WO2015166959A1 - 通信制御装置、無線端末、メモリーカード、集積回路、無線通信装置および無線通信方法 - Google Patents

通信制御装置、無線端末、メモリーカード、集積回路、無線通信装置および無線通信方法 Download PDF

Info

Publication number
WO2015166959A1
WO2015166959A1 PCT/JP2015/062873 JP2015062873W WO2015166959A1 WO 2015166959 A1 WO2015166959 A1 WO 2015166959A1 JP 2015062873 W JP2015062873 W JP 2015062873W WO 2015166959 A1 WO2015166959 A1 WO 2015166959A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
frame
wireless communication
wireless
channel
Prior art date
Application number
PCT/JP2015/062873
Other languages
English (en)
French (fr)
Inventor
寿久 鍋谷
綾子 松尾
足立 朋子
亜秀 青木
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP19165523.2A priority Critical patent/EP3522645A1/en
Priority to EP15786367.1A priority patent/EP3139686B1/en
Priority to JP2016516394A priority patent/JPWO2015166959A1/ja
Publication of WO2015166959A1 publication Critical patent/WO2015166959A1/ja
Priority to US15/268,100 priority patent/US20170006612A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • Embodiments described herein relate generally to a communication control device, a wireless terminal, a memory card, an integrated circuit, a wireless communication device, and a wireless communication method.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDMA includes not only a method of assigning to a plurality of wireless terminals in units of channels but also a method of assigning in units of subcarriers.
  • the plurality of channels used in the OFDMA communication may be all channels used as a wireless communication system or some of the plurality of channels.
  • the access point selects a radio terminal to be subjected to OFDMA and assigns an appropriate channel to each radio terminal so as to increase the use efficiency of multiple channels, and assigns each channel to the selected radio terminal. It is necessary to notify the allocated channel (in the case of the allocation method for each channel). At this time, it is conceivable to notify the channel assigned to the wireless terminal by individually transmitting a frame to each selected wireless terminal. However, with this method, the overhead is large, and the time until the start of OFDMA communication becomes longer as the number of selected wireless terminals increases.
  • the embodiment of the present invention aims to efficiently notify each wireless terminal.
  • the communication control device as an embodiment of the present invention transmits a frame including first information including information specifying a plurality of wireless communication devices and information regarding resource blocks respectively allocated to the plurality of wireless communication devices, After transmitting the frame, the wireless communication apparatus includes a control unit that controls to perform communication using the resource blocks assigned to each of the plurality of wireless communication devices.
  • wireless communications system which concerns on 1st Embodiment The figure which shows the 1st example of the operation
  • wireless terminal transmits according to the channel in the operation example shown in FIG.
  • FIG. 10 is a diagram illustrating frames transmitted by the access point and each wireless terminal for each channel in the operation example illustrated in FIG. 9.
  • IEEE Std 802.11 TM -2012 and IEEE Std 802.11ac TM -2013, known as wireless LAN standards, are incorporated herein by reference in their entirety.
  • FIG. 1 shows a wireless communication system according to the first embodiment.
  • This wireless communication system includes an access point (AP) 11 and wireless terminals (STAs) 1, 2, 3, and 4, and executes communication in accordance with the IEEE 802.11 standard.
  • AP access point
  • STAs wireless terminals
  • the communication method executed by the wireless communication system is not limited to this, and any communication method can be executed as long as the present invention can be implemented.
  • An access point is also a form of a wireless terminal, and the access point 11 can be said to be a wireless terminal having an access point function.
  • the access point 11 includes one or more antennas.
  • the access point 11 includes four antennas 12A, 12B, 12C, and 12D.
  • Each of the wireless terminals 1 to 4 includes one or a plurality of antennas.
  • each of the wireless terminals 1 to 4 includes one antenna 1A, 2A, 3A, and 4A.
  • Wireless terminals 1 to 4 are connected to the access point 11 to form one wireless communication system or wireless communication group.
  • the connection means a state in which a wireless link is established, and the wireless communication is completed by exchanging parameters necessary for communication through an association process with the access point 11 (transmission / reception of association request and association response, etc.). A link is established.
  • wireless terminals 1 to 4 are shown as wireless terminals that have established wireless links, but other wireless terminals that have established wireless links with the access point 11 may exist. Further, the access point 11 may be further connected to another wired or wireless network separately from the wireless network formed with each wireless terminal. The access point 11 can relay communication between these networks and communication between wireless terminals.
  • the access point 11 supports a plurality of frequency channels (hereinafter referred to as channels) within a predetermined frequency band, and performs OFDMA (Orthogonal Frequency Division Multiple Access) communication with each wireless terminal using these channels. More specifically, the access point 11 assigns one or more different channels to each wireless terminal, and receives or transmits a frame simultaneously with the plurality of wireless terminals using these channels. Transmission from the access point 11 to each wireless terminal is called downlink transmission, and transmission from each wireless terminal to the access point 11 is called uplink transmission. In the present embodiment, it is assumed that there are eight channels from channel 1 to channel 8 in order from the lowest frequency as a plurality of channels in the predetermined frequency band. “1 to 8” of channels 1 to 8 are channel numbers. Details of the relationship between the eight channels will be described later.
  • channels hereinafter referred to as channels
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the access point 11 does not need to perform OFDMA communication simultaneously with all the wireless terminals in the wireless communication group, selects a wireless terminal that performs OFDMA communication from the wireless communication group, and performs OFDMA communication with the selected wireless terminal. be able to. Further, a wireless terminal (legacy terminal) that does not support OFDMA communication may exist in the wireless communication group, and communication with the legacy terminal may be performed using a conventional method.
  • the OFDMA includes one in which subcarriers that are orthogonal to each other are assigned to each wireless terminal to perform communication at the same time. However, in this embodiment, channel-based OFDMA is used instead of subcarriers. Such a channel-based OFDMA is hereinafter referred to as “MU-MC” (Multi-User Multi-Channel).
  • the present embodiment is possible even with a method of assigning a plurality of terminals in units of subcarriers. That is, in a continuous frequency region (for example, within 20 MHz channel width, 40 MHz channel width, 80 MHz channel width, 160 MHz channel width), a resource block (subchannel, resource unit, frequency) having one or more subcarriers as one unit OFDMA communication in which simultaneous transmission to a plurality of wireless terminals or simultaneous reception from a plurality of wireless terminals may be performed.
  • a resource block subchannel, resource unit, frequency
  • a plurality of channels are arranged in the frequency domain, and the frequency domain of one channel is, for example, 20 MHz.
  • the frequency region of the bandwidth of one channel or the frequency region of the bandwidth obtained by bundling a plurality of channels corresponds to the continuous frequency region.
  • a plurality of subcarriers that are continuous in frequency are arranged orthogonal to each other.
  • One or a plurality of resource blocks each having one or a plurality of continuous subcarriers as one unit are allocated.
  • resource blocks are allocated to terminals 1, 2,... K (K is an integer of 2 or more) in the frequency domain of one channel.
  • Simultaneous transmission to a plurality of terminals or simultaneous reception from a plurality of terminals is performed with resource blocks allocated to the respective terminals.
  • Such OFDMA communication is particularly expressed as resource block-based OFDMA communication.
  • the channel of the embodiment described below is replaced with a resource block, the following embodiment can be similarly applied.
  • two subcarriers are arranged as guard subcarriers in resource blocks allocated to terminal 1 and terminal 2.
  • the number of guard subcarriers is not limited to two, and may be arbitrary as long as it is one or more. Also, it is not essential to arrange guard subcarriers between resource blocks to be allocated to terminals, and it is also possible not to arrange guard subcarriers between resource blocks.
  • the number of subcarriers per resource block may be the same, or the number of subcarriers in one resource block may be allowed to differ. Further, the number of resource blocks assigned to each terminal may be the same or different. For example, according to the bandwidth of the frequency domain used in resource block-based OFDMA communication, the bandwidth of the subcarriers arranged in the frequency domain may be different. For example, when one channel (for example, 20 MHz) is used in resource block-based OFDMA communication, the bandwidth of subcarriers arranged in the channel is in the frequency region of the bandwidth of 40 MHz in which two channels are bundled. The bandwidth may be smaller than the bandwidth of the arranged subcarrier. Further, when the resource block is composed of a plurality of subcarriers, the arrangement of the subcarriers may or may not be continuous. It is also possible to allocate a plurality of subcarriers arranged discontinuously as a resource block to one wireless terminal.
  • the subcarrier unit scheme may be allowed to be combined with the channel-based OFDMA (MU-MC) described above. For example, it may be allowed to assign to a terminal in units of subcarriers or resource blocks in each of a plurality of 20 MHz channels. In this case, the number of subcarriers in each resource block belonging to the same channel is the same, but the number of subcarriers may be different in each resource block.
  • One or a plurality of resource blocks in one channel may be allocated to the terminal, or a plurality of resource blocks belonging to a plurality of channels may be allocated to the terminal.
  • NAV Network Allocation Vector
  • a subcarrier unit scheme is performed in combination with MU-MC, specifically, for example, when a plurality of 20 MHz channels are allocated to terminals in units of subcarriers or resource blocks, the MU-MC described below is used. This may be considered in the embodiment based on the channels.
  • the access point and the wireless terminal are equipped with a wireless communication device for communicating with each other.
  • the wireless communication device mounted on the access point is a communication device that is a target of communication with the wireless communication device mounted on the wireless terminal.
  • a wireless communication device mounted on the access point 11 controls communication with a plurality of wireless terminals 1 to 4 as a plurality of target communication devices via a wireless communication unit that transmits and receives signals and the wireless communication unit.
  • a communication control device, and an antenna The wireless communication device mounted on the wireless terminal is a communication device that is a target of communication with the wireless communication device mounted on the access point.
  • a wireless communication device mounted on each wireless terminal includes a wireless communication unit that transmits and receives signals, and a communication control device that controls communication with an access point 11 that is a target communication device via the wireless communication unit. Further, an antenna may be provided.
  • FIG. 2 shows a first example of an operation sequence between the access point 11 and each wireless terminal.
  • Frame signals transmitted by the access point 11 and the wireless terminals 1 to 4 are indicated by rectangles.
  • the horizontal axis is the time axis, and the right side in the figure is the direction in which time flows.
  • FIG. 3 is a diagram showing frames transmitted by the access point 11 and each wireless terminal for each channel.
  • the numbers in parentheses indicate the reference numbers of the transmission source wireless terminals for convenience.
  • DATA (1) is a data frame transmitted by the wireless terminal 1.
  • a frame without a parenthesized number is a frame transmitted by the access point 11.
  • Notification is a notification frame described later
  • ACK is an ACK frame.
  • the horizontal axis is the time axis, and the right side in the figure is the direction in which time flows.
  • the access point 11 has established wireless links with a plurality of wireless terminals including the wireless terminals 1 to 4 in advance. Assume that the wireless terminals 1 to 4 perform uplink transmission using the access point 11 and the MU-MC.
  • the access point 11 selects a plurality of wireless terminals to perform MU-MC communication (uplink transmission) from a plurality of wireless terminals in the wireless communication group, and communicates with the plurality of wireless terminals simultaneously. For each wireless terminal.
  • the access point 11 selects wireless terminals 1, 2, 3, and 4. Channels 1 to 3 are used for the wireless terminal 1, channels 4 and 5 are used for the wireless terminal 2, and channels 6 and 7 are used for the wireless terminal 3. Assume that channel 8 is assigned to wireless terminal 4.
  • the access point 11 transmits a notification frame 51 including notification information including information specifying the selected wireless terminal and information regarding a channel assigned to each wireless terminal.
  • the access point 11 may select a wireless terminal that has received an uplink transmission request notification in advance, or randomly select a wireless terminal regardless of such notification. Is also possible. In the latter case, when there is no data to be transmitted to the access point 11, even if the wireless terminal is selected as a target for MU-MC communication, it does not have to transmit a data frame.
  • the access point 11 may select a wireless terminal using information other than the uplink transmission request notification information from the terminal, or use only the information held by the access point 11 itself. It is also possible to select a wireless terminal.
  • the access point 11 may receive a notification of a channel desired to be used from each wireless terminal in advance and perform assignment from the notified channel.
  • the wireless terminal may specify a channel desired to be used by performing carrier sense.
  • the access point 11 may randomly determine a channel to be allocated to the wireless terminal.
  • the access point 11 may determine a channel to be assigned to each wireless terminal using channel information of each terminal held by the access point 11.
  • a request for the number of channels desired to be allocated from the wireless terminal may be received in advance, and the requested number of channels may be allocated.
  • a plurality of wireless terminal groups may be generated and MU-MC communication may be performed at different timing for each group. In this case, channels may be allocated in units of groups.
  • the access point 11 performs transmission of the notification frame 51 by broadcast as an example.
  • the notification frame 51 may be transmitted by a method other than broadcast, such as multicast or unicast.
  • the channel for transmitting the notification frame 51 may be transmitted through a predetermined channel (for example, channel 1), or may be transmitted through a plurality of channels.
  • the notification frame 51 may be transmitted by Duplicate transmission on all channels as the plurality of channels.
  • Duplicate transmission refers to transmitting the same frame over a plurality of channels. At this time, carrier sense may be performed on all channels, and Duplicate transmission may be performed on all channels that have been able to acquire the transmission right idle for a certain period of time.
  • the predetermined channel When the notification frame 51 is transmitted through the predetermined channel (for example, channel 1), the predetermined channel may be notified by an association response frame or the like during the association process with the wireless terminal, or periodically transmitted.
  • the beacon frame may be notified, or a management frame for notifying the predetermined channel may be separately defined and notified in advance using the management frame.
  • the channel for transmitting the notification frame 51 may not be fixed, and may be changed as appropriate using a beacon frame that is periodically transmitted or a management frame for notifying a separately defined channel.
  • the notification frame 51 is transmitted on the channel 1. It is assumed that the access point 11 performs carrier sense based on CSMA / CA before transmission of the notification frame 51, acquires a transmission right and transmits the notification frame 51 when idle from the carrier sense information.
  • the carrier sense includes a physical carrier sense and a virtual carrier sense. In the present embodiment, both carrier senses may be included.
  • the management frame is a frame used for management of a communication link with another wireless terminal. Examples of the management frame include a beacon frame, an association request frame, and an association response frame.
  • the control frame is a frame used for control when the management frame and the data frame are transmitted / received (exchanged) to / from another wireless communication apparatus.
  • an RTS frame, a CTS frame, an ACK frame, etc. is there.
  • the notification frame may be classified into a management frame or a control frame, or may be classified into a data frame. Details of these data frame, management frame, and control frame will be described in other embodiments described later.
  • the carrier sense will be described in more detail. There are both a physical carrier sense regarding busy and idle of the medium (CCA) and a virtual carrier sense based on the medium reservation time described in the received frame. If any one of the carrier sense results indicates busy, the medium is regarded as busy, and signal transmission during that time is prohibited.
  • the medium reservation time is described in a Duration field (see FIG. 4A described later) in the MAC header.
  • NAV Network Allocation Vector
  • FIG. 4A shows an example of the frame format of the notification frame 51.
  • the notification frame 51 includes, for example, a Frame Control field, a Duration field, an RA field, a TA field, a common information field, a terminal information field, and an FCS field.
  • the notification frame 51 may include other types of fields such as a Signal field and a synchronization field for synchronization in addition to the illustrated fields.
  • the Signal field may include frame configuration information such as the overall frame length and applied modulation scheme.
  • the above-described virtual carrier sense medium reservation time is set.
  • a device that has received a frame in which the medium reservation time is set in the Duration field counts down the medium reservation time from the reception of the frame, and determines that the medium is virtually busy until it reaches zero.
  • the MAC address of the transmission destination of the frame is usually set. Since the notification frame 51 is transmitted to a plurality of wireless terminals, it is possible to set a broadcast address or a multicast address in the RA field. It is also possible to set a plurality of unicast addresses. In this case, a plurality of RA fields may be provided, and it may be defined that a plurality of unicast addresses are set in the Frame Control field.
  • the TA (Transmitter Address) field contains the MAC address of the frame transmission source.
  • the MAC address of the access point is set.
  • information to be notified in common to each wireless terminal selected as a target to perform MU-MC communication is set as information necessary for performing MU-MC communication.
  • MU-MC communication MU-MC communication type information indicating whether uplink transmission or downlink transmission is performed may be set.
  • Information for identifying all the channels allocated to each wireless terminal by the access point 11 may be set.
  • a condition regarding the size or time length of a frame to be transmitted in uplink may be set.
  • the condition relating to the size or time length may be, for example, information indicating the value of the frame size or data size (the size of the body part of the frame) transmitted by the wireless terminal, or the frame size or data size (frame body) transmitted by the wireless terminal. Part size) value range (can be freely replied within this range).
  • Information specifying the access category of the data frame to be transmitted in uplink may be set.
  • the access category may be defined in the IEEE 802.11 standard or may be defined separately.
  • information representing various fixed times described later (the time that the wireless terminal waits before frame transmission) may be set.
  • you may set the information showing the terminal information field number mentioned later.
  • the terminal information field (individual information field) is provided for each wireless terminal selected as a target for MU-MC communication.
  • the number of terminal information fields matches the number of wireless terminals selected as targets for MU-MC communication, and is variable according to the number of wireless terminals. In the example of FIG. 2, since four wireless terminals are selected, the number of terminal information fields is four. That is, a terminal information field 1, a terminal information field 2, a terminal information field 3, and a terminal information field 4 are provided.
  • the terminal information field includes identification information of the selected wireless terminal and individual information specific to the wireless terminal as information necessary for performing MU-MC communication.
  • the individual information includes channel information regarding a channel allocated to the wireless terminal.
  • channel information there is channel identification information assigned to the wireless terminal.
  • FIG. 4B shows an example in which a terminal ID and a channel ID (channel number) are set in the terminal information field.
  • the configuration of the terminal information field described here is an example, and various configurations are possible as will be described later.
  • the terminal ID may be the MAC address of the wireless terminal, or an identifier assigned for convenience from the access point 11 during the association process.
  • each individual information may include information specifying the access category.
  • the identification information of each wireless terminal selected by the access point 11 can be set in the common information field, not in each terminal information field.
  • information indicating which wireless terminal uses which terminal information field may be set in the common information field.
  • a rule for using the terminal information field on the head side may be determined in the order in which the identification information of the wireless terminals is arranged. In this case, information on which terminal information field is used is unnecessary.
  • the order in which the identification information of the wireless terminals is arranged represents information regarding the order of the wireless terminals.
  • the wireless terminals may be managed by grouping in advance, and in this case, instead of specifying individual wireless terminals, a group may be specified.
  • the group identification information may be set in the common information field or the terminal information field.
  • Information indicating which wireless terminal uses which terminal information field may be set in the common information field. It is only necessary for the access point 11 to notify each wireless terminal of which group the terminal belongs to in advance using a beacon frame, an association response frame, or a separately defined management frame.
  • FCS Full Check Sequence
  • the terminal information field and common information field in the notification frame shown in FIG. 4 may be arranged in the MAC header of the MAC frame or may be arranged in the frame body part.
  • the terminal information field and the common information field are set in the MAC frame.
  • the terminal information field and the common information field are added to the physical header (PHY header) added to the head side of the MAC frame.
  • An information field may be set.
  • the PHY header includes an L-STF (Legacy-Short Training Field), an L-LTF (Legacy-Long Training Field), an L-SIG (Legacy Signal Field), a common information field, and a terminal information field.
  • L-STF, L-LTF, and L-SIG are fields that can be recognized by legacy standards such as IEEE 802.11a, for example, and store information such as signal detection, frequency correction, and transmission speed.
  • legacy standards such as IEEE 802.11a, for example, and store information such as signal detection, frequency correction, and transmission speed.
  • the notification frame has a format as shown in FIG.
  • the wireless terminals 1 to 4 receive the notification frame 51 transmitted from the access point 11 and analyze the common information field and the terminal information field of the notification frame 51.
  • the wireless terminal determines whether the identification information of the own device is included in any of the terminal information fields (or the common information field) of the notification frame 51. If the identification information of the own device is included, the wireless terminal Is selected as the target of MU-MC communication. Also, in this case, the wireless terminal grasps the channel assigned to the own terminal from the terminal information field corresponding to the own terminal. Further, as necessary, information necessary for other MU-MC communication is acquired from the common information field or the terminal information field. Thereby, each wireless terminal can perform MU-MC communication.
  • the wireless terminals 1 to 4 that have received the notification frame 51 grasp that they have been selected as the targets for MU-MC communication, and channels 1 to 3, 4 to 5, 6 to 7, and 8 respectively. Recognize that is assigned.
  • the notification frame 51 is transmitted on a predetermined channel (for example, channel 1)
  • the wireless terminal waits only on the channel and notifies the own terminal by the notification information included in the notification frame 51.
  • the used channel or the standby channel may be switched to the assigned channel. That is, the channel for notifying the notification frame may be different from the channel for transmitting / receiving the data frame.
  • the channel for notifying the notification frame 51 is not used for MU-MC communication with the wireless terminal, and the access point assigns a channel to each wireless terminal from channels other than the channel for notifying the notification frame 51. May be performed.
  • the wireless terminals 1 to 4 receive the notification frame 51, grasp the channel assigned to the terminal itself as described above, and transmit a data frame to the access point 11 after a predetermined time T1 from the completion of reception of the notification frame 51. Know what to do (uplink transmission).
  • the uplink transmission after a certain time T1 from the completion of the reception of the notification frame 51 may be determined in advance as a system specification, or after the reception of the notification frame 51 in the common information field, Instruction information for uplink transmission of the data frame may be stored.
  • the fixed time T1 may be an arbitrary value as long as it is a predetermined fixed time.
  • SIFS Short Inter-frame Space
  • 16 ⁇ s which is a time interval between frames defined by the IEEE 802.11 wireless LAN MAC protocol specification
  • the value of the fixed time T1 may be stored in the common information field, and the wireless terminals 1 to 4 may acquire the value of the fixed time T1 from the common information field.
  • the fixed time T1 may be notified in advance by another method such as a beacon frame or another management frame.
  • the wireless terminals 1 to 4 that have received the notification frame 51 switch the setting of the wireless communication unit as necessary so that the data frames can be transmitted through the allocated channels, and the notification frames are transmitted through the allocated channels.
  • the data frame is transmitted.
  • the wireless terminal 1 transmits data frames on channels 1 to 3
  • the wireless terminal 2 transmits data frames on channels 4 to 5
  • the wireless terminal 3 transmits data frames on channels 6 to 7.
  • Wireless terminal 4 transmits a data frame on channel 8.
  • the wireless terminal When transmitting a data frame, the wireless terminal combines the allocated channels and transmits the data frame using one frequency band. However, a configuration in which a separate frame is transmitted for each channel is also possible.
  • the wireless terminal transmits a data frame according to the notified information.
  • access category information to be transmitted by each terminal is set in the notification frame 51
  • the wireless terminal transmits a data frame of the corresponding access category according to the notified information.
  • the wireless terminal has a plurality of antennas, it is possible to obtain the effects of speeding up and robustness by performing MIMO transmission. In this way, MU-MC uplink transmission, that is, simultaneous transmission on a plurality of channels by a plurality of wireless terminals is performed.
  • the access point 11 switches the setting of the wireless communication unit as necessary so that the data frame can be received on the channel notified to each wireless terminal by the notification frame 51, and receives the data frame transmitted from each wireless terminal by MU-MC. To do. That is, the data frame transmitted from the wireless terminal 1 is received on the channels 1 to 3, the data frame transmitted from the wireless terminal 2 is received on the channels 4 to 5, and the data frame transmitted from the wireless terminal 3 is transmitted on the channels 6 to 7. A data frame is received, and a data frame transmitted from the wireless terminal 4 is received on the channel 8.
  • the wireless terminal 1 to 4 When the access point 11 correctly receives the data frame transmitted from each wireless terminal, the wireless terminal 1 to 4 receives the ACK on the channel on which the data frame is received after a predetermined time T2 has elapsed since the reception of each data frame. Send a frame. Since these ACK frames are simultaneously transmitted to the wireless terminals 1 to 4, it can be said that this is also a kind of MU-MC communication (MU-MC downlink transmission).
  • an ACK frame is transmitted to the wireless terminal 1 on each of the channels 1 to 3
  • an ACK frame is transmitted to the wireless terminal 2 on each of the channels 4 to 5, and the channels 6 to 7 are transmitted.
  • Each transmits an ACK frame to the wireless terminal 3, and transmits an ACK frame to the wireless terminal 4 through the channel 8.
  • an ACK frame having the same content is transmitted on each channel (Duplicate transmission).
  • the channel for transmitting the ACK frame may be determined in advance, such as the channel with the smallest number among the assigned channels, and the ACK frame may be returned using only that channel.
  • the ACK frame when transmitting an ACK frame, instead of performing Duplicate transmission on each channel, the ACK frame may be transmitted as one frequency band by combining a plurality of channels in the same manner as the received data frame.
  • transmission of ACK frames as shown in FIG. 3, different individual ACK frames are not transmitted to each wireless terminal by MU-MC communication, but transmitted as one common frame including ACK information addressed to all wireless terminals. May be.
  • the transmission of the common ACK frame including the ACK information addressed to all the wireless terminals may be transmitted by Duplicate on each channel, or may be transmitted by combining all the channels.
  • the fixed time T2 may be an arbitrary value as long as it is a predetermined fixed time.
  • SIFS Short Inter-frame Space
  • the fixed time T2 may be the same length as the fixed time T1 or a different length.
  • the fixed time T2 may be stored in the common information field in the notification frame 51, and the wireless terminals 1 to 4 may be able to grasp the value of the fixed time T2 from the common information field.
  • the fixed time T2 may be notified in advance by another method such as a beacon frame or another management frame.
  • the access point 11 sets the channel information regarding the channel used by each wireless terminal in each terminal information field of the notification frame 51.
  • channel information As an example of channel information, as described above, a method of explicitly notifying identification information (channel number) of a channel assigned to each wireless terminal may be used. At this time, a method of enumerating all the channel numbers assigned to the wireless terminals may be used, or a bit string corresponding to the number of channels supported by the access point (8 in this embodiment) is prepared in the terminal information field and corresponds to the assigned channels. By setting the bit to be set to 1 and the other bits to 0 (or vice versa), the channel assigned to the wireless terminal may be notified. For example, when allocating channels 1 to 3 to the wireless terminal 1, “11100000” is set.
  • the leftmost is the 0th bit and the rightmost is the 7th bit, and channels 1 to 8 are associated in order from the left.
  • notification may be made by a set of the minimum channel number and the maximum channel number.
  • the minimum channel number 1 and the maximum channel number 3 may be notified.
  • the minimum or maximum channel number and the number of continuous channels may be notified.
  • the minimum channel number 1 (or maximum channel number 3) and the number of consecutive channels 3 may be notified.
  • an implicit notification method is also possible.
  • an implicit notification there is a method in which the channel number assigned to the wireless terminal is set as channel information in the terminal information field and the channel number is indirectly notified by the field number in the terminal information field.
  • the wireless terminal specified in the terminal information field 1 (that is, the wireless terminal in which the identification information of its own device is set in the terminal information field 1) is 3 from the lowest numbered channel when the notified channel number is 3.
  • the wireless terminal specified in the terminal information field 2 is further divided into two (channels 4 to 5) from the next number (channels 1 to 3).
  • the minimum number is the starting point, but a channel with a lower number may be assigned sequentially starting with the channel with the highest number.
  • the field number in the terminal information field represents the rank of the wireless terminal.
  • the rank of the wireless terminal specified in the terminal information field 1 is 1, and the rank of the wireless terminal specified in the terminal information field 2 is 2. It is.
  • Such ranking information may be explicitly described in the common information field.
  • the wireless terminal may identify the channel for the terminal based on the field position of the terminal (order of the terminal) and the number of channels.
