WO2015162933A1 - アクチュエータ及びエアポンプ、理美容機器及びレーザー走査機器 - Google Patents

アクチュエータ及びエアポンプ、理美容機器及びレーザー走査機器 Download PDF

Info

Publication number
WO2015162933A1
WO2015162933A1 PCT/JP2015/002214 JP2015002214W WO2015162933A1 WO 2015162933 A1 WO2015162933 A1 WO 2015162933A1 JP 2015002214 W JP2015002214 W JP 2015002214W WO 2015162933 A1 WO2015162933 A1 WO 2015162933A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable body
actuator
magnetic
magnet
pole
Prior art date
Application number
PCT/JP2015/002214
Other languages
English (en)
French (fr)
Inventor
勇樹 高橋
繁典 稲本
Original Assignee
ミツミ電機株式会社
勇樹 高橋
繁典 稲本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社, 勇樹 高橋, 繁典 稲本 filed Critical ミツミ電機株式会社
Priority to US15/305,907 priority Critical patent/US10615677B2/en
Priority to CN201580021241.7A priority patent/CN106233594B/zh
Priority to EP15782350.1A priority patent/EP3136572B1/en
Publication of WO2015162933A1 publication Critical patent/WO2015162933A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems

Definitions

  • the present invention relates to an actuator that can be rubbed around a predetermined rotation axis while being inclined at a predetermined angle, an air pump including the actuator, a hairdressing device, and a laser scanning device.
  • Patent Document 1 Conventionally, as an air pump used for a blood pressure monitor or the like, for example, a small pump shown in Patent Document 1 is known.
  • This small pump is provided with a plurality of diaphragms forming a pump chamber in the case.
  • a cylindrical exhaust valve body is formed at the center of the pump chamber.
  • an intake valve is provided in the pump chamber.
  • the plurality of diaphragms are connected to an oscillating body and move up and down as the oscillating body oscillates by an eccentric rotating shaft.
  • the eccentric rotation shaft is fixed in an eccentric state to a disk portion fixed to the rotation shaft of the DC motor disposed below the eccentric rotation shaft.
  • a DC motor In a small pump, a DC motor is rotated to rotate with an eccentric rotation shaft in an eccentric state, and a rocking body is swung to alternately move a plurality of diaphragms up and down to supply air from an intake valve. Exhaust from the exhaust valve. That is, in this small pump, the rotation of a DC motor that rotates around a normal axis is converted into a squeeze motion using an eccentric rotating shaft and a rocking body, and the diaphragm is moved up and down.
  • a biaxial actuator shown in Patent Document 2 or a swing drive device of Patent Document 3 is known.
  • Patent Document 2 is an actuator used in a holography apparatus, and adjusts an incident angle of reference light with respect to an optical recording medium by setting a reflection mirror to a desired tilt angle.
  • the actuator uses the movable axis that supports the controlled object and the third axis (Z axis) perpendicular to the first virtual axis and the second virtual axis that are orthogonal to each other as the reference axis.
  • it has a support mechanism for swingably supporting the movable shaft with respect to the reference shaft.
  • a magnetic circuit composed of a magnet and a coil the movable shaft is tilted from a posture that matches the reference axis to a posture that tilts.
  • Patent Document 3 discloses a rocking drive device that rocks an antenna used in outer space.
  • Patent Document 3 discloses a pedestal that supports an antenna at a center point on the back side between the antenna and a pedestal that supports the antenna on the back side, and can swing the antenna around two orthogonal axes.
  • an elastic support mechanism attached to the head.
  • This elastic support mechanism is made of an elastic material, and forms an angle of about 90 degrees with an elastic shaft having one end fixed to the center of the back surface of the antenna and the other end fixed to the center of the pedestal.
  • a leaf spring fixed at four points on the pedestal.
  • the antenna swings by an actuator that applies a force to the antenna supported by the elastic support mechanism.
  • Patent Document 1 there is no actuator that can directly drive a rush motion as a drive source.
  • the biaxial actuator driving method of Patent Document 2 is a VCM method, it has high controllability but cannot secure a high output necessary for blood pressure measurement.
  • patent document 3 since it has a spring in the back side of the antenna which is a movable object, it is necessary to ensure the area
  • An object of the present invention is to provide an actuator, an air pump, a hairdressing device, and a laser scanning device that can achieve high output while being easy to assemble with a simple configuration, and being reduced in cost and reduced in thickness.
  • One aspect of the actuator of the present invention is provided with a plurality of electromagnets including a movable body including a monopolar magnet with a single pole magnetized, a core that is a magnetic body, and a coil that excites the core, and the magnetic poles of these electromagnets are A fixed body arranged with three or more poles at a position orthogonal to the magnetizing direction of the single-pole magnet, and is stretched between the movable body and the fixed body, and elastically deformed when a current is supplied to the coil And an elastic body that movably supports the movable body in a magnetization direction and a two-degree-of-freedom direction of the single-pole magnet, and the elastic body has a movable center of the movable body as the movable body.
  • a configuration is adopted in which the movable body is attached so as to coincide with the approximate center of the generated magnetic torque.
  • One aspect of the air pump of the present invention employs a configuration including the actuator configured as described above.
  • the hairdressing and beauty equipment of this invention takes the structure provided with the actuator of the said structure.
  • the laser scanning device of the present invention employs a configuration including the actuator configured as described above.
  • the perspective view which shows the actuator which concerns on Embodiment 1 of this invention Exploded perspective view of the main part of the actuator Schematic cross-sectional view showing the main configuration of the actuator Sectional drawing which shows typically the principal part for demonstrating operation
  • movement of the actuator The figure which shows the period of the alternating current supplied to a coil from the alternating current supply part in the actuator
  • Cross-sectional view of the main part showing the schematic configuration of an air pump to which the actuator is applied
  • Exploded perspective view of the main part of the actuator Schematic cross-sectional view showing the main configuration of the actuator Sectional drawing for demonstrating operation
  • movement of the actuator The perspective view which shows the actuator which concerns on Embodiment 3 of this invention.
  • Exploded perspective view of the main part of the actuator The perspective view which shows the actuator which concerns on Embodiment 4 of this invention.
  • FIG. 1 is a perspective view showing an actuator according to Embodiment 1 of the present invention
  • FIG. 2 is an exploded perspective view of a main part of the actuator
  • FIG. 3 is a schematic cross-sectional view showing a main part configuration of the actuator.
  • the actuator 100 shown in FIGS. 1 and 2 includes a fixed body 110, a movable body 120, an elastic body (elastic support portion) 130 that supports the movable body 120 movably on the fixed body 110 by elastic deformation, and an alternating current. And a supply unit 140 (see FIG. 2).
  • the movable body 120 is movable with respect to the fixed body 110 in a multi-degree-of-freedom direction including a vertical direction (magnetization direction) in a state where movement in the horizontal direction is restricted. It is attached.
  • the movable body 120 is rotated and reciprocated in the forward and reverse directions within a predetermined angular range without using a rotating shaft member or a member serving as a rotation center by supplying power from the AC supply unit 140, specifically, Repeat the motion to rotate in the torsional direction and return to the reference position.
  • the movable body 120 can perform a so-called plowing (two-degree-of-freedom direction) motion.
  • the fixed body 110 includes a fixed base 111, a core part 112, a core cover 113, and a coil part 114.
  • the core part 112, the core cover 113, and the coil part 114 comprise an electromagnet unit provided with the electromagnet corresponding to the number of the coil parts 114.
  • the fixed base 111 is a base of the fixed body 110.
  • the fixed base 111 has a bottomed cylindrical shape, and an opening 111a is formed at the center of the bottom surface.
  • An electromagnet unit is arranged in the fixed base 111 so as to surround the opening 111a.
  • a movable body 120 is disposed in the opening 111a.
  • the core portion 112 is made of a magnetic material and has a plurality of magnetic pole cores 1121 that form magnetic poles.
  • Each of the magnetic pole cores 1121 is formed in a bar shape, and includes a magnetic pole surface 116 at one end thereof.
  • the magnetic pole surface 116 opposes the single pole magnet 122 of the movable body 120 in a direction intersecting with the magnetization direction of the single pole magnet 122 (here, a direction orthogonal).
  • the magnetic pole core 1121 is covered with a core cover 113 having an insulating property.
  • a coil portion 114 is wound around the outer periphery of the magnetic pole core 1121 via a core cover 113 having insulation properties. When a current is supplied to the coil part 114, the coil part 114 is excited and a magnetic pole surface 116 is formed.
  • the magnetic pole core 1121 is fixed to the fixed base 111 so that the magnetic pole surface 116 faces the outer peripheral surface of the movable body 120 arranged at the center of the fixed base 111 from four directions when the actuator 100 is viewed in plan. Yes. As a result, the magnetic pole surface 116 is arranged at an equal distance so as to surround the movable body 120.
  • the magnetic pole surface 116 opposes the outer periphery of the movable body 120 (here, the central portion of the outer periphery of the single-pole magnet 122) and is formed in an arc shape along the outer periphery of the movable body 120.
  • the magnetic pole surface 116 is configured by an arc-shaped portion extending from the one end of the magnetic pole core 1121 to the left and right along the circumferential direction of the movable body 120.
  • the movable body 120 includes a single pole magnet 122 and magnetic bodies 123 and 124.
  • the monopole magnet 122 has a disk shape (for example, a coin shape), and the vertical surfaces are magnetized surfaces.
  • the monopolar magnet 122 is magnetized with respect to the fixed body 110 with the N pole on the upper surface side, that is, the front surface side, and is magnetized with the S pole on the lower surface side, that is, the back surface side.
  • Disc-shaped magnetic bodies 123 and 124 are bonded to the magnetic pole surfaces of these single-pole magnets 122, respectively.
  • a neodymium magnet such as a neodymium magnet or a neodymium bond magnet, or a phylite magnet such as a phyllite magnet or a phyllite bond magnet is preferably used. If a neodymium magnet, which is considered to be the strongest as a permanent magnet, is applied to the single pole magnet 122, the magnetic force per volume is strong. Therefore, the energy conversion efficiency is increased even with a relatively small size compared to other materials, and the actuator 100 It is possible to reduce the size and output of itself.
  • a magnetic circuit can be constructed at a lower cost than a neodymium magnet.
  • the thermal demagnetization temperature is high (the thermal demagnetization temperature of the neodymium magnet, which is about 200 [° C.] with respect to about 130 [° C.]). Can be used for in-vehicle products.
  • the movable body 120 is arranged with the opening of the fixed base 111 of the fixed body 110 positioned in the magnetization direction of the single pole magnet 122.
  • the movable body 120 is supported by the elastic body 130 in a state where the center of the movable body 120, that is, the virtual center line VL coincides with the center of the fixed body 110 in plan view.
  • the coil part 114 is configured to be wound around the outer periphery of the core part 112 extending in a direction intersecting with the magnetization direction of the single-pole magnet, here, a direction orthogonal thereto.
  • the coil portion 114 forms an electromagnet with the core portion 112 having the magnetic pole surface 116 and is used for driving the actuator 100. It is desirable that the axial center of the coil portion 114 is the same as the axial center of the magnetic pole core 1121 to be wound.
