment 3 and the ice making compartment 4 and the upper freezing compartment 5 located below thereof are separated by the heat insulating partition wall 34.
  • the ice making chamber 4 and the upper freezing chamber 5 are partitioned by a partition wall (not shown) having a vent opening for allowing a cold air flow to pass therethrough.
  • the ice making compartment 4 and the upper freezing compartment 5 are separated from the lower freezing compartment 6 provided in the lower layer by a partition wall 35 which is formed with a vent opening for allowing cold airflow.
  • the lower freezing compartment 6 and the vegetable compartment 7 are separated by a heat insulating partition wall 36.
  • a rack 42 for storing food or the like and a storage container 43 are provided inside the refrigerator compartment 3.
  • the storage boxes 44 and 45 for accommodating a beverage container or the like are provided inside the doors 8a and 8b toward the refrigerator compartment.
  • storage containers 46, 47a, 47b, and 48 are provided, and these storage containers 46, 47a, 47b, and 48 can be integrally formed with the respective doors 9, 10, 11, and 12. Can pull out.
  • the storage container provided in the ice making chamber 4 is not shown in the drawing.
  • each of the storage chambers in the storage compartment may have other racks, storage containers, and the like which are not illustrated.
  • a container for storing ice making water or the like may be provided in the refrigerating compartment 3.
  • a machine room 49 is provided on the lower rear side of the refrigerator 1.
  • a compressor 31 for compressing a refrigerant, a radiator (not shown), and a heat radiating fan (not shown) are provided in the machine room 49.
  • the compressor 31, the radiator, the capillary (not shown) as the decompressing device, and the cooler 32 are sequentially connected by a refrigerant pipe to constitute an evaporative compression refrigeration circuit.
  • isobutane (R600A) can be used as the refrigerant.
  • a supply air path 15 for guiding the air cooled by the cooler 32 to the refrigerating chamber 3 is formed in the rear wall and the top wall of the refrigerating compartment 3.
  • the supply air passage 15 is a space between the air passage partition wall 38 made of synthetic resin and the inner box 2c of the heat insulating box 2. Further, an air outlet 21 is formed in the air passage partition wall 38, and cold air flowing through the air supply passage 15 is supplied into the refrigerator compartment 3 through the air outlet 21.
  • a supply air passage 16 as a supply air passage for freezing is also formed in the rear wall and the top wall of the ice making compartment 4 and the upper freezing compartment 5, and the rear wall of the lower freezing compartment 6.
  • the supply air passage 16 is partitioned from each storage chamber (such as an ice making chamber) by an air passage partition wall 39 made of synthetic resin.
  • the air passage partition wall 39 is formed with a blower outlet 22 for supplying a cold airflow to the ice making compartment 4, a blower outlet 23 for supplying the cold airflow to the upper layer freezer compartment 5, and a blower outlet 24 for supplying the cold airflow to the lower layer freezer compartment 6.
  • each of the air outlets 22 to 24 is provided at a position where the cold air can be efficiently supplied to the food or the like stored in the storage containers 46, 47a, and 47b.
  • a space portion 14 spaced apart from the supply air passage 16 is formed on the back surface (ie, the rear side) of the supply air passage 16.
  • the supply air path 16 and the space portion 14 are separated by a separator 40 made of synthetic resin.
  • the air passage shutter 18 may be an electric damper which is constituted by a plate-like body as an opening and closing cover and a drive motor, wherein one side portion of the plate-like body is pivotally supported in a rotatable manner.
  • the specific form of the air passage shutter 18 is not limited thereto, and other types of opening and closing devices such as a slide type opening and closing plate may be used as the air passage shutter.
  • the lower freezing compartment 6 is provided with a return port 27 for returning air to the cooling chamber 13, and the vegetable compartment 7 is provided with a return port 28 which functions the same as the above-described return port 27. .
  • the supply air passage 15 for supplying cold air to the refrigerating compartment 3 is disposed such that cold air is sent to the uppermost portion in the central portion of the refrigerating compartment 3, and then the cold air is allowed to sink from both sides. Thereby, cold air can be efficiently supplied to the inside of the entire refrigerating compartment 3.
  • the supply air passage 15 may have a branch air passage that branches from the center portion to the left and right sides in accordance with the corresponding air outlet 21 formed in the vicinity of the upper portion of the storage container 43 (see FIG. 2). Thereby, the inside of the storage container 43 can be effectively cooled.
  • the refrigerator 1 has a connection air path 17 through which the cold air flows from the inside of the refrigerating chamber 3 into the vegetable compartment 7.
  • a return port 26 is formed on a side of the connection air passage 17 on the refrigerating compartment 3, and the return port 26 is provided with a cold airflow from the refrigerating compartment 3, and a blower outlet 25 is provided on a side of the connecting air passage 17 on the vegetable compartment 7.
  • the air outlet 25 is for supplying cold air to the vegetable compartment 7.
  • the cooling chamber 13 is provided on the rear side of the space portion 14 inside the heat insulating box 2. Further, the cooling chamber 13 and the space portion 14 are partitioned by a partition wall 37 made of synthetic resin.
  • the cooler 32 is a heat exchanger in which the inside of the circular tube of the heat exchange tube serves as a refrigerant flow path and the outside of the round tube serves as a flow passage for the air, that is, a so-called fin-and-tube heat exchanger.
  • the cooler 32 cools the air outside the circular tube by evaporating the liquid refrigerant inside the heat exchange tube.
  • the cooler 32 can also be implemented by other forms of heat exchangers, such as heat exchangers using flat porous tubes or shaped tubes.
  • a defrosting heater 33 is provided below the cooler 32, and the defrosting heater 33 is a defrosting device for melting and removing frost adhering to the cooler 32.
  • the defrosting heater 33 is a resistance heating heater protected by a glass tube.
  • the defrosting device can also be realized by other defrosting methods such as hot air thawing without using an electric heater.
  • a blower 30 for circulating cold air is attached to the transport opening 13a.
  • the blower 30 is an axial flow fan composed of a rotary propeller fan, a fan motor (not shown), and a fan cover (not shown) having a wind tunnel.
  • the blower 30 can be realized by, for example, a combination of a propeller blower and an electric motor without an organic cover, or another type of blower such as a multi-blade blower.
  • the separator 40 is used to partition a portion of the supply air path 16 to form a The space portion 14 that communicates with the cooling chamber 13 by the transport opening portion 13a.
  • the partition 40 is attached in such a manner that the peripheral portion abuts against the partition wall 37, wherein the partition 40 is made of synthetic resin, and it is formed toward one side of the cooling chamber 13.
  • the specified concave shape Further, the air passage partition wall 39 in front of the partition 40 is also attached so that the peripheral edge portion abuts against the partition wall 37 which is made of resin and has a predetermined shape.
  • the supply air passage 16 is formed on the rear side of the freezing compartment 4 or the like, and the supply air passage 16 is interposed between the air passage partition wall 39 and the partition 40, and is formed at a position further behind the freezing compartment 4 or the like.
  • an air passage shutter 19 (second air passage shutter) that can be opened and closed is provided in the partition 40 serving as a partition between the supply air passage 16 and the space portion 14.
  • an air passage switch 20 (third air passage shutter) that can be opened and closed is provided in a partition region between the space portion 14 and the return air passage 29.
  • the air passage shutter 19 and the air passage shutter 20 can be realized by the same so-called electric damper as the air passage shutter 18.
  • the refrigerator 1 of the present embodiment includes the space portion 14, the air passage shutter 19, and the air passage shutter 20, the air passage shutter 19 and the air passage shutter 20 are simultaneously closed.
  • the hot air in the cooling chamber 13 is prevented from entering the inside of the ice making chamber 4 or the like.
  • the refrigerator 1 of the present embodiment has the air passage shutter 18 on the supply air passage 15 that communicates with the space portion 14, the air passage shutter 18 is closed, and the supply air passage 15 is closed. It is possible to prevent the hot air flow in the cooling chamber 13 from flowing into the refrigerating chamber 3.
  • the air passage shutter 19 by merely turning the air passage shutter 19 in an open state, the air passage shutter 18 and the air passage shutter 20 are closed, and only cold air can be supplied to the freezing chamber.
  • the air passage shutter 20 is opened, and the air flowing out of the transport opening 13a can be sequentially flowed through the space portion 14 and the wind.
  • the road shutter 20, the return air passage 29, and the return opening portion 13b return to the air passage of the cooling chamber 13.
  • the operation of the refrigerator 1 of the present embodiment will be described.
  • the cooling process of the cooling storage compartment will be described.
  • the air passage shutter 19 is opened and the air passage is opened.
  • the shutter 20 is in a closed state, and the air passage shutter 18 is appropriately opened and closed in accordance with the cooling load of the refrigerating compartment.
  • the air flowing in the cooling chamber 13 is cooled by the above-described evaporative compression refrigeration circuit. That is, the low-temperature low-pressure refrigerant vapor is compressed into a high-temperature high-pressure state by the compressor 31 shown in FIG. 2, and is radiated by a heat sink (not shown). Further, the liquid refrigerant that has lost heat in the radiator and solidified is throttle-expanded by a capillary (not shown) as a pressure reducing mechanism, and flows to the cooler 32. In the cooler 32, the low-temperature low-pressure liquid refrigerant exchanges heat with air to evaporate. As a result, the air in the cooling chamber 13 is cooled by the latent heat of vaporization of the refrigerant. The vapor refrigerant evaporated in the cooler 32 is again sucked into the compressor 31 and compressed by the compressor 31. The above operation is continuously repeated, and the air can be cooled by the cooler 32 of the refrigeration circuit.
  • the air cooled by the cooler 32 is discharged into the space portion 14 through the delivery opening portion 13a of the cooling chamber 13 by the blower 30.
  • cooling air discharged into the space portion 14 is adjusted to an appropriate flow rate by the air passage shutter 18, flows to the supply air passage 15, and is supplied to the refrigerating chamber 3 via the air outlet 21. Thereby, it is possible to cool and store the food or the like stored in the refrigerator compartment 3 at an appropriate temperature.
  • the cold air supplied into the refrigerating compartment 3 flows through the return port 26 to the connecting air passage 17, and is supplied to the vegetable compartment 7 via the air outlet 25. Then, the cold air circulating in the vegetable compartment 7 is returned from the return port 28 to the inside of the cooling chamber 13 via the return air passage 29b and the return opening portion 13b of the cooling chamber 13. Then, it is cooled again by the cooler 32.
  • a part of the cooling air flowing through the air passage shutter 19 to the supply air passage 16 is supplied to the lower freezing compartment 6 through the air outlet 24 . Then, the air in the lower freezing compartment 6 passes through the return air passage 29a from the return port 27, and flows into the cooling chamber 13 through the return opening 13b of the cooling chamber 13. As described above, the air cooled by the cooler 32 is circulated in the storage chamber to cool and store the food or the like.