  • all channels assigned to each wireless terminal by the access point are consecutive from the lowest or highest numbered channel, it is possible with the above method, but all the channels assigned to each wireless terminal are There may be a case where the number is skipped in the middle as in the cases of 1 to 4 and 7 to 8.
  • information for identifying all channels assigned by the access point 11 is described in the common information field, and only the channels described here are assigned in order from the smallest or largest numbered channel. What should I do? That is, all the channels identified by the information have a predetermined order, and are selected and assigned in order from the channel with the highest order.
  • the method for notifying all channels assigned by the access point in the common information field may be the same as the method for explicitly notifying the channel in the terminal information field described above.
  • the wireless terminal may specify a channel according to the rank of the terminal and the number of channels of the terminal from the channel group identified by the identification information. .
  • the terminal ID (FIG. 4B) may be described as described above, or a bit string including at least the number of terminals is prepared. Then, the bit corresponding to the target wireless terminal may be set to 1 and the other bits may be set to 0.
  • FIG. 5 shows a second example of an operation sequence between the access point 11 and each wireless terminal.
  • FIG. 6 is a diagram showing the frames transmitted by the access point 11 and each wireless terminal for each channel.
  • the numbers in parentheses indicate the reference numbers of the transmission source wireless terminals for convenience.
  • a frame without a parenthesized number is a frame transmitted by the access point 11.
  • RTS represents an RTS frame
  • CTS represents a CTS frame.
  • each wireless terminal uplink-transmits a data frame after a certain time T1 after receiving the notification frame.
  • An RTS frame or a control frame having an equivalent function is transmitted after a predetermined time T11 from the completion of the reception of.
  • the RTS frame is transmitted (Duplicate transmission) on each assigned channel for each wireless terminal.
  • the access point 11 returns a CTS frame after a certain time T12 from the completion of the reception of the RTS frame in a channel in which the RTS frame can be received or the channel has been idle for a certain timing before the RTS frame.
  • the wireless terminal transmits a data frame using the channel to which the CTS frame is returned from the access point 11 after a predetermined time T13 from the completion of reception of the CTS frame.
  • the data frame excluding the channel is transmitted. become.
  • FIG. 6 when the access point 11 performs Duplicate transmission of the CTS frame on the channels 1 to 3 to the wireless terminal 1, the wireless terminal 1 cannot correctly receive the CTS frame transmitted on the channel 1.
  • the wireless terminal 1 transmits data frames using only the channel 2 and the channel 3 except for the channel 1. After that, the access point transmits an ACK frame when the data frame is normally received as in FIGS.
  • the RTS frame is transmitted after a predetermined time T11 from the completion of reception of the notification frame 61.
  • carrier sensing is performed as a trigger, and the channel notified by the notification frame 61 is transmitted.
  • the RTS frame may be transmitted only from the channel that has been idle for a certain timing.
  • the frame transmitted by each wireless terminal after a predetermined time from the completion of reception of the notification frame may be a management frame as well as a data frame or a control frame.
  • the fixed times T11, T12, and T13 may be arbitrary values as long as they are predetermined time.
  • SIFS Short Inter-frame Space
  • T11 to T13 may be the same length or different lengths.
  • the common information field of the notification frame 61 includes information (uplink) for distinguishing uplink transmission of data frames in the sequences of FIGS. 2 and 3 from uplink transmission of data frames in the sequences of FIGS.
  • Link transmission mode information may be set.
  • each wireless terminal may determine whether to perform uplink transmission of a data frame in the sequence of FIG. 2 and FIG. 3 or FIG. 5 and FIG. 6 according to the uplink transmission mode information.
  • uplink transmission by two methods is shown, but these are only examples, and other methods (sequences) are possible as long as the method performs the MU-MC uplink operation triggered by transmission or reception of a notification frame. It is also possible to perform uplink transmission in
  • FIG. 7 shows a third example of the operation sequence between the access point 11 and each wireless terminal.
  • FIG. 8 is a diagram showing the frames transmitted by the access point 11 and each wireless terminal for each channel.
  • the numbers in parentheses indicate the reference numbers of the transmission source wireless terminals for convenience.
  • a frame without a parenthesized number is a frame transmitted by the access point 11.
  • channels 1 to 3, 4 to 5, 6 to 7, and 8 are assigned to wireless terminals 1 to 4, respectively.
  • the wireless terminals 1 to 4 perform MU-MC uplink transmission with the access point 11.
  • the MU-MC downlink transmission from the access point 11 to the wireless terminals 1 to 4 is performed.
  • the access point 11 transmits a notification frame 71, and after a certain time T21 from the completion of transmission, the access point 11 transmits a data frame to each wireless terminal using the allocated channel.
  • data frames are transmitted to the wireless terminal 1 through channels 1 to 3, to the wireless terminal 2 through channels 4 to 5, to the wireless terminal 3 through channels 6 to 7, and to the wireless terminal 4 through channel 8; Send downlink.
  • information indicating downlink transmission may be set as the type of MU-MC communication.
  • the information indicating the downlink transmission corresponds to a notification that a data frame is transmitted after the notification frame 71 is transmitted.
  • the frame to be transmitted after the notification frame is transmitted is not limited to the data frame, and may be a control frame (described later) or a management frame.
  • the information indicating downlink transmission corresponds to a notification that a control frame or a management frame is transmitted after the notification frame 71 is transmitted.
  • Each wireless terminal switches the wireless communication unit as necessary so that the data frame can be received by the channel allocated in the notification frame 71, and the data frame transmitted from the access point 11 by each allocated channel is respectively switched.
  • the ACK frame is transmitted on each of the allocated channels after a predetermined time T22 from the completion of reception. More specifically, as shown in FIG. 8, wireless terminal 1 transmits an ACK frame on each of channels 1 to 3, wireless terminal 2 transmits an ACK frame on each of channels 4 to 5, and wireless terminal 3 An ACK frame is transmitted on each of the channels 6 to 7, and the wireless terminal 4 transmits an ACK frame on the channel 8.
  • the same content ACK frame is transmitted (Duplicate transmission) on a plurality of channels.
  • a rule may be determined in advance such that the channel that returns the ACK frame is the channel with the smallest number among the assigned channels, and the ACK frame may be returned according to the rule.
  • This rule may be notified by setting the common channel information, may be determined in advance as a system specification, or may be notified by a beacon frame.
  • the fixed times T21 and T22 may be any value as long as they are predetermined time.
  • SIFS Short Inter-frame Space
  • 16 ⁇ s 16 ⁇ s
  • the fixed times T21 and T22 may be the same length or different lengths.
  • FIG. 9 shows a fourth example of an operation sequence between the access point 11 and each wireless terminal.
  • FIG. 10 is a diagram showing the frames transmitted by the access point 11 and each wireless terminal for each channel. As described above, the numbers in parentheses indicate the reference numbers of the transmission source wireless terminals for convenience. A frame without a parenthesized number is a frame transmitted by the access point 11. “RTS” represents an RTS frame, and “CTS” represents a CTS frame.
  • the access point 11 performs MU-MC downlink transmission with the wireless terminals 1 to 4.
  • channels 1 to 3, 4 to 5, 6 to 7, and 8 are assigned to the wireless terminals 1 to 4, respectively.
  • the access point 11 transmits the data frame MU-MC downlink after a certain time after the transmission of the notification frame, but in the examples of FIGS. 9 and 10, the access point 11 First, an RTS frame is transmitted after a predetermined time T31 from the completion of transmission of the notification frame 81. As shown in FIG. 10, the RTS frame is transmitted (Duplicate transmission) on each assigned channel for each wireless terminal. Each wireless terminal returns a CTS frame on a channel in which the RTS frame can be received or the channel has been idle for a certain timing before the RTS frame after a certain time T32 (see FIG. 9) after the completion of the reception of the RTS frame.
  • the wireless terminal 3 does not transmit the CTS frame because it cannot receive the RTS frame on the assigned channels 6 and 7 or the channel is idle for a certain timing before the RTS frame.
  • the access point 11 transmits a data frame after a predetermined time T33 from the completion of reception of the CTS frame, using the channel to which the CTS frame is returned from each wireless terminal.
  • the CTS frame is not returned from either of the channels 6 and 7 from the wireless terminal 3, and therefore no data frame is transmitted.
  • the wireless terminal 1 For 2, 4 and 4 data frames are transmitted using all of the allocated channels.
  • the data frame is transmitted only on the part of the channels. Thereafter, when each wireless terminal normally receives a data frame from the access point 11, it transmits an ACK frame in the same manner as the access point 11 in FIGS. 7 and 8, but the illustration is omitted here. .
  • the RTS frame is transmitted after a certain time T31 from the completion of the transmission of the notification frame 81. However, after the transmission of the notification frame 81, carrier sense is performed, and only from the channel that has been idle, the RTS frame is transmitted. A frame may be transmitted.
  • the fixed times T31, T32, and T33 may be arbitrary values as long as they are predetermined time.
  • SIFS Short Inter-frame Space
  • T31, T32, and T33 may be the same length or different lengths.
  • the common information field of the notification frame 81 includes information (downlink) for distinguishing between downlink transmission of data frames in the sequences of FIGS. 7 and 8 and downlink transmission of data frames in the sequences of FIGS.
  • Link transmission mode information may be set.
  • Each wireless terminal grasps whether the data frame downlink transmission is performed according to the downlink transmission mode information, and performs a standby operation on the assigned channel. Just do it.
  • examples of two downlink transmissions of data frames have been shown. However, these are only examples, and other methods may be used as long as they are MU-MC downlink transmissions triggered by transmission or reception of a notification frame. Data frame downlink transmission in (sequence) is also possible.
  • FIG. 11 is a functional block diagram of the wireless communication device of the access point 11. As described above, the access point 11 may be connected to a plurality of networks including a network on the wireless terminal side and a different network.
  • FIG. 7 shows a configuration of a wireless communication apparatus connected to the network on the wireless terminal side.
  • the wireless communication apparatus includes a control unit 101, a transmission unit 102, a reception unit 103, antennas 12A, 12B, 12C, and 12D, and a buffer 104.
  • the control unit 101 corresponds to a communication control device that controls communication with a wireless terminal, and the transmission unit 102 and the reception unit 103 form a wireless communication unit as an example.
  • the processing of the control unit 101 and all or part of the digital domain processing of the transmission unit 102 and the reception unit 103, or the processing of the communication control device may be performed by software (program) operating on a processor such as a CPU. It may be performed by hardware, or may be performed by both software and hardware.
  • the access point may include a processor that performs processing of all or part of the control unit 101, the transmission unit 102, and the reception unit 103, or processing of the communication control device.
  • the buffer 104 is a storage unit for transferring data frames between the upper layer and the control unit 101.
  • the buffer 104 may be a volatile memory such as a DRAM or a nonvolatile memory such as a NAND or MRAM.
  • the upper layer stores a frame received from another network in the buffer 104 for relaying to the network on the wireless terminal side, or receives a frame received from the network on the wireless terminal side from the control unit 101 and transmits data to the upper layer. Or pass.
  • the upper layer may perform communication processing above the MAC layer such as TCP / IP and UDP / IP. Further, the upper layer may perform processing of an application layer that processes data.
  • the upper layer operation may be performed by software (program) processing by a processor such as a CPU, may be performed by hardware, or may be performed by both software and hardware.
  • the control unit 101 mainly performs processing of the MAC layer.
  • the control unit 101 manages channel access and controls frame transmission at a desired timing.
  • the control unit 101 controls communication with each wireless terminal by transmitting and receiving frames via the transmission unit 102 and the reception unit 103. Further, the control unit 101 may perform control so as to periodically transmit a beacon frame.
  • the control unit 101 may include a clock generation unit that generates a clock.
  • the control unit 101 may be configured to receive a clock from the outside.
  • the control unit 101 may manage the internal time using a clock generated by the clock generation unit or a clock input from the outside.
  • the control unit 101 may output the clock generated by the clock generation unit to the outside of the host CPU or the like.
  • the control unit 101 receives an association request from a wireless terminal and establishes a wireless link with the wireless terminal through a process such as authentication as necessary.
  • the control unit 101 manages wireless terminals that have established wireless links.
  • the control unit 101 determines to perform MU-MC communication by an arbitrary trigger, and generates a notification frame.
  • the control unit 101 selects a wireless terminal that performs MU-MC communication, and assigns a channel to the selected wireless terminal.
  • necessary information is set in the common information field and terminal information field of the notification frame based on the selected wireless terminal and the assigned channel.
  • Information common to all the selected wireless terminals is set in the common information field, so that the information amount of the notification frame can be suppressed.
  • One or a plurality of groups of wireless terminals performing MU-MC communication may be generated in advance, and a channel may be allocated to the wireless terminals in advance for each group.
  • a group may be selected by a trigger for determining the start of MU-MC communication.
  • the trigger of MU-MC communication may be anything. For example, when it is confirmed that there is data to be transmitted to one or a plurality of wireless terminals in the buffer 104, it may be determined to perform MU-MC downlink transmission. Further, it may be determined that the MU-MC communication is performed when there is a request from the wireless terminal or at regular time intervals.
  • the control unit 101 transmits the notification frame generated by determining the MU-MC communication from the transmission unit 102 using a predetermined channel according to the communication method to be used. As an example, carrier sense is performed, and when a transmission right is acquired, a notification frame is output to the transmission unit 102. Also, in the case of MU-MC downlink transmission as shown in FIG. 7 or FIG.
  • the control unit 101 transmits a data frame or an RTS frame to each wireless terminal after a certain time after the completion of transmission of the notification frame. Transmit on the assigned channel.
  • the control unit 101 controls the transmission unit 102 as necessary so that a data frame or an RTS frame can be transmitted on each allocated channel.
  • the control unit 101 controls the receiving unit 103 as necessary so that each frame transmitted from each wireless terminal can be received on the channel notified by the notification frame.
  • the transmission unit 102 performs desired physical layer processing such as modulation processing or addition of a physical header to the frame input from the control unit 101. Further, DA conversion, filter processing for extracting a signal component of a desired band, and frequency conversion are performed on the frame after processing in the physical layer.
  • the transmission unit 102 amplifies the frequency-converted signal and radiates it as a radio wave from one antenna or a plurality of antennas. In the illustrated example, one transmission unit is provided. However, one transmission unit may be arranged for each channel, and the corresponding transmission unit may be used. At this time, one antenna may be connected to each transmitter. Alternatively, one transmission unit may be arranged for a plurality of channels.
  • the signal received by each antenna is amplified in the receiving unit 103, subjected to frequency conversion (down-conversion), and filtered.
  • the received signal for each channel is extracted by filtering.
  • a data frame is transmitted (MU-MC uplink transmission) with a bandwidth obtained by combining channels allocated from wireless terminals
  • signal extraction is performed using the bandwidth obtained by combining these channels.
  • Each received signal thus obtained is converted into a digital signal by AD conversion, and after undergoing physical layer processing such as demodulation and decoding, is input to the control unit 101 as a frame.
  • signal extraction for each channel or combined bandwidth signal extraction may be performed in the digital domain by the control unit 101 after AD conversion.
  • one receiving unit is provided, but a receiving unit may be arranged for each channel, and one antenna may be connected to each receiving unit. Alternatively, one receiving unit may be arranged for a plurality of channels.
  • the control unit 101 uses the CTS for the channel in which the RTS frame can be received or the channel in which the carrier sense is idle until a predetermined time before the reception of the RTS frame. Control to send frames. In addition, when a data frame is normally received from the wireless terminal, control is performed so that an ACK frame is transmitted after a predetermined time from completion of reception of the data frame.
  • the control unit 101 manages carrier sense information via the receiving unit 103. This carrier sense information includes physical carrier sense information regarding busy and idle of the medium (CCA) input from the receiving unit 103, virtual carrier sense information based on the medium reservation time described in the received frame, Both of them may be included. If any one of the carrier sense information indicates busy, the medium is regarded as busy, and signal transmission during that time is prohibited.
  • the control unit 101 may read information by accessing a storage device for storing information to be transmitted to each wireless terminal or information received from each wireless terminal.
  • the storage device may be an internal memory or an external memory, and may be a volatile memory or a nonvolatile memory.
  • the storage device may be an SSD, a hard disk, or the like.
  • processing up to the digital area may be performed by the control unit 101, and processing after DA conversion may be performed by the transmission unit 102.
  • processing up to AD conversion is performed by the receiving unit 103, and the processing of the digital area including the processing of the physical layer thereafter is performed by the control unit 101.
  • Processing may be separated by a method other than the method described here.
  • FIG. 12 is a functional block diagram of a wireless communication device mounted on the wireless terminal 1. Since the wireless communication devices mounted on the wireless terminals 2 to 4 have the same configuration as the wireless communication device of the wireless terminal 1, description thereof is omitted.
  • the wireless communication apparatus includes a control unit 201, a transmission unit 202, a reception unit 203, an antenna 1A, and a buffer 204.
  • the control unit 201 corresponds to a communication control device that controls communication with the access point 11, and the transmission unit 202 and the reception unit 203 form a wireless communication unit as an example.
  • the processing of the control unit 201 and all or part of the processing of the digital area of the transmission unit 202 and the reception unit 203, or the processing of the communication control device may be performed by software (program) that operates on a processor such as a CPU. It may be performed by hardware, or may be performed by both software and hardware.
  • the wireless terminal may include a processor that performs processing of all or part of the control unit 201, the transmission unit 202, and the reception unit 203, or processing of the communication control device.
  • the buffer 204 is a storage unit for transferring data frames between the upper layer and the control unit 201.
  • the buffer 204 may be a volatile memory such as a DRAM or a nonvolatile memory such as a NAND or MRAM.
  • the upper layer generates data to be transmitted to another wireless terminal, the access point 11, or a device such as a server, and stores the data in the buffer 204 for transmission or receives the frame data received from the access point 11 as a buffer. Receive via 201 and process.
  • the upper layer may perform communication processing above the MAC layer such as TCP / IP and UDP / IP. Further, the upper layer may perform processing of an application layer that processes data.
  • the upper layer processing may be performed by software (program) that operates on a processor such as a CPU, may be performed by hardware, or may be performed by both of the software and hardware.
  • the control unit 201 mainly performs MAC layer processing.
  • the control unit 201 manages channel access and controls frame transmission at a desired timing.
  • the control unit 201 controls communication with the access point 11 by transmitting and receiving frames to and from the access point 11 via the transmission unit 202 and the reception unit 203.
  • the control unit 201 receives a beacon frame periodically transmitted from the access point 11, for example, via the antenna 1A and the reception unit 203.
  • the control unit 201 may include a clock generation unit that generates a clock.
  • the control unit 201 may be configured to receive a clock from the outside.
  • the control unit 201 may manage the internal time according to a clock generated by the clock generation unit or a clock input from the outside.
  • the control unit 201 may output the clock generated by the clock generation unit to the outside of the host CPU or the like.
  • the control unit 201 When connecting to the access point 11, the control unit 201 transmits an association request to the access point 11, and receives an association response through a process such as authentication as necessary. Establish. The control unit 201 confirms the buffer 204 periodically or by an external trigger. When the control unit 201 receives the notification frame transmitted from the access point 11 and detects from the common information field or the terminal information field of the notification frame that the own terminal is designated as the target of the MU-MC communication, The channel assigned to the terminal is specified from the terminal information field, and the transmitting unit 202 and the receiving unit 203 are controlled to perform MU-MC communication using the specified channel.
  • a data frame is transmitted on a channel assigned to the terminal itself after a predetermined time from reception of the notification frame (see FIG. 2).
  • the control unit 201 transmits an RTS frame on each channel assigned to the terminal itself after a predetermined time from the reception of the notification frame (see FIG. 5).
  • Which operation to perform in FIG. 2 or FIG. 5 may be set in the common information field as uplink transmission mode information, or may be determined in advance as system specifications.
  • the condition regarding the size or time length of the data frame to be transmitted is specified in the common information field or the terminal information field, this is followed.
  • the condition regarding the size or the time length may be designated in advance by a system specification, a beacon frame notification, or the like. Note that when there is no data to be transmitted to the access point 11, the data frame need not be transmitted.
  • the control unit 201 waits for the notification frame on the channel, and after receiving the notification frame, the control unit 201 changes the used channel or the standby channel to the assigned channel specified in the notification frame. You may control the transmission part 202 and the receiving part 203 to switch.
  • the control unit 201 controls to transmit a frame to be transmitted via the transmission unit 202 and the antenna 1A according to a channel to be used and a communication method.
  • the transmission unit 202 performs desired physical layer processing such as modulation processing and addition of a physical header on the frame input from the control unit 201. Further, DA conversion, filter processing for extracting a signal component in a desired band, and frequency conversion (up-conversion) are performed on the frame after processing in the physical layer.
  • the transmitting unit 202 amplifies the frequency-converted signal and radiates it as a radio wave from the antenna to the space.
  • one transmission unit is provided. However, one transmission unit may be arranged for each channel, and the corresponding transmission unit may be used. At this time, one antenna may be connected to each transmitter. Alternatively, one transmission unit may be arranged for a plurality of channels.
  • the signal received by the antenna 1A is amplified, frequency-converted (down-converted) and filtered by the receiving unit 203. For example, a desired channel or a received signal for each channel is extracted.
  • a data frame is transmitted (MU-MC downlink transmission) with a bandwidth combined with channels allocated from the access point 11, signal extraction is performed with the combined bandwidth of those channels.
  • signal extraction is performed with the combined bandwidth of those channels.
  • the received signal is further converted into a digital signal by AD conversion, subjected to physical layer processing such as demodulation and decoding, and then input to the control unit 201 as a frame.
  • signal extraction for a desired channel, signal extraction for each channel, or signal extraction of a combined bandwidth may be performed by the control unit 201 in the digital domain after AD conversion.
  • one receiving unit is provided, but a receiving unit may be arranged for each channel, and one antenna may be connected to each receiving unit. Alternatively, one receiving unit may be arranged for a plurality of channels.
  • the control unit 203 When receiving the notification frame from the access point 11, the control unit 203 checks whether the own terminal is selected as a target for MU-MC communication as described above, and if it is selected, assigns it to the own terminal. A process related to MU-MC communication is performed using the determined channel. For example, the control unit 203 transmits an RTS frame after receiving a notification frame from the access point, and then transmits a data frame using a channel that has received the CTS frame when receiving a CTS frame from the access point 11. (See FIG. 5). Further, after receiving the notification frame from the access point 11, the data frame is continuously received by MU-MC and the ACK frame is transmitted (see FIG. 7).
  • a CTS frame is transmitted on a channel that has received the RTS frame, or a channel that has been idle for a certain period of time before the reception of the RTS frame.
  • the frame is received by the MU-MC (see FIG. 9).
  • the control unit 201 may read information by accessing a storage device for storing information to be transmitted to the access point 11 or information received from the access point 11.
  • the storage device may be an internal memory or an external memory, and may be a volatile memory or a nonvolatile memory. In addition to the memory, the storage device may be an SSD, a hard disk, or the like.
  • processing up to the digital area may be performed by the control unit 201, and processing after DA conversion may be performed by the transmission unit 202.
  • processing up to AD conversion is performed by the reception unit 203, and the processing of the digital area including the subsequent physical layer processing is performed by the control unit 201. Good. It is also possible to separate processes other than those described here.
  • FIG. 13 is a flowchart showing the operation of the access point according to this embodiment.
  • the access point 11 decides to execute MU-MC communication, selects a target wireless terminal, and assigns a channel to the selected wireless terminal (S101). As channel assignment, the access point assigns one or more channels to the selected wireless terminal. As an example, when assigning a plurality of channels to a wireless terminal, continuous channels are selected.
  • the access point 11 generates a notification frame including notification information regarding the selected wireless terminal and the channel assigned to the wireless terminal, and transmits the notification frame to each wireless terminal (S102).
  • the notification frame may include information on the communication type of MU-MC uplink transmission or MU-MC downlink transmission. Also, as a method for specifying the communication type of MU-MC uplink transmission or MU-MC downlink transmission, instead of notifying in the common information field of the notification frame, the MU-MC uplink notification frame and MU-MC down Another notification frame may be defined, such as a link notification frame.
  • each frame type can be defined in the Frame Control field in FIG. Further, in the case of uplink transmission, the transmission mode of FIG.
  • the transmission mode of FIG. 7 (data frame is transmitted after a certain time elapses after completion of transmission of the notification frame) or the transmission mode of FIG.
  • Downlink transmission mode information for distinguishing may be included.
  • information regarding the number of channels allocated to each wireless terminal may be stored in the terminal information field or the common information field.
  • information for identifying all channels allocated to each wireless terminal may be stored in the common information field. Other information described so far may be stored in the common information field or the terminal information field.
  • the access point 11 After transmitting the notification frame, the access point 11 performs MU-MC communication with each wireless terminal using the channel assigned to each wireless terminal (S103).
  • a data frame is simultaneously received (MU-MC uplink transmission) from each wireless terminal after a predetermined time T1 has elapsed.
  • each wireless terminal after transmitting the notification frame, each wireless terminal receives an RTS frame from each wireless terminal and transmits a CTS frame to each wireless terminal as a response to the received RTS frame. Simultaneously receive data frames (MU-MC uplink transmission).
  • MU-MC uplink transmission Simultaneously receive data frames
  • a data frame is transmitted to each wireless terminal (MU-MC downlink transmission) after a certain time T21 has elapsed since the notification frame was transmitted.
  • each radio terminal after transmitting the notification frame, transmits an RTS frame to each radio terminal and receives a CTS frame from each radio terminal as a response to the RTS frame. Transmit data frame to (MU-MC downlink transmission).
  • FIG. 14 is a flowchart showing the operation of the wireless terminal according to the present embodiment.
  • the wireless terminal receives from the access point 11 a notification frame including notification information including information specifying the selected wireless terminal and information regarding the channel assigned to the wireless terminal (S201).
  • the wireless terminal determines whether its own terminal is designated by analyzing the frame received from the access point 11 (S202). If the own terminal is not designated (NO in S203), this process is terminated. When the own terminal is designated (YES in S203), the channel assigned to the own terminal is specified according to the notification information included in the frame, and the MU-MC communication with the access point 11 is performed simultaneously with other wireless terminals. Perform (S204). The access point 11 performs MU-MC communication with each wireless terminal using a channel assigned to each wireless terminal.
  • the wireless terminal transmits a data frame (MU-MC uplink transmission) after a certain time T1 has elapsed after receiving the notification frame.
  • the RTS frame is transmitted after a predetermined time T11 has elapsed.
  • a data frame is transmitted (MU-MC uplink transmission) after a predetermined time T13 has elapsed.
  • the access point transmits a data frame (MU-MC downlink transmission) to each wireless terminal after a predetermined time T21 has elapsed since the completion of transmission of the notification frame.
  • the terminal waits for reception of the data frame on its own assigned channel. Further, as in the operation example shown in FIG. 9, since the access point transmits an RTS frame to each wireless terminal after a certain time T31 from the completion of transmission of the notification frame, each wireless terminal waits for reception on its own assigned channel. I do. After receiving the RTS frame, a CTS frame is transmitted as a response to the RTS frame. After a predetermined time T33, the data frame transmitted from the access point 11 is waited for. Information on which operation in FIGS. 2, 5, 7, and 9 is performed is described in the notification frame, and the operation may be performed according to the information. If it is, the information need not be described in the notification frame.
  • the notification frame including notification information regarding a wireless terminal selected as a target for MU-MC communication and a channel assigned to the wireless terminal.
  • the notification of the wireless terminal and the notification of the channel allocated to the wireless terminal can be efficiently performed. Therefore, the time from the determination of MU-MC communication to the start of MU-MC communication can be shortened, and the efficiency of the system can be improved. This effect becomes more significant as the number of selected wireless terminals increases.
  • the notification frame since the notification frame is transmitted on a predetermined specific channel, the wireless terminal does not need to wait for reception on all channels. Therefore, power consumption of the wireless terminal can be reduced.
  • the channel numbers in the IEEE 802.11 standard are 5 MHz intervals, and when the channel width is 20 MHz, the intervals of channel numbers that do not cover each other are every four channels.
  • the continuous channel in the channel set in this specification is described as meaning a continuous channel that does not cover each other.