  • the coil winding of the coil unit 114 is connected to a substrate (a substrate having a changeover switch or the like) (not shown), and is connected to an external terminal through the substrate.
  • the coil unit 114 is supplied with AC power (AC voltage) from the AC supply unit 140 via an external terminal.
  • the polarity of the coil portion 114 corresponds to the polarity of the magnetic pole surface 116 of the magnetic pole core 1121 around which the coil portion 114 is wound.
  • the polarity of the magnetic pole surface is changed as appropriate depending on the direction of the supply current. Specifically, the direction is changed as appropriate by changing the direction when supplying alternating current having a frequency substantially equal to the resonance frequency of the movable body 120 from the alternating current supply unit 140 to the coil unit 114.
  • a desired coil portion 114 is appropriately excited, and by repeating this, a torque (magnetic generation torque) for moving the movable body 120 is generated, and the movable body 120 moves.
  • the coil portions 114 (more specifically, the magnetic pole surfaces 116 corresponding to the coil portions 114) that are arranged to face each other are excited so that they have different polarities (one is an N pole and the other is an S pole).
  • torque magnetization torque
  • the number of magnetic poles in the electromagnet unit is not limited as long as it is 3 or more.
  • the coil unit 114 can be excited so that these magnetic poles are alternately different magnetic poles, and the movable body 120 can be rubbed with the generated torque. If the number is an even number of four or more, control is easier than the case of an odd number of poles. That is, the coil portions 114 facing each other are excited with different magnetic poles, and at the timing when the movable body 120 moves in the twisting direction, the coil portions adjacent to the pair of previously excited coil portions 114 are excited, and this is alternately performed. It is possible to easily perform the individual movement by repeatedly performing the steps.
  • the elastic body 130 fixes the fixed end to the fixed body 110 and the free end to the movable body 120 between the fixed body 110 and the movable body 120.
  • the elastic body 130 is attached to the movable body 120 so that the movable center of the movable body 120 coincides with the approximate center of the generated magnetic torque of the movable body 120.
  • the elastic body 130 is configured by using a nonmagnetic material such as stainless steel or phosphor bronze, for example. Thereby, in the actuator 100, an unnecessary leakage magnetic flux can be reduced and the assemblability of the actuator 100 itself can be improved.
  • the elastic body 130 is composed of a leaf spring, thereby reducing the cost of the actuator 100 itself. Further, a resin spring may be used as the elastic body 130.
  • the elastic body 130 includes a plate-like elastic arm portion 132 having a folded portion whose one end is a fixed end, and a ring portion that is connected to the other end portion of the plate-like elastic arm portion 132 and is fitted around the movable body 120. 134.
  • the length from the fixed end fixed to the fixed base 111 to the free end fixed to the movable body 120 is longer than the linear shape by the crooked portion 1321.
  • the shape has a sufficient length for elastic deformation.
  • the ring part 134 is integrally fixed to a holder 150 that is fitted on the outer periphery of the movable body 120.
  • the holder 150 is fixed on the magnetic body 124 in a state of being arranged on the outer periphery of the magnetized magnet 122.
  • the holder 150 sets a support position for the magnetized magnet 122 by the elastic body 130, that is, a construction position between the fixed body 110 and the movable body 120 according to the thickness thereof.
  • each of the fixed body 110 and the movable body 120 is positioned so that the plate-like elastic arm portion 132 between the fixed body 110 and the movable body 120 is located on a horizontal plane passing through the approximate center of the generated magnetic torque of the movable body 120. It is fixed to.
  • the installation position of the plate-like elastic arm portion 132 is a position that is symmetrical with respect to the approximate center of the movable body 120 in plan view.
  • the movable body 120 is movably supported via four plate-like elastic arm portions 132 arranged in four directions.
  • the elastic body 130 moves the movable body 120 so that the approximate center of the generated magnetic torque of the movable body 120 is located on the extension line in the urging direction starting from all positions (fixed ends) connected to the movable body 120. It is supported movably.
  • the movable body 120 matches the approximate center of the generated magnetic torque of the movable body 120 to the approximate center in the horizontal direction between the magnetic pole surfaces 116 of the core portion 112 via the elastic body 130. It is held in a state that The movable body 120 is a multi-degree-of-freedom direction including a vertical direction (magnetization direction) in a state where movement in the horizontal direction is restricted with respect to the fixed body 110 without using a member corresponding to a rotation shaft, a bearing thereof, or the like. It is attached to be movable.
  • the elastic body 130 can obtain a constant spring constant with respect to the movable direction of the monopolar magnet 122, and torque acts on the movable body 120.
  • the movable body 120 is movable in the direction of two degrees of freedom, here, in the torsional direction (see FIG. 4).
  • the spring constant of the elastic body 130 By adjusting the spring constant of the elastic body 130, the resonance frequency in the actuator 100 can be adjusted.
  • alternating current having a frequency substantially equal to the resonance frequency of the movable body 120 is input to the coil unit 114, and the magnetic pole surfaces 116 corresponding to the coil units 114 arranged to face each other are different.
  • the single-pole magnet 122 of the movable body 120 is rubbed so as to go around a virtual center line extending in the vertical direction about the approximate center (including the center) G of the magnetic torque generated by the single-pole magnet 122. Perform a sawing exercise.
  • the inertia of movable body 120 (moment of inertia) J when the torsion direction of the spring constant K sp, movable body 120 with respect to fixed body 110, calculated by the following formula (1) Vibrates at the resonance frequency Fr [Hz].
  • the actuator 100 supplies an alternating current having a frequency substantially equal to the resonance frequency Fr of the movable body 120 to the coil portion by the alternating current supply unit 140. Thereby, the movable body 120 can be driven efficiently.
  • the movable body 120 in the actuator 100 is supported by a spring mass structure supported by the fixed body 110 via the elastic body 130. Therefore, when an alternating current having a frequency equal to the resonance frequency Fr of the movable body 120 is supplied to the coil portion, the movable body 120 is driven in a resonance state. The motion in the twisting direction generated at this time is transmitted to the elastic body 130.
  • the actuator 100 is driven based on an equation of motion represented by the following equation (2) and a circuit equation represented by the following equation (3).
  • the damping coefficient D [Nm / (rad / s)], the load torque T Load [Nm], and the like can be appropriately changed within a range satisfying the expression (2).
  • the resistance R [ ⁇ ] the inductance L [H]
  • the counter electromotive force multiplier K e [V / (rad / s)] are appropriately set within the range satisfying the expression (3). Can change.
  • alternating current having a frequency substantially equal to the resonance frequency of the movable body 120 is supplied from the AC supply portion 140 to each of the pair of opposing coil portions 114, and excitation is performed alternately with different polarities (one is N poles) , The other is S pole).
  • torque magnetization torque
  • the movable body 120 is moved using this twisting torque.
  • FIGS. 5A to 5C are cross-sectional views schematically showing main parts for explaining the operation of the actuator 100 according to Embodiment 1 of the present invention.
  • the upper surface side of the single-pole magnet 122 is an N pole
  • the lower surface side is an S pole.
  • An alternating current is supplied in the direction shown in the figure to the coil portion 114-1 and the second coil portion 114-2.
  • the first coil unit 114-1 is excited to the N pole, and the second coil unit 114-2 is excited to the S pole.
  • a thrust is generated, and the movable body 120 moves in the torsional direction (arrow D direction) around the approximate center G of the generated magnetic torque.
  • FIG. 5A In FIG. 5B, in the state shown in FIG. 5A, the excited first coil part 114-1 is circumferentially adjacent to the third coil part 114-3, and is opposed to the third coil part 114-3.
  • the state of the 4th coil part 114-4 is shown.
  • the movable body 120 is displaced in the twisting direction by the N pole of the first coil portion 114-1 and the S pole of the second coil portion 114-2. Therefore, as shown in FIG. With respect to the third coil part 114-3 and the fourth coil part 114-4, the movable body 120 is displaced toward the third coil part 114-3 against the restoring force of the elastic body 130. It has become.
  • the third coil part 114-3 adjacent in the circumferential direction of the first coil part 114-1 in the state shown in FIG. 5B has the S pole and the fourth coil part facing the third coil part 114-3.
  • the coil part 114-4 is excited with the N pole.
  • the movable body 120 that has moved in the torsional direction is displaced in the direction of the arrow D1 from the third coil portion 114-3 when attempting to be displaced to the horizontal reference position by the restoring force of the elastic body 130.
  • excitation is performed so that the magnetic pole of the first coil unit 114-1 is an S pole and the magnetic pole of the second coil unit 114-2 is an N pole.
  • the coil portions 114 adjacent to each other in the circumferential direction and the coil portions 114 facing the coil portions 114 are alternately excited in pairs so as to have the magnetic pole surfaces 116 of different polarities alternately.
  • the movable body 120 is continuously moved. Thereby, the movable body 120 moves around the virtual center line VL (see FIGS. 1 and 4) with a predetermined angle with respect to the virtual center line VL, that is, the virtual center line VL ( 1 and FIG. 4), and a plowing motion is performed so as to draw a circle from a point that coincides with the approximate center of the generated magnetic torque.
  • FIG. 6 is a diagram illustrating a period of alternating current supplied from the alternating current supply unit 140 to the coil unit 114 of the fixed body 110 in the actuator of the present embodiment.
  • the alternating current flowing through the coil section 114 may be a pulse wave with a frequency f 0 as shown in FIG. 6A or a sine wave with a frequency f 0 as shown in FIG. 6B.
  • the supply of the alternating current and the switching of the supply destination are performed on a substrate (not shown) connected between the AC supply unit 140 and the coil unit 114.
  • a simple magnetic circuit configuration is easy to assemble, the cost can be reduced with an inexpensive material cost, and a high output can be achieved while reducing the size. Can be realized.
  • the actuator 100 when the upper surface side of the monopolar magnet 122 is the N pole and the lower surface side is the S pole, when all the magnetic poles of the coil portion 114 of the fixed body 110 are excited to the N pole, the single pole magnet 122 is used.
  • a suction force works on the lower surface side of the plate, and a repulsive force works on the upper surface side.
  • the movable body 120 is moved upward, and at the timing of returning to the reference position by the restoring force of the elastic body 130, all the magnetic poles are excited to the N pole.
  • the movable body 120 can be moved downward. That is, the actuator 100 can vibrate the movable body 120 in the up-down direction by controlling the repetition of this operation with, for example, the substrate.
  • the movable body 120 performs a motion to rotate in the twisting direction and return to the reference position.
  • this actuator 100 in place of the DC motor and the eccentric rotating shaft in the configuration of the conventional small pump shown in Patent Document 1, it is possible to further reduce the size as compared with the conventional small pump. . That is, in the pump to which the actuator 100 according to the present embodiment is applied, the upper surface of the movable body and the diaphragm on the bottom surface of the pump chamber are directly connected without using a conversion mechanism that converts the rotation of the DC motor into a rushing motion. Thus, the diaphragm in the conventional small pump can be moved up and down.
  • FIG. 7 shows an example of an air pump to which the actuator according to the embodiment of the present invention is applied.
