WO2015170626A1 - 自立式電力供給システム - Google Patents
自立式電力供給システム Download PDFInfo
- Publication number
- WO2015170626A1 WO2015170626A1 PCT/JP2015/062638 JP2015062638W WO2015170626A1 WO 2015170626 A1 WO2015170626 A1 WO 2015170626A1 JP 2015062638 W JP2015062638 W JP 2015062638W WO 2015170626 A1 WO2015170626 A1 WO 2015170626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- storage battery
- amount
- supply system
- power supply
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
Definitions
- the present invention relates to a self-supporting power supply system including a storage battery and a generator.
- a power supply system that combines a plurality of types of power generation, for example, a combination of solar power generation and fuel cell power generation, is gradually spreading.
- Patent Literature 1 includes an interconnection power supply path that connects a power system of a commercial power source supplied from an external power company and a load.
- the fuel cell unit, the storage battery unit, and the HEMS are individually connected to the interconnection feed path.
- SOFC solid oxide fuel cell
- the daily load power is estimated in advance, and the fuel cell is generated according to the estimated load power. Furthermore, in the system described in Patent Document 1, a storage battery is provided together with a fuel cell, and when the load power is smaller than estimated, electric power generated by the fuel cell and not consumed by the load is charged to the storage battery.
- the interconnection power supply path is directly connected to the power system of the commercial power supply. Therefore, since it is necessary to connect each other with an alternating voltage having a predetermined voltage value and frequency, the fuel cell unit is provided with a fuel cell power conditioner (fuel cell PCS), and the storage battery unit is provided with a storage battery power conditioner (storage battery PCS). You must prepare. For this reason, for example, when charging the storage battery unit from the fuel cell unit, the DC voltage generated by the fuel cell body is converted into AC power by the fuel cell PCS. On the storage battery unit side, AC power from the fuel cell unit side is converted into a DC voltage, and the storage battery PCS steps down the voltage to a voltage according to the specifications of the storage battery.
- fuel cell PCS fuel cell power conditioner
- storage battery PCS storage battery PCS
- An object of the present invention is to provide a self-supporting power supply system having a small loss and a simpler configuration than the conventional configuration.
- the self-supporting power supply system of the present invention is characterized by the following configuration.
- the self-supporting power supply system includes a DC power bus line, a fuel cell, a storage battery, first and second DC / DC converters, and a bidirectional inverter.
- the fuel cell generates power by reacting hydrogen and oxygen taken out by reforming fossil fuel.
- the first DC / DC converter is connected between the storage battery and the power bus line. When the storage battery is charged, the power from the power bus line is boosted or reduced to the charging voltage of the storage battery, and the storage battery is discharged when the storage battery is discharged.
- This is a bidirectional converter that steps up or down the power from the side to the voltage of the bus line.
- the second DC / DC converter boosts or lowers the power generated by the fuel cell to about the voltage of the bus line.
- the bidirectional inverter connects the power bus line to an external power system.
- the fuel cell and the storage battery are connected to each other only by the DC power system, so that the power generated by the fuel cell can be charged to the storage battery with low loss.
- the self-supporting power supply system of the present invention preferably includes a system controller and has the following configuration.
- the system controller monitors the load power amount outside the bidirectional inverter.
- the system controller includes a system controller that controls the first DC / DC converter so as to charge the storage battery or discharge the storage battery from the comparison result between the load power amount and the generated power amount of the fuel cell.
- the storage battery can be charged and discharged appropriately according to the amount of load power.
- the system controller when the system controller detects that the load power amount is lower than the generated power amount, the system controller charges the storage battery, and detects that the load power amount is higher than the generated power amount. It is preferable to control so that the storage battery is discharged.
- the storage battery it is preferable to perform charging.
- the storage battery can be charged efficiently.
- the storage battery it is preferable to perform the discharge.
- the self-supporting power supply system includes a solar power output unit that outputs the electric power generated by the solar cell by raising or lowering the electric power generated to the voltage of the power bus line.
- the solar power output unit is connected to the power bus line.
- the power supply to the load can be improved, and the storage battery can be more reliably charged.
- the self-supporting power supply system of the present invention preferably includes a system controller and has the following configuration.
- the system controller monitors the load power amount from the outside of the bidirectional inverter.
- the system controller calculates the total power generation amount from the power generation amount of the fuel cell and the power generation amount of the solar power output unit.
- the system controller controls the first DC / DC converter so as to charge the storage battery or discharge the storage battery from the comparison result between the load power amount and the total generated power amount.
- the storage battery can be charged and discharged appropriately according to the amount of load power.
- the system controller when the system controller detects that the load power amount is lower than the total generated power amount, the system controller charges the storage battery, and the load power amount is higher than the total generated power amount. It is preferable to control so that the storage battery is discharged when detected.
- the system controller detects that the load power amount is lower than the total generated power amount, and detects that the remaining amount of the storage battery is less than the charging threshold value. It is preferable to charge the storage battery.
- the storage battery can be charged efficiently.
- the system controller detects that the load power amount is lower than the total generated power amount, detects that the remaining amount of the storage battery is not less than the threshold for charging, and If it is determined that reverse flow is possible, it is preferable to perform reverse flow control on the bidirectional inverter.
- the system controller detects that the load power amount is higher than the total generated power amount, and detects that the remaining amount of the storage battery is equal to or greater than the discharge threshold value. It is preferable to discharge the storage battery.
- FIG. 1 is a configuration diagram of a power supply system according to a first embodiment of the present invention. It is a graph which shows the example of a transition of the electric energy of the day in the electric power supply system which concerns on the 1st Embodiment of this invention. It is a figure which shows the aspect which charges a storage battery in the electric power supply system which concerns on the 1st Embodiment of this invention. It is a figure which shows the aspect discharged from a storage battery in the electric power supply system which concerns on the 1st Embodiment of this invention. It is a flowchart of the electric power supply system which concerns on the 1st Embodiment of this invention. It is a block diagram of the electric power supply system which concerns on the 2nd Embodiment of this invention.
- the “self-supporting power supply system” is simply referred to as “power supply system”.
- FIG. 1 is a configuration diagram of a power supply system according to the first embodiment of the present invention.
- the power supply system 10 includes a power bus line 100, a system controller 21, a bidirectional DC / AC inverter 22, a fuel cell 32, a storage battery 41, a bidirectional DC / DC converter 51, and a DC / DC.
- a converter 52 and a switch circuit 61 are provided.
- the power bus line 100, the system controller 21, the bidirectional DC / AC inverter 22, the bidirectional DC / DC converter 51, the DC / DC converter 52, and the switch circuit 61 operates as a power management device.
- the power bus line 100 is a DC power bus line.