  • the channel number in the specification is for convenience. 1 is a channel number 36 of 5 GHz band in the IEEE 802.11 standard, ch. 2 may be interpreted as a channel number 40 of 5 GHz band in the IEEE 802.11 standard.
  • [5 GHz band] In the 5 GHz band according to the IEEE 802.11 standard, channel numbers are basically used at 20 MHz intervals, so there is no problem considering the channel numbers being used.
  • ch. 1 is a channel number 1 in the 2.4 GHz band in the IEEE 802.11 standard
  • ch. 2 may be set at 25 MHz intervals (FIG. 15A) following North America and China, such as 2.4 GHz band channel number 6 in the IEEE 802.11 standard.
  • ch. 1 is a channel number 1 in the 2.4 GHz band in the IEEE 802.11 standard, ch.
  • FIG. 15C illustrates channel selection that will be considered in the future, in addition to FIGS. 15A and 15B.
  • channel numbers 6 and 7 in the 2.4 GHz band as at least some channels
  • channel numbers 5 and some frequencies Bandwidth will suffer.
  • the frequency band affected by each other's wireless communication system is expanded, and the channel utilization efficiency is lowered.
  • FIG. 16 shows an example of a hardware configuration of a wireless communication device mounted on an access point according to the third embodiment.
  • This configuration example is an example, and the present embodiment is not limited to this. Since the basic operation is the same as that of the wireless communication apparatus shown in FIG. 11, the description will focus on the difference in configuration, and a duplicate description will be omitted.
  • This wireless communication apparatus includes a baseband unit 111, an RF unit 121, and antennas 12A to 12D.
  • the baseband unit 111 includes a control circuit (protocol stack) 112, a transmission processing circuit 113, a reception processing circuit 114, DA conversion circuits 115 and 116, and AD conversion circuits 117 and 118.
  • the RF unit 121 and the baseband unit 111 may be configured by a one-chip IC (Integrated Circuit).
  • the baseband unit 111 is, for example, a baseband LSI or a baseband IC.
  • the baseband unit 111 may include an IC 132 and an IC 131.
  • the IC 132 may include the control circuit 112, the transmission processing circuit 113, and the reception processing circuit 114, and the IC 131 may include the DA conversion circuits 115 and 116 and the AD conversion circuits 117 and 118.
  • the control circuit 112 corresponds to, for example, a communication control device that controls communication or a control unit that controls communication.
  • the wireless communication unit may include a transmission processing circuit 113 and a reception processing circuit 114.
  • the wireless communication unit may include DA conversion circuits 115 and 116 and AD conversion circuits 117 and 118 in addition to the transmission processing circuit 113 and the reception processing circuit 114.
  • the wireless communication unit may include a transmission circuit 122 and a reception circuit 123 in addition to the transmission processing circuit 113, the reception processing circuit 114, the DA conversion circuits 115 and 116, and the AD conversion circuits 117 and 118.
  • all or part of the processing of the baseband unit 111 that is, all or part of the control circuit 112, the transmission processing circuit 113, the reception processing circuit 114, the DA 115 and 116, and the DA 117 and 118 is performed.
  • a processor that performs processing may be provided.
  • the IC 132 may correspond to a communication control device that controls communication.
  • the wireless communication unit may include a transmission circuit 122 and a reception circuit 123. Further, the wireless communication unit may include DA conversion circuits 115 and 116 and AD conversion circuits 117 and 118 in addition to the transmission circuit 122 and the reception circuit 123.
  • the control circuit 112 in the baseband unit 111 includes the buffer 104 in FIG. 11 and performs processing such as a MAC layer.
  • the control circuit 112 may include a clock generation unit that generates a clock.
  • the transmission processing circuit 113 performs desired physical layer processing such as modulation processing and addition of a physical header, and generates, for example, two types of digital baseband signals (hereinafter, digital I signal and digital Q signal). In the case of MIMO transmission, two types of digital baseband signals are generated for each stream.
  • the DA conversion circuits 115 and 117 DA convert the signal input from the transmission processing circuit 113. More specifically, the DA conversion circuit 115 converts the digital I signal into an analog I signal, and the DA conversion circuit 216 converts the digital Q signal into an analog Q signal.
  • the signal is transmitted as it is without a quadrature modulation.
  • only one DA conversion circuit may be provided.
  • a number of DA conversion circuits corresponding to the number of antennas may be provided.
  • the RF unit 121 is, for example, an RF analog IC or a high frequency IC.
  • the transmission circuit 122 in the RF unit 121 uses a transmission filter that extracts a signal in a desired band from the signal of the frame after DA conversion, and a signal with a constant frequency supplied from the oscillation device, and converts the filtered signal to a radio frequency. It includes a mixer for up-conversion and a preamplifier (PA) for amplifying the signal after up-conversion.
  • PA preamplifier
  • the reception circuit 123 in the RF unit 121 uses an LNA (low noise amplifier) that amplifies the signal received by the antenna and a signal of a constant frequency supplied from the oscillation device to downconvert the amplified signal to baseband. And a receiving filter for extracting a signal in a desired band from the signal after down-coating. More specifically, the reception circuit 123 performs quadrature demodulation on a reception signal amplified by a low-noise amplifier (not shown) using a carrier wave that is 90 ° out of phase with each other to obtain I (In-phase) in-phase with the reception signal. ) Signal and a Q (Quad-phase) signal whose phase is delayed by 90 ° therefrom. These I and Q signals are output from the receiving circuit 123 after the gain is adjusted.
  • LNA low noise amplifier
  • AD conversion circuits 117 and 118 in the baseband unit 111 AD convert the input signal from the reception circuit 123. More specifically, the AD conversion circuit 117 converts the I signal into a digital I signal, and the AD conversion circuit 118 converts the Q signal into a digital Q signal. There may be a case where only one system signal is received without performing quadrature demodulation. In this case, only one AD conversion circuit is required. In the case where a plurality of antennas are provided, the number of AD conversion circuits corresponding to the number of antennas may be provided.
  • the reception processing circuit 114 performs physical layer processing, demodulation processing, and the like. The reception processing circuit 114 may perform digital filter processing on the channel as part of the physical layer processing.
  • the control circuit 112 performs processing such as a MAC layer on the demodulated frame. Note that the control circuit 112 may perform processing related to MIMO when performing MIMO communication with a wireless terminal. For example, propagation path estimation processing, transmission weight calculation processing, stream separation processing, and the like are performed.
  • a switch for switching the antennas 12A to 12D to one of the transmission circuit 122 and the reception circuit 123 may be arranged in the RF unit.
  • the antennas 12A to 12D are connected to the transmission circuit 122 at the time of transmission, and the antennas 12A to 12D are connected to the reception circuit 123 at the time of reception.
  • FIG. 17 shows an example of the hardware configuration of a wireless communication device mounted on a wireless terminal according to the third embodiment.
  • This configuration example is an example, and the present embodiment is not limited to this. Since the basic operation is the same as that of the wireless communication apparatus shown in FIG. 12, the description will focus on the difference in configuration, and a duplicate description will be omitted.
  • This wireless communication apparatus includes a baseband unit 211, an RF unit 221, and an antenna 1A.
  • the RF unit 221 and the baseband unit 211 may be configured by a one-chip IC.
  • the baseband unit 211 includes a control circuit (protocol stack) 212, a transmission processing circuit 213, a reception processing circuit 214, DA conversion circuits 215 and 216, and AD conversion circuits 217 and 218.
  • the baseband unit 211 is, for example, a baseband LSI or a baseband IC.
  • the baseband unit 211 may include an IC 232 and an IC 231.
  • the IC 232 may include the control circuit 212, the transmission processing circuit 213, and the reception processing circuit 214, and the IC 231 may include the DA conversion circuits 215 and 216 and the AD conversion circuits 217 and 218.
  • the control circuit 212 corresponds to, for example, a communication control device that controls communication or a control unit that controls communication.
  • the wireless communication unit may include a transmission processing circuit 213 and a reception processing circuit 214.
  • the wireless communication unit may include DA conversion circuits 215 and 216 and AD conversion circuits 217 and 218 in addition to the transmission processing circuit 213 and the reception processing circuit 214.
  • the wireless communication unit may include a transmission circuit 222 and a reception circuit 223 in addition to the transmission processing circuit 213, the reception processing circuit 214, the DA conversion circuits 215 and 216, and the AD conversion circuits 217 and 218.
  • the integrated circuit includes all or part of processing of the baseband unit 211, that is, all or part of the control circuit 212, transmission processing circuit 213, reception processing circuit 214, DA215, 216 and DA217, 218.
  • a processor that performs processing may be provided.
  • the IC 232 may correspond to a communication control device that controls communication.
  • the wireless communication unit may include a transmission circuit 222 and a reception circuit 223. Further, the wireless communication unit may include DA conversion circuits 215 and 216 and AD conversion circuits 217 and 218 in addition to the transmission circuit 222 and the reception circuit 223.
  • the control circuit 212 in the baseband unit 211 includes the buffer 204 in FIG. 12, and performs processing such as a MAC layer.
  • the control circuit 212 may include a clock generation unit that generates a clock.
  • the transmission processing circuit 213 performs desired physical layer processing such as modulation processing and addition of a physical header, and generates, for example, two types of digital baseband signals (hereinafter, digital I signal and digital Q signal). In the case of MIMO transmission, two types of digital baseband signals are generated for each stream. .
  • the DA conversion circuits 215 and 216 DA convert the signal input from the transmission processing circuit 213.
  • the DA conversion circuit 215 converts the digital I signal into an analog I signal
  • the DA conversion circuit 216 converts the digital Q signal into an analog Q signal. Note that there may be a case where the signal is transmitted as it is without a quadrature modulation. In this case, only one DA conversion circuit may be provided. Further, in the case where one or a plurality of transmission signals are distributed and transmitted by the number of antennas, a number of DA conversion circuits corresponding to the number of antennas may be provided.
  • the RF unit 221 is, for example, an RF analog IC or a high frequency IC.
  • the transmission circuit 222 in the RF unit 221 uses a transmission filter that extracts a signal in a desired band from the signal of the frame after DA conversion, and a signal with a constant frequency supplied from the oscillation device, and converts the filtered signal to a radio frequency. It includes a mixer for up-conversion and a preamplifier (PA) for amplifying the signal after up-conversion.
  • PA preamplifier
  • the receiving circuit 223 uses an LNA (low noise amplifier) that amplifies the signal received by the antenna, a mixer that down-converts the amplified signal to baseband using a signal of a constant frequency supplied from the oscillation device, and down A reception filter that extracts a signal in a desired band from the signal after the conversion is included. More specifically, the reception circuit 223 performs quadrature demodulation on the received signal amplified by a low-noise amplifier (not shown) using carrier waves that are 90 ° out of phase with each other, and receives I (In-phase) in-phase with the received signal. ) Signal and a Q (Quad-phase) signal whose phase is delayed by 90 ° therefrom. These I signal and Q signal are output from the receiving circuit 223 after the gain is adjusted.
  • LNA low noise amplifier
  • AD conversion circuits 217 and 218 in the baseband unit 211 AD-convert the input signal from the reception circuit 223. More specifically, the AD conversion circuit 117 converts the I signal into a digital I signal, and the AD conversion circuit 118 converts the Q signal into a digital Q signal. There may be a case where only one system signal is received without performing quadrature demodulation. In this case, only one AD conversion circuit is required. In the case where a plurality of antennas are provided, the number of AD conversion circuits corresponding to the number of antennas may be provided.
  • the reception processing circuit 214 performs physical layer processing, demodulation processing, and the like.
  • the control circuit 212 performs processing such as a MAC layer on the demodulated frame.
  • the reception processing circuit 214 may perform digital filter processing on the channel as part of the physical layer processing.
  • control circuit 212 may perform processing related to MIMO. For example, propagation path estimation processing, transmission weight calculation processing, stream separation processing, and the like are performed.
  • a switch for switching the antenna 1A to one of the transmission circuit 222 and the reception circuit 223 may be arranged in the RF unit 221.
  • the antenna 1A is connected to the transmission circuit 222 during transmission, and the antenna 1A is connected to the reception circuit 223 during reception.
  • FIG. 18A and 18B are perspective views of a wireless terminal according to the fourth embodiment, respectively.
  • the wireless terminal in FIG. 18A is a notebook PC 301
  • the wireless terminal in FIG. 18B is a mobile terminal 321.
  • Each corresponds to one form of a wireless terminal (including an access point).
  • the notebook PC 301 and the mobile terminal 321 are equipped with wireless communication devices 305 and 315, respectively.
  • the wireless communication devices 305 and 315 the wireless communication device (FIGS. 12, 17, etc.) mounted on the wireless terminal described so far, or the wireless communication device mounted on the access point 11 (FIGS. 11, 16). Etc.) can be used.
  • a wireless terminal equipped with a wireless communication device is not limited to a notebook PC or a mobile terminal.
  • TV digital camera, wearable device, tablet, smartphone, game device, network storage device, monitor, digital audio player, web camera, video camera, project, navigation system, external adapter, internal adapter, set top box, gateway, It can also be installed in printer servers, mobile access points, routers, enterprise / service provider access points, portable devices, handheld devices, and the like.
  • the wireless communication device mounted on the wireless terminal or the access point 11 can be mounted on the memory card.
  • An example in which the wireless communication device is mounted on a memory card is shown in FIG.
  • the memory card 331 includes a wireless communication device 355 and a memory card main body 332.
  • the memory card 331 uses a wireless communication device 335 for wireless communication with an external device (such as a wireless terminal or the access point 11).
  • an external device such as a wireless terminal or the access point 11.
  • description of other elements (for example, a memory) in the memory card 331 is omitted.
  • a bus, a processor Part and an external interface part are connected to the buffer via the bus.
  • Firmware operates in the processor unit.
  • the processor unit on which the firmware operates may be a processor that performs processing of the communication control device or the control unit according to the present embodiment, or another processor that performs processing related to function expansion or change of the processing. Also good.
  • the access point or wireless terminal according to the present embodiment may include a processor unit on which firmware operates.
  • the processor unit may be provided in an integrated circuit in a wireless communication device mounted on an access point or an integrated circuit in a wireless communication device mounted on a wireless terminal.
  • a clock generation unit Is provided.
  • the clock generation unit generates a clock and outputs the clock from the output terminal to the outside of the wireless communication device.
  • the host side and the wireless communication apparatus side can be operated in synchronization by outputting the clock generated inside the wireless communication apparatus to the outside and operating the host side with the clock output to the outside. It becomes possible.
  • a power supply unit in addition to the configuration of the wireless communication device (access point wireless communication device or wireless terminal wireless communication device or both) according to any one of the first to fourth embodiments, a power supply unit, A power supply control unit and a wireless power supply unit are included.
  • the power supply control unit is connected to the power supply unit and the wireless power supply unit, and performs control to select a power supply to be supplied to the wireless communication device. As described above, by providing the wireless communication apparatus with the power supply, it is possible to perform a low power consumption operation by controlling the power supply.
  • a SIM card is included in addition to the configuration of the wireless communication apparatus according to the seventh embodiment.
  • the SIM card is connected to a transmission unit, a reception unit, or a control unit in the wireless communication apparatus. As described above, by adopting a configuration in which the SIM card is provided in the wireless communication device, authentication processing can be easily performed.
  • a moving image compression / decompression unit is included.
  • the moving image compression / decompression unit is connected to the bus. As described above, by providing the wireless communication device with the moving image compression / decompression unit, it is possible to easily transmit the compressed moving image and expand the received compressed moving image.
  • an LED unit is provided. Including.
  • the LED unit is connected to the transmission unit, the reception unit, or the control unit. In this way, by providing the wireless communication device with the LED unit, it is possible to easily notify the user of the operating state of the wireless communication device.
  • a vibrator unit is provided in addition to the configuration of the wireless communication device (access point wireless communication device or wireless terminal wireless communication device or both) according to any one of the first to fourth embodiments. Including.
  • the vibrator unit is connected to the transmission unit, the reception unit, or the control unit. As described above, by providing the radio communication device with the vibrator unit, it is possible to easily notify the user of the operation state of the radio communication device.
  • the twelfth embodiment includes a display in addition to the configuration of the wireless communication device (access point wireless communication device or wireless terminal wireless communication device) according to any one of the first to fourth embodiments.
  • the display may be connected to the control unit (101 or 201) of the wireless communication device via a bus (not shown).
  • a bus not shown
  • [1] a frame type in a wireless communication system, [2] a method of disconnecting connections between wireless communication apparatuses, [3] an access method of a wireless LAN system, and [4] a frame interval of the wireless LAN will be described.
  • Frame type in communication system Generally, as described above, the frames handled on the radio access protocol in the radio communication system are roughly divided into three: data frame, management frame, and control frame. Divided into types. These types are usually indicated by a header portion provided in common between frames. As a display method of the frame type, three types may be distinguished by one field, or may be distinguished by a combination of two fields.
  • the frame type is identified by two fields, Type and Subtype, in the Frame Control field in the frame header portion of the MAC frame.
  • a data frame, a management frame, or a control frame is roughly classified in the Type field, and a detailed type in the roughly classified frame, for example, a Beacon frame in the management frame is identified in the Subtype field.
  • the management frame is a frame used for managing a physical communication link with another wireless communication device. For example, there are a frame used for setting communication with another wireless communication device, a frame for releasing a communication link (that is, disconnecting), and a frame related to a power saving operation in the wireless communication device. .
  • the data frame is a frame for transmitting data generated inside the wireless communication device to the other wireless communication device after establishing a physical communication link with the other wireless communication device.
  • Data is generated in an upper layer of the present embodiment, for example, generated by a user operation.
  • the control frame is a frame used for control when a data frame is transmitted / received (exchanged) to / from another wireless communication apparatus.
  • the wireless communication apparatus receives a data frame or a management frame
  • the response frame transmitted for confirmation of delivery belongs to the control frame.
  • the response frame is, for example, an ACK frame or a BlockACK frame.
  • RTS frames and CTS frames are also control frames.
  • connection disconnection method between wireless communication devices There are an explicit method and an implicit method for disconnection (release) of a connection.
  • an explicit method one of the wireless communication apparatuses that have established a connection transmits a frame for disconnection.
  • a deauthentication frame is classified as a management frame.
  • the wireless communication device that receives a frame for disconnecting a connection disconnects the connection when the frame is received. judge. After that, if it is a non-base station wireless communication terminal, it returns to the initial state in the communication phase, for example, the state of searching for a connected BSS.
  • the connection management Delete information related to the wireless communication terminal from the table. For example, when assigning an AID to a wireless communication terminal that joins the BSS in the association process at the stage where the wireless communication base station has permitted the connection, the holding information associated with the AID of the wireless communication terminal that has disconnected the connection. May be deleted, and the AID may be released and assigned to another newly joined wireless communication terminal.
  • a frame transmission transmission of a data frame and a management frame, or transmission of a response frame to a frame transmitted by the device itself
  • a wireless communication device of a connection partner with which a connection has been established. If not, it is determined whether the connection is disconnected.
  • the connection is disconnected as described above, such that the communication distance is away from the connection-destination wireless communication device, and the wireless signal cannot be received or decoded. This is because a wireless link cannot be secured. That is, it is impossible to expect reception of a frame for disconnecting the connection.
  • a timer is used as a specific example of determining disconnection by an implicit method. For example, when transmitting a data frame requesting a delivery confirmation response frame, a first timer (for example, a retransmission timer for a data frame) that limits a retransmission period of the frame is started, and until the first timer expires (that is, If a delivery confirmation response frame is not received (until the desired retransmission period elapses), retransmission is performed. The first timer is stopped when a delivery confirmation response frame to the frame is received.
  • a first timer for example, a retransmission timer for a data frame
  • the first timer is stopped when a delivery confirmation response frame to the frame is received.
  • the first timer expires without receiving the delivery confirmation response frame, for example, it is confirmed whether the other party's wireless communication device still exists (within the communication range) (in other words, the wireless link can be secured).
  • a second timer for limiting the retransmission period of the frame (for example, a retransmission timer for the management frame) is started at the same time. Similar to the first timer, the second timer also performs retransmission if it does not receive an acknowledgment frame for the frame until the second timer expires, and determines that the connection has been disconnected when the second timer expires. . When it is determined that the connection has been disconnected, a frame for disconnecting the connection may be transmitted.
  • the third timer is started. Whenever a new frame is received from the connection partner wireless communication device, the third timer is stopped and restarted from the initial value. When the third timer expires, a management frame is transmitted to confirm whether the other party's wireless communication device still exists (within the communication range) (in other words, whether the wireless link has been secured) as described above. At the same time, a second timer (for example, a retransmission timer for management frames) that limits the retransmission period of the frame is started.
  • a second timer for example, a retransmission timer for management frames
  • the acknowledgment response frame to the frame is not received until the second timer expires, retransmission is performed, and if the second timer expires, it is determined that the connection has been disconnected.
  • a frame for disconnecting the connection may be transmitted when it is determined that the connection has been disconnected.
  • the latter management frame for confirming whether the wireless communication apparatus of the connection partner still exists may be different from the management frame in the former case.
  • the timer for limiting the retransmission of the management frame is the same as that in the former case as the second timer, but a different timer may be used.
  • [3] Access method of wireless LAN system For example, there is a wireless LAN system that is assumed to communicate or compete with a plurality of wireless communication devices.
  • the IEEE 802.11 wireless LAN uses CSMA / CA (Carrier Sense Multiple Access with Carrier Avoidance) as a basic access method.
  • CSMA / CA Carrier Sense Multiple Access with Carrier Avoidance
  • the transmission is performed simultaneously by a plurality of wireless communication devices grasping the transmission of the wireless communication device, and as a result
  • the radio signal collides and frame transmission fails.
  • the transmissions by a plurality of wireless communication devices that grasp the transmission of the wireless communication device are stochastically dispersed. Therefore, if there is one wireless communication device that has drawn the earliest time in the random time, the frame transmission of the wireless communication device is successful, and frame collision can be prevented. Since acquisition of transmission rights is fair among a plurality of wireless communication devices based on a random value, the method employing Carrier Aviation is a method suitable for sharing a wireless medium between a plurality of wireless communication devices. be able to.
  • the IEEE 802.11 wireless LAN frame interval will be described.
  • the frame interval used in the IEEE 802.11 wireless LAN is as follows: distributed coordination function inter frame space (DIFS), arbitration inter frame space (AIFS), point coordination function intra interface space interface (IFS).
  • DIFS distributed coordination function inter frame space
  • AIFS arbitration inter frame space
  • IFS point coordination function intra interface space interface
  • RIFS reduced interface space
  • the definition of the frame interval is defined as a continuous period to be opened after confirming the carrier sense idle before transmission in the IEEE 802.11 wireless LAN, and a strict period from the previous frame is not discussed. Therefore, in the description of the IEEE802.11 wireless LAN system here, the definition follows.
  • the waiting time for random access based on CSMA / CA is the sum of a fixed time and a random time, and it can be said that such a definition is used to clarify the fixed time.
  • DIFS and AIFS are frame intervals used when attempting to start frame exchange during a contention period competing with other wireless communication devices based on CSMA / CA.
  • the DIFS is used when priority according to the traffic type (Traffic Identifier: TID) is provided when there is no distinction of the priority according to the traffic type.
  • TID Traffic Identifier
  • AIFS Since the operations related to DIFS and AIFS are similar, the following description will be made mainly using AIFS.
  • access control including the start of frame exchange is performed in the MAC layer.
  • QoS Quality of Service
  • the traffic type is notified together with the data, and the data is classified according to the priority at the time of access based on the traffic type.
  • This class at the time of access is called an access category (AC). Therefore, an AIFS value is provided for each access category.
  • PIFS is a frame interval for enabling access with priority over other competing wireless communication devices, and has a shorter period than either of the values of DIFS and AIFS.
  • SIFS is a frame interval that can be used when transmitting a control frame of a response system or when frame exchange is continued in a burst after acquiring an access right once.
  • the EIFS is a frame interval that is activated when frame reception fails (it is determined that the received frame is an error).
  • the RIFS is a frame interval that can be used when a plurality of frames are continuously transmitted to the same wireless communication device in bursts after acquiring the access right once. Do not request a response frame.
  • FIG. 29 shows an example of a frame exchange during a contention period based on random access in the IEEE 802.11 wireless LAN. *
  • the random time is obtained by multiplying a pseudo-random integer derived from a uniform distribution between contention windows (Content Window: CW) given by an integer from 0 to a slot time.
  • CW multiplied by slot time is referred to as CW time width.
  • the initial value of CW is given by CWmin, and every time retransmission is performed, the value of CW is increased until it reaches CWmax.
  • Both CWmin and CWmax have values for each access category, similar to AIFS.
  • the wireless communication apparatus that is the transmission destination of W_DATA1 if the data frame is successfully received and the data frame is a frame that requests transmission of a response frame, the occupation of the physical packet that includes the data frame on the wireless medium is completed.
  • a response frame (W_ACK1) is transmitted after SIFS time from the time.
  • the wireless communication apparatus that has transmitted W_DATA1 transmits the next frame (for example, W_DATA2) after SIFS time from the end of occupation of the physical packet containing W_ACK1 on the wireless medium if it is within the transmission burst time limit when W_ACK1 is received. can do.
  • AIFS, DIFS, PIFS, and EIFS are functions of SIFS and slot time, and SIFS and slot time are defined for each physical layer.
  • Parameters for which values are provided for each access category, such as AIFS, CWmin, and CWmax, can be set for each communication group (Basic Service Set (BSS) in the IEEE 802.11 wireless LAN), but default values are set. .
  • BSS Base Service Set
  • the SIFS is 16 ⁇ s and the slot time is 9 ⁇ s.
  • the PIFS is 25 ⁇ s
  • the DIFS is 34 ⁇ s
  • the frame interval of the access category BACKGROUND (AC_BK) in AIFS is 79 ⁇ s by default.
  • the frame interval of BEST EFFORT (AC_BE) has a default value of 43 ⁇ s
  • the frame interval of VIDEO (AC_VI) and VOICE (AC_VO) has a default value of 34 ⁇ s
  • the default values of CWmin and CWmax are 31 and 1023 for AC_BK and AC_BE, respectively.
  • AC_VI is 15 and 31
  • AC_VO is 7 and 15.
  • the EIFS is basically the sum of the time lengths of response frames in the case of transmission at SIFS and DIFS at the slowest required physical rate. Note that in a wireless communication apparatus capable of efficiently taking EIFS, the occupation time length of a physical packet carrying a response frame to the physical packet that activated EIFS is estimated, and the sum of SIFS, DIFS, and the estimated time may be used. it can.
  • the frame according to the embodiment of the present invention is not limited to a frame referred to in the IEEE 802.11 standard, but may be referred to as a packet.
  • the base station transmits a plurality of frames to a plurality of terminals
  • the plurality of frames to be transmitted may be the same or different.
  • a base station transmits or receives a plurality of frames or a plurality of Xth frames
  • these frames or the Xth frames may be the same or different.
  • X can be set to any value depending on the situation.
  • processors may include general purpose processors, central processing units (CPUs), microprocessors, digital signal processors (DSPs), controllers, microcontrollers, state machines, and the like.
  • processors may refer to an application specific integrated circuit, a field programmable gate array (FPGA), a programmable logic circuit (PLD), or the like.
  • FPGA field programmable gate array
  • PLD programmable logic circuit
  • processor may refer to a combination of processing devices such as a plurality of microprocessors, a combination of a DSP and a microprocessor, and one or more microprocessors that cooperate with a DSP core.
  • the term “memory” may encompass any electronic component capable of storing electronic information.
  • “Memory” means random access memory (RAM), read only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM), electrically erasable PROM (EEPROM), non-volatile It may refer to random access memory (NVRAM), flash memory, magnetic or optical data storage, which can be read by the processor. If the processor reads and / or writes information to the memory, the memory can be said to be in electrical communication with the processor. The memory may be integrated into the processor, which again can be said to be in electrical communication with the processor.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • Access point (wireless terminal) 12A, 12B, 12C, 12D Antennas 1, 2, 3, 4: Wireless terminals 1A, 2A, 3A, 4A: Antennas 21, 22, 23, 24: Beams 51, 61, 71, 81: Notification frames 101, 201 : Control unit 102, 202: transmission unit 103, 203: reception unit 104, 204: buffer 111, 211: baseband unit 121, 221: RF unit 122, 222: transmission circuit 123, 223: reception circuit 112, 212: control Circuits 113, 213: Transmission processing circuits 114, 214: Reception processing circuits 115, 116, 215, 216: DA conversion circuits 117, 118, 217, 218: AD conversion circuit 301: Notebook PC 305, 315, 355: Wireless communication device 321: Mobile terminal 331: Memory card 332: Memory card body

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】複数の無線端末と通信する場合に各無線端末への通知を効率的に行う。 【解決手段】本発明の実施形態としての通信制御装置は、複数の無線通信装置を指定する情報と、前記複数の無線通信装置にそれぞれ割り当てたリソースブロックに関する情報とを含む第1情報を含むフレームを送信し、前記フレームを送信した後、前記複数の無線通信装置のそれぞれに割り当てた前記リソースブロックを同時に用いて通信を行うよう制御する制御部を備える。

Description

通信制御装置、無線端末、メモリーカード、集積回路、無線通信装置および無線通信方法
 この発明の実施形態は、通信制御装置、無線端末、メモリーカード、集積回路、無線通信装置および無線通信方法に関する。
 複数のチャネルを複数の無線端末に割り当て、複数の無線端末宛て同時送信もしくは複数の無線端末からの同時受信をするOFDMA (Orthogonal Frequency Division Multiple Access)通信を行うことを考える。ここで、OFDMAは、複数の無線端末にチャネル単位で割り当てを行う方式だけでなく、サブキャリア単位で割り当てを行う方式も含めるとする。OFDMA通信で利用する複数のチャネルは、無線通信システムとして利用する全てのチャネルであっても、その一部の複数チャネルであってもよい。
 OFDMA通信を行う場合に、アクセスポイントは、複数チャネルの利用効率を高めるように、OFDMAの対象となる無線端末の選定と各無線端末への適切なチャネル割り当てを行い、選定した無線端末にそれぞれに割り当てたチャネルを通知する必要がある(チャネル単位での割り当て方式の場合)。この際、選定した無線端末にそれぞれ個別にフレームを送信することで、当該無線端末に割り当てたチャネルを通知することが考えられる。しかしながら、この方法では、オーバーヘッドが大きく、選定する無線端末の数が多くなるほどOFDMA通信の開始までの時間が長くなる。また無線端末にチャネルを割り当てたときのチャネル状況と、OFDMA通信を開始する際のチャネル状況との差が大きくなる可能性があり、所望の通信品質が得られなくなる場合がある。ここで述べたことはチャネル単位での割り当て方式だけでなく、サブキャリア単位での割り当て方式の場合でも同様である。
IEEE Std.802.11acTM-2013 IEEE Std 802.11TM-2012
 本発明の実施形態は、各無線端末への通知を効率的に行うことを目的とする。
 本発明の実施形態としての通信制御装置は、複数の無線通信装置を指定する情報と、前記複数の無線通信装置にそれぞれ割り当てたリソースブロックに関する情報とを含む第1情報を含むフレームを送信し、前記フレームを送信した後、前記複数の無線通信装置のそれぞれに割り当てた前記リソースブロックを同時に用いて通信を行うよう制御する制御部を備える。
第1の実施形態に係る無線通信システムを示す図。 アクセスポイントおよび各無線端末間の動作シーケンスの第1の例を示す図。 図2に示した動作例において、アクセスポイントおよび各無線端末が送信するフレームをチャネル別に表した図。 通知フレームのフォーマット例を示す図。 通知フレームのフレームフォーマットの他の例を示す図。 アクセスポイントおよび各無線端末間の動作シーケンスの第2の例を示す図。 図5に示した動作例において、アクセスポイントおよび各無線端末が送信するフレームをチャネル別に表した図。 アクセスポイントおよび各無線端末間の動作シーケンスの第3の例を示す図。 図7に示した動作例において、アクセスポイントおよび各無線端末が送信するフレームをチャネル別に表した図。 アクセスポイントおよび各無線端末間の動作シーケンスの第4の例を示す図。 図9に示した動作例において、アクセスポイントおよび各無線端末が送信するフレームをチャネル別に表した図。 第1の実施形態に係るアクセスポイントに搭載される無線通信装置の機能ブロック図。 第1の実施形態に係る無線端末に搭載される無線通信装置の機能ブロック図。 第1の実施形態に係るアクセスポイントの動作のフローチャート。 第1の実施形態に係る無線端末の動作のフローチャート。 チャネルが連続することの意味を説明する図。 第3の実施形態に係るアクセスポイントに搭載される無線通信装置のハードウェア構成例を示す図。 第3の実施形態に係る無線端末に搭載される無線通信装置のハードウェア構成例を示す図。 第4の実施形態に係る無線端末の斜視図。 第4の実施形態に係るメモリーカードを示す図。 コンテンション期間のフレーム交換の一例を示す図。 OFDMAの説明図。
 以下、図面を参照しながら、本発明の実施形態について説明する。無線LANの規格書して知られているIEEE Std 802.11TM-2012およびIEEE Std 802.11acTM-2013は、本明細書においてその全てが参照によって組み込まれる(incorporated by reference)ものとする。
(第1の実施形態)
 図1は、第1の実施形態に係る無線通信システムを示す。この無線通信システムは、アクセスポイント(AP)11と無線端末(STA)1、2、3、4とを備え、IEEE802.11規格に従った通信を実行する。ただし、無線通信システムが実行する通信方式は、これに限られず、本発明が実施可能な限り、任意の通信方式が実行可能である。アクセスポイントも無線端末の一形態であり、アクセスポイント11とは、アクセスポイントの機能を有する無線端末であるといえる。
 アクセスポイント11は、1つまたは複数のアンテナを備える。図1の例では、アクセスポイント11は、4つのアンテナ12A、12B、12C、12Dを備える。各無線端末1~4は、それぞれ1つまたは複数のアンテナを備える。図1の例では、各無線端末1~4は、それぞれ1本のアンテナ1A、2A、3A、4Aを備える。アクセスポイント11に、無線端末1~4が接続して、1つの無線通信システムもしくは無線通信グループを形成している。接続とは、無線リンクを確立した状態を意味しており、アクセスポイント11とのアソシエーションプロセス(アソシエーション要求とアソシエーション応答の送受信等)を経て、通信に必要なパラメータの交換が完了することで、無線リンクが確立される。なお、図1では、無線リンクを確立した無線端末として無線端末1~4が示されるが、これら以外にも、アクセスポイント11と無線リンクを確立した他の無線端末が存在してもよい。また、アクセスポイント11は、各無線端末との間で形成する無線ネットワークとは別に、有線または無線の別のネットワークにさらに接続されてもよい。アクセスポイント11は、これらネットワーク間の通信や、無線端末間の通信を中継することが可能である。
 アクセスポイント11は、所定の周波数帯域内の複数の周波数チャネル(以下、チャネル)をサポートし、これらのチャネルを用いて各無線端末とOFDMA(Orthogonal Frequency Division Multiple Access)通信を行う。より詳細に、アクセスポイント11は、各無線端末に1つまたは複数の異なるチャネルを割り当て、これらのチャネルを用いて複数の無線端末と同時にフレームを受信または送信する。アクセスポイント11から各無線端末への送信はダウンリンク送信、各無線端末からアクセスポイント11への送信をアップリンク送信と呼ぶ。本実施形態では、所定周波数帯域内の複数のチャネルとして、周波数の低い側から順に、チャネル1からチャネル8までの8個のチャネルがあるとする。チャネル1~8の“1~8”はチャネル番号である。8個のチャネルの関係の詳細については後述する。
 なお、アクセスポイント11は、無線通信グループ内のすべての無線端末と同時にOFDMA通信をする必要はなく、無線通信グループ内からOFDMA通信を行う無線端末を選定し、選定した無線端末とOFDMA通信を行うことができる。また、無線通信グループ内にはOFDMA通信に対応していない無線端末(レガシー端末)が存在してもよく、レガシー端末とは従前の方式で通信を行えばよい。OFDMAには、互いに直交するサブキャリアを各無線端末に割り当てて同時に通信するものも含まれるが、本実施形態では、サブキャリアではなく、チャネルベースのOFDMAを対象とする。このようなチャネルベースのOFDMAを、以下では、“MU-MC”(Multi-User Multi-Channel)と呼ぶ。
 ただし、複数の端末にサブキャリア単位で割り当てる方式であっても本実施形態は可能である。すなわち、連続した周波数領域内で(例えば20MHzチャネル幅や40MHzチャネル幅、80MHzチャネル幅、160MHzチャネル幅内で)1つまたは複数のサブキャリアを一単位とするリソースブロック(サブチャネル、リソースユニット、周波数ブロックと呼んでも良い)を端末に各々割り当てて、複数無線端末宛て同時送信もしくは複数無線端末からの同時受信をするOFDMA通信でもよい。
 例えば、図21に示すように、周波数領域に複数のチャネルが配置されており、1つのチャネルの周波数領域は例えば20MHzである。1つのチャネルの帯域幅の周波数領域または、複数のチャネルを束ねた帯域幅の周波数領域が、それぞれ連続する周波数領域に対応する。連続する周波数領域には、周波数的に連続する複数のサブキャリアが互いに直交して配置されている。1つまたは連続する複数のサブキャリアを一単位とするリソースブロックを、1つまたは複数割り当てる。図21の例では1つのチャネルの周波数領域において、端末1、2、・・・K(Kは2以上の整数)にリソースブロックを割り当てている。端末に各々割り当てたリソースブロックで、複数端末宛て同時送信もしくは複数端末からの同時受信をする。このようなOFDMA通信を、特にリソースブロックベースのOFDMA通信と表現する。この場合、以降で説明する実施形態のチャネルをリソースブロックに置き換えれば、同様に以降の実施形態を適用することができる。図21では、端末1と端末2に割り当てるリソースブロックに2つのサブキャリアがガードサブキャリアとして配置されている。ガードサブキャリアの個数は2に限定されず、1以上であれば任意でよい。また、端末に割り当てるリソースブロック間にガードサブキャリアを配置することは必須ではなく、リソースブロック間にガードサブキャリアを配置しないことも可能である。1リソースブロック当たりのサブキャリア数は同じでもよいし、1リソースブロックのサブキャリア数が異なることを許容してもよい。また、各端末に割り当てるリソースブロックの数は同じでもよいし、異なることを許容してもよい。なお、例えばリソースブロックベースのOFDMA通信で使用する周波数領域の帯域幅に応じて、当該周波数領域に配置されるサブキャリアの帯域幅が異なってもよい。例えば1つのチャネル(例えば20MHz)がリソースブロックベースのOFDMA通信で使用されるときは、当該チャネル内に配置されるサブキャリアの帯域幅は、2つのチャネルを束ねた40MHzの帯域幅の周波数領域に配置されるサブキャリアの帯域幅よりも小さくてもよい。また、リソースブロックが複数のサブキャリアで構成される場合は、各サブキャリアの配置が連続していても連続していなくてもよい。また、1台の無線端末に、リソースブロックとして、非連続に配置された複数のサブキャリアを割り当てることも可能である
 サブキャリア単位の方式を、上述したチャネルベースのOFDMA(MU-MC)と組み合わせて行うことを許容してもよい。例えば、複数の20MHzチャネル各々で端末にサブキャリアあるいはリソースブロック単位で割り当てることを許容してもよい。この場合、同じチャネルに属する各リソースブロック内のサブキャリア数は同じとするが、各リソースブロックでサブキャリア数が異なることを許容してもよい。端末には、1つのチャネルの中の1つまたは複数のリソースブロックを割り当ててもよいし、複数のチャネルに属する複数のリソースブロックを割り当ててもよい。
 なお、後方互換の観点からは少なくとも後方互換の対象となるレガシーの端末での基本チャネル幅(IEEE802.11a/b/g/n/ac規格対応端末をレガシーとするなら20MHzチャネル幅)でPHYパケットを受信・復号できることが要求される。このため、後述のNAV(Network Allocation Vector)情報をリソースブロックについて取得したい場合、チャネル単位でNAV情報を取得し、当該チャネルに含まれるリソースブロックに、当該チャネルのNAV情報を共通に適用してもよい。
 またサブキャリア単位の方式をMU-MCと組み合わせて行う場合、具体的には例えば複数の20MHzチャネル各々で端末にサブキャリアあるいはリソースブロック単位で割り当てるという場合には、以降に記載のMU-MCでのチャネルを基準にした実施形態で考えればよい。
 以下では、チャネルベースのOFDMA(MU-MC)を想定して説明を続ける。
 アクセスポイントおよび無線端末には、互いに通信を行うための無線通信装置が搭載されている。アクセスポイントに搭載される無線通信装置は、無線端末に搭載される無線通信装置が通信を行う対象となる通信装置である。アクセスポイント11に搭載された無線通信装置は、信号を送受信する無線通信部と、無線通信部を介して、複数の対象となる通信装置である複数の無線端末1~4との通信を制御する通信制御装置とを備え、さらにアンテナを備えてもよい。無線端末に搭載される無線通信装置は、アクセスポイントに搭載される無線通信装置が通信を行う対象となる通信装置である。各無線端末に搭載された無線通信装置は、信号を送受信する無線通信部と、無線通信部を介して、対象となる通信装置であるアクセスポイント11との通信を制御する通信制御装置とを備え、さらにアンテナを備えてもよい。
 図2は、アクセスポイント11および各無線端末間の動作シーケンスの第1の例を示す。アクセスポイント11および各無線端末1~4が送信するフレームの信号が矩形によって示されている。横軸は時間軸であり、図に沿って右側が時間の流れる方向である。
 また図3は、アクセスポイント11および各無線端末が送信するフレームを、チャネル別に表した図である。()の中の数字は、送信元の無線端末の参照番号を便宜的に示しているものとする。例えば「DATA(1)」は、無線端末1が送信するデータフレームである。カッコ付きの番号がないフレームは、アクセスポイント11が送信するフレームである。“通知”は後述する通知フレーム、“ACK”はACKフレームである。横軸は時間軸であり、図に沿って右側が時間の流れる方向である。
 以下、図2および図3に基づき、アクセスポイント11および各無線端末間の動作例を示す。前提として、アクセスポイント11は、事前に無線端末1~4を含む複数の無線端末と無線リンクを確立している。無線端末1~4が、アクセスポイント11とMU-MCによりアップリンク送信を行う場合を想定する。
 まず、アクセスポイント11は、無線通信グループ内の複数の無線端末の中から、MU-MC通信(アップリンク送信)を行うべき複数の無線端末を選定するとともに、当該複数の無線端末と同時に通信するためのチャネルを各無線端末に割り当てる。ここでは、アクセスポイント11は、無線端末1、2、3、4を選択し、無線端末1にはチャネル1~3、無線端末2にはチャネル4、5、無線端末3にはチャネル6、7、無線端末4にはチャネル8を割り当てたとする。アクセスポイント11は、選定した無線端末を指定する情報と、各無線端末に割り当てたチャネルに関する情報とを含む通知情報を含んだ通知フレーム51を送信する。
 アクセスポイント11は、無線端末の選定に当たり、事前にアップリンク送信の要求通知を受けた無線端末の中から選定してもよいし、このような通知に関係なく、ランダムに無線端末を選定することも可能である。後者の場合、アクセスポイント11に送信するデータが存在しない場合には、無線端末はMU-MC通信の対象として選定されても、データフレームを送信しなければよい。また、アクセスポイント11は、端末からのアップリンク送信の要求通知情報以外の情報を利用して、無線端末の選定をしても良いし、アクセスポイント11自身が保持している情報のみを利用して無線端末の選定を行うことも可能である。
 また、アクセスポイント11は、選定した無線端末にチャネルを割り当てる際に、事前に各無線端末から使用を希望するチャネルの通知を受け、通知されたチャネルの中から割り当てを行ってもよい。無線端末はキャリアセンスを行うことで、使用を希望するチャネルを特定してもよい。また、アクセスポイント11は、無線端末に割り当てるチャネルをランダムに決定してもよい。また、アクセスポイント11は、自身が保持している各端末のチャネル情報などを利用して各無線端末に割り当てるチャネルを決定してもよい。また、チャネル数に関しても、事前に無線端末から割り当てを希望するチャネル数の要求を受け、要求されたチャネル数のチャネルを割り当てるようにしてもよい。また、複数の無線端末グループを生成し、グループ毎に異なるタイミングでMU-MC通信を行ってもよく、この場合、グループ単位でチャネルの割り当てを行えばよい。
 アクセスポイント11は、通知フレーム51の送信を、一例として、ブロードキャストで行う。ただし、通知フレーム51を、マルチキャストやユニキャストなど、ブロードキャスト以外の方法で送信してもよい。通知フレーム51を送信するチャネルは、予め決めたチャネル(例えばチャネル1)で送信してもよいし、複数のチャネルで送信することも可能である。通知フレーム51は、上記複数のチャネルとして、全てのチャネルでDuplicate送信により送信してもよい。Duplicate送信とは、複数のチャネルで同じフレームを送信することである。その際、全てのチャネルでキャリアセンスを行い、一定時間アイドルで送信権を獲得できたチャネル全てで、Duplicate送信してもよい。通知フレーム51を上記予め決めたチャネル(例えばチャネル1)で送信する場合において、当該予め決めたチャネルは、無線端末とのアソシエーションプロセス時にアソシエーション応答フレーム等で通知してもよいし、周期的に送信するビーコンフレームで通知してもよいし、当該予め決めたチャネルを通知するための管理フレームを別途定義して、当該管理フレームで事前に通知してもよい。また、通知フレーム51を送信するチャネルは固定でなくてもよく、周期的に送信するビーコンフレームや、別途定義したチャネルを通知するための管理フレームを用いて、適宜変更してもよい。
 図3の例では、チャネル1で通知フレーム51を送信している。アクセスポイント11は、通知フレーム51の送信前に、CSMA/CAに基づき、キャリアセンスを行い、キャリアセンス情報からアイドルの場合に、送信権を獲得し、通知フレーム51を送信するものとする。キャリアセンスには、物理的なキャリアセンスと、仮想的なキャリアセンスがあるが、本実施形態では両方のキャリアセンスを含んでもよい。なお、管理フレームは、他の無線端末との間の通信リンクの管理のために用いられるフレームであり、一例として、ビーコンフレーム、アソシエーション要求フレーム、アソシエーション応答フレーム等がある。制御フレームは、管理フレーム及びデータフレームを、他の無線通信装置との間で送受信(交換)するときの制御のために用いられるフレームであり、一例として、RTSフレーム、CTSフレーム、ACKフレーム等がある。通知フレームは、一例として管理フレームまたは制御フレームに分類してもよいし、データフレームに分類してもよい。これらデータフレーム、管理フレーム、制御フレームの詳細は、後述する他の実施形態で説明する。
 キャリアセンスについてさらに詳細に説明すると、媒体(CCA)のビジーおよびアイドルに関する物理的なキャリアセンスと、受信フレームの中に記載されている媒体予約時間に基づく仮想的なキャリアセンスとの両方がある。いずれか一方のキャリアセンス結果がビジーを示すならば、媒体がビジーであるとみなされ、その間の信号の送信が禁止される。なお、IEEE802.11規格では、媒体予約時間は、MACヘッダの中のDurationフィールド(後述する図4(A)参照)に記載される。アクセスポイントおよび無線端末内の無線通信装置は、他の無線通信装置宛ての(自己宛てでない)フレームを受信した場合に、媒体予約時間の間、媒体が仮想的にビジーであると判定する。このような仮想的に媒体をビジーであると判定する仕組み、或いは、仮想的に媒体をビジーであるとする期間は、NAV(Network Allocation Vector)と呼ばれる。
 図4(A)に、通知フレーム51のフレームフォーマットの例を示す。通知フレーム51は、例えばFrame Controlフィールド、Durationフィールド、RAフィールド、TAフィールド、共通情報フィールド、端末情報フィールド、FCSフィールドを含む。なお通知フレーム51には、図示のフィールド以外に、Signalフィールドや、同期をとるための同期フィールドなど、他の種類のフィールドが含まれてもよい。Signalフィールドには、例えばフレーム全体長や適用変調方式など、フレーム構成情報が含まれ得る。
 Frame Controlフィールドには、フレームの種別などを表す情報が設定される。
 Durationフィールドには、上述の仮想的なキャリアセンスの媒体予約時間が設定される。Durationフィールドに媒体予約時間が設定されたフレームを受信した装置は、フレームの受信から媒体予約時間をカウントダウンし、0になるまでは、媒体が仮想的にビジーであると判定する。
 RA(Receiver Address)フィールドには、通常、フレームの送信先のMACアドレスが設定される。通知フレーム51は、複数の無線端末宛に送信されるため、RAフィールドには、ブロードキャストアドレス、またはマルチキャストアドレスを設定することが考えられる。複数のユニキャストアドレスを設定することも可能であり、この場合は、RAフィールドを複数設け、Frame Controlフィールドで複数のユニキャストアドレスが設定されていることを定義してもよい。
 TA(Transmitter Address)フィールドには、フレーム送信元のMACアドレスが含まれる。本実施形態では、例えば、アクセスポイントのMACアドレスが設定される。
 共通情報フィールドは、MU-MC通信を行うために必要な情報として、MU-MC通信を行う対象として選択した各無線端末に共通に通知すべき情報が設定される。例えばMU-MC通信として、アップリンク送信を行うのかダウンリンク送信を行うのかのMU-MC通信の種別情報を設定してもよい。アクセスポイント11が各無線端末に割り当てたチャネルのすべてを識別する情報を設定してもよい。また、MU-MC通信としてアップリンク送信を指定した場合に、アップリンク送信するフレームのサイズまたは時間長に関する条件を設定してもよい。サイズまたは時間長に関する条件は、例えば無線端末が送信するフレームサイズあるいはデータサイズ(フレームのボディ部のサイズ)の値を表す情報でもよいし、無線端末が送信するフレームサイズあるいはデータサイズ(フレームのボディ部のサイズ)の値の範囲(この範囲内で自由に返信できる)でもよい。また、アップリンク送信するデータフレームのアクセスカテゴリを指定する情報を設定してもよい。アクセスカテゴリは例えばIEEE802.11の規格書に定義されたものでもよいし、別途定義したものでも構わない。また、共通情報フィールドには、後述する各種の一定時間(無線端末がフレーム送信前に待機する時間)を表す情報を設定してもよい。また、後述する端末情報フィールド数を表わす情報を設定してもよい。
 端末情報フィールド(個別情報フィールド)は、MU-MC通信の対象として選択した無線端末ごとに設けられる。端末情報フィールドの数は、MU-MC通信の対象として選択した無線端末の個数に一致し、当該無線端末の数に応じて可変である。図2の例では、4つの無線端末が選択されたため、端末情報フィールド数は4つである。すなわち端末情報フィールド1、端末情報フィールド2、端末情報フィールド3、端末情報フィールド4が設けられる。
 端末情報フィールドには、選択した無線端末の識別情報と、MU-MC通信を行うために必要な情報として、当該無線端末に固有の個別情報が含まれる。個別情報は、無線端末に割り当てたチャネルに関するチャネル情報を含む。チャネル情報の例として、当該無線端末に割り当てたチャネルの識別情報がある。図4(B)には、端末情報フィールドに端末IDと、チャネルID(チャネル番号)を設定する例が示される。または、個別情報として、無線端末に割り当てたチャネル数の情報を設定することも可能である(なお、チャネル数から、どのようにして無線端末が自端末に割り当てられたチャネルを特定するかについては後述する)。ここで述べた端末情報フィールドの構成は一例であり、後述するように種々の構成が可能である。端末IDは、無線端末のMACアドレスでもよいし、アソシエーションプロセス時にアクセスポイント11から便宜的に割り当てられる識別子を利用してもよい。また、アクセスポイント11が、選択した無線端末毎にアップリンク送信するデータフレームのアクセスカテゴリを指定する場合、各個別情報にアクセスカテゴリを指定する情報が含まれていてもよい。
 アクセスポイント11が選択した各無線端末の識別情報を、各端末情報フィールドではく、共通情報フィールドに設定することも可能である。この場合、共通情報フィールドには、どの無線端末がどの端末情報フィールドを使用するかを表す情報を設定してもよい。無線端末の識別情報を並べた順番に、先頭側の端末情報フィールドを使用するとのルールを決めてもよく、この場合は、どの端末情報フィールドを使用するかの情報は不要である。無線端末の識別情報を並べた順番は、無線端末の順位に関する情報を表している。
 また、無線端末を予めグループ化して管理してもよく、この場合、個々の無線端末を指定するのではなく、グループを指定するのでもよい。この場合は、グループの識別情報を共通情報フィールドまたは端末情報フィールドに設定すればよい。共通情報フィールドには、どの無線端末がどの端末情報フィールドを使用するかを表す情報を設定してもよい。各無線端末には自端末がどのグループに属するかを、事前にアクセスポイント11が、ビーコンフレームやアソシエーション応答フレームや別途定義した管理フレームで通知しておけばよい。
 FCS(Frame Check Sequence)フィールドには、通知フレーム51のFCS情報が設定される。FCS情報は、受信装置側でフレームボディ部の誤り検出のため用いられる。
 図4に示した通知フレーム内の端末情報フィールドおよび共通情報フィールドは、MACフレームのMACヘッダ内に配置されてもよいし、フレームボディ部に配置されてもよい。ここでは、MACフレーム内に端末情報フィールドおよび共通情報フィールドを設定する場合を示したが、図4Aに示すように、MACフレームの先頭側に付加する物理ヘッダ(PHYヘッダ)に端末情報フィールドおよび共通情報フィールドを設定してもよい。PHYヘッダは、L-STF(Legacy-Short Training Field)、L-LTF(Legacy-Long TrainingField)、L-SIG(Legacy Signal Field)、共通情報フィールド、端末情報フィールドを含む。L-STF、L-LTF、L-SIGは、例えば、IEEE802.11aなどのレガシー規格が認識可能なフィールドであり、信号検出、周波数補正、伝送速度などの情報が格納される。以下の説明では、通知フレームは、先に図4に示したようなフォーマットを有する場合を想定する。
 無線端末1~4は、アクセスポイント11から送信された通知フレーム51を受信し、通知フレーム51の共通情報フィールドおよび端末情報フィールドを解析する。無線端末は、自装置の識別情報が、通知フレーム51の端末情報フィールドのいずれか(または共通情報フィールド)に含まれているかを判断し、自装置の識別情報が含まれている場合は、自らがMU-MC通信の対象として選択されたことを把握する。また、この場合、無線端末は、自端末に対応する端末情報フィールドから、自端末に割り当てられたチャネルを把握する。さらに、必要に応じて、共通情報フィールドまたは端末情報フィールドから、その他のMU-MC通信に必要な情報を取得する。これにより、各無線端末は、MU-MC通信が可能となる。
