WO2015176581A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2015176581A1
WO2015176581A1 PCT/CN2015/075062 CN2015075062W WO2015176581A1 WO 2015176581 A1 WO2015176581 A1 WO 2015176581A1 CN 2015075062 W CN2015075062 W CN 2015075062W WO 2015176581 A1 WO2015176581 A1 WO 2015176581A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
air passage
air
compartment
cooling operation
Prior art date
Application number
PCT/CN2015/075062
Other languages
English (en)
French (fr)
Inventor
田岛博志
和田芳彦
小野田岳史
Original Assignee
海尔亚洲国际株式会社
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔亚洲国际株式会社, 青岛海尔股份有限公司 filed Critical 海尔亚洲国际株式会社
Priority to CN201580001438.4A priority Critical patent/CN105452785B/zh
Publication of WO2015176581A1 publication Critical patent/WO2015176581A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts

Definitions

  • the present invention relates to a refrigerator for cooling and storing foods and the like in a storage compartment, and more particularly to a refrigerator capable of efficiently cooling a refrigerating compartment and a freezing compartment by a single cooler.
  • a prior art refrigerator capable of forcing air cooled by one cooler to circulate in a plurality of storage compartments (storage chambers) having different refrigerating temperatures, such as a refrigerating compartment and a freezing compartment (for example, refer to Patent Document 1: Japanese Invention Patent Publication No. 2011-58689, pages 8-11, Fig. 6).
  • the air cooled by the cooler is sent out by a blower, and is supplied to each storage compartment such as a refrigerating compartment and a freezing compartment.
  • the supply amount of the cold air supplied to each storage room is controlled by a control mechanism such as a damper.
  • the refrigerator disclosed in Patent Document 1 has a refrigerating compartment cooling damper (R damper) and a freezing compartment cooling damper (F damper) for controlling the amount of cold air supplied to the refrigerating compartment; freezing
  • the room cooling damper (F damper) is used to control the amount of cold air supplied to the freezer compartment. Further, by opening and closing these dampers, the amount of air supplied to each storage chamber can be controlled.
  • a cooling operation (R operation) in which only cold air is supplied to the refrigerating compartment in a state where the R damper is opened and the F damper is closed is sequentially performed, and both the R damper and the F damper are opened.
  • a cooling operation (FR operation) of supplying cold air to the refrigerating compartment and the freezing compartment and a cooling operation (F operation) of supplying only cold air to the freezing compartment in a state where the R damper is closed and the F damper is opened.
  • the prior art refrigerator by controlling the rise of the temperature in the storage compartment, the temperature in the refrigerator is maintained within a prescribed range and the cooling efficiency is further improved to reduce the energy consumption, however, in this respect, the prior art refrigerator is still There is room for improvement.
  • the temperature in the freezing chamber which should be kept at a low temperature rises, resulting in an increase in power consumption required for cooling the freezing chamber.
  • the temperature rise in the freezing compartment is also disadvantageous.
  • the startup of the blower is delayed in order to prevent the problem that the temperature in the freezing compartment rises after the operation is switched.
  • the cooling operation is performed in a state where the blower is stopped, which not only has a low cooling efficiency, but also has an effect of suppressing an increase in the temperature of the freezing compartment.
  • the air blower is not started and cooled before the temperature of the air above the cooler or the supply air passage is sufficiently lowered, the cooling time before the start of the air supply becomes long. Therefore, since the storage compartment cannot be cooled during this period, the intrusion of heat from the outside causes the temperature in the storage compartment to rise.
  • the heat transfer efficiency of the heat exchange performed by the natural convection in the stopped state of the blower is much lower than that of the forced convection in the activated state of the blower. Therefore, the heat exchange efficiency of the cooler is lowered, and the air cannot be effectively cooled, so that the temperature difference between the air and the coolant which are heat-exchanged by the cooler becomes large. That is to say, the evaporation pressure of the coolant inside the cooler will become low. As a result, the efficiency of the refrigeration cycle is lowered, thereby increasing the power consumption.
  • a refrigerator includes: a storage compartment divided into at least a refrigerating compartment and a freezing compartment; a cooler for cooling air supplied to the storage compartment; and a cooling compartment for accommodating the cooler; a wind passage for connecting the cooling chamber and the storage chamber; a blower for sending air cooled by the cooler from the cooling chamber to the supply air passage; a first air passage switch disposed at a second air passage shutter is disposed in a supply air passage that communicates with the freezer compartment; and a third air passage shutter is disposed such that the supply air passage is disposed in a supply air passage that communicates with the refrigerator compartment; Communicating with the cooling chamber, and returning air sent by the blower to the cooling chamber via the supply air passage.
  • the first air passage shutter that connects the refrigerating chamber and the second air passage switch that connects the freezing chamber are closed, and the third air passage switch that connects the supply air passage and the cooling chamber is closed.
  • a pre-cooling operation is performed to circulate and cool the air between the cooling chamber and the supply air passage; after that, the first air passage switch and the second air passage switch are both opened and the third
  • the cooling operation is performed by supplying the air cooled by the cooler to the refrigerating compartment freezer compartment of the refrigerating compartment and the freezing compartment.
  • the air is forced to circulate between the cooling chamber and the supply air passage by the blower in the pre-cooling operation, the heat exchange efficiency in the cooler is high, improving the efficiency of the refrigeration cycle. Therefore, efficient cooling can be performed, and the air can be effectively cooled in a short time, and the power consumption required for pre-cooling can be reduced.
  • the cooler may be cooled while the first air passage shutter is opened and the second air passage shutter and the third air passage shutter are closed.
  • the air is supplied to the refrigerating compartment of the refrigerating compartment for cooling operation.
  • the refrigerating chamber cooling operation is ended, and the pre-cooling operation is started; or the pre-cooling operation is started and after a predetermined period of time, the pre-cooling operation is ended, and the refrigerating chamber is started.
  • the freezer compartment is simultaneously cooled.
  • the air blowing capability of the blower can be controlled to be lower than the air blowing capability of the blower in the refrigerating compartment freezer and the cooling operation. Thereby, it is possible to further reduce the power consumption of the blower and the power consumption of the refrigerator in the subsequent cooling operation.
  • the first air passage shutter and the third air passage shutter are closed, and the second air passage shutter is opened, and cooling is performed.
  • the air cooled by the device is supplied to the freezer compartment of the freezer compartment for cooling operation.
  • the freezing compartment cooling operation is started, so that the temperature rise of the freezing compartment can be controlled, thereby reducing the power consumption required for cooling.
  • the first air passage shutter may be opened before the pre-cooling operation or the refrigerating chamber cooling operation is performed.
  • the second air passage shutter and the third air passage shutter are closed and the cooling operation of the cooler is stopped, the humidifying operation for operating the blower is performed.
  • the blower can be stopped after the cooler has stopped cooling and a predetermined time has elapsed.
  • the humidifying operation can be started. Thereby, it is possible to obtain a good energy saving effect by simple control without separately providing a temperature sensor or the like.
  • the humidifying operation can be ended, and the pre-cooling operation or the refrigerating compartment cooling operation can be started.
  • the pre-cooling operation or the refrigerating compartment cooling operation can be started.
  • FIG. 1 is a front elevational view of a refrigerator in accordance with an embodiment of the present invention.
  • FIG. 2 is a side cross-sectional view showing a schematic structure of a refrigerator in accordance with an embodiment of the present invention.
  • Fig. 3 is a front view for explaining a supply air passage of a refrigerator in accordance with an embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view showing the structure in the vicinity of a cooling chamber of a refrigerator in accordance with an embodiment of the present invention.
  • Fig. 5 is a view showing an operation control timing of a refrigerator and a temperature change of a storage compartment according to an embodiment of the present invention.
  • Fig. 6 is a timing chart showing a modification of the operation control of the refrigerator in accordance with an embodiment of the present invention.
  • Figure 7 is a side cross-sectional view showing a modification of the refrigerator in accordance with an embodiment of the present invention, wherein (A) of Figure 7 shows the vicinity of the freezing damper, and (B) of Figure 7 shows the bypass damper. Nearby situation.
  • Fig. 8 is a side cross-sectional view showing the structure in the vicinity of a cooling chamber of a modified example of the refrigerator according to an embodiment of the present invention.
  • blower 31: compressor; 32: cooler; S0: blower delay;
  • S1 full stop operation
  • S2 humidification operation
  • S3 R cooling
  • S4 pre-cooling operation
  • Fig. 1 is a front view showing a schematic structure of a refrigerator 1 according to the present embodiment.
  • the refrigerator 1 according to the present embodiment has a heat insulating box 2 as a refrigerator main body, and a storage chamber for storing foods and the like is formed inside the heat insulating box 2.
  • the interior of the storage compartment can be divided into a plurality of refrigerating compartments, etc. depending on the storage temperature and the use.
  • the uppermost layer is the refrigerating compartment 3, the lower side of which is the ice making compartment 4, the right side is the upper freezing compartment 5, the lower layer is the lower freezing compartment 6, and the lowermost layer is the vegetable compartment 7.
  • the ice making compartment 4, the upper freezing compartment 5, and the lower freezing compartment 6 are all storage compartments in the freezing temperature range, in the following description, the ice making compartment 4, the upper freezing compartment 5, and the lower freezing compartment 6 are collectively referred to. It is a freezer compartment 4-6.
  • the front surface of the heat insulating box 2 is open, and each of the openable and closable doors 8a, 8b, 9, 10, 11, and 12 having heat insulating properties is provided in the corresponding opening portion of each of the storage chambers 3 to 7.
  • the doors 8a, 8b serve to partition and close the front surface of the refrigerating compartment 3, so that the left upper and lower portions of the door 8a and the right upper and lower portions of the door 8b are rotatably supported by the heat insulating box 2.
  • the doors 9 to 12 are integrally combined with each of the storage containers which will be described later, and the doors 9 to 12 are respectively supported by the heat insulating box 2 and can be pulled out toward the front of the refrigerator 1.
  • the heat insulating box 2 as the main body of the refrigerator 1 is composed of an outer box 2a, an inner box 2c, and a heat insulating material 2b, wherein the outer box 2a is made of a steel plate and has an opening portion on the front surface;
  • the case 2c is made of synthetic resin, which is spaced apart from the inner side of the outer case 2a, and also has an opening portion on the front surface thereof.
  • the heat insulating material 2b is made of a foamed polyurethane which is filled in a space between the outer box 2a and the inner box 2c by a foaming process.
  • the back wall portion of the heat insulating box 2 has a vacuum heat insulating material 2d.
  • the refrigerating compartment 3 is separated from the ice making compartment 4 and the upper freezing compartment 5 located in the lower layer by a heat insulating partition wall 34. Further, the ice making chamber 4 and the upper freezing chamber 5 are partitioned by a partition wall (not shown) having a vent hole for allowing a cold air flow to pass therethrough. Further, the ice making compartment 4 and the upper freezing compartment 5 communicate with each other between the lower freezing compartments 6 provided in the lower layers thereof so as to allow cold airflow. Further, the lower freezing compartment 6 and the vegetable compartment 7 are separated by a heat insulating partition wall 36.
  • a shelf 42 for storing foods and the like and a storage container 43 are provided inside the refrigerator compartment 3.
  • storage boxes 44 and 45 for accommodating a beverage container or the like are provided on the side of the doors 8a and 8b facing the casing.