  • the 7 includes a plurality of (here, two) diaphragms 4 and 4 that form pump chambers 3 and 3 in a rectangular case 2 in plan view.
  • the diaphragms 4 and 4 are integrally connected to each other, and mounting projections 9 and 9 are provided in the lower central part of the diaphragms 4 and 4 so as to project downward.
  • the case 2 is composed of three stages of an upper case 2a, an intermediate case 2b, and a lower case 2c.
  • the diaphragms 4 and 4 are provided with the flanges 4a and 4a of the diaphragms 4 and 4, and the upper case 2a and the intermediate case. 2b and is held by the case 2.
  • Inlet valve bodies 42 and 42 are formed by cutting a part of the center part of the bottoms of the diaphragms 4 and 4. Through the incision, through holes 43 and 43 are provided, and the intake valve bodies V1 and V1 are configured by the intake valve bodies 42 and 42 so that the through holes 43 and 43 can be closed and opened.
  • the formation method of the intake valve bodies 42 and 42 is not limited to the above-mentioned incision method, You may form by another method.
  • the attachment protrusions 9, 9 are formed through the inside, and include an air introduction hole 91 that can be continued to the through hole 43 via the intake valve body 42 at one end side.
  • the attachment protrusions 9 and 9 allow the pump chamber and the actuator arrangement space (in the lower case 2 c) to communicate with each other via the air introduction hole 91 by opening and closing the intake valve body 42.
  • the upper case 2a has an exhaust hole 22 in the center.
  • the upper case 2a is formed by notching the lower surface of the upper case 2a in an annular shape, and has an annular groove 24 into which the upper ends of the diaphragms 4 and 4 are inserted.
  • the annular groove portion 24 is continuous with both end portions of the exhaust hole 22 at the center portion of the upper case 2.
  • Exhaust valve portions V2 and V2 are configured by press-contacting the exhaust valve body 8 formed on the upper portions of the diaphragms 4 and 4 to the inner wall surface 24a forming the annular groove portions 24.
  • a swinging body 12 is swingably connected to lower ends of the diaphragms 4 and 4, and a movable body 120 of the actuator 100 is joined to the swinging body 12.
  • the oscillating body 12 includes a shaft portion 12a extending in the magnetizing direction from the magnetic body 123 of the movable body 120, and a oscillating arm 12b protruding from the distal end portion of the shaft portion 12a in a direction substantially perpendicular to the shaft portion 12a.
  • the connecting portion may be configured in any way as long as it is connected so as to be rotatable in an arbitrary direction.
  • a wall portion of the lower case 2c where the oscillating body 12 is disposed is provided with a communication hole 93 that is formed so as to communicate with the inside and outside of the lower case 2c and introduces outside air into the inside.
  • the air pump 1 drives the actuator 100 to cause the movable body 120 to perform a rubbing motion, so that the shaft portion 12a also follows the rubbing motion, whereby the swinging arm 12b swings and the diaphragm 4,
  • the mounting protrusion 9 at the lower end of 4 is moved up and down. For example, when the mounting projection 9 at the lower end of the diaphragm 4 is moved downward by the rocking body 12, the inside of the diaphragm 4 becomes negative pressure, so that the exhaust valve body 8 is in close contact with the inner wall surface 24 a of the annular groove 24.
  • the exhaust valve portion V2 is closed, and the intake valve body 42 opens the through hole 43 from the closed state, that is, the intake valve portion V1 is opened, and the inside of the diaphragm 4 from the air introduction hole 91, that is, the pump Intake into the room 3 is performed as indicated by an arrow F.
  • the intake valve body 42 closes the through hole 43 to close the intake valve portion V1
  • the exhaust valve body 8 Is expanded from the inner wall surface 24a, and exhaust by the exhaust valve portion V2 is performed as indicated by an arrow D.
  • the air discharged from the exhaust valve body 8 passes through the annular groove 24 and is discharged out of the case 2 through the exhaust hole 22.
  • the diaphragm 4 moves upward, the inside of the lower case 2c becomes negative pressure. As a result, air is sucked into the lower case 2 c, that is, into the case 2 through the communication hole 93.
  • the intake valve portion V ⁇ b> 1 is disposed at the center of the bottom of each diaphragm 4, 4 constituting the pump chamber 3, and the upper case 2 a of the case 2 constituting the upper surface of the pump chamber 3.
  • An exhaust valve portion V2 for exhausting the inside of the diaphragm 4 is disposed at the center of the upper plate.
  • the swinging body 12 that drives the diaphragm 4 for sending air from the exhaust valve portion V ⁇ b> 2 is directly joined to the movable body 120 of the actuator 100.
  • the actuator 100 can be used as a drive source for realizing the same kind of plowing motion, and may be applied to other than the air pump 1.
  • the actuator 100 can be used as a drive source for realizing a plow motion such as an air pump, for example, the actuator 100 can be used for mirror driving of a laser radar that requires biaxial rotational motion or scanning. You may use for the laser scanning apparatus etc. which require a function.
  • the actuator 100 when used as a facial device in a hairdressing and beauty device such as a massage device, it can be realized by providing a protrusion that can be moved outside by moving the movable body 120 on the device body to which the actuator 100 is attached.
  • the actuator 100 is driven by a resonance phenomenon that satisfies the expressions (2) and (3) and uses the resonance frequency represented by the expression (1).
  • the power consumed in the steady state is only the loss due to the load torque and the loss due to friction, etc., and the actuator 100 can be driven with low power consumption, that is, the movable body 120 can be subjected to the pulsating motion with low power consumption. .
  • the movable body 120 including the magnetized magnet 122 can realize a linear motion motion, when used as a drive source of the air pump 1, unlike the conventional case, the rotational motion is reduced. A mechanism for converting to pestle motion is not required. Therefore, the air pump 1 can be further reduced in size. Further, unlike the prior art, a mechanism for converting the rotational motion into the plowing motion is not required, so that it is possible to reduce the sliding noise generated in the mechanism that performs the conversion from the rotational motion into the plowing motion. Further, since the conversion mechanism is not provided, an actuator having a structure that can be easily assembled with a small number of parts can be realized.
  • a rotating shaft of a movable body or a positioning axis for moving the movable body is not required.
  • the structure can be simplified, the assemblability can be improved, and the cost can be reduced.
  • the actuator 100 since the arrangement of the elastic body (spring) 130 is arranged on the outer periphery of the movable body 120, the actuator configured to support the movable body by the elastic body (spring) fixed to the center of the movable body. Unlike the above, the thickness can be reduced.
  • the single pole magnet 122 can be made part of an efficient magnetic circuit together with the electromagnet unit, and even the single pole magnet 122 having a small outer diameter can be made to have a high output and increase energy conversion efficiency. Can do.
  • the elastic body 130 is formed by a leaf spring. Thereby, the elastic body 130 can be manufactured at low cost, and the cost can be reduced. Furthermore, the spring constant can be easily designed, and the actuator can be provided as a highly reliable product.
  • the movable body 120 is disposed inside the fixed body 110, the movable body 120 can be configured with a cylindrical or square single-pole magnet, and an actuator can be configured at a low cost to reduce costs. .
  • the elastic body 130 is made of a nonmagnetic material, the magnetic attraction force does not work when the actuator 100 is assembled, and the assemblability of the actuator 100 itself can be improved.
  • FIG. 8 is a perspective view showing an actuator 100A according to Embodiment 2 of the present invention
  • FIG. 9 is an exploded perspective view of the main part of the actuator 100A
  • FIG. 10 shows a main part configuration of the actuator 100A. It is a schematic sectional drawing shown.
  • the movable body 120 is movably supported by one elastic body 130.
  • the movable body 120A is supported by two elastic bodies 130A that are elastically deformed. (See FIGS. 9 and 10).
  • the actuator 100A according to the second embodiment is the same as the actuator 100 according to the first embodiment except that the fixed base 111, the elastic body 130, and the holder 150 are replaced with the fixed case 111A, the two elastic bodies 130A, and the upper holder. 151, instead of the lower holder 152. That is, the actuator 100A has the same basic configuration as the actuator 100 and is driven by the same driving principle. Therefore, in the following, the same name is given to the same component and the description is omitted.
  • the actuator 100A shown in FIGS. 8 to 10 includes a fixed body 110A, a movable body 120A, an elastic body 130A that movably supports the movable body 120A on the fixed body 110A, and an AC supply unit 140 (see FIG. 9).
  • the fixed body 110A and the movable body 120A have the same functions as the fixed body 110 and the movable body 120 of the actuator 100 according to the first embodiment.
  • the movable body 120A has a disk-shaped single-pole magnet 122A, similar to the configuration of the movable body 120 in the first embodiment.
  • Disk-shaped magnetic bodies 123A and 124A are bonded to the upper and lower magnetic pole surfaces in the magnetization direction of the single-pole magnet 122A.
  • An upper holder 151 and a lower holder 152 having a predetermined thickness in the magnetizing direction (vertical direction) are fixed to the magnetic bodies 123A and 124A.
  • the upper holder 151 and the lower holder 152 are for setting the support position of the elastic body 130A with respect to the movable body 120A, that is, the magnetized magnet 122A.
  • the thickness is adjusted so that it can be supported by the elastic body 130A.
  • the thick upper holder 151 and lower holder 152 are joined to free ends of elastic bodies 130A fixed to the fixed body 110 at the fixed ends, respectively.
  • the movable body 130A is movable with the fixed body 110A as a reference position. It is located at a position laid horizontally on the body 120A.
  • the two elastic bodies 130A are attached to the movable body 120A so that the movable center of the movable body 120A coincides with the approximate center (including the center) G1 (see FIG. 10) of the generated magnetic torque of the movable body 120A. ing.
  • the fixed body 110A has a fixed case 111A in which the electromagnet unit of the first embodiment is built.
  • the fixed case 111A communicates with the outside through an opening 111b that opens at the center of the top and bottom surfaces, and has a hollow portion in which the movable body 120A is movably disposed.
  • the fixed case 111 ⁇ / b> A includes an upper case 1111 and a lower case 1112 that are divided into upper and lower parts as shown in FIGS. 9 and 10.
  • electromagnet units (core portion 112, core cover 113 and coil portion 114) are arranged so as to surround the edge portion of the opening 111 b in the central portion.
  • the magnetic pole surface 116 of the magnetic pole core 1121 of the core portion 112 is disposed to face the outer peripheral surface of the movable body 120A in the hollow portion of the fixed case 111A.
  • the elastic body 130A is attached to the opening edge of the opening 111b at the center of the top and bottom surfaces of the upper case 1111 and the lower case 1112 so as to close each opening 111b.
  • the elastic body 130A has a basic configuration similar to that of the elastic body 130, and is formed in a disk shape with the same material here. That is, the elastic body 130A includes a folded plate-like elastic arm portion 132A having a fixed end on the outer peripheral side and a free end uniformly fixed to the inner edge circular plate 133a on the inner peripheral side.
  • the fixed end of the platy plate-like elastic arm portion 132A is joined to the outer edge annular portion 133b of the elastic body 130A, and the free end is joined to the inner edge circular plate 133a.