 図2の例では、通知フレーム51を受信した無線端末1~4は、それぞれMU-MC通信の対象として選択されたことを把握し、それぞれチャネル1~3、4~5、6~7、8を割り当てられたことを認識する。無線端末は、予め決められたチャネル(例えばチャネル1)で通知フレーム51が送信されることが分かっている場合は、当該チャネルのみで待ち受けを行い、通知フレーム51に含まれる通知情報により自端末に割り当てられたチャネルを認識したら、使用チャネルまたは待ち受けチャネルを当該割り当てチャネルに切り換えてもよい。つまり、通知フレームを通知するチャネルと、データフレームを送受信するチャネルは異なってもよい。また、通知フレーム51を通知するチャネルについては、無線端末とのMU-MC通信に用いないこととし、アクセスポイントは、通知フレーム51を通知するチャネル以外のチャネルの中から各無線端末へのチャネル割り当てを行ってもよい。
 無線端末1~4は、通知フレーム51の受信により、自端末に割り当てられたチャネルを上記のように把握するとともに、通知フレーム51の受信完了から一定時間T1後に、データフレームをアクセスポイント11に送信(アップリンク送信)すべきことを把握する。通知フレーム51の受信完了から一定時間T1後にアップリンク送信をすることは、事前にシステム仕様として決められていてもよいし、共通情報フィールドに、通知フレーム51の受信後、一定時間T1経過後に、データフレームをアップリンク送信することの指示情報が格納されていてもよい。
 ここで、一定時間T1は、予め定められた一定時間であれば任意の値でもよい。一例として、IEEE802.11無線LANのMACプロトコル仕様で規定されているフレーム間のタイムインターバルであるSIFS(Short Inter-frame Space)時間(=16μs)を用いることができる。あるいは、一定時間T1の値が共通情報フィールドに格納されており、無線端末1~4は共通情報フィールドから一定時間T1の値を取得してもよい。その他、一定時間T1は、ビーコンフレームあるいはその他の管理フレームなど、別の方法で事前に通知されてもよい。
 上述のように通知フレーム51を受信した無線端末1~4は、それぞれ割り当てられたチャネルでデータフレームを送信できるように無線通信部の設定を必要に応じて切換え、それぞれ割当てられたチャネルで通知フレーム51の受信から一定時間T1後に、データフレームを送信する。図3の例に示すように、無線端末1がチャネル1~3でデータフレームを送信し、無線端末2がチャネル4~5でデータフレームを送信し、無線端末3がチャネル6~7でデータフレームを送信し、無線端末4がチャネル8でデータフレームを送信する。なお、無線端末はデータフレームを送信する際、割り当てられたチャネルを結合して1つの周波数帯域として利用してデータフレームを送信する。ただし、チャネルごとに別々のフレームを送信する構成も可能である。また、通知フレーム51にて各端末が送信すべきサイズまたは時間長に関する条件の情報が設定されている場合は、無線端末は通知された情報に従ってデータフレームの送信を行う。また、通知フレーム51にて各端末が送信すべきアクセスカテゴリ情報が設定されている場合は、無線端末は通知された情報に従って該当するアクセスカテゴリのデータフレームの送信を行う。なお、無線端末が複数のアンテナを有する場合は、MIMO送信を行うことで、高速化およびロバスト化の効果を得ることも可能である。このようにして、MU-MCのアップリンク送信、すなわち、複数の無線端末による複数のチャネルでの同時送信が行われる。
 アクセスポイント11は、通知フレーム51で各無線端末に通知したチャネルでデータフレームを受信できるように無線通信部の設定を必要に応じて切換え、各無線端末からMU-MC送信されたデータフレームを受信する。すなわち、チャネル1~3で無線端末1から送信されたデータフレームを受信し、チャネル4~5で無線端末2から送信されたデータフレームを受信し、チャネル6~7で無線端末3から送信されたデータフレームを受信し、チャネル8で無線端末4から送信されたデータフレームを受信する。アクセスポイント11は、各無線端末から送信されたデータフレームを正しく受信すると、各データフレームの受信から一定時間T2の経過後に、無線端末1~4に、それぞれデータフレームが受信されたチャネルで、ACKフレームを送信する。これらのACKフレームは無線端末1~4に同時送信されることから、これも一種のMU-MC通信(MU-MCダウンリンク送信)であると言える。
 ここでは図3に示すように、チャネル1~3のそれぞれで無線端末1宛にACKフレームを送信し、チャネル4~5のそれぞれで無線端末2宛にACKフレームを送信し、チャネル6~7のそれぞれで無線端末3宛にACKフレームを送信し、チャネル8で無線端末4宛にACKフレームを送信する。複数のチャネルが割り当てられた無線端末に対しては、同じ内容のACKフレームを各チャネルで送信(Duplicate送信)する。ACKフレームを送信するチャネルを、割り当てチャネルのうち最も小さい番号のチャネルなど、事前に1つに決めておき、そのチャネルのみでACKフレームを返してもよい。また、ACKフレームを送信する際、各チャネルでのDuplicate送信ではなく、受信したデータフレームと同様に複数のチャネルを結合して1つの周波数帯域としてACKフレームを送信してもよい。また、ACKフレームの送信に関し、図3に示すように各無線端末宛てに個別の異なるACKフレームをMU-MC通信で送信せず、全ての無線端末宛てのACK情報を含む1つの共通フレームとして送信してもよい。この場合、全ての無線端末宛てのACK情報を含む共通ACKフレームの送信は、各チャネルでDuplicate送信してもよいし、全てのチャネルを結合して送信してもよい。
 ここで、一定時間T2は、予め定められた一定時間であれば任意の値でもよい。一例として、IEEE802.11無線LANのMACプロトコル仕様で規定されているフレーム間のタイムインターバルであるSIFS(Short Inter-frame Space)時間(=16μs)を用いることができる。一定時間T2は、一定時間T1と同じ長さであっても、異なる長さであってもよい。一定時間T2が通知フレーム51内の共通情報フィールドに格納されており、無線端末1~4は共通情報フィールドから一定時間T2の値を把握できるようになっていてもよい。その他、一定時間T2は、ビーコンフレームあるいはその他の管理フレームなど、別の方法で事前に通知されてもよい。
 前述したように、アクセスポイント11は、各無線端末が使用するチャネルに関するチャネル情報を、通知フレーム51の各端末情報フィールドに設定する。チャネル情報の例として、上述したように、各無線端末に割り当てたチャネルの識別情報(チャネル番号)を明示的に通知する方法を用いてもよい。この際、無線端末に割り当てたチャネル番号をすべて列挙する方法でもよいし、アクセスポイントがサポートするチャネル数(本実施形態では8)分のビット列を端末情報フィールド内に用意し、割り当てたチャネルに該当するビットを1、それ以外を0(あるいはこの逆)にすることで、無線端末に割り当てたチャネルを通知してもよい。例えば無線端末1にチャネル1~3を割り当てる場合は、“11100000”となる。一番左が第0ビット、一番右が第7ビットであり、左から順番にチャネル1~8が対応づけられているとする。あるいは、割り当てたチャネルが連続するチャネルの場合は、最小のチャネル番号と、最大のチャネル番号との組により通知してもよい。チャネル1~3を割り当てる場合は、最小チャネル番号1と最大チャネル番号3を通知してもよい。また、最小あるいは最大のチャネル番号と連続するチャネル数を通知してもよい。チャネル1~3を割り当てる場合は、最小チャネル番号1(あるいは最大チャネル番号3)と連続するチャネル数3を通知すればよい。チャネル1~3とチャネル6~8を割り当てる場合は、最小チャネル番号1と最大チャネル番号3の組と、最小チャネル番号6と最大チャネル番号8の組の、2つの組を通知すればよい。
 このような、割り当てたチャネルを明示的に通知する方法の他に、暗示的な通知方法も可能である。暗示的な通知として、端末情報フィールドにはチャネル情報として、無線端末に割り当てたチャネル数を設定し、端末情報フィールドのフィールド番号によって、チャネル番号を間接的に通知する方法がある。例えば、端末情報フィールド1で指定された無線端末(すなわち端末情報フィールド1に自装置の識別情報が設定された無線端末)は、通知されたチャネル数が3のときは、最小番号のチャネルから3つ分(チャネル1~3)、端末情報フィールド2で指定された無線端末は、通知されたチャネル数が2のときは、さらに次の番号から2つ(チャネル4~5)というようにする。ここでは最小番号を起点としたが、最大番号のチャネルを起点として順次、小さい番号のチャネルを割り当てるようにしてもよい。端末情報フィールドのフィールド番号は、無線端末の順位を表していると言え、端末情報フィールド1で指定された無線端末は、順位が1、端末情報フィールド2で指定された無線端末は、順位が2である。このような順位の情報は、共通情報フィールドに明示的に記載してもよい。無線端末は、このような暗示的な通知を受けた場合は、自端末のフィールドの位置(自端末の順位)と、チャネル数に基づいて、自端末用のチャネルを特定すればよい。
 アクセスポイントが各無線端末に割り当てたチャネルのすべてが、最小番号または最大番号のチャネルから連続している場合は、上記の方法で可能であるが、各無線端末に割り当てたチャネルのすべてが、チャネル1~4、7~8の場合のように、途中で番号がスキップされる場合もありうる。この場合は、共通情報フィールドにアクセスポイント11が割り当てた全チャネルを識別する情報を記載し、ここに記載されたチャネルのみを対象に、それらのうちの最小番号または最大番号のチャネルから順番に割り当てるようにすればよい。つまり当該情報で識別される上記全チャネルは、予め定められた順序を有し、順位の高いチャネルから順番に選択して割り当てる。共通情報フィールドでアクセスポイントが割り当てた全チャネルを通知する方法は、前述した端末情報フィールドで明示的にチャネルを通知する場合と同様の方法を用いればよい。すなわち、当該全チャネルを識別する情報(チャネルID等)を列挙してもよいし、あるいはビット列で当該全チャネルに対応するビットを1にし、それ以外は0にしてもよい。無線端末は、このような暗示的な通知を受けた場合は、識別情報で識別されるチャネル群の中から、自端末の順位と、自端末のチャネル数とに応じたチャネルを特定すればよい。
 なお、端末情報フィールドで無線端末の識別情報を設定する方法として、上述したように端末ID(図4(B))を記載してもよいし、あるいは少なくとも端末台数分のビットを含むビット列を用意し、対象とする無線端末に該当するビットを1にし、それ以外を0にすることでもよい。
 図5は、アクセスポイント11および各無線端末間の動作シーケンスの第2の例を示す。図6は、アクセスポイント11および各無線端末が送信するフレームを、チャネル別に表した図である。前述同様、()の中の数字は、送信元の無線端末の参照番号を便宜的に示しているものとする。カッコ付きの番号がないフレームは、アクセスポイント11が送信するフレームである。“RTS”はRTSフレーム、“CTS”はCTSフレームを表す。
 以下、図2および図3で説明した動作と異なる部分を中心に説明し、それ以外の説明は省略する。ここでも図2および図3の場合と同様、無線端末1~4が、アクセスポイント11とMU-MCによりアップリンク送信を行う場合を想定する。また、無線端末1~4にはそれぞれチャネル1~3、4~5、6~7、8が割り当てられるとする。
 図2および図3の例では、各無線端末は通知フレームの受信後、一定時間T1後に、データフレームをアップリンク送信したが、図5および図6の例では、各無線端末は、通知フレーム61の受信完了から一定時間T11後に、RTSフレームあるいは同等の機能を有する制御フレームを送信する。RTSフレームは、図6に示すように、無線端末ごとに、それぞれ割り当てられた各チャネルで送信(Duplicate送信)する。アクセスポイント11は、RTSフレームを受信できた、もしくはRTSフレーム以前一定タイミングにわたりチャネルがアイドルであったチャネルにて、CTSフレームを、RTSフレームの受信完了から一定時間T12後に返す。無線端末は、アクセスポイント11からCTSフレームを返されたチャネルを用いて、CTSフレームの受信完了から一定時間T13後に、データフレームを送信する。ここで、アクセスポイント11ならびに各無線端末間のRTSフレームとCTSフレームのやり取りの中で、正しくフレーム受信出来なかったチャネルがあった場合には、該チャネルを除いたデータフレームの送信が行われることになる。例えば、図6においてアクセスポイント11が無線端末1に対してチャネル1~3でCTSフレームのDuplicate送信を行った結果、無線端末1がチャネル1で送信されたCTSフレームを正しく受信出来なかった場合、無線端末1はチャネル1を除くチャネル2およびチャネル3のみを用いてデータフレームの送信を行う。この後、アクセスポイントは、図2および図3と同様に、データフレームを正常に受信した場合は、ACKフレームを送信するが、ここでは図示を省略している。なお、図5の例では、通知フレーム61の受信完了から一定時間T11後にRTSフレームを送信したが、通知フレーム61の受信後に、それをトリガとしてキャリアセンスを行い、通知フレーム61で通知されたチャネルの中から一定タイミングにわたりチャネルがアイドルであったチャネルのみからRTSフレームを送信してもよい。また、各無線端末が通知フレームの受信完了から一定時間後に送信するフレームは、データフレームまたは制御フレームだけでなく、管理フレームでも構わない。
 ここで、一定時間T11、T12、T13は、予め定められた一定時間であれば任意の値でもよい。一例として、IEEE802.11無線LANのMACプロトコル仕様で規定されているフレーム間のタイムインターバルであるSIFS(Short Inter-frame Space)時間(=16μs)を用いることができる。一定時間T11~T13は同じ長さであっても、異なる長さであってもよい。
 通知フレーム61の共通情報フィールドには、図2および図3のシーケンスでのデータフレームのアップリンク送信と、図5および図6のシーケンスでのデータフレームのアップリンク送信を区別するための情報(アップリンク送信モード情報)が設定されてもよい。この場合、各無線端末は、アップリンク送信モード情報に従って、図2および図3と、図5および図6のどちらのシーケンスでデータフレームのアップリンク送信を行うかを判断すればよい。ここでは、2つの方法でのアップリンク送信を示したが、これらは一例であり、通知フレームの送信または受信を契機として、MU-MCアップリンク動作を行う方法である限り、その他の方法(シーケンス)でのアップリンク送信を行うことも可能である。
 図7は、アクセスポイント11および各無線端末間の動作シーケンスの第3の例を示す。図8は、アクセスポイント11および各無線端末が送信するフレームを、チャネル別に表した図である。前述同様、()の中の数字は、送信元の無線端末の参照番号を便宜的に示しているものとする。カッコ付きの番号がないフレームは、アクセスポイント11が送信するフレームである。
 以下、図2および図3で説明した動作と異なる部分を中心に説明し、それ以外の説明は省略する。無線端末1~4にはそれぞれチャネル1~3、4~5、6~7、8が割り当てられるとする。
 図2および図3の例では、無線端末1~4が、アクセスポイント11とMU-MCアップリンク送信を行ったが、ここではアクセスポイント11から無線端末1~4へのMU-MCダウンリンク送信を行う場合を想定する。アクセスポイント11は、通知フレーム71を送信し、送信完了から、一定時間T21後に、各無線端末に、それぞれ割り当てたチャネルでデータフレームを送信する。図8に示すように、無線端末1へはチャネル1~3で、無線端末2へはチャネル4~5で、無線端末3へはチャネル6~7で、無線端末4へはチャネル8でデータフレームをダウンリンク送信する。通知フレーム71の共通情報フィールドには、MU-MC通信の種別として、ダウンリンク送信を示す情報を設定しておいてもよい。ダウンリンク送信を示す情報は、通知フレーム71の送信後に、データフレームを送信することの通知に対応する。通知フレームの送信後に送信するフレームはデータフレームに限られず、制御フレーム(後述)または管理フレームでもよい。この場合、ダウンリンク送信を示す情報は、通知フレーム71の送信後に、制御フレームまたは管理フレームを送信することの通知に対応する。
 各無線端末は、通知フレーム71にてそれぞれ割り当てられたチャネルでデータフレームを受信できるように無線通信部を必要に応じて切換え、それぞれ割当てられたチャネルでアクセスポイント11から送信されるデータフレームをそれぞれの割り当てチャネルで正常に受信し、受信完了から一定時間T22後に、ACKフレームを、割り当てチャネルの各々で送信する。より詳細に、図8に示すように、無線端末1は、チャネル1~3のそれぞれでACKフレームを送信し、無線端末2はチャネル4~5のそれぞれでACKフレームを送信し、無線端末3はチャネル6~7のそれぞれでACKフレームを送信し、無線端末4はチャネル8でACKフレームを送信する。複数のチャネルが割り当てられた無線端末では、同じ内容ACKフレームが複数のチャネルで送信(Dupicate送信)されている。ACKフレームを返すチャネルを、割り当てチャネルのうち最も小さい番号のチャネルで返すなどのルールを事前に決めておき、そのルールに従ってACKフレームを返してもよい。このルールは共通チャネル情報に設定することで通知してもよいし、システム仕様として事前に決まっていてもよいし、ビーコンフレームで通知してもい。
 ここで、一定時間T21、T22は、予め定められた一定時間であれば任意の値でもよい。一例として、IEEE802.11無線LANのMACプロトコル仕様で規定されているフレーム間のタイムインターバルであるSIFS(Short Inter-frame Space)時間(=16μs)を用いることができる。一定時間T21、T22は同じ長さであっても、異なる長さであってもよい。
 図9は、アクセスポイント11および各無線端末間の動作シーケンスの第4の例を示す。図10は、アクセスポイント11および各無線端末が送信するフレームを、チャネル別に表した図である。前述同様、()の中の数字は、送信元の無線端末の参照番号を便宜的に示しているものとする。カッコ付きの番号がないフレームは、アクセスポイント11が送信するフレームである。“RTS”はRTSフレーム、“CTS”はCTSフレームを表す。
 以下、図7および図8で説明した動作と異なる部分を中心に説明し、それ以外の説明は省略する。ここでも図7および図8の場合と同様、アクセスポイント11が、無線端末1~4とMU-MCダウンリンク送信を行う場合を想定する。また、無線端末1~4には、それぞれチャネル1~3、4~5、6~7、8が割り当てられるとする。
 図7および図8の例では、アクセスポイント11は、通知フレームの送信後、一定時間後に、データフレームをMU-MCダウンリンク送信したが、図9および図10の例では、アクセスポイント11は、まず、通知フレーム81の送信完了から一定時間T31後に、RTSフレームを送信する。RTSフレームは、図10に示すように、無線端末ごとに、それぞれ割り当てられた各チャネルで送信(Duplicate送信)する。各無線端末は、RTSフレームを受信できた、もしくはRTSフレーム以前一定タイミングにわたりチャネルがアイドルであったチャネルにて、CTSフレームを、RTSフレームの受信完了から一定時間T32(図9参照)後に返す。本例では、無線端末3が、割り当てチャネル6、7でRTSフレームを受信できなかった、もしくはRTSフレーム以前一定タイミングにわたりチャネルがアイドルであったとして、CTSフレームを送信していない。アクセスポイント11は、各無線端末からCTSフレームを返されたチャネルを用いて、CTSフレームの受信完了から一定時間T33後に、データフレームを送信する。無線端末3からはチャネル6、7のいずれでもCTSフレームが返されなかったためデータフレームを送信しないが、無線端末1、2、4からは割り当てチャネルのすべてでCTSフレームが返されたため、無線端末1、2、4については、それぞれ割り当てチャネルのすべてを用いてデータフレームを送信する。なお、割り当てチャネルのうち一部のチャネルのみでCTSフレームが返されたときは、その一部のチャネルのみでデータフレームを送信する。この後、各無線端末は、アクセスポイント11からデータフレームを正常に受信した場合は、図7および図8のアクセスポイント11と同様に、ACKフレームを送信するが、ここでは図示を省略している。なお、図9および図10の例では、通知フレーム81の送信完了から一定時間T31後にRTSフレームを送信したが、通知フレーム81の送信後に、キャリアセンスを行い、アイドルであったチャネルのみから、RTSフレームを送信してもよい。
 ここで、一定時間T31、T32、T33は、予め定められた一定時間であれば任意の値でもよい。一例として、IEEE802.11無線LANのMACプロトコル仕様で規定されているフレーム間のタイムインターバルであるSIFS(Short Inter-frame Space)時間(=16μs)を用いることができる。一定時間T31、T32、T33は同じ長さであっても、異なる長さであってもよい。
 通知フレーム81の共通情報フィールドには、図7および図8のシーケンスでのデータフレームのダウンリンク送信と、図9および図10のシーケンスでのデータフレームのダウンリンク送信を区別するための情報(ダウンリンク送信モード情報)が設定されてもよい。各無線端末は、ダウンリンク送信モード情報に従って、図7および図8と、図9および図10のどちらの方法でデータフレームのダウンリンク送信が行われるかを把握し、割り当てチャネルで待ち受け動作を行えばよい。ここでは、データフレームの2つのダウンリンク送信の例を示したが、これらは一例であり、通知フレームの送信または受信を契機として、MU-MCダウンリンク送信を行う方法である限り、その他の方法(シーケンス)でのデータフレームのダウンリンク送信も可能である。
 図11は、アクセスポイント11の無線通信装置の機能ブロック図である。上述したように、アクセスポイント11は無線端末側のネットワークと、これとは別のネットワークとの複数のネットワークに接続されてもよい。図7では、無線端末側のネットワークに接続される無線通信装置の構成を示している。
 無線通信装置は、制御部101と、送信部102と、受信部103と、アンテナ12A、12B、12C、12Dと、バッファ104とを備えている。制御部101は、無線端末との通信を制御する通信制御装置に対応し、送信部102と受信部103は、一例として、無線通信部を形成する。制御部101の処理、および送信部102と受信部103のデジタル領域の処理の全部または一部、あるいは通信制御装置の処理は、CPU等のプロセッサで動作するソフトウェア(プログラム)によって行われてもよいし、ハードウェアによって行われてもよいし、これらのソフトウェアとハードウェアの両方によって行われてもよい。アクセスポイントは、制御部101、送信部102および受信部103の全部または一部の処理、あるいは、通信制御装置の処理を行うプロセッサを備えてもよい。
 バッファ104は、上位層と制御部101との間で、データフレームを受け渡しするための記憶部である。バッファ104はDRAM等の揮発性メモリでもよいし、NAND、MRAM等の不揮発メモリでもよい。上位層は、別のネットワークから受信したフレームを無線端末側のネットワークへの中継のためバッファ104に格納したり、無線端末側のネットワークから受信したフレームを制御部101から受け取って、上位層へデータを渡したりする。上位層は、TCP/IPやUDP/IPなど、MAC層の上位の通信処理を行ってもよい。また、上位層は、データを処理するアプリケーション層の処理を行ってもよい。上位層の動作は、CPU等のプロセッサによるソフトウェア(プログラム)の処理によって行われてもよいし、ハードウェアによって行われてもよいし、ソフトウェアとハードウェアの両方によって行われてもよい。
 制御部101は、主としてMAC層の処理を行う。制御部101は、チャネルのアクセスを管理し、所望タイミングにて、フレームの送信を制御する。制御部101は、送信部102および受信部103を介して、フレームを送受信することで、各無線端末との通信を制御する。また制御部101は定期的にビーコンフレームを送信するよう制御してもよい。制御部101は、クロックを生成するクロック生成部を含んでもよい。また制御部101は外部からクロックが入力されるように構成されてもよい。制御部101は、クロック生成部で生成したクロック、または外部から入力されるクロックによって内部時間を管理してもよい。また、制御部101は、クロック生成部で作ったクロックを、ホストCPU等の外部に出力してもよい。
 制御部101は、無線端末からのアソシエーション要求を受けて、必要に応じて認証等のプロセスを経て、当該無線端末と無線リンクを確立する。制御部101は、無線リンクを確立した無線端末を管理する。制御部101は、任意のトリガにより、MU-MC通信を行うことを決定し、通知フレームを生成する。制御部101は、MU-MC通信を行う無線端末を選択し、選択した無線端末にチャネルを割り当てる。選択した無線端末と、割り当てたチャネル等に基づき、通知フレームの共通情報フィールドおよび端末情報フィールドに、前述したように必要な情報を設定する。選択したすべての無線端末間で共通する情報は、共通情報フィールドに設定することで、通知フレームの情報量を抑制できる。MU-MC通信を行う無線端末のグループを事前に1つまたは複数生成しておき、グループごとに事前に無線端末にチャネルを割り当てておいてもよい。この場合は、MU-MC通信の開始決定のトリガによりグループを選択すればよい。
 MU-MC通信のトリガは何でもよく、例えばバッファ104に1つまたは複数の無線端末へ送信するデータがあることを確認したとき、MU-MCダウンリンク送信を行うことを決定してもよい。また、無線端末から要求があった場合や、一定の時間間隔ごとにMU-MC通信を行うことを決定してもよい。制御部101は、MU-MC通信の決定によって生成した通知フレームを、使用する通信方式に従って、予め定めたチャネルを用いて、送信部102から送信する。一例としてキャリアセンスを行い、送信権を獲得できたら、通知フレームを送信部102に出力する。また、制御部101は、図7または図9に示したようなMU-MCダウンリンク送信の場合は、通知フレームの送信完了後、一定時間後に、データフレームまたはRTSフレームを、各無線端末にそれぞれ割り当てたチャネルで送信する。制御部101は、データフレームまたはRTSフレームをそれぞれ割り当てたチャネルで送信できるように、必要に応じて送信部102を制御する。また、制御部101は、通知フレームで通知したチャネルにて各無線端末から送信される各フレームを受信できるように、必要に応じて受信部103を制御する。
 送信部102は、制御部101から入力されたフレームに変調処理や物理ヘッダの付加など、所望の物理層の処理を行う。また、物理層の処理後のフレームに対して、DA変換や、所望帯域の信号成分を抽出するフィルタ処理、周波数変換を行う。送信部102は、周波数変換された信号を増幅して、1つのアンテナまたは複数のアンテナから空間に電波として放射する。なお、図示の例では送信部を1つ設けているが、チャネル毎に1つの送信部を配置して、該当する送信部を使用するようにしてもよい。このとき送信部ごとに1つのアンテナが接続されてもよい。あるいは、複数チャネルで1つの送信部が配置されてもよい。
 各アンテナで受信された信号は、受信部103において増幅され、周波数変換(ダウンコンバート)され、フィルタ処理される。例えばフィルタ処理で、チャネルごとの受信信号を抽出する。または、無線端末からそれぞれに割り当てたチャネルを結合した帯域幅でデータフレームが送信(MU-MCアップリンク送信)される場合は、それらのチャネルの結合した帯域幅で信号抽出を行う。この際、チャネル毎に抽出した受信信号を結合することで、当該結合した帯域幅の信号を得ることも可能である。このようにして得られた各受信信号は、AD変換によりデジタル信号に変換されて、復調、復号等の物理層の処理を経た後、制御部101にフレームとして入力される。なお、チャネル毎の信号抽出、または結合した帯域幅の信号抽出を、AD変換後に制御部101でデジタル領域で行ってもよい。なお、図示の例では受信部を1つ設けているが、チャネル毎に受信部を配置してもよく、受信部ごとに1つのアンテナが接続されてもよい。あるいは、複数チャネルで1つの受信部が配置されてもよい。
 制御部101は、入力されたフレームが、無線端末からのRTSフレームである場合は、RTSフレームが受信できたチャネルまたはRTSフレームの受信の一定時間前までキャリアセンスがアイドルであったチャネルで、CTSフレームを送信するように制御する。また、無線端末からデータフレームを正常に受信した場合は、データフレームが受信完了してから一定時間後に、ACKフレームを送信するように制御する。また、制御部101は、受信部103を介して、キャリアセンス情報の管理を行う。このキャリアセンス情報は、受信部103から入力する媒体(CCA)のビジーおよびアイドルに関する物理的なキャリアセンス情報と、受信フレームの中に記載されている媒体予約時間に基づく仮想的なキャリアセンス情報との両方を包含してもよい。いずれか一方のキャリアセンス情報がビジーを示すならば、媒体がビジーであるとみなされ、その間の信号の送信が禁止される。
 制御部101は、各無線端末に送信する情報、または各無線端末から受信した情報を格納するための記憶装置にアクセスして情報を読み出してもよい。記憶装置は、内部メモリでも、外部メモリでもよく、揮発性メモリでも不揮発メモリでもよい。また、記憶装置は、メモリ以外に、SSD、ハードディスク等でもよい。
 上述した制御部101と送信部102の処理の切り分けは一例であり、別の形態も可能である。例えばデジタル領域の処理までは制御部101で行い、DA変換以降の処理を送信部102で行うようにしてもよい。制御部101と受信部103の処理の切り分けについても同様に、AD変換までの処理を受信部103で行い、その後の物理層の処理を含むデジタル領域の処理を制御部101で行うようにしてもよい。ここで述べた以外の方法で処理の切り分けを行ってもよい。
 図12は、無線端末1に搭載される無線通信装置の機能ブロック図である。無線端末2~4に搭載される無線通信装置は、無線端末1の無線通信装置と同様の構成を有するため、説明を省略する。
 無線通信装置は、制御部201と、送信部202と、受信部203と、アンテナ1Aと、バッファ204とを備えている。制御部201は、アクセスポイント11との通信を制御する通信制御装置に対応し、送信部202と受信部203は、一例として、無線通信部を形成する。制御部201の処理、および送信部202と受信部203のデジタル領域の処理の全部または一部、あるいは通信制御装置の処理は、CPU等のプロセッサで動作するソフトウェア(プログラム)によって行われてもよいし、ハードウェアによって行われてもよいし、これらのソフトウェアとハードウェアの両方によって行われてもよい。無線端末は、制御部201、送信部202および受信部203の全部または一部の処理、あるいは通信制御装置の処理を行うプロセッサを備えてもよい。
 バッファ204は、上位層と制御部201との間で、データフレームを受け渡しするための記憶部である。バッファ204はDRAM等の揮発性メモリでもよいし、NAND、MRAM等の不揮発メモリでもよい。上位層は、他の無線端末、アクセスポイント11、またはサーバ等の装置に送信するデータを生成して、送信するためにバッファ204に格納したり、アクセスポイント11から受信したフレームのデータを、バッファ201を介して受け取って処理したりする。上位層は、TCP/IPやUDP/IPなど、MAC層の上位の通信処理を行ってもよい。また、上位層は、データを処理するアプリケーション層の処理を行ってもよい。上位層の処理は、CPU等のプロセッサで動作するソフトウェア(プログラム)によって行われてもよいし、ハードウェアによって行われてもよいし、これらのソフトウェアとハードウェアの両方によって行われてもよい。
 制御部201は、主としてMAC層の処理を行う。制御部201は、チャネルのアクセスを管理し、所望タイミングにて、フレームの送信を制御する。制御部201は、送信部202および受信部203を介して、アクセスポイント11とフレームを送受信することで、アクセスポイント11との通信を制御する。制御部201は、例えばアクセスポイント11から定期的に送信されるビーコンフレームを、アンテナ1Aおよび受信部203を介して受信する。制御部201は、クロックを生成するクロック生成部を含んでもよい。また、制御部201は外部からクロックが入力されるように構成されてもよい。制御部201は、クロック生成部で生成されるクロック、または外部から入力されるクロックに従って、内部時間を管理してもよい。また、制御部201は、クロック生成部で作ったクロックを、ホストCPU等の外部に出力してもよい。
 制御部201は、アクセスポイント11に接続する際は、アクセスポイント11にアソシエーション要求を送信し、必要に応じて認証等のプロセスを経て、アソシエーション応答を受信することで、当該アクセスポイント11と無線リンクを確立する。制御部201は、定期的、または外部からのトリガにより、バッファ204を確認する。制御部201は、アクセスポイント11から送信される通知フレームを受信し、通知フレームの共通情報フィールドまたは端末情報フィールドから、自端末がMU-MC通信の対象として指定されていることを検出したら、自端末に割り当てられたチャネルを端末情報フィールドから特定し、特定したチャネルを用いて、MU-MC通信を行うよう送信部202および受信部203を制御する。例えば、MU-MCアップリンク送信の場合、通知フレームの受信から一定時間後に、自端末に割り当てられたチャネルでデータフレームを送信する(図2参照)。あるいは、制御部201は、通知フレームの受信から一定時間後に、自端末に割り当てられた各チャネルでRTSフレームを送信する(図5参照)。図2および図5のどちらの動作を行うかはアップリンク送信モード情報として共通情報フィールドに設定されていてもよいし、予めシステム仕様として決められていてもよい。ここで、送信するデータフレームのサイズまたは時間長に関する条件が、共通情報フィールドまたは端末情報フィールドで指定されている場合は、これに従う。あるいは、このサイズまたは時間長に関する条件が、事前にシステム仕様やビーコンフレームでの通知などで指定されてもよい。なお、アクセスポイント11へ送信するデータが存在しないときは、データフレームを送信しなくてもよい。制御部201は、通知フレームが特定のチャネルで送信される場合は、当該チャネルで通知フレームの待ち受けを行い、通知フレームの受信後、使用チャネルまたは待ち受けチャネルを、通知フレームで指定された割り当てチャネルへ切り換えるよう送信部202および受信部203を制御してもよい。
 制御部201は、送信するフレームを、使用するチャネルならびに通信方式に従って、送信部202およびアンテナ1Aを介して送信するよう制御する。送信部202は、制御部201から入力されたフレームに変調処理や物理ヘッダの付加など、所望の物理層の処理を行う。また、物理層の処理後のフレームに対して、DA変換や、所望帯域の信号成分を抽出するフィルタ処理、周波数変換(アップコンバート)を行う。送信部202は、周波数変換された信号を増幅して、アンテナから空間に電波として放射する。なお、図示の例では送信部を1つ設けているが、チャネル毎に1つの送信部を配置して、該当する送信部を使用するようにしてもよい。このとき送信部ごとに1つのアンテナが接続されてもよい。あるいは、複数チャネルで1つの送信部が配置されてもよい。
 アンテナ1Aで受信された信号は、受信部203において、増幅され、周波数変換(ダウンコンバート)され、フィルタ処理される。例えば、所望のチャネル、またはチャネルごとの受信信号を抽出する。アクセスポイント11から割り当てたチャネルを結合した帯域幅でデータフレームが送信(MU-MCダウンリンク送信)される場合は、それらのチャネルの結合した帯域幅で信号抽出を行う。または、この際、チャネル毎に抽出した受信信号を結合することで、当該結合した帯域幅の信号を得ることも可能である。受信信号は、さらにAD変換によりデジタル信号に変換されて、復調、復号等の物理層の処理を経た後、制御部201にフレームとして入力される。なお、所望のチャネルの信号抽出、チャネル毎の信号抽出、または結合した帯域幅の信号抽出を、AD変換後にデジタル領域で制御部201で行ってもよい。なお、図示の例では受信部を1つ設けているが、チャネル毎に受信部を配置してもよく、受信部ごとに1つのアンテナが接続されてもよい。あるいは、複数チャネルで1つの受信部が配置されてもよい。
 制御部203は、アクセスポイント11から通知フレームを受信した場合、上述したように、自端末がMU-MC通信の対象として選択されているかを確認し、選択されている場合は、自端末に割り当てられたチャネルを用いてMU-MC通信に関する処理を行う。例えば、制御部203は、アクセスポイントから通知フレームを受信した後、RTSフレームを送信し、その後、アクセスポイント11からCTSフレームを受信した場合、CTSフレームを受信したチャネルを用いて、データフレームを送信する(図5参照)。また、アクセスポイント11から通知フレームを受信後、続けてデータフレームをMU-MC受信し、ACKフレームを送信する(図7参照)。また、アクセスポイント11から通知フレームの受信後にRTSフレームを受信した場合、RTSフレームを受信したチャネル、またはRTSフレームの受信の前、一定期間アイドルであったチャネルでCTSフレームを送信し、その後、データフレームをMU-MCで受信する(図9参照)。
 制御部201は、アクセスポイント11に送信する情報、またはアクセスポイント11から受信した情報を格納するための記憶装置にアクセスして情報を読み出してもよい。記憶装置は、内部メモリでも、外部メモリでもよく、揮発性メモリでも不揮発メモリでもよい。また、記憶装置は、メモリ以外に、SSD、ハードディスク等でもよい。
 上述した制御部201と送信部202の処理の切り分けは一例であり、別の形態も可能である。例えばデジタル領域の処理までは制御部201で行い、DA変換以降の処理を送信部202で行うようにしてもよい。制御部201と受信部203の処理の切り分けについても同様に、AD変換までの処理を受信部203で行い、その後の物理層の処理を含むデジタル領域の処理を制御部201で行うようにしてもよい。ここで述べた以外の処理の切り分け方も可能である。
 図13は、本実施形態に係るアクセスポイントの動作を示すフローチャートである。
 アクセスポイント11は、MU-MC通信の実行を決定し、対象となる無線端末の選択と、選択した無線端末に対するチャネル割り当てを行う(S101)。チャネル割り当てとして、アクセスポイントは、選択した無線端末に1つまたは複数のチャネルを割り当てる。一例として、無線端末に複数のチャネルを割り当てる場合は、連続するチャネルを選択する。
 アクセスポイント11は、選択した無線端末と当該無線端末に割り当てたチャネルとに関する通知情報を含む通知フレームを生成し、通知フレームを各無線端末に送信する(S102)。通知フレームには、MU-MCアップリンク送信かMU-MCダウンリンク送信かの通信種別に関する情報を含めてもよい。また、MU-MCアップリンク送信かMU-MCダウンリンク送信かの通信種別の特定方法として、通知フレームの共通情報フィールドで通知するのではなく、MU-MCアップリンク用通知フレームおよびMU-MCダウンリンク用通知フレームといったように、別の通知フレームを定義してもよい。例えば、図4(A)内のFrame Controlフィールドにて、それぞれのフレーム種別を定義することが可能である。また、アップリンク送信の場合に、図2の送信モード(通知フレームの受信完了から一定時間後にデータフレームを送信)か図5の送信モード(通知フレームの受信完了から一定時間後にRTSフレームを送信)を区別するアップリンク送信モード情報を含めてもよい。また、ダウンリンク送信の場合に、図7の送信モード(通知フレームの送信完了から一定時間経過後にデータフレームを送信)か図9の送信モード(通知フレームの送信完了から一定時間経過後にRTSフレームを送信)を区別するダウンリンク送信モード情報を含めてもよい。また、各無線端末に割り当てたチャネル数に関する情報を端末情報フィールドまたは共通情報フィールドに格納してもよい。または、各無線端末に割り当てた全チャネルを識別する情報を共通情報フィールドに格納してもよい。これまで述べてきた、その他の情報を共通情報フィールドまたは端末情報フィールドに格納してもよい。
 アクセスポイント11は、通知フレームの送信後、各無線端末に割り当てたチャネルを用いて、各無線端末とMU-MC通信を行う(S103)。図2に示した動作例では、通知フレームの受信後、一定時間T1経過後に、各無線端末からデータフレームを同時に受信(MU-MCアップリンク送信)する。図5に示した動作例では、通知フレームの送信後、各無線端末からRTSフレームを受信し、それへの応答として各無線端末へCTSフレームを送信してから一定時間T13経過後に、各無線端末からデータフレームを同時に受信(MU-MCアップリンク送信)する。図7に示した動作例では、通知フレームを送信してから一定時間T21経過後に、各無線端末へデータフレームを送信(MU-MCダウンリンク送信)する。図9に示した動作例では、通知フレームの送信後、各無線端末にRTSフレームを送信し、それへの応答として各無線端末からCTSフレームを受信してから一定時間T33経過後に、各無線端末へデータフレームを送信(MU-MCダウンリンク送信)する。
 図14は、本実施形態に係る無線端末の動作を示すフローチャートである。
 無線端末は、アクセスポイント11から、選択した無線端末を指定する情報と、当該無線端末に割り当てたチャネルに関する情報とを含む通知情報を含む通知フレームを受信する(S201)。
 無線端末は、アクセスポイント11から受信したフレームを解析することにより、自端末が指定されているかを判断する(S202)。自端末が指定されていなければ(S203のNO)、本処理を終了する。自端末が指定されている場合は(S203のYES)、フレームに含まれる通知情報に従って、自端末に割り当てられたチャネルを特定し、他の無線端末と同時に、アクセスポイント11とMU-MC通信を行う(S204)。アクセスポイント11は、各無線端末に割り当てたチャネルを用いて、各無線端末とMU-MC通信を行う。
 例えば、図2に示した動作例のように、無線端末は、通知フレームの受信後、一定時間T1経過後に、データフレームを送信(MU-MCアップリンク送信)する。または、図5に示した動作例のように、通知フレームの受信後、一定時間T11経過後にRTSフレームを送信する。その応答としてCTSフレームをアクセスポイントから受信したら、一定時間T13経過後に、データフレームを送信(MU-MCアップリンク送信)する。または、図7に示した動作例のように、アクセスポイントが、通知フレームの送信完了から一定時間T21経過後に、各無線端末へデータフレームが送信(MU-MCダウンリンク送信)されるため、無線端末は自端末の割り当てチャネルで当該データフレームの受信待ちを行う。また、図9に示した動作例のように、アクセスポイントが通知フレームの送信完了から一定時間T31後に、各無線端末にRTSフレームを送信するため、各無線端末が自端末の割り当てチャネルで受信待ちを行う。RTSフレームの受信後は、それへの応答としてCTSフレームを送信し、一定時間T33経過後に、アクセスポイント11から送信されるデータフレームの受信待ちを行う。図2、図5、図7、図9のどの動作を行うかの情報が通知フレームに記載され、その情報に従って動作してもよいし、システム仕様でいずれの動作を行うかが事前に定まっている場合は、当該情報を通知フレームに記載する必要は無い。
 以上、第1の実施形態によれば、MU-MC通信の対象として選択した無線端末と、当該無線端末に割り当てたチャネルとに関する通知情報を含む通知フレームを送信することにより、MU-MC対象となる無線端末の通知と、当該無線端末へ割り当てたチャネルの通知とを効率的に行うことができる。よって、MU-MC通信の決定から、MU-MC通信を開始するまでの時間を短くでき、システムの効率を向上させることができる。この効果は、選択する無線端末の台数が多ければ多いほど、大きく発揮される。また、通知フレームを予め決めた特定のチャネルで送信するようにしたことにより、無線端末は全チャネルでの受信待ちを行う必要はない。よって、無線端末の消費電力を低減できる。
(第2の実施形態)
 第1の実施形態で、所定周波数帯域内のチャネルはチャネル1~8まであり、これらのチャネルは連続しているとしたが、このチャネルの連続について補足の説明をする。
 IEEE802.11規格でのチャネル番号は、5MHz間隔であり、20MHzのチャネル幅とした場合に、チャネル同士が被らないチャネル番号の間隔は、4つおきとなる。本明細書でのチャネルセットでの連続するチャネルは、チャネル同士が被らないで連続したチャネルの意味で記載している。明細書中でのチャネル番号とは便宜的なもので、実際はch.1はIEEE802.11規格での5GHz帯のチャネル番号36、ch.2はIEEE802.11規格での5GHz帯のチャネル番号40、というように解釈すればよい。
[5GHz帯]
 IEEE802.11規格での5GHz帯では、基本的にチャネル番号が20MHz間隔で用いられるので、その使われているチャネル番号に則って考えて問題ない。 
[2.4GHz帯]
 一方、2.4GHz帯では、図15のように、基準チャネルの選択が、北米や中国などでは25MHz間隔(図15(A))で、欧州では30MHz間隔(図15(B))で行われている。そこで、明細書中のch.1は、IEEE802.11規格での2.4GHz帯のチャネル番号1、ch.2はIEEE802.11規格での2.4GHz帯のチャネル番号6、というように、北米や中国に倣って25MHz間隔(図15(A))のものとするのでもよい。または、明細書中のch.1は、IEEE802.11規格での2.4GHz帯のチャネル番号1、ch.2はIEEE802.11規格での2.4GHz帯のチャネル番号7、というように欧州に倣って30MHz間隔((図15(B)))のものとするのでもよい。あるいは図15(C)に示すように、5GHz帯での20MHzチャネル間隔に倣い、明細書中のch.1はIEEE802.11規格での2.4GHz帯のチャネル番号1、ch.2はIEEE802.11規格での2.4GHz帯のチャネル番号5、というようにするのでもよい。図15(C)は、図15(A)および図15(B)以外に、今後考えられるチャネル選択を例示したものである。ただし、北米や中国、欧州のような場合、別の無線通信システムが、2.4GHz帯のチャネル番号6や7を、少なくとも一部のチャネルとして選択していると、チャネル番号5と一部周波数帯域が被ることになる。この場合、互いの無線通信システムが影響する周波数帯域が広がり、チャネル利用効率が下がる。
(第3の実施形態)
 図16は、第3の実施形態に係るアクセスポイントに搭載される無線通信装置のハードウェア構成例を示したものである。この構成例は一例であり、本実施形態はこれに限定されるものではない。図11に示した無線通信装置と基本的な動作は同じであるため、構成上の違いを中心に説明し、重複する説明は省略する。
 本無線通信装置は、ベースバンド部111、RF部121と、アンテナ12A~12Dとを備える。
 ベースバンド部111は、制御回路(プロトコルスタック)112と、送信処理回路113と、受信処理回路114と、DA変換回路115、116と、AD変換回路117、118とを含む。RF部121とベースバンド部111は1チップのIC(Integrated Circuit:集積回路)で構成されてもよい。
 ベースバンド部111は、一例としてベースバンドLSIまたはベースバンドICである。また、別の例として、ベースバンド部111がIC132とIC131とを備えてもよい。このとき、IC132が制御回路112と送信処理回路113と受信処理回路114とを含み、IC131が、DA変換回路115、116とAD変換回路117、118を含んでもよい。
 制御回路112は、一例として、通信を制御する通信制御装置、または通信を制御する制御部に対応する。このとき無線通信部は、送信処理回路113と受信処理回路114を含んでもよい。さらに無線通信部は、送信処理回路113と受信処理回路114に加えて、DA変換回路115、116およびAD変換回路117、118を含んでもよい。さらに、無線通信部は、送信処理回路113、受信処理回路114、DA変換回路115、116およびAD変換回路117、118に加えて、送信回路122および受信回路123を含んでもよい。本実施形態に係る集積回路は、ベースバンド部111の全部または一部の処理、すなわち、制御回路112、送信処理回路113、受信処理回路114、DA115、116およびDA117、118の全部または一部の処理を行うプロセッサを備えていてもよい。
 または、IC132が、通信を制御する通信制御装置に対応してもよい。このとき無線通信部は、送信回路122および受信回路123を含んでもよい。さらに無線通信部は、送信回路122および受信回路123に加え、DA変換回路115、116およびAD変換回路117、118を含んでもよい。
 ベースバンド部111における制御回路112は、図11のバッファ104を含み、またMAC層等の処理を行う。制御回路112は、クロックを生成するクロック生成部を含んでもよい。送信処理回路113は、変調処理や物理ヘッダの付加など、所望の物理層の処理を行い、例えば2種類のデジタルベースバンド信号(以下、デジタルI信号とデジタルQ信号)を生成する。MIMO送信の場合は各ストリームに応じてそれぞれ2種類のデジタルベースバンド信号を生成する。DA変換回路115、117は、送信処理回路113から入力される信号をDA変換する。より詳細には、DA変換回路115はデジタルI信号をアナログのI信号に変換し、DA変換回路216はデジタルQ信号をアナログのQ信号に変換する。なお、直交変調せずに一系統の信号のままで送信する場合もありうる。この場合、DA変換回路は1つだけでもよい。また、一系統または複数系統の送信信号をアンテナの数だけ振り分けて送信する場合には、アンテナの数に応じた数のDA変換回路を設けてもよい。
 RF部121は、一例としてRFアナログICあるいは高周波ICである。RF部121における送信回路122は、DA変換後のフレームの信号から所望帯域の信号を抽出する送信フィルタ、発振装置から供給される一定周波数の信号を利用して、フィルタリング後の信号を無線周波数にアップコンバートするミキサ、アップコンバート後の信号を増幅するプリアンプ(PA)等を含む。
 RF部121における受信回路123は、アンテナで受信された信号を増幅するLNA(低雑音増幅器)、発振装置から供給される一定周波数の信号を利用して、増幅後の信号をベースバンドにダウンコンバートするミキサ、ダウンコーバート後の信号から所望帯域の信号を抽出する受信フィルタ等を含む。より詳細には、受信回路123は、不図示の低雑音増幅器で低雑音増幅された受信信号を互いに90°位相のずれた搬送波により直交復調して、受信信号と同位相のI(In-phase)信号と、これより90°位相が遅れたQ(Quad-phase)信号とを生成する。これらI信号とQ信号は、ゲインが調整された後に、受信回路123から出力される。
 ベースバンド部111におけるAD変換回路117、118は、受信回路123からの入力信号をAD変換する。より詳細には、AD変換回路117はI信号をデジタルI信号に変換し、AD変換回路118はQ信号をデジタルQ信号に変換する。なお、直交復調せずに一系統の信号だけを受信する場合もありうる。この場合、AD変換回路は1つだけでよい。また、複数のアンテナが設けられる場合には、アンテナの数に応じた数のAD変換回路を設けてもよい。受信処理回路114は、物理層の処理、復調処理等を行う。受信処理回路114は、物理層の処理の一部として、チャネルに関するデジタルフィルタ処理を行ってもよい。制御回路112は復調後のフレームに対してMAC層等の処理を行う。なお、制御回路112は、無線端末とのMIMO通信を行う場合は、MIMOに関する処理を行ってもよい。例えば、伝搬路推定の処理、送信ウェイト計算処理、ストリームの分離処理等を行う。
 なお、アンテナ12A~12Dを、送信回路122および受信回路123のいずれか一方に切り換えるスイッチがRF部に配置されてもよい。スイッチ制御により、送信時にはアンテナ12A~12Dを送信回路122に接続し、受信時には、アンテナ12A~12Dを受信回路123に接続する。
 上述した各部の処理の詳細は、図11の説明から自明であるため、重複する説明は省略する。
 図17は、第3の実施形態に係る無線端末に搭載される無線通信装置のハードウェア構成例を示したものである。この構成例は一例であり、本実施形態はこれに限定されるものではない。図12に示した無線通信装置と基本的な動作は同じであるため、構成上の違いを中心に説明し、重複する説明は省略する。
 本無線通信装置は、ベースバンド部211、RF部221と、アンテナ1Aとを備える。RF部221とベースバンド部211は1チップのICで構成されてもよい。
 ベースバンド部211は、制御回路(プロトコルスタック)212と、送信処理回路213と、受信処理回路214と、DA変換回路215、216と、AD変換回路217、218とを含む。
 ベースバンド部211は、一例としてベースバンドLSIまたはベースバンドICである。また、別の例として、ベースバンド部211が、IC232とIC231とを備えてもよい。このとき、IC232が制御回路212と送信処理回路213と受信処理回路214とを含み、IC231が、DA変換回路215、216とAD変換回路217、218を含んでもよい。
 制御回路212は、一例として、通信を制御する通信制御装置、または通信を制御する制御部に対応する。このとき無線通信部は、送信処理回路213と受信処理回路214を含んでもよい。さらに無線通信部は、送信処理回路213と受信処理回路214に加えて、DA変換回路215、216およびAD変換回路217、218を含んでもよい。さらに、無線通信部は、送信処理回路213、受信処理回路214、DA変換回路215、216およびAD変換回路217、218に加えて、送信回路222および受信回路223を含んでもよい。本実施形態に係る集積回路は、ベースバンド部211の全部または一部の処理、すなわち、制御回路212、送信処理回路213、受信処理回路214、DA215、216およびDA217、218の全部または一部の処理を行うプロセッサを備えていてもよい。 
