WO2015165251A1 - 一种基于磁性树脂吸附耦合电吸附的再生水处理方法 - Google Patents

一种基于磁性树脂吸附耦合电吸附的再生水处理方法 Download PDF

Info

Publication number
WO2015165251A1
WO2015165251A1 PCT/CN2014/091365 CN2014091365W WO2015165251A1 WO 2015165251 A1 WO2015165251 A1 WO 2015165251A1 CN 2014091365 W CN2014091365 W CN 2014091365W WO 2015165251 A1 WO2015165251 A1 WO 2015165251A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrosorption
wastewater
magnetic resin
resin
reactor
Prior art date
Application number
PCT/CN2014/091365
Other languages
English (en)
French (fr)
Inventor
李爱民
王长明
宋海欧
王柏俊
孙晓慰
江野立
朱兆连
陈讯
王骏
姚志建
双陈冬
李海波
黄玉
Original Assignee
南京大学
南京大学盐城环保技术与工程研究院
爱思特水务科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学, 南京大学盐城环保技术与工程研究院, 爱思特水务科技有限公司 filed Critical 南京大学
Priority to US15/306,773 priority Critical patent/US10150685B2/en
Publication of WO2015165251A1 publication Critical patent/WO2015165251A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/57Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/75Regeneration or reactivation of ion-exchangers; Apparatus therefor of water softeners
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/005Black water originating from toilets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the invention belongs to the field of deep treatment of wastewater biochemical effluent, in particular to a reclaimed water treatment method based on magnetic resin adsorption coupled electrosorption, and more particularly to a magnetic resin adsorption process combined with an electrosorption process to effectively remove High-efficiency economic reclaimed water treatment method for residual color, organic matter, total phosphorus, total nitrogen and total salt in wastewater biochemical effluent.
  • the national industrial and agricultural wastewater and urban domestic sewage are generally treated by biochemical methods. With the improvement of national sewage discharge and reuse standards, the wastewater biochemical effluent must be treated in depth to further reduce the color, organic matter, total phosphorus and total. Nitrogen and total salt content, etc., to meet national emission and reuse standards; in addition, recycling of recycled water can reduce wastewater discharge, and has an important contribution to the protection and conservation of water resources.
  • the traditional desalination process in deep processing mainly has two forms of membrane method and thermal method.
  • the membrane method is mainly reverse osmosis, electrodialysis, etc., and their desalination effect is good, but the investment and operation cost are high, and the process membrane is easy. It is polluted;
  • the thermal method mainly has multi-stage flashing, low-temperature multi-effect distillation, steam compression distillation, etc., and the investment and operating costs are relatively high.
  • electrosorption is only a low-cost, high-efficiency and efficient economic technique by adsorbing ions by applying an electric double layer capacitor on the surface of the electrode by applying a DC voltage of less than 2V.
  • the organic pollutants in the sewage have a great influence on the life of the electroadsorption electrode.
  • the organic ions compete with the inorganic ions for the adsorption site, thereby reducing the desalination efficiency of the electrosorption. Therefore, the single electrosorption process deeply treats the wastewater. The goal of efficient, economical and high quality water quality is still not achieved.
  • this method is not suitable for domestic sewage, especially for sewage with high organic pollutant content, because organic pollutants in sewage have a great influence on the life of the electrode, and in addition, organic ions compete with inorganic ions for adsorption sites.
  • the single electro-adsorption process is still capable of achieving advanced, high-quality, high-quality water quality. Therefore, it is still necessary to find a treatment method suitable for sewage with relatively high organic pollutant content, especially not only the advantages of electrosorption, but also the goal of ensuring electrode life and achieving high efficiency and high quality water quality.
  • the organic pollutants in the existing sewage have a great influence on the life of the electrosorption electrode.
  • the organic ions compete with the inorganic ions for the adsorption site, thereby reducing the desalination efficiency of the electrosorption, and the single electrosorption process is used to deeply treat the wastewater.
  • the problem of high-efficiency, high-quality water quality can not be achieved, and a reclaimed water treatment method based on magnetic resin adsorption coupled electrosorption is provided, which is suitable for a sewage treatment method with relatively high organic pollutant content, especially not only electrosorption Advantages, as well as the goal of ensuring electrode life and achieving efficient, economical and high quality water quality.
  • a method for treating reclaimed water based on magnetic resin adsorption coupled electrosorption the steps of which are:
  • step (3) Passing the filtered wastewater in step (2) into an electrosorption device, and electrostatically adsorbing the charged ions in the effluent after treatment with the magnetic resin by the electric double layer formed on the surface of the electrode of the electrosorption device under the applied power supply voltage condition Further, the inorganic salt ions and organic substances in the effluent after the treatment of the magnetic resin are further reduced.
  • the external power source is turned off and 2L-5L of tap water is introduced into the electrosorption device to regenerate and desorb the electrode in the case of short circuit connection.
  • the magnetic resin used in the step (1) is a magnetic polyacrylic strong base anion exchange resin, which is a resin given in Nanjing University National Invention Patent Application No. 201010017687.1.
  • the volume ratio of the magnetic resin used volume to the treated biochemical wastewater in the step (1) is 1:100 to 300.
  • the hydraulic retention time of the wastewater in the resin reactor in the step (1) is 10-60 min, and the liquid solid is fully contacted by mechanical stirring or pneumatic stirring.
  • the regenerant used in the regeneration tank in the step (2) is a NaCl solution having a mass fraction of 5%-20%, and the resin desorption solution is treated by coagulation or membrane treatment.
  • the electrode of the electrosorption device used in the step (3) is prepared by mixing activated carbon, carbon black and polytetrafluoroethylene in a mass ratio of 5-16:2-3:2.
  • the special electrode material given by the invention has strong adsorption property and the wastewater treatment capacity is greatly enhanced.
  • the power supply voltage of each pair of electrodes in the electrosorption in the step (3) is 1.5-2.0V.
  • the component of the biochemical effluent to be treated is required to have a CODcr of 150 ppm or less, a chromaticity of 100 degrees or less, and a total salt content of 5,000 ppm or less.