  • Fig. 5 is a timing chart showing the control operation of the refrigerator of the present embodiment
  • the lower part is a graph showing the temperature change in the freezing compartment.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the temperature
  • the broken line represents the air temperature at a position 1/3 of the height from the lower end of the lower freezing compartment 6.
  • the control device can determine whether or not frost is formed on the cooler 32 based on the decrease in the evaporation temperature of the refrigerant or the like, or judge whether or not frost is formed on the cooler 32 based on the defrosting timer or the like, and then start the removal of the cooler. 32 frosting defrosting process.
  • the time T0 of Fig. 5 indicates the timing at which the defrosting process is started.
  • the compressor 31 is stopped by a control device (not shown), the blower 30 is stopped, and the air passage shutter 19 and the air passage switch 20 are simultaneously closed, and the air passage is opened.
  • the shutter 18 causes the supply air passage 15 to be in a closed state. Then, the defrosting heater 33 is energized.
  • the frost adhering to the cooler 32 and the cooling chamber 13 is melted by the heat dissipated by the defrosting heater 33.
  • the water after the frost has melted is dropped into an evaporating dish (not shown) provided in the machine room 49 via a drain pipe (not shown) provided below the cooling chamber 13. Then, the water is heated in the evaporating dish by heat from the compressor 31 or the like to evaporate.
  • the heat generated by the defrosting heater 33 heats the air in the cooling chamber 13.
  • a part of the supply air passage 16 is partitioned by the partition 40, and the air passage shutter 19 and the air passage shutter 20 are closed, and the air passage is opened and closed.
  • the device 18 causes the supply air passage 15 to be in a closed state, thereby preventing hot air from flowing out into the supply air passages 15, 16. Therefore, it is possible to prevent the inside of the supply air passages 15 and 16 from being heated by the defrosting hot air.
  • Time T1 represents the stop timing of the defrosting process.
  • the control device detects that the temperature detected by the temperature sensor (not shown) attached to the pipe of the cooler 32 reaches a predetermined value, thereby determining the end of the defrosting process. Further, it is also possible to perform defrosting in accordance with a predetermined time using a timer or the like.
  • the control device stops the supply of power to the defrosting heater 33 until the predetermined time (until time T2) elapses, and remains in the standby state.
  • the predetermined time until time T2 elapses, and remains in the standby state.
  • the action behind By setting this standby time, it is possible to reduce the frosting residue and to cool the air inside the cooler.
  • the control device activates the compressor 31.
  • the blower 30 continues to be in a state of being stopped. In this way, the air around the cooler 32 that is heated by the defrosting heater 33 and whose temperature rises can flow out of the outside of the cooling chamber 13 and can be efficiently cooled (first pre-cooling process).
  • the control device causes the air passage shutter 20 to be in an open state, and starts to blow air from the blower 30. Therefore, the space portion 14 is used as an air circulation path, the air of the cooling chamber 13 is circulated in the space portion 14, and is cooled by the cooler 32, whereby the space portion 14 and the cooling can be adjusted. Air temperature in chamber 13 (second pre-cooling process). Further, in this process, both the air passage shutter 18 and the air passage shutter 19 are in a closed state.
  • heat exchange between the air-side heat exchange surface of the cooler 32 and the air forms forced convection heat transfer. Therefore, heat exchange can be performed efficiently, and the air in the space portion 14 and the cooling chamber 13 can be efficiently cooled in a short time.
  • the air temperature of the lower freezing compartment 6 is continuously raised until time T4. This is because the cold air is not supplied to the freezing compartment between the start time (time T0) of the defrosting process and the end time (time T4) of the second pre-cooling process.
  • Time T4 represents the end time of the second pre-cooling process.
  • the control device determines that the temperature that can be detected by the temperature sensor (not shown) provided in the cooling chamber 13 reaches a predetermined value (target cooling temperature), thereby determining that the air temperature adjustment process can be ended, that is, ending the second pre-processing. Cold process.
  • the second pre-cooling process may be performed in accordance with a predetermined time using a timer or the like.
  • the voltage supplied to the blower 30 of the present embodiment can be adjusted to the third speed of the high pressure (100%), the medium pressure (90%), and the low pressure (60%), and if the voltage is set to the low pressure, the rotation of the blower 30 is slowed down. And the wind is weak. A low pressure is employed during the second pre-cooling process.
  • blower 30 is operated in a low pressure state as described above is as follows. If the blower 30 is operated in a high pressure or medium pressure state, the temperature of the air at the representative point of the lower freezing compartment 6 rises rapidly by about 2 °C. The reason for this will be explained below. During the defrosting process, a part of the hot air heated by the defrosting heater 33 rises along the rear side of the air passage partition wall 39 via the opening portion 13b and the return port 27 below the cooler 32, so that the periphery of the air outlet 24 is The air temperature becomes higher.
  • the air flow at the opening portion 13b is opposite to the other processes (the process of supplying the cold air to the freezing chamber), and a part of the hot air enters the lower freezing chamber 6 or the like. Therefore, if the blower 30 is operated under a high pressure state, a large amount of hot air in the vicinity of the air outlet 24 enters the storage containers 47a and 47b due to the large air volume, and the temperature increase range at the above-mentioned representative point becomes large.
  • the temperature rise at the above-mentioned representative point is reduced by about 1 °C. This is because the amount of air generated by the blower 30 is reduced, and the amount of hot air entering the storage containers 47a and 47b is also small, and the amount of hot air flowing into the representative point is small, so that an increase in temperature can be reduced.
  • control device After the completion of the second pre-cooling process (time T4), the control device causes the air passage shutter 19 to be in an open state, and the air passage shutter 20 and the air passage shutter 18 are closed, and the voltage is at a medium pressure.
  • the blower 30 is operated in the state.
  • the cool air cooled by the cooler 32 can be sent by the blower 30, and is supplied to the ice making compartment 4, the upper freezing compartment 5, and the lower freezing compartment via the space part 14, the air path shutter 19, and the air outlets 22, 23, 24. Within 6.
  • the voltage of the blower 30 to medium pressure, it is possible to save power required for air supply.
  • the lower freezing compartment 6 and the like and the refrigerating compartment 3 are simultaneously cooled. Then, since the food as the frozen product cannot be sufficiently cooled, the temperature of the food is higher than the room temperature of the lower freezing compartment 6, and the moisture can be sublimated from the surface of the food to dry the surface of the food, thereby causing the problem of freezing and drying to become more problematic. serious. In addition, since the change in the temperature of the food increases, the minute crystals in the food become large, and the amount of water droplets increases.
  • the temperature of the lower freezing compartment 6 can be lowered from about -14 ° C at the time T4 at which the second pre-cooling process ends to about -16 ° C at the time T5 at the end of the process.
  • the control device keeps the air passage shutter 19 in an open state, keeps the air passage shutter 20 in a closed state, and causes the air passage shutter 18 to be in an open state to supply
  • the air passages 15, 16 deliver cooling air.
  • the cooling process can begin.
  • the voltage of the blower 30 is set to a high pressure in order to secure a sufficient amount of air supply.
  • the air passage shutter 19 can be opened, and the air passage shutter 20 and the air passage shutter 18 are closed (timing T6).
  • the voltage of the blower 30 can be set to the intermediate pressure.
  • the airway shutter 18 is always closed and does not go to the refrigerating compartment until time T5. 3 supply air-conditioning. Therefore, the temperature of the refrigerator compartment 3 tends to become high.
  • the cooler 32 in order to prevent the indoor temperature of the refrigerating compartment from rising, before the cold air is supplied to the refrigerating compartment 3 or the like (for example, referring to FIG. 5, from the time T0 to the time T1), it is possible to attach to the cooler 32.
  • the latent heat of the frost to cool the refrigerating compartment 3. Specifically, referring to Fig. 4, the compressor can be stopped, and the blower 30 is started with the air passage shutter 18 in the open state and the air passage switch 19 and the air passage switch 20 in the closed state. Thereby, air can be circulated between the refrigerating compartment 3 and the cooling compartment 13, and the frost attached to the cooler 32 can be melted by the circulating air.
  • the air passage shutter 18 may be provided not in the supply air passage 15, but in the partition portion of the space portion 14 and the supply air passage 15.
  • the partitioning region may be formed by processing a part of the partition 40 or the partition wall 37 into a predetermined shape, and another partitioning member may be used to form the partitioning region.
  • the air passage shutter 20 may be provided on the partition wall 37 which is a partition region between the space portion 14 and the cooling chamber 13. With such a configuration, air can be caused to flow into the cooling chamber 13 from the space portion 14 by opening the air passage shutter 20.
  • FIG. 7 is a side cross-sectional view showing a structure around a cooling chamber 13 of the refrigerator 1 according to another embodiment.
  • Fig. 8 is a control timing chart showing a schematic case of the defrosting process control of the refrigerator 1.
  • constituent elements that are the same as or have the same functions and effects as those of the refrigerator 1 of the above-described embodiment are denoted by the same reference numerals, and will not be described below.
  • the refrigerator 1 has a wind passage opening and closing in the return air passage 29a of the lower freezing compartment 6, and on the upstream side of the air passage shutter 20 (i.e., on the side of the lower freezing compartment 6). 50.
  • the air passage shutter 50 according to the present embodiment is the same as the air passage shutter 18 provided in the supply air passage 15, and is a so-called electric damper.
  • the opening and closing operation of the air passage shutter 50 will be described based on Fig. 8 and with reference to Fig. 7 as appropriate.
  • the control device (not shown) causes the air passage shutter 50 to be in an open state.
  • the air in the lower freezing compartment 6 can flow back into the cooling compartment 13 via the return air passage 29a.
  • the control device closes the air passage shutter 50 to close the return air passage 29a. In this way, It is possible to prevent the air heated by the defrosting heater in the cooling chamber 13 or the air in the temperature adjustment circulating in the air path of the space portion 14 from flowing into the lower freezing chamber 6 (countercurrent). Thereby, the defrosting process can be prevented from causing the temperature in the storage compartment to rise.