- the specified voltage of the power bus line 100 is a voltage having a predetermined voltage width with respect to about 300 [V] to 380 [V].
- a system controller 21 and a bidirectional DC / AC inverter 22 are connected to the power bus line 100.
- the power bus line 100 is connected to the distribution board 80 via the bidirectional DC / AC inverter 22 and the switch circuit 61.
- the distribution board 80 is connected to an external power system 901 and an AC output terminal (such as an AC outlet) 911.
- a fuel cell 32 and a storage battery 41 are connected to the power bus line 100.
- the storage battery 41 is connected to the power bus line 100 via a bidirectional DC / DC converter 51.
- the bidirectional DC / DC converter 51 corresponds to the “first DC / DC converter” of the present invention.
- the fuel cell 32 is connected to the power bus line 100 via the DC / DC converter 52.
- the DC / DC converter 52 corresponds to a “second DC / DC converter” of the present invention.
- the system controller 21 observes the load power amount and controls the operations of the bidirectional DC / DC converter 51, the DC / DC converter 52, and the fuel cell 32. At this time, the system controller 21 also observes the power generation amount of the fuel cell 32 and the power storage amount of the storage battery 41.
- the fuel cell 32 is composed of a solid oxide fuel cell (SOFC) and generates DC power.
- SOFC solid oxide fuel cell
- the fuel cell 32 outputs the generated direct current power to the DC / DC converter 52.
- the DC / DC converter 52 boosts the voltage of the DC power generated by the fuel cell 32 to about the specified voltage of the power bus line 100 and outputs the boosted voltage to the power bus line 100.
- the storage battery 41 is a secondary battery that can be charged and discharged.
- the storage battery 41 is composed of, for example, a lithium ion battery.
- the storage battery 41 has, for example, a charge voltage and a discharge voltage of about 30 to 60 [V].
- the bidirectional DC / DC converter 51 steps down the voltage of the bus line 100 and outputs DC power to the storage battery.
- the bidirectional DC / DC converter 51 boosts or steps down the output voltage of the storage battery 41 to about the specified voltage of the power bus line 100 and outputs it to the power bus line 100.
- the power supply system 10 of the present embodiment observes the load power amount and performs charge control or discharge control on the storage battery 41 based on the observation result.
- FIG. 2 is a graph showing an example of transition of the daily power amount in the power supply system according to the first embodiment of the present invention.
- FIG. 3 is a diagram illustrating a mode in which the storage battery is charged in the power supply system according to the first embodiment of the present invention.
- FIG. 4 is a diagram illustrating a mode of discharging from the storage battery in the power supply system according to the first embodiment of the present invention.
- the daily load power amount varies with time.
- the load power amount W LP is large in the morning and evening evening time zones, and the load power amount W LP is small in the late night and day time zones.
- the power generation amount PG FB of the fuel cell 32 is set to be substantially constant throughout the day regardless of the time (time zone) because it is not easy to repeat operation and stop as described in the related art.
- the power generation amount PG FB of the fuel cell 32 is set to a predetermined value between the maximum value and the minimum value of the load power amount W LP . Furthermore, the power supply system 10 includes a storage battery 41.
- the load power amount W LP is small time period than the power generation amount PG FB of the fuel cell 32, the excess power of the power generation PG FB of the fuel cell 32 which is not utilized as a load power amount W LP, battery 41 Used for charging. That is, as shown in FIG. 3, the system controller 21 controls the bidirectional DC / DC converter 51 so that a current due to surplus power generated by the fuel cell 32 flows from the power bus line 100 to the storage battery 41. Thus, the storage battery 41 is charged by surplus power of the power generation amount PG FB of the fuel cell 32.
- the power supply system 10 discharges from the storage battery 41 in a time zone in which the load power amount W LP is larger than the power generation amount PG FB of the fuel cell 32, and the load power amount W together with the power generation amount PG FB of the fuel cell 32.
- Used for LP the system controller 21 controls the bidirectional DC / DC converter 51 so that a current flows from the storage battery 41 to the power bus line 100. Thereby, the discharge power of the storage battery 41 is supplied to the load, and the shortage of the load power amount W LP that is insufficient for the power generation amount PG FB of the fuel cell 32 can be filled.
- the power supply system 10 can be configured with a simple configuration and a small size.
- FIG. 5 is a flowchart of the power supply system according to the first embodiment of the present invention.
- the system controller 21 starts power generation by the fuel cell 32 (S101). As a result, the power generation amount PG FB is supplied from the fuel cell 32 substantially constant. The system controller 21 measures the load power amount W LP (S102).
- the system controller 21 detects whether or not the remaining charge amount of the storage battery 41 is less than the charging threshold (S211). ). If the remaining charge of the storage battery 41 is less than the charging threshold (S211: YES), the system controller 21 controls the bidirectional DC / DC converter 51 to charge the storage battery 41 (S212). The system controller 21 adjusts the supply gas flow rate to the fuel cell 32 if the remaining charge of the storage battery 41 is not less than the charging threshold (S211: NO), that is, if the storage battery 41 is sufficiently charged. Then, the power generation amount PG FB is decreased (S213), and the operation is continued (S214).
- the system controller 21 detects whether or not the remaining charge amount of the storage battery 41 is equal to or greater than the discharge threshold (S311). ). If the remaining charge of the storage battery 41 is equal to or greater than the discharge threshold (S311: YES), the system controller 21 controls the bidirectional DC / DC converter 51 to discharge from the storage battery 41 (S312). If the remaining charge of the storage battery 41 is not equal to or greater than the discharge threshold (S311: NO), that is, if the charge amount of the storage battery 41 is small enough to prevent discharge, the system controller 21 receives power supply from an external power system. Control is performed on the distribution board 80 (S313), and the operation is continued (S214).
- the charging threshold and the discharging threshold may be the same or different. If they are different, the discharge threshold is preferably higher than the charge threshold. Thereby, more efficient charge and discharge can be performed.
- FIG. 6 is a configuration diagram of a power supply system according to the second embodiment of the present invention.
- the power supply system 10A according to the present embodiment is different from the power supply system 10 according to the first embodiment in that the fuel cell 32A has a configuration and a hot water supply system associated therewith.
- Other configurations of the power supply system 10A according to the present embodiment are the same as those of the power supply system 10 according to the first embodiment. Below, only a different part from the electric power supply system 10 which concerns on 1st Embodiment is demonstrated concretely.
- the fuel cell 32A is composed of, for example, a phosphoric acid fuel cell (PAFC) or a polymer electrolyte fuel cell (PEFC), and generates DC power.
- the fuel cell 32 outputs the generated direct current power to the DC / DC converter 52.
- the fuel cell 32 warms water by heat generated during power generation, creates hot water, and supplies it to the hot water storage tank 71. Hot water is stored in the hot water storage tank 71. By opening the hot water supply valve 72, hot water can be supplied to the house where the power supply system 10A is provided.
- FIG. 7 is a configuration diagram of a power supply system according to the third embodiment of the present invention.
- the power supply system 10B according to the present embodiment is obtained by adding a solar power output unit 31 to the power supply system 10 according to the first embodiment.
- Other configurations of the power supply system 10B according to the present embodiment are the same as those of the power supply system 10 according to the first embodiment, except for a place where control is performed on power by solar power generation. Below, only a different part from the electric power supply system 10 which concerns on 1st Embodiment is demonstrated concretely.
- the solar power output unit 31 is connected between the solar cell 300 and the power bus line 100. As a basic operation, the solar power output unit 31 uses the maximum power point tracking (MPPT) control to output DC power generated by the solar cell 300 to the power bus line 100 with high efficiency. To do.
- the solar power output unit 31 includes a DC / DC converter, and boosts or lowers the voltage of the direct-current power generated by the solar battery 300 to about the specified voltage of the power bus line 100 and outputs it to the power bus line 100. .
- the system controller 21 observes the power generation amount PGS by solar power generation together with the load power amount, the power generation amount of the fuel cell 32, and the power storage amount of the storage battery 41.
- FIG. 8 is a graph showing an example of transition of the daily power amount in the power supply system according to the third embodiment of the present invention.
- FIG. 8A is a graph showing transitions of the power generation amount PG FB of the fuel cell, the power generation amount PG S of solar power generation, and the load power amount W LP .
- FIG. 8B is a graph showing the relationship between the total power generation amount PG and the load power amount W LP , the discharge period, the charge period, and the charge or reverse power flow control period.
- FIG. 9 is a diagram showing a state in which the storage battery is charged in the power supply system according to the third embodiment of the present invention.
- FIG. 10 is a diagram illustrating a mode in which reverse power flow control is performed in the power supply system according to the third embodiment of the present invention.
- FIG. 11 is a figure which shows the aspect discharged from a storage battery in the electric power supply system which concerns on the 3rd Embodiment of this invention.
- the photovoltaic power generation can obtain the generated power during the daytime when the sunlight irradiates, and cannot generate the generated power at night. Therefore, as shown in FIG. 8, the total amount of power generation PG during the day increases.
- the load power amount W LP is a small time period than total generation PG, the surplus power of the total generation PG which is not utilized as a load power amount W LP, used for charging the battery 41. That is, as shown in FIG. 9, the system controller 21 allows the bidirectional DC / DC so that current due to surplus power generated by the fuel cell 32 and the solar power output unit 31 flows from the power bus line 100 to the storage battery 41. The DC converter 51 is controlled. Thereby, the storage battery 41 is charged with the surplus power of the total power amount PG.
- the power supply system 10B may reversely flow the surplus power of the total power generation amount PG to the external power system if the power generated by solar power generation is included in the total power generation amount PG. That is, as shown in FIG. 10, the system controller 21 allows the bidirectional DC / AC inverter 22 so that the current generated by the surplus power generated by the fuel cell 32 and the solar power output unit 31 flows to the external power system. And the distribution board 80 is controlled. As a result, surplus power that is not charged in the storage battery 41 can be used for power sales without wasting it wastefully.
- the power supply system 10B discharges from the storage battery 41 in a time zone in which the load power amount W LP is larger than the total power generation amount PG, and uses it for the load power amount W LP together with the total power generation amount PG. That is, as shown in FIG. 11, in case that is not obtained power generation PG S by solar power, and when the load power amount W LP is larger than the power generation amount PG FB of the fuel cell 32, the system controller 21 controls the bidirectional DC / DC converter 51 so that a current flows from the storage battery 41 to the power bus line 100. As a result, the discharge power of the storage battery 41 is supplied to the load, and the shortage of the load power amount W LP that is insufficient for the total power generation amount PG can be filled.
- the amount of power output by the fuel cell can be reduced according to the power amount of solar power generation. it can.
- the running cost of the electric power generation by a fuel cell can be reduced. That is, the running cost as the power supply system 10B can be further reduced.
- FIG. 12 is a flowchart of the power supply system according to the third embodiment of the present invention.
- the system controller 21 starts power generation by the fuel cell 32 (S101). As a result, the power generation amount PG FB is supplied from the fuel cell 32 substantially constant. The system controller 21 measures the load power amount W LP (S102).
- the system controller 21 detects whether or not power generation PG S by solar power can be obtained.
- System controller 21, as long obtained power generation PG S by photovoltaic (S401: YES), calculates the total power generation PG ( PG FB + PG S ).
- the system controller 21 detects whether the remaining charge amount of the storage battery 41 is less than the charging threshold (S211). . If the remaining charge of the storage battery 41 is less than the charging threshold (S211: YES), the system controller 21 controls the bidirectional DC / DC converter 51 to charge the storage battery 41 (S212).
- the system controller 21 detects whether reverse power flow is possible.
- the system controller 21 may control the solar power output unit 31 to cancel the maximum power point tracking (MPPT) control.
- MPPT maximum power point tracking
- the system controller 21 detects whether or not the remaining charge amount of the storage battery 41 is equal to or greater than the discharge threshold (S311). ). If the remaining charge of the storage battery 41 is equal to or greater than the discharge threshold (S311: YES), the system controller 21 controls the bidirectional DC / DC converter 51 to discharge from the storage battery 41 (S312). If the remaining charge of the storage battery 41 is not equal to or greater than the discharge threshold (S311: NO), that is, if the charge amount of the storage battery 41 is small enough to prevent discharge, the system controller 21 receives power supply from an external power system. Control is performed on the distribution board 80 (S313), and the operation is continued (S214).
- the system controller 21 if power generation PG S is obtained by solar power generation (S401: NO), comparing the power generation PG FB and load power amount W LP (S103).
- the system controller 21 performs the same control as the float shown in the first embodiment.
- Power supply system 21 System controller 22: Bidirectional DC / AC inverter 31: Solar power output unit 32, 32A: Fuel cell 41: Storage battery 51: Bidirectional DC / DC converter 61: Switch Circuit 71: Hot water storage tank 72: Hot water supply valve 80: Distribution board 100: Power bus line 300: Solar battery 901: External power system 911: AC output terminal (AC outlet, etc.)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
電力供給システム(10)は、直流の電力バスライン(100)、システムコントローラ(21)、双方向型DC/ACインバータ(22)、燃料電池(32)、蓄電池(41)、双方向型DC/DCコンバータ(51)、DC/DCコンバータ(52)を備える。電力バスライン(100)には、双方向型DC/DCコンバータ(51)を介して蓄電池(41)が接続されている。電力バスライン(100)には、DC/DCコンバータ(52)を介して燃料電池(32)が接続されている。電力バスライン(100)は、双方向型DC/ACインバータ(22)を介して外部の電力系統(901)に接続されている。蓄電池(41)は、電力バスライン(100)を介して、燃料電池(32)で発電した電力によって充電される。
Description
本発明は、蓄電池と発電機を備えた自立式電力供給システムに関する。
現在、各種の発電システムを備えた住宅が普及しており、例えば、燃料電池発電システムを備えた住宅が普及している。また、複数種類の発電を組み合わせた、例えば、太陽光発電と燃料電池発電を組み合わせた電力供給システムも、徐々に普及してきている。
さらに、燃料電池発電と蓄電池を組み合わせた電力供給システムも実用化されており、例えば、特許文献1に記載のシステム構成からなる。特許文献1に記載の電力供給システムは、外部の電力会社から供給される商用電源の電力系統と負荷とを結ぶ連系給電路を備える。燃料電池ユニット、蓄電池ユニット、および、HEMSは、それぞれ個別に連系給電路に接続されている。
また、一般に燃料電池は、急激な負荷変動に追従することが容易でない。特に、固体酸化物型燃料電池(SOFC)は、運転温度が約700℃~1000℃の高温であるので、起動から運転開始までの時間、停止から再起動までの時間が長くなる。したがって、頻繁に運転・停止を繰り返すような制御は不向きである。
このため、特許文献1に記載のシステムでは、予め一日の負荷電力を推定し、推定した負荷電力に応じて燃料電池を発電する。さらに、特許文献1に記載のシステムでは、燃料電池とともに蓄電池を備え、負荷電力が推定よりも小さい時には、燃料電池で発電して負荷で消費されない電力を蓄電池に充電している。
しかしながら、上述の特許文献1に記載の電力供給システムでは、連系給電路は商用電源の電力系統と直接接続されている。したがって、所定の電圧値および周波数を有する交流電圧で互いに接続する必要があるため、燃料電池ユニットに燃料電池パワーコンディショナ(燃料電池PCS)を備え、蓄電池ユニットに蓄電池パワーコンディショナ(蓄電池PCS)を備えなければならない。このため、例えば、燃料電池ユニットから蓄電池ユニットに充電を行う場合、燃料電池本体によって発電された直流電圧を、燃料電池PCSで交流電力に変換する。蓄電池ユニット側では、燃料電池ユニット側からの交流電力を、直流電圧に変換して、蓄電池PCSで蓄電池の仕様に応じた電圧に降圧する。
このように、従来の特許文献1に記載のシステムでは、電力変換回数が多く、システムとしての変換効率が低下してしまう。また、燃料電池ユニット、および蓄電池ユニットのそれぞれに、パワーコンディショナを備えなければならず、システムが複雑化して大型化してしまう。
本発明の目的は、損失が小さく且つ従来構成よりも簡素な構成からなる自立式電力供給システムを提供することにある。
この発明の自立式電力供給システムは、次の構成を特徴としている。自立式電力供給システムは、直流の電力バスライン、燃料電池、蓄電池、第1、第2のDC/DCコンバータ、および、双方向インバータを備える。燃料電池は、化石燃料を改質して取り出した水素と酸素を反応させることによって発電を行う。第1のDC/DCコンバータは、蓄電池と電力バスラインとの間に接続され、蓄電池の充電時には前記電力バスライン側からの電力を前記蓄電池の充電電圧に昇圧または降圧し、蓄電池の放電時には蓄電池側からの電力をバスラインの電圧程度に昇圧または降圧する双方向型のコンバータである。第2のDC/DCコンバータは、燃料電池の発電した電力を、バスラインの電圧程度に昇圧または降圧する。双方向インバータは、電力バスラインを外部電力系統に接続する。
この構成では、簡素な構成でありながら、燃料電池、および蓄電池が直流電力系のみで相互に接続されているので、燃料電池による発電電力を蓄電池に低損失で充電することができる。
また、この発明の自立式電力供給システムでは、システムコントローラを備え、次の構成であることが好ましい。システムコントローラは、双方向インバータの外部側の負荷電力量を監視する。システムコントローラは、負荷電力量と燃料電池の発電電力量との比較結果から、蓄電池への充電または蓄電池の放電を行うように、第1のDC/DCコンバータを制御するシステムコントローラを備える。
この構成では、蓄電池の充電及び放電を、負荷電力量に応じて適切に行うことができる。
また、この発明の自立式電力供給システムでは、システムコントローラは、負荷電力量が発電電力量よりも低いことを検出すると蓄電池の充電を行い、負荷電力量が発電電力量よりも高いことを検出すると蓄電池の放電を行うように、制御することが好ましい。
この構成では、適切な蓄電池の充電及び放電を実現できる。
また、この発明の自立式電力供給システムでは、システムコントローラは、負荷電力量が発電電力量よりも低いことを検出し、且つ、蓄電池の残量が充電用閾値未満であることを検出すると、蓄電池の充電を行うことが好ましい。
この構成では、蓄電池の充電を効率的に行うことができる。
また、この発明の自立式電力供給システムでは、システムコントローラは、負荷電力量が発電電力量よりも高いことを検出し、且つ、蓄電池の残量が放電用閾値以上であることを検出すると、蓄電池の放電を行うことが好ましい。
この構成では、蓄電池からの放電による負荷電力の不足分の補填を、より確実に行うことができる。
また、この発明の自立式電力供給システムでは、次の構成を用いることもできる。自立式電力供給システムは、太陽電池で発電した電力を電力バスラインの電圧程度に昇圧または降圧して出力する太陽光電力出力部を備える。太陽光電力出力部は、電力バスラインに接続されている。
この構成では、負荷に対する電力供給を向上させることができ、蓄電池への充電をより確実に行うことができる。
また、この発明の自立式電力供給システムでは、システムコントローラを備え、次の構成であることが好ましい。システムコントローラは、双方向インバータの外部側から負荷電力量を監視する。システムコントローラは、燃料電池の発電電力量と太陽光電力出力部の発電電力量から総発電電力量を算出する。システムコントローラは、負荷電力量と総発電電力量との比較結果から、蓄電池への充電または蓄電池の放電を行うように、第1のDC/DCコンバータを制御する。
この構成では、蓄電池の充電及び放電を、負荷電力量に応じて適切に行うことができる。
また、この発明の自立式電力供給システムでは、システムコントローラは、負荷電力量が総発電電力量よりも低いことを検出すると蓄電池の充電を行い、負荷電力量が総発電電力量よりも高いことを検出すると蓄電池の放電を行うように、制御することが好ましい。
この構成では、適切な蓄電池の充電及び放電を実現できる。
また、この発明の自立式電力供給システムでは、システムコントローラは、負荷電力量が総発電電力量よりも低いことを検出し、且つ、蓄電池の残量が充電用閾値未満であることを検出すると、蓄電池の充電を行うことが好ましい。
この構成では、蓄電池の充電を効率的に行うことができる。
また、この発明の自立式電力供給システムでは、システムコントローラは、負荷電力量が総発電電力量よりも低いことを検出し、且つ、蓄電池の残量が充電用閾値未満でないことを検出し、且つ、逆潮流可能であると判定すると、双方向インバータに対して逆潮流制御を行うことが好ましい。
この構成では、余剰の発電電力を、効率的に売電することができる。
また、この発明の自立式電力供給システムでは、システムコントローラは、負荷電力量が総発電電力量よりも高いことを検出し、且つ、蓄電池の残量が放電用閾値以上であることを検出すると、蓄電池の放電を行うことが好ましい。
この構成では、蓄電池からの放電による負荷電力の不足分の補填を、より確実に行うことができる。
この発明によれば、損失が小さく且つ簡素な構成の自立式電力供給システムを実現することができる。
本発明の各実施形態では、「自立式電力供給システム」を単に「電力供給システム」と称する。
本発明の第1の実施形態に係る電力供給システムについて、図を参照して説明する。図1は、本発明の第1の実施形態に係る電力供給システムの構成図である。
図1に示すように、電力供給システム10は、電力バスライン100、システムコントローラ21、双方向型DC/ACインバータ22、燃料電池32、蓄電池41、双方向型DC/DCコンバータ51、DC/DCコンバータ52、スイッチ回路61を備える。ここで、電力供給システム10を構成する要件のうち、電力バスライン100、システムコントローラ21、双方向型DC/ACインバータ22、双方向型DC/DCコンバータ51、DC/DCコンバータ52、スイッチ回路61、蓄電池41が、電力管理装置として動作する。
電力バスライン100は、直流電力系のバスラインである。例えば、電力バスライン100の規定電圧は、約300[V]~380[V]に対して所定の電圧幅を有する電圧である。電力バスライン100には、システムコントローラ21と双方向型DC/ACインバータ22が接続されている。電力バスライン100は、双方向型DC/ACインバータ22、スイッチ回路61を介して、分電盤80に接続されている。分電盤80は、外部の電力系統901およびAC出力端子(ACコンセント等)911に接続されている。
電力バスライン100には、燃料電池32、および、蓄電池41が接続されている。蓄電池41は、双方向型DC/DCコンバータ51を介して、電力バスライン100に接続されている。双方向型DC/DCコンバータ51は、本発明の「第1のDC/DCコンバータ」に相当する。燃料電池32は、DC/DCコンバータ52を介して、電力バスライン100に接続されている。DC/DCコンバータ52は本発明の「第2のDC/DCコンバータ」に相当する。
システムコントローラ21は、負荷電力量を観測し、双方向DC/DCコンバータ51、DC/DCコンバータ52、および、燃料電池32の動作を制御する。この際、システムコントローラ21は、燃料電池32の発電量、蓄電池41の蓄電量も観測する。
燃料電池32は、固体酸化物形燃料電池(SOFC)からなり、直流電力を発生する。燃料電池32は、発生した直流電力をDC/DCコンバータ52に出力する。
DC/DCコンバータ52は、燃料電池32の発生した直流電力の電圧を、電力バスライン100の規定電圧程度に昇圧して、電力バスライン100に出力する。
蓄電池41は、充電及び放電を行うことができる二次電池である。蓄電池41は、例えば、リチウムイオン電池等によって構成される。蓄電池41は、例えば、充電電圧および放電電圧が約30~60[V]である。
双方向型DC/DCコンバータ51は、蓄電池41の充電時には、バスライン100の電圧を降圧して、蓄電池に直流電力を出力する。双方向型DC/DCコンバータ51は、蓄電池41の放電時には、蓄電池41の出力電圧を電力バスライン100の規定電圧程度に昇圧または降圧して、電力バスライン100に出力する。
概略的には、本実施形態の電力供給システム10は、負荷電力量を観測し、この観測結果に基づいて、蓄電池41に対する充電制御または放電制御を行う。
図2は、本発明の第1の実施形態に係る電力供給システムでの一日の電力量の遷移例を示すグラフである。図3は、本発明の第1の実施形態に係る電力供給システムにおいて、蓄電池に充電する態様を示す図である。図4は、本発明の第1の実施形態に係る電力供給システムにおいて、蓄電池から放電する態様を示す図である。
図2に示すように、一日の負荷電力量は時刻によって変動する。例えば、朝や夕方夜の時間帯では負荷電力量WLPが大きくなり、深夜および昼間の時間帯では負荷電力量WLPは小さくなる。
一方で、燃料電池32の発電量PGFBは、従来技術に記載したように運転・停止の繰り返しが容易でないため、一日中、時刻(時間帯)に関係なく、略一定に設定されている。
ここで、燃料電池32の発電量PGFBを負荷電力量WLPの最大値に合わせると、負荷電力量WLPが最大になる時刻以外の時間帯では、燃料電池32の発電電力を無駄に浪費しなければならなくなる。この際、蓄電池41を備えることで、この発電電力の一部を充電できるが、蓄電池41の蓄電量には限界があり、やはり燃料電池32の発電電力を無駄に浪費することになる。このため、従来の一般的な電力供給システムでは、燃料電池32の発電量PGFBPを負荷電力量WLPの最小値に合わせる。これにより、燃料電池32の発電電力を無駄な浪費を防止できる。しかしながら、この場合には、負荷電力量WLPが最小値の時刻以外の時間帯では、外部電力系統から電力を供給してもらわなければならない。
したがって、電力供給システム10では、燃料電池32の発電量PGFBを、負荷電力量WLPの最大値と最小値との間の所定値に設定する。さらに、電力供給システム10は、蓄電池41を備える。
電力供給システム10は、負荷電力量WLPが燃料電池32の発電量PGFBよりも小さい時間帯では、負荷電力量WLPとして利用されない燃料電池32の発電量PGFBの余剰電力を、蓄電池41の充電に利用する。すなわち、図3に示すように、システムコントローラ21は、燃料電池32の発電電力の余剰電力による電流が、電力バスライン100から蓄電池41に流れるように、双方向DC/DCコンバータ51を制御する。これにより、蓄電池41は、燃料電池32の発電量PGFBの余剰電力によって充電される。
一方、電力供給システム10は、負荷電力量WLPが燃料電池32の発電量PGFBよりも大きな時間帯では、蓄電池41から放電を行い、燃料電池32の発電量PGFBとともに、負荷電力量WLPに利用する。すなわち、図4に示すように、システムコントローラ21は、蓄電池41から電力バスライン100に電流が流れるように、双方向DC/DCコンバータ51を制御する。これにより、蓄電池41の放電電力が負荷に供給され、燃料電池32の発電量PGFBでは足りない負荷電力量WLPの不足分を充填することができる。
このような構成とすることで、外部の電力系統からの電力供給を極力抑え、負荷に対して効率的に電力を供給することができる。この際、燃料電池32と蓄電池41とが直流電力系のみで接続されているので、直流-交流変換を行う必要が無く、変換効率を向上することができる。すなわち、蓄電池41に対する充電効率を向上することができる。また、各発電システムのそれぞれにパワーコンディショナを備えないので、電力供給システム10を簡素な構成で且つ小型に構成することができる。
次に、システムコントローラ21が実行する電力供給システム10の各種制御について、より具体的に説明する。図5は、本発明の第1の実施形態に係る電力供給システムのフローチャートである。
システムコントローラ21は、燃料電池32による発電を開始する(S101)。これにより、燃料電池32からは、発電量PGFBが略一定に供給される。システムコントローラ21は、負荷電力量WLPを測定する(S102)。
システムコントローラ21は、発電量PGFBと負荷電力量WLPを比較する(S103)。システムコントローラ21は、発電量PGFBと負荷電力量WLPが同じであれば(S103:PGFB=WLP)、蓄電池41に対する充電制御や放電制御を行うことなく、燃料電池32の発電量を維持しながら、電力供給システム10の現状の運転(電力供給状態)を継続する(S104)。
システムコントローラ21は、発電量PGFBが負荷電力量WLPよりも大きければ(S103:PGFB>WLP)、蓄電池41の充電残量が充電用閾値未満であるか否かを検出する(S211)。システムコントローラ21は、蓄電池41の充電残量が充電用閾値未満であれば(S211:YES)、蓄電池41を充電するように、双方向DC/DCコンバータ51を制御する(S212)。システムコントローラ21は、蓄電池41の充電残量が充電用閾値未満でなければ(S211:NO)、すなわち、蓄電池41が十分に充電されていれば、燃料電池32に対して供給ガス流量を調整し、発電量PGFBを低下させ(S213)、運転を継続する(S214)。
システムコントローラ21は、発電量PGFBが負荷電力量WLPよりも小さければ(S103:PGFB<WLP)、蓄電池41の充電残量が放電用閾値以上であるか否かを検出する(S311)。システムコントローラ21は、蓄電池41の充電残量が放電用閾値以上であれば(S311:YES)、蓄電池41から放電するように、双方向DC/DCコンバータ51を制御する(S312)。システムコントローラ21は、蓄電池41の充電残量が放電用閾値以上でなければ(S311:NO)、すなわち、蓄電池41の充電量が放電できない程度に小さければ、外部の電力系統からの電力供給を受ける制御を分電盤80に行い(S313)、運転を継続する(S214)。
なお、充電用閾値と放電用閾値とは同じであってもよく、異なっていてもよい。異なる場合には、放電用閾値が充電用閾値よりも高いことが好ましい。これにより、より効率的な充電および放電を行うことができる。
次に、本発明の第2の実施形態に係る電力供給システムについて、図を参照して説明する。図6は、本発明の第2の実施形態に係る電力供給システムの構成図である。
本実施形態に係る電力供給システム10Aは、燃料電池32Aの構成、および、これに付随する給湯システムを備える点で、第1の実施形態に係る電力供給システム10と異なる。本実施形態に係る電力供給システム10Aの他の構成は、第1の実施形態に係る電力供給システム10と同じである。以下では、第1の実施形態に係る電力供給システム10と異なる箇所のみを具体的に説明する。
燃料電池32Aは、例えば、リン酸形燃料電池(PAFC)や、固体高分子形燃料電池(PEFC)からなり、直流電力を発生する。燃料電池32は、発生した直流電力をDC/DCコンバータ52に出力する。また、燃料電池32は、発電時に発生した熱によって水を温め、湯をつくり、貯湯タンク71に与える。貯湯タンク71には湯が貯められており、給湯弁72を開放することにより、当該電力供給システム10Aが配備された住宅に対して給湯を行うことができる。
このような構成であっても、第1の実施形態に係る電力供給システム10と同様の作用効果を得ることができる。
次に、本発明の第3の実施形態に係る電力供給システムについて、図を参照して説明する。図7は、本発明の第3の実施形態に係る電力供給システムの構成図である。
本実施形態に係る電力供給システム10Bは、第1の実施形態に係る電力供給システム10に対して、太陽光電力出力部31を追加したものである。本実施形態に係る電力供給システム10Bの他の構成は、太陽光発電による電力に対する制御を行う箇所を除いて、第1の実施形態に係る電力供給システム10と同じである。以下では、第1の実施形態に係る電力供給システム10と異なる箇所のみを具体的に説明する。
太陽光電力出力部31は、太陽電池300と電力バスライン100との間に接続されている。太陽光電力出力部31は、基本的な動作としては、最大電力点追従(MPPT:Maximum Power Point Tracking)制御を用いて、太陽電池300が発電した直流電力を高効率に電力バスライン100に出力する。太陽光電力出力部31は、DC/DCコンバータを備えており、太陽電池300が発電した直流電力の電圧を電力バスライン100の規定電圧程度に昇圧または降圧して、電力バスライン100に出力する。
システムコントローラ21は、負荷電力量、燃料電池32の発電量、蓄電池41の蓄電量とともに、太陽光発電による発電量PGSを観測する。
図8は、本発明の第3の実施形態に係る電力供給システムでの一日の電力量の遷移例を示すグラフである。図8(A)は、燃料電池の発電電力量PGFB、太陽光発電の発電電力量PGS、および負荷電力量WLPの遷移を示すグラフである。図8(B)は、総発電量PGと負荷電力量WLPとの関係、放電期間、充電期間、充電もしくは逆潮流制御期間の関係を示すグラフである。
図9は、本発明の第3の実施形態に係る電力供給システムにおいて、蓄電池に充電する態様を示す図である。図10は、本発明の第3の実施形態に係る電力供給システムにおいて、逆潮流制御を行う態様を示す図である。図11は、本発明の第3の実施形態に係る電力供給システムにおいて、蓄電池から放電する態様を示す図である。
図8(A)に示すように、太陽光発電は、太陽光が照射する昼間に発電電力を得られ、夜間には発電電力は得られない。したがって、図8に示すように、昼間の総発電量PGは大きくなる。
電力供給システム10Bは、負荷電力量WLPが総発電量PGよりも小さい時間帯では、負荷電力量WLPとして利用されない総発電量PGの余剰電力を、蓄電池41の充電に利用する。すなわち、図9に示すように、システムコントローラ21は、燃料電池32および太陽光電力出力部31の発電電力の余剰電力による電流が、電力バスライン100から蓄電池41に流れるように、双方向DC/DCコンバータ51を制御する。これにより、蓄電池41は、総電力量PGの余剰電力によって、充電される。
なお、電力供給システム10Bは、太陽光発電による電力が総発電量PGに含まれていれば、総発電量PGの余剰電力を、外部の電力系統に逆潮流させてもよい。すなわち、図10に示すように、システムコントローラ21は、燃料電池32および太陽光電力出力部31の発電電力の余剰電力による電流が、外部の電力系統に流れるように、双方向DC/ACインバータ22および分電盤80を制御する。これにより、蓄電池41に充電されない余剰電力を、無駄に浪費することなく、売電に利用することができる。
一方、電力供給システム10Bは、負荷電力量WLPが総発電量PGよりも大きな時間帯では、蓄電池41から放電を行い、総発電量PGとともに、負荷電力量WLPに利用する。すなわち、図11に示すように、太陽光発電による発電量PGSが得られないような場合で、且つ負荷電力量WLPが燃料電池32の発電量PGFBよりも大きな場合には、システムコントローラ21は、蓄電池41から電力バスライン100に電流が流れるように、双方向DC/DCコンバータ51を制御する。これにより、蓄電池41の放電電力が負荷に供給され、総発電量PGでは足りない負荷電力量WLPの不足分を充填することができる。
このような構成とすることで、第1の実施形態と同様の作用効果を得ることができる。さらに、余剰電力を逆潮流制御して売電することできるので、電力供給システム10Bのランニングコストを実質的に低下させることができる。
また、本実施形態に示すように、燃料電池による発電に加えて太陽光発電を備えることで、燃料電池で略一定に出力する電力量を、太陽光発電の電力量に応じて低下させることができる。これにより、燃料電池による発電のランニングコストを低下させることができる。すなわち、電力供給システム10Bとしてのランニングコストを、さらに低下させることができる。
次に、システムコントローラ21が実行する電力供給システム10の各種制御について、より具体的に説明する。図12は本発明の第3の実施形態に係る電力供給システムのフローチャートである。
システムコントローラ21は、燃料電池32による発電を開始する(S101)。これにより、燃料電池32からは、発電量PGFBが略一定に供給される。システムコントローラ21は、負荷電力量WLPを測定する(S102)。
システムコントローラ21は、太陽光発電による発電量PGSが得られるか否かを検出する。システムコントローラ21は、太陽光発電による発電量PGSが得られれば(S401:YES)、総発電量PG(=PGFB+PGS)を算出する。
システムコントローラ21は、総発電量PGと負荷電力量WLPを比較する(S402)。システムコントローラ21は、総発電量PGと負荷電力量WLPが同じであれば(S402:PG=WLP)、蓄電池41に対する充電制御や放電制御を行うことなく、電力供給システム10の現状の運転(電力供給状態)を継続する(S104)。
システムコントローラ21は、総発電量PGが負荷電力量WLPよりも大きければ(S402:PG>WLP)、蓄電池41の充電残量が充電用閾値未満であるか否かを検出する(S211)。システムコントローラ21は、蓄電池41の充電残量が充電用閾値未満であれば(S211:YES)、蓄電池41を充電するように、双方向DC/DCコンバータ51を制御する(S212)。
システムコントローラ21は、蓄電池41の充電残量が充電用閾値未満でなければ(S211:NO)、逆潮流が可能か否かを検出する。システムコントローラ21は、逆潮流が可能であれば(S501:YES)、総発電量PGにおける負荷電力量WLPに対する余剰電力を外部の電力系統に逆潮流させる(S502)。システムコントローラ21は、逆潮流が可能でなければ(S501:NO)、燃料電池32に対して供給ガス流量を調整し、発電量PGFBを低下させ(S213)、運転を継続する(S214)。この際、システムコントローラ21は、太陽光電力出力部31に対して、最大電力点追従(MPPT)制御を解除するように制御してもよい。
システムコントローラ21は、総発電量PGが負荷電力量WLPよりも小さければ(S402:PGFB<WLP)、蓄電池41の充電残量が放電用閾値以上であるか否かを検出する(S311)。システムコントローラ21は、蓄電池41の充電残量が放電用閾値以上であれば(S311:YES)、蓄電池41から放電するように、双方向DC/DCコンバータ51を制御する(S312)。システムコントローラ21は、蓄電池41の充電残量が放電用閾値以上でなければ(S311:NO)、すなわち、蓄電池41の充電量が放電できない程度に小さければ、外部の電力系統からの電力供給を受ける制御を分電盤80に行い(S313)、運転を継続する(S214)。
なお、システムコントローラ21は、太陽光発電による発電量PGSが得られなければ(S401:NO)、発電量PGFBと負荷電力量WLPを比較する(S103)。以下、システムコントローラ21は、第1の実施形態に示したフロートと同様の制御を行う。
なお、本実施形態では、第1の実施形態に係る電力供給システム10に対して太陽光発電を組み合わせる態様を示した。しかしながら、第2の実施形態に係る電力供給システム10Aに対して太陽光発電を組み合わせる態様にしても、同様の作用効果を得ることができる。
10,10A,10B:電力供給システム
21:システムコントローラ
22:双方向型DC/ACインバータ
31:太陽光電力出力部
32,32A:燃料電池
41:蓄電池
51:双方向型DC/DCコンバータ
61:スイッチ回路
71:貯湯タンク
72:給湯弁
80:分電盤
100:電力バスライン
300:太陽電池
901:外部の電力系統
911:AC出力端子(ACコンセント等)
21:システムコントローラ
22:双方向型DC/ACインバータ
31:太陽光電力出力部
32,32A:燃料電池
41:蓄電池
51:双方向型DC/DCコンバータ
61:スイッチ回路
71:貯湯タンク
72:給湯弁
80:分電盤
100:電力バスライン
300:太陽電池
901:外部の電力系統
911:AC出力端子(ACコンセント等)
Claims (11)
- 直流の電力バスラインと、
化石燃料を改質して取り出した水素と酸素を反応させることによって発電を行う燃料電池と、
蓄電池と、
前記蓄電池と前記電力バスラインとの間に接続され、前記蓄電池の充電時には前記電力バスライン側からの電力を前記蓄電池の充電電圧に降圧し、前記蓄電池の放電時には前記蓄電池側からの電力を前記バスラインの電圧程度に昇圧または降圧する双方向型の第1のDC/DCコンバータと、
前記燃料電池の発電した電力を、前記バスラインの電圧程度に昇圧または降圧する第2のDC/DCコンバータと、
前記電力バスラインを外部電力系統に接続する双方向インバータと、
を備える電力供給システム。 - 前記双方向インバータの外部側の負荷電力量を監視し、前記負荷電力量と前記燃料電池の発電電力量との比較結果から、前記蓄電池への充電または前記蓄電池の放電を行うように、前記第1のDC/DCコンバータを制御するシステムコントローラを備える、
請求項1に記載の自立式電力供給システム。 - 前記システムコントローラは、
前記負荷電力量が前記発電電力量よりも低いことを検出すると前記蓄電池の充電を行い、
前記負荷電力量が前記発電電力量よりも高いことを検出すると前記蓄電池の放電を行うように、制御する、
請求項2に記載の自立式電力供給システム。 - 前記システムコントローラは、
前記負荷電力量が前記発電電力量よりも低いことを検出し、
且つ、前記蓄電池の残量が充電用閾値未満であることを検出すると、
前記蓄電池の充電を行う、
請求項3に記載の自立式電力供給システム。 - 前記システムコントローラは、
前記負荷電力量が前記発電電力量よりも高いことを検出し、
且つ、前記蓄電池の残量が放電用閾値以上であることを検出すると、
前記蓄電池の放電を行う、
請求項3または請求項4に記載の自立式電力供給システム。 - 太陽電池で発電した電力を前記電力バスラインの電圧程度に昇圧または降圧して出力する太陽光電力出力部を備え、
前記太陽光電力出力部は、前記電力バスラインに接続されている、
請求項1に記載の自立式電力供給システム。 - 前記双方向インバータの外部側から負荷電力量を監視し、前記燃料電池の発電電力量と前記太陽光電力出力部の発電電力量から総発電電力量を算出し、前記負荷電力量と前記総発電電力量との比較結果から、前記蓄電池への充電または前記蓄電池の放電を行うように、前記第1のDC/DCコンバータを制御するシステムコントローラを備える、
請求項6に記載の自立式電力供給システム。 - 前記システムコントローラは、
前記負荷電力量が前記総発電電力量よりも低いことを検出すると前記蓄電池の充電を行い、
前記負荷電力量が前記総発電電力量よりも高いことを検出すると前記蓄電池の放電を行うように、制御する、
請求項7に記載の自立式電力供給システム。 - 前記システムコントローラは、
前記負荷電力量が前記総発電電力量よりも低いことを検出し、
且つ、前記蓄電池の残量が充電用閾値未満であることを検出すると、
前記蓄電池の充電を行う、
請求項8に記載の自立式電力供給システム。 - 前記システムコントローラは、
前記負荷電力量が前記総発電電力量よりも低いことを検出し、
且つ、前記蓄電池の残量が充電用閾値未満でないことを検出し、
且つ、逆潮流可能であると判定すると、
前記双方向インバータに対して逆潮流制御を行う、
請求項8に記載の自立式電力供給システム。 - 前記システムコントローラは、
前記負荷電力量が前記総発電電力量よりも高いことを検出し、
且つ、前記蓄電池の残量が放電用閾値以上であることを検出すると、
前記蓄電池の放電を行う、
請求項8乃至請求項10のいずれかに記載の自立式電力供給システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014096474A JP2017121095A (ja) | 2014-05-08 | 2014-05-08 | 自立式電力供給システム |
JP2014-096474 | 2014-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015170626A1 true WO2015170626A1 (ja) | 2015-11-12 |
Family
ID=54392478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/062638 WO2015170626A1 (ja) | 2014-05-08 | 2015-04-27 | 自立式電力供給システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017121095A (ja) |
WO (1) | WO2015170626A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105391150A (zh) * | 2015-12-04 | 2016-03-09 | 郑州宇通客车股份有限公司 | 一种无轨电车供电系统及其供电控制方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004357377A (ja) * | 2003-05-28 | 2004-12-16 | Osaka Gas Co Ltd | 分散型発電システム |
JP2010259303A (ja) * | 2009-04-28 | 2010-11-11 | Panasonic Corp | 分散発電システム |
JP2011103740A (ja) * | 2009-11-11 | 2011-05-26 | Panasonic Electric Works Co Ltd | 配電システム |
-
2014
- 2014-05-08 JP JP2014096474A patent/JP2017121095A/ja active Pending
-
2015
- 2015-04-27 WO PCT/JP2015/062638 patent/WO2015170626A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004357377A (ja) * | 2003-05-28 | 2004-12-16 | Osaka Gas Co Ltd | 分散型発電システム |
JP2010259303A (ja) * | 2009-04-28 | 2010-11-11 | Panasonic Corp | 分散発電システム |
JP2011103740A (ja) * | 2009-11-11 | 2011-05-26 | Panasonic Electric Works Co Ltd | 配電システム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105391150A (zh) * | 2015-12-04 | 2016-03-09 | 郑州宇通客车股份有限公司 | 一种无轨电车供电系统及其供电控制方法 |
CN105391150B (zh) * | 2015-12-04 | 2018-11-06 | 郑州宇通客车股份有限公司 | 一种无轨电车供电系统及其供电控制方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2017121095A (ja) | 2017-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3206276B1 (en) | Energy storage system and management method thereof | |
EP2793345B1 (en) | Electric power supply system | |
JP5903622B2 (ja) | 電力供給システムおよび充放電用パワーコンディショナ | |
WO2011162025A1 (ja) | 直流配電システム | |
EP2738902B1 (en) | Power supply system, distribution device, and power control device | |
KR101752465B1 (ko) | 주간모드 및 야간모드 기능을 구비한 태양광발전 시스템의 제어 방법 | |
WO2012115098A1 (ja) | 蓄電システム | |
JP2008131736A (ja) | 分散型電源システムと昇降圧チョッパ装置 | |
JP5897899B2 (ja) | 電力制御システム、制御装置、及び電力制御方法 | |
US9651927B2 (en) | Power supply control system and power supply control method | |
US10749346B2 (en) | Power management system | |
JP5297127B2 (ja) | 直流給電システム及び蓄電装置 | |
JP2008152959A (ja) | 燃料電池システム | |
KR20150011301A (ko) | 선박용 전력관리장치 | |
JP2014128164A (ja) | パワーコンディショナ及び太陽光発電システム | |
JP6522901B2 (ja) | 直流配電システム | |
JP2016122625A (ja) | 燃料電池システムの制御方法及び燃料電池自動車 | |
JP2005245050A (ja) | 系統連系インバータ装置 | |
JP4552865B2 (ja) | 燃料電池システム | |
CN112994076A (zh) | 一种sofc热电联供微网 | |
WO2015170626A1 (ja) | 自立式電力供給システム | |
JP6677186B2 (ja) | 直流給電システム | |
WO2018155442A1 (ja) | 直流給電システム | |
JP2006060984A (ja) | 電源装置 | |
US10886744B2 (en) | Power conversion system, power supply system and power conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15789757 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15789757 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |