WO2015165286A1 - Lc并联回路失谐故障的继电保护方法和装置 - Google Patents

Lc并联回路失谐故障的继电保护方法和装置 Download PDF

Info

Publication number
WO2015165286A1
WO2015165286A1 PCT/CN2015/070315 CN2015070315W WO2015165286A1 WO 2015165286 A1 WO2015165286 A1 WO 2015165286A1 CN 2015070315 W CN2015070315 W CN 2015070315W WO 2015165286 A1 WO2015165286 A1 WO 2015165286A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
ratio
capacitor
reactor
relay
Prior art date
Application number
PCT/CN2015/070315
Other languages
English (en)
French (fr)
Inventor
张琦雪
徐保利
张�杰
李华忠
季遥遥
钟守平
王光
陈俊
严伟
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to KR1020167029205A priority Critical patent/KR101929543B1/ko
Priority to CA2946180A priority patent/CA2946180C/en
Priority to BR112016025276-4A priority patent/BR112016025276B1/pt
Priority to MX2016014206A priority patent/MX357370B/es
Priority to EP15785909.1A priority patent/EP3139462B1/en
Priority to AU2015252661A priority patent/AU2015252661B2/en
Priority to US15/305,183 priority patent/US10128650B2/en
Publication of WO2015165286A1 publication Critical patent/WO2015165286A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/50Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations
    • H02H3/52Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations responsive to the appearance of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/042Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers for current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/16Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/267Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for parallel lines and wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention belongs to the field of power systems, and in particular relates to a relay protection method and device for decoupling faults of LC parallel circuits.
  • the inverter In the HVDC transmission system, the inverter generates a large number of harmonics in the DC system and its connected AC system. To suppress the DC side harmonic output of the inverter, a high-voltage passive DC filter is usually installed on the DC side. .
  • Commonly used passive filters are single-tuned, dual-tuned, triple-tuned, and high-pass filters.
  • In the double-tuned, three-tuned circuit there are parallel LC (reactor and capacitor) circuits.
  • the existing dual-tuned and triple-tuned filters are mainly protected by capacitor unbalance protection, filter differential protection, unbalanced protection of two sets of identical parametric filters, impedance protection, and voltage ratio protection. The method of detuning protection of the circuit.
  • One of the methods for suppressing subsynchronous oscillation is to install a blocking filter on the high voltage side of the main transformer, which has an LC parallel circuit.
  • the LC detuning protection method of the blocking filter is mainly the capacitor unbalance protection and the LC current ratio over-limit protection.
  • the patent 201310032991.7 discloses the technical solution, but the method is to avoid Protection against misoperation during system disturbance or oscillation, having to widen the upper and lower limits of the current ratio, and extending the delay setting of the protection, these methods reduce the sensitivity of protection and do not provide fast protection.
  • the object of the present invention is to provide an improved method and device for relay protection of LC parallel loop detuning faults, which retains the characteristics of simple wiring and reliable method, and improves the stability of current ratio calculation results and improves The sensitivity and speed of protection.
  • a relay protection method for LC parallel loop detuning fault includes the following steps:
  • the relay protection device samples the current of the parallel LC (reactor and capacitor), and samples the total current flowing through the entire LC;
  • step (2) converting the reactor current into an equivalent capacitor current by differential, using the formula:
  • i L is the reactor current
  • i Ceq is the equivalent capacitor current
  • n CT, L , n CT, C are the currents of the current transformer (CT) of the reactor branch and the capacitor branch in the parallel LC circuit, respectively.
  • CT current transformer
  • L is the inductance value of the reactor
  • R is the equivalent resistance value of the reactor branch (usually the R value is small, can be ignored)
  • C is the capacitance value of the capacitor
  • T s is the sampling time interval
  • n is the discrete The serial number of the current signal.
  • the method for calculating the amplitude of the fundamental frequency of the power frequency is a full-cycle, short-data window Fourier numerical algorithm, or a narrow-band band-pass filtered sine wave peak detection algorithm.
  • the detailed content of the step (5) is: when the total current flowing through the LC is sufficiently large, if the current ratio exceeds the preset upper and lower limits, the alarm signal or the trip signal and the output are delayed. Trip relay empty contact.
  • the current ratio upper limit value Ratio set.max takes Ratio nrml +(2% ⁇ 10%) Ratio nrml
  • the range of the delay is 0s to 60s; the default range of the fast protection is 0.1s to 5s.
  • the invention also provides a relay protection device for LC parallel loop detuning fault, which comprises a sampling module, a conversion module, a calculation module, a judgment and an action module, wherein:
  • the sampling module is configured to sample the current of the parallel protection LC (reactor and capacitor) of the relay protection device, and sample the total current flowing through the entire LC;
  • the conversion module is configured to convert a reactor current obtained by the sampling module into an equivalent capacitor current
  • the calculation module is configured to calculate a magnitude of an equivalent capacitor and an actual capacitor current according to a result of using the module and the conversion module, calculate a current amplitude flowing through the LC, and calculate a ratio of an equivalent capacitor to an actual capacitor current amplitude;
  • the determining and operating module is configured to determine the total current flowing through the LC according to the result of the computing module When the value is large enough, if the current ratio exceeds the preset upper and lower limits, the alarm signal or trip signal is delayed and the output relay relay is contacted.
  • the reactor current is converted into an equivalent capacitor current by a difference, and the conversion formula is:
  • i L is the reactor current
  • i Ceq is the equivalent capacitor current
  • n CT, L , n CT, C are the currents of the current transformer (CT) of the reactor branch and the capacitor branch in the parallel LC circuit, respectively.
  • CT current transformer
  • L is the inductance value of the reactor
  • R is the equivalent resistance value of the reactor branch (usually the R value is small, can be ignored)
  • C is the capacitance value of the capacitor
  • T s is the sampling time interval
  • n is the discrete The serial number of the current signal.
  • the calculation module calculates the amplitude of the power frequency fundamental current by a full-cycle, short-data window Fourier numerical algorithm, or a narrow-band band-pass filtered sine wave peak detection algorithm.
  • the current ratio upper limit value Ratio set.max takes Ratio nrml +(2% ⁇ 10%) Ratio nrml
  • the delay ranges from 0.5 s to 5 s.
  • the invention adopts a differential calculation method to convert the reactor current into an equivalent capacitor current, and then calculate the current amplitude ratio, and retains the wiring of the original detuning protection-current ratio over-limit protection method.
  • the simple and reliable method improves the stability of the current ratio calculation result and improves the sensitivity and rapidity of protection.
  • Figure 1 is a double-tuned DC filter of a high voltage direct current transmission system
  • reactor L2 and capacitor C2 form a parallel circuit
  • reactor L3 and capacitor C3 form a parallel circuit
  • FIG. 3 is a circuit diagram of a generator, a main transformer, and a blocking filter
  • FIG. 4 is a schematic diagram of the internal circuit of the A-phase blocking filter and the current transformer connection
  • Figure 5 is a protection logic diagram of an embodiment of the present invention.
  • Figure 6 is a block diagram of the apparatus of the embodiment of the present invention.
  • Embodiments of the present invention provide a relay protection method for a LC parallel loop detuning fault, including the following steps:
  • the relay protection device samples the current of the shunt reactor to obtain the current i L ; the current of the parallel capacitor is sampled to obtain the current i C , and the total current flowing through the LC parallel circuit is sampled to obtain the current i LC ;
  • the present invention is an improved method proposed on the basis of the prior art, but the application of the patented method is not limited to the blocking filter, and can also be applied to the dual-tuned DC filter of the direct current transmission system, and the three-tuned DC filter.
  • the following example is used to illustrate: a 600MW generator set with rated power of 600MW, rated voltage of 22kV, rated power factor of 0.9; main transformer rated capacity of 750MVA, rated voltage ratio of 500kV/22kV, Yd-11 wiring, short-circuit impedance of 13.5 %; as shown in Figure 3, where a. b. Main transformer. c. Phase A blocking filter.
  • the B-phase and C-phase blocking filters are identical to the circuits of the A-phase blocking filter.
  • the neutral point of the high voltage side of the main transformer is turned on, and the grounding is performed after the three-phase static blocking filter SBF is connected in series.
  • the SBF is formed by connecting the inductor and the capacitor in series and in parallel.
  • the circuit topology is shown in Figure 4. In Figure 4:
  • PSW1 is a bypass switch
  • L0 is a 0th-order reactor
  • C1 and L1 are the first group of shunt capacitors and reactors
  • C2 and L2 are the second group of shunt capacitors and reactors
  • C3 and L3 are the third group of shunt capacitors and reactances.
  • CT C1 is the current transformer of C1
  • CT L1 is the current transformer of L1
  • CT LC is the current transformer of the whole blocking filter.
  • the current transformers of C2, L2, C3, and L3 are omitted from the figure and are not shown.
  • the current transformer CT LC has a current ratio of n CT.
  • step 1 the relay protection device samples the current of the first group of shunt reactors to obtain the current i L ; the current of the parallel capacitor is sampled to obtain the current i C , and the total current flowing through the LC parallel circuit is sampled. Current i LC .
  • the relay protection device only inputs the current amount, and the wiring is simple.
  • the sampling frequency f s is usually a value in the range of 1200 Hz to 2400 Hz; for the detuning protection of the double-tuned and three-tuned DC filters, Calculate the 12th, 24th, and 36th harmonic current amplitudes, the sampling frequency f s must be higher, usually f s takes the value in the range of 4800Hz ⁇ 10kHz.
  • Step 2 through differential (or differential), the current transformation i L is the equivalent capacitance current i Ceq , the specific formula is as follows:
  • n CT, L , n CT, C are the current ratio of the current transformer (CT) of the reactor branch and the capacitor branch in the parallel LC circuit
  • L is the inductance of the reactor
  • R is the reactor
  • C is the capacitance value of the capacitor
  • T s is the sampling time interval
  • Step 3 after the full-cycle, short data window Fourier numerical algorithm, or the narrow-band bandpass filtered sine wave peak detection algorithm, calculate the amplitudes of the currents i Ceq , i C and i LC , respectively I Ceq , I C and I LC , this embodiment uses a full-cycle Fourier numerical algorithm, the formula is as follows:
  • N is the data window length when Fourier filtering is calculated.
  • P is the harmonic order.
  • N 24.
  • Step 4 calculate the current ratio sequence of I Ceq and I C , using the following formula:
  • is a small threshold set by the internal program of the relay protection device to prevent the divisor from being zero.
  • the value range of ⁇ is 0.5% to 2% of the rated secondary value of the capacitor current transformer.
  • the amplitude is 1% as the default value of ⁇ .
  • the secondary value of the current transformer CT C1 is 5A, which can take 1% of the corresponding amplitude of 5A, that is, 0.0707A as the default value of ⁇ .
  • Step 5 for the detuning protection of the first group of parallel LC, the following criteria are used:
  • I set is the current open fixed value
  • Ratio set.max is the current ratio protection fixed value upper limit
  • Ratio set.min is the current ratio protection fixed value lower limit.
  • Equation 4 The current ratio criterion in Equation 4 is a logic element. When the condition is satisfied, it outputs 1; otherwise, it outputs 0.
  • the timing starts.
  • the relay protection device issues a corresponding alarm signal or a trip signal, and the output trip relay empty contact is used to protect the trip; if the protection criterion is If the condition is not met, the protection timer instantaneous return becomes 0.
  • the time setting value is set according to the influence of various out-of-zone faults or grid oscillations, and the time setting t set can take values between 0.1 and 5s.
  • the above method implements the first set of detuning protection of the blocking filter A phase.
  • the implementation method of the shunt reactor of the second phase and the third group of the A phase and the detuning protection of the capacitor is the same.
  • the detuning protection of phase B and phase C is the same as that of phase A detuning protection.
  • the implementation of the detuning protection of the LC parallel circuit in the double-tuned, three-tuned DC filter is the same, except that a higher sampling frequency is required to calculate a higher harmonic current. No longer.
  • the previous current ratio calculation results may fluctuate significantly.
  • LC internal fault reactor short-circuit fault or capacitor short-circuit fault
  • the reactor current and capacitor current will have a sub-synchronous current component after the fault, which makes the current ratio calculation result fluctuate, which may lead to LC detuning protection start.
  • the protection action is delayed; in order to eliminate such influence, the protection setting value can be modified, the current limit is increased, and the current value is lowered.
  • the result is that the sensitivity of the protection is lowered and cannot be reflected in the area. malfunction.
  • the reactor current and the capacitor current are greatly changed, and the subsynchronous oscillation current component is superimposed, and the current ratio is calculated.
  • the result will fluctuate for a long time (sustainable to 5 ⁇ 10s), especially in the early stage of the out-of-zone fault, the current ratio calculation result fluctuates very sharply; in order to avoid the influence of the out-of-zone fault, only the delay value of the protection can be extended, which is Delayed protection action.
  • the equivalent capacitor current is consistent with the current waveform of the reactor, so that the reactor
  • the magnitude of the current amplitude and the amplitude of the equivalent capacitor current are the same, so the current ratio result is very stable.
  • the ground fault of the power transmission line is greatly disturbed outside the area, and the current ratio can be stabilized within 0.3s to 0.5s. Therefore, the beneficial effects of the invention are: the original detuning protection-current ratio over-limit protection method is retained, the wiring is simple and the method is reliable, and the stability of the current ratio calculation result is improved, and the sensitivity of the protection is improved. Rapid.
  • FIG. 6 Another embodiment of the present invention provides a relay protection device for a LC parallel loop detuning fault, as shown in FIG. 6, which includes a sampling module, a conversion module, a calculation module, a judgment and an action module, wherein:
  • the sampling module is configured to sample the current of the parallel protection LC (reactor and capacitor) of the relay protection device, and sample the total current flowing through the entire LC;
  • the conversion module is configured to convert a reactor current obtained by the sampling module into an equivalent capacitor current
  • the calculation module is configured to calculate a magnitude of an equivalent capacitor and an actual capacitor current, calculate a current amplitude flowing through the LC, and calculate a ratio of an equivalent capacitor to an actual capacitor current amplitude;
  • the determining and operating module is configured to determine, according to the result of the calculation module, that when the total current flowing through the LC is sufficiently large, if the current ratio exceeds a preset upper and lower limit range, an alarm signal or a trip signal is delayed and Output trip relay empty contact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

一种LC并联回路失谐故障的继电保护方法,包括步骤:继电保护装置对并联LC、即电抗器和电容器的电流进行采样,对流过整个LC的总电流进行采样;将电抗器电流转换为等效电容器电流;计算等效电容器电流和实际电容器电流的幅值,计算流过LC的总电流幅值;计算等效电容器与实际电容器的电流幅值比率;当流过LC的总电流幅值足够大时,如果电流比率超出预先整定的上限、下限范围,则经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。还提供了相应的继电保护装置。LC并联回路失谐故障的继电保护方法和装置能够改善电流比率计算结果的稳定性,并提高保护的灵敏度与快速性。

Description

LC并联回路失谐故障的继电保护方法和装置 技术领域
本发明属于电力系统领域,特别涉及一种LC并联回路失谐故障的继电保护方法和装置。
背景技术
高压直流输电系统中换流器会在直流系统及其所连接的交流系统中产生大量的谐波,为抑制换流器直流侧谐波输出,通常在直流侧装设高压无源型直流滤波器。常用的无源滤波器有单调谐、双调谐、三调谐及高通滤波器。在双调谐、三调谐电路中,有并联LC(电抗器和电容器)电路。现有的双调谐、三调谐滤波器的保护主要是电容器不平衡保护、滤波器差动保护、两组相同参数滤波器的不平衡保护、阻抗保护、电压比保护,没有专门针对其中的LC并联电路的失谐保护方法。相关内容可参见《高压/特高压三调谐直流滤波器失谐故障元件检测方法研究》(罗慧卉,华南理工大学,硕士学位论文,2011年)、《超高压直流系统中的直流滤波器保护》(文继锋,电力系统自动化,第28卷第21期,第69页~72页,2004年)。
另外,对于长距离输电并在输电线路中配置串联电容补偿等设备的输电模式,当参数不当时,可能发生发电机组的次同步振荡现象,严重时可能会损伤发电机组大轴,造成大轴扭伤。为抑制次同步振荡,其中一个方法是在主变压器高压侧安装阻塞滤波器,该阻塞滤波器当中有LC并联电路。阻塞滤波器的LC失谐保护方法主要是电容器不平衡保护和LC电流比率越限保护,关于LC电流比率越限的保护方法,专利201310032991.7公开了技术方案,但是该方法为了避 免系统扰动或振荡时保护误动,不得不扩大电流比率上限、下限的范围,以及延长保护的延时定值,这些做法降低了保护的灵敏度,不能提供快速保护。
发明内容
本发明的目的为,提出一种LC并联回路失谐故障的继电保护的改进方法和装置,保留了原有方法接线简单、方法可靠的特点,同时改善了电流比率计算结果的稳定性,提高了保护的灵敏度与快速性。
为了达到上述目的,本发明采用的技术方案是:
一种LC并联回路失谐故障的继电保护方法,包括如下步骤:
(1)继电保护装置对并联LC(电抗器和电容器)的电流进行采样,对流过整个LC的总电流进行采样;
(2)将电抗器电流变换为等效电容器电流;
(3)计算等效电容器和实际电容器电流的幅值,计算流过LC的电流幅值;
(4)计算等效电容器和实际电容器电流幅值的比率;
(5)当流过LC的总电流幅值足够大时,如果电流比率超出预先整定的上限、下限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。
进一步地,所述步骤(2)的详细内容是:通过差分,将电抗器电流变换为等效电容器电流,采用的公式为:
Figure PCTCN2015070315-appb-000001
    式1
其中,iL是电抗器电流,iCeq是等效电容器电流;nCT,L、nCT,C是分别是并联LC电路中电抗器支路、电容器支路的电流互感器(CT)的电流变比,L是电抗器的电感值,R是电抗器支路的等效电阻值(通常R值很小,可以忽略),C是电容器的电容值,Ts是采样时间间隔,n是离散电流信号的序列号。
进一步地:其中步骤(3)具体指:对于阻塞滤波器的LC并联回路失谐保护,只需计算工频基波电流幅值,采样频率fs通常是1200Hz~2400Hz范围内的值;对于双调谐、三调谐直流滤波器的LC并联回路失谐保护,需要计算第12次、24次、36次的高次谐波电流幅值,采样频率fs必须更高,通常fs取4800Hz~10kHz范围内的值;Ts=1/fs
进一步地:计算工频基波电流幅值的方法是全周波、短数据窗傅立叶数值算法,或者采用窄带带通滤波后正弦波峰值检测算法。
进一步地:所述步骤(5)的详细内容是:当流过LC的总电流幅值足够大时,如果电流比率超出预先整定的上限、下限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。电流比率上限定值Ratioset.max取Rationrml+(2%~10%)Rationrml,电流比率下限定值Ratioset.min取Rationrml-(2%~10%)Rationrml,其中Rationrml是正常情况下的电流比率,理论上Rationrml=1.0。
进一步地:所述延时的取值范围是0s~60s;快速保护时延时默认范围是0.1s~5s。
本发明还提供一种LC并联回路失谐故障的继电保护装置,其特征在于包括采样模块、转换模块、计算模块、判断及动作模块,其中:
所述采样模块用于对继电保护装置对并联LC(电抗器和电容器)的电流进行采样,对流过整个LC的总电流进行采样;
所述转换模块用于将采样模块所得到的电抗器电流变换为等效电容器电流;
所述计算模块用于根据采用模块和转换模块的结果,计算等效电容器和实际电容器电流的幅值,计算流过LC的电流幅值,以及计算等效电容器和实际电容器电流幅值的比率;
所述判断及动作模块用于根据计算模块的结果,判断当流过LC的总电流幅 值足够大时,如果电流比率超出预先整定的上限、下限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。
进一步地,所述转换模块中,通过差分,将电抗器电流变换为等效电容器电流,转换采用的公式为:
Figure PCTCN2015070315-appb-000002
    式1
其中,iL是电抗器电流,iCeq是等效电容器电流;nCT,L、nCT,C是分别是并联LC电路中电抗器支路、电容器支路的电流互感器(CT)的电流变比,L是电抗器的电感值,R是电抗器支路的等效电阻值(通常R值很小,可以忽略),C是电容器的电容值,Ts是采样时间间隔,n是离散电流信号的序列号。
进一步地:其中所述计算模块中计算流过LC的电流幅值具体指:对于阻塞滤波器的LC并联回路失谐保护,只需计算工频基波电流幅值,采样频率fs通常是1200Hz~2400Hz范围内的值;对于双调谐、三调谐直流滤波器的LC并联回路失谐保护,需要计算第12次、24次、36次的高次谐波电流幅值,采样频率fs必须更高,通常fs取4800Hz~10kHz范围内的值;Ts=1/fs
进一步地,所述计算模块计算工频基波电流幅值的方法是全周波、短数据窗傅立叶数值算法,或者采用窄带带通滤波后正弦波峰值检测算法。
进一步地,所述判断及动作模块中,当流过LC的总电流幅值足够大时,如果电流比率超出预先整定的上限、下限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。电流比率上限定值Ratioset.max取Rationrml+(2%~10%)Rationrml,电流比率下限定值Ratioset.min取Rationrml-(2%~10%)Rationrml,其中Rationrml是正常情况下的电流比率,理论上Rationrml=1.0。
进一步地:所述延时的取值范围是0.5s~5s。
采用上述方案后,本发明采用差分计算方法,将电抗器电流转换成等效电容器电流,然后再计算电流幅值比率,保留了原有失谐保护——电流比率越限保护方法——的接线简单、方法可靠的特点,同时改善了电流比率计算结果的稳定性,提高了保护的灵敏度与快速性。
附图说明
图1是高压直流输电系统的双调谐直流滤波器;
图2是高压直流输电系统的三调谐直流滤波器;图中电抗器L2与电容器C2构成并联电路,图中电抗器L3与电容器C3构成并联电路。
图3是发电机、主变压器及阻塞滤波器的电路示意图;
图4是A相阻塞滤波器内部电路及电流互感器接线示意图;
图5是本发明实施例的保护逻辑图;
图6是本发明实施例的装置结构图。
具体实施方式
以下将结合附图及具体实施例,对本发明的技术方案进行详细说明。
本发明实施例提供一种LC并联回路失谐故障的继电保护方法,包括如下步骤:
(1)继电保护装置对并联电抗器的电流进行采样得到电流iL;对并联电容器的电流进行采样得到电流iC,对流过LC并联电路的总电流进行采样得到电流iLC
(2)通过差分(或微分),将电流变换iL为等效电容器电流iCeq
(3)经过全周波、短数据窗傅立叶数值算法,或者采用窄带带通滤波后正弦波峰值检测算法,计算得到电流iCeq、iC和iLC的幅值,分别为ICeq、IC和ILC
(4)计算ICeq、IC的比率;
(5)当流过LC并联电路的电流幅值ILC足够大时,如果电流比率超出预先整定的范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。
本发明是在现有技术的基础上,提出的一种的改进方法,但是本专利方法的应用场合不限于阻塞滤波器,还可以应用在直流输电系统的双调谐直流滤波器、三调谐直流滤波器等等的LC并联电路的继电保护。
以以下实施例来说明:一台600MW发电机组,额定功率为600MW,额定电压22kV,额定功率因数0.9;主变压器额定容量750MVA,额定电压变比500kV/22kV,Yd-11接线方式,短路阻抗13.5%;如图3所示,其中,a.发电机。b.主变压器。c.A相阻塞滤波器。B相、C相阻塞滤波器与A相阻塞滤波器的电路相同。
主变高压侧中性点打开,串接三相静态阻塞滤波器SBF之后接地,SBF由电感和电容相互串并联而成。电路拓扑如图4所示。其中图4中:
PSW1是旁路开关,L0为0阶电抗器,C1、L1为第1组并联电容器和电抗器,C2、L2为第2组并联电容器和电抗器,C3、L3为第3组并联电容器和电抗器,CTC1是C1的电流互感器,CTL1是L1的电流互感器,CTLC是整个阻塞滤波器的电流互感器。图中省略了C2、L2、C3、L3的电流互感器,未画出。
SBF的基本参数如下:
L0的阻抗ZL0=28.25Ω,第1组并联电抗器L1的阻抗ZL1=9.457Ω,第1组并联电容器C1的容抗XC1=5.272Ω,第2组并联电抗器L2的阻抗ZL2=39.578Ω,第2组并联电容器C2的容抗XC2=9.326Ω,第3组并联电抗器L3的阻抗ZL3=20.054Ω,第3组并联电容器C3的容抗XC3=3.368Ω,电流互感器CTL1的电流变比为nCT,L1=1200A/5A,电流互感器CTC1的电流变比为 nCT,C1=2500A/5A,电流互感器CTLC的电流变比为nCT,SBF=1000A/5A。以图2中的第1组并联电抗器、电容器为例,说明失谐故障保护的具体实施方法。第2组、第3组的并联电抗器、电容器失谐保护的实施方法与此相同,B相、C相的失谐保护与A相失谐保护的实施方法相同。
A相第1组并联电抗器、电容器失谐保护的具体实施步骤如下:
(1)步骤一,继电保护装置对第1组对并联电抗器的电流进行采样得到电流iL;对并联电容器的电流进行采样得到电流iC,对流过LC并联电路的总电流进行采样得到电流iLC。默认的采样频率fs=1200Hz。继电保护装置只接入电流量,接线简单。对于阻塞滤波器的LC失谐保护,只需计算工频基波电流幅值,采样频率fs通常是1200Hz~2400Hz范围内的值;对于双调谐、三调谐直流滤波器的失谐保护,为了计算第12次、24次、36次的高次谐波电流幅值,采样频率fs必须更高,通常fs取4800Hz~10kHz范围内的值。
(2)步骤二,通过差分(或微分),将电流变换iL为等效电容电流iCeq,具体公式如下:
Figure PCTCN2015070315-appb-000003
    式1
其中,nCT,L、nCT,C是分别是并联LC电路中电抗器支路、电容器支路的电流互感器(CT)的电流变比,L是电抗器的电感值,R是电抗器支路的等效电阻值(通常R值很小,可以忽略),C是电容器的电容值,Ts是采样时间间隔,n是离散电流信号的序列号。Ts=1/fs。对于本实例,
Figure PCTCN2015070315-appb-000004
Figure PCTCN2015070315-appb-000005
R=0Ω
Ts=1/fs=1/(1200Hz)
nCT,L=nCT,L1=1200/5
nCT,C=nCT,C1=2500/5
(3)步骤三,经过全周波、短数据窗傅立叶数值算法,或者采用窄带带通滤波后正弦波峰值检测算法,计算得到电流iCeq、iC和iLC的幅值,分别为ICeq、IC和ILC,本实施例采用全周波傅立叶数值算法,公式如下:
Figure PCTCN2015070315-appb-000006
    式2
其中,下标m=Ceq,C,LC表示“等效电容器”、“电容器”、“并联LC”;ICeq、IC、ILC分别表示等效电容器电流iCeq、电容器电流iC、流过LC并联电路的电流iLC的幅值;N为傅氏滤波计算时的数据窗长度,默认值取N=24;P为谐波次数。对于阻塞滤波器的LC失谐保护,P=1,只取基波进行计算;对于双调谐、三调谐直流滤波器的失谐保护,可根据滤波器的工作要求取P=12、24或36,即计算第12次、24次、36次谐波电流的幅值。本实例中,N=24。
(4)步骤4,计算ICeq、IC的电流比率序列,采用下面的公式:
Figure PCTCN2015070315-appb-000007
    式3
其中,ε是继电保护装置内部程序设定的一个小值门槛,防止除数为0。ε的取值范围是电容器电流互感器额定二次值幅值的0.5%~2%,默认情况下取幅值1%作为ε的默认值。比如,电流互感器CTC1的二次值有效值为5A,可取5A对应幅值的1%,即0.0707A作为ε的默认值。
(5)步骤5,对第1组并联LC的失谐保护,采用下面的判据:
ILC(n)>Iset且[Ratio(n)>Ratioset,max或Ratio(n)<Ratioset.min]    式4
其中,Iset是电流开放定值,Ratioset.max是电流比率保护定值上限,Ratioset.min是电流比率保护定值下限。定值整定的方法如下:
(a)计算额定运行工况下,流过LC的电流幅值,得ILC,rated,取该幅值的10%~40%整定保护定值Iset。对于本实例,发电机额定运行时,流过阻塞滤波器的电流是:
Figure PCTCN2015070315-appb-000008
比如取20%进行整定,计算结果为:
Iset=20%×3.849A=0.770A
(b)正常运行时ICeq与IC的电流比率Rationrml=1.0,取比率p%,p取值范围2~10,按Rationrml下降p%整定Ratioset.min,按Rationrml上升p%整定Ratioset.max。比如p=5时,计算结果为:
Ratioset.min=Rationrml(1-p%)=1.0×(1-5%)=0.95
Ratioset.max=Rationrml(1+p%)=1.0×(1+5%)=1.05
所述保护判据中,参照图5,其中:
h、i.式4中的电流比率判据逻辑元件,条件满足时输出1,否则输出0。
j.式4中的电流判据逻辑元件,条件满足时输出1,否则输出0。
d.“或”门操作逻辑。
e.“与”门操作逻辑。
f.定时限延时逻辑,当输入由0变1时,计时器开始计时,延时达到tj时, 逻辑输出1,当输入为0不变或由1变为0时,输出为0。
g.保护报警或跳闸结果输出。
式4的条件满足时,开始计时,当计时超过时间定值tset时,继电保护装置发出相应的报警信号或跳闸信号,以及输出跳闸继电器空接点用于保护跳闸;如果所述保护判据条件不满足,则保护计时器瞬时返回变为0。时间定值按躲过各种区外故障或电网振荡的影响进行整定,时间定值tset可在0.1~5s之间取值。
上述方法实现了阻塞滤波器A相第1组失谐保护。A相第2组、第3组的并联电抗器、电容器失谐保护的实施方法与此相同。B相、C相的失谐保护与A相失谐保护的实施方法相同。双调谐、三调谐直流滤波器中LC并联电路的失谐保护的实施方法相同,只是需要更高的采样频率,计算更高次的谐波电流。不再赘述。
在LC内部故障或外部故障情况下,以往的电流比率计算结果会出现明显波动。比如LC内部故障(电抗器匝间短路故障或电容器短路故障),则故障后电抗器电流、电容器电流都会出现次同步电流分量,该分量使得电流比率计算结果波动,有可能导致LC失谐保护启动后又返回,延缓了保护动作;为了消除这样的影响,可以修改保护定值,提高电流比率上限定值、降低电流比率下限定值,但是这样的结果使得保护的灵敏度下降,不能反映区内轻微故障。
又比如,LC区外故障扰动,电网输电线路上出现接地故障,故障切除后重合闸成功,这个过程,电抗器电流、电容器电流有大幅度变化,同时叠加了次同步振荡电流分量,电流比率计算结果会长时间(可持续到5~10s)波动,尤其是区外故障初期,电流比率计算结果波动十分剧烈;为了躲开区外故障的影响,只能延长保护的延时定值,这就延缓了保护动作。
采用本发明的方法后,尽管区内故障、区外故障时电流有变化,尤其是叠加了次同步振荡电流,但是等效的电容器电流与电抗器电流波形一致,使得电抗器 电流幅值、等效电容器电流幅值的变化程度一致,因此电流比率结果十分稳定。比如,电网输电线路上接地故障这种区外故障大扰动,电流比率可在0.3s~0.5s内稳定下来。所以本发明的有益效果:保留了原有失谐保护——电流比率越限保护方法——的接线简单、方法可靠的特点,同时改善了电流比率计算结果的稳定性,提高了保护的灵敏度与快速性。
另外,本发明还有实施例提供一种LC并联回路失谐故障的继电保护装置如图6所示,包括采样模块、转换模块、计算模块、判断及动作模块,其中:
所述采样模块用于对继电保护装置对并联LC(电抗器和电容器)的电流进行采样,对流过整个LC的总电流进行采样;
所述转换模块用于将采样模块所得到的电抗器电流变换为等效电容器电流;
所述计算模块用于计算等效电容器和实际电容器电流的幅值,计算流过LC的电流幅值,以及计算等效电容器和实际电容器电流幅值的比率;
所述判断及动作模块用于根据计算模块的结果,判断当流过LC的总电流幅值足够大时,如果电流比率超出预先整定的上限、下限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (12)

  1. 一种LC并联回路失谐故障的继电保护方法,其特征在于包括如下步骤:
    (1)继电保护装置对并联LC(电抗器和电容器)的电流进行采样,对流过整个LC的总电流进行采样;
    (2)将电抗器电流变换为等效电容器电流;
    (3)计算等效电容器和实际电容器电流的幅值,计算流过LC的电流幅值;
    (4)计算等效电容器和实际电容器电流幅值的比率;
    (5)当流过LC的总电流幅值足够大时,如果电流比率超出预先整定的上限、下限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。
  2. 如权利要求1所述的LC并联回路失谐故障的继电保护方法,其特征在于所述步骤(2)的详细内容是:通过差分,将电抗器电流变换为等效电容器电流,采用的公式为:
    Figure PCTCN2015070315-appb-100001
      式1
    其中,iL是电抗器电流,iCeq是等效电容器电流;nCT,L、nCT,C是分别是并联LC电路中电抗器支路、电容器支路的电流互感器(CT)的电流变比,L是电抗器的电感值,R是电抗器支路的等效电阻值(通常R值很小,可以忽略),C是电容器的电容值,Ts是采样时间间隔,n是离散电流信号的序列号。
  3. 如权利要求2所述的LC并联回路失谐故障的继电保护方法,其特征在于:其中步骤(3)具体指:对于阻塞滤波器的LC并联回路失谐保护,只需计算工频基波电流幅值,采样频率fs通常是1200Hz~2400Hz范围内的值;对于双调谐、三调谐直流滤波器的LC并联回路失谐保护,需要计算第12次、24次、36次的高次谐波电流幅值,采样频率fs必须更高,通常fs取4800Hz~10kHz范围内的值;Ts=1/fs
  4. 如权利要求3所述的LC并联回路失谐故障的继电保护方法,其特征在 于:计算工频基波电流幅值的方法是全周波、短数据窗傅立叶数值算法,或者采用窄带带通滤波后正弦波峰值检测算法。
  5. 如权利要求1所述的LC并联回路失谐故障的继电保护方法,其特征在于所述步骤(5)的详细内容是:当流过LC的总电流幅值足够大时,如果电流比率超出预先整定的上限、下限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。电流比率上限定值Ratioset.max取Rationrml+(2%~10%)Rationrml,电流比率下限定值Ratioset.min取Rationrml-(2%~10%)Rationrml,其中Rationrml是正常情况下的电流比率,理论上Rationrml=1.0。
  6. 如权利要求1或5所述的LC并联回路失谐故障的继电保护方法,其特征在于:所述延时的取值范围是0s~60s;快速保护时延时默认范围是0.1s~5s。
  7. 一种LC并联回路失谐故障的继电保护装置,其特征在于包括采样模块、转换模块、计算模块、判断及动作模块,其中:
    所述采样模块用于对继电保护装置对并联LC(电抗器和电容器)的电流进行采样,对流过整个LC的总电流进行采样;
    所述转换模块用于将采样模块所得到的电抗器电流变换为等效电容器电流;
    所述计算模块用于根据采用模块和转换模块的结果,计算等效电容器和实际电容器电流的幅值,计算流过LC的电流幅值,以及计算等效电容器和实际电容器电流幅值的比率;
    所述判断及动作模块用于根据计算模块的结果,判断当流过LC的总电流幅值足够大时,如果电流比率超出预先整定的上限、下限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。
  8. 如权利要求7所述的LC并联回路失谐故障的继电保护装置,其特征在于所述转换模块中,通过差分,将电抗器电流变换为等效电容器电流,转换采用的公式为:
    Figure PCTCN2015070315-appb-100002
      式1
    其中,iL是电抗器电流,iCeq是等效电容器电流;nCT,L、nCT,C是分别是并联LC电路中电抗器支路、电容器支路的电流互感器(CT)的电流变比,L是电抗器的电感值,R是电抗器支路的等效电阻值(通常R值很小,可以忽略),C是电容器的电容值,Ts是采样时间间隔,n是离散电流信号的序列号。
  9. 如权利要求7所述的LC并联回路失谐故障的继电保护装置,其特征在于:其中所述计算模块中计算具体指:对于阻塞滤波器的LC并联回路失谐保护,只需计算工频基波电流幅值,采样频率fs通常是1200Hz~2400Hz范围内的值;对于双调谐、三调谐直流滤波器的LC并联回路失谐保护,需要计算第12次、24次、36次的高次谐波电流幅值,采样频率fs必须更高,通常fs取4800Hz~10kHz范围内的值;Ts=1/fs
  10. 如权利要求7所述的LC并联回路失谐故障的继电保护方装置,其特征在于所述计算模块计算工频基波电流幅值的方法是全周波、短数据窗傅立叶数值算法,或者采用窄带带通滤波后正弦波峰值检测算法。
  11. 如权利要求7所述的LC并联回路失谐故障的继电保护装置,其特征在于所述判断及动作模块中,当流过LC的总电流幅值足够大时,如果电流比率超出预先整定的上限、下限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。电流比率上限定值Ratioset.max取Rationrml+(2%~10%)Rationrml,电流比率下限定值Ratioset.min取Rationrml-(2%~10%)Rationrml,其中Rationrml是正常情况下的电流比率,理论上Rationrml=1.0。
  12. 如权利要求7或11所述的LC并联回路失谐故障的继电保护装置,其特征在于:所述延时的取值范围是0s~60s;快速保护时延时默认范围是0.1s~5s。
PCT/CN2015/070315 2014-04-29 2015-01-08 Lc并联回路失谐故障的继电保护方法和装置 WO2015165286A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167029205A KR101929543B1 (ko) 2014-04-29 2015-01-08 Lc 병렬회로 이전 고장의 계전 보호 방법 및 장치
CA2946180A CA2946180C (en) 2014-04-29 2015-01-08 Relay protection method and apparatus against lc parallel circuit detuning faults
BR112016025276-4A BR112016025276B1 (pt) 2014-04-29 2015-01-08 Método e dispositivo de proteção de relé contra defeitos por dessintonização de circuito paralelo lc
MX2016014206A MX357370B (es) 2014-04-29 2015-01-08 Método de relé de protección y aparato contra fallas de desintonización de circuito paralelo lc.
EP15785909.1A EP3139462B1 (en) 2014-04-29 2015-01-08 Relay protection method and device against lc parallel circuit detuning faults
AU2015252661A AU2015252661B2 (en) 2014-04-29 2015-01-08 Relay protection method and device against LC parallel circuit detuning faults
US15/305,183 US10128650B2 (en) 2014-04-29 2015-01-08 Relay protection method and apparatus against LC parallel circuit detuning faults

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410179378.2 2014-04-29
CN201410179378.2A CN104113045B (zh) 2014-04-29 2014-04-29 Lc并联回路失谐故障的继电保护方法和装置

Publications (1)

Publication Number Publication Date
WO2015165286A1 true WO2015165286A1 (zh) 2015-11-05

Family

ID=51709732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070315 WO2015165286A1 (zh) 2014-04-29 2015-01-08 Lc并联回路失谐故障的继电保护方法和装置

Country Status (9)

Country Link
US (1) US10128650B2 (zh)
EP (1) EP3139462B1 (zh)
KR (1) KR101929543B1 (zh)
CN (1) CN104113045B (zh)
AU (1) AU2015252661B2 (zh)
BR (1) BR112016025276B1 (zh)
CA (1) CA2946180C (zh)
MX (1) MX357370B (zh)
WO (1) WO2015165286A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113045B (zh) * 2014-04-29 2017-02-22 南京南瑞继保电气有限公司 Lc并联回路失谐故障的继电保护方法和装置
CN105024347B (zh) * 2015-02-12 2019-01-25 内蒙古大唐国际托克托发电有限责任公司 阻塞滤波器保护设备
CN105576607B (zh) * 2016-03-10 2018-03-13 南京南瑞继保电气有限公司 阻塞滤波器失谐故障的加速保护方法和装置
CN108448615B (zh) * 2018-04-02 2021-09-21 湖南大学 新能源多机接入弱电网的两带阻滤波器高频振荡抑制方法
CN111948467B (zh) * 2019-05-15 2023-03-28 南京南瑞继保电气有限公司 一种电容器组内部故障检测方法及电容器保护装置
CN110649577B (zh) * 2019-07-04 2021-10-01 中国电力科学研究院有限公司 一种基于纯电流特征的直流输电线路保护方法和系统
CN112444667B (zh) * 2019-09-02 2024-02-13 南京理工大学 一种直流配电网的边界保护方法
CN112198390B (zh) * 2020-12-03 2021-04-02 广东电网有限责任公司佛山供电局 一种电容器组健康状态实时评价方法和系统
CN112731259B (zh) * 2021-01-22 2023-10-10 浙江万胜智能科技股份有限公司 一种电流互感器开短路检测方法
CN113708488B (zh) * 2021-08-13 2023-01-24 贵州电网有限责任公司 继电保护系统硬件架构
CN114243657B (zh) * 2021-12-16 2024-02-09 上海海事大学 直流输电线路单端量快速保护方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007006C1 (ru) * 1990-06-28 1994-01-30 Сибирский научно-исследовательский институт энергетики Устройство для защиты трансформатора, подключенного к линии электропередачи через отделитель
CN103107523A (zh) * 2013-01-28 2013-05-15 大唐国际发电股份有限公司 阻塞滤波器失谐故障的继电保护方法
CN104113045A (zh) * 2014-04-29 2014-10-22 南京南瑞继保电气有限公司 Lc并联回路失谐故障的继电保护方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390287B2 (en) * 2007-03-26 2013-03-05 The University Of Queensland Coil decoupling
CN102130460A (zh) * 2011-03-11 2011-07-20 国家电网公司直流建设分公司 基于ccc的高压直流输电无功谐波控制实现方法
CN102401866B (zh) * 2011-12-13 2014-04-09 广东电网公司佛山供电局 三调谐直流滤波器失谐故障元件检测方法
CN103675560B (zh) * 2013-12-30 2016-03-30 武汉大学 一种高压直流输电系统直流侧滤波器失谐的在线辨识方法
TWI496409B (zh) * 2014-01-22 2015-08-11 Lite On Technology Corp 單相三線式電力控制系統及其電力控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007006C1 (ru) * 1990-06-28 1994-01-30 Сибирский научно-исследовательский институт энергетики Устройство для защиты трансформатора, подключенного к линии электропередачи через отделитель
CN103107523A (zh) * 2013-01-28 2013-05-15 大唐国际发电股份有限公司 阻塞滤波器失谐故障的继电保护方法
CN104113045A (zh) * 2014-04-29 2014-10-22 南京南瑞继保电气有限公司 Lc并联回路失谐故障的继电保护方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KU, XIAOFEI ET AL.: "Power System Protection and Control", FAULT AND PROTECTION ANALYSIS OF AC FILTER FOR HVDC TRANSMISSION SYSTEM, vol. 40, no. 19, 1 October 2012 (2012-10-01), pages 154, XP 055233983 *
LUO, HUIHUI: "Chinese Master's Theses Full-text Database, Information Science and Technology", RESEARCH ON DETUNING DETECTION APPROACH OF TRIPLE-TUNED DC FILTER FOR HVDC AND UHVDV TRANSMISSION PROJECT, 2011, pages 42 and 43, XP003009395 *

Also Published As

Publication number Publication date
BR112016025276A2 (pt) 2017-10-31
US20170047729A1 (en) 2017-02-16
EP3139462B1 (en) 2019-11-13
CA2946180C (en) 2019-01-08
KR101929543B1 (ko) 2018-12-17
BR112016025276B1 (pt) 2022-05-31
MX2016014206A (es) 2017-01-27
EP3139462A4 (en) 2017-07-19
CA2946180A1 (en) 2015-11-05
MX357370B (es) 2018-07-06
KR20170015281A (ko) 2017-02-08
AU2015252661B2 (en) 2017-08-24
US10128650B2 (en) 2018-11-13
AU2015252661A1 (en) 2016-11-03
CN104113045B (zh) 2017-02-22
CN104113045A (zh) 2014-10-22
EP3139462A1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2015165286A1 (zh) Lc并联回路失谐故障的继电保护方法和装置
Tripathy et al. A fast time–frequency transform based differential relaying scheme for UPFC based double-circuit transmission line
CN104505834B (zh) 一种容性负载的抑制并联谐振自适应补偿控制方法
CN113156337B (zh) 用于vienna整流器单管开路故障在线辨识方法、装置及存储介质
CN102082420B (zh) 输电线路的纵差保护方法
Lei et al. A protection method based on feature cosine and differential scheme for microgrid
CN103675560A (zh) 一种高压直流输电系统直流侧滤波器失谐的在线辨识方法
Jia et al. Residual current compensation for single-phase grounding fault in coal mine power network
CN110488187B (zh) 交流励磁同步电机励磁绕组接地短路故障保护系统及方法
CN106410769B (zh) 一种基于参考滤波电感电流的下垂控制微电网的限流方法
Sun et al. A Novel Method for Pilot Protection Based on Current Fault Component
CN107528327A (zh) 一种电网电能质量控制设备
CN103928929A (zh) 大容量并联混合型有源电力滤波器
CN203481832U (zh) 组合型静止无功补偿装置
CN106226597A (zh) 次同步谐振监测方法
CN116482488B (zh) 一种基于容性暂态的配电网接地故障测距方法及系统
CN204243776U (zh) 一种解决三相电压不平衡的svg装置
Guan et al. Single-ended protection scheme for multi-terminal VSC-based DC distribution system based on the transient energy
CN104330616A (zh) 一种电网交流电流有效值实时检测方法
Kong et al. Analysis on high frequency attenuation characteristic of HVDC line boundary
Chandrakar et al. Integrated Phasor Estimation Technique to Compensate Effect of CCVT Transient on Distance Protection
CN205544276U (zh) 一种低压无源滤波电路
CN118112339A (zh) 一种混合交流滤波器失谐的检测方法及系统
Dong DC Line Traveling Wave Protection
Huang et al. Analysis of AC filter detuning characteristics and improvement measures in converter station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785909

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015785909

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015785909

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2946180

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15305183

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167029205

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/014206

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015252661

Country of ref document: AU

Date of ref document: 20150108

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016025276

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016025276

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161027