Abstract

一种冰箱(1),其包括冷藏室(3)、冷冻室(5、6)和冷却室(13),冷却室(13)内设置有冷却器(32),以对供给到冷藏室(3)和冷冻室(5、6)的空气进行冷却;除霜装置(33),配置成对冷却室(13)进行除霜操作;送风机(30),配置成将由冷却器(32)冷却的冷气送入冷藏室(3)或冷冻室(5、6);第一风路开闭器(18),设置在连接送风机(30)和冷藏室(3)的风路中;和第二风路开闭器(19),设置在连接送风机(30)和冷冻室(5、6)的风路中。在除霜装置(33)运行除霜过程时,第一风路开闭器(18)和第二风路开闭器(19)均处于关闭状态;在除霜过程结束后的一段时间内,在第一风路开闭器(18)关闭且第二风路开闭器(19)打开的状态下运行送风机(30),向冷冻室(5、6)供给冷气;在经过该段时间后,在第一风路开闭器(18)和第二风路开闭器(19)均打开的状态下运行送风机(30),向冷藏室(3)和冷冻室(5、6)供给冷气。

Description

冰箱 技术领域
本发明涉及一种在储藏室内冷却保存食品等的冰箱,特别是涉及一种能够抑制冷冻室温升的冰箱。
背景技术
在现有技术的冰箱中,存在如下问题:在进行冷却器除霜时,冷却器周围由除霜加热器加热的热气可能流入储藏室内,导致储藏室内的温度上升。因此,为防止除霜过程中热气进入储藏室内,已知方法如下:在冷却风路内设置风门,在除霜过程中关闭该风门;或者,在风扇中设置遮蔽器,在除霜过程中关闭该遮蔽器(例如,参见专利文献1:日本发明专利公开公报特开2009-250476号),从而防止除霜过程中的热气进入储藏室。
图9中的(A)是表示专利文献1所公开的冰箱100的风路结构的前视图。在现有技术的冰箱100中,在向储藏室输送由冷却器冷却的空气的冷气供给风路101、102、103、104上分别具有入口风门105、106、107、108。另外,在使空气从储藏室返回至冷却器部的冷气返回风路109、110、111上分别具有出口风门113、114、115。另外,来自冷冻室112的冷气返回风路(未图示)上具有出口风门116。并且,在进行除霜操作时,使所述入口风门105~108和出口风门113~116的全部或者一部分关闭。
图9中的(B)是表示冰箱100的风扇117周围结构的示意图。在冰箱100中,风扇117设置有遮蔽器118,在除霜过程中通过关闭该遮蔽器118,可防止热气流入冷气供给风路101~104中。
另外,在专利文献2(日本发明专利公开公报特开2013-200074号)中记载有防止除霜后冷藏室温度上升的技术。参见该文献的图4及其说明书相应内容,其利用分隔体40分隔出供给风路16的一部分,形成经由送风的开口部13a与冷却室13相连的空间部14。并且,在空间部14和供给风路16的分隔区域内设置有第一开口部19,空间部14和返回风路29或空间部14和冷却室13的分隔区域内设置有第二开口部20。藉此,通过在第一开口部19处于关闭状态以及第二开口部20处于打开状态下输送空气,能够将空间部14作为空气循环路径,循环并冷却空间部14和冷却室13内的空气。
然而,现有技术的设置有专利文献1所记载风门或遮蔽器的冰箱存在如下问题:虽然除霜过程中能够防止除霜热气流入储藏室内,但在除霜过程结束后,冷却过程刚开始时,储藏室内的温度会上升。即,在这种现有技术的冰箱中,在除霜过程结束后,在冷却过程开始时,冷却室或风路内因除霜而加热的空气会流入储藏室内,导致储藏室内的温度上升。
另外,在专利文献2所记载的技术中,在除霜过程结束后,被冷冻物例如食品等的温度有时会上升。因此,冷冻食品等的温度会比冷冻室的室温高,从而产生水分升华导致食品变干燥的冷冻干化(或称冻灼)问题。另外,若贮藏在冷冻室内的食品的温度变化较大,会导致食品内部的冰晶变大,从而破坏食品细胞,产生较多水滴。
发明内容
有鉴于此,提出了本发明,本发明的一个目的在于,提供一种冰箱,该冰箱通过将冷冻室内的温升幅度控制在较低水平,从而能够防止出现冷冻干化等问题。
本发明的冰箱包括:冷藏室、冷冻室和冷却室,所述冷却室内设置有冷却器,所述冷却器配置成对供给到所述冷藏室和所述冷冻室的空气进行冷却;除霜装置,配置成对所述冷却室进行除霜操作;送风机,配置成将由所述冷却器冷却的冷气送入所述冷藏室或所述冷冻室;第一风路开闭器,设置在连接所述送风机和所述冷藏室的风路中;以及第二风路开闭器,设置在连接所述送风机和所述冷冻室的风路中;其中,在所述除霜装置运行除霜过程时,所述第一风路开闭器和所述第二风路开闭器均处于关闭状态;在所述除霜过程结束后的一段时间内,在所述第一风路开闭器关闭且所述第二风路开闭器打开的状态下运行所述送风机,向所述冷冻室供给冷气;在经过所述一段时间后,在所述第一风路开闭器和所述第二风路开闭器均打开的状态下运行所述送风机,向所述冷藏室和所述冷冻室供给所述冷气。
根据本发明,在除霜过程结束后,在位于冷藏室一侧的第一风路开闭器关闭且位于冷冻室一侧的第二风路开闭器打开的状态下运行送风机,可抑制储藏于冷冻室的被冷冻物温度上升,从而防止出现冷冻干化问题。另外,通过抑制被冷冻物的温度上升,可减小其温度变化,因而也能防止产生水滴。
附图说明
图1是根据本发明一实施例的冰箱的外观前视图。
图2是表示根据本发明一实施例的冰箱的示意性结构的侧剖视图。
图3是用于说明根据本发明一实施例的冰箱的冷却风路的前视图。
图4是表示根据本发明一实施例的冰箱的冷却室周围结构的侧剖视图。
图5是表示根据本发明一实施例的冰箱的运行控制的控制时序图。
图6是表示根据本发明另一实施例的冰箱的示意图,其中,图6中的(A)是表示设置于上部的风路开闭器周围的侧剖视图,图6中的(B)是表示设置于下部的风路开闭器周围的侧剖视图。
图7是表示根据本发明另一实施例的冰箱的冷却室周围结构的侧剖视图。
图8是表示根据本发明另一实施例的冰箱的运行控制的控制时序图。
图9是表示现有技术冰箱的一个例子的示意图,其中,图9中的(A)是冰箱风路结构的前视图,图9中的(B)是表示送风机周围结构的前视图。
图中使用的附图标记如下:
1:冰箱;  2:隔热箱体;  2a:外箱;  2b:隔热材料;  2c:内箱;
2d:真空隔热材料;  3:冷藏室;  4:制冰室;  5:上层冷冻室;
6:下层冷冻室;  7:蔬菜室;  8a、8b、9~12:门;  13:冷却室;
13a、13b:开口部;  14:空间部;  15~16:供给风路;
17:连接风路;  18~20:风路开闭器;  21~25:吹出口;
26~28:返回口;  29、29a、29b:返回风路;  30:送风机;
31:压缩机;  32:冷却器;  33:除霜加热器;  34:隔热分隔壁;
35:分隔壁;  36:隔热分隔壁;  37:分隔壁;  38:风路分隔壁;
39:风路分隔壁;  40:分隔体;  41:风路;  42:搁物架;
43:收纳容器;   44、45:收纳盒;  46、47a、47b、48:收纳容器;
49:机械室;    50:风路开闭器;
具体实施方式
下面将参照附图详细描述根据本发明第一实施例的冰箱。
如图1所示,根据该实施例的冰箱1具有作为主体的隔热箱体2,在隔热箱体2的内部形成有用于储藏食品等的储藏室。根据保存温度及用途的不同,储藏室的内部分为多个收纳室。各收纳室的布局为:最上层是冷藏室3, 其下层左侧是制冰室4,右侧是上层冷冻室5,再下层是下层冷冻室6、最下层是蔬菜室7。
隔热箱体2的前表面开口,在与冷藏室3等各个收纳室对应的开口部上分别设置有可开闭的门8a、8b、9、10、11、12。门8a、8b用于分隔和封闭冷藏室3的前表面,且门8a的左侧上下部以及门8b的右侧上下部被可转动地支承于隔热箱体2上。另外,门9~12分别与各个将于后文描述的收纳容器组合成一体,门9~12分别支承于隔热箱体2上,且能够向冰箱1的前方拉出。
冰箱1的基本功能在于,将收纳于各储藏室内的食品等被储藏物冷却至规定的温度。例如,冷藏室3的室内温度在3℃至6℃的范围内,冷冻室(下层冷冻室6等)的室内温度在-16℃至-22℃的范围内,蔬菜室7的室内温度在3℃至8℃的范围内。
如图2所示,作为冰箱1主体的隔热箱体2由外箱2a、内箱2c及隔热材料2b构成,其中,外箱2a由钢板制成,且其前表面具有开口部;内箱2c由合成树脂制成,其前表面具有开口部,且设置成与外箱2a的内侧间隔开;隔热材料2b由发泡型聚氨酯制成,该聚氨酯通过发泡工艺填充于外箱2a与内箱2c之间的空隙中。另外,隔热箱体2的背面壁部分具有真空隔热材料2d。
如前所述,储藏室被划分为多个收纳室,冷藏室3和位于其下层的制冰室4及上层冷冻室5之间由隔热分隔壁34隔开。另外,制冰室4和上层冷冻室5之间由分隔壁(未图示)隔开,该分隔壁上形成有允许冷气流通的通气口。此外,制冰室4及上层冷冻室5与设置于它们下层的下层冷冻室6之间由分隔壁35隔开,该分隔壁35上形成有允许冷气流通的通气口。并且,下层冷冻室6和蔬菜室7之间由隔热分隔壁36隔开。
另外,在冷藏室3的内部设置有用于放置食品等的搁物架42和收纳容器43。另外,在门8a、8b朝向冷藏室的内侧设置有用于收纳饮料容器等的收纳盒44、45。并且,其他收纳室(制冰室4等)中设置有收纳容器46、47a、47b、48,这些收纳容器46、47a、47b、48可与各门9、10、11、12形成为一体且能够拉出。设置于制冰室4中的收纳容器未在图中示出。另外,储藏室内的各收纳室也可具有未图示出的其他搁物架和收纳容器等,例如,冷藏室3内还可设置有用于贮藏制冰用水的容器等。
另外,在冰箱1的下部后侧设置有机械室49。机械室49内设置有用于压缩制冷剂的压缩机31以及散热器(未图示)、散热扇(未图示)等部件。压缩机31、散热器、作为减压装置的未图示的毛细管及冷却器32由制冷剂配管顺序连接在一起,构成蒸发压缩式制冷回路。并且,在根据本实施例的冰箱1中,可使用异丁烷(R600A)作为制冷剂。
在冷藏室3的后壁和顶壁上形成有将冷却器32冷却的空气引导至冷藏室3内的供给风路15。供给风路15是介于合成树脂制成的风路分隔壁38和隔热箱体2的内箱2c之间的空间。另外,风路分隔壁38上形成有吹出口21,在供给风路15内流通的冷气通过吹出口21供给到冷藏室3内。
同样,在制冰室4和上层冷冻室5的后壁及顶壁、以及下层冷冻室6的后壁上也形成有作为冷冻用供给风路的供给风路16。供给风路16由合成树脂制成的风路分隔壁39与各收纳室(制冰室等)隔开。并且,风路分隔壁39上形成有供冷气流向制冰室4的吹出口22、供冷气流向上层冷冻室5的吹出口23、以及供冷气流向下层冷冻室6的吹出口24。并且,各吹出口22~24设置在能够向收纳于收纳容器46、47a、47b中的食品等高效地供给冷气的位置上。
另外,在供给风路16的背面(即后侧)形成有与供给风路16相隔开的空间部14。供给风路16与空间部14由合成树脂制成的分隔体40隔开。
另外,供给风路15和空间部14经由风路开闭器18(第一风路开闭器)相互连通。风路开闭器18可为电动风门,其由作为开闭盖的板状体和驱动电机构成,其中,板状体的一个侧部以可转动的方式被枢支。当然,风路开闭器18的具体形式并不限于此,还可使用例如滑动式开闭板等其他形式的开闭装置作为风路开闭器。通过打开或关闭风路开闭器18,可控制是否允许来自空间部14的空气流入供给风路15内。另外,通过适当地打开或关闭风路开闭器18,可对供给到冷藏室3内的冷气流量进行调节。
另外,在下层冷冻室6设置有返回口27,该返回口27用于将空气返回至冷却室13内,在蔬菜室7设置有返回口28,该返回口28与上述返回口27的作用相同。
如图3所示,向冷藏室3供给冷气的供给风路15被配置成:在冷藏室3的中央部将冷气送至最上部,然后使冷气从两侧下沉。藉此,可有效地向整个冷藏室3的内部供给冷气。
另外,对应于形成在收纳容器43(参照图2)上部附近的相应吹出口21,供给风路15也可具有从中央部向左右两侧分支的分支风路。藉此,可有效地冷却收纳容器43的内部。
另外,根据本实施例的冰箱1具有连接风路17,该连接风路17供冷气由冷藏室3的内部流向蔬菜室7内。在连接风路17位于冷藏室3的一侧形成有返回口26,该返回口26供来自冷藏室3的冷气流入,在连接风路17位于蔬菜室7的一侧设置有吹出口25,该吹出口25用于向蔬菜室7供给冷气。
如图4所示,冷却室13在隔热箱体2的内部设置于空间部14的后侧。并且,冷却室13和空间部14由合成树脂制成的分隔壁37隔开。
在冷却室13的内部设置有冷却器32,该冷却器32用于对循环的空气进行冷却。根据本实施例的冷却器32是以换热管的圆管内部作为制冷剂的流通通路、以圆管外部作为空气的流通通路的热交换器,即为所谓的翅管式热交换器。冷却器32通过在所述换热管的内部蒸发液态的制冷剂来冷却圆管外的空气。当然,冷却器32也可采用其他形式的热交换器,例如使用扁平状多孔管或异形管的热交换器等来实现。
另外,在冷却器32的下方设置有除霜加热器33,该除霜加热器33是用于融化和除去附着于冷却器32上的霜的除霜装置。除霜加热器33是由玻璃管保护的电阻加热式加热器。另外,除霜装置也可采用例如不使用电气加热器的热气解冻等其他除霜方式来实现。
另外,在冷却室13上方的前表面,即其位于空间部14一侧的侧表面上形成有输送开口部13a,该输送开口部13a用于送出由冷却器32冷却的冷气。另外,在冷却室13的下方形成有返回开口部13b,该返回开口部13b用于供来自冷藏室内的返回冷气吸入冷却室13内。并且,返回开口部13b经由返回风路29(29a、29b)与下层冷冻室6的返回口27及蔬菜室的返回口28连通。
另外,在输送开口部13a处安装有用于使冷气循环的送风机30。送风机30是由旋转式螺旋桨风扇、风扇电机(未图示)及带有风洞的风扇罩(未图示)构成的轴流送风机。并且,送风机30也可采用例如不带有机罩的螺旋桨送风机及电机的组合或多翼送风机等其他形式的送风机来实现。