  • the magnetic resin adsorption process is a mature advanced treatment process, the magnetic resin can effectively adsorb and remove various organic substances in the biochemical effluent of wastewater, reduce the chroma, and simultaneously exchange ions for inorganic substances, with high concentration ratio and low operating cost. And the operation is simple and convenient.
  • the magnetic resin adsorption process and the electrosorption process can be combined, how to solve their respective shortcomings, has been a problem for those skilled in the art.
  • the invention can reduce the influence of the organic matter in the biochemical effluent of the waste water on the electroadsorption electrode through the magnetic resin process, increase the desalination efficiency, and effectively remove the inorganic salt substance remaining after the magnetic resin process by the electrosorption process; and the magnetic resin
  • the combination of technology and electrosorption technology compared with other advanced treatment processes such as coagulation, nanofiltration, and reverse osmosis, has low equipment investment and low cost. Therefore, the new deep processing technology of magnetic resin adsorption coupled electrosorption has a good application prospect.
  • the effect of 1+1 is greater than 2, the task in the field is unpredictable, the effect is good, and the outstanding progress is made.
  • the invention is based on the preparation technology of regenerated water of magnetic resin adsorption coupling electrosorption, which utilizes magnetic resin to effectively remove organic matter, color, total phosphorus and total nitrogen in wastewater biochemical effluent, and then combines electrosorption to remove inorganic salts in wastewater biochemical effluent
  • the content, the treated CODcr removal rate of wastewater biochemical effluent can reach 50%-70%, the average chroma removal rate is 70%-90%, the total nitrogen removal rate is 20%-35%, and the total phosphorus removal rate is 25%-40%, the total salt removal rate can reach more than 85%, the coupling process of the two is significantly higher than the CODcr, chroma and total salt removal rate of the single electrosorption process; and unexpected It is found that this method does not have to worry about the problem that the traditional adsorption of organic ions and the inorganic ion electrosorption technology will reduce the competitive adsorption sites and the desalination efficiency, which is equal to the effect of 1+1 greater than 2, There is outstanding
  • the invention can be widely applied in the deep treatment of various wastewater biochemical effluent, especially for the treatment of wastewater with high organic concentration, and provides an efficient and simple method for preparing high quality reclaimed water.
  • the pretreatment effect of the magnetic resin of the present invention makes the regenerability of the electroadsorption electrode used and the pollution resistance to organic substances and inorganic salts are better than those of the general electroadsorption carbon electrode, and the service life is longer.
  • CODcr is 60-80mg/L, color is 45-60 degrees (platinum cobalt colorimetric method), total nitrogen is 15-20mg/L, total phosphorus is 3mg/L, total salt The amount is 1500 mg/L.
  • Degree and total phosphorus total nitrogen have a good treatment effect.
  • the preparation method of the resin can be seen in the resin of the first embodiment in the patent application 201010017687.1, developed by Nanjing University, the same below), the electrosorption device used (the electrosorption device is in the existing literature) There are a large number of reports, which are well-known in the art, and will not be repeated here.
  • the main improvement is that the electrodes using new electrodes are activated carbon, carbon black and polytetrafluoroethylene mixed in a mass ratio of 5:2:2.
  • Resin and wastewater are mixed and stirred in the reactor at 150r/h for 1 hour. After the reaction is completed, the effluent from the top of the reactor flows into the sedimentation tank, and the separation of the resin and water is achieved by the magnetic aggregation of the resin itself.
  • CODcr water quality index
  • the effluent above the sedimentation tank directly enters the electrosorption device, and the electrode of the electrosorption device used is made of activated carbon, carbon black and polytetrafluoroethylene in a mass ratio of 10:3:2; the operating parameter is influent Desalting was carried out at a flow rate of 15 L/h and a voltage of 1.6 V.
  • the resin-water mixture precipitated at the bottom of the sedimentation tank enters the buffer tank at a flow rate of 40 L/h, of which 70% is pumped back to the reactor and 30% flows into the regeneration tank.
  • the deactivated magnetic resin is regenerated in a regeneration tank for 15 minutes by mass fraction of 15% sodium chloride solution, and then sent to a resin storage tank, and the desorption liquid is additionally treated.
  • the external power source is turned off and the electrosorption device is turned off.
  • 2L tap water is introduced to regenerate the electrode in the case of short circuit.
  • the water quality is: CODcr removal rate is 70%, chroma removal rate is 80%, total phosphorus removal rate is 29%, total nitrogen removal rate is 35%, total salt removal rate is 85%, electrode Life expectancy is increased by 3 times.
  • the flow rate of 0.5 m 3 /h was flowed into a 0.5 m 3 steel mechanically stirred reactor while a magnetic resin having a volume ratio of 1:100 to the reactor was added from the resin storage tank to the reactor (the magnetic resin was used in the patent application 201010017687.1)
  • the resin in Example 3, developed by Nanjing University), the resin and waste water were mixed and stirred in a reactor at a flow rate of 150 r/h for 1 hour, and then the reaction was completed from the upper outlet of the reactor, and the resin was realized by magnetic aggregation of the resin itself.
  • the effluent above the sedimentation tank directly enters the electrosorption device, and desalting is carried out under the operating parameters of an influent flow rate of 10 L/h and a voltage of 1.8 V.
  • the resin-water mixture precipitated at the bottom of the sedimentation tank enters the buffer tank at a flow rate of 35 L/h, of which 60% is pumped back to the reactor and 40% flows into the regeneration tank.
  • the deactivated magnetic resin is regenerated in the regeneration tank by 15% by mass of sodium chloride for 35 minutes, and then sent to the resin storage tank.
  • the desorption liquid is reused and reused.
  • the device is flooded with 5L of tap water to regenerate the electrode in the event of a short circuit.
  • the water quality is: CODcr40mg/L, chroma 10°, total phosphorus 1.5mg/L, total nitrogen 15mg/L, total salt 100mg/L, and electrode life increased by 2.8 times.
  • Biochemical effluent from wastewater of a large chemical enterprise treated by biochemical treatment (CODcr 150mg/L, color 80°, total nitrogen 15mg/L, total phosphorus 3mg/L, total salt 2500mg/L), 0.5m