 または、IC232が、通信を制御する通信制御装置に対応してもよい。このとき無線通信部は、送信回路222および受信回路223を含んでもよい。さらに無線通信部は、送信回路222および受信回路223に加え、DA変換回路215、216およびAD変換回路217、218を含んでもよい。
 ベースバンド部211における制御回路212は、図12のバッファ204を含み、またMAC層等の処理を行う。制御回路212は、クロックを生成するクロック生成部を含んでもよい。送信処理回路213は、変調処理や物理ヘッダの付加など、所望の物理層の処理を行い、例えば2種類のデジタルベースバンド信号(以下、デジタルI信号とデジタルQ信号)を生成する。MIMO送信の場合は各ストリームに応じてそれぞれ2種類のデジタルベースバンド信号を生成する。。DA変換回路215、216は、送信処理回路213から入力される信号をDA変換する。より詳細には、DA変換回路215はデジタルI信号をアナログのI信号に変換し、DA変換回路216はデジタルQ信号をアナログのQ信号に変換する。なお、直交変調せずに一系統の信号のままで送信する場合もありうる。この場合、DA変換回路は1つだけでもよい。また、一系統または複数系統の送信信号をアンテナの数だけ振り分けて送信する場合には、アンテナの数に応じた数のDA変換回路を設けてもよい。
 RF部221は、一例としてRFアナログICあるいは高周波ICである。RF部221における送信回路222は、DA変換後のフレームの信号から所望帯域の信号を抽出する送信フィルタ、発振装置から供給される一定周波数の信号を利用して、フィルタリング後の信号を無線周波数にアップコンバートするミキサ、アップコンバート後の信号を増幅するプリアンプ(PA)等を含む。
 受信回路223は、アンテナで受信された信号を増幅するLNA(低雑音増幅器)、発振装置から供給される一定周波数の信号を利用して、増幅後の信号をベースバンドにダウンコンバートするミキサ、ダウンコーバート後の信号から所望帯域の信号を抽出する受信フィルタ等を含む。より詳細には、受信回路223は、不図示の低雑音増幅器で低雑音増幅された受信信号を互いに90°位相のずれた搬送波により直交復調して、受信信号と同位相のI(In-phase)信号と、これより90°位相が遅れたQ(Quad-phase)信号とを生成する。これらI信号とQ信号は、ゲインが調整された後に、受信回路223から出力される。
 ベースバンド部211におけるAD変換回路217、218は、受信回路223からの入力信号をAD変換する。より詳細には、AD変換回路117はI信号をデジタルI信号に変換し、AD変換回路118はQ信号をデジタルQ信号に変換する。なお、直交復調せずに一系統の信号だけを受信する場合もありうる。この場合、AD変換回路は1つだけでよい。また、複数のアンテナが設けられる場合には、アンテナの数に応じた数のAD変換回路を設けてもよい。受信処理回路214は、物理層の処理、復調処理等を行う。制御回路212は復調後のフレームに対してMAC層等の処理を行う。受信処理回路214は、物理層の処理の一部として、チャネルに関するデジタルフィルタ処理を行ってもよい。
 なお、無線端末がアンテナを複数備えて、MIMOに対応する場合には、制御回路212は、MIMOに関する処理を行ってもよい。例えば、伝搬路推定の処理、送信ウェイト計算処理、ストリームの分離処理等を行う。
 なお、アンテナ1Aを、送信回路222および受信回路223のいずれか一方に切り換えるスイッチがRF部221に配置されてもよい。スイッチ制御により、送信時にはアンテナ1Aを送信回路222に接続し、受信時には、アンテナ1Aを受信回路223に接続する。
 上述した各部の処理の詳細は、図12の説明から自明であるため、重複する説明は省略する。
 (第4の実施形態)
 図18(A)および図18(B)は、それぞれ第4の実施形態に係る無線端末の斜視図である。図18(A)の無線端末はノートPC301であり、図18(B)の無線端末は移動体端末321である。それぞれ、無線端末(アクセスポイントを含む)の一形態に対応する。ノートPC301および移動体端末321は、それぞれ無線通信装置305、315を搭載している。無線通信装置305、315として、これまで説明してきた無線端末に搭載されていた無線通信装置(図12、図17等)、またはアクセスポイント11に搭載されていた無線通信装置(図11、図16等)を用いることができる。無線通信装置を搭載する無線端末は、ノートPCや移動体端末に限定されない。例えば、TV、デジタルカメラ、ウェアラブルデバイス、タブレット、スマートフォン、ゲーム装置、ネットワークストレージ装置、モニタ、デジタルオーディオプレーヤ、Webカメラ、ビデオカメラ、プロジェクト、ナビゲーションシステム、外部アダプタ、内部アダプタ、セットトップボックス、ゲートウェイ、プリンタサーバ、モバイルアクセスポイント、ルータ、エンタープライズ/サービスプロバイダアクセスポイント、ポータブル装置、ハンドヘルド装置等にも搭載可能である。
 また、無線端末またはアクセスポイント11に搭載されていた無線通信装置は、メモリーカードにも搭載可能である。当該無線通信装置をメモリーカードに搭載した例を図19に示す。メモリーカード331は、無線通信装置355と、メモリーカード本体332とを含む。メモリーカード331は、外部の装置(無線端末またはアクセスポイント11等)との無線通信のために無線通信装置335を利用する。なお、図19では、メモリーカード331内の他の要素(例えばメモリ等)の記載は省略している。
 (第5の実施形態) 
 第5の実施形態では、第1~4のいずれかの実施形態に係る無線通信装置(アクセスポイントの無線通信装置または無線端末の無線通信装置またはこれらの両方)の構成に加えて、バス、プロセッサ部、及び外部インターフェース部を備える。プロセッサ部及び外部インターフェース部は、バスを介してバッファと接続される。プロセッサ部ではファームウエアが動作する。このように、ファームウエアを無線通信装置に含める構成とすることにより、ファームウエアの書き換えによって無線通信装置の機能の変更を容易に行うことが可能となる。ファームウエアが動作するプロセッサ部は、本実施形態に係る通信制御装置または制御部の処理を行うプロセッサであってもよいし、当該処理の機能拡張または変更に係る処理を行う別のプロセッサであってもよい。ファームウエアが動作するプロセッサ部を、本実施形態に係るアクセスポイントあるいは無線端末が備えてもよい。または当該プロセッサ部を、アクセスポイントに搭載される無線通信装置内の集積回路、または無線端末に搭載される無線通信装置内の集積回路が備えてもよい。
(第6の実施形態) 
 第6の実施形態では、第1~4のいずれかの実施形態に係る無線通信装置(アクセスポイントの無線通信装置または無線端末の無線通信装置またはこれらの両方)の構成に加えて、クロック生成部を備える。クロック生成部は、クロックを生成して出力端子より無線通信装置の外部にクロックを出力する。このように、無線通信装置内部で生成されたクロックを外部に出力し、外部に出力されたクロックによってホスト側を動作させることにより、ホスト側と無線通信装置側とを同期させて動作させることが可能となる。
(第7の実施形態) 
 第7の実施形態では、第1~4のいずれかの実施形態に係る無線通信装置(アクセスポイントの無線通信装置または無線端末の無線通信装置またはこれらの両方)の構成に加えて、電源部、電源制御部、及び無線電力給電部を含む。電源制御部は、電源部と無線電力給電部とに接続され、無線通信装置に供給する電源を選択する制御を行う。このように、電源を無線通信装置に備える構成とすることにより、電源を制御した低消費電力化動作が可能となる。
(第8の実施形態) 
 第8の実施形態では、第7の実施形態に係る無線通信装置の構成に加えて、SIMカードを含む。SIMカードは、無線通信装置における送信部または受信部または制御部と接続される。このように、SIMカードを無線通信装置に備える構成とすることにより、容易に認証処理を行うことが可能となる。
(第9の実施形態) 
 第9の実施形態では、第5の実施形態に係る無線通信装置の構成に加えて、動画像圧縮/伸長部を含む。動画像圧縮/伸長部は、バスと接続される。このように、動画像圧縮/伸長部を無線通信装置に備える構成とすることにより、圧縮した動画像の伝送と受信した圧縮動画像の伸長とを容易に行うことが可能となる。
(第10の実施形態) 
 第10の実施形態では、第1~4のいずれかの実施形態に係る無線通信装置(アクセスポイントの無線通信装置または無線端末の無線通信装置またはこれらの両方)の構成に加えて、LED部を含む。LED部は、送信部または受信部または制御部と接続される。このように、LED部を無線通信装置に備える構成とすることにより、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
(第11の実施形態) 
 第11の実施形態では、第1~4のいずれかの実施形態に係る無線通信装置(アクセスポイントの無線通信装置または無線端末の無線通信装置またはこれらの両方)の構成に加えて、バイブレータ部を含む。バイブレータ部は、送信部または受信部または制御部と接続される。このように、バイブレータ部を無線通信装置に備える構成とすることにより、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
(第12の実施形態)
 第12の実施形態では、第1~4のいずれかの実施形態に係る無線通信装置(アクセスポイントの無線通信装置または無線端末の無線通信装置)の構成に加えて、ディスプレイを含む。ディスプレイは、図示しないバスを介して、無線通信装置の制御部(101または201)に接続されてもよい。このようにディスプレイを備える構成とし、無線通信装置の動作状態をディスプレイに表示することで、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
(第13の実施形態) 
 本実施形態では、[1]無線通信システムにおけるフレーム種別、[2]無線通信装置間の接続切断の手法、[3]無線LANシステムのアクセス方式、[4]無線LANのフレーム間隔について説明する。
[1]通信システムにおけるフレーム種別
 一般的に無線通信システムにおける無線アクセスプロトコル上で扱うフレームは、前述したように、大別してデータ(data)フレーム、管理(management)フレーム、制御(control)フレームの3種類に分けられる。これらの種別は、通常、フレーム間で共通に設けられるヘッダ部で示される。フレーム種別の表示方法としては、1つのフィールドで3種類を区別できるようにしてあってもよいし、2つのフィールドの組み合わせで区別できるようにしてあってもよい。IEEE802.11規格では、フレーム種別の識別は、MACフレームのフレームヘッダ部にあるFrame Controlフィールドの中のType、Subtypeという2つのフィールドで行う。データフレームか、管理フレームか、制御フレームかの大別はTypeフィールドで行われ、大別されたフレームの中での細かい種別、例えば管理フレームの中のBeaconフレームといった識別はSubtypeフィールドで行われる。
 管理フレームは、他の無線通信装置との間の物理的な通信リンクの管理に用いるフレームである。例えば、他の無線通信装置との間の通信設定を行うために用いられるフレームや通信リンクをリリースする(つまり接続を切断する)ためのフレーム、無線通信装置でのパワーセーブ動作に係るフレームがある。
 データフレームは、他の無線通信装置と物理的な通信リンクが確立した上で、無線通信装置の内部で生成されたデータを他の無線通信装置に送信するフレームである。データは本実施形態の上位層で生成され、例えばユーザの操作によって生成される。
 制御フレームは、データフレームを他の無線通信装置との間で送受(交換)する際の制御に用いられるフレームである。無線通信装置がデータフレームや管理フレームを受信した場合にその送達確認のために送信される応答フレームは、制御フレームに属する。応答フレームは、例えばACKフレームやBlockACKフレームである。またRTSフレームやCTSフレームも制御フレームである。
 これら3種類のフレームは、物理層で必要に応じた処理を経て物理パケットとしてアンテナを経由して送出される。なお、IEEE802.11規格(前述のIEEE Std 802.11ac-2013などの拡張規格を含む)では接続確立の手順の1つとしてアソシエーション(association)プロセスがあるが、その中で使われるAssociation RequestフレームとAssociation Responseフレームが管理フレームであり、Association RequestフレームやAssociation Responseフレームはユニキャストの管理フレームであることから、受信側無線通信端末に応答フレームであるACKフレームの送信を要求し、このACKフレームは上述のように制御フレームである。
[2]無線通信装置間の接続切断の手法
 接続の切断(リリース)には、明示的な手法と暗示的な手法とがある。明示的な手法としては、接続を確立している無線通信装置間のいずれか一方が切断のためのフレームを送信する。IEEE802.11規格ではDeauthenticationフレームがこれに当たり、管理フレームに分類される。通常、接続を切断するフレームを送信する側の無線通信装置では当該フレームを送信した時点で、接続を切断するフレームを受信する側の無線通信装置では当該フレームを受信した時点で、接続の切断と判定する。その後、非基地局の無線通信端末であれば通信フェーズでの初期状態、例えば接続するBSS探索する状態に戻る。無線通信基地局がある無線通信端末との間の接続を切断した場合には、例えば無線通信基地局が自BSSに加入する無線通信端末を管理する接続管理テーブルを持っているならば当該接続管理テーブルから当該無線通信端末に係る情報を削除する。例えば、無線通信基地局が自BSSに加入する各無線通信端末に接続をアソシエーションプロセスで許可した段階で、AIDを割り当てる場合には、当該接続を切断した無線通信端末のAIDに関連づけられた保持情報を削除し、当該AIDに関してはリリースして他の新規加入する無線通信端末に割り当てられるようにしてもよい。
 一方、暗示的な手法としては、接続を確立した接続相手の無線通信装置から一定期間フレーム送信(データフレーム及び管理フレームの送信、あるいは自装置が送信したフレームへの応答フレームの送信)を検知しなかった場合に、接続状態の切断の判定を行う。このような手法があるのは、上述のように接続の切断を判定するような状況では、接続先の無線通信装置と通信距離が離れて無線信号が受信不可あるいは復号不可になるなど物理的な無線リンクが確保できない状態が考えられるからである。すなわち、接続を切断するフレームの受信を期待できないからである。
 暗示的な方法で接続の切断を判定する具体例としては、タイマを使用する。例えば、送達確認応答フレームを要求するデータフレームを送信する際、当該フレームの再送期間を制限する第1のタイマ(例えばデータフレーム用の再送タイマ)を起動し、第1のタイマが切れるまで(つまり所望の再送期間が経過するまで)当該フレームへの送達確認応答フレームを受信しないと再送を行う。当該フレームへの送達確認応答フレームを受信すると第1のタイマは止められる。
 一方、送達確認応答フレームを受信せず第1のタイマが切れると、例えば接続相手の無線通信装置がまだ(通信レンジ内に)存在するか(言い換えれば、無線リンクが確保できているか)を確認するための管理フレームを送信し、それと同時に当該フレームの再送期間を制限する第2のタイマ(例えば管理フレーム用の再送タイマ)を起動する。第1のタイマと同様、第2のタイマでも、第2のタイマが切れるまで当該フレームへの送達確認応答フレームを受信しないと再送を行い、第2のタイマが切れると接続が切断されたと判定する。接続が切断されたと判定した段階で、前記接続を切断するフレームを送信するようにしてもよい。
 あるいは、接続相手の無線通信装置からフレームを受信すると第3のタイマを起動し、新たに接続相手の無線通信装置からフレームを受信するたびに第3のタイマを止め、再び初期値から起動する。第3のタイマが切れると前述と同様に接続相手の無線通信装置がまだ(通信レンジ内に)存在するか(言い換えれば、無線リンクが確保できているか)を確認するための管理フレームを送信し、それと同時に当該フレームの再送期間を制限する第2のタイマ(例えば管理フレーム用の再送タイマ)を起動する。この場合も、第2のタイマが切れるまで当該フレームへの送達確認応答フレームを受信しないと再送を行い、第2のタイマが切れると接続が切断されたと判定する。この場合も、接続が切断されたと判定した段階で、前記接続を切断するフレームを送信するようにしてもよい。後者の、接続相手の無線通信装置がまだ存在するかを確認するための管理フレームは、前者の場合の管理フレームとは異なるものであってもよい。また後者の場合の管理フレームの再送を制限するためのタイマは、ここでは第2のタイマとして前者の場合と同じものを用いたが、異なるタイマを用いるようにしてもよい。
[3]無線LANシステムのアクセス方式
 例えば、複数の無線通信装置と通信または競合することを想定した無線LANシステムがある。IEEE802.11無線LANではCSMA/CA(Carrier Sense Multiple Access with Carrier Avoidance)をアクセス方式の基本としている。ある無線通信装置の送信を把握し、その送信終了から固定時間を置いて送信を行う方式では、その無線通信装置の送信を把握した複数の無線通信装置で同時に送信を行うことになり、その結果、無線信号が衝突してフレーム送信に失敗する。ある無線通信装置の送信を把握し、その送信終了からランダム時間待つことで、その無線通信装置の送信を把握した複数の無線通信装置での送信が確率的に分散することになる。よって、ランダム時間の中で最も早い時間を引いた無線通信装置が1つなら無線通信装置のフレーム送信は成功し、フレームの衝突を防ぐことができる。ランダム値に基づき送信権の獲得が複数の無線通信装置間で公平になることから、Carrier Avoidanceを採用した方式は、複数の無線通信装置間で無線媒体を共有するために適した方式であるということができる。
[4]無線LANのフレーム間隔
 IEEE802.11無線LANのフレーム間隔について説明する。IEEE802.11無線LANで用いられるフレーム間隔は、distributed coordination function interframe space(DIFS)、arbitration interframe space(AIFS)、point coordination function interframe space(PIFS)、short interframe space(SIFS)、extended interframe space(EIFS)、reduced interframe space(RIFS)の6種類ある。
 フレーム間隔の定義は、IEEE802.11無線LANでは送信前にキャリアセンスアイドルを確認して開けるべき連続期間として定義されており、厳密な前のフレームからの期間は議論しない。従ってここでのIEEE802.11無線LANシステムでの説明においてはその定義を踏襲する。IEEE802.11無線LANでは、CSMA/CAに基づくランダムアクセスの際に待つ時間を固定時間とランダム時間との和としており、固定時間を明確にするため、このような定義になっているといえる。
 DIFSとAIFSとは、CSMA/CAに基づき他の無線通信装置と競合するコンテンション期間にフレーム交換開始を試みるときに用いるフレーム間隔である。DIFSは、トラヒック種別による優先権の区別がないとき、AIFSはトラヒック種別(Traffic Identifier:TID)による優先権が設けられている場合に用いる。
 DIFSとAIFSとで係る動作としては類似しているため、以降では主にAIFSを用いて説明する。IEEE802.11無線LANでは、MAC層でフレーム交換の開始などを含むアクセス制御を行う。さらに、上位層からデータを渡される際にQoS(Quality of Service)対応する場合には、データとともにトラヒック種別が通知され、トラヒック種別に基づいてデータはアクセス時の優先度のクラス分けがされる。このアクセス時のクラスをアクセスカテゴリ(Access Category:AC)と呼ぶ。従って、アクセスカテゴリごとにAIFSの値が設けられることになる。
 PIFSは、競合する他の無線通信装置よりも優先権を持つアクセスができるようにするためのフレーム間隔であり、DIFS及びAIFSのいずれの値よりも期間が短い。SIFSは、応答系の制御フレームの送信時あるいは一旦アクセス権を獲得した後にバーストでフレーム交換を継続する場合に用いることができるフレーム間隔である。EIFSはフレーム受信に失敗した(受信したフレームがエラーであると判定した)場合に起動されるフレーム間隔である。
 RIFSは一旦アクセス権を獲得した後にバーストで同一無線通信装置に複数のフレームを連続して送信する場合に用いることができるフレーム間隔であり、RIFSを用いている間は送信相手の無線通信装置からの応答フレームを要求しない。
 ここでIEEE802.11無線LANにおけるランダムアクセスに基づく競合期間のフレーム交換の一例を図29に示す。 
 ある無線通信装置においてデータフレーム(W_DATA1)の送信要求が発生した際に、キャリアセンスの結果、媒体がビジーである(busy medium)と認識する場合を想定する。この場合、キャリアセンスがアイドルになった時点から固定時間のAIFSを空け、その後ランダム時間(random backoff)空いたところで、データフレームW_DATA1を通信相手に送信する。なお、キャリアセンスの結果、媒体がビジーではない、つまり媒体がアイドル(idle)であると認識した場合には、キャリアセンスを開始した時点から固定時間のAIFSを空けて、データフレームW_DATA1を通信相手に送信する。
 ランダム時間は0から整数で与えられるコンテンションウィンドウ(Contention Window:CW)の間の一様分布から導かれる擬似ランダム整数にスロット時間をかけたものである。ここで、CWにスロット時間をかけたものをCW時間幅と呼ぶ。CWの初期値はCWminで与えられ、再送するたびにCWの値はCWmaxになるまで増やされる。CWminとCWmaxとの両方とも、AIFSと同様アクセスカテゴリごとの値を持つ。W_DATA1の送信先の無線通信装置では、データフレームの受信に成功し、かつ当該データフレームが応答フレームの送信を要求するフレームであるとそのデータフレームを内包する物理パケットの無線媒体上での占有終了時点からSIFS時間後に応答フレーム(W_ACK1)を送信する。W_DATA1を送信した無線通信装置は、W_ACK1を受信すると送信バースト時間制限内であればまたW_ACK1を内包する物理パケットの無線媒体上での占有終了時点からSIFS時間後に次のフレーム(例えばW_DATA2)を送信することができる。
 AIFS、DIFS、PIFS及びEIFSは、SIFSとスロット時間との関数になるが、SIFSとスロット時間とは物理層ごとに規定されている。また、AIFS、CWmin及びCWmaxなどアクセスカテゴリごとに値が設けられるパラメータは、通信グループ(IEEE802.11無線LANではBasic Service Set(BSS))ごとに設定可能であるが、デフォルト値が定められている。
 例えば、802.11acの規格策定では、SIFSは16μs、スロット時間は9μsであるとして、それによってPIFSは25μs、DIFSは34μs、AIFSにおいてアクセスカテゴリがBACKGROUND(AC_BK)のフレーム間隔はデフォルト値が79μs、BEST EFFORT(AC_BE)のフレーム間隔はデフォルト値が43μs、VIDEO(AC_VI)とVOICE(AC_VO)のフレーム間隔はデフォルト値が34μs、CWminとCWmaxとのデフォルト値は、各々AC_BKとAC_BEとでは31と1023、AC_VIでは15と31、AC_VOでは7と15になるとする。なお、EIFSは、基本的にはSIFSとDIFSと最も低速な必須の物理レートで送信する場合の応答フレームの時間長の和である。なお効率的なEIFSの取り方ができる無線通信装置では、EIFSを起動した物理パケットへの応答フレームを運ぶ物理パケットの占有時間長を推定し、SIFSとDIFSとその推定時間の和とすることもできる。
 なお、本発明の実施形態のフレームは、例えばIEEE802.11規格でフレームと呼ばれているもののみならず、パケットと呼ばれているものであってもよい。また、基地局が複数の端末に複数のフレームを送信する場合において、当該送信する複数のフレームは、同じものであっても異なるものであってもよい。一般的な表現として、基地局が複数のフレームまたは複数の第Xフレームを送信または受信すると表現する場合、これらのフレームまたは第Xフレームは同じものであっても異なるものであってもよい。Xには状況に応じて任意の値を入れることができる。
 本実施形態で用いられる用語は、広く解釈されるべきである。例えば用語“プロセッサ”は、汎用目的プロセッサ、中央処理装置(CPU)、マイクロプロセッサ、デジタル信号プロセッサ(DSP)、コントローラ、マイクロコントローラ、状態マシンなどを包含してもよい。状況によって、“プロセッサ”は、特定用途向け集積回路、フィールドプログラマブルゲートアレイ(FPGA)、プログラム可能論理回路(PLD)などを指してもよい。“プロセッサ”は、複数のマイクロプロセッサのような処理装置の組み合わせ、DSPおよびマイクロプロセッサの組み合わせ、DSPコアと協働する1つ以上のマイクロプロセッサを指してもよい。
 別の例として、用語“メモリ”は、電子情報を格納可能な任意の電子部品を包含してもよい。“メモリ”は、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、プログラム可能読み出し専用メモリ(PROM)、消去可能プログラム可能読み出し専用メモリ(EPROM)、電気的消去可能PROM(EEPROM)、不揮発性ランダムアクセスメモリ(NVRAM)、フラッシュメモリ、磁気または光学データストレージを指してもよく、これらはプロセッサによって読み出し可能である。プロセッサがメモリに対して情報を読み出しまたは書き込みまたはこれらの両方を行うならば、メモリはプロセッサと電気的に通信すると言うことができる。メモリは、プロセッサに統合されてもよく、この場合も、メモリは、プロセッサと電気的に通信していると言うことができる。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1:アクセスポイント(無線端末)
12A、12B、12C、12D:アンテナ
1、2、3、4:無線端末
1A、2A、3A、4A:アンテナ
21、22、23、24:ビーム
51、61、71、81:通知フレーム
101、201:制御部
102、202:送信部
103、203:受信部
104、204:バッファ
111、211:ベースバンド部
121、221:RF部
122、222:送信回路
123、223:受信回路
112、212:制御回路
113、213:送信処理回路
114、214:受信処理回路
115、116、215、216:DA変換回路
117、118、217、218:AD変換回路
301:ノートPC
305、315、355:無線通信装置
321:移動体端末
331:メモリーカード
332:メモリーカード本体