  • storage containers 46, 47a, 47b, and 48 which are integrally formed with the respective doors 9 to 12 and which can be pulled out are provided (not shown in the ice making chamber 4 in the drawings).
  • Storage container may have another storage shelf or storage container or the like which is not shown in the drawings.
  • a machine room 49 is provided on the lower rear side of the refrigerator 1.
  • a compressor 31 for compressing a coolant, a radiator (not shown), and a heat radiating fan (not shown) are provided in the machine room 49.
  • the compressor 31, the radiator, a pressure reducing mechanism (for example, a capillary tube or an expansion valve) (not shown), and the cooler 32 are controlled by a coolant pipe.
  • the secondary connections are combined to form an evaporative compression refrigeration cycle as a cooling device.
  • isobutane (R600a) is used as the coolant.
  • Other forms of cooling devices may be used in place of the cooling devices described above.
  • a supply air path 15 for guiding the air cooled by the cooler 32 into the refrigerating compartment 3 is formed in the rear wall and the top wall of the refrigerating compartment 3.
  • the supply air passage 15 is a space between the separator 37 made of synthetic resin and the inner box 2c of the heat insulating box 2. Further, a discharge port 21 for supplying cold air flowing into the supply air passage 15 into the refrigerator compartment 3 is formed in the partition 37.
  • supply air passages 16 that communicate with the freezing compartments 4 to 6 are also formed in the rear wall and the top wall of the ice making compartment 4 and the upper freezing compartment 5, and the rear wall of the lower freezing compartment 6.
  • the supply air path 16 and the freezing chambers 4 to 6 are separated by a separator 39 made of synthetic resin.
  • the separator 39 is formed with an air outlet 22 for supplying cold air to the ice making chamber 4, an air outlet 23 for supplying cold air to the upper freezing chamber 5, and a blowing outlet 24 for supplying cold air to the lower freezing chamber 6.
  • each of the air outlets 22 to 24 is provided at a position where the cold air can be efficiently supplied to the food or the like stored in the storage containers 46, 47a, 47b.
  • a space spaced apart from the supply air passage 16, that is, a supply air passage 14 is formed on the rear surface (that is, the rear side) of the supply air passage 16.
  • the supply air path 16 and the supply air path 14 are separated by a separator 40 made of synthetic resin.
  • a refrigerating damper 18 as a first air passage shutter is provided in the supply air passage 15 that communicates with the refrigerating compartment 3. That is, the supply air passage 15 and the supply air passage 14 communicate with each other through the refrigerating damper 18.
  • the refrigerating damper 18 may be an electric damper which is constituted by a plate-like body as an opening and closing cover and a driving motor, wherein one side portion of the plate-like body is pivotally supported in a rotatable manner.
  • the specific form of the first air passage shutter is not limited thereto, and other types of opening and closing devices such as a slide type opening and closing plate may be used as the first air passage shutter.
  • a return port 27 for returning air to the inside of the cooling chamber 13 is provided at a lower portion of the lower freezing compartment 6, and a return port 28 having the same function is provided at an upper portion of the vegetable compartment 7.
  • FIG. 3 schematically shows a cooling air passage structure of the refrigerator 1.
  • the supply air passage 15 for supplying cold air to the refrigerating compartment 3 is disposed such that cold air is sent to the uppermost portion in the central portion of the refrigerating compartment 3, and then the cold air is allowed to sink from both sides. Thereby, cold air can be efficiently supplied to the inside of the entire refrigerating compartment 3.
  • the supply air passage 15 may have a branch air passage that branches from the center portion to the left and right sides in accordance with the corresponding air outlet 21 formed in the vicinity of the upper portion of the storage container 43 (see FIG. 2). Thereby, the inside of the storage container 43 can be effectively cooled.
  • the refrigerator 1 has a connection air path 17 for supplying cold air from the inside of the refrigerating chamber 3 to the vegetable compartment 7.
  • a return port is formed on a side of the connecting air passage 17 near the refrigerating compartment 3 26, the return port 26 is supplied with cold air from the refrigerating compartment 3, and a side of the connecting air passage 17 close to the vegetable compartment 7 is provided with an air outlet 25 for supplying cold air to the vegetable compartment 7.
  • FIG. 4 is a side cross-sectional view showing the structure in the vicinity of the cooling chamber 13 of the refrigerator 1.
  • the cooling chamber 13 is provided on the rear side of the supply air passage 14 inside the heat insulating box 2. Further, the cooling chamber 13 and the supply air passage 14 are partitioned by a separator 38 made of synthetic resin.
  • a cooler 32 for cooling the circulating air is provided inside the cooling chamber 13.
  • the cooler 32 according to the present embodiment is a heat exchanger in which the inside of the circular tube of the heat exchange tube serves as a refrigerant flow path and the outside of the round tube serves as a flow passage for the air, that is, a so-called fin-and-tube heat exchanger.
  • the cooler 32 cools the air outside the circular tube by evaporating the liquid refrigerant inside the heat exchange tube.
  • the cooler 32 can also be implemented by other forms of heat exchangers, such as heat exchangers using flat porous tubes or shaped tubes.
  • a defrosting heater 33 is provided below the cooler 32, and the defrosting heater 33 is a defrosting mechanism for melting and removing frost adhering to the cooler 32.
  • the defrosting heater 33 is a resistance heating heater protected by a glass tube.
  • the defrosting device can also be realized by other defrosting methods such as hot air thawing without using an electric heater.
  • a return port 13b for sucking the return cold air from the refrigerating chamber into the cooling chamber 13 is formed below the cooling chamber 13. Further, the return port 13b communicates with the return port 27 of the lower freezing compartment 6 and the return port 28 of the vegetable compartment through the return air passage 29 (29a, 29b).
  • a blower 30 for circulating cold air is attached to the air blowing port 13a.
  • the blower 30 is an axial flow fan composed of a rotary propeller fan, a fan motor (not shown), and a fan cover (not shown) having a wind tunnel.
  • the blower 30 can be realized by, for example, a combination of a propeller blower and an electric motor without an organic cover, or another type of blower such as a multi-blade blower.
  • the partition 40 is for partitioning the supply air passage 16 and the supply air passage 14, wherein the supply air passage 16 communicates with the freezing chambers 4 to 6; the supply air passage 14 passes through the air blowing port 13a and the cooling chamber 13 Connected.
  • the separator 40 is attached to the front surface of the separator 38 such that the peripheral portion abuts against the separator 38, wherein the separator 40 is made of synthetic resin and is formed to face one side of the cooling chamber 13. Concave shape.
  • the separator 39 is also attached so that the peripheral edge portion abuts against the separator 38, and the separator 39 is made of resin and has a predetermined shape.
  • the supply air passage 16 is formed on the rear side of the freezing compartments 4 to 6, and the supply air passage 16 is interposed between the partition 39 and the partition 40, and further at the rear of the freezing compartments 4 to 6.
  • a supply air path 14 is formed, which is interposed between the separator 40 and the separator 38.
  • a heat insulating member such as a foamed polystyrene (PS) sheet member or a foamed polyethylene (PE) sheet member may be attached to the separators 38 to 40, for example.
  • PS polystyrene
  • PE foamed polyethylene
  • the partition 40 between the supply air passage 16 and the supply air passage 14 is provided with an openable and closable damper 19 as a second air passage shutter to allow the supply air passage 16 to communicate with the supply air passage 14.
  • an openable and closable bypass damper 20 is provided as a third air passage shutter to allow the supply air passage 14 to communicate with the cooling chamber 13.
  • the freezing damper 19 and the bypass damper 20 also employ a so-called electric damper.
  • other types of opening and closing devices may be employed as the freezing damper 19 and the bypass damper 20.
  • the refrigerator 1 has the supply air path 14, the refrigerating damper 18, the freezing damper 19, and the bypass damper 20, wherein the supply air path 14 communicates with the air supply port 13a of the cooling chamber 13, and the refrigerating damper 18 is placed in communication.
  • the supply air passage 14 is provided in the passage of the refrigerating compartment 3; the freezing damper 19 is provided in the passage in which the supply air passage 14 communicates with the freezing compartments 4 to 6; and the bypass damper 20 is used to return the supply air passage 14 and the cooling chamber 13 Port 13b is connected.
  • the freezing damper 19 and the refrigerating damper 18 are simultaneously closed, the bypass damper 20 is opened, and the air flowing out of the supply and outlet port 13a can sequentially flow through the supply air passage 14 and the bypass damper 20,
  • the air passage 29 and the return port 13b are returned to the air passage of the cooling chamber 13.
  • the air blown into the supply air passage 14 by the air blower 30 from the cooling chamber 13 is directly returned to the cooling chamber 13 without passing through the storage chamber, so that air can be made between the cooling chamber 13 and the supply air passage 14. cycle.
  • the refrigerator 1 has a control device (not shown) that controls each member by performing a predetermined calculation, and various other sensors, displays, illumination devices, and the like (not shown).
  • FIG. 5 is a view showing a schematic operation control sequence of the refrigerator 1 and a change in the temperature of the storage compartment.
  • the refrigerator 1 repeatedly performs the following cooling operation cycle: starting from the all-stop operation S1, sequentially performing the humidifying operation S2, the refrigerating compartment cooling operation S3 (hereinafter referred to as "R cooling S3"), the pre-cooling operation S4, The refrigerating compartment freezer compartment simultaneously cools operation S5 (hereinafter referred to as "FR cooling S5"), freezing compartment cooling operation S6 (hereinafter referred to as "F cooling S6”), and returns to the full stop operation S1.
  • the power consumption of the entire cooling operation cycle of the refrigerator 1 can be reduced.
  • the full stop operation S1 is performed, and the temperature rise of the freezing compartments 4 to 6 is slowed down compared with the immediate start of the humidifying operation S2.
  • the startup of the compressor 31 time T3 is delayed. . Therefore, by performing the full stop operation S1, it is possible to ensure that the down time of the compressor 31 (the time from T0 to T3) is long, and thus the power consumption of the entire cooling operation of the refrigerator 1 can be reduced.
  • the control is performed by time, and the full stop operation S1 is performed at a predetermined time. Specifically, when the full stop operation S1 (time T1) is started and a predetermined time elapses, the full stop operation S1 is ended, and the humidification operation S2 is started (time T2).
  • the time (the time from T1 to T2) for the full stop operation S1 is, for example, 7 minutes. In this way, the time of the full stop operation S1 is controlled by the time control method, and it is not necessary to separately provide a temperature sensor or the like for detecting the cooling state or the like, so that a good energy saving effect can be achieved by simple control.
  • the time of operation S1 is controlled. Specifically, when the temperature of the refrigerating compartment 3, the freezing compartments 4 to 6, or the cooling compartment 13 rises to a predetermined value, the full stop operation S1 can be ended, and the humidifying operation S2 can be started. Further, according to the temperature outside the refrigerator compartment 1 detected by a temperature sensor (not shown) for detecting the temperature outside the refrigerator casing, it is possible to control the time during which the full stop operation S1 is extended or shortened.
  • the refrigerator 1 After the full stop operation S1 is performed, the refrigerator 1 operates the blower 30 at a low speed in a state where the refrigerating damper 18 is opened and the cooling function of the cooling chamber 32 is stopped, and the humidifying operation S2 is started (time T2).
  • the stop of the cooling function of the cooler 32 means a state in which the cooling device is stopped, and specifically, a state in which the compressor 31 is stopped.
  • the compressor 31, the freezing damper 19, and the bypass damper 20 are maintained in the same state as in the all-stop operation S1. That is, the compressor 31 is in a stopped state, and the freezing damper 19 and the bypass damper 20 are in a closed state.
  • the air cooled by the cooler 32 and the frost attached thereto can be supplied into the refrigerating compartment 3. As shown in FIGS. 2 and 4, the air cooled by the cooler 32 is discharged to the supply air passage 14 from the delivery port 13a of the cooling chamber 30 by the blower 30.
  • the cooling air discharged to the supply air passage 14 flows into the supply air passage 15 through the refrigerating damper 18 in an open state, and is supplied into the refrigerating chamber 3 from the air outlet 21 .
  • the temperature of the refrigerating compartment 3 is lowered, and the food or the like stored therein can be cooled.
  • the cold air supplied into the refrigerating compartment 3 flows into the connecting air passage 17 (see FIG. 3) from the return port 26, and is supplied into the vegetable compartment 7 by the air outlet 25. That is, the vegetable compartment 7 is also cooled. Further, the cold air circulating in the vegetable compartment 7 is returned to the cooling by the return port 28 via the return air passage 29b and the return port 13b of the cooling chamber 13. Inside the chamber 13 (see Fig. 4). Thereafter, it is again cooled by the cooler 32 in the cooling chamber 13.
  • the amount of cooling (sensible heat) of the cooler 32 that has become low temperature by performing the F cooling S6 and the amount of cold (the sensible heat and the latent heat of the frost melting) attached to the cooler 32 are not required.
  • the compressor 31 By operating the compressor 31, the refrigerating compartment 3 (and the vegetable compartment 7) can be cooled (see the graph in Fig. 5). Thereby, the power consumption required for cooling can be reduced.
  • the frost adhering to the cooler 32 can be melted by performing the humidifying operation S2, the amount of heating heat required for the defrosting can be reduced, and the power consumption of the defrosting heater 33 can be reduced.
  • the humidifying effect can be obtained by the melted water of the frost attached to the cooler 32.
  • the humid air containing moisture can be circulated in the refrigerating compartment 3 (and the vegetable compartment 7), and it is possible to prevent the food or the like stored in the refrigerating compartment 3 (and the vegetable compartment 7) from being dried.
  • the blower 30 is operated at a low speed. That is, in the humidifying operation S2, the air blowing capacity of the air blower 30, that is, the air blowing capability, is lower than the air blowing capability of the air blower 30 when the FR cooling S5 or the F cooling S6 is performed. Thereby, compared with the case where the blower 30 is operated at a high speed, the power consumption of the blower 30 and the power consumption of the refrigerator 1 performing the entire cooling operation cycle can be reduced.
  • the humidifying operation S2 is ended, and the R cooling S3 is started (time T3).
  • the cooling operation performed by the cooler 32 in the R cooling S3, that is, the cooling operation performed by the evaporative compression refrigeration cycle, will be described in detail.
  • the low temperature and low pressure coolant is used by the compressor 31 shown in FIG.
  • the vapor is compressed to a high temperature and high pressure state, and is radiated by a heat sink (not shown).
  • the liquid coolant that has lost heat in the radiator and solidified is throttle-expanded by a capillary (not shown) serving as a cooling mechanism, and flows into the cooler 32.
  • the low temperature and low pressure liquid coolant exchanges heat with air and evaporates.
  • the air in the cooling chamber 13 is cooled by the latent heat of vaporization of the coolant.
  • the vapor coolant evaporated in the cooler 32 is again sucked into the compressor 31 and compressed by the compressor 31. The operation described above is continuously repeated, and the air is cooled by the cooler 32.
  • the blower 30 is operated at a low speed.
  • the air blowing capability of the blower 30 in the R cooling S3 is lower than the air blowing capability when the FR cooling S5 is performed.
  • the power consumption of the blower 30 and the power consumption of the refrigerator 1 in the post-cooling operation can be further reduced.
  • R cooling S3 After R cooling S3 (time T3) is started and a predetermined time elapses, R cooling S3 is ended (time T4).
  • the predetermined time (the time from T3 to T4) during which the R cooling S3 continues is, for example, 2 minutes. Therefore, by performing time control of the R cooling S3 on a time basis, it is not necessary to provide other sensors or the like, and it is possible to obtain a good energy saving effect by simple control without being affected by the error of temperature detection.
  • the refrigerator 1 When the R cooling S3 ends, the refrigerator 1 performs the pre-cooling operation S4, that is, the compressor 31 is kept in a continuous state, the refrigerating damper 18 and the freezing damper 19 are in a closed state, the bypass damper 20 is in an open state, and The blower 30 is operated at a high speed.
  • pre-cooling operation S4 air is forced to circulate between the cooling chamber 13 and the supply air passage 14 by the operation of the blower 30, and the circulating air is cooled by the cooler 32 by performing an evaporative compression refrigeration cycle.
  • the cooling operation by the cooler 32 of the evaporative compression refrigeration cycle system is the same as the cooling operation in the R cooling S3.
  • the pre-cooling operation S4 will force the air to circulate between the cooling chamber 13 and the supply air passage 14 by the blower 30, not only the heat exchange efficiency in the cooler 32 is high, but also the efficiency of the refrigeration cycle is high. Since such efficient cooling can be performed, it is possible to effectively cool the air in a short time, thereby reducing the power consumption required for pre-cooling.
  • the pre-cooling operation S4 is performed at a predetermined time by time control.
  • the predetermined time the time from T4 to T5
  • the pre-cooling operation S4 is, for example, 1 minute.
  • a temperature sensor (not shown) for detecting a temperature may be provided in the cooling chamber 13 or the supply air path 14, and if the temperature detected by the temperature sensor is lower than a predetermined target temperature, the pre-cooling operation S4 may be ended. . Further, it is also possible to determine whether or not the pre-cooling operation S4 is completed based on the temperature detected by the defrosting temperature sensor (not shown) attached to the pipe of the cooler 32.
  • the pre-cooling operation S4 (time T4) is started and a predetermined time elapses, the pre-cooling operation S4 is ended, and the FR cooling S5 (time T5) is started.
  • the compressor 31 and the blower 30 are kept in a continuous operation state, the refrigerating damper 18 and the refrigerating damper 19 are switched to the open state, and the bypass damper 20 is switched to the closed state.
  • the air cooled by the cooler 32 can be supplied to the refrigerator compartment 3 (and the vegetable compartment 7) and the freezing compartments 4-6.
  • the FR cooling S5 all of the storage chambers 3 to 7 in the storage chamber can be simultaneously cooled.
  • the cooling operation of the cooler 32 in the FR cooling S5 that is, the cooling operation by the evaporative compression refrigeration cycle system is the same as the cooling operation in the R cooling S3 and the pre-cooling operation S4. Further, the passage of the air cooled by the cooler 32 circulating in the refrigerating compartment 3 and the vegetable compartment 7 is also the same as the circulation passage of the air in the R cooling S3.
  • the cooled air can be circulated in the freezing compartments 4-6.
  • the cold air circulation in the freezing compartments 4 to 6 will be described with reference to Figs. 2 and 4 .
  • a part of the cooling air discharged into the supply air passage 14 flows into the supply air passage 16 through the freezing damper 19, and is supplied to the ice making chamber 4 and the upper freezing chamber 5 through the air outlets 22 and 23, respectively. Further, the cold air flows into the lower freezing compartment 6 that communicates with the ice making compartment 4 and the upper freezing compartment 5.
  • the FR cooling S5 is ended, and the F cooling S6 is started (time T6).
  • the refrigerating damper 18 is closed, and the power of the blower 30 is lowered to operate at an appropriate speed. That is, in the F cooling S6, the refrigerating damper 18 and the bypass damper 20 are closed, the freezing damper 19 is opened, and the air cooled by the cooler 32 is supplied only to the freezing compartments 4-6.
  • the cooling operation of the cooler 3 of the evaporative compression refrigeration cycle system and the circulation path of the air cooled in the freezing compartments 4 to 6 are the same as those of the FR cooling S5 described above.
  • the air cooled by the cooler 32 is not supplied into the refrigerating compartment 3, but is supplied only into the freezing compartments 4 to 6.
  • the F cooling S6 is started in a state where the temperature of the cooler 32 is lowered. Therefore, the temperature rise of the freezing compartments 4 to 6 can be suppressed, and the power consumption required for cooling can be reduced.
  • the temperature of the freezing compartments 4 to 6 is lowered to a predetermined target temperature, and then the F cooling S6 (time T0) is ended.
  • the freezing chambers 4 to 6 can be cooled by the cooling amount of the cooler 32 that has been subjected to the F cooling S6 and become low temperature (see the diagram in FIG. 5). Thereby, the power consumption required for cooling can be further reduced.
  • time T0 the time from the stop of cooling (time T0) to the closing of the freezing damper and the stop of the blower 30 (time T1) (time from T0 to T1) is, for example, 1 minute.
  • the refrigerator 1 is in the state of the full stop operation S1; the cooling operation cycle described above is repeated, and efficient cooling with reduced power consumption can be realized.
  • FIG. 6 is a timing chart showing a modification of the operation control of the refrigerator 1.
  • the structures, the actions, and the like which have been described with reference to FIG. 5 are denoted by the same reference numerals in FIG. 6, and will not be described in detail herein.
  • R cooling S3 is not performed (see Fig. 5). This is different from the example of the operation control described with reference to FIG. That is, as shown in FIG. 6, in this modification, the refrigerator 1 repeats the following cooling operation cycle: starting from the all-stop operation S1, sequentially performing the humidifying operation S2, the pre-cooling operation S4, the FR cooling S5, the F cooling S6, and returning To stop operation S1.
  • the refrigerator 1 performs a humidifying operation S2 (time T2 to time T3).
  • the humidifying operation S2 the refrigerating damper 18 is opened, the freezing damper 19 and the bypass damper 20 are in a closed state, and the cooler 32 is caused ( Referring to Figure 2), the cooling operation is in a stopped state, causing the blower 30 to operate at a low speed.
  • the refrigerator 1 After the humidifying operation S2 is performed (time T3), the refrigerator 1 performs a pre-cooling operation S4, in which the freezing damper 19 is in the same state as the humidifying operation S2 (i.e., kept closed), so that the refrigerating damper is caused.
  • the 18 is in the closed state, the bypass damper 20 is in the open state, the compressor 31 is started, and the blower 30 is operated at a high speed.
  • the air is forced to circulate between the cooling chamber 13 (see FIG. 2) and the supply air path 14 (see FIG. 2) by the operation of the blower 30, and the evaporative compression refrigeration cycle system is operated through the cooler. 32 cools the circulating air.
  • FIG. 7 is a side cross-sectional view showing a modification of the refrigerator 1, in which (A) in Fig. 7 shows the vicinity of the freezing damper 19, and (B) in Fig. 7 shows the vicinity of the bypass damper 20.
  • the refrigerating damper 18 may be provided not in the supply air passage 15, but in a partition region between the supply air passage 14 and the supply air passage 15.
  • the partitioning region may be formed by processing a part of the separator 40 or the separator 38 into a predetermined shape, and the partitioning region may be formed using another partitioning member.
  • the bypass damper 20 may be disposed on the partition 38 which is a partition region between the supply air passage 14 and the cooling chamber 13. With this configuration, air can be caused to flow into the cooling chamber 13 from the supply air passage 14 by opening the bypass air passage 20.
  • Fig. 8 is a side cross-sectional view showing the structure in the vicinity of the cooling chamber 13 of the refrigerator 1 according to the present embodiment.
  • a return damper 50 corresponding to the bypass damper 20 is provided as the fourth wind on the upstream side thereof (i.e., on the side of the lower freezing compartment 6).
  • Road switch in the return air passage 29a of the lower freezing compartment 6, a return damper 50 corresponding to the bypass damper 20 is provided as the fourth wind on the upstream side thereof (i.e., on the side of the lower freezing compartment 6).
  • the return damper 50 is the same as the aforementioned refrigerating damper 18 and the chilling damper 19, and is a so-called electric damper.
  • the present invention is not limited thereto, and various opening and closing devices may be employed as the return damper 50.
  • the return damper 50 is opened and closed at the same time as the freezing damper 19. That is, when the FR cooling S5, the F cooling S6, and the blower delay S0 shown in FIG. 5 are performed, the return damper 50 is in an open state, and when the full stop operation S1, the humidifying operation S2, the R cooling S3, and the pre-cooling operation S4 are performed, The return damper 50 is in a closed state.
  • the return air passage 29a can be closed, which can prevent the hot air circulating in the cooling chamber 13 and the supply air passage 14 from passing through the humidifying operation S2, the R cooling S3, and the pre-cooling operation S4.
  • the return port 27 flows in (countercurrent) into the lower freezing compartment 6. Thereby, it is possible to prevent the temperature of the freezing compartments 4 to 6 from rising, and it is possible to achieve further energy saving.

Abstract

一种冰箱(1),包括:至少划分为冷藏室(3)和冷冻室(4, 5, 6)的储藏室;对供给到储藏室内的空气进行冷却的冷却器(32);用于收纳冷却器(32)的冷却室(13);用于连接冷却室(13)和储藏室的供给风路(14, 15, 16);将冷却器(32)冷却的空气从冷却室(13)送至供给风路(14, 15, 16)的送风机(30);设在分别与冷藏室和冷冻室连通的供给风路(14, 15, 16)内的第一风路开闭器(18)和第二风路开闭器(19);和第三风路开闭器(20),其使供给风路(14, 15, 16)与冷却室(13)连通,以使送风机(30)送出的空气经供给风路(14, 15, 16)返回至冷却室(13)。在第一和第二风路开闭器(18, 19)关闭、第三风路开闭器(20)打开的状态下,进行使空气在冷却室(13)与供给风路(14, 15, 16)之间循环冷却的预冷操作。之后,在第一和第二风路开闭器(18, 19)打开、第三风路开闭器(20)关闭的状态下,进行将冷却器(32)冷却的空气供给到冷藏室(3)和冷冻室(4, 5, 6)的冷藏室冷冻室同时冷却操作。

Description

冰箱 技术领域
本发明涉及一种在储藏室内冷却保存食品等的冰箱,特别是涉及一种能够利用一个冷却器高效地对冷藏室和冷冻室进行冷却的冰箱。
背景技术
一种现有技术的冰箱,其能够迫使由一个冷却器冷却的空气在例如冷藏室和冷冻室等多个冷藏温度不同的收纳室(储藏室)内循环(例如,参照专利文献1:日本发明专利公开公报特开2011-58689号,第8-11页,图6)。
在这种冰箱中,利用送风机将冷却器冷却的空气送出,并分别供给到冷藏室和冷冻室等各收纳室内。供给到各收纳室内的冷气的供应量由风门等控制机构控制。
例如,专利文献1所公开的冰箱具有冷藏室冷却风门(R风门)和冷冻室冷却风门(F风门),其中,冷藏室冷却风门(R风门)用于控制供给到冷藏室的冷气量;冷冻室冷却风门(F风门)用于控制供给到冷冻室的冷气量。另外,通过开闭这些风门可控制向各收纳室供给的送风量。
另外,还提出了多种操作方法(即利用风门等控制机构来控制风路的切换顺序、时间等或者控制压缩机或送风机的启停条件等),以将各个冷藏温度不同的收纳室分别维持在适当温度。由于这些操作方法可对冷藏室的总体能耗产生较大影响,因而采用适当的操作方法还可实现节能。
例如,在专利文献1所记载的冰箱中,依次进行在R风门打开、F风门关闭的状态下仅向冷藏室供给冷气的冷却操作(R操作),在R风门和F风门均打开的状态下同时向冷藏室和冷冻室供给冷气的冷却操作(FR操作),以及在R风门关闭、F风门打开的状态下仅向冷冻室供给冷气的冷却操作(F操作)。
另外,在专利文献1所记载的冰箱中,当由R操作或FR操作切换至F操作时,在开始进行F操作时,并不运转送风机,而是使送风机的运转动作延迟一规定时间。这是因为,冷却器在R操作或FR操作中会产生温升,使送风机的运转动作延迟可在冷却器温度降低之后再进行送风,从而能够防止热气流入冷冻室内。
在上述现有技术的冰箱中,通过控制储藏室内温度的上升,使冰箱内的温度维持在规定的范围内且进一步提高冷却效率以降低能耗,然而,在这一方面,现有技术的冰箱仍有改进的余地。
具体而言,例如,当将用于对温度较高的冷藏室等进行冷却的冷却操作切换 为用于对温度较低的冷冻室等进行冷却的冷却操作时,存在如下问题,即:在切换操作后,冷却器周围或供给风路内的比冷冻室内温度高的空气会立即流入温度较低的冷冻室等内。
当比冷冻室内温度高的空气流入冷冻室内时,应该保持为低温的冷冻室内的温度会上升,从而导致冷却该冷冻室所需的耗电量增大。当然,从防止冷冻室内保存的食品等的质量变差的角度而言,冷冻室内的温度上升也是不利的。
为了防止出现这种操作切换后冷冻室内温度上升的问题,在前述专利文献1所记载的冰箱中,对送风机的启动进行了延迟。但是,在送风机停止的状态下进行冷却操作,其不但冷却效率较低,而且抑制冷冻室温度上升的效果也不明显。
也就是说,在送风机停止运转的状态下,由于冷却器的空气侧将通过自然对流进行的热交换,因而不能有效地冷却空气,滞留在冷却器上方的空气或供给风路内的空气不能被充分冷却。结果,在启动送风机时,那些未被充分冷却的空气仍然会以温度较高的状态流入冷冻室。
另外,若在冷却器上方或供给风路内的空气温度充分降低前不启动送风机而进行冷却,那么送风开始前的冷却时间会变长。因此,由于在此期间无法对储藏室内进行冷却,因而来自外部的热量侵入会导致储藏室内的温度上升。
另外,与送风机处于启动状态下的强制对流所进行的热交换相比,在送风机处于停止状态下的自然对流所进行的热交换的传热效率要低得多。因此,冷却器的换热效率降低,无法有效冷却空气,从而使得通过冷却器进行热交换的空气与冷却剂的温差变大。也就是说,冷却器内部的冷却剂的蒸发压力将会变低。结果使得,制冷循环的效率降低,从而使耗电量增大。
发明内容
鉴于上述情况,本发明的一个目的在于,提供一种冰箱,该冰箱的节能性能优良,其能够将储藏室的温度上升控制在较低水平,从而降低耗电量。
本发明的冰箱,,包括:储藏室,其至少划分为冷藏室和冷冻室;冷却器,用于对供给到所述储藏室内的空气进行冷却;冷却室,用于收纳所述冷却器;供给风路,用于连接所述冷却室和所述储藏室;送风机,将所述冷却器冷却的空气从所述冷却室送出至所述供给风路;第一风路开闭器,设置在与所述冷藏室连通的供给风路内;第二风路开闭器,设置在与所述冷冻室连通的供给风路内;和第三风路开闭器,配置成使所述供给风路与所述冷却室连通,且使所述送风机送出的空气经由所述供给风路返回至所述冷却室内。在使所述第一风路开闭器和所述第二风路开闭器关闭、使所述第三风路开闭器打开的状态下,进行使空气在所述冷却室与所述供给风路之间循环并冷却的预冷操作;而且在进行了所述预冷操作 后,在使所述第一风路开闭器和所述第二风路开闭器打开、使所述第三风路开闭器关闭的状态下,进行将所述冷却器冷却的空气供给到所述冷藏室和所述冷冻室的冷藏室冷冻室同时冷却操作。
根据本发明的冰箱,在使连通冷藏室的第一风路开闭器和连通冷冻室的第二风路开闭器皆关闭、使连通供给风路与冷却室的第三风路开闭器打开的状态下,进行使空气在冷却室与供给风路之间循环并冷却的预冷操作;之后,在使第一风路开闭器和第二风路开闭器皆打开、使第三风路开闭器关闭的状态下,进行将冷却器所冷却的空气供给到冷藏室和冷冻室的冷藏室冷冻室同时冷却操作。
这样,通过在进行冷藏室冷冻室同时冷却操作前进行预冷操作,能够高效地对冷却器及其周围或者供给风路内的空气进行冷却。由此,当切换到冷藏室冷冻室同时冷却操作时,能够防止热气流入冷冻室等。藉此,能够控制冷冻室等的温度上升,并且能够降低后续冷却所需的电量。
另外,由于在所述预冷操作中,会通过送风机迫使空气在冷却室和供给风路之间循环,因而冷却器中的热交换效率较高,改善了制冷循环的效率。因此,能够进行高效的冷却,从而能够在短时间内有效地冷却空气,降低预冷所需的耗电量。
另外,在进行所述预冷操作之前,可在使第一风路开闭器打开、使第二风路开闭器和第三风路开闭器关闭的状态下,进行将冷却器所冷却的空气供给到冷藏室内的冷藏室冷却操作。由此,可对温度变高的冷却室及供给风路进行冷却,控制冷冻室的温度上升,并进一步降低冷却所需的能耗。
另外,可在开始冷藏室冷却操作且经过一规定时间后,结束冷藏室冷却操作,并开始预冷操作;也可在开始预冷操作且经过一规定时间后,结束预冷操作,开始冷藏室冷冻室同时冷却操作。从而,通过以各自的操作时间为标准来切换冷藏室冷却操作和预冷操作,无需另外设置用于检测冷却状态的温度传感器等,通过简单的控制就能获得良好的节能效果。
另外,在冷藏室冷却操作中,可将送风机的送风能力控制为,使其低于冷藏室冷冻室同时冷却操作中送风机的送风能力。由此,能够进一步降低送风机的耗电量以及之后冷却操作中冰箱的耗电量。
另外,可在进行了冷藏室冷冻室同时冷却操作后,在使第一风路开闭器和第三风路开闭器关闭、使第二风路开闭器打开的状态下,进行将冷却器所冷却的空气供给到冷冻室的冷冻室冷却操作。在进行冷藏室冷冻室同时冷却操作且冷却器的温度降低的状态下,开始冷冻室冷却操作,因而能够控制冷冻室的温度上升,从而降低冷却所需的耗电量。
另外,可在进行预冷操作或冷藏室冷却操作之前,在使第一风路开闭器打开、 使第二风路开闭器和第三风路开闭器关闭、使冷却器的冷却操作停止的状态下,进行使送风机运转的加湿操作。由此,能够利用进行冷冻室冷却操作而变成低温的冷却器及附结于其上的霜作为冷源(利用显热及用于融解霜的潜热)对冷藏室进行冷却,从而能够实现进一步的节能。
另外,在冷冻室冷却操作结束时,可在冷却器停止冷却且经过一规定时间后,停止运转送风机。由此,能够利用进行冷冻室冷却操作后变成低温的冷却器作为冷源来冷却冷冻室,从而能够进一步降低冷却所需的耗电量。
另外,在冷冻室冷却操作结束且经过一规定时间后,可开始加湿操作。由此,无需另外设置温度传感器等,即可通过简单的控制就能够获得良好的节能效果。
进一步地,在开始加湿操作且冷冻室的温度上升至规定值后,可结束加湿操作,开始预冷操作或者冷藏室冷却操作。由此,能够防止储藏室内的温度上升至超过允许范围的温度,并能够减少压缩机的运转时间,从而降低冷却所需的耗电量。
附图说明
图1是根据本发明一实施例的冰箱的外观前视图。
图2是表示根据本发明一实施例的冰箱的示意性结构的侧剖视图。
图3是用于说明根据本发明一实施例的冰箱的供给风路的前视图。
图4是表示根据本发明一实施例的冰箱的冷却室附近的结构的侧剖视图。
图5是表示根据本发明一实施例的冰箱的操作控制时序及储藏室温度变化的图。
图6是表示根据本发明一实施例的冰箱的操作控制的变型例的时序图。
图7是表示根据本发明一实施例的冰箱的变型例的侧剖视图,其中,图7中的(A)示出了冷冻风门附近的情况,图7中的(B)示出了旁路风门附近的情况。
图8是表示根据本发明一实施例的冰箱的变型例的冷却室附近的结构的侧剖视图。
图中使用的附图标记如下:
1:冰箱; 2:隔热箱体; 3:冷藏室; 4:制冰室;
5:上层冷冻室; 6:下层冷冻室; 7:蔬菜室; 13:冷却室;
14~16:供给风路; 18:冷藏风门; 19:冷冻风门; 20:旁路风门;
30:送风机; 31:压缩机; 32:冷却器; S0:送风机延迟;
S1:全停操作; S2:加湿操作; S3:R冷却; S4:预冷操作;
S5:FR冷却; S6:F冷却。
具体实施方式
下面将参照附图详细说明根据本发明一实施例的冰箱。
图1是表示根据本实施例的冰箱1的示意性结构的前视图。如图1所示,根据本实施例的冰箱1具有作为冰箱主体的隔热箱体2,在隔热箱体2的内部形成有用于储藏食品等的储藏室。按照保存温度及用途的不同,储藏室的内部可分为多个冷藏室等。最上层为冷藏室3,其下层左侧为制冰室4,右侧为上层冷冻室5,再下层为下层冷冻室6,最下层为蔬菜室7。另外,鉴于制冰室4、上层冷冻室5和下层冷冻室6均为处于冷冻温度范围的收纳室,因此在下面的说明中,将制冰室4、上层冷冻室5及下层冷冻室6统称为冷冻室4~6。
隔热箱体2的前表面开口,各个具有隔热性能的可开闭的门8a、8b、9、10、11、12设置于各收纳室3~7相应的开口部。门8a、8b用于分隔和封闭冷藏室3的前表面,因此门8a的左侧上下部和门8b的右侧上下部可转动地支承于隔热箱体2。另外,门9~12分别与各个将于后文描述的收纳容器组合成一体,门9~12分别支承于隔热箱体2上,且能够向冰箱1的前方拉出。
图2是冰箱1的侧剖视图。如图2所示,作为冰箱1主体的隔热箱体2由外箱2a、内箱2c及隔热材料2b构成,其中,外箱2a由钢板制成,且在前表面具有开口部;内箱2c由合成树脂制成,其与外箱2a的内侧间隔开,且在其前表面上也具有开口部。隔热材料2b由发泡型聚氨酯制成,该聚氨酯通过发泡工艺填充于外箱2a与内箱2c之间的空隙中。另外,隔热箱体2的背面壁部分具有真空隔热材料2d。
冷藏室3与位于其下层的制冰室4及上层冷冻室5之间由隔热分隔壁34隔开。另外,制冰室4与上层冷冻室5之间由分隔壁(图中未示出)隔开,该分隔壁上形成有允许冷气流通的通气孔。另外,制冰室4及上层冷冻室5与设置于它们下层的下层冷冻室6之间以允许冷气流通的方式互相连通。而且,下层冷冻室6与蔬菜室7之间由隔热分隔壁36隔开。
进一步地,在冷藏室3的内部设置有用于收纳食品等的搁物架42和收纳容器43。另外,在门8a、8b的面向箱体的一侧设置有用于收纳饮料容器等的收纳盒44、45。另外,在其他各收纳室4~7内设置有与各门9~12形成为一体且可拉出的收纳容器46、47a、47b、48(附图中未示出设置于制冰室4内的收纳容器)。另外,储藏室内的各收纳室3~7还可具有附图中未示出的其他收纳搁物架或收纳容器等。
另外,在冰箱1的下部后侧设置有机械室49。在机械室49内设置有用于压缩冷却剂的压缩机31以及散热器(未图示)、散热扇(未图示)等部件。压缩机31、散热器、未图示的减压机构(例如毛细管或膨胀阀)和冷却器32由冷却剂配管依 次连接在一起,构成作为冷却装置的蒸发压缩式制冷循环回路。另外,在根据本实施例的冰箱1中,使用异丁烷(R600a)作为冷却剂。还可使用其他形式的冷却装置来替代上述冷却装置。
在冷藏室3的后壁和顶壁上形成有供给风路15,该供给风路15用于将冷却器32冷却的空气引导至冷藏室3内。供给风路15是介于合成树脂制成的分隔体37与隔热箱体2的内箱2c之间的空间。另外,在分隔体37上形成吹出口21,该吹出口21用于将流入供给风路15内的冷气供给到冷藏室3内。
同样,在制冰室4和上层冷冻室5的后壁及顶壁、以及下层冷冻室6的后壁上也形成有与冷冻室4~6连通的供给风路16。供给风路16与冷冻室4~6之间由合成树脂制成的分隔体39隔开。另外,在分隔体39上形成有向制冰室4供给冷气的吹出口22、向上层冷冻室5供给冷气的吹出口23以及向下层冷冻室6供给冷气的吹出口24。另外,各吹出口22~24设置在能够高效地向收纳于收纳容器46、47a、47b中的食品等供给冷气的位置上。
另外,在供给风路16的背面(即后侧)形成有与供给风路16隔开的空间,即供给风路14。供给风路16与供给风路14之间由合成树脂制成的分隔体40隔开。
另外,在与冷藏室3连通的供给风路15内设置有作为第一风路开闭器的冷藏风门18。即,供给风路15与供给风路14之间通过冷藏风门18互相连通。
冷藏风门18可为电动风门,其由作为开闭盖的板状体和驱动电机构成,其中,板状体的一个侧部以可转动的方式被枢支。当然,第一风路开闭器的具体形式并不限于此,还可利用例如采用滑动式开闭板等其他形式的开闭装置作为第一风路开闭器。
通过开闭冷藏风门18,可控制是否允许将来自供给风路14的空气流入供给风路15。另外,通过适当地开闭冷藏风门18,可对供给到冷藏室3内的冷气流量进行调节。
另外,在下层冷冻室6的下部设置有用于供空气返回到冷却室13内的返回口27,在蔬菜室7的上部设置有相同作用的返回口28。
图3示意性地示出了冰箱1的冷却风路结构。如图3所示,向冷藏室3供给冷气的供给风路15被配置成:在冷藏室3的中央部将冷气送至最上部,然后使冷气从两侧下沉。藉此,可有效地向整个冷藏室3的内部供给冷气。
另外,对应于形成在收纳容器43(参照图2)上部附近的相应吹出口21,供给风路15也可具有从中央部向左右两侧分支的分支风路。藉此,可有效地冷却收纳容器43的内部。
另外,根据本实施例的冰箱1具有连接风路17,该连接风路17用于供冷气由冷藏室3的内部流向蔬菜室7。连接风路17的靠近冷藏室3的一侧形成有返回口 26,该返回口26供来自冷藏室3的冷气流入,在连接风路17的靠近蔬菜室7的一侧设置有吹出口25,该吹出口25用于向蔬菜室7供给冷气。
图4是表示冰箱1的冷却室13附近结构的侧剖视图。如图4所示,冷却室13在隔热箱体2的内部设置于供给风路14的后侧。另外,冷却室13与供给风路14之间由合成树脂制成的分隔体38隔开。
在冷却室13的内部设置有用于对循环的空气进行冷却的冷却器32。根据本实施例的冷却器32是以换热管的圆管内部作为制冷剂的流通通路、以圆管外部作为空气的流通通路的热交换器,即为所谓的翅管式热交换器。冷却器32通过在所述换热管的内部蒸发液态的制冷剂来冷却圆管外的空气。当然,冷却器32也可采用其他形式的热交换器,例如使用扁平状多孔管或异形管的热交换器等来实现。
另外,在冷却器32的下方设置有除霜加热器33,该除霜加热器33是用于融化和除去附着于冷却器32上的霜的除霜机构。除霜加热器33是由玻璃管保护的电阻加热式加热器。另外,除霜装置也可采用例如不使用电气加热器的热气解冻等其他除霜方式来实现。
另外,在冷却室13上方的前表面,即位于供给风路14一侧的侧表面形成有送风口13a,该送风口13a用于送出冷却器32所冷却的冷气。另外,在冷却室13的下方形成有返回口13b,该返回口13b用于供来自冷藏室的返回冷气吸入冷却室13内。另外,返回口13b通过返回风路29(29a、29b)与下层冷冻室6的返回口27及蔬菜室的返回口28连通。
另外,在送风口13a处安装有用于使冷气循环的送风机30。送风机30是由旋转式螺旋桨风扇、风扇电机(未图示)及带有风洞的风扇罩(未图示)构成的轴流送风机。并且,送风机30也可采用例如不带有机罩的螺旋桨送风机及电机的组合或多翼送风机等其他形式的送风机来实现。
这里,如前所述,分隔体40用于隔开供给风路16与供给风路14,其中,供给风路16与冷冻室4~6连通;供给风路14经由送风口13a与冷却室13连通。具体而言,分隔体40以周缘部与分隔体38相抵接的方式安装在分隔体38的前表面上,其中,该分隔体40由合成树脂制成,且其朝向冷却室13的一面形成规定的凹形形状。而且,在分隔体40的前方,分隔体39也以周缘部与分隔体38相抵接的方式安装,其中,该分隔体39由树脂制成,且形成规定的形状。
由此,在冷冻室4~6的后侧形成了供给风路16,该供给风路16介于分隔体39与分隔体40之间,另外,在冷冻室4~6更靠后的位置上形成有供给风路14,该供给风路14介于分隔体40与分隔体38之间。这样,在冰箱1中,冷冻室4~6与冷却室13之间具有隔开的供给风路16和供给风路14,因而能够降低由冷却室13向冷冻室4~6的热传递。
另外,对于分隔体38~40的抵接部分或连接方式还可进行多种变型。例如还可采用如下结构:使各分隔体38~40的周缘部与隔热箱体2的内箱2c(参照图2)内侧面和隔热分隔壁34的下表面相抵接。
另外,在分隔体38~40上还可贴附例如发泡聚苯乙烯(PS)片状部件或发泡聚乙烯(PE)片状部件等隔热部件(未图示)。由此,能够使冷却室13与冷冻室4~6之间的热阻变大,从而能够进一步降低由冷却室13向冷冻室4~6的热传递。
另外,在供给风路16与供给风路14之间的分隔体40上设置有可开闭的冷冻风门19作为第二风路开闭器,以使供给风路16与供给风路14连通。另外,在供给风路14和返回风路29的分隔区域内设置有可开闭的旁路风门20作为第三风路开闭器,以使供给风路14与冷却室13连通。
在本实施例中,与冷藏风门18相同,冷冻风门19和旁路风门20也采用所谓的电动风门。另外,也可采用其他形式的开闭装置作为冷冻风门19和旁路风门20。
这样,根据本实施例的冰箱1具有供给风路14、冷藏风门18、冷冻风门19和旁路风门20,其中,供给风路14与冷却室13的送风口13a连通;冷藏风门18设置于连通供给风路14与冷藏室3的通路内;冷冻风门19设置于供给风路14与冷冻室4~6相连通的通路内;旁路风门20用于使供给风路14与冷却室13的返回口13b连通。
由此,通过使冷冻风门19和冷藏风门18同时处于关闭的状态,使旁路风门20处于打开的状态,能够形成供送出口13a流出的空气依次流过供给风路14、旁路风门20、返回风路29及返回口13b,并返回冷却室13的空气通路。即,在冰箱1中,使通过送风机30由冷却室13吹送至供给风路14内的空气不经由储藏室而直接返回冷却室13,从而能够使空气在冷却室13与供给风路14之间循环。
另外,根据本实施例的冰箱1具有通过进行规定的运算来控制各部件的未图示的控制装置以及其他未图示的各种传感器或显示器、照明装置等。
下面将参照图5、图2及图4,对冰箱1的冷却动作进行详细说明。图5是表示冰箱1的示意性操作控制时序及储藏室温度变化的图。
如图5所示,冰箱1重复地进行如下冷却操作循环:从全停操作S1开始,依次进行加湿操作S2、冷藏室冷却操作S3(以下称为“R冷却S3”)、预冷操作S4、冷藏室冷冻室同时冷却操作S5(以下称为“FR冷却S5”)、冷冻室冷却操作S6(以下称为“F冷却S6”),并返回全停操作S1。
参照图2和图4,在全停操作S1中,使压缩机31和送风机30停止,使冷藏风门18、冷冻风门19和旁路风门20处于关闭状态。即,在全停操作S1中,不对储藏室进行冷却。因此,如图5所示,在全停操作S1中,冷藏室3和下层冷冻室6的温度稍有上升。
在进行F冷却S6后(时间T0)、开始进行加湿操作S2(时间T2)之前,通过进行全停操作S1,能够降低冰箱1进行整个冷却操作循环的耗电量。具体而言,进行F冷却S6后进行全停操作S1,与立即开始进行加湿操作S2相比,会使冷冻室4~6的温度上升变慢;之后,压缩机31的启动(时间T3)推迟。因此,通过进行全停操作S1,能够确保压缩机31的停机时间(由T0到T3的时间)较长,因而可减少冰箱1进行整个冷却操作的耗电量。
在冰箱1中,通过时间进行控制,以规定的时间进行全停操作S1。具体地,当开始进行全停操作S1(时间T1)且经过规定时间之后,使全停操作S1结束,并开始加湿操作S2(时间T2)。全停操作S1所持续的时间(由T1到T2的时间)例如为7分钟。这样,通过时间控制方式来控制全停操作S1的时间,无需另外设置用于检测冷却状态等的温度传感器等,从而能够通过简单的控制达到良好的节能效果。
另外,例如还可以根据设置于冷藏室3或冷冻室4~6的温度传感器(未图示)或者设置于冷却室13的温度传感器(未图示)等所检测出的温度,对进行全停操作S1的时间进行控制。具体地,若冷藏室3、冷冻室4~6或者冷却室13的温度上升至规定数值,则可以结束全停操作S1,并开始加湿操作S2。另外,根据用于检测冰箱箱体外部的温度的温度传感器(未图示)所检测出的冷藏室1外部的温度,可对延长或缩短全停操作S1所持续的时间进行控制。
在进行全停操作S1后,冰箱1在冷藏风门18打开、冷却室32的冷却功能停止的状态下,低速运转送风机30,开始加湿操作S2(时间T2)。使冷却器32的冷却功能停止是指使冷却装置停止工作的状态,具体地,是指压缩机31停止工作的状态。
换言之,在加湿操作S2中,压缩机31、冷冻风门19及旁路风门20维持与全停操作S1中相同的状态。即,压缩机31处于停止状态,冷冻风门19及旁路风门20处于关闭状态。
通过进行加湿操作S2,能够将由冷却器32及附着于其上的霜所冷却的空气供给到冷藏室3内。空气的流动情况如图2和图4所示,由冷却器32冷却的空气通过送风机30由冷却室30的送出口13a排出至供给风路14。
进一步地,排出至供给风路14的冷却空气通过处于打开状态的冷藏风门18流向供给风路15,由吹出口21供给到冷藏室3内。由此,如图5中的曲线图所示,冷藏室3的温度降低,可对储藏于其内的食品等进行冷却。
供给到冷藏室3内的冷气由返回口26流入连接风路17(参照图3),并由吹出口25供给到蔬菜室7内。也就是说,蔬菜室7也被冷却。另外,在蔬菜室7内循环的冷气由返回口28经由返回风路29b、冷却室13的返回口13b,返回至冷却 室13内(参照图4)。之后,其在冷却室13内再次被冷却器32冷却。
这样,在冰箱1中,利用进行F冷却S6而变成低温的冷却器32的冷量(显热)及附着于冷却器32上的霜的冷量(显热及霜融解的潜热),无需运转压缩机31,就能对冷藏室3(及蔬菜室7)进行冷却(参照图5中的曲线图)。由此,能够降低冷却所需的耗电量。
另外,通过进行加湿操作S2能够融解附着于冷却器32上的霜,因而能够减少除霜所需的加热热量,从而能够降低除霜加热器33的耗电量。
另外,在加湿操作S2中,能够通过附着于冷却器32上的霜的融解水获得加湿效果。由此,能够使含有湿气的湿润空气在冷藏室3(及蔬菜室7)内循环,从而能够防止保存于冷藏室3(及蔬菜室7)内的食品等变干燥。
另外,在加湿操作S2中,是使送风机30低速运转。即,在加湿操作S2中,送风机30的转速即送风能力比进行FR冷却S5或F冷却S6时送风机30的送风能力低。由此,与高速运转送风机30的情况相比,能够降低送风机30的耗电量及冰箱1进行整个冷却操作循环的耗电量。
然后,若冰箱1的冷冻室4~6的温度上升至规定温度,则结束加湿操作S2,并开始进行R冷却S3(时间T3)。通过根据冷冻室4~6的温度来决定是否开始进行R冷却S3,能够防止冷冻室4~6的温度上升至允许范围之上,也能减少压缩机31的操作时间,从而降低冷却所需的耗电量。
当R冷却S3开始时(时间T3),会启动压缩机31,但送风机30、冷藏风门18、冷冻风门19及旁路风门20维持与加湿操作S2相同的状态。即,在R冷却S3中,使冷藏风门18处于打开状态,冷冻风门19及旁路风门20处于关闭状态,并且使压缩机31及送风机30运转,以将冷却器32所冷却的空气供给到冷藏室3(及蔬菜室7)。另外,冷却器32所冷却的空气在冷藏室3和蔬菜室7内循环的通路与前述加湿操作S2中的循环通路相同。
在此将详细说明R冷却S3中的冷却器32所进行的冷却动作,即蒸发压缩式制冷循环回路所进行的冷却动作:首先,利用如图2所示的压缩机31将低温低压的冷却剂蒸气压缩至高温高压的状态,通过未图示的散热器散热。另外,在散热器中失去热量而凝固的液体冷却剂被用作冷却机构的未图示的毛细管节流膨胀,流向冷却器32内。在冷却器32中,低温低压的液体冷却剂与空气进行热交换并蒸发。结果使得,冷却室13内的空气通过冷却剂的蒸发潜热而冷却。在冷却器32中蒸发的蒸气冷却剂被再次吸入压缩机31,且被压缩机31压缩。连续地重复进行上述说明的动作,通过冷却器32对空气进行冷却。
如上所述,通过在启动压缩机31之后首先进行R冷却S3,能够对加湿操作S2中温度变高的冷却室13及供给风路14、15进行冷却,从而防止温度较高的空 气流入冷冻室4~6。由此,能够抑制冷冻室4~6的温度上升,从而降低冷却所需的能耗量。
另外,在R冷却S3中,送风机30低速操作。即,使R冷却S3中送风机30的转速即送风能力比进行FR冷却S5时的送风能力低。由此,能够进一步降低送风机30的耗电量及其后冷却操作中冰箱1的耗电量。
在开始R冷却S3(时间T3)且经过规定时间后,结束R冷却S3(时间T4)。在此,R冷却S3所持续的规定时间(由T3到T4的时间)例如为2分钟。从而,通过以时间为标准对R冷却S3进行时间控制,无需设置其他传感器等,而且能够在不被温度检测的误差影响的情况下通过简单的控制获得良好的节能效果。
当R冷却S3结束后,冰箱1进行预冷操作S4,即:使压缩机31处于持续工作的状态,使冷藏风门18和冷冻风门19处于关闭状态,使旁路风门20处于打开状态,并且使送风机30高速运转。
在预冷操作S4中,通过送风机30的运转迫使空气在冷却室13和供给风路14之间循环,且通过进行蒸发压缩式制冷循环,使循环的空气通过冷却器32而被冷却。这里,利用蒸发压缩式制冷循环系统的冷却器32所进行的冷却动作与R冷却S3中的冷却动作相同。
藉此,通过在R冷却S3之后进行预冷操作S4,能够高效地对通过进行R冷却S3而使温度与F冷却S6时相比增高的冷却器32及其周围以及供给风路14内的空气进行冷却。由此,当切换至FR冷却S5时,能够防止热气流入冷冻室4~6内。因此,可防止冷冻室4~6的温度上升,并且能够降低之后的冷却所需的耗电量。
另外,由于预冷操作S4将通过送风机30迫使空气在冷却室13与供给风路14之间循环,因而不但冷却器32中的热交换效率较高,而且制冷循环的效率也较高。由于能够进行这样的高效冷却,因而能够在较短时间内有效地冷却空气,从而降低预冷所需的耗电量。
在此,通过时间控制,以规定的时间进行预冷操作S4。例如,预冷操作S4所持续的规定时间(由T4到T5的时间)例如为1分钟。这样,通过以该操作时间为标准从预冷操作S4切换成FR冷却S5,无需另外设置用于检测冷却状态的温度传感器等,而且能够在不受温度检测误差等影响的情况下,通过简单的控制获得节能的效果。
另外,可在冷却室13或供给风路14内设置用于检测温度的温度传感器(未图示),如果该温度传感器所检测出的温度低于规定的目标温度,则可结束预冷操作S4。另外,根据安装于冷却器32的配管上的除霜用温度传感器(未图示)所检测出的温度,也可判断是否结束预冷操作S4。
然后,在开始进行预冷操作S4(时间T4)且经过规定的时间之后,结束预冷操作S4,并开始FR冷却S5(时间T5)。具体地,在进行预冷操作S4之后,使压缩机31和送风机30处于持续工作状态,将冷藏风门18和冷冻风门19切换为打开状态,将旁路风门20切换为关闭状态。由此,能够将冷却器32所冷却的空气供给到冷藏室3(及蔬菜室7)以及冷冻室4~6内。也就是说,在FR冷却S5中,可同时对储藏室内的全部收纳室3~7进行冷却。
这里,FR冷却S5中冷却器32的冷却动作,即由蒸发压缩式制冷循环系统进行的冷却动作与R冷却S3及预冷操作S4中的冷却动作相同。另外,冷却器32所冷却的空气在冷藏室3及蔬菜室7内循环的通路也与R冷却S3中空气的循环通路相同。
在FR冷却S5中,除了冷藏室3和蔬菜室7外,还可以使冷却后的空气在冷冻室4~6内循环。下面,将参照图2和图4来说明冷冻室4~6内的冷气循环情况。排出至供给风路14内的冷却空气的一部分通过冷冻风门19流入供给风路16内,并通过吹出口22、23分别供给到制冰室4和上层冷冻室5。而且,该冷气会流入与制冰室4和上层冷冻室5连通的下层冷冻室6内。
同时,通过冷冻风门19流入供给风路16内的一部分冷却空气也会经由吹出口24供给到下层冷冻室6。并且,下层冷冻室6内的空气将从返回口27通过返回风路29a,再通过冷却室13的返回口13b,流入冷却室13内。这样,冷却器32所冷却的空气在冷冻室4~6内循环,对食品等进行冷却保存。
接下来,通过进行FR冷却S5使冷藏室3的温度降低到规定的目标温度后,结束FR冷却S5,开始F冷却S6(时间T6)。具体地,在压缩机31持续操作的状态下,关闭冷藏风门18,降低送风机30的功率,使其以适当的速度工作。即,在F冷却S6中,将使冷藏风门18和旁路风门20处于关闭状态,使冷冻风门19处于打开状态,并且将冷却器32所冷却的空气仅供给到冷冻室4~6内。
另外,关于蒸发压缩式制冷循环系统的冷却器3的冷却动作和冷冻室4~6内所冷却的空气的循环通路,均与已描述的FR冷却S5中的相同。在F冷却S6中,由冷却器32冷却的空气并不供给到冷藏室3内,而是仅仅供给到冷冻室4~6内。
这样,由于先进行了FR冷却S5,以在冷却器32温度降低的状态下开始进行F冷却S6,因而能够抑制冷冻室4~6的温度上升,以降低冷却所需的耗电量。
接下来,通过进行F冷却S6,使冷冻室4~6的温度降低到规定的目标温度后,结束F冷却S6(时间T0)。
在此,当F冷却S6结束时,在冷冻风门19处于打开的状态,送风机30处于持续操作的状态下,使压缩机31停止运转,从而停止冷却器32所进行的冷却(时间T0)。即,使压缩机31停止运转后,让送风机30继续保持运转(送风机延迟 S0)。
这样通过进行送风机延迟S0,可利用进行F冷却S6后变为低温的冷却器32的冷量对冷冻室4~6进行冷却(参照图5中的图)。由此,可进一步降低冷却所需的耗电量。
另外,送风机延迟S0所持续的时间,即从停止冷却(时间T0)到使冷冻风门关闭、送风机30停止(时间T1)所持续的时间(由T0到T1的时间),例如为1分钟。
之后,冰箱1变为全停操作S1的状态;反复进行上述说明的冷却操作循环,可实现耗电量减小的高效冷却。
下面将参照图6来说明冰箱1的冷却操作的变型例。图6是表示冰箱1的操作控制的变型例的时序图。另外,对于已参照图5描述了的结构或动作等,在图6中以相同符号标示,这里对其将不予详述。
在图6所示的操作控制的例子中,不进行R冷却S3(参见图5)。这一点与参照图5描述的操作控制的例子不同。即,如图6所示,在该变型例中,冰箱1重复进行如下冷却操作循环:从全停操作S1开始,依次进行加湿操作S2、预冷操作S4、FR冷却S5、F冷却S6,返回至全停操作S1。
具体地,冰箱1进行加湿操作S2(时间T2~时间T3),在该加湿操作S2中,使冷藏风门18处于打开状态,冷冻风门19和旁路风门20处于关闭状态,并使冷却器32(参见图2)的冷却操作处于停止状态,使送风机30低速运转。
在进行了加湿操作S2之后(时间T3),冰箱1进行预冷操作S4,在该预冷操作S4中,使冷冻风门19处于与加湿操作S2相同的状态(即保持关闭状态),使冷藏风门18处于关闭状态,使旁路风门20处于打开状态,启动压缩机31,并且使送风机30高速运转,。
在预冷操作S4中,通过送风机30的运转迫使空气在冷却室13(参见图2)和供给风路14(参见图2)之间循环,且使蒸发压缩式制冷循环系统工作,通过冷却器32对循环的空气进行冷却。
这样,通过在进行加湿操作S2之后进行预冷操作S4,能够高效地对在加湿操作S2中使其温度与F冷却S6时相比增高的冷却器32及其周围以及供给风路14内的空气进行冷却。
这样,当切换至FR冷却S5时,能够防止热气进入冷冻室4~6(参照图2)内,防止冷冻室4~6的温度上升,从而能够降低之后的冷却过所需的电量。
下面将参照图7和图8对根据本实施例的冰箱1的变型例进行详细说明。图7是表示冰箱1的变型例的侧剖视图,其中,图7中的(A)示出了冷冻风门19附近的情况,图7中的(B)示出了旁路风门20附近的情况。
如图7中的(A)所示,冷藏风门18可以不设置在供给风路15内,而是设置在供给风路14与供给风路15的分隔区域内。在这种情况下,可以通过将分隔体40或分隔体38的一部分加工成规定形状而形成该分隔区域,也可以使用另外的分隔部件来形成该分隔区域。
另外,如图7中的(B)所示,可以将旁路风门20设置在作为供给风路14与冷却室13之间的分隔区域的分隔体38上。采用这种结构,通过使旁路风路20处于打开状态,也可使空气由供给风路14流入冷却室13。
图8是表示根据本实施例的冰箱1的冷却室13附近的结构的侧剖视图。如图8所示,在下层冷冻室6的返回风路29a中,在其上游侧(即位于下层冷冻室6的一侧)设置有与旁路风门20对应的返回风门50用作第四风路开闭器。
返回风门50与前述冷藏风门18和冷冻风门19相同,都是所谓的电动风门。然而,本发明并不局限于此,也可采用多种开闭装置作为返回风门50。
返回风门50与冷冻风门19同时开闭。即,在进行图5所示的FR冷却S5、F冷却S6和送风机延迟S0时,返回风门50处于打开状态,在进行全停操作S1、加湿操作S2、R冷却S3和预冷操作S4时,返回风门50处于关闭状态。
通过控制返回风门50使其处于关闭状态,可封闭返回风路29a,这在加湿操作S2、R冷却S3和预冷操作S4中,能够防止在冷却室13和供给风路14内循环的热气经由返回口27流入(逆流)至下层冷冻室6内。由此,能够防止冷冻室4~6的温度上升,从而能够实现进一步的节能。
上文描述了根据本发明一些实施例的冰箱1,但本发明并不局限于此,在不脱离本发明精神和范围的情况下,还可对其进行多种变型。

Claims (8)

  1. 一种冰箱,包括:
    储藏室,其至少划分为冷藏室和冷冻室;
    冷却器,用于对供给到所述储藏室内的空气进行冷却;
    冷却室,用于收纳所述冷却器;
    供给风路,用于连接所述冷却室和所述储藏室;
    送风机,将所述冷却器冷却的空气从所述冷却室送出至所述供给风路;
    第一风路开闭器,设置在与所述冷藏室连通的供给风路内;
    第二风路开闭器,设置在与所述冷冻室连通的供给风路内;和
    第三风路开闭器,配置成使所述供给风路与所述冷却室连通,且使所述送风机送出的空气经由所述供给风路返回至所述冷却室内;其中,
    在使所述第一风路开闭器和所述第二风路开闭器关闭、使所述第三风路开闭器打开的状态下,进行使空气在所述冷却室与所述供给风路之间循环并冷却的预冷操作;而且
    在进行了所述预冷操作后,在使所述第一风路开闭器和所述第二风路开闭器打开、使所述第三风路开闭器关闭的状态下,进行将所述冷却器冷却的空气供给到所述冷藏室和所述冷冻室的冷藏室冷冻室同时冷却操作。
  2. 根据权利要求1所述的冰箱,其中
    在使所述第一风路开闭器打开、使所述第二风路开闭器和所述第三风路开闭器关闭的状态下,进行将所述冷却器所冷却的空气供给到所述冷藏室的冷藏室冷却操作;
    在进行了所述冷藏室冷却操作后,进行所述预冷操作。
  3. 根据权利要求2所述的冰箱,其中
    在开始进行冷藏室冷却操作且经过一规定时间后,结束所述冷藏室冷却操作,并开始所述预冷操作,
    在开始进行所述预冷操作且经过一规定时间之后,结束所述预冷操作,并开始所述冷藏室冷冻室同时冷却操作。
  4. 根据权利要求2或3所述的冰箱,其中
    在所述冷藏室冷却操作中,所述送风机的送风能力被控制为:使其低于进行所述冷藏室冷冻室同时冷却操作中所述送风机的送风能力。
  5. 根据权利要求1所述的冰箱,其中
    在使所述第一风路开闭器打开、使所述第二风路开闭器和所述第三风路开闭器关闭、使所述冷却器的冷却操作停止的状态下,进行使所述送风机运转,将附 结于所述冷却器上的霜的融解所加湿的空气供给到所述冷藏室的加湿操作;
    在进行了所述加湿操作后,进行所述预冷操作。
  6. 根据权利要求2至4任一项所述的冰箱,其中
    在使所述第一风路开闭器打开、使所述第二风路开闭器和所述第三风路开闭器关闭、使所述冷却器的冷却操作停止的状态下,进行使所述送风机运转,将附结于所述冷却器上的霜的融解所加湿的空气供给到所述冷藏室的加湿操作;
    在进行了所述加湿操作之后,进行所述冷藏室冷却操作。
  7. 根据权利要求5或6所述的冰箱,其中
    在进行了所述冷藏室冷冻室同时冷却操作后,在使所述第一风路开闭器和所述第三风路开闭器关闭、使所述第二风路开闭器打开的状态下,进行将所述冷却器所冷却的空气供给到所述冷冻室的冷冻室冷却操作;
    在所述冷冻室冷却操作结束后,在使所述第二风路开闭器打开且使所述送风机持续运转的状态下,停止所述冷却器的冷却操作;
    在所述冷却器的冷却操作停止且经过一规定时间后,使所述第二风路开闭器关闭,并停止运转所述送风机。
  8. 根据权利要求7所述的冰箱,其中
    在所述冷冻室冷却操作停止且经过一规定时间后,开始所述加湿操作;
    在所述冷冻室的温度上升至规定数值后,结束所述加湿操作。
PCT/CN2015/075062 2014-05-22 2015-03-25 冰箱 WO2015176581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580001438.4A CN105452785B (zh) 2014-05-22 2015-03-25 冰箱

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-105878 2014-05-22
JP2014105878A JP2015222131A (ja) 2014-05-22 2014-05-22 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2015176581A1 true WO2015176581A1 (zh) 2015-11-26

Family

ID=54553397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075062 WO2015176581A1 (zh) 2014-05-22 2015-03-25 冰箱

Country Status (3)

Country Link
JP (1) JP2015222131A (zh)
CN (1) CN105452785B (zh)
WO (1) WO2015176581A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766524A (zh) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 风冷冰箱及其运行控制方法
KR20170072776A (ko) * 2015-12-17 2017-06-27 삼성전자주식회사 냉장고
US11022363B2 (en) 2017-01-19 2021-06-01 Lg Electronics Inc. Refrigerator and control method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10612832B2 (en) * 2015-12-17 2020-04-07 Samsung Electronics Co., Ltd. Refrigerator with defrost operation control
CN106642974B (zh) * 2016-12-27 2019-05-03 青岛海尔股份有限公司 具有风机遮蔽的冰箱的控制方法及冰箱
JP6895605B2 (ja) * 2017-01-06 2021-06-30 パナソニックIpマネジメント株式会社 冷蔵庫
CN114440529B (zh) * 2020-11-03 2024-02-06 海信冰箱有限公司 冰箱制冷系统节能控制方法及冰箱
JP2023098320A (ja) * 2021-12-28 2023-07-10 アクア株式会社 冷蔵庫

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689966A (en) * 1984-11-15 1987-09-01 Kabushiki Kaisha Toshiba Refrigeration having mode-change chamber capable of operation within freezing, chill and refrigeration temperature ranges
JP2002031466A (ja) * 2000-07-19 2002-01-31 Mitsubishi Electric Corp 冷蔵庫
CN1702411A (zh) * 2004-05-28 2005-11-30 株式会社东芝 冰箱
CN101706189A (zh) * 2009-03-05 2010-05-12 海尔集团公司 一种多变温室冰箱
CN102803876A (zh) * 2009-06-29 2012-11-28 日立空调·家用电器株式会社 冰箱
WO2013143449A1 (zh) * 2012-03-26 2013-10-03 海尔集团公司 电冰箱及其工作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989432A (ja) * 1995-09-20 1997-04-04 Hitachi Ltd 冷蔵庫の制御装置
JP3738169B2 (ja) * 2000-03-30 2006-01-25 三洋電機株式会社 湿度調節式冷蔵庫
JP2005337677A (ja) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd 冷蔵庫
JP5017340B2 (ja) * 2009-09-09 2012-09-05 日立アプライアンス株式会社 冷蔵庫
JP2012092986A (ja) * 2010-10-25 2012-05-17 Hitachi Appliances Inc 冷蔵庫
WO2013128845A1 (ja) * 2012-02-29 2013-09-06 パナソニック株式会社 冷蔵庫

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689966A (en) * 1984-11-15 1987-09-01 Kabushiki Kaisha Toshiba Refrigeration having mode-change chamber capable of operation within freezing, chill and refrigeration temperature ranges
JP2002031466A (ja) * 2000-07-19 2002-01-31 Mitsubishi Electric Corp 冷蔵庫
CN1702411A (zh) * 2004-05-28 2005-11-30 株式会社东芝 冰箱
CN101706189A (zh) * 2009-03-05 2010-05-12 海尔集团公司 一种多变温室冰箱
CN102803876A (zh) * 2009-06-29 2012-11-28 日立空调·家用电器株式会社 冰箱
WO2013143449A1 (zh) * 2012-03-26 2013-10-03 海尔集团公司 电冰箱及其工作方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170072776A (ko) * 2015-12-17 2017-06-27 삼성전자주식회사 냉장고
KR102641371B1 (ko) 2015-12-17 2024-02-28 삼성전자주식회사 냉장고
CN106766524A (zh) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 风冷冰箱及其运行控制方法
US11022363B2 (en) 2017-01-19 2021-06-01 Lg Electronics Inc. Refrigerator and control method therefor
EP3457059B1 (en) * 2017-01-19 2022-05-11 LG Electronics Inc. Refrigerator and control method therefor

Also Published As

Publication number Publication date
JP2015222131A (ja) 2015-12-10
CN105452785B (zh) 2018-01-02
CN105452785A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5847626B2 (ja) 冷蔵庫及びその運転方法
WO2015176581A1 (zh) 冰箱
JP5530852B2 (ja) 冷蔵庫
JP2009121803A (ja) 冷蔵庫
WO2015172610A1 (zh) 冰箱
WO2018076583A1 (zh) 冰箱
JP6803217B2 (ja) 冷蔵庫
JP6422513B2 (ja) 冷凍冷蔵庫
JP5838238B2 (ja) 冷蔵庫
JP6890502B2 (ja) 冷蔵庫
JP2013061084A (ja) 冷蔵庫
JP2012063026A (ja) 冷蔵庫
JP2005016903A (ja) 冷蔵庫
JP7454458B2 (ja) 冷蔵庫
JP7473390B2 (ja) 冷蔵庫
JP2019027649A (ja) 冷蔵庫
JP6955348B2 (ja) 冷蔵庫
JP2023007615A (ja) 冷蔵庫
JP2023007618A (ja) 冷蔵庫
JP2022069946A (ja) 冷蔵庫
JP2022063354A (ja) 冷蔵庫
JP5315788B2 (ja) 冷蔵庫
JP2022185802A (ja) 冷蔵庫
JP2021036189A (ja) 冷蔵庫
JP2021179293A (ja) 冷蔵庫

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001438.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795703

Country of ref document: EP

Kind code of ref document: A1