WO2015172581A1 - 一种测量血液流量的设备及方法 - Google Patents

一种测量血液流量的设备及方法 Download PDF

Info

Publication number
WO2015172581A1
WO2015172581A1 PCT/CN2015/071441 CN2015071441W WO2015172581A1 WO 2015172581 A1 WO2015172581 A1 WO 2015172581A1 CN 2015071441 W CN2015071441 W CN 2015071441W WO 2015172581 A1 WO2015172581 A1 WO 2015172581A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
phase shift
light
blood flow
module
Prior art date
Application number
PCT/CN2015/071441
Other languages
English (en)
French (fr)
Inventor
王益民
代祥松
李鹏
万明明
何卫红
Original Assignee
深圳市斯尔顿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2014/077418 external-priority patent/WO2015172322A1/zh
Priority claimed from CN201410378086.1A external-priority patent/CN105310677B/zh
Application filed by 深圳市斯尔顿科技有限公司 filed Critical 深圳市斯尔顿科技有限公司
Publication of WO2015172581A1 publication Critical patent/WO2015172581A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow

Definitions

  • the present invention relates to the field of optoelectronic technology, and in particular, to an apparatus and method for measuring blood flow.
  • retinal diseases are associated with abnormal blood flow to the eye, such as retinopathy caused by diabetes, retinal vein occlusion, and age-related macular degeneration.
  • retinal insufficiency is considered to be a possible cause of the development and progression of glaucoma. Therefore, measurement of retinal blood flow is of great significance for the clinical diagnosis, treatment and research of retinal diseases.
  • OCT Optical Coherence Tomography
  • OCT is a non-invasive detection technique that is widely used for imaging live structures in biological tissues.
  • OCT can provide a high-resolution, high-sensitivity tissue structure.
  • OCT technology can also detect the Doppler shift of scattered light to obtain motion information of fluids and samples, and is therefore suitable for measuring blood flow in the retina.
  • the frequency shift detected by the single-beam Doppler OCT is only related to the blood flow velocity in the direction of the probe beam, and the blood flow information perpendicular to the direction of the probe light cannot be directly obtained from the Doppler shift, and the intravascular can not be obtained. The actual flow rate.
  • the direction of the blood vessels in the retina is obtained in space, thereby determining the Doppler angle of the probe light, and then using the Doppler angle to calculate the actual flow velocity.
  • This method is less accurate because the blood vessels of the retina and the probe beam are close to vertical.
  • the space vector of the blood vessel to be tested is determined, and then the Doppler angle is calculated to obtain the actual flow velocity.
  • the measurement results of this method are affected by eye movements, and it can only measure blood vessels around the optic disc and cannot measure blood flow in other areas of the retina.
  • flow information can also be obtained by calculating the Doppler signal of the cross-section of the blood vessel, but this measurement method is only applicable to large blood vessels that are steep toward the optic disc, and cannot detect blood flow in other regions of the retina.
  • the multi-beam, multi-angle probe light is used to scan the same point in the sample to obtain the true fluid velocity in the blood vessel.
  • the OCT probe light is split into two beams by a glass plate.
  • the two beams are concentrated in the fluid to form a double beam.
  • the two-angle illumination method can obtain the real fluid in the pipeline by analyzing the Doppler shift detected by the two beams. speed. This method is not applicable to frequency domain OCT systems due to the delay of the two paths of light.
  • a two-beam OCT system split by polarized light can be used to measure the flow rate and flow in the retinal blood vessels, or a DOVE prism can be synchronized with the OCT scanning mechanism to achieve a circular scan of the dual beam on the retina.
  • these two-beam systems are composed of two Michelson interferometers, which are complicated in structure and difficult to adjust, and because of the safety considerations of the probe light, the power of each probe light is much lower than that of the single-beam system, which reduces the double-beam OCT.
  • the sensitivity of the system increases the phase noise of the system.
  • the invention provides an apparatus and a method for measuring blood flow, which utilizes a rotatable and reflective device to detect and scan a single beam of light to a double angle of an eye to obtain blood flow of blood vessels in the eye, which solves the problem that cannot be accurately determined in the prior art.
  • the problem of measuring the blood flow inside the blood vessels in the eye is not limited.
  • An apparatus for measuring blood flow comprising: a light source, a detecting module, a beam splitting module, a reference arm module, a sample arm module and a control system; the light emitted by the light source is divided into reference light and probe light by the light splitting module, The reference light is incident on the reference arm module, and the probe light is incident on the sample arm module;
  • the sample arm module includes a first lens, a rotatable mirror having a center of rotation disposed at the focus of the first lens, and a driving device that drives rotation of the rotatable mirror; an optical axis of the first lens and the The rotating shaft of the driving device is coaxial;
  • the probe light scans the sample to obtain a first phase shift signal of the sample
  • the probe light scans the sample to obtain a second phase shift signal of the sample
  • the first phase shift signal and the second phase shift signal are respectively returned from the sample arm module, and the reference light returned from the reference arm module interferes at the spectroscopic module and forms interference light,
  • the detecting module receives the interference light and processes it through the control system, and calculates a blood flow rate of the sample.
  • the rotation angle of the driving device is 180°.
  • the sample arm module further includes a first mirror with a through hole in the middle; the through hole of the first mirror is used for the passage of the probe light from the beam splitting module, and the reflective surface is used for reflecting the light from the The probe light reflected by the rotatable mirror and then transmitted through the first lens.
  • the sample arm module further includes a first mirror group disposed between the beam splitting module and the first mirror; the first mirror group includes a second mirror and a third mirror; The second mirror and the third mirror sequentially reflect the probe light emitted by the beam splitting module and incident on the first lens.
  • the sample arm module further includes a scanning unit and a dichroic mirror; the scanning unit scans the probe light reflected from the first mirror and transmits the probe light to the dichroic mirror; The dichroic mirror reflects the probe light to a blood vessel of a sample.
  • the sample arm module further includes a scanning unit and the first mirror disposed A second mirror group consisting of at least one mirror.
  • the sample arm module further includes a preview module, the preview module includes a second lens and a camera; and the probe light returned by the sample is sequentially transmitted through the dichroic mirror and the second lens It is captured by the camera and its captured image is displayed by the display of the control system.
  • the sample arm module further includes a relay lens disposed between the scanning unit and the dichroic mirror.
  • the driving device is a motor.
  • the present invention also discloses a method of measuring blood flow of a blood vessel, comprising the following steps:
  • the sample arm module includes: a first lens, a rotatable mirror having a rotation center disposed at a focus of the first lens, and a driving device that drives rotation of the rotatable mirror; an optical axis of the first lens is coaxial with a rotation axis of the driving device;
  • the probe light scans the blood vessel in the first direction through the sample arm module and generates a first phase shift signal
  • the probe light scans the blood vessel in the second direction through the sample arm module and generates a second phase shift signal
  • the method further includes: modifying the second phase shift signal, the specific steps are:
  • the second phase shift signal is corrected using an interpolation calculation.
  • the method further includes:
  • the first direction of detecting light entering the blood vessel when the rotatable mirror is in the first position and the second direction of detecting light entering the blood vessel when the rotatable mirror is in the second position form an XZ plane
  • the X direction is parallel to the X axis of the XZ plane.
  • the present invention also discloses a method of measuring total blood vessel blood flow in an optic disc, comprising the steps of:
  • the scanning unit and the driving device rotate synchronously, and the detecting light circularly scans all the blood vessels in the optical disc in the first direction to obtain a plurality of first phase shift signals corresponding to all the blood vessels one by one;
  • the scanning unit and the driving device rotate synchronously, and the detecting light scans all the blood vessels in the optic disc in the second direction and the same scanning trajectory as the detecting light when the rotatable mirror is in the first position, a plurality of corrected second phase shift signals corresponding to all blood vessels;
  • the angle at which the driving device rotates is 180°.
  • the blood flow measuring apparatus and method provided by the present invention controls the rotation of the rotatable mirror by the driving device, and makes the rotating shaft of the driving device and the optical axis of the first lens coaxial, when rotatable When the mirror is in the first position, the system obtains the first phase shift signal, and when the rotatable mirror is in the second position, the system obtains the second phase shift signal, and the system shifts the phase by the first phase.
  • the motion signal and the second phase shift signal calculate the blood flow velocity in the blood vessel to be tested, and further determine the blood flow rate of the blood vessel to be tested, thereby ensuring the accuracy of blood flow measurement in the blood vessel.
  • the detecting light circularly scans all the blood vessels when the rotatable mirror is in the first position.
  • the detection light ring is formed to be stable with the second scan direction of the same scanning track as the probe light is in the first position. The blood flow rate of the blood vessels inside the optic disc is calculated more accurately, and the blood flow of all blood vessels in the optic disc is further accurately determined.
  • FIG. 1 is a schematic structural view of a blood flow measuring device according to an embodiment of the present invention.
  • FIG. 2 is a first structural schematic view of the sample arm module shown in FIG. 1;
  • FIG. 3 is a second schematic structural view of the sample arm module shown in FIG. 2;
  • Figure 4 is a schematic view showing the angle ⁇ formed by the probe light incident on the retina of the eye when the rotatable mirror is at two different positions and the geometric space formed by the blood vessel B;
  • Figure 5 is a schematic view showing the scanning trajectory of the probe light in the blood vessel
  • FIG. 6 is a schematic diagram showing the principle of implementing the scanning trajectory shown in FIG. 5;
  • Figure 7 is a schematic view showing the scanning of the angle between the axial direction of the blood vessel and the X direction;
  • Figure 8 is a graph showing changes in the first phase shift signal and the second phase shift signal over time
  • Fig. 9 is a schematic view showing the blood flow measurement flow of the present invention.
  • Embodiments of the present invention provide a blood flow measuring device for measuring blood of a human tissue and organ flow.
  • the tissue organs here include tissues and organs of humans or animals.
  • the tissue organ includes, but is not limited to, the eyes of a human or an animal.
  • the selected measurement object is the blood vessel of the eye
  • the method itself is equally applicable to measuring other tissues and organs other than the eyes of a human or an animal, but requires a technical implementation.
  • the schematic diagram of the icon of the eye is replaced with a schematic diagram of other tissues and organs.
  • the samples below include, but are not limited to, the eyes of a human or animal.