这里,如前所述,分隔体40用于分隔供给风路16的一部分,形成经 由输送开口部13a与冷却室13相连通的空间部14。具体而言,在分隔壁37的前表面上,分隔体40以周缘部与分隔壁37相抵接的方式安装,其中,该分隔体40由合成树脂制成,且其朝向冷却室13的一面形成规定的凹形形状。再者,分隔体40前方的风路分隔壁39也以周缘部与分隔壁37相抵接的方式安装,其中,该风路分隔壁39由树脂制成,且形成规定的形状。
由此,在冷冻室4等的后侧形成了供给风路16,该供给风路16介于风路分隔壁39与分隔体40之间,另外,在冷冻室4等更后面的位置上形成有空间部14,该空间部14介于分隔体40与分隔壁37之间。藉此,在根据本实施例的冷藏室1中,由于在冷冻室4等与冷却室13之间具有隔开的供给风路16和空间部14,因而能够降低由冷却室13向冷冻室4等的热传递。
另外,在用作供给风路16与空间部14之间分隔区的分隔体40上设置有可开闭的风路开闭器19(第二风路开闭器)。另外,在空间部14和返回风路29的分隔区域上设置有可开闭的风路开闭器20(第三风路开闭器)。在本实施例中,风路开闭器19和风路开闭器20也可采用与所述风路开闭器18相同的所谓电动风门来实现。
藉此,由于本实施例的冰箱1具有空间部14、风路开闭器19及风路开闭器20,因而通过使风路开闭器19和风路开闭器20同时处于关闭状态,可防止冷却室13内的热气流入制冰室4等的内部。
另外,由于本实施例的冰箱1在与空间部14相连通的供给风路15上具有风路开闭器18,因而通过使风路开闭器18处于关闭状态来封闭供给风路15,从而能够防止冷却室13内的热气流向冷藏室3内。
另外,通过仅使风路开闭器19处于打开状态,使风路开闭器18及风路开闭器20处于关闭状态,能够仅向冷冻室内供给冷气。
另外,通过使风路开闭器19和风路开闭器18同时处于关闭状态,使风路开闭器20处于打开状态,能够形成供输送开口部13a流出的空气依次流过空间部14、风路开闭器20、返回风路29及返回开口部13b,返回至冷却室13的空气通路。
下面将对本实施例冰箱1的动作进行说明。首先,对冷却储藏室的冷却过程进行说明。在该冷却过程中,使风路开闭器19处于打开状态,风路开 闭器20处于关闭状态,根据冷藏室的冷却负荷适当地开闭风路开闭器18。
首先,利用所述的蒸发压缩式制冷回路对在冷却室13内流动的空气进行冷却。即,利用如图2所示的压缩机31将低温低压的制冷剂蒸气压缩成高温高压的状态,通过未图示出的散热器散热。另外,在散热器中失去热量而凝固的液体制冷剂由作为减压机构的未图示出的毛细管节流膨胀,并流向冷却器32。在冷却器32中,低温低压的液态制冷剂与空气进行热交换,从而蒸发。结果使得,冷却室13内的空气由制冷剂的蒸发潜热冷却。在冷却器32内蒸发的蒸气制冷剂被再次吸入压缩机31,被压缩机31压缩。连续重复进行上述动作,能够通过制冷回路的冷却器32对空气进行冷却。
如图2至图4所示,由冷却器32冷却的空气通过送风机30经由冷却室13的输送开口部13a排出至空间部14内。
并且,排出至空间部14中的冷却空气(冷气)的一部分由风路开闭器18调整为适当的流量,向供给风路15流动,经由吹出口21向冷藏室3供给。藉此,能够以恰当的温度冷却保存储藏于冷藏室3内的食品等。
供给至冷藏室3内的冷气由返回口26向连接风路17流动,经由吹出口25供给到蔬菜室7。并且,在蔬菜室7内循环的冷气从返回口28经由返回风路29b、冷却室13的返回开口部13b,返回至冷却室13内。然后,再次被冷却器32冷却。
另外,排出至空间部14内的冷却空气的一部分通过风路开闭器19流入供给风路16,并经由吹出口22、23分别供给至制冰室4和上层冷冻室5。然后,该冷气通过形成于分隔壁35的开口部向下层冷冻室6流动。
经由风路开闭器19向供给风路16流动的冷却空气的一部分通过吹出口24供给至下层冷冻室6。然后,下层冷冻室6内的空气从返回口27通过返回风路29a,经由冷却室13的返回开口部13b,流入冷却室13内。如上述说明所示,由冷却器32冷却的空气在储藏室内循环,从而对食品等进行冷却保存。
下面将基于图5的控制时序图并适当参照图2和图4,对除霜过程中和除霜过程后的动作进行说明。图5的上部是表示本实施例冰箱的控制动作的时序图,下部是表示冷冻室内温度变化的曲线图。在该曲线图中,横轴表示经过的时间,纵轴表示温度,虚线表示距下层冷冻室6下端为其1/3高度位置处的空气温度。
若不断地进行冷却过程,冷却器32的空气侧换热面会结霜,从而妨碍换热,堵塞空气的流通通路。因此,未图示的控制装置可根据制冷剂蒸发温度的降低等来判断冷却器32上是否结霜,或者根据除霜计时器等来判断冷却器32上是否结霜,然后开始进行去除冷却器32结霜的除霜过程。
图5的时刻T0表示开始运行除霜过程的时刻。在运行除霜过程时,通过未图示的控制装置使压缩机31停止运行,使送风机30停止运行,使风路开闭器19以及风路开闭器20同时处于关闭状态,通过风路开闭器18使供给风路15处于关闭状态。然后,向除霜加热器33通电。
这样,通过除霜加热器33所散发的热量,使附着于冷却器32和冷却室13内的霜融化。霜融化后的水经由设置于冷却室13下方的未图示的排水管,滴落在设置于机械室49内的未图示的蒸发皿内。然后,该水在蒸发皿中被来自压缩机31等的热量加热而蒸发。
除霜加热器33产生的热量会加热冷却室13内的空气。但是,在本实施例中,如前所述,通过分隔体40隔开供给风路16的一部分,通过使风路开闭器19及风路开闭器20处于关闭状态,利用风路开闭器18使供给风路15处于关闭状态,因而能够防止热气流出至供给风路15、16中。因此,能够防止供给风路15、16的内部被除霜热气加热。
时刻T1表示除霜过程的停止时刻。控制装置检测到由安装于冷却器32配管上的温度传感器(未图示)检测出的温度达到规定值,从而确定结束除霜过程。此外,也可利用计时器等,按照预先规定的时间来进行除霜。
冷却器32的除霜过程结束时(时刻T1),未图示的控制装置会停止向除霜加热器33的供电,直至经过规定的时间(直到时刻T2),都一直处于待机状态,不进行后面的动作。通过设定这一待机时间,能够减少结霜残留,并且可使冷却器内部的空气冷却。
接着,在时刻T2,控制装置启动压缩机31。此时,送风机30继续保持在停止不动的状态。这样,能够使冷却器32周围被除霜加热器33加热而温度上升的空气不会流出到冷却室13外部,从而能够高效地冷却(第一预冷过程)。
接着,在时刻T3,控制装置使风路开闭器20处于打开状态,开始由送风机30送风。从而,将空间部14作为空气循环路径,使冷却室13的空气在空间部14内循环,并由冷却器32冷却,从而能够调节空间部14和冷却 室13内的空气温度(第二预冷过程)。并且,在该过程中,风路开闭器18和风路开闭器19均处于关闭状态。
这里,在第二预冷过程中,冷却器32的空气侧换热面与空气的热交换形成强制对流传热。从而,能够高效地进行热交换,也能够在短时间内高效地冷却空间部14和冷却室13内的空气。
参照图5下部所示的曲线图,下层冷冻室6的空气温度直到时刻T4均处于持续上升的状态。其原因在于:在除霜过程的开始时刻(时刻T0)到第二预冷过程的结束时刻(时刻T4)之间,并未向冷冻室供给冷气。
时刻T4表示第二预冷过程的结束时刻。这里,控制装置通过检测到由设置于冷却室13内的温度传感器(未图示)检测出的温度达到规定的值(目标冷却温度),从而确定可结束空气温度调节过程,即结束第二预冷过程。此外,也可利用计时器等按照预先规定的时间进行第二预冷过程。
这里,可将向本实施例的送风机30供给的电压调节为高压(100%)、中压(90%)以及低压(60%)三档,若电压设置为低压,则送风机30的旋转变慢且风力变弱。在第二预冷过程中采用低压。
像这样在低压状态下运行送风机30的理由如下。如果在高压或中压状态下运行送风机30,则下层冷冻室6的代表点的空气温度会急速上升约2℃。其原因将在下文阐述。在除霜过程中,由除霜加热器33加热的一部分热气会经由冷却器32下方的开口部13b和返回口27,沿着风路分隔壁39的后侧上升,从而使吹出口24周围的空气温度变高。即,在除霜过程中,开口部13b处的空气气流与其他过程(向冷冻室供给冷气的过程)相反,一部分热气会进入到下层冷冻室6等。因此,若送风机30在高压状态下运行,由于其风量较大,吹出口24附近的很多热气会进入到收纳容器47a、47b中,导致上述代表点处的温度上升幅度变大。
然而,在送风机30的电压为低压的情况下,上述代表点处的温度上升幅度将减低1℃左右。其原因在于:由于送风机30产生的风量变少,进入收纳容器47a、47b内的热气量也变少,向上述代表点处流入的热气较少,因而可减小温度的上升。
在第二预冷过程结束后(时刻T4),控制装置使风路开闭器19处于打开状态,使风路开闭器20及风路开闭器18处于关闭状态,在电压处于中压的状态下运行送风机30。
藉此,由冷却器32冷却的冷气可由送风机30输送,经由空间部14、风路开闭器19及吹出口22、23、24,供给到制冰室4、上层冷冻室5以及下层冷冻室6内。在该过程中,通过使送风机30的电压为中压,能够节约送风所需的电力。
在该过程中,通过仅冷却冷冻室,能够防止冷冻室中收纳的食品等被冷冻物出现冷冻干化问题。
具体而言,若在第二预冷过程结束后,同时冷却下层冷冻室6等以及冷藏室3。那么,由于作为被冷冻物的食品无法充分地冷却,因而食品的温度会比下层冷冻室6的室温高,水分可从食品的表面升华,使食品表面干燥,从而导致冷冻干化问题变得更加严重。另外,因食品温度的变化增大,因而会导致食品内的微小结晶变大,从而导致水滴量变多。
因此,在本实施例中,在第二预冷过程结束后经过数分钟后,仅向下层冷冻室6等供给冷气,从而防止收纳于下层冷冻室6内的食品温度上升。这样,下层冷冻室6的温度可从第二预冷过程结束的时刻T4时的-14℃左右下降到本过程结束的时刻T5时的-16℃左右。通过像这样降低下层冷冻室6的室内温度,能够降低食品温度上升的幅度。因此,能够防止作为被冷冻物的食品等的温度高于冷冻室内的温度,从而防止食品等出现冷冻干化问题。另外,由于食品等的温度变化变小,因而也可减少前文所述的水滴量。
在上述过程结束后(时刻T5),控制装置使风路开闭器19保持为打开状态,使风路开闭器20保持为关闭状态,使风路开闭器18处于打开状态,以向供给风路15、16输送冷却空气。然后,可开始进行冷却过程。在本过程中,由于向下层冷冻室6等和冷藏室3两者供给冷气,因而为了确保充足的送风量,将送风机30的电压设置为高压。
并且,若冷藏室3的室内温度已冷却到规定温度,则可使风路开闭器19处于打开状态,风路开闭器20和风路开闭器18处于关闭状态(时刻T6)。这样,可仅向制冰室4、上层冷冻室5和下层冷冻室6供给冷气。另外,在本过程中,由于仅向冷冻室供给冷气,因而可将送风机30的电压设置为中压。
在本实施例中,如上所述,由于在第二预冷过程结束后仅进行下层冷冻室6等的冷却,所以直到时刻T5,风路开闭器18一直处于关闭状态,不会向冷藏室3供给冷气。因此,冷藏室3的温度有变高的倾向。
因此,在本实施例中,为了防止冷藏室的室内温度上升,在向冷藏室3等供给冷气之前(例如参照图5,从时刻T0到时刻T1之间),可利用附结于冷却器32的霜的潜热来冷却冷藏室3。具体而言,参照图4,可使压缩机停止运行,并且在使风路开闭器18处于打开状态及风路开闭器19和风路开闭器20处于关闭状态的情况下启动送风机30。藉此,可使空气在冷藏室3和冷却室13之间循环,并利用循环空气使附结于冷却器32的霜融化。这样可达到如下效果:无需利用除霜加热器33进行加热就能够除霜;同时,无需运行压缩机31就能利用结霜的潜热来冷却冷藏室3。因此,可防止上述冷藏室3温度的上升。
下面将参照附图来详细说明根据本发明另一实施例的冰箱。
参照图6中的(A),风路开闭器18可以不设置在供给风路15内,而是设置在空间部14和供给风路15的分隔区域内。在这种情况下,可通过将分隔体40或分隔壁37的一部分加工为规定形状而形成该分隔区域,也可以使用另外的分隔部件来形成该分隔区域。
如图6中的(B)所示,风路开闭器20也可设置在作为空间部14和冷却室13之间的分隔区域的分隔壁37上。采用这样的结构,通过使风路开闭器20处于打开状态,也可使空气从空间部14流入冷却室13。
图7是表示根据另一实施例的冰箱1的冷却室13周围结构的侧剖视图。图8是表示该冰箱1的除霜过程控制的示意性情况的控制时序图。此外,在图7及图8中,对于与前文所述实施例的冰箱1相同或具有相同功能、效果的构成要素,使用了相同的附图标记进行标示,且下文对其不予赘述。
如图7所示,根据本实施例的冰箱1在下层冷冻室6的返回风路29a内、风路开闭器20的上游侧(即位于下层冷冻室6的一侧)具有风路开闭器50。
根据本实施例的风路开闭器50与设置于供给风路15中的风路开闭器18相同,均为所谓的电动风门。
下面将基于图8并适当参照图7来说明风路开闭器50的开闭动作。首先,在冷却过程中(时刻T4后),未图示的控制装置使风路开闭器50处于打开状态。这样,下层冷冻室6内的空气可经由返回风路29a流回至冷却室13内。
另外,从除霜过程开始(时刻T0)到第二预冷过程结束(时刻T4)期间,控制装置使风路开闭器50处于关闭状态,从而封闭返回风路29a。这样, 可防止冷却室13内被除霜加热器加热的空气,或在空间部14这一空气路径内循环的温度调整中的空气流入下层冷冻室6(逆流)。藉此,可防止除霜过程导致储藏室内的温度上升。
上文描述了根据本发明一些实施例的冰箱1,但本发明并不局限于此,在不脱离本发明精神和范围的情况下,还可对其进行多种变型。