Claims (38)

  1.  複数の無線通信装置を指定する情報と、前記複数の無線通信装置にそれぞれ割り当てたリソースブロックに関する情報とを含む第1情報を含むフレームを送信し、前記フレームを送信した後、前記複数の無線通信装置のそれぞれに割り当てた前記リソースブロックを同時に用いて通信を行うよう制御する制御部
     を備えた通信制御装置。
  2.  前記リソースブロックに関する情報は、前記複数の無線通信装置にそれぞれ割り当てたリソースブロックの識別情報を含む
     請求項1に記載の通信制御装置。
  3.  前記リソースブロックに関する情報は、前記複数の無線通信装置のそれぞれに割り当てたリソースブロックの個数情報を含み、
     前記第1情報は、前記複数の無線通信装置の順序を指定した情報をさらに含む
     請求項1ないし2のいずれか一項に記載の通信制御装置。
  4.  前記第1情報は、前記複数の無線通信装置に割り当てたリソースブロックを識別する情報をさらに含み、前記情報で識別される前記リソースブロックは予め定められた順序を有する
     請求項3に記載の通信制御装置。
  5.  前記第1情報は、前記フレームの受信後、予め定めた第1時間の経過後に、前記割り当てたリソースブロックで、データフレーム、制御フレームおよび管理フレームのいずれかのフレームを返信することの指示情報を含む
     請求項1ないし4のいずれか一項に記載の通信制御装置。
  6.  前記第1情報は、前記無線通信装置が前記割り当てられたリソースブロックで送信するフレームのサイズないし時間長に関する条件を指定する情報を含む
     請求項1ないし5のいずれか一項に記載の通信制御装置。
  7.  前記第1情報は、前記予め定めた第1時間を特定する情報を含む
     請求項5または6に記載の通信制御装置。
  8.  前記第1情報は、前記無線通信装置のそれぞれに割り当てたリソースブロックで、データフレームまたは制御フレームまたは管理フレームを送信することを通知する情報を含む
     請求項1ないし4のいずれか一項に記載の通信制御装置。
  9.  前記第1情報は、各無線通信装置が送信すべきデータのアクセスカテゴリを指定するための情報を含む
     請求項1ないし8のいずれか一項に記載の通信制御装置。
  10.  前記第1情報は、前記複数の無線通信装置に共通に通知するための第2情報と、前記複数の無線通信装置のそれぞれに個別に通知するための第3情報とを含み、
     前記第1情報を含むフレームは、前記第2情報を格納する第1フィールドと、前記複数の無線通信装置のそれぞれの前記第3情報を格納する複数の第2フィールドとを有する
     請求項1ないし9のいずれか一項に記載の通信制御装置。
  11.  前記複数の無線通信装置を指定する情報は、前記複数の無線通信装置のそれぞれの識別情報を含み、前記リソースブロックに関する情報は、前記複数の無線通信装置のそれぞれに割り当てたリソースブロックの識別情報を含み、前記複数の無線通信装置のそれぞれの前記第3情報は、前記通信装置のそれぞれの識別情報と前記複数の無線通信装置のそれぞれに割り当てたリソースブロックの識別情報とを含む
     請求項10に記載の通信制御装置。
  12.  前記フレームの宛先アドレスは、ブロードキャストアドレス、マルチキャストアドレス、または、前記複数の無線通信装置のそれぞれのユニキャストアドレスを含む
     請求項1ないし10のいずれか一項に記載の通信制御装置。
  13.  前記リソースブロックは、1つ又は複数のサブキャリアからなる請求項1ないし12のいずれか一項に記載の通信制御装置。
  14.  少なくとも1つのアンテナと、
     請求項1ないし13のいずれか一項に従った通信制御装置と、
     前記アンテナを介して信号を送受信する無線通信部と
     を備えた無線端末。
  15.  少なくとも1つのアンテナと、
     請求項1ないし13のいずれか一項に従った通信制御装置と、
     前記アンテナを介して信号を送受信する無線通信部と
     を備えたメモリーカード。
  16.  請求項1ないし13のいずれか一項に従った通信制御装置を含む集積回路。
  17.  請求項1ないし13のいずれか一項に従った通信制御装置と、
     信号を送受信する無線通信部と
     を備えた無線通信装置。
  18.  少なくとも1つのアンテナを備え、
     前記無線通信部は、前記アンテナを介して信号を送受信する
     請求項17に記載の無線通信装置。
  19.  第1無線通信装置に用いられる通信制御装置であって、
     複数の無線通信装置を指定する情報と、前記複数の無線通信装置のそれぞれに割り当てられたリソースブロックに関する情報とを含む第1情報を含むフレームを受信し、前記フレームを解析することにより前記第1無線通信装置が指定されている場合は、前記第1無線通信装置に割り当てられたリソースブロックを特定し、特定したリソースブロックを用いて通信を行うよう制御する制御部
     を備えた通信制御装置。
  20.  前記リソースブロックに関する情報は、前記複数の無線通信装置にそれぞれ割り当てられたリソースブロックを識別する情報を含み、前記制御部は、前記リソースブロックを識別する前記情報に従って、前記第1無線通信装置に割り当てられたリソースブロックを特定する
     請求項19に記載の通信制御装置。
  21.  前記リソースブロックに関する情報は、前記第1無線通信装置に割り当てられたリソースブロックの個数情報を含み、前記第1情報は、前記複数の無線通信装置の順序を指定する情報をさらに含み、
     前記制御部は、前記順序を指定する前記情報から特定される前記第1無線通信装置の順位に基づき、前記個数情報に応じた個数のリソースブロックを、複数のリソースブロックの中から特定する
     請求項19ないし20のいずれか一項に記載の通信制御装置。
  22.  前記第1情報は、前記複数の無線通信装置に割り当てられたリソースブロックを識別する情報をさらに含み、前記情報で識別される前記リソースブロックは予め定められた順序を有し、前記制御部は、前記リソースブロックの順序と、前記第1無線通信装置の順位に基づき、前記個数情報に応じた個数のリソースブロックを特定する
     請求項21に記載の通信制御装置。
  23.  前記第1情報は、前記フレームを受信完了から予め定めた第1時間の経過後にデータフレーム、制御フレームおよび管理フレームのいずれかを送信することの指示情報を含み、前記指示情報に従って、前記データフレーム、前記制御フレームおよび前記管理フレームのいずれかを、前記第1無線通信装置に割り当てられたリソースブロックで送信する
     請求項19ないし22のいずれか一項に記載の通信制御装置。
  24.  前記第1情報は、前記第1無線通信装置に割り当てられたリソースブロックで送信するフレームのサイズないし時間長に関する条件を指定する情報を含み、前記制御部は、前記指定された情報に応じてフレームを生成し、生成したフレームを送信する
     請求項19ないし23のいずれか一項に記載の通信制御装置。
  25.  前記第1情報は、前記第1無線通信装置が送信すべきデータのアクセスカテゴリを指定するための情報を含み、前記制御部は、前記情報で指定されたアクセスカテゴリに属するデータを選択し、選択したデータを含むデータフレームを、前記割り当てられたリソースブロックで送信する
     請求項19ないし24のいずれか一項に記載の通信制御装置。
  26.  前記第1情報は、前記予め定めた第1時間を特定する情報を含み、前記制御部は、前記予め定めた第1時間を特定する前記情報に従って、前記フレームの受信完了から前記予め定めた第1時間を待機する
     請求項23に記載の通信制御装置。
  27.  前記第1情報は、前記フレームの送信後に前記第1無線通信装置に割り当てられたリソースブロックでデータフレーム、制御フレームまたは管理フレームが送信されることを通知する情報を含む
     請求項19ないし22のいずれか一項に記載の通信制御装置。
  28.  前記第1情報は、前記複数の無線通信装置に共通に通知するための第2情報と、前記複数の無線通信装置のそれぞれに個別に通知するための第3情報とを含み、
     前記フレームは、前記第2情報を格納する第1フィールドと、前記複数の無線通信装置のそれぞれの前記第3情報を格納する複数の第2フィールドとを有する
     請求項19ない27のいずれか一項に記載の通信制御装置。
  29.  前記複数の無線通信装置を指定する情報は、前記複数の無線通信装置の識別情報であり、前記リソースブロックに関する情報は、前記複数の無線通信装置のそれぞれに割り当てられたリソースブロックの識別情報であり、前記複数の無線通信装置のそれぞれの前記第3情報は、前記複数の無線通信装置のそれぞれの識別情報と前記複数の無線通信装置のそれぞれに割り当てられリソースブロックの識別情報を含む
     請求項28に記載の通信制御装置。
  30.  前記フレームの宛先アドレスは、ブロードキャストアドレス、マルチキャストアドレス、または、前記複数の無線通信装置のそれぞれのユニキャストアドレスを含む
     請求項19ないし29のいずれか一項に記載の通信制御装置。
  31.  前記リソースブロックは、1つ又は複数のサブキャリアからなる請求項19ないし30のいずれか一項に記載の通信制御装置。
  32.  少なくとも1つのアンテナと、
     請求項19ないし31のいずれか一項に従った通信制御装置と、
     前記アンテナを介して信号を送受信する無線通信部と
     を備えた無線端末。
  33.  少なくとも1つのアンテナと、
     請求項19ないし31のいずれか一項に従った通信制御装置と、
     前記アンテナを介して信号を送受信する無線通信部と
     を備えたメモリーカード。
  34.  請求項19ないし31のいずれか一項に従った通信制御装置を含む集積回路。
  35.  請求項19ないし31のいずれか一項に従った通信制御装置と、
     信号を送受信する無線通信部と
     を備えた無線通信装置。
  36.  少なくとも1つのアンテナを備え、
     前記無線通信部は、前記アンテナを介して信号を送受信する
     請求項35に記載の無線通信装置。
  37.  複数の無線通信装置を指定する情報と、前記複数の無線通信装置のそれぞれに割り当てたリソースブロックに関する情報とを含む第1情報を含むフレームを送信し、
     前記フレームを送信した後、前記複数の無線通信装置のそれぞれに割り当てた前記リソースブロックを同時に用いて通信を行うよう制御する
     無線通信方法。
  38.  第1無線通信装置による無線通信方法であって
     複数の無線通信装置を指定する情報と、前記複数の無線通信装置のそれぞれに割り当てられたリソースブロックに関する情報とを含む第1情報を含むフレームを受信し、
     前記フレームを解析することにより前記第1無線通信装置が指定されている場合は、前記第1無線通信装置に割り当てられた前記リソースブロックを特定し、特定したリソースブロックを用いて通信を行うよう制御する
     無線通信方法。
PCT/JP2015/062873 2014-04-28 2015-04-28 通信制御装置、無線端末、メモリーカード、集積回路、無線通信装置および無線通信方法 WO2015166959A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19165523.2A EP3522645A1 (en) 2014-04-28 2015-04-28 Wireless controlling device, wireless terminal, memory card, integrated circuit, wireless communication device and wireless communication method
EP15786367.1A EP3139686B1 (en) 2014-04-28 2015-04-28 Communication control device, radio terminal, memory card, integrated circuit, radio communication device, and radio communication method
JP2016516394A JPWO2015166959A1 (ja) 2014-04-28 2015-04-28 無線通信装置および無線通信方法
US15/268,100 US20170006612A1 (en) 2014-04-28 2016-09-16 Wireless communication device and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014092983 2014-04-28
JP2014-092983 2014-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/268,100 Continuation US20170006612A1 (en) 2014-04-28 2016-09-16 Wireless communication device and wireless communication method

Publications (1)

Publication Number Publication Date
WO2015166959A1 true WO2015166959A1 (ja) 2015-11-05

Family

ID=54358686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062873 WO2015166959A1 (ja) 2014-04-28 2015-04-28 通信制御装置、無線端末、メモリーカード、集積回路、無線通信装置および無線通信方法

Country Status (4)

Country Link
US (1) US20170006612A1 (ja)
EP (2) EP3522645A1 (ja)
JP (3) JPWO2015166959A1 (ja)
WO (1) WO2015166959A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017123550A (ja) * 2016-01-06 2017-07-13 株式会社東芝 無線通信装置および無線通信方法
JP2017528033A (ja) * 2014-07-15 2017-09-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated Ul mu mimo/ofdma送信のためのシグナリング技法
CN108476530A (zh) * 2016-01-07 2018-08-31 交互数字专利控股公司 用于保护多用户(mu)传输的方法和装置
US10469387B2 (en) 2013-08-28 2019-11-05 Qualcomm Incorporated Methods and apparatus for acknowledgment of multi-user uplink wireless transmissions
JPWO2020184191A1 (ja) * 2019-03-12 2020-09-17
US11496869B2 (en) 2018-03-29 2022-11-08 Nec Corporation Server, communication system, communication method and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605373B (zh) 2014-09-30 2020-11-06 株式会社东芝 无线通信用集成电路、无线通信终端以及无线通信方法
US10701686B1 (en) * 2015-06-15 2020-06-30 Newracom, Inc. Protection mechanism for multi-user transmission
CN116918420A (zh) * 2021-03-02 2023-10-20 索尼集团公司 通信装置和通信方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130286959A1 (en) * 2012-04-30 2013-10-31 Interdigital Patent Holdings, Inc. Method and apparatus for supporting coordinated orthogonal block-based resource allocation (cobra) operations

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224231A (ja) * 1999-02-02 2000-08-11 Hitachi Ltd 移動通信システム及びパケットデータ送信方法
EP1775979B1 (en) * 2004-07-28 2015-02-25 NEC Corporation Wireless transmission system
KR101783926B1 (ko) * 2009-10-23 2017-10-23 마벨 월드 트레이드 리미티드 Wlαn을 위한 스트림 개수 지시자
US8369303B2 (en) * 2010-07-28 2013-02-05 Intel Corporation Techniques for uplink multi-user MIMO MAC support
CN103155444B (zh) * 2010-08-26 2017-04-12 马维尔国际贸易有限公司 具有主接入类别和辅接入类别的无线通信
AU2011299647B2 (en) * 2010-09-10 2014-09-11 Lg Electronics Inc. Method and apparatus of cipher communication for management frame using quality of service mechanism in wireless local area network system
US8599735B2 (en) * 2011-09-14 2013-12-03 Cisco Technology, Inc. Group addressing for multicast transmissions for power savings at physical layer
CN104094665B (zh) * 2012-02-02 2018-05-15 Lg电子株式会社 在无线lan系统中接入信道的方法和设备
WO2013130793A1 (en) * 2012-03-01 2013-09-06 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
WO2014157783A1 (ko) * 2013-03-27 2014-10-02 엘지전자 주식회사 무선랜 시스템에서 채널 액세스 수행 방법 및 장치
US9608796B2 (en) * 2013-05-03 2017-03-28 Qualcomm Incorporated Methods and systems for frequency multiplexed communication in dense wireless environments
US9923822B2 (en) * 2013-08-28 2018-03-20 Qualcomm Incorporated Methods and apparatus for multiple user uplink
US9654191B2 (en) * 2013-10-31 2017-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Assignment of radio resources to be used on uplink transmissions in a multi-user multiple input multiple output (MU-MIMO) communication system
KR102197028B1 (ko) * 2013-11-04 2020-12-30 한국전자통신연구원 무선랜에서 주파수 선택적 전송에 기반하여 무선 통신을 수행하는 방법 및 장치
US20160278081A1 (en) * 2013-11-07 2016-09-22 Lg Electronics Inc. Method and device for receiving multiuser uplink in wireless lan
EP3637714A1 (en) * 2014-02-10 2020-04-15 LG Electronics Inc. -1- Method and device for transmitting frame in wireless lan

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130286959A1 (en) * 2012-04-30 2013-10-31 Interdigital Patent Holdings, Inc. Method and apparatus for supporting coordinated orthogonal block-based resource allocation (cobra) operations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Consideration on UL-MU overheads", XP055234791, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/15/11-15-0064-00-00ax-consideration-on-ul-mu-overheads.pptx> *
See also references of EP3139686A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10601715B2 (en) 2013-08-28 2020-03-24 Qualcomm Incorporated Methods and apparatus for multiple user uplink
US10469387B2 (en) 2013-08-28 2019-11-05 Qualcomm Incorporated Methods and apparatus for acknowledgment of multi-user uplink wireless transmissions
US10516614B2 (en) 2013-08-28 2019-12-24 Qualcomm Incorporated Methods and apparatus for multiple user uplink
US10554557B2 (en) 2013-08-28 2020-02-04 Qualcomm Incorporated Methods and apparatus for acknowledgment of multi-user uplink wireless transmissions
JP2017528033A (ja) * 2014-07-15 2017-09-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated Ul mu mimo/ofdma送信のためのシグナリング技法
JP2017123550A (ja) * 2016-01-06 2017-07-13 株式会社東芝 無線通信装置および無線通信方法
CN108476530A (zh) * 2016-01-07 2018-08-31 交互数字专利控股公司 用于保护多用户(mu)传输的方法和装置
CN108476530B (zh) * 2016-01-07 2022-01-21 交互数字专利控股公司 用于保护多用户(mu)传输的方法和装置
CN114466465A (zh) * 2016-01-07 2022-05-10 交互数字专利控股公司 用于保护多用户(mu)传输的方法和装置
US11496869B2 (en) 2018-03-29 2022-11-08 Nec Corporation Server, communication system, communication method and program
JPWO2020184191A1 (ja) * 2019-03-12 2020-09-17
WO2020184191A1 (ja) * 2019-03-12 2020-09-17 ソニー株式会社 無線通信装置および方法
US11962413B2 (en) 2019-03-12 2024-04-16 Sony Group Corporation Wireless communication device and method

Also Published As

Publication number Publication date
EP3139686A1 (en) 2017-03-08
EP3522645A1 (en) 2019-08-07
JP2018157583A (ja) 2018-10-04
EP3139686B1 (en) 2019-05-22
JP2020043588A (ja) 2020-03-19
JP6621870B2 (ja) 2019-12-18
JPWO2015166959A1 (ja) 2017-04-20
US20170006612A1 (en) 2017-01-05
EP3139686A4 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6621870B2 (ja) 無線通信装置および無線通信方法
JP6716657B2 (ja) 無線通信装置および無線通信方法
JP6594319B2 (ja) 無線通信装置
JP6408605B2 (ja) 無線通信装置
JP6454722B2 (ja) 無線通信装置および無線通信方法
JP6454721B2 (ja) 無線通信装置および無線通信方法
US11743875B2 (en) Wireless communication device and wireless communication method
JP6716659B2 (ja) 無線通信装置および無線通信方法
JP6313519B2 (ja) 無線通信装置
WO2016080408A1 (ja) 無線通信端末、無線通信方法および無線通信システム
JP6702545B2 (ja) 無線通信装置及び無線通信方法
JP2017055398A (ja) 無線通信装置および無線通信方法
WO2015133646A1 (ja) 通信制御装置、無線端末、メモリーカード、集積回路および無線通信方法
JP2017059911A (ja) 無線通信装置および無線通信方法
JP2016213568A (ja) 無線通信用集積回路
JP2019057756A (ja) 無線通信装置および無線通信方法
WO2016080410A1 (ja) 無線通信用集積回路
JP2016208317A (ja) 無線通信用集積回路
JP2016208316A (ja) 無線通信用集積回路
JP2018101820A (ja) 無線端末および無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516394

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015786367

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015786367

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE