WO2015167142A1 - 절단용 파형 모노와이어 - Google Patents

절단용 파형 모노와이어 Download PDF

Info

Publication number
WO2015167142A1
WO2015167142A1 PCT/KR2015/003655 KR2015003655W WO2015167142A1 WO 2015167142 A1 WO2015167142 A1 WO 2015167142A1 KR 2015003655 W KR2015003655 W KR 2015003655W WO 2015167142 A1 WO2015167142 A1 WO 2015167142A1
Authority
WO
WIPO (PCT)
Prior art keywords
monowire
waveform
cutting
corrugated
diameter
Prior art date
Application number
PCT/KR2015/003655
Other languages
English (en)
French (fr)
Inventor
최용제
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Publication of WO2015167142A1 publication Critical patent/WO2015167142A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to cutting corrugated monowires, and more particularly to cutting corrugated monowires for cutting semiconductor ingots, ceramics, glass or similar hard materials.
  • Wafers made of silicon (solar substrates, etc.), quartz (used in various industrial fields such as automobiles), gallium arsenide (manufactured by high-frequency electronics), and the like are formed by cutting ingots made of cylindrical shapes into thin disks. .
  • the mechanism for cutting these ingots is to cut the workpiece using abrasive and wire.
  • abrasive and wire In this case, although a monowire coated with brass is used as a conventional wire that serves as an abrasive carrier, products have recently been developed to improve abrasive carrier capability by processing wire surfaces to improve cutting performance.
  • Japanese Patent Application Laid-Open No. 2011-189444 proposes a technique of forming a groove at regular intervals by etching the surface of the wire by electrolysis, and promoting the introduction of abrasive into the groove to improve the abrasive carrier ability.
  • the wire produced by the wire disappears after a certain period of time due to the surface wear, the abrasive retention effect does not last long.
  • Japanese Patent Laid-Open No. 2012-139743 shows that when the wire diameter is d, the wave height of the waveform is 0.20 ⁇ h / d ⁇ 0.35, and the pitch p of the waveform is 10 ⁇ p / d ⁇ 14.
  • a saw wire 1 provided with a two-dimensional shape in which a waveform composed of phosphorus peak portions 2 and 3 is continuously formed on a single plane is disclosed.
  • Japanese Patent Laid-Open No. 2008-114318 discloses a small wire, which is a high-carbon high-strength steel wire having a high diameter, which is used in a wire saw as shown in Fig. 2, wherein 1) a cross-sectional shape is a rectangle having rounded corners and an aspect ratio. Is 2 or more, 2) the short side thickness is 200 m or less, and 3) the long side surface is continuously dug up and down, and the height (H) is dug in the range of 2 times or less of the short side thickness (D).
  • the saw wire is disclosed.
  • the present invention is to solve the problems of the prior art as described above, one object of the present invention is excellent abrasive carrier performance and ingot cutting performance to improve the ingot cutting speed and provide a stable surface quality of the workpiece
  • the present invention provides an improved cutting waveform monowire.
  • Another object of the present invention is excellent cutting performance and also excellent elongation characteristics required for cutting, can improve the cutting speed and provide excellent surface quality of the corrugated body, cutting waveform monowire to minimize the degradation of the abrasive carrier performance To provide.
  • a cutting corrugated monowire consisting of a single metal wire of diameter d brass-plated carbon steel and imparted with multiple corrugations in the longitudinal direction, the corrugations being arranged in one or more plural planes and imparted by the corrugations. It relates to a cutting waveform monowire, characterized in that the diameter (d), elongation factor (), waveform height (h) and waveform period (P) of the monowire are configured to satisfy the following equation:
  • elongation factor refers to the ratio of elongation to break elongation at 5 ⁇ 30N.
  • the cutting monowire of the present invention is configured to rotate about one axis other than the axis of the two-dimensional plane in which the waveform is formed on the three-dimensional coordinates in which the waveform is formed, so that the waveform is actually about more planes than the plane where the waveform is formed. Can be configured to be granted.
  • Another aspect of the present invention for achieving the above object includes a waveform section including one or a plurality of waveforms and a non-waveform section without a waveform, wherein the waveform section and the non-waveform section are 9: 1 to 1: 9 It relates to a cutting waveform monowire, characterized in that repeated in the length ratio.
  • the cutting corrugated monowire of the present invention has a three-dimensional corrugation in which the elongation factor and the diameter of the monowire, the height and the period of the corrugation are within the scope of the present invention, and have a sufficient groove to accommodate the abrasive, and the cutting wire
  • the abrasive carrier performance can be improved to improve the cutting speed and the efficiency of the cutting process.
  • the corrugated monowire of the present invention is suitable for cutting hard materials such as semiconductor ingots, ceramics and cemented carbide, and is particularly suitable for cutting hard materials requiring high precision surface flatness due to excellent surface quality of the workpiece. Can be utilized.
  • 1 is a schematic diagram of a conventional cutting wire.
  • FIG. 2 is a longitudinal cross-sectional view of another conventional cutting wire.
  • Figure 3 is a schematic side view of the cut waveform monowire according to an embodiment of the present invention.
  • FIG. 4 is a schematic perspective view of a cutting waveform monowire of another embodiment of the present invention.
  • the cutting corrugated monowire of the present invention is a cutting corrugated monowire composed of a single metal wire having a diameter d of brass plated carbon steel, and given a plurality of corrugations in a longitudinal direction, wherein the corrugated monowire is formed of one or more plurality of corrugated monowires.
  • the diameter (d), elongation factor () of the monowire to which the waveform is applied, and the height (h) of the waveform and the period (P) of the waveform are configured to satisfy the following equation:
  • elongation factor refers to the ratio of elongation to break elongation at 5 ⁇ 30N.
  • the cutting corrugated monowire of the present invention cuts the cutting object by traveling while contacting the cutting object at an appropriate pressure together with the cutting liquid in which abrasive materials such as silicon carbide powder, diamond powder and a lubricant such as oil are mixed.
  • the method for forming a wafer by cutting a hard material such as a workpiece using the cutting corrugated monowire of the present invention is as follows. A series of cutting waveform monowire rows is wound on a plurality of rollers having a plurality of grooves at a predetermined pitch, and then the series of cutting waveform monowire rows is driven. The workpiece to be cut is pressed with a predetermined force on such a series of cutting waveform monowire rows. At the same time, a cutting liquid is flowed between the cutting waveform monowire row and the workpiece to cut the workpiece by the cutting action of the abrasive grains, thereby producing a wafer.
  • Figure 3 is a schematic side view of the cut waveform monowire according to an embodiment of the present invention.
  • the cutting corrugated monowire 100 is typically used to improve adhesion of the abrasive to the surface of the metal wire 100a such as steel including high carbon steel, tungsten, copper, and the like.
  • a metal plating layer (not shown) such as copper or brass has a plated structure.
  • Cutting corrugated monowire of the present invention contains a carbon content of about 0.70% to 1.05%, the tensile strength is 300 kg / mm 2 ⁇ 600 kg / mm 2.
  • the monowire has an elongation of 0.8 to 2.1% and an elongation to break of 1.8 to 3.0% at 10 to 40N.
  • the reason for limiting the strength of the cutting corrugated monowire of the present invention to 300 kg / mm 2 to 600 kg / mm 2 is the original purpose of the cutting waveform monowire, such as cutting and slicing a hard material such as semiconductor, ceramic or cemented carbide.
  • the cutting waveform monowire such as cutting and slicing a hard material such as semiconductor, ceramic or cemented carbide.
  • a method of increasing the strength by adding alloying elements such as chromium or vanadium to raw materials as well as high-processing freshness of 90% or more can be used. have.
  • the copper content in the brass plating layer is preferably 60 to 80%, and if necessary, Co, Fe, Ni, etc., which are third elements, may be added to the brass plating layer in the range of 0.1 to 6.0%.
  • the ternary alloy plated layer may have improved corrosion resistance and strength.
  • the abrasive is supported on the corrugated portion to improve the abrasive carrier performance.
  • the waveform of the monowire is disposed in one or more planes, and the product of the elongation factor epsilon of the waveform monowire and the period P of the waveform is 0.1 or more and 15 or less.
  • the ⁇ x P of the corrugated monowire is less than 0.1, the abrasive carrier performance is insufficient, and the surface quality and productivity of the to-be-cut object are reduced, whereas if the ⁇ x P of the corrugated monowire exceeds 15, the cutting monowire is It may not provide the minimum flexibility required, but rather reduce productivity.
  • the cutting corrugated monowire has grooves of a sufficient size to accommodate the abrasive, and at the same time the elongation characteristics required for the cutting corrugated monowire maintain elongation characteristics.
  • the space between the vertex portions on which the abrasive is carried is narrowed, thereby limiting the abrasive carrier performance, and conversely, if the period P of the waveform is too large for the diameter of the monowire, There is a fear that the number of peak portions of the corrugations pressing the abrasive to the workpiece decreases, thereby reducing the cutting speed.
  • the diameter (d) of the monowire is preferably 0.03 mm to 0.5 mm. If the diameter (d) of the monowire is less than 0.03 mm, the strength required as the cutting wire is not obtained, and if it exceeds 0.5 mm, the cuffs may be large.
  • kerfloss which indicates the width of the cutting groove generated when the cutting wire cuts into a cut tissue such as a silicon ingot. Is inversely proportional.
  • the wire diameter of the cutting wire must be thinned or thinned, and for this purpose, an ultra high strength steel wire having high cutting strength and high toughness is required.
  • the present invention provides a corrugated wire for fine wire cutting having a diameter of 0.5 mm or less in order to reduce the loss of the workpiece during cutting and to increase the cutting speed.
  • the linearity can be easily adjusted and the abrasive carrier performance can be improved.
  • the height (h) of the waveform when the height (h) of the waveform is too low compared to the diameter (d) of the monowire, the distance between the workpiece and the abrasive is not sufficiently secured, and the abrasive carrier performance may be deteriorated, and conversely, the diameter of the monowire ( If the height h of the waveform is too high as compared with d), the formed waveform is less likely to be accommodated in a single waveform-providing surface, which may degrade the processing surface precision. More preferably, the relationship between the diameter (d) of the monowire and the height (h) of the waveform is 1.5xd (mm) ⁇ h (mm) ⁇ 3.0 x d (mm).
  • the waveform monowire is configured to rotate about one axis other than the axis of the two-dimensional plane in which the waveform is formed on the three-dimensional coordinates in which the waveform is formed, such that the waveform is given to more planes than the plane in which the waveform is actually formed. It can be effective. For example, referring to FIG. 3, when the waveform is formed in the X-Y plane, the monowire having the waveform in the Z-axis direction is configured to rotate, thereby exhibiting the same effect as the waveform in the Y-Z plane direction.
  • the cutting waveform monowire of this embodiment can form three-dimensional waveforms without using two sets of waveform applying devices.
  • the cutting monowire is manufactured by applying a waveform through a waveform applying device in a state in which each of the monowires is twisted through a pair of torsional devices that rotate in opposite directions, but is twisted so that the two strands do not twist each other. can do. If the rotation of a pair of torsional devices is too large, disconnection occurs frequently as two strands of monowires are twisted together by excessive twisting, and on the contrary, if the rotation is too small, non-uniform residual stresses remain in the steel material itself. The linearity worsens.
  • the monowire itself is twisted just before passing the waveform imparting device by appropriately adjusting the amount of rotation of the torsion device, but it is very important to give a fine twist so that the two strands of the monowire are not twisted with each other.
  • the angle between the monowire and the waveform imparting device is preferably 0 to 90 degrees.
  • the epsilon x P, epsilon x d and the number of waveforms, etc. of the waveform formed in each plane need not necessarily be the same and may vary.
  • the cutting corrugated monowire may further include a wear resistant multilayer coating layer for improved wear resistance and lifespan performance.
  • the coating layer is one or more layers composed of one or more materials selected from the group consisting of (Ti, Al, Si) N, (Ti, Si) N, (Ti, Al) N, and (Al, Cr) N. It is a wear resistant coating layer.
  • wear resistant coating layers include (Ti, Al, Si) N + (Ti, Si) N, (Ti, Si) N + (Ti, Al) N, (Al, Cr) N + (Ti, Si) N or ( Multi-layer coatings comprising Al, Ti, Si) N + (Al, Cr) N can be laminated to the cutting corrugated monowires. Coatings comprising a multilayer structure may be deposited on the substrate by different PVD methods or alternately form individual layers.
  • the cutting waveform monowire 100 of the present invention includes a waveform section 10 that includes one or more waveforms 10a or 10a ′ and a non-waveform section 20 that is not given a waveform. do.
  • the three-dimensional waveform-shaped monowire including the waveform section and the non-waveform section of the present invention has excellent elongation at break and adhesion, almost no residual rotational stress, and excellent linearity, thereby improving cutting performance. Fairness can also be improved.
  • the unit waveform section 10 and the unit non-waveform section 20 may be arranged in various forms.
  • the waveform section and the non-waveform section are repeated continuously, and if the waveform section is called A, the non-waveform section is called B, and the lengths of the A section and the B section are the same.
  • the structure in which the waveform section and the non-waveform section are alternately formed one by one such as ABABAB
  • the structure may be formed by inserting fewer non-corrugated sections between two or more waveform sections, such as AABAABAAB and AAABAAABAAAB.
  • the waveform section 10 and the non-waveform section 20 may be alternately arranged, and the waveform of each waveform section may be formed in a different plane.
  • waveform 10a may be formed with respect to the X-Y plane
  • waveform 10 ' may be formed with respect to the X-Z plane.
  • the cutting monowire can maintain a straight state during the cutting process, making the cutting process more stable and improving the surface quality of the cut portion.
  • the different angles are not necessarily perpendicular to each other, but may be an acute angle of less than 90 degrees.
  • the non-corrugated section 20 may be a linear wire with no waveform at all, but the height of the waveform may be within a range of 1.00 to 1.10 times the monowire diameter d.
  • the unit waveform section 10 and the unit non-waveform section 20 are preferably repeated within a length ratio of 9: 1 to 1: 9, and 8: 2 to 2: 8. More preferably it is repeated in the length ratio of, most preferably in the length ratio of 7: 3 to 3: 7.
  • the length of the unit waveform section 10 and the unit non-waveform section 20 is 1 mm to 100 mm, and the period P of the waveforms 10a and 10a 'is 1 mm to 10 mm.
  • the height h of the waveform 10a is 1.2 x d mm to 3.0 x d mm, and preferably 1.5 x d mm ⁇ h (mm) ⁇ 3.0 x d mm.
  • the shape of the waveform is not particularly limited, but may have, for example, a zigzag shape or a sine wave shape.
  • the cutting corrugated monowires of the present invention comprise an abrasive coating, such as a slurry of abrasive powder.
  • the wire rod having a carbon content of 0.70 to 1.05% and a diameter of 5.5 mm was subjected to two drawing processes, followed by heat treatment and brass plating, and a final drawing was prepared to a monowire to a diameter of 0.100 mm. Subsequently, the monowire to which the final fresh waveform was not given was given a waveform in two planes using a waveform applying device, whereby ⁇ x P became 0.1 and ⁇ xd became 0.15h, thereby preparing a cut waveform monowire. .
  • the diameter, waveform period, elongation, and elongation at break of the obtained cutting waveform monomer were evaluated, and the results are shown in Table 1 below.
  • the surface roughness of the monowire was measured by using a surface sensor method to measure the surface roughness of the skin.
  • Cutting speed means the speed at the time of cutting the silicon ingot 150 mm in diameter, the relative comparison was made to the case of 0.13 mm wire not given the mold.
  • the wire rod having a carbon content of 0.70 ⁇ 1.05% and a diameter of 5.5 mm undergoes two wire drawing processes, followed by heat treatment and brass plating, and final wire drawing to 0.115 mm to prepare a monowire. Except that 0.5, and ⁇ x d was 0.32h was carried out in the same manner as in Example 1 to prepare a cutting waveform monowire, it was shown in Table 1 to evaluate the overall physical properties.
  • ⁇ x P becomes 1.0 and ⁇ x d becomes 0.26h Except for one, the same procedure as in Example 2 to prepare a cutting waveform monowire, and evaluated the overall physical properties are shown in Table 1 together.
  • ⁇ x P is 3.5 and ⁇ xd is 0.23h Except for one, the same procedure as in Example 2 to prepare a cutting waveform monowire, and evaluated the overall physical properties are shown in Table 1 together.
  • ⁇ x P is 4.0 and ⁇ xd is 0.52h Except for one, the same procedure as in Example 2 to prepare a cutting waveform monowire, and evaluated the overall physical properties are shown in Table 1 together.
  • the wire rod having a carbon content of 0.70 ⁇ 1.05% and a diameter of 5.5 mm undergoes two drawing processes, heat treatment and brass plating, and final drawing to 0.130 mm to prepare a monowire.
  • 5.0, and ⁇ xd is 0.46h Except for one, the same procedure as in Example 1 was carried out to prepare a cutting waveform monowire, and the physical properties were evaluated and shown in Table 1 together.
  • the wire rod with carbon content of 0.70 ⁇ 1.05% and the diameter of 5.5 mm undergoes two wire drawing processes, heat treatment and brass plating, and final wire drawing up to 0.130 mm to prepare monowire. 12.5, except that the ⁇ xd was 0.75h was carried out in the same manner as in Example 1 to prepare a cutting waveform monowire, it was shown in Table 1 to evaluate the overall physical properties.
  • a monowire for cutting was prepared without using a wave-shaping device and without giving a wave to any plane of a 0.130 mm diameter wire, and the physical properties of the monowires prepared in Examples were compared and evaluated. Table 2 shows.
  • ⁇ x P 1.7 and ⁇ xd equals 0.80h Except for one, and carried out in the same manner as in Example 2 to prepare a cutting waveform monowire, and evaluated the physical properties are shown in Table 2 together.
  • ⁇ x P becomes 0.04 and ⁇ x d becomes 0.09h Except for one, and carried out in the same manner as in Example 2 to prepare a cutting waveform monowire, and evaluated the physical properties are shown in Table 2 together.
  • ⁇ x P is 16 and ⁇ x d is 0.48h Except for one, and carried out in the same manner as in Example 2 to prepare a cutting waveform monowire, and evaluated the physical properties are shown in Table 2 together.
  • ⁇ x P is 25.6
  • ⁇ x d is 0.77h
  • the surface roughness of the wafer cut using the waveform monowire of the present invention is advantageous compared to the monowire of the comparative example in which no waveform is given or the ratio of ⁇ xP and ⁇ xd is outside the range of the present invention. It can also be seen that the cuff of the effect is improved.
  • the silicon ingot having a diameter of 150 mm is faster than that of the comparative example, thereby improving productivity per unit time and contributing to cost reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

본 발명은 경질유리, 반도체, 초경합금 등의 경질재료를 절단하기 위한 절단용 파형 모노와이어에 관한 것으로, 본 발명에 의하면 연마재 보유 성능이 향상되어, 절단 작업성 및 절단면의 품질을 향상시킬 수 있다.

Description

절단용 파형 모노와이어
본 발명은 절단용 파형 모노와이어에 관한 것으로, 더욱 상세하게는 반도체 잉곳, 세라믹, 유리 혹은 그와 유사한 경질재를 절단하기 위한 절단용 파형 모노와이어에 관한 것이다.
실리콘(태양전지 기판 등), 석영(자동차 등 각종 산업 분야에 이용), 갈륨비소(고주파 일렉트로닉스 제품) 등으로 제조되는 웨이퍼는 원기둥 형태로 제조된 잉곳(ingot)을 얇은 디스크 형태로 절단하여 형성된다. 이러한 잉곳을 절단하는 메커니즘은 연마재와 와이어를 이용하여 피삭체를 절단하는 것이다. 이 때 연마재 캐리어 역할을 해주는 종래의 와이어로 황동도금된 모노와이어를 사용하였으나, 최근 절단능을 향상시키기 위해 와이어 표면을 가공하여 연마재 캐리어 능력을 향상시킨 제품들이 개발되고 있다.
일례로 일본특허공개 제2011-189444호에서는 와이어 표면을 전해분해에 의해서 에칭시켜 일정한 간격으로 홈을 형성하고, 홈에 연마재의 도입을 촉진하여 연마재 캐리어 능력을 향상시키는 기술을 제안하고 있지만, 이러한 방법에 의해서 제조되는 와이어는 일정시간 경과 후 표면 마모로 인해 연마재 보유 효과가 오래 지속되지 못하고 사라진다.
일본 특허 공개 제2012-139743호는, 도 1에 도시된 바와 같은, 선경이 d일 경우 파형의 파고가 0.20≤h/d≤0.35이고, 파형의 피치(p)가 10≤p/d≤14인 정점 부분(2, 3)으로 구성되는 파형이 단일의 평면 상에 연속적으로 형성된, 2차원 형부를 부여한 소우 와이어(1)를 개시하고 있다.
일본 특허 공개 제2008-114318호는, 도 2에 도시된 바와 같은, 와이어 소에 사용되는 세경으로 고항장력의 고탄소강선인 소 와이어에 있어서, 1) 단면 형상이 각부에 둥글림을 갖는 직사각형으로 종횡비가 2 이상이고, 2) 단변 두께가 200 m 이하이며, 3) 장변면이 연속적으로 상하로 파고 높이(H)가 단변 두께(D)의 2배 이하의 범위로 파가공(波加工)되어 있는 소우 와이어를 개시하고 있다.
이러한 종래 기술에 의하면 연마재 캐리어 성능은 다소 향상되지만, 절단용 와이어의 외면을 변경하는 것은 일반적으로 많은 시간이 소요되고 제조공정성이 저하되어 비용을 상승시키는 문제점이 있고, 사용에 따라서 연마재 캐리어 성능이 저하되는 한계가 있다.
본 발명은 상술한 바와 같은 종래 기술의 문제를 해결하기 위한 것으로, 본 발명의 하나의 목적은 연마재 캐리어 성능 및 잉곳 절단 성능이 우수하여 잉곳 절단 속도를 향상시키고 안정된 피삭체의 표면 품질을 제공할 수 있는 개량된 절단용 파형 모노와이어를 제공하는 것이다.
본 발명의 다른 목적은 절단 성능이 우수하면서도 절단에 필요한 신율 특성도 우수하여, 절단 속도를 향상시키고 우수한 파삭체의 표면 품질을 제공할 수 있고, 연마재 캐리어 성능의 저하가 최소화되는 절단용 파형 모노와이어를 제공하는 것이다.
상술한 목적을 달성하기 위한 볼 발명의 하나의 양상은
탄소강에 황동 도금을 한 직경 d의 단일 금속 와이어로 구성되고, 길이 방향으로 다수의 파형이 부여된 절단용 파형 모노와이어로서, 상기 파형은 하나 또는 그 이상의 복수의 평면에 배치되며, 상기 파형이 부여된 모노와이어의 직경(d), 신율 인자(), 파형의 높이(h)와 파형의 주기(P)가 아래의 식을 만족하도록 구성된 것을 특징으로 하는 절단용 파형 모노와이어에 관한 것이다:
0.1 (㎜) ≤ εx P(㎜) ≤ 15 (㎜)
0.15xh (㎜) ≤ε x d (㎜) ≤ 0.75xh (㎜)
상기 식에서, ε(신율 인자)는 5~30N에서의 신율/파단신율의 비율을 의미함.
본 발명의 상기 절단용 모노와이어는 파형이 형성된 3차원 좌표 상에서 파형이 형성된 2차원 평면의 축 이외의 나머지 하나의 축에 대해서 회전하도록 구성되어, 실제로 파형이 형성된 평면 보다 더 많은 평면에 대하여 파형이 부여되도록 구성될 수 있다.
상술한 목적을 달성하기 위한 볼 발명의 다른 양상은 하나 또는 복수 개의 파형을 포함하는 파형 구간과 파형이 부여되지 않은 비파형 구간을 포함하고, 상기 파형 구간과 비파형 구간이 9:1 내지 1:9의 길이 비로 반복되는 것을 특징으로 하는 절단용 파형 모노와이어에 관한 것이다.
본 발명의 절단용 파형 모노와이어는 신율인자와 모노와이어의 직경, 파형의 높이 및 주기가 본 발명의 범위 내에 있는 3차원 파형 형성에 의해서, 연마재를 수용할만한 충분한 홈을 가짐과 동시에, 절단용 와이어에 요구되는 신율 특성을 유지하여, 연마재 캐리어 성능이 향상되어 절단 속도 및 절단공정의 효율을 향상시킬 수 있다.
또한, 연마재 캐리어 성능이 향상됨에 따라서 파형 모노와이어의 마모가 감소되어, 본 발명의 절단용 파형 모노머는 수명 성능이 향상되고, 파형이 다수의 평면에 형성되거나 회전되는 3차원 파형을 형성하기 때문에, 절단공정을 더 안정적으로 하도록 하고 절단 부분의 표면 품질을 향상시킬 수 있다. 따라서, 본 발명의 파형 모노와이어는 반도체용 잉곳, 세라믹스 및 초경합금과 같은 경질재료의 절단에 적합하며, 특히 피삭체 표면 품질이 우수하여 고정밀도의 표면 평탄도가 요구되는 경질 재료의 절단용으로 유리하게 활용될 수 있다.
도 1은 종래의 절단용 와이어의 개략도이다.
도 2는 다른 종래 기술에 의한 절단용 와이어의 종단면도이다.
도 3은 본 발명의 일 실시예에 의한 절단용 파형 모노와이어의 측면개략도이다.
도 4는 본 발명의 다른 실시예의 절단용 파형 모노와이어의 개략사시도이다.
이하, 첨부된 도면을 참고하여 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. 본 발명을 설명하기에 앞서 관련된 공지 기능 및 구성에 대한 구체적 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 설명은 생략하기로 한다.
본 발명의 절단용 파형 모노와이어는 탄소강에 황동 도금을 한 직경 d의 단일 금속 와이어로 구성되고, 길이 방향으로 다수의 파형이 부여된 절단용 파형 모노와이어로서, 상기 파형은 하나 또는 그 이상의 복수의 평면에 배치되며, 상기 파형이 부여된 모노와이어의 직경(d), 신율 인자(), 파형의 높이(h)와 파형의 주기(P)가 아래의 식을 만족하도록 구성된다:
0.1 (㎜) ≤ εx P (㎜) ≤ 15 (㎜)
0.15xh (㎜) ≤ εx d (㎜) ≤ 0.75xh (㎜)
상기 식에서, ε(신율 인자)는 5~30N에서의 신율/파단신율의 비율을 의미함.
본 발명의 절단용 파형 모노와이어는 탄화 규소 가루, 다이아몬드 가루와 같은 연마재와 오일 등의 윤활제가 혼합된 절삭액과 함께 피절단물에 적절한 압력으로 접촉하면서 주행함으로써 피절단물을 절단한다. 본 발명의 절단용 파형 모노와이어를 이용해 피삭체와 같은 경질 재료를 절단하여 웨이퍼를 형성하는 방법은 다음과 같다. 복수 개의 홈을 갖는 복수 개의 롤러에 소정의 피치로 일련의 절단용 파형 모노와이어 열을 권취한 다음 이러한 일련의 절단용 파형 모노와이어 열을 주행시킨다. 이러한 일련의 절단용 파형 모노와이어 열에 절단하고자 하는 피삭체를 소정의 힘으로 누른다. 이와 동시에 절단용 파형 모노와이어 열과 피삭체 사이에 절삭액을 흘려서 연마용 입자의 절삭 작용에 의해 피삭체를 절단하여 웨이퍼를 제조할 수 있다.
도 3은 본 발명의 일 실시예에 의한 절단용 파형 모노와이어의 측면개략도이다. 도 3을 참고하면, 본 발명에서 절단용 파형 모노와이어(100)는 전형적으로 고탄소 강철, 텅스텐, 구리 등을 포함하는 강철과 같은 금속 소재 와이어(100a)의 표면에 연마재의 접착을 개선시키기 위하여 구리 또는 황동과 같은 금속 도금층(미도시)이 도금된 구조를 갖는다. 본 발명의 절단용 파형 모노와이어는 탄소함량이 0.70% 내지 1.05% 정도로 포함되며, 인장강도가 300 kg/㎟ ~ 600 kg/㎟이다. 상기 모노와이어는 10~40N에서의 신율이 0.8~2.1%이고, 파단신율이 1.8~3.0%이다.
한편, 본 발명의 절단용 파형 모노와이어의 강도를 300 kg/㎟ 내지 600 kg/㎟로 한정한 이유는, 반도체, 세라믹 또는 초경합금과 같은 경질 재료의 절단 및 슬라이스라는 절단용 파형 모노와이어 본래의 목적을 달성하기 위해서 필요로 하는 절단력을 확보하기 위해서이다. 그리고, 극세물의 절단용 파형 모노와이어로서 필요한 강도를 얻기 위해서는 90% 이상의 고가공도의 신선가공뿐만 아니라, 필요에 따라서는 원재료에 크롬이나 바나듐과 같은 합금원소를 첨가하여 강도를 증가시키는 방법을 사용할 수 있다.
상기 황동도금층 중의 구리 함량은 60~80%가 바람직하고, 필요에 따라서 황동도금층에 제3의 원소인 Co, Fe, Ni 등을 0.1~6.0%의 범위로 첨가할 수 있다. 이러한 3원 합금도금층은 내부식성 및 강도가 개선될 수 있다.
본 발명에 따른 파형 모노와이어에서는 파형 부분에 연마재가 담지되어 연마재 캐리어 성능이 향상된다. 본 발명에서 모노와이어의 파형은 하나 또는 그 이상의 복수의 평면에 배치되는데, 파형 모노와이어의 신율 인자(ε)와 파형의 주기(P)의 곱은 0.1 이상이고 15 이하이다.
본 발명에서 파형 모노와이어의 εx P가 0.1 미만이면, 연마재 캐리어 성능이 부족하여 피절삭체의 표면 품질 및 생산성이 저하되고, 반면에 파형 모노와이어의 εx P 가 15를 초과하면 절단용 모노와이어에 요구되는 최소한의 유연성을 제공하지 못해서 오히려 생산성을 저하시킬 수 있다.
본 발명의 절단용 파형 모노와이어의 εxP 및 εxd를 상기 범위 사이에 있도록 함으로써, 절단용 파형 모노와이어는 연마재를 수용하기 위한 충분한 사이즈의 홈을 구비하고, 이와 동시에 절단용 파형 모노와이어에 필요 신율 특성(elongation characteristics)을 유지한다.
모노와이어의 직경에 비해서 파형의 주기가 너무 작으면, 연마재가 담지되는 정점 부분간의 공간이 좁아져 연마재 캐리어 성능이 제한되고, 반대로 모노와이어의 직경에 비해서 파형의 주기(P)가 너무 커지면, 피삭체에 연마재를 가압하는 파형의 정점 부분의 수가 감소되어, 절삭속도가 저하될 우려가 있다.
본 발명의 절단용 파형 모노와이어에 있어서, 모노와이어의 직경(d)은 0.03 ㎜ 내지 0.5 ㎜인 것이 바람직하다. 모노와이어의 직경(d)이 0.03 ㎜ 미만일 경우 절단용 와이어로서 요구되는 강도가 수득되지 않고, 0.5 ㎜를 초과할 경우 커프로스가 커질 수 있다.
절단용 와이어를 이용한 피절단체의 절단시 수율을 좌우하는 인자로서 절단용 와이어가 실리콘 잉곳과 같은 피절단체를 파고 들어가면서 생기는 절단홈의 폭을 나타내는 커프로스(kerfloss)를 들 수 있는데, 커프로스와 수율은 반비례하게 된다. 상기 커프로스의 최소화를 위해서는 절단용 와이어의 선경을 가늘게 하여 세선화 또는 극세선화하여야 하고, 이를 위해서는 높은 절단강도를 지니면서 고인성을 나타내는 초고강도의 강선이 요구된다. 본 발명에서는 절단시 피삭체의 손실을 줄이고 절단 속도를 높이기 위하여 직경 0.5 mm 이하인 세선경 절단용 파형 와이어를 제공한다.
상기 모노와이어의 직경(d) 및 파형의 높이(h)가 아래의 식을 만족하면, 직선성 조정이 용이하고 연마재 캐리어 성능이 개선될 수 있다.
1.2xd (㎜) ≤ h (㎜) ≤ 3.0 x d (㎜)
본 발명에서 모노와이어의 직경(d)에 비해서 파형의 높이(h)가 너무 낮아지면 피삭체와 연마재 사이의 거리가 충분히 확보되지 않고, 연마재 캐리어 성능이 저하될 수 있고, 반대로 모노와이어의 직경(d)에 비해서 파형의 높이(h)가 너무 높으면, 형성된 파형이 단일의 파형 부여면에 수용되기 어렵게 되어, 가공면 정밀도가 열화될 우려가 있다. 상기 모노와이어의 직경(d)과 파형의 높이(h) 사이의 관계는 1.5xd (㎜) < h (㎜) ≤ 3.0 x d (㎜)인 것이 더욱 바람직하다.
상기 파형 모노와이어는 파형이 형성된 3차원 좌표 상에서 파형이 형성된 2차원 평면의 축 이외의 나머지 하나의 축에 대해서 회전하도록 구성되어, 실제로 파형이 형성된 평면 보다 더 많은 평면에 대하여 파형이 부여된 것과 같은 효과를 발휘할 수 있다. 예를 들어, 도 3을 참고하면, 파형이 X-Y 평면에 형성된 경우에 Z축 방향으로 파형이 형성된 모노와이어가 회전하도록 구성되면 Y-Z 평면 방향으로도 파형이 형성된 것과 같은 효과를 발휘할 수 있다. 이러한 실시예의 절단용 파형 모노와이어는 두 세트의 파형 부여장치를 사용하지 않고도 3차원 파형을 형성할 수 있다.
이러한 절단용 모노와이어는 서로 반대방향으로 회전하는 한 쌍의 비틀림장치를 통해서 각 모노와이어 자체는 비틀림을 받지만, 2가닥이 서로 꼬이지 않도록 미세한 비틀림을 부여한 상태에서 파형 부여장치를 통하여 파형을 부여하여 제조할 수 있다. 한 쌍의 비틀림 장치의 회전이 너무 크면, 과도한 비틀림에 의해 2가닥의 모노와이어가 서로 꼬임에 따라 단선이 빈번하게 발생하고, 반대로 회전이 너무 작으면 강선 소재 자체 내에 불균일한 잔류응력이 잔존하게 되어 직선성이 나빠지게 된다. 따라서 비틀림장치의 회전량을 적절히 조절하여 파형 부여장치를 통과 직전에 모노와이어 자체는 비틀림을 받으나, 2가닥의 모노와이어가 서로 꼬이지 않도록 미세한 비틀림을 부여하는 것이 매우 중요하다. 모노와이어를 상기 파형 부여장치를 통과시키는 경우에 모노와이어와 파형 부여장치 간 각도가 0~90도인 것이 좋다.
본 발명에서 복수의 평면에 파형이 형성되는 경우에, 각 평면에 형성되는 파형의 εx P, εx d 및 파형의 개수 등은 반드시 동일할 필요는 없고 달라질 수 있다.
본 발명의 또 다른 실시예에서, 절단용 파형 모노와이어는 내마모성 및 수명 성능의 향상을 위해서 내마모성 다층 코팅층을 추가로 포함할 수 있다. 상기 코팅층은 (Ti,Al,Si)N, (Ti,Si)N, (Ti,Al)N, 및 (Al,Cr)N 로 구성되는 군에서 선택되는 1종 이상의 재료로 구성되는 1층 이상의 내마모성 코팅층이다. 이러한 내마모성 코팅층의 예로 (Ti,Al,Si)N + (Ti,Si)N, (Ti,Si)N + (Ti,Al)N, (Al,Cr)N + (Ti,Si)N 또는 (Al,Ti,Si)N + (Al,Cr)N을 포함하는 다층 코팅이 절단용 파형 모노와이어에 적층될 수 있다. 다층 구조를 포함하는 코팅은 상이한 PVD법으로 기재에 증착되거나 개별 층을 교대로 형성할 수 있다.
도 4는 본 발명의 다른 실시예의 절단용 파형 모노와이어의 형태를 예시적으로 도시한 개략사시도이다. 도 4에 도시된 바와 같이, 본 발명의 절단용 파형 모노와이어 (100)는 하나 이상의 파형(10a 또는 10a')을 포함하는 파형 구간(10)과 파형이 부여되지 않은 비파형 구간 (20)을 포함한다.
이와 같이 본 발명의 다른 실시예의 파형 구간과 비파형 구간을 포함하는 3차원 파형 형상의 모노와이어는 파단신율 및 접착력이 우수하며, 잔류 회전응력이 거의 없고 직선성이 우수하여, 절단 성능을 향상시키면서도 제조공정성도 향상시킬 수 있다.
본 발명에서 파형 구간이 상기와 같은 조건을 충족하면 되므로, 다양한 형태로 단위 파형 구간(10) 및 단위 비파형 구간(20)이 배열될 수 있다. 예컨대, 이러한 실시예의 절단용 모노와이어는 파형구간과 비파형 구간이 연속적으로 반복되는데, 파형 구간을 A라 하고, 비파형 구간을 B라 하고, A 구간과 B 구간의 길이가 동일하다고 할 경우에, 반드시 ABABAB와 같이 파형 구간과 비파형 구간이 한 구간씩 교호로 형성되는 구조뿐만 아니라, AABAABAAB, AAABAAABAAAB와 같이 둘 이상의 파형 구간들 사이에 그 보다 적은 수의 비파형 구간이 삽입되는 구조로 형성될 수 있다.
다른 예로서, 파형 구간(10) 및 비파형 구간(20)이 교대로 배열되고, 각각의 파형 구간의 파형이 서로 다른 평면에 형성될 수 있다. 일례로 도 4를 참고하면 파형 10a는 X-Y 평면에 대해서 파형이 형성되고, 파형 10'는 X-Z 평면에 대해서 파형이 형성될 수 있다. 이 때문에, 절단용 파형 모노와이어는 절단공정 동안 직선 상태를 유지하게 되어, 절단공정을 더 안정적으로 하도록 하고 절단부분의 표면품질을 향상시킬 수 있다. 이때 상기 서로 다른 각도는 반드시 서로 직각이 되어야 하는 것은 아니고, 90도 미만의 예각이 될 수도 있다.
본 발명에서 상기 비파형 구간(20)은 파형이 전혀 부여되지 않은 선형 와이어일 수도 있으나, 파형의 높이는 모노와이어 직경(d)의 1.00~1.10배 범위 내일 수 있다.
본 발명의 절단용 파형 모노와이어에 있어서, 상기 단위 파형 구간(10)과 단위 비파형 구간(20)이 9:1 에서 1:9의 길이 비 내로 반복되는 것이 바람직하며, 8:2 에서 2:8의 길이 비 내로 반복되는 것이 더욱 바람직하고, 가장 바람직하게는 7: 3 에서 3:7의 길이 비 내로 반복된다.
또한, 상기 단위 파형 구간(10)과 단위 비파형 구간(20)의 길이는 1 ㎜ 내지 100 ㎜인 것이 바람직하고, 또한, 상기 파형(10a 및 10a')의 주기(P)는 1 ㎜ 내지 10 ㎜이고, 상기 파형(10a)의 높이(h)는 1.2×d ㎜ 내지 3.0×d ㎜이고, 바람직하게는 1.5×d ㎜ < h(mm) ≤ 3.0×d ㎜인 것이 바람직하다.
본 발명에서 파형의 형상은 특별히 제한되지 않으나, 일례로 지그재그 형상이거나 정현파 형상을 가질 수 있다. 바람직하게, 본 발명의 절단용 파형 모노와이어는 연마 파우더의 슬러리와 같은 연마재 코팅을 포함한다.
이하에서 실시예를 들어 본 발명을 보다 상세히 설명하나, 하기의 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하기 위한 것은 아니다.
실시예
실시예 1
탄소 함량이 0.70~1.05%이고 직경이 5.5 ㎜인 와이어 로드를 2번의 신선과정을 거친 후 열처리 및 황동도금을 실시하고 직경 0.100 ㎜까지 최종신선을 하여 모노와이어를 준비하였다. 이어서 최종 신선된 파형이 부여되지 않은 모노와이어를 파형 부여장치를 사용하여 2 개의 평면에 파형을 부여하되, εx P가 0.1이 되고, εx d가 0.15h가 되도록 하여 절단용 파형 모노와이어를 제조하였다. 수득된 절단용 파형 모노머의 선경, 파형주기, 신율, 파단신율을 평가하여 그 결과를 하기 표 1에 나타내었다.
한편, 직경 150 ㎜인 실리콘 잉곳을 실리콘 카바이드로 이루어진 슬러리를 사용하여 절단한 후, 웨이퍼 물성과 생산성을 아래에 기재한 방법으로 평가하여 그 결과를 하기 표 1에 함께 나타내었다.
[물성 평가 방법]
*파단신율은 인장시험기로 파단시 신율을 측정하였다.
*표면거칠기는 모노와이어를 접촉식 센서방법을 이용하여 피절단체의 표면조도(surface roughness)를 측정하였다.
*커프로스(㎛)는 실리콘 잉곳의 절단 작업 후의 절단 손실(kerf loss)을 측정하였으며, 형부를 부여하지 않은 0.13 mm 와이어의 경우를 100으로 하여 상대 비교하였다.
*절단속도는 직경 150 ㎜인 실리콘 잉곳을 절단할 경우의 속도를 의미하며, 형부를 부여하지 않은 0.13 mm 와이어의 경우를 100으로 하여 상대 비교하였다.
실시예 2
탄소 함량이 0.70~1.05%이고 직경이 5.5 ㎜인 와이어 로드를 2번의 신선과정을 거친 후 열처리 및 황동도금을 실시하고 0.115 ㎜까지 최종신선을 하여 모노와이어를 준비하고, 파형 부여 시, εx P가 0.5이 되고, εx d가 0.32h가 되도록 한 것을 제외하고는 실시예 1과 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 1에 함께 나타내었다.
실시예 3
εx P가 1.0이 되고, εx d가 0.26h가 되도록 한 것을 제외하고는 실시예 2와 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 1에 함께 나타내었다.
실시예 4
εx P가 3.5이 되고, εxd가 0.23h가 되도록 한 것을 제외하고는 실시예 2와 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 1에 함께 나타내었다.
실시예 5
εx P가 4.0이 되고, εxd가 0.52h가 되도록 한 것을 제외하고는 실시예 2와 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 1에 함께 나타내었다.
실시예 6
탄소 함량이 0.70~1.05%이고 직경이 5.5 ㎜인 와이어 로드를 2번의 신선과정을 거친 후 열처리 및 황동도금을 실시하고 0.130 ㎜까지 최종신선을 하여 모노와이어를 준비하고, 파형 부여 시, εx P가 5.0이 되고, εxd가 0.46h가 되도록 한 것을 제외하고는 실시예 1과 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 1에 함께 나타내었다.
실시예 7
탄소 함량이 0.70~1.05%이고 직경이 5.5 ㎜인 와이어 로드를 2번의 신선과정을 거친 후 열처리 및 황동도금을 실시하고 0.130 ㎜까지 최종신선을 하여 모노와이어를 준비하고, 파형 부여 시, εx P가 12.5가 되고, εxd가 0.75h가 되도록 한 것을 제외하고는 실시예 1과 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 1에 함께 나타내었다.
비교예 1
최종 신선 이후 파형 부여장치를 사용하지 않고 직경 0.130 ㎜ 와이어의 어떠한 평면에도 파형을 부여하지 않고 절단용 모노와이어를 제조하여, 실시예에서 제조된 모노와이어들과 물성을 비교 평가하여, 그 결과를 하기 표 2에 나타내었다.
비교예 2
εx P가 1.7이 되고, εx d가 0.80h가 되도록 한 것을 제외하고는 실시예 2와 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 2에 함께 나타내었다.
비교예 3
εx P가 0.04가 되고, εx d가 0.09h가 되도록 한 것을 제외하고는 실시예 2와 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 2에 함께 나타내었다.
비교예 4
εx P가 16이 되고, εx d가 0.48h가 되도록 한 것을 제외하고는 실시예 2와 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 2에 함께 나타내었다.
비교예 5
εx P가 25.6이 되고, εx d가 0.77h가 되도록 한 것을 제외하고는 실시예 2와 동일하게 실시하여 절단용 파형 모노와이어를 제조하고, 제반 물성을 평가하여 하기 표 2에 함께 나타내었다.
표 1
구분 실시예
1 2 3 4 5 6 7
모노와이어물성 선경(d,㎜) 0.100 0.115 0.115 0.115 0.115 0.130 0.130
파형주기(P) 0.5 1.0 2.5 10.0 5.0 7.0 15.0
신율인자(ε) 0.20 0.50 0.40 0.35 0.80 0.71 0.83
파단신율(%) 5.0 3.0 2.8 2.5 2.6 2.7 2.6
εx P 0.1 0.5 1.0 3.5 4.0 5.0 12.5
εx d 0.15h 0.32h 0.26h 0.23h 0.52h 0.46h 0.75h
웨이퍼물성 표면거칠기(합격율%) 95 95 97 95 94 98 97
생산성 커프로스 70 85 80 80 80 100 100
절단속도 105 110 110 105 105 115 120
표 2
구분 비교예
1 2 3 4 5
모노와이어물성 선경(d,㎜) 0.130 0.115 0.115 0.115 0.115
파형주기(P) 0.0 2.0 0.18 32.0 32.0
신율인자ε(%) 0.45 0.85 0.20 0.50 0.80
파단신율(%) 2.4 3.0 3.0 3.0 3.0
εx P 0.0 1.7 0.04 16.0 25.6
εx d 0h 0.80h 0.09h 0.48h 0.77h
웨이퍼물성 표면거칠기(합격율%) 90 90 90 90 90
생산성 커프로스 100 90 95 90 90
절단속도 100 90 75 80 80
상기 표1에 따르면, 본 발명의 파형 모노와이어를 사용하여 절단된 웨이퍼의 표면거칠기가 파형이 부여되지 않았거나 εxP 및 εxd의 비율이 본 발명의 범위 외인 비교예의 모노와이어에 비해 유리하고, 피절단체의 커프로스가 개선되는 효과가 있음도 알 수 있다. 또한 본 발명의 실시예에서 직경 150 ㎜인 실리콘 잉곳을 절단하는 경우는 절단속도도 비교예의 경우에 비해서 빠른 것으로 단위 시간당 생산성을 향상시켜서 원가 절감에 기여할 수 있다.이상에서 본 발명의 바람직한 구현예를 들어 본 발명에 대해서 상세하게 설명하였으나, 본 발명의 정신 및 범위를 벗어나지 않는 범위 내에서 본 발명이 다양하게 변경 또는 변형될 수 있음은 당업자에게 자명하므로, 이러한 모든 변경 및 변형예들도 본 발명의 보호범위에 포함되는 것으로 해석되어야 한다.

Claims (11)

  1. 탄소강에 황동 도금을 한 직경 d의 단일 금속 와이어로 구성되고, 길이 방향으로 다수의 파형이 부여된 절단용 파형 모노와이어로서, 상기 파형은 하나 또는 그 이상의 복수의 평면에 배치되며, 상기 파형이 부여된 모노와이어의 직경(d), 신율 인자(ε), 파형의 높이(h)와 파형의 주기(P)가 아래의 식을 만족하도록 구성된 것을 특징으로 하는 절단용 파형 모노와이어:
    0.1 (㎜) ≤ε x P (㎜)≤ 15 (㎜)
    0.15xh (㎜) ≤ εx d (㎜)≤ 0.75xh (㎜)
    상기 식에서, ε(신율 인자)는 5~30N에서의 신율/파단신율을 의미함.
  2. 제1항에 있어서, 상기 모노와이어는 파형이 형성된 3차원 좌표 상에서 파형이 형성된 2차원 평면의 축 이외의 나머지 하나의 축에 대해서 회전하도록 구성되어, 실제로 파형이 형성된 평면 보다 더 많은 평면에 대하여 파형이 부여되도록 구성된 것을 특징으로 하는 절단용 파형 모노와이어.
  3. 제1항에 있어서, 상기 모노와이어는 하나 또는 복수 개의 파형을 포함하는 파형 구간과 비파형 구간을 포함하고, 상기 파형 구간과 비파형 구간이 9:1 내지 1:9의 길이 비로 반복되는 것을 특징으로 하는 절단용 파형 모노와이어.
  4. 제3항에 있어서, 상기 각각의 파형 구간의 파형이 서로 다른 평면에 형성되는 것을 특징으로 하는 절단용 파형 모노와이어.
  5. 제3항에 있어서, 상기 비파형 구간의 파형 높이는 모노와이어 직경(d)의 1.00~1.10배의 범위 내인 것을 특징으로 하는 절단용 파형 모노와이어.
  6. 제1항에 있어서, 상기 모노와이어는 10~40N에서의 신율이 0.8~2.1%이고, 파단신율이 1.8~3.0%인 것을 특징으로 하는 절단용 파형 모노와이어.
  7. 제1항에 있어서, 상기 모노와이어의 직경(d)이 0.03 ㎜~0.5 ㎜인 것을 특징으로 하는 절단용 파형 모노와이어.
  8. 제1항에 있어서, 상기 모노와이어의 탄소함량은 0.70% 내지 1.05%이고, 황동도금 중 구리 성분이 60~80%인 것을 특징으로 하는 절단용 파형 모노와이어.
  9. 제1항에 있어서, 상기 모노와이어의 인장강도가 300 kg/㎟ 내지 600 kg/㎟인 것을 특징으로 하는 절단용 파형 모노와이어.
  10. 제1항에 있어서, 상기 모노와이어의 직경(d)과 파형의 높이(h)가 아래의 식을 만족하도록 구성된 것을 특징으로 하는 절단용 파형 모노와이어:
    1.2xd (㎜) ≤ h (㎜) ≤ 3.0xd (㎜)
  11. 제1항에 있어서, 상기 모노와이어가 (Ti,Al,Si)N, (Ti,Si)N, (Ti,Al)N, 및 (Al,Cr)N로 구성되는 군에서 선택되는 1종 이상의 재료로 구성되는 1층 이상의 내마모성 코팅층을 추가로 포함하는 것을 특징으로 하는 절단용 파형 모노와이어.
PCT/KR2015/003655 2014-04-29 2015-04-13 절단용 파형 모노와이어 WO2015167142A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140051604A KR101427554B1 (ko) 2014-04-29 2014-04-29 절단용 파형 모노와이어
KR10-2014-0051604 2014-04-29

Publications (1)

Publication Number Publication Date
WO2015167142A1 true WO2015167142A1 (ko) 2015-11-05

Family

ID=51705228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003655 WO2015167142A1 (ko) 2014-04-29 2015-04-13 절단용 파형 모노와이어

Country Status (4)

Country Link
KR (1) KR101427554B1 (ko)
CN (2) CN204149344U (ko)
TW (1) TWI531441B (ko)
WO (1) WO2015167142A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427554B1 (ko) * 2014-04-29 2014-08-08 주식회사 효성 절단용 파형 모노와이어
CN105382948B (zh) * 2015-10-29 2017-09-12 浙江农林大学 一种太阳能硅片切割用钢丝及其生产方法
CN105459280A (zh) * 2015-12-30 2016-04-06 盛利维尔(中国)新材料技术有限公司 一种带有锯齿元素的切割钢丝
WO2017131273A1 (ko) * 2016-01-29 2017-08-03 주식회사 효성 절단용 파형 모노와이어
KR101736657B1 (ko) * 2016-01-29 2017-05-16 주식회사 효성 절단용 파형 모노와이어
JP3215089U (ja) * 2017-01-09 2018-03-01 べカルト ビンジャン スチール コード カンパニー.,リミテッドBekaert Binjiang Steel Cord Co.,Ltd 弾性回転及び塑性回転を有するソーワイヤ付きスプール
DE102017202314A1 (de) * 2017-02-14 2018-08-16 Siltronic Ag Drahtsäge, Drahtführungsrolle und Verfahren zum gleichzeitigen Abtrennen einer Vielzahl von Scheiben von einem Stab
JP6514821B1 (ja) * 2018-11-15 2019-05-15 トクセン工業株式会社 ソーワイヤ
CN113618939A (zh) * 2021-08-23 2021-11-09 宁波合盛新材料有限公司 一种晶体材料薄片的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431050B1 (ko) * 1996-02-15 2004-08-04 엔.브이. 베카에르트 에스.에이. 엘라스토머보강용강철코드
KR20110009483A (ko) * 2009-07-22 2011-01-28 주식회사 효성 3차원 단선 스틸코드
JP2012121101A (ja) * 2010-12-08 2012-06-28 Japan Fine Steel Co Ltd 固定砥粒ワイヤ
JP2012139743A (ja) * 2010-12-28 2012-07-26 Tochigi Sumitomo Denko Kk ソーワイヤー

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100301121B1 (ko) 1999-05-20 2001-09-22 조충환 타이어용 단일 필라멘트 코드 및 이를 사용한 래디얼 타이어
CN103660053B (zh) * 2012-09-07 2017-05-10 江阴贝卡尔特合金材料有限公司 具有拉伸表面下残余应力的成型锯丝
CN203471061U (zh) * 2013-09-09 2014-03-12 凡登(常州)新型金属材料技术有限公司 一种异构型金属丝及其制作装置
KR101427554B1 (ko) * 2014-04-29 2014-08-08 주식회사 효성 절단용 파형 모노와이어

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431050B1 (ko) * 1996-02-15 2004-08-04 엔.브이. 베카에르트 에스.에이. 엘라스토머보강용강철코드
KR20110009483A (ko) * 2009-07-22 2011-01-28 주식회사 효성 3차원 단선 스틸코드
JP2012121101A (ja) * 2010-12-08 2012-06-28 Japan Fine Steel Co Ltd 固定砥粒ワイヤ
JP2012139743A (ja) * 2010-12-28 2012-07-26 Tochigi Sumitomo Denko Kk ソーワイヤー

Also Published As

Publication number Publication date
KR101427554B1 (ko) 2014-08-08
TW201540421A (zh) 2015-11-01
CN204149344U (zh) 2015-02-11
TWI531441B (zh) 2016-05-01
CN104108141B (zh) 2016-03-23
CN104108141A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
WO2015167142A1 (ko) 절단용 파형 모노와이어
WO2013165091A1 (ko) 절삭공구용 경질피막
WO2017047949A1 (ko) 절삭공구용 경질피막
WO2017131273A1 (ko) 절단용 파형 모노와이어
EP1840094A1 (en) Disk roll and base material for disk roll
KR20030017970A (ko) 향상된 피로저항을 갖는 아연-코팅된 스틸코드
WO2014104573A1 (ko) 절삭공구용 다층박막과 이를 포함하는 절삭공구
EP2578343B1 (en) Electrode wire for electrical discharge machining
EP1462230B1 (en) Die for molding honeycomb structure and manufacturing method thereof
CN114682627B (zh) 一种金属复合板的轧制工艺
EP3290580A1 (en) Operating rope
EP2221156B1 (en) Die for forming honeycomb structure
KR102274971B1 (ko) 구리-세라믹 복합재
WO2013165092A1 (ko) 절삭공구용 경질피막
KR20070027906A (ko) 초전도 선재용 기판 및 그 제조방법과 초전도 선재
WO2017131274A1 (ko) 절단용 파형 모노와이어
CN108698935B (zh) 铜-陶瓷复合物
WO2009119422A1 (ja) セラミックハニカム構造体成形用金型
WO2023090620A1 (ko) 내마모성과 인성이 우수한 경질피막을 포함하는 절삭공구
EP2947199B1 (en) Rubber article reinforcing steel wire and rubber article using same
JPH0369830A (ja) コイルばねとその製造方法
WO2016194508A1 (ja) Al合金スパッタリングターゲット
WO2011025105A1 (ko) 증용량 저이도 가공송전선의 제조 방법 및 이에 의한 증용량 저이도 가공송전선
WO2011145856A2 (ko) 와이어 공구
KR102206421B1 (ko) 구리-세라믹 복합재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785733

Country of ref document: EP

Kind code of ref document: A1