  • the blood flow measuring device includes a light source 100, a beam splitting module 200, a reference arm module 300, a sample arm module 500, a detecting module 600, and a control system 700.
  • the light emitted by the light source 100 is transmitted to the beam splitting module 200, and the light splitting module 200 divides the received light into reference light and probe light, wherein the reference light is transmitted to the reference arm module 300, and the probe light is transmitted to the sample arm module 500.
  • the reference arm module 300 reflects the received reference light and returns it to the beam splitting module 200 to form reference light.
  • the probe light is incident on the eye 800 after passing through the sample arm module 500, and is scattered by the tissue in the eye 800 to form signal light and return to the split light.
  • the module 200 generates interference light after the signal light and the reference light interfere at the beam splitting module 200.
  • the detecting module 600 receives and collects the interference light and transmits the signal to the control system 700.
  • the control system 700 processes the signal to obtain an OCT fault of the eye. Imaging.
  • the reference arm module 300 includes a reference mirror 303.
  • the reference mirror 303 is preferentially selected as a planar mirror.
  • the reference light provided by the spectroscopic module 200 is reflected by the reference mirror 303 and returned to the spectroscopic module 200 to form reference light.
  • the sample arm module 500 module includes a first lens 501, a rotatable mirror 503, and a driving device 502 that drives the rotation of the rotatable mirror 503.
  • the center of rotation of the rotatable mirror 503 is disposed at the focus of the first lens 501, in order to ensure that the probe light emitted from the first lens 501 is reflected by the rotatable mirror 503, and then can be emitted in parallel after passing through the first lens 501.
  • the rotational axis 5021 of the driving device 502 needs to be ensured to be coaxial with the optical axis 5011 of the first lens 501.
  • the sample arm module 500 further includes a first mirror 506 disposed between the beam splitting module 200 and the first lens 501.
  • the first mirror 506 is provided with a through hole 5061.
  • the through hole 5061 is opened in the middle of the first mirror 506.
  • the probe light from the beam splitting module 200 is perpendicularly incident on the first lens 501 through the through hole 5061, and then transmitted through the first lens 501. It is incident on the rotatable mirror 503.
  • the rotatable mirror 503 reflects the incident probe light at the first position M 1 and the second position M 2 respectively under the rotation of the driving device 502, and the reflected probe light is transmitted through the first lens 501 and then emitted in parallel.
  • the scanning unit 510 is further accessed.
  • Figure 4 is a schematic illustration of the geometric angle formed by the angle ⁇ formed by the probe light incident on the retina of the eye when the rotatable mirror is in two different positions and with the blood vessel B. 2 and FIG. 3, when the rotatable mirror M 1 in the first position 503 (i.e., solid-line position), through a first probe light reflector of the through hole 5,061,506, incident from the first lens 501, After being transmitted through the first lens 501, it is incident on the rotatable mirror 503, reflected by the rotatable mirror 503, and then emitted in parallel by the first lens 501, and then reflected by the first mirror 506 to the scanning unit 510, and scanned.
  • first position 503 i.e., solid-line position
  • the scan of unit 510 enters blood vessel B on the retina of eye 800 in a first direction S1 (see Figure 4) and then scans in the Y direction in Figure 4.
  • the signal light scattered by the fundus returns along the drawing unit 510, the first mirror 506 and the first lens 501, is transmitted through the first lens 501, is incident on the rotatable mirror 503, and is reflected by the rotatable mirror 503.
  • the first lens 501 is emitted, is emitted through the through hole 5061 of the first mirror 506, is transmitted to the beam splitting module 200 in FIG.
  • the detecting module 600 detects that the OCT tomography and the first phase shift signal ⁇ a of the fundus of the eye are obtained after being processed by the control system 700.
  • the probe light passes through the through hole 5061 of the first mirror 506, and is incident from the first lens 501.
  • the transmission of the first lens 501 is incident on the rotatable mirror 503, reflected by the rotatable mirror 503, and then emitted in parallel through the first lens 501, and then reflected by the first mirror 506 to the scanning unit 510, through the scanning unit
  • the scan of 510 is injected into the blood vessel B on the retina of the eye 800 in the second direction S2 (refer to FIG. 4), and then scanned in the Y direction in FIG.
  • the signal light scattered by the fundus returns along the drawing unit 510, the first mirror 506 and the first lens 501, is transmitted through the first lens 501, is incident on the rotatable mirror 503, and is reflected by the rotatable mirror 503.
  • the first lens 501 is emitted, is emitted through the through hole 5061 of the first mirror 506, is transmitted to the beam splitting module 200 in FIG. 1, and interferes with the reference beam reflected from the reference arm module 300 at the beam splitting module 200, and the interference light is
  • the detecting module 600 detects that the OCT tomography and the second phase shift signal ⁇ b of the fundus of the eye are obtained after being processed by the control system 700. It should be noted that when the rotatable mirror 503 is turned to the second position M 2 (shown by the dotted line) from the first position M 1 (shown by the solid line), the rotation angle of the driving device 502 is 180°, The angle at which the first mirror 506 is rotated is also 180°.
  • the probe light scans the same position on the retina of the eye 800 when the rotatable mirror 503 is at the two positions, and therefore, the two scanned blood vessels are the same blood vessel, that is, the blood vessel B is obtained in FIG.
  • the angle between S1 and the second direction S2 is ⁇ , and constitutes an XZ plane.
  • the optical axis 5011 of the first lens 501 is coaxial with the rotational axis 5021 of the driving device 502, and the angle ⁇ formed by S1 and S2 is maintained continuously when the entire device performs circular scanning on the blood vessel to be tested in the eye. change.
  • the blood flow velocity V of the blood vessel B is calculated.
  • ⁇ 0 is the center wavelength of the scanning light
  • n is the refractive index of the blood in the blood vessel B
  • is the time interval of the scanning of two adjacent rays of the OCT
  • is the blood flow direction VB in FIG.
  • the probe light is three-dimensionally scanned in the X-axis direction when incident in the first direction S1, and the angle between the blood vessel B and the X direction is the ⁇ angle in the combined fundus plan view.
  • the scanning light of the scanning unit 510 is used to realize the X-direction scanning, the Y-direction scanning, or the oblique line scanning.
  • the scanning mode is such that the probe light adjusts the scanning direction according to the actual direction of the blood vessel B to be tested.
  • the sample arm module 500 further includes a first mirror group, and the first mirror group includes a first mirror 506 having a through hole in the middle. It should be noted that this case is only for the case where the optical axis of the probe light branched from the spectroscopic module 200 is coaxial with the optical axis of the first lens 501.
  • the first mirror group needs to further provide the second mirror.
  • 515 and a third mirror 505 which sequentially reflect the probe light incident from the spectroscopic module 200, and finally the optical axis of the probe light incident on the first lens 501 and the optical axis 5011 are coincident.
  • a collimating mirror 400 is disposed between the beam splitting module 200 and the sample arm module 500 , and the collimating mirror 400 collimates the detecting light from the spectroscopic module 200 .
  • the sample arm module 500 further includes a dichroic mirror 511 and a scanning unit 510.
  • the scanning unit 510 rotates synchronously with the driving device 502, scans the detection light reflected from the first mirror 506, and emits the detection light in parallel to the dichroic mirror 511, and the dichroic mirror 511 receives the detection light and reflects it to Eye 800.
  • a second mirror group is further disposed between the first mirror 506 and the scanning unit 510.
  • the second mirror group includes at least one mirror.
  • the second mirror group of FIG. 2 includes a fourth mirror 508 and a fifth mirror 509, and in FIG. 3, the second mirror group includes only the fourth mirror 508.
  • the number of blocks of the mirror is related to the design of the optical path, and is not limited herein.
  • the sample arm module 500 further includes a preview module, and the preview module includes a second lens 513 and a camera 514.
  • Light emitted by an illumination source (not shown) is scanned to the eye 800, and Scattering occurs in the eye 800, and the reflected light is transmitted through the ophthalmoscope 512 and reaches the dichroic mirror 511.
  • the dichroic mirror 511 has a high transmittance to the light emitted from the illumination source, and the reflected light is sequentially transmitted through the dichroic mirror 511 and the second lens 513 and then reaches the camera 514, and is captured by the camera 514.
  • the image taken by the camera 514 is displayed on the display of the control system for the operator to know the relevant information of the eye 800 for further operation.
  • the device for measuring blood flow ensures that the optical axis of the first lens and the rotation axis of the driving device are coaxial when the optical path is set, so that the entire device is emitted by the illuminating light source when the blood vessel is scanned in a ring shape.
  • spectroscopic module spectroscopic probe light is generated in a first position of the rotatable mirror M 1, the blood vessel optical scanning probe in the first direction S1 and the probe light is detected in the second position of the blood vessel M 2, detecting the rotatable mirror
  • the angle ⁇ formed by the second direction S2 of the light scanning blood vessel is maintained at all times, so that the calculation result is more accurate when calculating the blood flow velocity of the blood vessel using the formula (1).
  • the invention also discloses a method for measuring blood flow of blood vessels, comprising the following steps:
  • S101 Configuring a light source, a detecting module, a beam splitting module, a reference arm module, a sample arm module, and a control system according to an optical path;
  • the sample arm module includes: a first lens, and a rotatable reflection of a rotation center disposed at a focus of the first lens a mirror and a driving device for driving rotation of the rotatable mirror; an optical axis of the first lens and a rotation axis of the driving device are coaxial;
  • S104 Calculate blood of the blood vessel to be tested according to the first phase shift signal and the second phase shift signal Liquid flow rate
  • step S101 first, the illuminating light source 100, the spectroscopic module 200, the reference arm module 300, the sample arm module 500, the detecting module 600, and the control system 700 are sequentially disposed according to FIG.
  • the light emitted by the illuminating light source 100 passes through the beam splitting module 200 and is split into two beams: reference light and probe light.
  • the reference light is transmitted to the reference arm module 300, and the probe light is transmitted to the sample arm module 500.
  • the reference arm module 300 reflects the received reference light and returns it to the beam splitting module 200 to form reference light.
  • the probe light enters the eye 800 after passing through the sample arm module 500, and is scattered by the blood vessels in the eye 800 to form signal light and return to the split light.
  • the module 200 generates interference light after the signal light and the reference light interfere at the beam splitting module 200.
  • the detecting module 600 receives and collects the interference light and transmits the signal to the control system 700.
  • the control system 700 processes the signal to obtain an OCT fault of the eye. Imaging.
  • the sample arm module 500 module includes at least one first lens 501, a rotatable mirror 503, and a drive 502 that drives the rotatable mirror 503 to rotate.
  • the center of rotation of the rotatable mirror 503 is disposed at a focus on the side of the first lens 501. This is to ensure that the probe light emitted from the first lens 501 is reflected by the rotatable mirror 503 and then passed through the first lens 501.
  • Shoot in parallel
  • the rotation axis 5021 of the driving device 502 needs to be ensured to be coaxial with the optical axis 5011 of the first lens 501, and the purpose of ensuring the coaxiality is to keep the value of ⁇ constant while calculating the blood flow rate using the formula (1).
  • the blood flow rate calculation result is more accurate, which lays a precise foundation for the calculation of the total blood flow of the sample.
  • Step S102 When the rotatable mirror is in the first position, the probe light scans the blood vessel in the first direction through the sample arm module and generates a first phase shift signal.
  • control system 700 may control the rotational driving means 502 by the rotatable mirror 502 fixed to the driving means 503 is in the first position M 1.
  • the probe light emitted by the light source 100 is split by the beam splitting module 200, and then sequentially passes through the collimating mirror 400, the through hole 5061 of the first mirror 506, and the first lens 501, and then enters the rotatable mirror 503, and passes through the rotatable mirror 503.
  • the dichroic mirror 511 finally passes through the ophthalmoscope 512 and enters the blood vessel B of the eye 800 (see Fig. 4).
  • the probe light scans the blood vessel B to generate a first signal light, which is processed by the control system 700 to obtain a first phase shift signal ⁇ a.
  • the above-mentioned propagation route is: the probe light emitted by the light source 100 is split by the spectroscopic module 200 to obtain the probe light, and the probe light passes through the collimating mirror 400, the through hole 5061 of the first mirror 506, and the first.
  • a first lens 501 through the transmission 1 is in the first position M, via the first mirror 506 and then reflected by the fourth reflecting
  • the mirror 508 reflects, passes through the scanning unit 510 and enters the relay lens 516, then enters the dichroic mirror 511, and finally passes through the ophthalmoscope 512 and enters the blood vessel B of the eye 800 (see FIG. 4), and the detecting light scans the blood vessel B.
  • the first signal light is generated and processed by the control system 700 to obtain a first phase shift signal ⁇ a.
  • the control system 700 may control the rotational driving means 502 by the rotatable mirror 502 fixed to the driving means 503 is in the first position M 1.
  • the probe light emitted by the light source 100 is split by the beam splitting module 200, and then sequentially passes through the collimating mirror 400, the through hole 5061 of the first mirror 506, and the first lens 501, and then enters the rotatable mirror 503, and passes through the rotatable mirror 503.
  • the second position M 2 is reflected, transmitted through the first lens 501, reflected by the first mirror 506, and then sequentially reflected by the fourth mirror 508 and the fifth mirror 509, scanned by the scanning unit 510, and then incident.
  • the dichroic mirror 511 finally passes through the ophthalmoscope 512 and enters the blood vessel B of the eye 800 (see Fig. 4).
  • the probe light scans the blood vessel B to generate a second signal light, which is processed by the control system 700 to obtain a second phase shift signal ⁇ b .
  • the above-mentioned propagation route is: the probe light emitted by the light source 100 is split by the beam splitting module 200, and then passes through the collimating mirror 400, the through hole 5061 of the first mirror 506, and the first lens 501.
  • the unit 510 passes through the relay lens 516, then enters the dichroic mirror 511, and finally passes through the ophthalmoscope 512 and enters the blood vessel B of the eye 800 (see FIG. 4).
  • the detecting light scans the blood vessel B to generate a first signal.
  • Light is processed by control system 700 to obtain a second phase shift signal ⁇ b .
  • step S103 and before S104 the step of correcting the second phase shift signal ⁇ b needs to be performed, which is specifically explained as follows.
  • the first phase shift signal ⁇ a and the second phase shift signal ⁇ b are not coincident with each other. Since the blood flow in the blood vessel B is pulsating, the blood flow rate is different at different times, and thus is required.
  • the second phase shift signal ⁇ b is corrected by the control system 700, and the correction process includes the following steps:
  • the scan driving unit 510 in the first position detecting light respectively M 1 and the second position may be a scanning mirror 503
  • the blood vessel B is alternately scanned in the first direction S1 direction and the second direction S2 direction for a predetermined time, such as 2 seconds, to obtain a time-dependent phase shift signal distribution map (as shown in FIG. 8). ).
  • the black dots 503 is rotatable mirror M 1 in the first position, the control system 700 to capture a series of first signal ⁇ a mobile phase at different time points Sl direction of the first, the white block is rotatable
  • the control system 700 measures a series of second phase shift signals ⁇ b at different time points in the second direction S2 direction.
  • the second phase shift signal ⁇ b is corrected by interpolation calculation.
  • ⁇ a1 is the first phase shift signal obtained by scanning at time t a
  • ⁇ b2 is the second phase shift signal obtained by scanning at time t b
  • the control system of the first mobile phase signal interpolation calculation to obtain the first movement signal phase value ⁇ a2 t b of time, and then moving the first phase a first mobile phase signal value ⁇ a2 the time t a t b of the time
  • S104 Calculate a blood flow rate of the blood vessel to be tested according to the first phase shift signal and the second phase shift signal;
  • the first phase shift signal ⁇ a and the probe light measured by the probe light at the first position M 1 of the rotatable mirror 503 are in the second position of the rotatable mirror 503.
  • the second phase shift signal ⁇ b measured by M 2 can be obtained by using the formula (1).
  • the flow rate at any time in the blood vessel is defined as V(y, z, t):
  • V(y,z,t) v A (y,z)P(t);
  • the control system obtains the average flow F of blood in blood vessel B by integrating space and time:
  • T is the pulsation cycle of blood flow and P(t) is the blood flow pulsation function in the blood vessel.
  • the method further includes: measuring an angle between an axial direction of the blood vessel and an X direction; wherein, when the rotatable mirror is in the first position, detecting light entering the blood vessel of the sample.
  • the first direction and the second direction of the blood vessel into which the probe light enters the sample when the rotatable mirror is in the second position constitute an XZ plane that is parallel to the X-axis of the XZ plane.
  • the control system when calculating the flow rate of the blood vessel B, the control system first needs to obtain the angle ⁇ between the axial VB of the blood vessel B to be measured and the X direction.
  • the probe light enters the blood vessel B of the eye 800 along the first direction S1; when the rotatable mirror 503 is in the second position M 2 , the probe light enters along the second direction S2
  • the blood vessel of the eye 800; the plane formed by the first direction S1 and the second direction S2 constitutes an XZ plane, and the X direction is parallel to the X-axis of the XZ plane. Therefore, as long as the spatial distribution of the blood vessel B is known, the angle ⁇ can be obtained.
  • the invention also discloses a method for measuring blood flow of all blood vessels in the optic disc, comprising the following steps:
  • S203 Pairing the plurality of first phase shift signals and the plurality of second phase shift signals one by one to calculate a blood flow rate of the plurality of single blood vessels;
  • the angle at which the driving device rotates is 180°.
  • the control system 700 controls the driving means 502 and 510 rotate synchronously in the scanning unit, the detection light to make the region around the disc on a circle C Circular scan.
  • Figure 6 illustrates how such a circular scan can be achieved: the scanning unit 510 controls the detection light to the S point on the circumference, and if the scanning unit 510 remains stationary and the driving device 502 performs 360° rotation, the detection light will be around the cone. Face Co makes a circular motion.
  • the detecting light will circularly scan all the blood vessels in the optic disc in the direction of the space vector shown in the first direction in which the solid arrow is incident (ie, the S1 direction in FIG. 4), thus obtaining A series of first phase shift signals for blood flow in all blood vessels within the optic disc: ⁇ a1, ⁇ a2, ⁇ a3, ... ⁇ aN.
  • the driving device 502 quickly switches a phase ⁇ (180°), at which time the rotatable mirror 503 is in the second position M 2 , at which time the probe light will switch to the second direction in which the dashed arrow is incident. (i.e., the direction S2 in FIG.
  • a series of series of first phase shift signals ⁇ a1, ⁇ a2, ⁇ a3, ... ⁇ aN and a plurality of second phase shift signals ⁇ b1, ⁇ b2, ⁇ b3, ... ⁇ bN are paired.
  • the pairing referred to here means that ⁇ a1 and ⁇ b1 are paired, ⁇ a2 and ⁇ b2 are paired, ⁇ a3 and ⁇ b3 are paired, and ⁇ aN and ⁇ bN are paired.
  • the two annular scanning intervals are set to a certain interval period (for example, 2 seconds), and the control system 700 can collect a series of first phase shifts of all blood vessels in the optic disc.
  • the signal and the second phase move the signal.
  • the scanning beam is scanned for a fast multi-ring to obtain a circular three-dimensional image as shown in Fig. 7, and the angle ⁇ between the axial direction of all the blood vessels and the X direction can be determined.
  • the blood flow velocity values V1, V2, V3 togetherVN of a plurality of individual blood vessels are obtained, and since the blood flow velocity is directional, it is necessary to treat the blood.
  • the flow rate value is taken as an absolute value, and then substituted into the formula (2) and the formula (3), the total blood flow of the blood vessels in the optic disc of the eye 800 can be obtained.
  • the scanning trajectory of the detecting light is the same circumference. ; except that the rotatable mirror 503 in a first direction in a blood vessel optical scanning probe S1 in the first position M 1, rotatable mirror 503 in a second direction in a blood vessel optical scanning probe in the second position M 2 S2. Since the directions of S1 and S2 scanning the blood vessels during the entire circular scanning process remain unchanged, the angle ⁇ formed by S1 and S2 during the entire circular scanning process remains unchanged, thus using equations (1) and (2).
  • the blood flow velocity of a single blood vessel in all blood vessels in the optic disc is more accurate, and the total blood flow of all blood vessels in the optic disc is finally calculated.
  • the two scan intervals are set to a certain value (e.g., 2 seconds), and the control system 700 can acquire a series of phase shift signals.
  • the scanning beam is scanned for a fast multi-ring to obtain a circular three-dimensional image as shown in Fig. 7, and the angle ⁇ between the axial direction of all the blood vessels and the X direction can be determined.
  • the control system 700 obtains the total blood flow rate in the eye 800 by calculating the average blood flow rate of each blood vessel and superimposing it.
  • the invention provides a blood flow measuring method, which ensures that the optical axis of the first lens and the rotating shaft of the driving device are coaxial when the optical path is set, so that the whole device is rotatable when the blood is scanned in a ring shape.
  • the angle ⁇ is always constant, so that the calculation result is more accurate when calculating the blood flow rate of blood vessels using the formula (1).
  • the driving device 502 of the present invention is preferably selected as a motor, and may of course be another power device driven by a motor.
  • the scanning unit 510 referred to in the present invention is preferably selected as a galvanometer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种血液流量测量的设备和方法,主要包括:光源(100)、探测模块(600)、分光模块(200)、参考臂模块(300)、样品臂模块(500)和控制系统(700);样品臂模块(500)包括:至少一个第一透镜(501)、旋转中心设置在第一透镜(501)焦点处的可旋转反射镜(503)和驱动所述可旋转反射镜(503)旋转的驱动装置(502);第一透镜(501)的光轴和驱动装置(502)的旋转轴同轴;当可旋转反射镜(503)分别处于第一位置(M 1)和第二位置(M 2)时,入射光探测扫描血管的同一位置,控制系统(700)分别得到第一位相移动信号(фa)和第二位相移动信号(фb);控制系统(700)根据第一位相移动信号(фa)和第二位相移动信号(фb)求得待测血管(B)的血液流速(V)。利用该设备和方法,提高了血管血液流量测量的准确性。

Description

一种测量血液流量的设备及方法
本申请要求于2014年5月14日提交PCT受理机构、申请号为PCT/CN2014/077418、发明名称为“血液流量测量装置及方法”的PCT专利申请的优先权,其部分内容通过引用结合在本申请中。
本申请要求于2014年8月1日提交中国专利局、申请号为201410378086.1、发明名称为“一种测量血液流量的设备及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光电子技术领域,尤其涉及一种测量血液流量的设备及方法。
背景技术
许多视网膜疾病与非正常的眼部血液流量有关,例如糖尿病引起的视网膜病变、视网膜静脉阻塞以及与年纪有关的黄斑退化。在青光眼病研究中,视网膜供血不足被认为是青光眼病发生和发展的一个可能原因。因此,对视网膜血液流量进行测量对于视网膜疾病的临床诊断、治疗和研究具有重要意义。
光学相干层析成像技术(Optical Coherence Tomography,OCT)是一种非侵入的探测技术.它被广泛应用于生物组织的活体截面结构成像。通过测量与深度有关的散射光,OCT可以提供高分辨,高灵敏度的组织结构。同时,OCT技术也可以探测散射光的多普勒频移,以获得流体和样品的运动信息,因而适合用于测量视网膜内的血液流量。遗憾的是,单光束多普勒OCT探测到的频移只与探测光束方向的血液流速有关,而垂直于探测光方向的血流信息不能直接从多普勒频移中得到,无法得到血管内的实际流速。
为了解决上述问题,人们发展了一系列技术来获得血管中的实际流速:
(1)通过对视网膜进行三维扫描,获得视网膜中血管在空间中的走向,从而确定出探测光的多普勒角度,再利用多普勒角度,计算出实际的流速。但 由于视网膜的血管和探测光束接近垂直,这种方法准确度较低。另外,通过连续扫描两个平面或圆环,定出待测血管的空间矢量,进而计算出多普勒角度,得到实际流速。这种方法的测量结果会受到眼动的影响,而且它只能对视盘周围的血管进行测量,无法测量视网膜其他区域的血流情况。此外,通过对血管横截面的多普勒信号进行计算,也可以获得流量信息,但这种测量方式只适用于视盘中走向比较陡的大血管,无法对视网膜其他区域的血流进行探测。
(2)利用多束、多角度探测光扫描样品中的同一点,以便获得血管中真实的流体速度。OCT探测光被一个玻璃平板分成两束,这两束光会聚在流体中,形成双光束,双角度照明方式,通过分析两束光探测到的多普勒频移,可以得到管道中的真实流体速度。这种方法由于两路光有延迟,对于频率域的OCT系统并不适用。另外,可利用由偏振光分束的双光束OCT系统,测量视网膜血管中的流速和流量,或利用一个DOVE棱镜与OCT扫描机构同步,实现了双光束在视网膜上的环形扫描。但是这些双光束系统由两个迈克耳逊干涉仪构成,结构复杂、调整困难,而且由于探测光安全方面的考虑,每一路探测光的功率要大大低于单光束系统,这降低了双光束OCT系统的灵敏度,从而加大了系统的位相噪声。
发明内容
本发明提供一种测量血液流量的设备和方法,利用可旋转反光设备,将单光束光源对眼睛进行双角度的探测和扫描,以获取眼睛内血管的血液流量,解决了现有技术中无法精确测量眼睛内血管内部的血液流量的问题。
本发明的技术方案如下:
一种测量血液流量的设备,包括:光源、探测模块、分光模块、参考臂模块、样品臂模块和控制系统;所述光源发出的光经所述分光模块后分为参考光和探测光,所述参考光入射至所述参考臂模块,所述探测光入射至样品臂模块; 所述样品臂模块包括第一透镜、旋转中心设置在所述第一透镜焦点处的可旋转反射镜和驱动所述可旋转反射镜旋转的驱动装置;所述第一透镜的光轴和所述驱动装置的旋转轴同轴;
当所述可旋转反射镜处于第一位置时,所述探测光扫描样品得到样品的第一位相移动信号;
当所述可旋转反射镜处于第二位置时,所述探测光扫描所述样品得到所述样品的第二位相移动信号;
所述第一位相移动信号和所述第二位相移动信号分别从所述样品臂模块返回,与从所述参考臂模块返回的参考光在所述分光模块处发生干涉并形成干涉光,所述探测模块接收所述干涉光后经所述控制系统处理,经计算得到样品的血液流量。
进一步地:所述可旋转反射镜由所述第一位置转到所述第二位置时,驱动装置的旋转角度为180°。
进一步地:所述样品臂模块还包括一中间开有通孔的第一反射镜;所述第一反射镜的通孔用于供来自分光模块的探测光通过,其反射面用于反射来自所述可旋转反射镜反射的然后经所述第一透镜透射的探测光。
进一步地:所述样品臂模块还包括设置在所述分光模块和所述第一反射镜之间的第一反射镜组;所述第一反射镜组包括第二反射镜和第三反射镜;所述第二反射镜和所述第三反射镜依次反射经所述分光模块发出的且入射至所述第一透镜的探测光。
进一步地:所述样品臂模块还包括扫描单元和二向色镜;所述扫描单元扫描来自经所述第一反射镜反射的探测光并将所述探测光传递至所述二向色镜;所述二向色镜将所述探测光反射至样品的血管。
进一步地:所述样品臂模块还包括设置在所述扫描单元和所述第一反射镜 之间的由至少一块反射镜组成的第二反射镜组。
进一步地:所述样品臂模块还包括预览模块,所述预览模块包括第二透镜及摄像器;经所述样品散射返回的探测光依次经过所述二向色镜和所述第二透镜透射后被所述摄像器拍摄到,其拍摄到的图像由控制系统的显示屏显示。
进一步地:所述样品臂模块还包括设置在所述扫描单元和所述二向色镜之间的中继透镜。
进一步地:所述驱动装置为电机。
本发明内容还公布了一种测量血管血液流量的方法,包括如下步骤:
依照光路设置光源、探测模块、分光模块、参考臂模块、样品臂模块和控制系统;所述样品臂模块包括:第一透镜、旋转中心设置在所述第一透镜焦点处的可旋转反射镜和驱动所述可旋转反射镜旋转的驱动装置;所述第一透镜的光轴和所述驱动装置的旋转轴同轴;
当所述可旋转反射镜处于第一位置时,探测光经样品臂模块以第一方向扫描血管并生成第一位相移动信号;
当所述可旋转反射镜处于第二位置时,探测光经样品臂模块以第二方向扫描血管并生成第二位相移动信号;
根据所述第一位相移动信号及第二位相移动信号计算所测血管的血液流量;
进一步地:在探测光经样品臂模块以第二方向扫描血管并生成第二位相移动信号后,还包括对所述第二位相移动信号进行修正,具体步骤为:
利用扫描单元扫描获得所述第一位相移动信号和所述第二位相移动信号随时间变化的关系;
利用插值计算对所述第二位相移动信号进行修正。
进一步地:在根据所述第一位相移动信号及第二位相移动信号计算所测血管的血液流量之前,还包括:
测量所述血管的轴向与X方向的夹角;
其中,所述可旋转反射镜处于第一位置时探测光射入所述血管的第一方向与所述可旋转反射镜处于第二位置时探测光射入所述血管的第二方向构成X-Z平面,所述X方向平行于所述X-Z平面的X轴。
本发明内容还公布了一种测量视盘内总的血管血液流量的方法,包括如下步骤:
在可旋转反射镜处于第一位置时,扫描单元和驱动装置同步转动,探测光以第一方向环形扫描视盘内所有血管,得到与所有血管一一对应的若干第一位相移动信号;
在可旋转反射镜处于第二位置时,扫描单元和驱动装置同步转动,探测光以第二方向且和以可旋转反射镜处于第一位置时探测光同样的扫描轨迹扫描视盘内所有血管,得到与所有血管一一对应的若干经修正后的第二位相移动信号;
将所述若干第一位相移动信号和若干第二位相移动信号一一配对计算,得到所述若干单根血管的血液流速;
将所述若干单根血管的血液流速取绝对值,经计算得到视盘内附近所有血管的血流流量;
其中,所述可旋转反射镜由第一位置转到第二位置时,驱动装置转过的角度为180°。
本发明的有益的技术效果:本发明提供的血液流量测量设备和方法,通过驱动装置控制可旋转反射镜的转动,并使驱动装置的转动轴和第一透镜的光轴同轴,当可旋转反射镜处于第一位置时系统获得第一位相移动信号,当可旋转反射镜处于第二位置时系统获得第二位相移动信号,系统通过对第一位相移 动信号和第二位相移动信号计算得到待测血管内的血液流速,并进而求得待测血管的血液流量,保证了血管内血液流量测量的准确性。同时,在测量视盘内所有血管血液流量时,由于将驱动装置的转动轴和第一透镜的光轴设置成同轴,保证了探测光在可旋转反射镜处于第一位置时环形扫描所有血管的第一方向和可旋转反射镜处于第二位置时探测光环形以和探测光在第一位置时候同样的扫描轨迹扫描血管第二方向所构成的夹角α在整个环形扫描过程中一直保持稳定不变,从而使视盘内部血管的血液流速计算更加准确,并进一步准确的求得视盘内所有血管的血液流量。
附图说明
图1为本发明的发明实施例提供的血液流量测量设备的结构示意图;
图2为图1所示的样品臂模块的第一种结构示意图;
图3为图2所示的样品臂模块的第二种结构示意图;
图4为探测光在可旋转反射镜处于两个不同位置时射入眼睛视网膜上的形成的夹角α以及与血管B构成的几何空间示意图;
图5为探测光在血管内的扫描轨迹示意图;
图6为实现图5所示的扫描轨迹的原理示意图;
图7为获得血管的轴向与X方向的夹角的扫描示意图;
图8为第一位相移动信号及第二位相移动信号随时间的变化关系图;
图9为本发明的血液流量测量流程示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种血液流量测量设备,用于测量人的组织器官的血液 流量。需要说明的是,这里的组织器官包括人或者动物的组织器官。作为具体的实施例,在本发明中,所说的组织器官包括但不限于人或者动物的眼睛。虽然,本专利中的附图中,所选择的测量对象为眼睛的血管,但是,就该方法本身而言,同样适用于测量人或者动物除了眼睛以外的其他组织器官,只不过需要技术实施方案和说明书附图中将眼睛的图标的示意图换成其他组织器官的示意图。同样的,下文中的样品包括但不限于人或者动物的眼睛。
参考图1,所述血液流量测量设备包括光源100、分光模块200、参考臂模块300、样品臂模块500、探测模块600及控制系统700。光源100发出的光传递至分光模块200,分光模块200将接收到的光分成参考光和探测光,其中参考光传递给参考臂模块300,探测光传递给样品臂模块500。参考臂模块300将接收到的参考光经反射后传回分光模块200后形成参考光,探测光经样品臂模块500后入射进眼睛800,经眼睛800内的组织散射后形成信号光并返回分光模块200,信号光与参考光在分光模块200处干涉后产生干涉光,探测模块600接收并采集干涉光后将信号传输至所述控制系统700,控制系统700处理该信号,得到眼睛的OCT断层成像。其中,参考臂模块300包括参考镜303,参考镜303优先选择为平面反射镜,分光模块200提供的参考光经参考镜303反射后返回到分光模块200内,以形成参考光。
参考图2和图3,样品臂模块500模块包括了第一透镜501、可旋转反射镜503以及驱动可旋转反射镜503旋转的驱动装置502。可旋转反射镜503的旋转中心设置在第一透镜501的焦点处,这是为了保证从第一透镜501射出的探测光经过可旋转反射镜503反射后,再经第一透镜501后能平行射出。同时,驱动装置502的旋转轴5021需要保证和第一透镜501的光轴5011同轴。
进一步的,参考图2和图3,样品臂模块500还包括第一反射镜506,第一反射镜506设置在分光模块200和第一透镜501之间。第一反射镜506设置 有通孔5061,通孔5061开设在第一反射镜506的中间,从分光模块200过来的探测光经过通孔5061垂直入射第一透镜501,然后经第一透镜501透射后入射至可旋转反射镜503。可旋转反射镜503在驱动装置502的旋转带动下,分别在第一位置M1和第二位置M2处对入射的探测光进行反射,反射后的探测光经过第一透镜501透射后平行射出至第一反射镜506的反射面,再进入扫描单元510。
参考图4并结合图2和图3,图4为探测光在可旋转反射镜处于两个不同位置时射入眼睛视网膜上的形成的夹角α以及与血管B构成的几何空间示意图。图2和图3中,当可旋转反射镜503处于第一位置M1时(即实线位置),探测光穿过第一反射镜506的通孔5061后,从第一透镜501射入,经过第一透镜501的透射,入射至可旋转反射镜503,经过可旋转反射镜503的反射,然后由第一透镜501平行射出,再由第一反射镜506的反射至扫描单元510,经过扫描单元510的扫描,以第一方向S1射入眼睛800的视网膜上的血管B(参考图4),然后沿着图4中的Y方向扫描。由眼底散射的信号光,沿着描单元510、第一反射镜506和第一透镜501返回,经第一透镜501透射后入射至可旋转反射镜503,经过可旋转反射镜503的反射,由第一透镜501射出,经过第一反射镜506的通孔5061射出,传递给图1中的分光模块200,并且与从参考臂模块300反射回的参考光束在分光模块200处干涉,干涉光被探测模块600探测到,经过控制系统700处理后,得到眼睛眼底的OCT断层成像和第一位相移动信号фa。参考图2和图3,当可旋转反射镜503处于第二位置M2时(即虚线位置),探测光穿过第一反射镜506的通孔5061后,从第一透镜501射入,经过第一透镜501的透射,入射至可旋转反射镜503,经过可旋转反射镜503的反射,然后经过第一透镜501平行射出,再由第一反射镜506的反射至扫描单元510,经过扫描单元510的扫描,以第二方向S2射入眼睛 800的视网膜上的血管B(参考图4),然后沿着图4中的Y方向扫描。由眼底散射的信号光,沿着描单元510、第一反射镜506和第一透镜501返回,经第一透镜501透射后入射至可旋转反射镜503,经过可旋转反射镜503的反射,由第一透镜501射出,经过第一反射镜506的通孔5061射出,传递给图1中的分光模块200,并且与从参考臂模块300反射回的参考光束在分光模块200处干涉,干涉光被探测模块600探测到,经过控制系统700处理后,得到眼睛眼底的OCT断层成像和第二位相移动信号фb。需要说明的是,可旋转反射镜503在由第一位置M1(如实线所示)转到第二位置M2(如虚线线所示)时,驱动装置502的旋转角度为180°,因此第一反射镜506转动的角度也为180°。探测光在可旋转反射镜503处于该两处位置时对眼睛800的视网膜上的同一位置进行探测扫描,因此,两次扫描的血管为同一血管,也就是图4中得到血管B。在图4中,S1和第二方向S2的夹角为α,且构成X-Z平面。由于前面所说,第一透镜501的光轴5011和驱动装置502的转动轴5021同轴,S1和S2构成的夹角α在整个设备对眼睛内的待测血管进进行环形扫描时一直维持不变。当第一位相移动信号фa和第二位相移动信号фb确定后,根据公式:
Figure PCTCN2015071441-appb-000001
计算得到血管B的血液流速V。
在公式(1)中,λ0为扫描光的中心波长,n为血管B内的血液的折射率,τ为OCT两个相邻光线扫描的时间间隔,β为图4中血流方向VB与两束光在S1和S2构成的平面X-Z的夹角,它可以从视网膜的三维投影图上获得。例如,利用探测光在以第一方向S1射入时沿X轴方向做三维扫描,在合成的眼底平面图中,血管B和X方向的夹角就是β角。当上述参数都确定后,根据公式(1) 就能确定眼睛800的视网膜内的待测血管B的血液流速V。
需要说明的是,在本发明的实施例中,根据所述血管B的走向及分布情况,通过扫描单元510的扫描配合,使探测光实现X方向扫描、Y方向扫描或斜线扫描等各种扫描方式,从而使探测光根据待测血管B的实际走向调整扫描方向。
进一步地,样品臂模块500还包括第一反射镜组,第一反射镜组包括一块中间开有通孔的第一反射镜506。需要说明的是,这种情况只是针对从分光模块200分出的探测光的光轴和和第一透镜501的光轴同轴的情况。作为本技术方案的进一步优化,参考图2,如果从分光模块200入射的探测光的光轴和第一透镜501的光轴5011不重合,则第一反射镜组还需要进一步设置第二反射镜和515和第三反射镜505,它们依次对从分光模块200入射的探测光进行反射,最终使射入第一透镜501的探测光的光轴和光轴5011重合。
进一步地,参考图1,在分光模块200和样品臂模块500之间还设置有准直镜400,准直镜400对从分光模块200过来的探测光进行准直。
进一步地,样品臂模块500还包括二向色镜511和扫描单元510。扫描单元510配合驱动装置502同步转动,扫描来自第一反射镜506反射射出的探测光,并将探测光平行射出至二向色镜511,二向色镜511接收探测光,并将其反射至眼睛800。
参考图2和图3,作为本技术方案的进一步优化,在第一反射镜506和扫描单元510之间还设置有第二反射镜组。第二反射镜组包括至少一块反射镜。参考图2,图2中第二反射镜组包括有第四反射镜508和第五反射镜509,而在图3中,第二反射镜组只包括了第四反射镜508。反射镜的块数的多少和光路设计结构有关,在此不做限定。第二反射镜组的反射镜对来自第一反射镜506分别在第一位置M1和第二位置M2的探测光进行反射,并将它们传递给扫描 单元510。
进一步地,参考图2和图3,所述样品臂模块500还包括预览模块,预览模块包括第二透镜513及摄像器514.照明光源(图未示)发出的光扫描到眼睛800,并在眼睛800内发生散射,反射光经过眼底镜512透射后到达二向色镜511。二向色镜511对照明光源发出的光具有高的透射率,反射光依次透射二向色镜511及第二透镜513后到达摄像器514,由摄像器514拍摄到。摄像器514拍摄的图像显示到控制系统的显示屏上,以供操作人员了解所述眼睛800的相关信息,便于进一步的操作。
本发明所公布的一种血液流量测量的设备,由于在设置光路的时候保证了第一透镜的光轴和驱动装置的转动轴同轴,使整个设备在环形扫描血管时,由发光光源发出并经分光模块分光生成的探测光在可旋转反射镜处于第一位置M1时,探测光扫描血管的第一方向S1与探测光在可旋转反射镜处于第二位置M2时探测血管时,探测光扫描血管的第二方向S2构成的夹角α一直维持不变,这样,在利用公式(1)计算血管血液流速时,计算结果更加精准。
本发明还公布了一种血管血液流量测量的方法,包括如下步骤:
S101:依照光路设置光源、探测模块、分光模块、参考臂模块、样品臂模块和控制系统;所述样品臂模块包括:第一透镜、旋转中心设置在所述第一透镜焦点处的可旋转反射镜和驱动所述可旋转反射镜旋转的驱动装置;所述第一透镜的光轴和所述驱动装置的旋转轴同轴;
S102:当所述可旋转反射镜处于第一位置时,探测光经样品臂模块以第一方向扫描血管并生成第一位相移动信号;
S103:当所述可旋转反射镜处于第二位置时,探测光经样品臂模块以第二方向扫描血管并生成第二位相移动信号;
S104:根据所述第一位相移动信号及第二位相移动信号计算待测血管的血 液流量;
下面对这四步步骤展开具体描述。
对于步骤S101,首先需要按照图1依次设置好发光光源100,分光模块200、参考臂模块300、样品臂模块500、探测模块600和控制系统700。发光光源100发出的光经过分光模块200后分为两束:参考光和探测光。其中参考光传递给参考臂模块300,探测光传递给样品臂模块500。参考臂模块300将接收到的参考光经反射后传回分光模块200后形成参考光,探测光经样品臂模块500后入射进眼睛800,经眼睛800内的血管散射后形成信号光并返回分光模块200,信号光与参考光在分光模块200处干涉后产生干涉光,探测模块600接收并采集干涉光后将信号传输至所述控制系统700,控制系统700处理该信号,得到眼睛的OCT断层成像。参考图2和图3,样品臂模块500模块包括了至少一块第一透镜501,可旋转反射镜503以及驱动可旋转反射镜503旋转的驱动装置502。可旋转反射镜503的旋转中心设置在第一透镜501一侧的焦点处,这是为了保证从第一透镜501射出的探测光经过可旋转反射镜503反射后,再经第一透镜501后能平行射出。同时,驱动装置502的旋转轴5021需要保证和第一透镜501的光轴5011同轴,保证同轴的目的是为了利用公式(1)进行血液流速的计算时α值一直保持不变。在公式(1)中其他参数稳定的前提下,血液流速计算结果更加准确,从而为样品总的血液流量的计算奠定了精确的基础。
步骤S102:当所述可旋转反射镜处于第一位置时,探测光经样品臂模块以第一方向扫描血管并生成第一位相移动信号。
具体地,参考图2,控制系统700可通过控制驱动装置502的旋转,使固定于驱动装置502上的可旋转反射镜503处于第一位置M1。光源100发出的探 测光经过分光模块200分光,然后依次经过准直镜400、第一反射镜506的通孔5061和第一透镜501后,入射至可旋转反射镜503,经过可旋转反射镜503在第一位置M1反射,再通过第一透镜501透射和第一反射镜506的反射,再依次经第四反射镜508和第五反射镜509的反射,经过扫描单元510的扫描,然后入射至二向色镜511,最后经过眼底镜512后进入眼睛800的血管B(见图4)。探测光扫描血管B,生成第一信号光,经过控制系统700处理后得到第一位相移动信号фa。如果按照图3的传播路线,则上述的传播路线为:光源100发出的探测光经过分光模块200分光得到探测光,探测光经过准直镜400、第一反射镜506的通孔5061和第一透镜501后,入射至可旋转反射镜503,可旋转反射镜503在第一位置M1时对探测光反射,再通过第一透镜501透射,经过第一反射镜506反射后再经第四反射镜508反射,经过扫描单元510的扫描后进入中继透镜516,然后入射至二向色镜511,最后经过眼底镜512后进入眼睛800的血管B(见图4),探测光扫描血管B,生成第一信号光,经过控制系统700处理后得到第一位相移动信号фa。
S103:当所述可旋转反射镜处于第二位置时,探测光经样品臂模块以第二方向扫描血管并生成第二位相移动信号。
具体地,参考图2,控制系统700可通过控制驱动装置502的旋转,使固定于驱动装置502上的可旋转反射镜503处于第一位置M1。光源100发出的探测光经过分光模块200分光,然后依次经过准直镜400、第一反射镜506的通孔5061和第一透镜501后,入射至可旋转反射镜503,经过可旋转反射镜503在第二位置M2反射,再通过第一透镜501透射,经过第一反射镜506反射,再依次经第四反射镜508和第五反射镜509的反射,经过扫描单元510的扫描,然后入射至二向色镜511,最后经过眼底镜512后进入眼睛800的血管B(见图4)。探测光扫描血管B,生成第二信号光,经过控制系统700处理后得到 第二位相移动信号фb。如果按照图3的传播路线,则上述的传播路线为:光源100发出的探测光经过分光模块200分光,然后经过准直镜400、第一反射镜506的通孔5061和第一透镜501后,入射至可旋转反射镜503,经过可旋转反射镜503在第二位置M2反射,再通过第一透镜501透射,经过第一反射镜506反射后再经第四反射镜508的反射,经过扫描单元510的扫描后,经过中继透镜516后,然后入射至二向色镜511,最后经过眼底镜512后进入眼睛800的血管B(见图4),探测光扫描血管B,生成第一信号光,经过控制系统700处理后得到第二位相移动信号фb
需要说明的是,在步骤S103后和S104之前,还需要执行对第二位相移动信号Φb进行修正的步骤,具体阐述如下。
在本发明的实施例中,第一位相移动信号Φa与第二位相移动信号Φb的采集时间点并不一致,由于血管B中的血流有脉动,不同时刻的血液流速不一样,因而需要利用控制系统700对第二位相移动信号Φb进行修正,该修正过程包括如下步骤:
首先,获得所述第一位相移动信号Φa及第二位相移动信号Φb随时间的变化关系。
具体为,请一并参阅图2、图3、图4及图8,在驱动装置502的配合下,扫描单元510带动探测光在可扫描反射镜503分别处于第一位置M1和第二位置M2时分别对血管B以第一方向S1方向和第二方向S2方向交替扫描,并持续预定时间,如2秒钟,从而得到一个和时间有关的位相移动信号分布图(如图8所示)。其中,黑色圆点为可旋转反射镜503处于第一位置M1时,控制系统700在第一S1方向的不同时间点采集到一系列第一位相移动信号Φa,白色的方框为可旋转反射镜503处于第二位置M2时,控制系统700在第二方向S2方向上不同时间点测量到的一系列第二位相移动信号Φb
然后,利用插值计算对所述第二位相移动信号Φb进行修正。
具体地,参考图8,Φa1为ta时刻扫描获得的第一位相移动信号,Φb2为tb时刻扫描获得的第二位相移动信号。控制系统对第一位相移动信号进行插值计算,得到在tb时刻的第一位相移动信号值Φa2,然后把tb时刻的第一位相移动信号值Φa2与ta时刻的第一位相移动信号Φa1进行比较,得到k=Φa1a2。用k去乘以tb时刻的第二位相移动信号Φb2,如此即可得到ta时刻的第二位相移动信号Φb1,Φb1=kΦb2
S104:根据所述第一位相移动信号及第二位相移动信号计算待测血管的血液流量;
具体地,在本发明实施例中,利用探测光在所述可旋转反射镜503处于第一位置M1测得的第一位相移动信号Φa及探测光在可旋转反射镜503处于第二位置M2测得的第二位相移动信号Φb,利用公式(1),即可以得到所述血管B的流速。
考虑到血流的脉动,定义所述血管中血液任一时刻流速为V(y,z,t):
V(y,z,t)=vA(y,z)P(t);  (2)
控制系统通过对空间及时间进行积分,获得血管B中血液的平均流量F为:
Figure PCTCN2015071441-appb-000002
其中,T为血流的脉动周期,P(t)为血管中的血流脉动函数。
通过公式(1)到公式(3),就能计算出眼睛视网膜内待测血管的血液流量。
需要说明的是,在执行步骤S104之前,还包括:测量所述血管的轴向与X方向的夹角;其中,所述可旋转反射镜处于第一位置时探测光射入所述样品的血管的第一方向与所述可旋转反射镜处于第二位置时探测光射入所述样品的血管的第二方向构成X-Z平面,所述X方向平行于所述X-Z平面的X轴。
具体地,参考图4,在计算血管B的流速时,控制系统需先获得待测的血管B的轴向VB与X方向的夹角β。可旋转反射镜503处于第一位置M1时,探测光沿着第一方向S1射入眼睛800的血管B;可旋转反射镜503处于第二位置M2时,探测光沿着第二方向S2进入眼睛800的血管;第一方向S1和第二方向S2组成的平面构成X-Z平面,X方向平行于X-Z平面的X轴。因此,只要知道血管B的空间分布,就能求出夹角β。
本发明还公布了一种测量视盘内所有血管血液流量的方法,包括如下步骤:
S201:在可旋转反射镜处于第一位置时,扫描单元和驱动装置同步转动,探测光以第一方向环形扫描视盘内所有血管,得到与所有血管一一对应的的若干第一位相移动信号;
S202:在可旋转反射镜处于第二位置时,扫描单元和驱动装置同步转动,探测光以第二方向且和以可旋转反射镜处于第一位置时探测光同样的扫描轨迹扫描视盘内所有血管,得到与所有血管一一对应的若干经修正后的第二位相移动信号;
S203:将所述若干第一位相移动信号和若干第二位相移动信号一一配对计算,得到所述若干单根血管的血液流速;
S204:将所述若干单根血管的血液流速取绝对值,经计算得到视盘内附近所有血管的血流流量;
其中,所述可旋转反射镜由第一位置转到第二位置时,驱动装置转过的角度为180°。
具体地,如图5所示,当可旋转反射镜503处于第一位置M1时,控制系统700控制驱动装置502与扫描单元510的同步转动,探测光绕着视盘区域在一个圆周C上作环形扫描。图6描述了如何实现这种环形扫描:由扫描单元510控制探测光到圆周上的S点,此时如果扫描单元510保持不动,驱动装置502做360°转动,则探测光将绕着锥面Co作圆周运动。当驱动装置502与扫描单元510同步转动,则探测光将沿着实线箭头入射的第一方向(即图4中的S1方向)所示的空间矢量方向环形扫描视盘内所有血管,如此即可获得视盘内所有血管内的血流的一系列第一位相移动信号:φa1、φa2、φa3...φaN。当光点回到S点后,驱动装置502快速切换一个位相п(180°),此时可旋转反射镜503处于第二位置M2,这时探测光将切换到虚线箭头入射的第二方向(即图4中的S2方向),探测光沿和可旋转反射镜503处于第一位置M1时探测光扫描的相同圆周的轨迹环形扫描视盘内所有血管,如此即可获得视盘内所有血管内的血流的一系列第二位相移动信号φb1、φb2、φb3...φbN。需要说明的是,所述第二位相移动信号φb1、φb2、φb3...φbN也要修正,其修正的方法和前面测单根血管的方法相同。
然后,将若干一系列第一位相移动信号:φa1、φa2、φa3...φaN和若干第二位相移动信号φb1、φb2、φb3...φbN配对。这里所说的配对,是指φa1和φb1配对,φa2和φb2配对,φa3和φb3配对,φaN和φbN配对。为在短时间内测量视盘内所有血管的血液流量,这两次环形扫描间隔设置一定的间隔周期(如2秒钟),控制系统700可采集到视盘内所有血管的一系列的第一位相移动信号和第二位相移动信号。在上述的扫描结束后,扫描光束做一个快速的多环扫描,得到一个如图7所示的环形的三维图像,则所有血管的轴向与X方向的夹角β可由此定出来。此时,利用公式(1),求得若干单根血管的血液流速值V1,V2,V3.....VN,由于血液流速具有方向性,因此需要对这些血液 流速值进行取绝对值,再代入公式(2)和公式(3),即可获得眼睛800视盘内血管的总血液流量。
需要说明的是,探测光绕着视盘区域在一个圆周C上作环形扫描时,可旋转反射镜503在处于第一位置M1和第二位置M2时,探测光的扫描轨迹为同一个圆周;所不同的是,可旋转反射镜503在处于第一位置M1时探测光扫描血管的第一方向S1,可旋转反射镜503在处于第二位置M2时探测光扫描血管的第二方向S2。由于S1和S2在整个环形扫描过程中扫描血管的方向保持不变,所以S1和S2在整个环形扫描过程中成构成的夹角α一直保持不变,这样利用公式(1)和(2)计算视盘内所有血管的单根血管血液流速更加准确,最后计算出的视盘内所有血管的血液总的流量因此也更加准确。这两次扫描间隔设置一定的(如2秒钟),控制系统700可采集到一系列的位相移动信号。在上述的扫描结束后,扫描光束做一个快速的多环扫描,得到一个如图7所示的环形的三维图像,则所有血管的轴向与X方向的夹角β可由此定出来。此时,利用公式(1)至公式(3),控制系统700通过计算各条血管的平均血液流量并进行叠加,即可获得所述眼睛800内的总血液流量。
本发明提供的一种血液流量测量的方法,由于在设置光路的时候保证了第一透镜的光轴和驱动装置的转动轴同轴,使整个设备在环形扫描血管时,由探测光在可旋转反射镜处于第一位置M1时,探测光扫描血管的第一方向S1与探测光在可旋转反射镜处于第二位置M2时探测血管时,探测光扫描血管的第二方向S2构成的夹角α一直维持不变,这样,在利用公式(1)计算血管血液流速时,计算结果更加精准。
需要说明的是,本发明的驱动装置502优先选择为电机,当然也可以是电机带动驱动的其他动力装置。另外,本发明中所说的扫描单元510优先选择为振镜。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种测量血液流量的设备,其特征在于,包括:光源、探测模块、分光模块、参考臂模块、样品臂模块和控制系统;所述光源发出的光经所述分光模块后分为参考光和探测光,所述参考光入射至所述参考臂模块,所述探测光入射至样品臂模块;所述样品臂模块包括第一透镜、旋转中心设置在所述第一透镜焦点处的可旋转反射镜和驱动所述可旋转反射镜旋转的驱动装置;所述第一透镜的光轴和所述驱动装置的旋转轴同轴;
    当所述可旋转反射镜处于第一位置时,所述探测光扫描样品得到样品的第一位相移动信号;
    当所述可旋转反射镜处于第二位置时,所述探测光扫描所述样品得到所述样品的第二位相移动信号;
    所述第一位相移动信号和所述第二位相移动信号分别从所述样品臂模块返回,与从所述参考臂模块返回的参考光在所述分光模块处发生干涉并形成干涉光,所述探测模块接收所述干涉光后经所述控制系统处理,经计算得到样品的血液流量。
  2. 如权利要求1所述的测量血液流量的设备,其特征在于:所述可旋转反射镜由所述第一位置转到所述第二位置时,驱动装置的旋转角度为180°。
  3. 如权利要求2所述的测量血液流量的设备,其特征在于:所述样品臂模块还包括一中间开有通孔的第一反射镜;所述第一反射镜的通孔用于供来自分光模块的探测光通过,其反射面用于反射来自所述可旋转反射镜反射的然后经所述第一透镜透射的探测光。
  4. 如权利要求3所述的测量血液流量的设备,其特征在于:所述样品臂模块还包括设置在所述分光模块和所述第一反射镜之间的第一反射镜组;所述第一反射镜组包括第二反射镜和第三反射镜;所述第二反射镜和所述第三反射镜依次反射经所述分光模块发出的且入射至所述第一透镜的探测光。
  5. 如权利要求3所述的测量血液流量的设备,其特征在于:所述样品臂模块还包括扫描单元和二向色镜;所述扫描单元扫描来自经所述第一反射镜反射的探测光并将所述探测光传递至所述二向色镜;所述二向色镜将所述探测光反 射至样品的血管。
  6. 如权利要求5所述的测量血液流量的设备,其特征在于:所述样品臂模块还包括设置在所述扫描单元和所述第一反射镜之间的由至少一块反射镜组成的第二反射镜组。
  7. 如权利要求5所述的测量血液流量的设备,其特征在于:所述样品臂模块还包括预览模块,所述预览模块包括第二透镜及摄像器;经所述样品散射返回的探测光依次经过所述二向色镜和所述第二透镜透射后被所述摄像器拍摄到,其拍摄到的图像由控制系统的显示屏显示。
  8. 如权利要求5中所述的测量血液流量的设备,其特征在于:所述样品臂模块还包括设置在所述扫描单元和所述二向色镜之间的中继透镜。
  9. 如权利要求1-8中任一项所述的测量血液流量的设备,其特征在于:所述驱动装置为电机。
  10. 一种测量血管血液流量的方法,其特征在于,包括如下步骤:
    依照光路设置光源、探测模块、分光模块、参考臂模块、样品臂模块和控制系统;所述样品臂模块包括:第一透镜、旋转中心设置在所述第一透镜焦点处的可旋转反射镜和驱动所述可旋转反射镜旋转的驱动装置;所述第一透镜的光轴和所述驱动装置的旋转轴同轴;
    当所述可旋转反射镜处于第一位置时,探测光经样品臂模块以第一方向扫描血管并生成第一位相移动信号;
    当所述可旋转反射镜处于第二位置时,探测光经样品臂模块以第二方向扫描血管并生成第二位相移动信号;
    根据所述第一位相移动信号及第二位相移动信号计算所测血管的血液流量。
  11. 如权利要求10所述的测量血管血液流量的方法,其特征在于:在探测光经样品臂模块以第二方向扫描血管并生成第二位相移动信号后,还包括对所述第二位相移动信号进行修正,具体步骤为:
    利用扫描单元扫描获得所述第一位相移动信号和所述第二位相移动信号随时间变化的关系;
    利用插值计算对所述第二位相移动信号进行修正。
  12. 如权利要求10所述的测量血管血液流量的方法,其特征在于:在根据所述第一位相移动信号及第二位相移动信号计算所测血管的血液流量之前,还包括:
    测量所述血管的轴向与X方向的夹角;
    其中,所述可旋转反射镜处于第一位置时探测光射入所述血管的第一方向与所述可旋转反射镜处于第二位置时探测光射入所述血管的第二方向构成X-Z平面,所述X方向平行于所述X-Z平面的X轴。
  13. 一种测量视盘内总的血管血液流量的方法,其特征在于,包括如下步骤:
    在可旋转反射镜处于第一位置时,扫描单元和驱动装置同步转动,探测光以第一方向环形扫描视盘内所有血管,得到与所有血管一一对应的若干第一位相移动信号;
    在可旋转反射镜处于第二位置时,扫描单元和驱动装置同步转动,探测光以第二方向且和以可旋转反射镜处于第一位置时探测光同样的扫描轨迹扫描视盘内所有血管,得到与所有血管一一对应的若干经修正后的第二位相移动信号;
    将所述若干第一位相移动信号和若干第二位相移动信号一一配对计算,得到所述若干单根血管的血液流速;
    将所述若干单根血管的血液流速取绝对值,经计算得到视盘内附近所有血管的血流流量;
    其中,所述可旋转反射镜由第一位置转到第二位置时,驱动装置转过的角度为180°。
PCT/CN2015/071441 2014-05-14 2015-01-23 一种测量血液流量的设备及方法 WO2015172581A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/077418 WO2015172322A1 (zh) 2014-05-14 2014-05-14 血液流量测量装置及方法
CNPCT/CN2014/077418 2014-05-14
CN201410378086.1 2014-08-01
CN201410378086.1A CN105310677B (zh) 2014-08-01 2014-08-01 一种测量血液流量的设备及方法

Publications (1)

Publication Number Publication Date
WO2015172581A1 true WO2015172581A1 (zh) 2015-11-19

Family

ID=54479279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071441 WO2015172581A1 (zh) 2014-05-14 2015-01-23 一种测量血液流量的设备及方法

Country Status (1)

Country Link
WO (1) WO2015172581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436908A (zh) * 2020-04-17 2020-07-24 岱川医疗(深圳)有限责任公司 光学相干断层成像内窥探头及成像系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377349B1 (en) * 1998-03-30 2002-04-23 Carl Zeiss Jena Gmbh Arrangement for spectral interferometric optical tomography and surface profile measurement
CN101243966A (zh) * 2008-03-21 2008-08-20 中国科学院光电技术研究所 一种高分辨率眼底血管流速测量系统及测量方法
JP4461258B2 (ja) * 2005-10-31 2010-05-12 国立大学法人 筑波大学 光断層画像化法における補正方法
WO2010143601A1 (ja) * 2009-06-11 2010-12-16 国立大学法人筑波大学 2ビーム型光コヒーレンストモグラフィー装置
JP5166889B2 (ja) * 2008-01-17 2013-03-21 国立大学法人 筑波大学 眼底血流量の定量測定装置
CN103002794A (zh) * 2010-02-08 2013-03-27 奥勒冈保健科学大学 用于超高灵敏光学微血管显影术之设备及方法
CN104159505A (zh) * 2014-05-14 2014-11-19 深圳市斯尔顿科技有限公司 血液流量测量装置及方法
CN104168823A (zh) * 2014-02-28 2014-11-26 深圳市斯尔顿科技有限公司 一种血液流速的测量装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377349B1 (en) * 1998-03-30 2002-04-23 Carl Zeiss Jena Gmbh Arrangement for spectral interferometric optical tomography and surface profile measurement
JP4461258B2 (ja) * 2005-10-31 2010-05-12 国立大学法人 筑波大学 光断層画像化法における補正方法
JP5166889B2 (ja) * 2008-01-17 2013-03-21 国立大学法人 筑波大学 眼底血流量の定量測定装置
CN101243966A (zh) * 2008-03-21 2008-08-20 中国科学院光电技术研究所 一种高分辨率眼底血管流速测量系统及测量方法
WO2010143601A1 (ja) * 2009-06-11 2010-12-16 国立大学法人筑波大学 2ビーム型光コヒーレンストモグラフィー装置
CN103002794A (zh) * 2010-02-08 2013-03-27 奥勒冈保健科学大学 用于超高灵敏光学微血管显影术之设备及方法
CN104168823A (zh) * 2014-02-28 2014-11-26 深圳市斯尔顿科技有限公司 一种血液流速的测量装置及方法
CN104159505A (zh) * 2014-05-14 2014-11-19 深圳市斯尔顿科技有限公司 血液流量测量装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436908A (zh) * 2020-04-17 2020-07-24 岱川医疗(深圳)有限责任公司 光学相干断层成像内窥探头及成像系统

Similar Documents

Publication Publication Date Title
WO2016188178A1 (zh) 一种测量血管血液流量的设备及方法
JP6196206B2 (ja) マルチチャンネル光コヒーレンストモグラフィ
Dai et al. Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography
WO2015172322A1 (zh) 血液流量测量装置及方法
JP4971872B2 (ja) 眼底観察装置及びそれを制御するプログラム
US9820645B2 (en) Ophthalmologic apparatus
CN106880335B (zh) 用于测量眼睛的生物识别变量以计算人工晶状体的装置
US8025401B2 (en) Ophthalmological measuring device and measurement method
CN103402421B (zh) 用于连续拍摄不同深度的干涉测量深度断面图像、分析眼睛的方法和装置
WO2015127661A1 (zh) 一种血液流速的测量装置及方法
JP2017136215A (ja) 眼科装置及び眼科検査システム
CN105147238B (zh) 一种眼睛多界面间距测量方法及装置
JP2013081763A (ja) 眼底断層像撮影装置
CN204708834U (zh) 一种测量血管血液流量的设备
WO2013085042A1 (ja) 眼底観察装置
CN109124686A (zh) 一种血液流量测量设备及方法
WO2015172581A1 (zh) 一种测量血液流量的设备及方法
CN105310677B (zh) 一种测量血液流量的设备及方法
JP6917663B2 (ja) 光コヒーレンストモグラフィ装置用の光干渉ユニット
US9835436B2 (en) Wavelength encoded multi-beam optical coherence tomography
US11497397B2 (en) Ophthalmologic apparatus
US11896307B2 (en) Ophthalmologic apparatus and method of controlling same
KR102178998B1 (ko) 망막의 넓은 범위 혈류속도 측정을 위한 광경로 길이 차이 인코딩 방식의 이중빔 스캐닝 광가간섭 단층촬영 장치 및 방법
US20230218167A1 (en) Ophthalmic apparatus
JP7530252B2 (ja) 眼科装置及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792847

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792847

Country of ref document: EP

Kind code of ref document: A1