  • the flow rate of 3 / h was flowed into a 0.5 m 3 steel mechanically stirred reactor while a magnetic resin having a volume ratio of 1:200 to the reactor was added from the resin storage tank to the reactor (the magnetic resin was used in Example 2 of Patent Application 201010017687.1) Resin in the resin, developed by Nanjing University), the resin and waste water are mixed and stirred in the reactor at 180r/h for 1 hour.
  • the resin After the reaction from the upper outlet of the reactor, the resin is separated from the water by the magnetic aggregation of the resin itself.
  • the effluent above the sedimentation tank directly enters the electrosorption device, and desalting is carried out under the operating parameters of an influent flow rate of 10 L/h and a voltage of 1.5 V.
  • the resin-water mixture precipitated at the bottom of the sedimentation tank enters the buffer tank at a flow rate of 40 L/h, of which 70% is pumped back to the reactor and 30% flows into the regeneration tank.
  • the deactivated magnetic resin was transferred to a resin storage tank after being subjected to 15% sodium chloride regeneration in a regeneration tank for 30 minutes, and the desorbed solution was disposed of and reused.
  • the water quality is: CODcr45mg/L, chroma 20°, total phosphorus 2mg/L, total nitrogen 13mg/L, total salt 150mg/L.
  • CODcr Secondary biochemical water output index of a 100,000-ton urban sewage treatment plant: CODcr is 40-60mg/L, chroma is 30-50 degrees (platinum cobalt colorimetric method), total nitrogen is 18mg/L, total phosphorus is 2mg/L, total salt The amount is 800 mg/L.
  • the resin in 2 developed by Nanjing University) the resin and waste water are mixed and stirred in the reactor at 160r/h for 1 hour.
  • the effluent from the upper part of the reactor flows into the sedimentation tank, and the resin is realized by the magnetic aggregation of the resin itself.
  • the water is separated, and the effluent above the sedimentation tank directly enters the electrosorption device, and desalting is carried out under the operating parameters of an influent flow rate of 15 L/h and a voltage of 1.6 V.
  • the resin-water mixture precipitated at the bottom of the sedimentation tank enters the buffer tank at a flow rate of 45 L/h, of which 80% is pumped back to the reactor and 20% flows into the regeneration tank.
  • the deactivated magnetic resin was transferred to a resin storage tank by a 10% sodium chloride regeneration mass fraction in a regeneration tank for 30 minutes, and the desorption liquid was additionally treated. After treatment, the water quality is: CODcr 20mg/L, color is 10 degrees, total phosphorus is 1.4mg/L, total nitrogen is 15mg/L, and total salt is 50mg/L.
  • the biochemical tail water index emitted by a large printing and dyeing enterprise is: CODcr100-150mg/L, chroma 80 degrees, total nitrogen 20mg/L, total phosphorus 2mg/L, total salt 3000mg/L.
  • the resin in 4 developed by Nanjing University) the resin and waste water are mixed and stirred in the reactor at 180r/h for 1 hour.
  • the effluent from the upper part of the reactor flows into the sedimentation tank, and the resin is realized by the magnetic aggregation of the resin itself.
  • the separation of water, the effluent above the sedimentation tank directly enters the electrosorption device, and desalting is carried out under the operating parameters of the influent flow rate of 10 L/h and a voltage of 2.0 V.
  • the resin-water mixture precipitated at the bottom of the sedimentation tank enters the buffer tank at a flow rate of 40 L/h, of which 70% is pumped back to the reactor and 30% flows into the regeneration tank.
  • the deactivated magnetic resin was regenerated in a regeneration tank for 15 minutes by mass fraction of 15% sodium chloride, and then sent to a resin storage tank, and the desorption liquid was additionally disposed.
  • the water quality is: CODcr40mg/L, chroma 20°, total phosphorus 1.5mg/L, total nitrogen 16mg/L, total salt 80mg/L.
  • the secondary biochemical tail water index of a 200,000-ton urban sewage treatment plant CODcr is 20-40mg/L, color is 40 degrees (platinum cobalt colorimetric method), total nitrogen is 23mg/L, total phosphorus is 1.8mg/L, total The salt content is 600 mg/L.
  • the effluent from the top of the reactor was poured into the sedimentation tank, and the magnetic aggregation of the resin itself was realized.
  • the separation of the resin and water, the effluent above the sedimentation tank directly enters the electrosorption device, and desalting is carried out under the operating parameters of an influent flow rate of 15 L/h and a voltage of 1.6 v.
  • the resin-water mixture precipitated at the bottom of the sedimentation tank enters the buffer tank at a flow rate of 45 L/h, of which 80% is pumped back to the reactor and 20% flows into the regeneration tank.
  • the deactivated magnetic resin was regenerated in a regeneration tank for 10 minutes by mass fraction of 10% sodium chloride, and then sent to a resin storage tank, and the desorption liquid was additionally disposed.
  • the water quality is: CODcr10mg/L, color is 10 degrees, total phosphorus is 1.4mg/L, total nitrogen is 16mg/L, and total salt is 50mg/L.
  • the secondary biochemical tail water index of a 50,000-ton municipal sewage treatment plant CODcr is 80-90mg/L, color is 40-60 degrees (platinum cobalt colorimetric method), total nitrogen is 20mg/L, total phosphorus is 2mg/L, total The amount of salt is 1000 mg/L.
  • the flow rate of 15 m 3 /h was flowed into a 10 m 3 upflow agitated reactor while a commercial MIEX magnetic resin having a volume ratio of 1:200 to the reactor was added to the reactor from a resin storage tank (the resin was developed by ORICA, Australia). Patent No. US7,291,272B2), the resin and waste water are mixed and stirred in the reactor at 180r/h for 1 hour.
  • the effluent from the upper part of the reactor flows into the sedimentation tank, and the resin is realized by the magnetic aggregation of the resin itself.
  • the water is separated, and the effluent above the sedimentation tank directly enters the electrosorption device, and desalting is carried out under the operating parameters of an influent flow rate of 15 L/h and a voltage of 1.7 V.
  • the resin-water mixture precipitated at the bottom of the sedimentation tank enters the buffer tank at a flow rate of 40 L/h, of which 80% is pumped back to the reactor and 20% flows into the regeneration tank.
  • the deactivated magnetic resin was regenerated in a regeneration tank for 15 minutes by mass fraction of 15% sodium chloride, and then sent to a resin storage tank, and the desorption liquid was additionally disposed.
  • the water quality is: CODcr25mg/L, color is 10 degrees, total nitrogen is 18mg/L, total phosphorus is 1.5mg/L, and total salt is 80mg/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种基于磁性树脂吸附耦合电吸附的再生水处理方法,属于再生水制备范畴。其步骤为:将废水生化出水泵入添加磁性树脂颗粒的反应器中有效降低废水中的色度、有机物、总氮、总磷;经充分混合吸附后的废水在沉淀槽中沉淀分离,将分离出的磁性树脂部分回流和部分输送至再生池,磁性树脂吸附后的废水通入电吸附装置,对废水进行脱盐,并进一步降低水中的少量有机物及无机杂质。经过本发明集成工艺深度处理后水中的有机物含量、色度、总氮、总磷以及总盐量等指标明显降低。本发明既能有效降低废水中的有机物、色度、总盐等的含量,且能使电吸附电极具有更长久的使用寿命,提供了一种高效经济的高质量再生水的制备方法。

Description

一种基于磁性树脂吸附耦合电吸附的再生水处理方法 技术领域
本发明属于废水生化出水的深度处理领域,具体地说,涉及一种基于磁性树脂吸附耦合电吸附的再生水处理方法,更具体地说,涉及一种利用磁性树脂吸附工艺结合电吸附工艺从而有效去除废水生化出水中残余色度、有机物、总磷、总氮以及总盐量等指标的高效经济再生水的处理方法。
背景技术
由于城镇工业化进程、人口增长过快和环境污染日益严重,目前全球水资源短缺问题自进入二十一世纪后极剧加大,我国的水资源问题同样十分严峻。为了解决淡水危机,对工农业和城市污水进行处理的技术,要求能对废水中无机盐、有机污染物、总磷和总氮等进行深度净化,满足再生水多目标利用、高水质的要求,符合国家可持续发展的战略要求,这样对社会和环境的改善有着重大的意义。
全国工农业废水和城市生活污水普遍使用的是生化方法进行处理,随着国家污水排放及回用标准的提高,废水生化出水必须进行深度处理,进一步降低其中的色度、有机质、总磷、总氮以及总盐量等指标,从而达到国家的排放和回用标准;另外再生水的循环利用可以减少废水的排放量,对于保护和节约水资源有着重要的贡献。
目前,深度处理中的传统脱盐工艺主要有膜法和热法两种形式,膜法主要是反渗透、电渗析等,它们的脱盐效果良好,但是投资及运行成本较高,而且工艺过程膜容易受到污染;热法主要有多级闪蒸、低温多效蒸馏、蒸汽压缩蒸馏等,投资及运行成本较高。电吸附作为一种新兴脱盐技术,只通过施加小于2V的直流电压在电极表面形成双电层电容来吸附离子,被认为是一种低成本、高效率的高效经济技术。但是污水中的有机物污染物对于电吸附电极寿命有较大影响,另外,有机离子会与无机离子竞争吸附位点,从而降低电吸附的脱盐效率,因此单一的电吸附工艺对废水进行深度处理,仍不能实现高效经济高质量水质的目标。
例如中国专利公开号:CN 102452751 A,公开日2012年5月16日,公开了一份名称为工业废水深度除盐回用方法的专利文件,该工业废水深度除盐回用方法的特征在于待处理工业废水顺序经过降低硬度操作单元、高效过滤操作单元和电吸附除盐操作单元处理后,即达到回用水标准,具体处理步骤:a.降低硬度、沉淀、中和b.高效过滤c.电吸附除盐。提供了一种既不需要电渗析、反渗透膜装置,也无须离子交换树脂,而且在水质电导率大于2500μS/cm的条件下,维持系统运行稳定,不结垢,同时出水水质能够满足循环水补水水质要求的工业 废水深度除盐回用方法。将二级生化后、电导率低于4500μS/cm的外排工业废水处理到工业循环水系统的补水要求。适用于化工污水、印染污水、纺织污水和炼油污水,适用水质范围宽、工艺运行稳定、除盐效率高。但是该方法不适合生活污水,尤其是不适合有机物污染物含量比较高的污水,因为污水中的有机物污染物对于电吸附电极寿命有较大影响,另外,有机离子会与无机离子竞争吸附位点,从而降低电吸附的脱盐效率,因此单一的电吸附工艺对废水进行深度处理,仍不能实现高效经济高质量水质的目标。所以还是需要寻找一个能适合有机物污染物含量比较高的污水的处理方法,尤其是不但具有电吸附的优点,还有保证电极寿命,实现高效经济高质量水质的目标。
发明内容
1.要解决的技术问题
针对现有污水中的有机物污染物对于电吸附电极寿命有较大影响,另外,有机离子会与无机离子竞争吸附位点,从而降低电吸附的脱盐效率,单一的电吸附工艺对废水进行深度处理,无法实现高效经济高质量水质的目标的问题,提供了一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其适合有机物污染物含量比较高的污水的处理方法,尤其是不但具有电吸附的优点,还有保证电极寿命,实现高效经济高质量水质的目标。
2.技术方案
为了解决以上问题,本发明的技术方案如下。
一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其步骤为:
(1)将待处理的废水生化出水泵入添加有磁性树脂颗粒的反应器中,在10-60℃的温度下使磁性树脂与废水生化出水充分接触发生反应;有效降低废水生化出水中的有机质、色度、总氮与总磷;
(2)将经过步骤(1)充分混合反应后的废水流入沉淀槽进行沉淀,然后过滤分离,这是为了保证工艺的连续运行和磁性树脂的有效利用效率,将沉淀下来的磁性树脂的60%-80%回流到反应器,余量输送至再生池,输送至再生池的磁性树脂再生后回用到反应器中;
(3)将步骤(2)中过滤后的废水通入电吸附装置,利用电吸附装置的电极在外加电源电压条件下表面形成的双电层对磁性树脂处理后出水中的带电离子发生静电吸附,进一步降低磁性树脂处理后出水中无机盐离子和有机物,当废水处理完毕后关闭外加电源且向电吸附装置通入2L-5L自来水使电极在电路短接情况下再生脱附。
优选地,所述步骤(1)中所用磁性树脂为磁性聚丙烯酸系强碱性阴离子交换树脂,为南京大学国家发明专利申请201010017687.1中所给出的树脂。
优选地,所述步骤(1)中磁性树脂用量体积与处理的生化废水体积比为1∶100至300。
优选地,所述的步骤(1)中废水在树脂反应器中的水力停留时间为10-60min,液固充分接触的方式为机械搅拌或气力搅拌。
优选地,所述的步骤(2)中再生池中用的再生剂为质量分数为5%-20%的NaCl溶液,树脂脱附液采用混凝或膜法处理。
优选地,所述的步骤(3)中所用电吸附装置的电极为活性炭、炭黑和聚四氟乙烯按质量比例5-16∶2-3∶2混合制成。本发明给出的这种特殊电极材料,具有很强的吸附性,废水处理能力大大增强。
优选地,所述的步骤(3)中电吸附中每对电极外加电源电压为1.5-2.0V。
优选地,所述待处理的废水生化出水的成分要求为CODcr150ppm以下,色度100度以下以及总盐量5000ppm以下。
磁性树脂吸附工艺虽然是一项成熟的深度处理工艺,磁性树脂可以有效吸附去除废水生化出水中的各类有机物质,降低色度,同时对于无机物进行离子交换,具有浓缩比高、运行成本低和操作简单方便等特点。但是磁性树脂吸附工艺和电吸附方法是否可以结合,怎么解决各自的缺点,一直是摆在本领域技术人员的难题。本发明既可以通过磁性树脂工艺来减少废水生化出水中的有机物对电吸附电极的影响,增加脱盐效率,又可以用电吸附工艺有效去除磁性树脂工艺处理后残留的无机盐类物质;而且磁性树脂技术和电吸附技术结合,与其他混凝、纳滤、反渗透等深度处理工艺相比,设备投资少且成本低。因此磁性树脂吸附耦合电吸附的深度处理新技术具有很好的应用前景。取得1+1大于2的效果,本领域任务无法预知,效果好,具有突出的进步。尤其是在前期经过专利201010017687.1中所给出的树脂处理后的废水搭配活性炭、炭黑和聚四氟乙烯按质量比例5-16∶2-3∶2混合制成的电极材料,电吸附的效率能提高20%以上,抗有机物、无机盐的污染性都较一般电吸附碳电极性能大大提高,寿命增加2倍以上。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明基于磁性树脂吸附耦合电吸附的再生水制备技术,利用磁性树脂有效去除废水生化出水中的有机物、色度、总磷和总氮,再结合电吸附去除废水生化出水中的无机盐含量,经过处理后废水生化出水的CODcr均值去除率可以达到50%-70%,色度均值去除率为70%-90%,总氮均值去除率为20%-35%,总磷均值去除率为25%-40%,总盐量的去除率可以达到85%以上,两者的耦合工艺较单一电吸附工艺处理的CODcr、色度以及总盐量等去除率都有显著提升;而且意外的发现采用本方法不用再担心传统观念认为的有机离子会与无机离子电吸附技术存在的竞争吸附位点以及脱盐效率会降低的问题,等于是1+1大于2的效果,具 有突出的实质性进步,同时该工艺较传统的深度处理工艺成本较低,且操作简便。
(2)本发明可以广泛应用在各种废水生化出水的深度处理范畴内,尤其是对于有机物浓度高的废水的处理,且为高质量的再生水的制备提供了一条高效而简便的方法。
(3)本发明由于磁性树脂的预处理效果,使得所用电吸附电极的再生性和抗有机物、无机盐的污染性都较一般电吸附碳电极性能更好,使用寿命更长。
具体实施方式
下面结合具体的实施例,对本发明作详细描述。
实施例1
大型城市污水处理厂二级生化尾水指标:CODcr为60-80mg/L,色度45-60度(铂钴比色法),总氮15-20mg/L,总磷3mg/L,总盐量1500mg/L。以10m3/h的流量流入10m3的上流式气力搅拌反应器中,同时从树脂储存罐向反应器添加与废水体积比为1∶300的磁性树脂(该磁性树脂对于各类有机物质、色度和总磷总氮有着很好的处理效果,树脂的制备方法可见专利申请201010017687.1中实施例1的树脂,南京大学研制,下同),所用电吸附装置(电吸附装置在现有文献中有大量报道,属于本领域所熟知的概念,本处不再赘述,主要改进点是采用了新的电极)的电极为活性炭、炭黑和聚四氟乙烯按质量比例5∶2∶2混合制成;树脂与废水在反应器内以150r/h的转速混合搅拌1小时反应完成后,从反应器上方出水堰口流入沉淀池,依靠树脂自身的磁性聚集实现树脂与水的分离,沉淀池上方出水直接进入电吸附装置,在操作参数为进水流速10L/h和电压1.6V下进行脱盐。沉淀池底部沉淀的树脂与水混合液以35L/h的流量进入缓冲罐,其中80%泵回反应器,20%流入再生池。失活后的磁性树脂在再生池中经质量份数为10%的氯化钠再生30min后送入树脂储存罐,而失效后的再生剂经纳滤后清液用于配制再生剂,当废水处理完毕后关闭外加电源且向电吸附装置通入3L自来水使电极在电路短接情况下再生脱附。经集成工艺处理后水质为:CODcr去除率为70%,色度去除率为90%,总磷去除率为31%,总氮去除率为39%,总盐量去除率为90%,电极的寿命增加2.1倍。
实施例2
某大型工业园区污水处理厂二级生化出水经过混凝沉淀过滤后,它的水质指标:CODcr为70-110mg/L,色度60-100度(铂钴比色法),总氮15-25mg/L,总磷2-3mg/L,总盐量2000mg/L。以1m3/h的流量流入1m3的钢制机械搅拌反应器中,同时从树脂储存罐向反应器添加与废水体积比为1∶100的磁性树脂(该磁性树脂采用专利申请201010017687.1中实施例2中的树脂,南京大学研制),树脂与废水在反应器内以180r/h的转速混合搅拌1小时反应完成后,从反应器上方出口流入斜板沉淀池,依靠树脂自身的磁性聚集实现树脂与水的分离, 沉淀池上方出水直接进入电吸附装置,所用电吸附装置的电极为活性炭、炭黑和聚四氟乙烯按质量比例10∶3∶2混合制成;在操作参数为进水流速15L/h和电压1.6V下进行脱盐。沉淀池底部沉淀的树脂与水混合液以40L/h的流量进入缓冲罐,其中70%泵回反应器,30%流入再生池。失活后的磁性树脂在再生池中经质量份数为15%的氯化钠溶液再生35min后送入树脂储存罐,脱附液另外处理,当废水处理完毕后关闭外加电源且向电吸附装置通入2L自来水使电极在电路短接情况下再生脱附。经集成工艺处理后水质为:CODcr去除率为70%,色度去除率为80%,总磷去除率为29%,总氮去除率为35%,总盐量去除率为85%,电极的寿命增加3倍。
实施例3
某废纸造纸园区污水厂二级生化出水(CODcr为135mg/L,色度75度(铂钴比色法),总氮20mg/L,总磷2mg/L,总盐量1700mg/L)。以0.5m3/h的流量流入0.5m3的钢制机械搅拌反应器中,同时从树脂储存罐向反应器添加与废水体积比为1∶100的磁性树脂(该磁性树脂采用专利申请201010017687.1中实施例3中的树脂,南京大学研制),树脂与废水在反应器内以150r/h的转速混合搅拌1小时反应完成后,从反应器上方出口流入沉淀池,依靠树脂自身的磁性聚集实现树脂与水的分离,沉淀池上方出水直接进入电吸附装置,在操作参数为进水流速10L/h和电压1.8V下进行脱盐。沉淀池底部沉淀的树脂与水混合液以35L/h的流量进入缓冲罐,其中60%泵回反应器,40%流入再生池。失活后的磁性树脂在再生池中经质量份数为15%的氯化钠再生35min后送入树脂储存罐,脱附液再处置回用,当废水处理完毕后关闭外加电源且向电吸附装置通入5L自来水使电极在电路短接情况下再生脱附。经集成工艺处理后水质为:CODcr40mg/L,色度10度,总磷1.5mg/L,总氮15mg/L,总盐量100mg/L,电极的寿命增加2.8倍。
实施例4
将经过生化处理过的某大型化工企业污水站废水生化出水(CODcr为150mg/L,色度80度,总氮15mg/L,总磷3mg/L,总盐量2500mg/L),以0.5m3/h的流量流入0.5m3的钢制机械搅拌反应器中,同时从树脂储存罐向反应器添加与废水体积比为1∶200的磁性树脂(该磁性树脂采用专利申请201010017687.1中实施例2中的树脂,南京大学研制),树脂与废水在反应器内以180r/h的转速混合搅拌1小时反应后,从反应器上方出口流入沉淀池,依靠树脂自身的磁性聚集实现树脂与水的分离,沉淀池上方出水直接进入电吸附装置,在操作参数为进水流速10L/h和电压1.5V下进行脱盐。沉淀池底部沉淀的树脂与水混合液以40L/h的流量进入缓冲罐,其中70%泵回反应器,30%流入再生池。失活后的磁性树脂在再生池中经15%的氯化钠再生质量份数为30min后送入树脂储存罐,脱附液处置后回用。经集成工艺处理后 水质为:CODcr45mg/L,色度20度,总磷2mg/L,总氮13mg/L,总盐量150mg/L。
实施例5
某十万吨城市污水处理厂二级生化出水指标:CODcr为40-60mg/L,色度30-50度(铂钴比色法),总氮18mg/L,总磷2mg/L,总盐量800mg/L。以15m3/h的流量流入10m3的上流式气力搅拌反应器中,同时从树脂储存罐向反应器添加与废水体积比为1∶300的磁性树脂(该磁性树脂采用专利申请201010017687.1中实施例2中的树脂,南京大学研制),树脂与废水在反应器内以160r/h的转速混合搅拌1小时反应完成后,从反应器上方出水堰口流入沉淀池,依靠树脂自身的磁性聚集实现树脂与水的分离,沉淀池上方出水直接进入电吸附装置,在操作参数为进水流速15L/h和电压1.6V下进行脱盐。沉淀池底部沉淀的树脂与水混合液以45L/h的流量进入缓冲罐,其中80%泵回反应器,20%流入再生池。失活后的磁性树脂在再生池中经10%的氯化钠再生质量份数为30min后送入树脂储存罐,脱附液另外处理。经处理后水质为:CODcr20mg/L,色度10度,总磷1.4mg/L,总氮15mg/L,总盐量50mg/L。
实施例6
某大型印染企业排放的生化尾水指标为:CODcr100-150mg/L,色度80度,总氮20mg/L,总磷2mg/L,总盐量3000mg/L。以10m3/h的流量流入10m3的上流式气力搅拌反应器中,同时从树脂储存罐向反应器添加与废水体积比为1∶100的磁性树脂(该磁性树脂采用专利申请201010017687.1中实施例4中的树脂,南京大学研制),树脂与废水在反应器内以180r/h的转速混合搅拌1小时反应完成后,从反应器上方出水堰口流入沉淀池,依靠树脂自身的磁性聚集实现树脂与水的分离,沉淀池上方出水直接进入电吸附装置,在操作参数为进水流速10L/h和电压2.0V下进行脱盐。沉淀池底部沉淀的树脂与水混合液以40L/h的流量进入缓冲罐,其中70%泵回反应器,30%流入再生池。失活后的磁性树脂在再生池中经质量份数为15%的氯化钠再生30min后送入树脂储存罐,脱附液另外处置。经处理后水质为:CODcr40mg/L,色度20度,总磷1.5mg/L,总氮16mg/L,总盐量80mg/L。
实施例7
某二十万吨城市污水处理厂二级生化尾水指标:CODcr为20-40mg/L,色度40度(铂钴比色法),总氮23mg/L,总磷1.8mg/L,总盐量600mg/L。以0.5m3/h的流量流入0.5m3的钢制机械搅拌反应器中,同时从树脂储存罐向反应器添加与废水体积比为1∶300的磁性树脂(该磁性树脂采用专利申请201010017687.1中实施例5中的树脂,南京大学研制),树脂与废水在反应器内以150r/h的转速混合搅拌1小时反应完成后,从反应器上方出水堰口流入沉淀池,依靠树脂自身的磁性聚集实现树脂与水的分离,沉淀池上方出水直接进入电吸附装置,在操作参数为进水流速15L/h和电压1.6v下进行脱盐。沉淀池底部沉淀的树脂与水混合液以 45L/h的流量进入缓冲罐,其中80%泵回反应器,20%流入再生池。失活后的磁性树脂在再生池中经质量份数为10%的氯化钠再生30min后送入树脂储存罐,脱附液另外处置。经处理后水质为:CODcr10mg/L,色度10度,总磷1.4mg/L,总氮16mg/L,总盐量50mg/L。
实施例8
某五万吨城市污水处理厂二级生化尾水指标:CODcr为80-90mg/L,色度40-60度(铂钴比色法),总氮20mg/L,总磷2mg/L,总盐量1000mg/L。以15m3/h的流量流入10m3的上流式气力搅拌反应器中,同时从树脂储存罐向反应器添加与废水体积比为1∶200的商业MIEX磁性树脂(该树脂由澳大利亚ORICA公司研制,专利号No.US7,291,272B2),树脂与废水在反应器内以180r/h的转速混合搅拌1小时反应完成后,从反应器上方出水堰口流入沉淀池,依靠树脂自身的磁性聚集实现树脂与水的分离,沉淀池上方出水直接进入电吸附装置,在操作参数为进水流速15L/h和电压1.7V下进行脱盐。沉淀池底部沉淀的树脂与水混合液以40L/h的流量进入缓冲罐,其中80%泵回反应器,20%流入再生池。失活后的磁性树脂在再生池中经质量份数为15%的氯化钠再生30min后送入树脂储存罐,脱附液另外处置。经处理后水质为:CODcr25mg/L,色度10度,总氮18mg/L,总磷1.5mg/L,总盐量80mg/L。

Claims (8)

  1. 一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其步骤为:
    (1)将待处理的废水生化出水泵入添加有磁性树脂颗粒的反应器中,在10-60℃的温度下使磁性树脂与废水生化出水充分接触发生反应;
    (2)将经过步骤(1)充分混合反应后的废水流入沉淀槽进行沉淀,然后过滤分离,将沉淀下来的磁性树脂的60-80%回流到反应器,余量输送至再生池,输送至再生池的磁性树脂再生后回用到反应器中;
    (3)将步骤(2)中过滤后的废水通入电吸附装置,电吸附装置的电极在外加电源电压条件下表面形成的双电层对过滤后的废水中的带电离子发生静电吸附,当废水处理完毕后关闭外加电源且向电吸附装置通入2-5L自来水使电极在电路短接情况下再生脱附。
  2. 根据权利要求1所述的一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其特征在于,所述步骤(1)中所用磁性树脂为磁性聚丙烯酸系强碱性阴离子交换树脂,为南京大学国家发明专利申请201010017687.1中所给出的树脂。
  3. 根据权利要求1所述的一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其特征在于,所述步骤(1)中磁性树脂用量体积与处理的生化废水体积比为1∶100至300。
  4. 根据权利要求1-3中任意一项所述的一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其特征在于,所述的步骤(1)中废水在树脂反应器中的水力停留时间为10-60min,液固充分接触的方式为机械搅拌或气力搅拌。
  5. 根据权利要求1中所述的一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其特征在于,所述的步骤(2)中再生池中用的再生剂为质量分数为5%-20%的NaCl溶液,树脂脱附液采用混凝或膜法处理。
  6. 根据权利要求1中所述的一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其特征在于,所述的步骤(3)中所用电吸附装置的电极为活性炭、炭黑和聚四氟乙烯按质量比例5∶3∶2到8∶1∶1混合制成。
  7. 根据权利要求6中所述的一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其特征在于,所述的步骤(3)中电吸附中每对电极外加电源电压为1.5-2.0V。
  8. 根据权利要求5-7中任意一项所述的所述的一种基于磁性树脂吸附耦合电吸附的再生水处理方法,其特征在于,所述待处理的废水生化出水的成分要求为CODcr150ppm以下,色度100度以下以及总盐量5000ppm以下。
PCT/CN2014/091365 2014-04-28 2014-11-18 一种基于磁性树脂吸附耦合电吸附的再生水处理方法 WO2015165251A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/306,773 US10150685B2 (en) 2014-04-28 2014-11-18 Water reclamation method integrating magnetic resin adsorption and electrosorption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410176164.X 2014-04-28
CN201410176164.XA CN103922534B (zh) 2014-04-28 2014-04-28 一种基于磁性树脂吸附耦合电吸附的再生水处理方法

Publications (1)

Publication Number Publication Date
WO2015165251A1 true WO2015165251A1 (zh) 2015-11-05

Family

ID=51140968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091365 WO2015165251A1 (zh) 2014-04-28 2014-11-18 一种基于磁性树脂吸附耦合电吸附的再生水处理方法

Country Status (3)

Country Link
US (1) US10150685B2 (zh)
CN (1) CN103922534B (zh)
WO (1) WO2015165251A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479313A (zh) * 2020-12-10 2021-03-12 南京环保产业创新中心有限公司 一种强化磁性树脂脱附的装置及方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922534B (zh) * 2014-04-28 2016-03-09 南京大学 一种基于磁性树脂吸附耦合电吸附的再生水处理方法
CN104140175B (zh) * 2014-08-20 2016-04-13 南京大学 一种城市生活污水生化出水的深度处理和回用方法
CN104261596A (zh) * 2014-10-23 2015-01-07 湖北君集水处理有限公司 一种树脂脱污水厂出水硝酸盐氮及树脂再生液处理的方法
CN106348551B (zh) * 2016-11-17 2019-03-05 南京大学 一种印染行业生化尾水毒性削减、回用系统及处理方法
CN108373189A (zh) * 2018-03-13 2018-08-07 国网浙江省电力有限公司电力科学研究院 清除阀冷系统树脂粉末的装置及方法
CN109650610A (zh) * 2019-01-15 2019-04-19 西安工程大学 一种利用混凝-电化学技术去除中水中氮和磷元素的方法
CN110066076A (zh) * 2019-06-11 2019-07-30 泉州南京大学环保产业研究院 一种低浓度总氮废水的深度脱氮工艺
CN112679030A (zh) * 2019-10-18 2021-04-20 中国石油化工股份有限公司 煤气化低含氟污水的处理方法及处理装置
CN112679029B (zh) * 2019-10-18 2022-12-27 中国石油化工股份有限公司 煤气化污水回用处理方法与装置
CN117083249A (zh) * 2020-12-31 2023-11-17 威立雅(中国)环境服务有限公司 用树脂处理工业废水中的有机化合物的方法
CN113184818B (zh) * 2021-04-20 2023-02-10 同济大学 一种源分离尿液中高纯氮磷回收装置及其回收方法与应用
CN113277664B (zh) * 2021-06-02 2022-05-13 北京科净源科技股份有限公司 一种煤层气采出水近零排放处理工艺
CN113426433B (zh) * 2021-07-30 2023-09-26 南京环保产业创新中心有限公司 一种磁性树脂的高效再生装置及方法
CN113955822A (zh) * 2021-12-27 2022-01-21 山东宸泽环境技术有限公司 一种专用树脂除总氮设备
CN114656100A (zh) * 2022-03-29 2022-06-24 广州市环境保护工程设计院有限公司 一种工业废水处理系统和工业废水处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097087A (ja) * 1983-10-31 1985-05-30 Ajinomoto Co Inc 有機質を含む水性媒体の処理方法
CN101905931A (zh) * 2010-02-11 2010-12-08 南京大学 一种基于磁性树脂的生化尾水深度处理的方法
CN102311201A (zh) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种高酸原油电脱盐废水的深度处理方法
CN102442746A (zh) * 2010-10-12 2012-05-09 中国石油化工股份有限公司 一种高酸原油电脱盐废水的回用处理方法
CN103922534A (zh) * 2014-04-28 2014-07-16 南京大学 一种基于磁性树脂吸附耦合电吸附的再生水处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080029395A1 (en) * 2006-08-01 2008-02-07 Gas Technology Institute Multi-functional filtration and ultra-pure water generator
CN101781437B (zh) * 2010-01-12 2012-07-04 南京大学 一种磁性丙烯酸系强碱阴离子交换微球树脂及其制备方法
CN102641722B (zh) * 2012-04-24 2013-10-16 清华大学 电化学强化碳纤维负载纳米铁锰吸附除砷材料及方法
CN102718291B (zh) * 2012-06-15 2013-08-14 长春新华通制药设备有限公司 离子交换树脂改性pvdf炭电极

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097087A (ja) * 1983-10-31 1985-05-30 Ajinomoto Co Inc 有機質を含む水性媒体の処理方法
CN101905931A (zh) * 2010-02-11 2010-12-08 南京大学 一种基于磁性树脂的生化尾水深度处理的方法
CN102311201A (zh) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种高酸原油电脱盐废水的深度处理方法
CN102442746A (zh) * 2010-10-12 2012-05-09 中国石油化工股份有限公司 一种高酸原油电脱盐废水的回用处理方法
CN103922534A (zh) * 2014-04-28 2014-07-16 南京大学 一种基于磁性树脂吸附耦合电吸附的再生水处理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479313A (zh) * 2020-12-10 2021-03-12 南京环保产业创新中心有限公司 一种强化磁性树脂脱附的装置及方法
CN112479313B (zh) * 2020-12-10 2022-08-26 南京环保产业创新中心有限公司 一种强化磁性树脂脱附的装置及方法

Also Published As

Publication number Publication date
CN103922534B (zh) 2016-03-09
US10150685B2 (en) 2018-12-11
CN103922534A (zh) 2014-07-16
US20170044039A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2015165251A1 (zh) 一种基于磁性树脂吸附耦合电吸附的再生水处理方法
Omwene et al. Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes
CN103723799B (zh) 一种电渗析器及近零排放工业废水回用工艺
CN100581640C (zh) 一种同步浓缩和纯化重金属废水的电去离子方法与装置
CN103183403B (zh) 一种抗生素制药废水的处理方法
CN102701496A (zh) 一种用于处理高浓度难降解有机废水的方法与工艺
CN107540135B (zh) 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺
CN204727706U (zh) 一种废水深度处理用的膜电耦合系统
CN102674632A (zh) 垃圾渗滤液零排放回用处理方法
CN107986538A (zh) 一种光声电耦合能场多级氧化-膜分离协同水处理系统及工艺
WO2020228638A1 (zh) 一种电解盐溶液高效再生树脂的方法
CN103641281A (zh) 一种高盐份有机工业废水处理工艺方法
CN105347579A (zh) 一种改进的k酸合成工艺
WO2015165234A1 (zh) 一种离子交换树脂脱附液的无害化处置与资源化利用方法
CN105776624A (zh) 一种臭氧氧化处理印染废水的方法
CN106311161A (zh) 一种含磷废水的高效处理方法
CN105271597A (zh) 一种环氧氯丙烷生产废水处理方法
SG177777A1 (en) Super advanced sewage treatment method and device
CN112624446A (zh) 有机废水零排放处理工艺
CN104071887A (zh) 一种深度处理电镀含磷废水的复配氧化剂及废水处理方法
CN103112977B (zh) 一种含聚污水深度处理回用配聚的方法
CN108928971A (zh) 一种含铬染色废水的处理系统及其实现方法
CN113149294A (zh) 一种双铝板阳极电絮凝技术处理含磷污水的方法及装置
CN103435181B (zh) 一种化工废水生化出水的高效处理及回用方法
CN111646604A (zh) 一种难降解有机废水的处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15306773

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890744

Country of ref document: EP

Kind code of ref document: A1