Claims (6)

  1. 一种冰箱,包括:
    冷藏室、冷冻室和冷却室,所述冷却室内设置有冷却器,所述冷却器配置成对供给到所述冷藏室和所述冷冻室的空气进行冷却;
    除霜装置,配置成对所述冷却室进行除霜操作;
    送风机,配置成将由所述冷却器冷却的冷气送入所述冷藏室或所述冷冻室;
    第一风路开闭器,设置在连接所述送风机和所述冷藏室的风路中;和
    第二风路开闭器,设置在连接所述送风机和所述冷冻室的风路中;
    其中,
    在所述除霜装置运行除霜过程时,所述第一风路开闭器和所述第二风路开闭器均处于关闭状态;
    在所述除霜过程结束后的一段时间内,在所述第一风路开闭器关闭且所述第二风路开闭器打开的状态下运行所述送风机,向所述冷冻室供给冷气;
    在经过所述一段时间后,在所述第一风路开闭器和所述第二风路开闭器均打开的状态下运行所述送风机,向所述冷藏室和所述冷冻室供给冷气。
  2. 根据权利要求1所述的冰箱,其中
    在所述除霜过程结束后,向所述冷藏室或所述冷冻室供给冷气之前,使所述第一风路开闭器和所述第二风路开闭器处于关闭状态,利用所述送风机进行冷气循环,从而对所述冷却室进行预冷。
  3. 根据权利要求2所述的冰箱,其中
    在进行所述冷气循环时,所述送风机的送风能力比向所述冷藏室或所述冷冻室供给冷气时的送风能力低。
  4. 根据权利要求1-3中任一项所述的冰箱,其中
    在向所述冷藏室和所述冷冻室供给冷气时,所述送风机的送风能力比向所述冷冻室供给冷气时的送风能力高。
  5. 根据权利要求1-4中任一项所述的冰箱,还包括:
    空间部,设置在所述冷却室的前方;和
    第三风路开闭器,设置在将所述送风机输送的冷气经由所述空间部返回至所述冷却室内的风路中;而且
    在使所述第一风路开闭器和所述第二风路开闭器处于关闭状态,使所述第三风路开闭器处于打开状态的情况下,进行所述冷气循环,以使所述冷却室的温度下降。
  6. 根据权利要求1-5中任一项所述的冰箱,其中
    在所述冷却器结霜的情况下,在压缩机处于停止状态且所述第一风路开闭器处于打开状态的情况下,向所述冷藏室供给所述冷却室内的空气。
PCT/CN2015/075061 2014-05-16 2015-03-25 冰箱 WO2015172610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-102199 2014-05-16
JP2014102199A JP6360717B2 (ja) 2014-05-16 2014-05-16 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2015172610A1 true WO2015172610A1 (zh) 2015-11-19

Family

ID=54479290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075061 WO2015172610A1 (zh) 2014-05-16 2015-03-25 冰箱

Country Status (2)

Country Link
JP (1) JP6360717B2 (zh)
WO (1) WO2015172610A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247742A (zh) * 2016-08-12 2016-12-21 合肥美菱股份有限公司 一种冰箱冷冻风扇化霜装置及其控制方法
WO2022057589A1 (zh) * 2020-09-15 2022-03-24 重庆海尔制冷电器有限公司 冰箱

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019181B1 (fr) 2014-03-31 2020-06-19 Arkema France Compositions de polyamide et de peba pour l'injection de pieces rigides resistant a la fatigue
JP6997041B2 (ja) * 2018-06-21 2022-01-17 東芝ライフスタイル株式会社 冷蔵庫
CN111121383A (zh) * 2019-12-30 2020-05-08 青岛海尔电冰箱有限公司 单系统冰箱的化霜控制方法、电子装置及冰箱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975498A (zh) * 2008-06-09 2011-02-16 日立空调·家用电器株式会社 冰箱
CN102506536A (zh) * 2011-09-30 2012-06-20 合肥美的荣事达电冰箱有限公司 一种风间冷冰箱及该风间冷冰箱的温度控制方法
CN103256784A (zh) * 2012-02-15 2013-08-21 日立空调·家用电器株式会社 冰箱
JP2013190149A (ja) * 2012-03-13 2013-09-26 Haier Asia International Co Ltd 冷蔵庫
JP2013200074A (ja) * 2012-03-26 2013-10-03 Haier Asia International Co Ltd 冷蔵庫及びその運転方法
JP2013204891A (ja) * 2012-03-28 2013-10-07 Haier Asia International Co Ltd 冷蔵庫
CN203454532U (zh) * 2013-07-05 2014-02-26 海尔集团公司 制冷器具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205068A (ja) * 1982-05-26 1983-11-29 株式会社東芝 冷凍室温度制御方式
JPS63213769A (ja) * 1987-02-27 1988-09-06 株式会社東芝 冷蔵庫
JP2912860B2 (ja) * 1995-10-16 1999-06-28 松下冷機株式会社 冷蔵庫
JP2004036975A (ja) * 2002-07-02 2004-02-05 Toshiba Corp 冷凍冷蔵庫
JP2005214510A (ja) * 2004-01-29 2005-08-11 Toshiba Corp 冷蔵庫
JP5884010B2 (ja) * 2011-09-29 2016-03-15 パナソニックIpマネジメント株式会社 冷蔵庫

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975498A (zh) * 2008-06-09 2011-02-16 日立空调·家用电器株式会社 冰箱
CN102506536A (zh) * 2011-09-30 2012-06-20 合肥美的荣事达电冰箱有限公司 一种风间冷冰箱及该风间冷冰箱的温度控制方法
CN103256784A (zh) * 2012-02-15 2013-08-21 日立空调·家用电器株式会社 冰箱
JP2013190149A (ja) * 2012-03-13 2013-09-26 Haier Asia International Co Ltd 冷蔵庫
JP2013200074A (ja) * 2012-03-26 2013-10-03 Haier Asia International Co Ltd 冷蔵庫及びその運転方法
JP2013204891A (ja) * 2012-03-28 2013-10-07 Haier Asia International Co Ltd 冷蔵庫
CN203454532U (zh) * 2013-07-05 2014-02-26 海尔集团公司 制冷器具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247742A (zh) * 2016-08-12 2016-12-21 合肥美菱股份有限公司 一种冰箱冷冻风扇化霜装置及其控制方法
CN106247742B (zh) * 2016-08-12 2018-09-18 长虹美菱股份有限公司 一种冰箱冷冻风扇化霜装置及其控制方法
WO2022057589A1 (zh) * 2020-09-15 2022-03-24 重庆海尔制冷电器有限公司 冰箱

Also Published As

Publication number Publication date
JP2015218943A (ja) 2015-12-07
JP6360717B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
JP5847626B2 (ja) 冷蔵庫及びその運転方法
US8745992B2 (en) Refrigerator
WO2018006571A1 (zh) 风冷冰箱及其除湿方法
WO2015176581A1 (zh) 冰箱
WO2015172610A1 (zh) 冰箱
JP2009121803A (ja) 冷蔵庫
CN105806006A (zh) 具有过冷却功能的制冷设备
WO2018076583A1 (zh) 冰箱
WO2018064866A1 (zh) 冰箱
CN105020965A (zh) 冰箱
JP4076804B2 (ja) 冷蔵庫
CN205536801U (zh) 冷冻冷藏箱
JP5417397B2 (ja) 冷蔵庫
JP6890502B2 (ja) 冷蔵庫
CN103975206A (zh) 冷藏库
JP2019138481A (ja) 冷蔵庫
JP2012063026A (ja) 冷蔵庫
JP2005016903A (ja) 冷蔵庫
JPH10311649A (ja) 食品用冷凍庫およびその運転制御方法
JP7454458B2 (ja) 冷蔵庫
KR20190091986A (ko) 냉장고
JP2022063354A (ja) 冷蔵庫
JP2022185802A (ja) 冷蔵庫
JP2006125839A (ja) 冷蔵庫の運転制御装置
TW201833497A (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793530

Country of ref document: EP

Kind code of ref document: A1