  • the outer edge annular part 133 b is fixed to the opening edge part of the opening part 111 b of the upper and lower cases 1111, 1112, and the inner edge circular plate 133 a is fixed on the upper and lower surfaces of the upper holder 151 and the lower holder 152.
  • the plate-like elastic arm portion 132A is arranged along the circumferential direction between the opening edge of the opening 111b of the upper and lower cases 1111 and 1112 and the outer edge of the upper holder 151 and the lower holder 152. It is attached to extend horizontally.
  • the plate-like elastic arm portion 132A of each elastic body 130A is formed along the opening edge portion between the opening edge portion of the opening portion 111b of the upper and lower cases 1111 and 1112, and the outer edge of the upper holder 151 and the lower holder 152. ing.
  • the plate-like elastic arm portion 132A is formed to be longer than the length obtained by connecting the opening edge of the opening 111b of the upper and lower cases 1111 and 1112 and the outer edge of the upper holder 151 and the lower holder 152 in a straight line. It has a sufficient length.
  • the elastic body 130A is configured such that the approximate center G1 of the magnetic torque generated by the movable body 120A is located on the extension line in the urging direction starting from all the positions (fixed ends) connected to the movable body 120A. Is supported movably.
  • the actuator 100 ⁇ / b> A configured as described above, power is supplied from the AC supply unit 140 to the coil unit 114 of the electromagnet unit in the fixed body 110 ⁇ / b> A, similarly to the actuator 100.
  • the magnetic pole surface 116 of the magnetic pole core 1121 around which the first coil part 114-1 is wound is the N pole, and the magnetic pole around which the second coil part 114-2 facing this is wound.
  • An alternating current is supplied and excited so that the magnetic pole surface 116 of the core 1121 becomes the S pole.
  • the movable body 120A is displaced in the torsional direction in the D direction by the torque in the direction of arrow D acting on the upper and lower surfaces.
  • the coil winding of the coil unit 114 is connected to a substrate (a substrate including a changeover switch or the like) (not shown).
  • the substrate may control the supply of AC power (AC voltage) from the AC supply unit 140 connected to the coil unit 114 via an external terminal.
  • the third coil portion 114-3 (see FIG. 9) adjacent to the first coil portion 114-1 and the first coil portion 114-1
  • An alternating current is supplied to the opposed fourth coil section 114-4 (see FIG. 9) to excite the magnetic poles different from each other.
  • the third coil part 114-1 is excited with the S pole
  • the fourth coil part 114-4 opposite to the third coil part 114-3 is excited with the N pole.
  • the movable body 120A When the elastic body 130A returns to the reference position by the restoring force, the third coil part 114-3 adjacent to the first coil part 114-1 is excited so as to have the N pole, and the third coil part The coil part 114-4 facing 114-3 is excited so as to be the south pole.
  • the movable body 120A has a virtual center line VL (see FIGS. 8 and 11) of the movable body 120A on the same principle of motion as in the first embodiment. Do exercises such as a plowing motion that draws a circle.
  • the movable body 120A that performs a motion such as a pestle motion is movably supported with respect to the fixed body 110A by a plurality of elastic bodies 130A.
  • an elastic body 130A provided between the fixed body 110A and the movable body 120A is disposed so as to be sandwiched between the upper and lower sides of the movable body 120A.
  • the elastic body 130A does not need to be provided inside the fixed body 110A, and has a higher degree of freedom in spring design than the configuration of the first embodiment.
  • the electromagnet unit is also arranged in the fixed body 110. Therefore, the arrangement place of the elastic body 130 is determined in advance, and within the region of the place. This is because it is necessary to perform the spring design.
  • the actuator 100A has a structure having a spring mass system similarly to the actuator 100.
  • the power consumption can be suppressed by driving the magnetic circuit by setting the input frequency to the coil unit 114 to a value close to the resonance frequency that can be determined by the inertia of the movable body 120A and the spring constant, and high efficiency. It is possible to provide a simple actuator.
  • the upper surface side of the single-pole magnet 122A is the N pole and the lower surface side is the S pole, and the coil portion 114 of the fixed body 110A is excited to make all the magnetic poles have the N pole. Then, an attractive force works on the lower surface side of the monopolar magnet 122A, and a repulsive force works on the upper surface side.
  • the movable body 120A is moved upward, and all the magnetic poles are excited to the N poles at the timing of returning to the reference position by the restoring force of the elastic body 130A. By doing so, the movable body 120A can be moved downward.
  • the actuator 100 ⁇ / b> A can vibrate the movable body 120 ⁇ / b> A in the vertical direction, like the actuator 100.
  • This vibration control is performed, for example, by controlling the power supply to the coil unit 114 using a substrate (not shown).
  • the actuator 100A may be used in the air pump 1 shown in FIG. That is, in the pump to which the actuator 100A of the present embodiment is applied, only the upper surface of the movable body and the diaphragm on the bottom surface of the pump chamber are directly connected without using a conversion mechanism that converts the rotation of the DC motor into a rushing motion. Thus, the diaphragm in the conventional small pump can be moved up and down. Thereby, compared with the structure of the conventional small pump shown in patent document 1 using the conversion mechanism which converts rotation of a DC motor into a plowing motion, further size reduction can be achieved.
  • Actuator 100A may be applied to other than an air pump. Further, in addition to being able to be used as a drive source for realizing a plowing motion of the air pump 1 or the like, the actuator 100A can realize a biaxial rotational motion, and can be used for laser radar mirror driving and scanning. You may use for the laser scanning apparatus etc. which require a function. Further, the actuator 100A can be used as a facial device in the same manner as the actuator 100 for a hairdressing and beauty device such as a massage device, and the size can be reduced.
  • FIG. 12 is a perspective view showing an actuator 100B according to Embodiment 3 of the present invention
  • FIG. 13 is an exploded perspective view of main parts of the actuator 100B.
  • the schematic cross-sectional view showing the main part of the actuator 100B is different from the reference numeral and is the same as FIG.
  • the actuator 100B according to the third embodiment has the same basic configuration as the actuator 100. Compared with the actuator 100, only the number of magnetic poles on the fixed body 110 side and the number of elastic plate-like elastic arm portions 132 are provided. Different configuration. In the actuator 100B of the third embodiment, the number of magnetic poles (coil portions 114 and magnetic pole cores 1121) of the electromagnet is three, which is an odd number, in the actuator 100 of the first embodiment.
  • the actuator 100B includes a fixed body 110B, a movable body 120B, an elastic body (elastic support section) 130B that movably supports the movable body 120B on the fixed body 110B, and an AC supply section 140B (see FIG. 13). ).
  • the movable body 120B is configured in the same manner as the movable body 120.
  • the movable body 120B includes a plurality of freedom in a state in which the fixed body 110B includes the vertical direction (magnetization direction) and the movement in the horizontal direction is restricted via the elastic body 130B. It is mounted so that it can move freely in the direction of the angle. That is, the elastic body 130B is attached to the movable body 120B in a state where the movable center of the movable body 120B is made to coincide with the approximate center (including the center) of the generated magnetic torque of the movable body 120B.
  • the movable body 120B moves in the vertical direction or in the direction of two degrees of freedom with respect to the fixed body 110B.
  • the movable body 120B rotates and reciprocates in the forward and reverse directions within a predetermined angle range without using a rotating shaft member or a member serving as a rotation center by supplying power from the AC supply unit 140B. Repeat the motion to rotate in the torsional direction and return to the reference position.
  • the movable body 120B is inclined at a predetermined angle around the so-called virtual center line VL from the virtual center line VL so as to draw a circle at one end of the axis passing through the approximate center of the generated magnetic torque of the movable body 120B.
  • a rotating motion that is, a plowing motion can be performed.
  • the fixed body 110B includes a fixed base portion 111B, a core portion 112B, a core cover 113B, and a coil portion 114B.
  • the core unit 112B, the core cover 113B, and the coil unit 114B constitute an electromagnet unit.
  • the fixed base 111B has a bottomed cylindrical shape, and an opening is formed at the center of the bottom surface.
  • An electromagnet unit is disposed so as to surround the central opening of the bottom surface portion of the fixed base 111B.
  • a movable body 120B is disposed in the opening via an elastic body 130B.
  • the core portion 112B has three rod-shaped magnetic pole cores 1121 (see FIG. 3) that form magnetic poles.
  • the magnetic pole cores 1121 are arranged radially on the bottom surface in the fixed base 111B with the central opening as the center.
  • the magnetic pole surface 116 at one end of the magnetic pole core 1121 is arranged at equal intervals along the outer edge of the opening.
  • the magnetic pole surface 116 is opposed to the single-pole magnet 122 of the movable body 120B disposed in the central portion of the fixed base 111B in a direction (here, a direction orthogonal) with the magnetization direction of the single-pole magnet 122, In addition, it is arranged so as to surround the outer periphery of the single pole magnet 122.
  • the magnetic pole surface 116 is formed in an arc shape that faces the outer periphery of the movable body 120B (here, the central portion of the outer periphery of the monopolar magnet 122) and extends along the outer periphery of the movable body 120B.
  • the magnetic pole core 1121 (see FIG. 3) of the core portion 112B is covered with a core cover 113B having insulation properties. Coil portions 114B are wound around the outer periphery of the magnetic pole core 1121 via the core cover 113B, and the magnetic pole surface 116 is excited when current is supplied to the coil portion 114B.
  • the movable body 120B includes a single-pole magnet 122 and magnetic bodies 123 and 124, and has the same configuration as the movable body 120. Therefore, the description of the single-pole magnet 122 and the magnetic bodies 123 and 124 is omitted.
  • the opening of the fixed base 111 of the fixed body 110B is positioned in the magnetization direction of the single pole magnet 122 via the holder 150 fixed to the magnetic body 124 by the elastic body 130B that is elastically deformed. So that it is supported.
  • the holder 150 sets the support position for the magnetized magnet 122 by the elastic body 130B, that is, the installation position between the fixed body 110B and the movable body 120B, depending on the thickness thereof.
  • each of the fixed body 110B and the movable body 120B is positioned so that the plate-like elastic arm portion 132 between the fixed body 110B and the movable body 120B is located on a horizontal plane passing through the approximate center of the generated magnetic torque of the movable body 120B.
  • the installation positions of the respective plate-like elastic arms 132 arranged radially are symmetrical with respect to the center of the movable body 120B when viewed in plan.
  • the movable body 120B is movably supported via three plate-like elastic arm portions 132 arranged in three directions.
  • the elastic body 130B moves the movable body 120B so that the approximate center of the generated magnetic torque of the movable body 120B is located on the extension line in the biasing direction starting from all the positions (fixed ends) connected to the movable body 120B. It is supported movably.
  • the center (virtual center line VL) of the movable body 120B at the reference position coincides with the center of the fixed body 110B.
  • the coil part 114B is the same as the coil part 114, and is wound around the outer periphery of the magnetic pole core 1121 of the core part 112B via an insulating core cover 113B.
  • the coil portion 114B constitutes an electromagnet together with a magnetic pole core having the magnetic pole surface 116 (the same configuration as the magnetic pole core 1121 shown in FIG. 3 and not shown), and is used for driving the actuator 100B.
  • the axis of the coil part 114B is preferably the same as the axis of the magnetic pole core (not shown) of the core part 112 wound.
  • the coil winding of the coil portion 114B is connected to a substrate (not shown) and is connected to an external terminal through the substrate.
  • the coil unit 114B is supplied with AC power (AC voltage) from the AC supply unit 140B via an external terminal.
  • the polarity of the magnetic pole surface 116 of the coil part 114B is appropriately changed according to the direction of the supply current. Specifically, the polarity of the magnetic pole surface 116 of the coil portion 114B is appropriately changed by supplying an alternating current having a frequency substantially equal to the resonance frequency of the movable body 120B from the alternating current supply portion 140B. Thus, the movable body 120B moves by exciting the coil part 114B as appropriate and repeating this.
  • the elastic body 130B is configured by using the same material as the elastic body 130, for example, a non-magnetic material such as stainless steel or phosphor bronze. Thereby, in the actuator 100B, unnecessary leakage magnetic flux can be reduced, and the assemblability of the actuator 100B itself can be improved.
  • the elastic body 130B can reduce the cost of the actuator 100B itself by using a leaf spring.
  • the elastic body 130B has the same basic configuration as the elastic body 130. That is, the elastic body 130B is connected to a plate-like elastic arm portion 132 having a folded portion with one end fixed, and the other end of the plate-like elastic arm portion 132, and is externally fitted around the movable body 120B. A ring portion 134B.
  • the ring part 134B is integrally fixed to a holder 150 that is fitted on the outer periphery of the movable body 120B.
  • the installation position of the plate-like elastic arm part 132 between the fixed body 110B and the movable body 120B is between the pair of the magnetic pole surface 116 and the outer periphery of the movable body 120B located at equal intervals in plan view.
  • the movable body 120B is arranged at a position that is point-symmetric with respect to the center.
  • these plate-like elastic arms 132 are fixed to the fixed body 110B and the movable body 120B so as to be positioned on a horizontal plane passing through the approximate center of the generated magnetic torque of the movable body 120B. Yes.
  • the movable body 120B is movably supported via three plate-like elastic arm portions 132 arranged in three directions.
  • the movable body 120B is held by the fixed body 110B via the elastic body 130B in a state where the center of the movable body 120B coincides with the center in the horizontal direction between the magnetic pole surfaces 116 of the core portion 112. Yes.
  • the movable body 120B includes a multi-degree-of-freedom direction in a state that includes a vertical direction (magnetization direction) and restricts movement in the horizontal direction with respect to the fixed body 110B without using a member corresponding to a rotating shaft, a bearing, or the like. It is attached to the fixed body 110B so as to be movable.
  • the elastic body 130B can obtain a constant spring constant with respect to the rotation direction of the monopolar magnet 122, and torque acts on the movable body 120B. Thereby, the movable body 120B is movable in the twisting direction similarly to the movable body 120 (see FIG. 4). That is, the resonance frequency in the actuator 100B can be adjusted by the elastic body 130B.
  • the magnetic pole core 1121 is magnetized by the AC wave input to the coil portion 114B, and the magnetic attraction force is efficiently applied to the single pole magnet 122 of the movable body 120. And generate a repulsive force.
  • the magnetic pole Since the magnetic pole has three poles, currents whose phases are shifted by 120 degrees are input to the three coil portions 114B.
  • the virtual center line VL (FIGS. 1 and 4) of the movable body 120 is connected to the movable body 120B in the same manner as the four-pole configuration (actuator 100). (See) make a rub motion like drawing a circle.
  • the actuator 100B satisfies the above formulas (2) and (3) and is driven by a resonance phenomenon using the resonance frequency represented by the above formula (1).
  • the number of coil portions 114 can be reduced (4 ⁇ 3) compared to the actuator 100, and man-hours can be reduced. Further, since the number of switching elements (generally MOSFETs) of the drive circuit (not shown) can be reduced, the cost can be further reduced.
  • the actuator 100B the upper surface side of the single-pole magnet 122B is set to the N pole and the lower surface side is set to the S pole, and the coil portion 114B of the fixed body 110B is excited to make all the magnetic poles have the N pole. Then, an attractive force works on the lower surface side of the monopolar magnet 122B, and a repulsive force works on the upper surface side.
  • the movable body 120B is moved upward, and when the elastic body 130B returns to the reference position by the restoring force, the coil portion 114B is excited to make all the magnetic poles N By making it a pole, the movable body 120B can be moved downward. That is, by repeating this, the actuator 100 ⁇ / b> B can vibrate the movable body 120 ⁇ / b> B in the vertical direction, like the actuator 100.
  • the actuator 100B may be used in the air pump 1 shown in FIG. That is, in the pump to which the actuator 100B of the present embodiment is applied, only the upper surface of the movable body and the diaphragm on the bottom surface of the pump chamber are directly connected without using a conversion mechanism that converts the rotation of the DC motor into a rushing motion.
  • the diaphragm in the conventional small pump can be moved up and down.
  • Actuator 100B may be applied to other than an air pump.
  • the actuator 100B can realize a biaxial rotational motion. You may use for the laser scanning apparatus etc. which require a function.
  • the actuator 100B can be miniaturized by using it as a facial device in a hairdressing and beauty device such as a massage device, like the actuator 100.
  • the fourth embodiment drives the movable body 120 by changing the polarity of the electromagnet to be excited in the actuator 100C including the electromagnets that form even-numbered magnetic poles as in the actuator 100 of the first embodiment.
  • the actuator 100C shown in FIG. 14 has the same configuration as the actuator 100. That is, the fixed body 110 has an even number (four in this case) of electromagnets arranged at equal intervals around the single pole magnet 122.
  • the movable body 120 surrounded by the electromagnet is configured by attaching magnetic bodies 123 and 124 to both magnetic pole faces of a single pole magnet 122 having the vertical direction as the magnetization direction.
  • the monopolar magnet 122 the upper surface is magnetized with the N pole, and the lower surface is magnetized with the S pole.
  • the magnetic poles of two adjacent first group electromagnets are made the same magnetic pole (for example, N poles).
  • the magnetic poles of the second group of electromagnets (electromagnets having the second coil portion 114-2 and the fourth coil portion 114-4, respectively) facing the first group of electromagnets, and the first group of electromagnets.
  • the magnetic pole is opposite to the magnetic pole (for example, S pole). Then, the movable body 120 is displaced in a direction inclined with respect to the movable center.
  • the movable body 120 tilts and tries to return to the original position (reference position), the direction of the current of the power supply to the electromagnets (specifically, the coil portions 114) constituting each group is reversed. Switch to.
  • the movable body 120 moves to the original position by the restoring force of the elastic body 130, the movable body is made up of the first group of electromagnets and the second group of electromagnets that are excited by magnetic poles different from the previous polarity. It tilts in the direction opposite to the previous tilt around the center C1.
  • the movable body 120 reciprocally swings around the center line C with respect to the center line C1.
  • the actuator 100C can apply vibration to the movable body 120 and can be used as a generator. Further, the actuator 100C can be miniaturized by using it as a facial device in a hairdressing and beauty device such as a massage device in the same manner as the actuator 100.
  • the polarities of the upper and lower magnetic pole surfaces of the single-pole magnets 122, 122A, 122B in each embodiment are magnetized with the S pole on the upper surface side, that is, the front surface side, and with the N pole on the lower surface side, that is, the back surface side. It may be magnetized.
  • the magnetic circuit on the fixed body 110, 110A, and 110B side so as to perform the same movement as the movement of the movable bodies 120, 120A, and 120B in the actuators 100, 100A, and 100B described above. To change. Specifically, the direction in which current flows through the corresponding coil portions 114 and 114B is reversed.
  • the actuators 100, 100A, 100B, and 100C of the respective embodiments are configured by an inner rotor type in which the magnetic pole positions are arranged on the outer peripheral side of the movable body 120. Accordingly, it is not necessary to separately provide a mechanism for holding the movable body outside the movable body as compared with the outer rotor type in which the movable body is positioned outside the fixed portion, and further reduction in thickness can be achieved. . Further, since the PM driving method can be applied to the actuators 100, 100A, 100B, and 100C, in general, the output can be increased as compared with the driving method using VCM.
  • the actuator according to the present invention is easy to assemble with a simple configuration, has an effect of realizing high output while achieving cost reduction and downsizing by thinning, and can be applied to a device that performs a crushed motion on a movable body. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 簡易な構成で組み立てやすく、低コスト化、薄型化による小型化を図りつつ、高出力を実現するアクチュエータ。アクチュエータは、単極着磁された単極マグネットを含む可動体と、磁性体であるコア部及びこのコア部を励磁するコイル部を有する電磁石を複数備える。電磁石の磁極が、単極マグネットの着磁方向と直交する位置に3極以上配置されている固定体と、可動体と固定体間に架設され、且つ、コイル部に電流が供給された際に弾性変形して、可動体を単極マグネットの着磁方向及び2自由度方向に移動可能に支持する弾性体とを有する。弾性体は、可動体の可動中心を、可動体の発生磁気トルクの略中心に一致するように可動体に取り付けられている。

Description

アクチュエータ及びエアポンプ、理美容機器及びレーザー走査機器
 本発明は、所定角度傾けつつ所定の回転軸周りを旋回するすりこぎ運動可能なアクチュエータ及びこれを備えるエアポンプ、理美容機器及びレーザー走査機器に関する。
 従来、血圧計等に用いられるエアポンプとして、例えば、特許文献1に示す小型ポンプが知られている。
 この小型ポンプでは、ケース内にポンプ室を形成する複数のダイヤフラムが設けられている。ポンプ室の中央部には円筒状の排気弁体が形成されている。また、ポンプ室には、吸気弁が設けられている。複数のダイヤフラムは揺動体に接続され、揺動体が偏心回転軸により揺動することによって、上下動する。偏心回転軸は、その下方に配置されたDCモータの回転軸に固定された円盤部に、偏心した状態で固定されている。
 小型ポンプでは、DCモータを回転駆動させることによって、偏心回転軸が偏心した状態で回転し、揺動体を揺動させて複数のダイヤフラムを交互に上下動させることで、吸気弁から給気して排気弁から排気している。すなわち、この小型ポンプでは、通常の軸回り回転を行うDCモータの回転を、偏心回転軸及び揺動体を用いて、すりこぎ運動に変換して、ダイヤフラムを上下動させている。
 すりこぎ運動を行う駆動部分の構成としては、例えば、特許文献2に示す2軸型のアクチュエータ、或いは、特許文献3の揺動駆動装置が知られている。
 特許文献2は、ホログラフィー装置で用いられるアクチュエータであり、反射ミラーを所望の傾斜角度に設定することにより光記録媒体に対する参照光の入射角度の調整を行う。具体的には、アクチュエータは、制御対象を支持する可動軸と、互いに直交する第1の仮想軸及び第2の仮想軸に対して垂直となる第3の軸(Z軸)を基準軸としたときに可動軸をこの基準軸に対し揺動自在に支持する支持機構を有する。磁石とコイルとからなる磁気回路を用いて、可動軸を基準軸と一致する姿勢から傾く姿勢に傾倒させる。
 また、特許文献3には、宇宙空間で用いられるアンテナを揺動する揺動駆動装置が開示されている。特許文献3は、アンテナと、アンテナを背面側で支持する台座との間に、アンテナを背面側の中心点で支持し、且つ、アンテナを直交する2軸の回りに揺動可能な状態で架台に取り付ける弾性支持機構を有する。この弾性支持機構は、弾性材料からなり、一端をアンテナの背面中心に他端を台座の中心に固定した弾性軸と、相互に約90度の角度を成し一端をアンテナの背面中心に他端を台座上の4点に固定した板バネとから構成される。弾性支持機構で支持したアンテナに力を加えるアクチュエータによって、アンテナは揺動する。
特許第4617554号公報 特許第4757573号公報 特許第3038707号公報
 血圧計に用いられる小型ポンプにおいては、一層の小型化が望まれているものの、特許文献1では、通常の軸回り回転を行うDCモータの回転をすりこぎ運動に変換する偏心回転軸及び揺動体という変換機構が必要である。これにより、構造が複雑となり製品自体が大型化するという問題が生じる。
 また、特許文献1に示すような小型ポンプの分野において、駆動源としてすりこぎ運動を直接駆動できるアクチュエータは存在しないため、例えば、特許文献2或いは特許文献3の構造を小型ポンプ適用することが考えられる。
 しかしながら、特許文献2の2軸型アクチュエータ駆動方式はVCM方式であるため、制御性は高いもの、血圧測定に必要な高出力を確保できない。また、特許文献3では、可動対象であるアンテナの背面側に、バネを有するため、バネを配置する領域を確保する必要があり、小型化、薄型化が困難であるという問題がある。
 本発明の目的は、簡易な構成で組み立てやすく、低コスト化、薄型化による小型化を図りつつ、高出力を実現できるアクチュエータ、エアポンプ、理美容機器及びレーザー走査機器を提供することである。
 本発明のアクチュエータの一つの態様は、単極着磁された単極マグネットを含む可動体と、磁性体であるコア及びこのコアを励磁するコイルを有する電磁石を複数備え、これら電磁石の磁極が、前記単極マグネットの着磁方向と直交する位置に3極以上配置されている固定体と、前記可動体と前記固定体間に架設され、且つ、前記コイルに電流が供給された際に弾性変形して、前記可動体を前記単極マグネットの着磁方向及び2自由度方向に移動可能に支持する弾性体と、を有し、前記弾性体は、前記可動体の可動中心を、前記可動体の発生磁気トルクの略中心に一致するように前記可動体に取り付けられている構成を採る。
 本発明のエアポンプの一つの態様は、上記構成のアクチュエータを備える構成を採る。また、本発明の理美容機器は、上記構成のアクチュエータを備える構成を採る。さらに、本発明のレーザー走査機器は、上記構成のアクチュエータを備える構成を採る。
 本発明によれば、簡易な構成で組み立てやすく、低コスト化、薄型化による小型化を図りつつ、高出力を実現できる。
本発明の実施の形態1に係るアクチュエータを示す斜視図 同アクチュエータの要部分解斜視図 同アクチュエータにおける要部構成を示す概略断面図 同アクチュエータの動作を説明するための要部を模式的に示す断面図 同アクチュエータの動作を説明するための要部を模式的に示す断面図 同アクチュエータにおいて交流供給部からコイルに供給される交流の周期を示す図 同アクチュエータを適応したエアポンプの概略構成を示す要部断面図 本発明の実施の形態2に係るアクチュエータを示す斜視図 同アクチュエータの要部分解斜視図 同アクチュエータにおける要部構成を示す概略断面図 同アクチュエータの動作を説明するための断面図 本発明の実施の形態3に係るアクチュエータを示す斜視図 同アクチュエータの要部分解斜視図 本発明の実施の形態4に係るアクチュエータを示す斜視図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
(実施の形態1)
 図1は、本発明の実施の形態1に係るアクチュエータを示す斜視図であり、図2は、同アクチュエータの要部分解斜視図である。また、図3は、同アクチュエータにおける要部構成を示す概略断面図である。
 図1及び図2に示すアクチュエータ100は、固定体110と、可動体120と、弾性変形することにより固定体110に可動体120を可動自在に支持する弾性体(弾性支持部)130と、交流供給部140(図2参照)と、を有する。
 図1及び図2に示すアクチュエータ100では、可動体120は、固定体110に対して、水平方向への移動を規制した状態で上下方向(着磁方向)を含む多自由度方向に移動自在に取り付けられている。可動体120は、交流供給部140からの電力供給によって、回転軸部材、或いは、回転中心となる部材を用いることなく、所定の角度範囲内で正逆方向に回転往復振動、具体的には、ねじり方向で回転し基準位置に戻ろうとする運動を繰り返す。これを用いて、可動体120は、所謂、すりこぎ(2自由度方向)運動を行うことができる。
 図2及び図3に示すように固定体110は、固定基部111と、コア部112と、コアカバー113と、コイル部114と、を有する。なお、コア部112、コアカバー113及びコイル部114は、コイル部114の数に対応する電磁石を備える電磁石ユニットを構成する。
 固定基部111は、固定体110の基台であり、ここでは、有底筒状をなし、底面部の中央部に開口部111aが形成されている。固定基部111において開口部111aを囲むように電磁石ユニットが配置されている。この開口部111a内には、可動体120が配置される。
 コア部112は、磁性体により構成され、磁極を形成する複数の磁極コア1121を有する。磁極コア1121は、それぞれ棒状に形成されており、その一端部に磁極面116を備える。磁極面116は、可動体120の単極マグネット122に対して、単極マグネット122の着磁方向と交差する方向(ここでは直交する方向)で対向する。
 磁極コア1121は、それぞれ絶縁性を有するコアカバー113により被覆されている。磁極コア1121の外周には、それぞれ絶縁性を有するコアカバー113を介して、コイル部114が巻回されている。コイル部114に電流が供給されると励磁され、磁極面116が形成される。
 磁極コア1121は、アクチュエータ100を平面視して、固定基部111の中央に配置される可動体120の外周面に対して、四方から磁極面116が対向するように、固定基部111に固定されている。これにより、磁極面116は、可動体120を囲むように均等の距離を開けて配置されている。
 磁極面116は、可動体120の外周(ここでは、単極マグネット122の外周の中央部分)に対向し、且つ、可動体120の外周に沿う円弧状に構成されている。ここでは、磁極面116は、磁極コア1121の一端部から左右に、可動体120の周方向に沿って延びる円弧状の部位によって構成される。
 可動体120は、単極マグネット122と、磁性体123、124とを有する。
 単極マグネット122は、円盤状(例えば、コイン型)をなし、上下方向の面をそれぞれ着磁面としている。単極マグネット122は、ここでは、固定体110に対して、上面側、つまり表面側がN極で着磁され、下面側、つまり、裏面側をS極で着磁されている。これら単極マグネット122の磁極面のそれぞれに、円盤状の磁性体123、124が接着されている。
 単極マグネット122は、例えば、ネオジムマグネット、ネオジウムボンドマグネット等のネオジウム系マグネット或いは、フィライトマグネット、フィライトボンドマグネット等のフィライト系マグネットを適用することが望ましい。単極マグネット122に、永久磁石として最も強力とされているネオジウムマグネットを適用すれば、体積当たりの磁力が強いため、他の材料と比べて比較的小さい寸法でもエネルギー変換効率を高めて、アクチュエータ100自体の小型高出力化を可能にできる。また、単極マグネット122として、フィライトマグネットを適用すれば、ネオジウムマグネットと比較して、磁気回路を安価に構成できる。加えて、単極マグネット122がフィライトマグネットであれば、熱減磁温度が高い(ネオジウムマグネットの熱減磁温度、約130[℃]に対して、約200[℃])ため、アクチュエータ100自体を車載用の製品に用いることが可能となる。
 可動体120は、単極マグネット122の着磁方向に、固定体110の固定基部111の開口部を位置させて、配置されている。可動体120は、平面視して、可動体120の中心、つまり仮想中心線VLを、固定体110の中心と一致させた状態で、弾性体130により支持されている。
 コイル部114は、単極マグネットの着磁方向と交差する方向、ここでは直交する方向に延在するコア部112の外周に巻き付けられて構成される。コイル部114は、磁極面116を有するコア部112とで電磁石を構成し、アクチュエータ100の駆動に用いられる。コイル部114の軸心は、それぞれ巻回される磁極コア1121の軸心と同一であることが望ましい。コイル部114のコイル巻線は、図示しない基板(切り替えスイッチ等を備える基板)に接続されており、基板を介して外部端子に接続される。コイル部114には、外部端子を介して交流供給部140から交流電源(交流電圧)が供給される。
 コイル部114の極性は、コイル部114が巻回する磁極コア1121の磁極面116の極性に相当する。この磁極面の極性は、供給電流の向きによって適宜変更する。具体的には、コイル部114に対して、交流供給部140から可動体120の共振周波数に略等しい周波数の交流を供給する際の向きを変更することで、適宜変更される。このように所望のコイル部114を適宜励磁し、これを繰り返すことによって、可動体120を可動するトルク(磁気発生トルク)が発生し、可動体120は可動する。ここでは、対向配置されるコイル部114(詳細にはコイル部114に対応する磁極面116)がそれぞれ異なる極性となるように励磁(一方がN極、他方がS極)し、弾性体130を介して着磁マグネット122を捻る方向にトルク(磁気発生トルク)が発生する(図4参照)。捻れ方向に変位した可動体120に対して、先に励磁したコイル部114組とは別のコイル部114の組を励磁し、これを順次繰り返す。
 なお、電磁石ユニットの磁極の数であるが、3極以上であれば、何極あってもよい。本実施の形態では、これら磁極が交互に異なる磁極となるようコイル部114を励磁して、発生するトルクによって可動体120をすりこぎ運動させることができる。なお、4つ以上の偶数個であれば、奇数個の極数である場合よりも制御しやすい。すなわち、対向するコイル部114同士を互い異なる磁極で励磁し、可動体120が捻れ方向に可動したタイミングで、先に励磁した一対のコイル部114と隣り合うコイル部を、励磁し、これを交互に繰り返し行うことによって容易にすり個運動させることができる。
 弾性体130は、固定体110と可動体120との間で、固定端を固定体110に固定して、遊端を可動体120に固定する。弾性体130は、可動体120の可動中心を、可動体120の発生磁気トルクの略中心に一致するように可動体120に取り付けられている。
 弾性体130は、例えば、ステンレス、りん青銅等の非磁性材料を用いることにより構成されている。これによりアクチュエータ100において、不要な漏れ磁束が低減でき、アクチュエータ100自体の組立性の向上を図ることができる。
 ここでは弾性体130は、板バネで構成されており、これにより、アクチュエータ100自体のコストの低廉化が図られている。また、弾性体130として樹脂バネを用いても良い。
 弾性体130は、一端が固定端の葛折り状部を有する板状弾性アーム部132と、板状弾性アーム部132の他端部に接続され、可動体120の周囲に外嵌されるリング部134とを有する。
 板状弾性アーム部132では、葛折り状部1321によって、固定基部111に固定された固定端から、可動体120に固定される遊端までの長さが、直線形状よりも、長くなるようにして弾性変形するための十分な長さを確保した形状となっている。
 リング部134は、可動体120の外周に外嵌されるホルダ150に一体的に固定されている。ホルダ150は、着磁マグネット122の外周に配置された状態で、磁性体124上に固定されている。ホルダ150は、その厚みにより弾性体130による着磁マグネット122に対する支持位置、つまり、固定体110及び可動体120間の架設位置を設定する。この構成により、固定体110及び可動体120間における板状弾性アーム部132は、可動体120の発生磁気トルクの略中心を通る水平面上に位置するように、固定体110と可動体120のそれぞれに固定されている。加えて、板状弾性アーム部132の架設位置は、平面視して可動体120の略中心に対して、それぞれ対称となる位置となっている。本実施の形態では、可動体120は、四方に配置された4つの板状弾性アーム部132を介して、可動自在に支持されている。弾性体130は、可動体120に接続される位置(固定端)の全てを起点にして付勢方向の延長線上に可動体120の発生磁気トルクの略中心が位置するように、可動体120を可動可能に支持されている。
 これにより、可動体120は、弾性体130を介して、固定体110に、可動体120の発生磁気トルクの略中心を、コア部112の磁極面116同士間における水平方向での略中心に一致させた状態で保持されている。可動体120は、回転軸に相当する部材、その軸受け等を用いることなく、固定体110に対して、水平方向への移動を規制した状態で上下方向(着磁方向)を含む多自由度方向に、移動可能に、取り付けられている。
 弾性体130は、単極マグネット122の可動方向に対して一定のばね定数を得ることができ、可動体120に対してトルクが作用する。これにより、例えば、可動体120は、2自由度方向、ここでは、ねじり方向に可動する(図4参照)。この弾性体130のばね定数を調整することにより、アクチュエータ100における共振周波数が調整できる。
 すなわち、上記構成のアクチュエータ100では、可動体120の共振周波数に略等しい周波数の交流をコイル部114に入力して、互いに対向して配置されたコイル部114に対応する磁極面116が、それぞれ異なる極性となるように励磁(一方がN極、他方がS極)されると、可動体120の単極マグネット122に対して、効率的に磁気吸引力及び反発力を発生する。これにより、可動体120の単極マグネット122は、単極マグネット122の発生磁気トルクの略中心(中心も含む)Gを中心に、上下方向に延びる仮想の中心線の回りを回るように、すりこぎ運動を行う。
 本実施の形態のアクチュエータ100では、可動体120のイナーシャ(慣性モーメント)J、ねじり方向のバネ定数Kspとした場合、可動体120は、固定体110に対して、下記式(1)によって算出される共振周波数Fr[Hz]で振動する。
Figure JPOXMLDOC01-appb-M000001
 Fr:共振周波数[Hz]
 本実施の形態のアクチュエータ100は、交流供給部140によって、コイル部に可動体120の共振周波数Frと略等しい周波数の交流を供給する。これにより、可動体120を効率良く駆動させることができる。
 本アクチュエータ100における可動体120は、弾性体130を介して固定体110により支持されるバネマス系構造で支持された状態となっている。よって、コイル部に可動体120の共振周波数Frに等しい周波数の交流が供給されると、可動体120は共振状態で駆動される。このとき発生するねじり方向への運動が、弾性体130に伝達される。
 アクチュエータ100は、下記式(2)で示す運動方程式及び下記式(3)で示す回路方程式に基づいて駆動する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 すなわち、アクチュエータ100における慣性モーメントJ[Kgm]、回転角度θ(t)[rad]、トルク定数K[Nm/A]、電流i(t)[A]、バネ定数Ksp[Nm/rad]、減衰係数D[Nm/(rad/s)]、負荷トルクTLoad[Nm]等は、式(2)を満たす範囲内で適宜変更できる。また、電圧e(t)[V]、抵抗R[Ω]、インダクタンスL[H]、逆起電力乗数K[V/(rad/s)]は、式(3)を満たす範囲内で適宜変更できる。
 このように構成されたアクチュエータ100の動作について説明する。コイル部114のうち、対向する一対のコイル部114のそれぞれに、交流供給部140から可動体120の共振周波数に略等しい周波数の交流を供給して、交互に異なる極性で励磁(一方がN極、他方がS極)する。これにより、可動体120に対して捻れる方向にトルク(磁気発生トルク)が発生する。本実施の形態では、この捻れるトルクを用いて、可動体120を可動させる。
 図4及び図5A~Cは、本発明の実施の形態1に係るアクチュエータ100の動作を説明するための要部を模式的に示す断面図である。具体的には、まず、アクチュエータ100において、単極マグネット122に対して上面側をN極、下面側をS極とする。この構成において、図4に示すように、単極マグネット122の外周面側に、単極マグネット122の着磁方向と直交する方向を磁極として配置された電磁石のうち、互いに対向する電磁石の第1のコイル部114-1と、第2のコイル部114-2に対して、図示する方向で交流電流を供給する。この電力供給によって、第1のコイル部114-1はN極に励磁され、第2のコイル部114-2はS極に励磁される。これにより、フレミング左手の法則に則って、推力が発生し、発生磁気トルクの略中心G回りで、可動体120はねじり方向(矢印D方向)に移動する。この状態を図5Aで示す。図5Bには、図5Aで示す状態において、励磁された第1のコイル部114-1と周方向隣り合う第3のコイル部114-3と、この第3のコイル部114-3に対向する第4のコイル部114-4の状態を示す。図5Aでは、可動体120は、第1のコイル部114-1のN極、第2のコイル部114-2のS極によって、捻れ方向に変位しているため、図5Bに示すように、第3のコイル部114-3及び第4のコイル部114-4に対しては、可動体120は弾性体130の復元力に抗して、第3のコイル部114-3側に変位した状態となっている。
 次いで、図5Bで示す状態の第1のコイル部114-1の周方向で隣り合う第3コイル部114-3をS極で、且つ、第3のコイル部114-3と対向する第4のコイル部114-4をN極で励磁する。これにより、ねじり方向に移動した可動体120が、弾性体130の復元力により、水平の基準位置に変位しようとする際に、第3のコイル部114-3から矢印D1方向に変位する。次いで、第1のコイル部114-1の磁極をS極、第2のコイル部114-2の磁極をN極となるように励磁する。このように周方向で隣り合うコイル部114と、そのコイル部114に対向するコイル部114に対して、順次、交互に異なる極性の磁極面116を有するように、対向する対毎に交互に励磁することで、可動体120を連続して可動させる。これにより可動体120は、仮想中心線VL(図1及び図4参照)回りに、仮想中心線VLに対して、所定角度を付けつつ旋回する運動、すなわち、可動体120の仮想中心線VL(図1及び図4参照)を通り、且つ、発生磁気トルクの略中心に一致する点を基点として円を描くようなすりこぎ運動を行う。
 次に、本実施の形態でコイル部114に供給される交流電流について簡単に説明する。
 図6は、本実施の形態のアクチュエータにおいて交流供給部140から固定体110のコイル部114に供給される交流の周期を示す図である。
 コイル部114に流れる交流は、図6Aに示すように周波数fのパルス波でもよいし、図6Bに示すように周波数fの正弦波でもよい。
 図4の状態では、第1及び第2のコイル部114-3、114-4に、図6に示す時点t1の順方向の電流が供給されて、対極する磁極がそれぞれN極・S極で励磁され、可動部はねじれ方向(矢印D方向)に変位する。可動体120が矢印D方向に変位し切った状態が図6の時点t2であり、この時点t2で電流の向きを切り替える。そして、可動体120が弾性体130の復元力によって、元の位置に向かって可動し、元に位置に戻った際が、図6に示す時点t3であり、逆方向の電流が第3及び第4のコイル部114-3、114-4に供給されて、かつ、図5BのD1方向に変位させる。また、可動体120が矢印D1方向に変位した状態(図5C)において、図6の時点t4で示すように電流の向きが切り替えられて、図5Aで示す状態から元の位置に変位するように可動体120が可動して、元の位置に戻った際に、図6に示す時点t5順方向の電流が、第1及び第2のコイル部114-3、114-4に供給される。これが1周期分の動作であり、このような動作が繰り返されることで、可動体120は、可動体120の仮想中心線VL(図1及び図4参照)を基点として円を描くようにすりこぎ運動を行う。なお、これら交流電流の供給及び供給先の切り替えは、交流供給部140とコイル部114との間に接続された図示しない基板にて行う。
 このように本実施の形態のアクチュエータ100によれば、簡易な磁気回路構成であり、組み立てやすく、安価な材料コストで低コスト化を図ることができ、さらに、小型化を図りつつ、高出力を実現することができる。
 なお、このアクチュエータ100の構成において、単極マグネット122の上面側をN極、下面側をS極とした場合、固定体110のコイル部114の磁極を全てN極に励磁すると、単極マグネット122の下面側で吸引力が働き、上面側は反発力が働く。これにより、例えば、全磁極をS極に励磁することによって、可動体120を上方向に移動させ、弾性体130の復元力により基準位置に戻るタイミングで、全磁極をN極に励磁することによって、可動体120を下方向に移動させることができる。すなわち、この動作を繰り返すことを、例えば基板で制御することによって、アクチュエータ100は、可動体120を上下方向に振動させることができる。
 また、アクチュエータ100では、可動体120は、ねじり方向で回転し基準位置に戻ろうとする運動を行う。このアクチュエータ100を、特許文献1に示す従来の小型ポンプの構成において、DCモータ、偏心回転軸に換えて適用することによって、従来の小型ポンプと比較して、一層の小型化を図ることができる。すなわち、本実施の形態のアクチュエータ100を適用したポンプでは、DCモータの回転をすりこぎ運動に変換する変換機構を用いることなく、可動体の上面と、ポンプ室底面のダイヤフラムとを直接接続するだけで、従来の小型ポンプにおけるダイヤフラムを上下動させることができる。
 この一例を、図7に示す。
 図7は、本発明の実施の形態のアクチュエータを適用したエアポンプの一例を示す。
 図7で示すエアポンプ1は、平面視長方形のケース2内にポンプ室3、3を形成する複数(ここでは2つ)のダイヤフラム4、4を備える。これらダイヤフラム4、4どうしは、互いに一体的に連結されており、これらダイヤフラム4、4の下部中心部には、取付突部9、9が下方に突設して設けられている。尚、ケース2は、上ケース2aと、中ケース2bと、下ケース2cの3段で構成され、ダイヤフラム4、4は、ダイヤフラム4、4の鍔部4a、4aを、上ケース2aと中ケース2bとの間に挟着されてケース2に保持されている。
 これら取付突部9、9には、ダイヤフラム4、4の下面を上下動させる揺動体12が揺動自在に配設されている。ダイヤフラム4、4の底部中心部は、一部を切開されて吸気弁体42、42が形成されている。この切開によって貫通孔43、43が設けられ、吸気弁体42、42により、貫通孔43、43を閉塞、開放可能にして吸気弁部V1、V1が構成される。尚、吸気弁体42、42の形成方法は前述の切開方法に限定されるものではなく、他の方法で形成してもよい。
 取付突部9、9は、内部を貫通して形成され、一端側で吸気弁体42を介して貫通孔43に連続可能な空気導入孔91を備える。
 取付突部9、9は、吸気弁体42の開閉によって空気導入孔91を介して、ポンプ室内とアクチュエータの配置空間(下ケース2c内)とを連通させる。
 一方、上ケース2aは、中央部に排気孔22が穿孔されている。また、上ケース2aは、上ケース2aの下面を環状に切り欠いて形成され、且つ、ダイヤフラム4、4の上端部が挿入される環状溝部24を有する。環状溝部24は、上ケース2の中央部分で、それぞれ排気孔22の両端部分と連続している。これら環状溝部24を形成する内壁面24aには、ダイヤフラム4、4の上部で構成する排気弁体8を圧接されることによって排気弁部V2、V2が構成されている。
 また、ダイヤフラム4、4の下端部には揺動体12が揺動自在に連結され、この揺動体12には、アクチュエータ100の可動体120が接合されている。
 揺動体12は、可動体120の磁性体123から着磁方向に延びる軸部12aと、軸部12aの先端部から、軸部12aに対して略垂直方向に突出した揺動アーム12bを有する。揺動アーム12bの先端で、ダイヤフラム4の下部の取付突部9、9の下端部に、揺動自在に連結されている。この連結部分は、任意の方向に回転可能となるように接続されていればどのように構成されてもよい。なお、揺動体12が配設される下ケース2cの壁部には、下ケース2cの内外に連通して形成され、外気を内部に導入する連通孔93が設けられている。
 このエアポンプ1は、アクチュエータ100を駆動して、可動体120をすりこぎ運動させることによって、軸部12aも追従してすりこぎ運動を行い、これにより揺動アーム12bが揺動してダイヤフラム4、4の下端部の取付突部9を上下動させる。
 例えば、ダイヤフラム4の下端部の取付突部9が揺動体12により下動された際に、ダイヤフラム4内は負圧となるので、排気弁体8は環状凹溝24の内壁面24aに密着し、即ち、排気弁部V2は閉じ、且つ、吸気弁体42は、貫通孔43を閉塞状態から開放し、即ち、吸気弁部V1は開状態となり、空気導入孔91からダイヤフラム4内、つまりポンプ室内3へ矢印Fの如く吸気が行われる。
 次に、ダイヤフラム4の下端部が上動された時、ダイヤフラム4内は高圧になり、吸気弁体42が貫通孔43を閉塞して吸気弁部V1を閉状態にするとともに、排気弁体8が内壁面24aより拡径して、排気弁部V2による排気が矢印Dのように行われる。排気弁体8内より排出された空気は、環状凹溝24を通、排気孔22からケース2外に排出される。なお、ダイヤフラム4の上動に伴って下ケース2c内は負圧になる。これにより、連通孔93を介して下ケース2c内、つまり、ケース2内に空気が吸入される。
 このように、エアポンプ1では、ポンプ室3を構成する各ダイヤフラム4、4の底部中心部に吸気弁部V1を配設し、更に、ポンプ室3の上面を構成するケース2の上ケース2aの上板中央部に、ダイヤフラム4内の排気を行う排気弁部V2を配設している。そして、排気弁部V2からエアを送り出すためのダイヤフラム4を駆動する揺動体12は、直接、アクチュエータ100の可動体120に接合されている。これにより、エアポンプ1は、従来のポンプと比較して、DCモータの回転をすりこぎ運動に変換する変換機構を必要とせず、エアポンプ1の高さ自体が低くなっており(低背化)、一層の小型化が図られている。
 このようにアクチュエータ100は、同種のすりこぎ運動を実現するための駆動源として利用可能であり、エアポンプ1以外にも適用してもよい。また、アクチュエータ100はエアポンプ等のすりこぎ運動を実現するための駆動源として用いることができる点に加えて、例えば、アクチュエータ100は、2軸の回転運動が必要なレーザーレーダーのミラー駆動用途や走査機能を必要とするレーザー走査機器等に用いてもよい。
 また、アクチュエータ100が美顔器としてマッサージ器等の理美容機器に用いられる場合、アクチュエータ100を取り付けた機器本体に、可動体120の運動によって、外部に出没自在な突起部を設けることで実現できる。
 また、アクチュエータ100は、式(2)、(3)を満たし、式(1)で示す共振周波数を用いた共振現象により駆動する。これにより、アクチュエータ100では、定常状態において消費される電力は負荷トルクによる損失及び摩擦等による損失だけとなり、低消費電力で駆動、つまり、可動体120を低消費電力ですりこぎ運動させることができる。
 また、本実施の形態によれば、着磁マグネット122を備える可動体120により、直動でのすりこぎ運動を実現できるため、エアポンプ1の駆動源として用いた場合、従来と異なり、回転運動からすりこぎ運動への変換機構が不要となる。よって、エアポンプ1の一層の小型化を図ることができる。さらに、従来と異なり、回転運動からすりこぎ運動への変換機構が不要となるため、回転運動からすりこぎ運動への変換を行う機構部で発生する摺動音を低減できる。また、変換機構を有しないことから、少ない部品点数で組み立て易い構造のアクチュエータを実現できる。
 また、例えば、特許文献3に示す従来の支軸構造を持つ2自由度アクチュエータと比較して、可動体を可動させるための可動体の回転軸、或いは位置決めの軸を必要としない。これにより、構造を簡易化でき、組立性の向上、コストの低廉化を図ることができる。
 なお、アクチュエータ100によれば、弾性体(ばね)130の配置を可動体120の外周部に配置するため、可動体の中心に固定された弾性体(ばね)によって可動体を支持する構成のアクチュエータと異なり、薄型化を図ることができる。
 また、単極マグネット122の磁極面には磁性体123、124が配置されている。これにより、単極マグネット122を、電磁石ユニットとともに効率的な磁気回路の一部にすることが可能となり、外径の小さい単極マグネット122でも高出力とすることができ、エネルギー変換効率を高めることができる。
 弾性体130は、板バネにより形成されている。これにより、弾性体130を安価で製作でき、コストの削減を図ることができる。さらに、ばね定数の設計が容易となり、アクチュエータを、信頼性の高い製品として提供できる。
 固定体110の内側に、可動体120を配置しているため、可動体120を、円筒型や角型の単極マグネットで構成でき、安価でアクチュエータを構成してコストの削減を図ることができる。
 また、弾性体130は、非磁性材料により構成されているため、アクチュエータ100の組立時に磁気吸引力が働かくことがなく、アクチュエータ100自体の組立性の向上を図ることができる。
 (実施の形態2)
 図8は、本発明の実施の形態2に係るアクチュエータ100Aを示す斜視図であり、図9は、同アクチュエータ100Aの要部分解斜視図であり、図10は、同アクチュエータ100Aの要部構成を示す概略断面図である。
 実施の形態1では、可動体120を一つの弾性体130で可動自在に支持する構成としたが、実施の形態2では、可動体120Aを、それぞれ弾性変形する2つの弾性体130Aで支持するようにした(図9、図10参照)。
 具体的には、本実施の形態2のアクチュエータ100Aは、実施の形態1のアクチュエータ100の構成において、固定基部111、弾性体130及びホルダ150を、固定ケース111A、2つの弾性体130A及び上ホルダ151、下ホルダ152に代えている。つまり、アクチュエータ100Aは、アクチュエータ100と同様の基本的構成を有しており、同様の駆動原理で駆動する。よって、以下では、同一の構成要素には同名称、同符号を付し、その説明を省略する。
 図8~図10に示すアクチュエータ100Aは、固定体110Aと、可動体120Aと、固定体110Aに可動体120Aを可動自在に支持する弾性体130Aと、交流供給部140(図9参照)と有する。固定体110A及び可動体120Aは、実施の形態1のアクチュエータ100の固定体110及び可動体120と同様の機能を有する。
 すなわち、可動体120Aは、実施の形態1における可動体120の構成と同様に、円盤状の単極マグネット122Aを有する。この単極マグネット122Aの着磁方向の上下の磁極面のそれぞれに、円盤状の磁性体123A、124Aが接着されている。磁性体123A、124Aには、着磁方向(上下方向)に所定の厚みを有する上ホルダ151、下ホルダ152が固定されている。上ホルダ151、下ホルダ152は、可動体120A、つまり、着磁マグネット122Aに対する弾性体130Aの支持位置を設定するものであり、ここでは、弾性体130Aで支持できるように厚み調整されている。この厚みのある上ホルダ151、下ホルダ152には、それぞれ固定体110に固定端で固定された弾性体130Aの遊端が接合されており、可動体130Aは、基準位置として固定体110Aと可動体120Aとに水平に架設される位置に位置する。これにより、2つの弾性体130Aは、可動体120Aの可動中心を、可動体120Aの発生磁気トルクの略中心(中心も含む)G1(図10参照)に一致するように可動体120Aに取り付けられている。
 固定体110Aは、実施の形態1の電磁石ユニットを内蔵する固定ケース111Aを有する。
 固定ケース111Aは、天面及び底面の中央部分で開口する開口部111bを介して外部に連通し、且つ、内部に可動体120Aが可動可能に配置される中空部が形成されている。固定ケース111Aは、図9及び図10に示すように上下に分割された上ケース1111と、下ケース1112とを有する。
 上ケース1111及び下ケース1112内には、中央部分の開口部111bの縁部を囲むように、電磁石ユニット(コア部112、コアカバー113及びコイル部114)が配置されている。コア部112の磁極コア1121の磁極面116は、それぞれ、固定ケース111Aの中空部内の可動体120Aの外周面に対向して配置されている。
 上ケース1111及び下ケース1112の天面及び底面の中央の開口部111bの開口縁部には、それぞれの開口部111bを塞ぐように、弾性体130Aが取り付けられている。
 弾性体130Aは、弾性体130と同様の基本的構成を有し、ここでは同様の材質で円盤状に形成されている。すなわち、弾性体130Aは、外周側に固定端を有し、内周側で内縁円形板133aに一様に固定された遊端を有する葛折り状の板状弾性アーム部132Aを備える。
 葛折り状の板状弾性アーム部132Aにおける固定端は、弾性体130Aの外縁環状部133bに接合され、遊端は、内縁円形板133aに接合されている。外縁環状部133bは、上下ケース1111、1112の開口部111bの開口縁部に固定され、内縁円形板133aは、上ホルダ151、下ホルダ152の上下面で固定されている。
 この構成により弾性体130Aでは、板状弾性アーム部132Aは、上下ケース1111、1112の開口部111bの開口縁部と、上ホルダ151、下ホルダ152の外縁との間で、周方向に沿って水平に延びるように取り付けられている。各弾性体130Aの板状弾性アーム部132Aは、上下ケース1111、1112の開口部111bの開口縁部と、上ホルダ151、下ホルダ152の外縁との間において、開口縁部に沿って形成されている。板状弾性アーム部132Aは、上下ケース1111、1112の開口部111bの開口縁部と、上ホルダ151、下ホルダ152の外縁とを直線で結んだ長さよりも長く形成されており、弾性変形に十分な長さを有している。弾性体130Aは、可動体120Aに接続される位置(固定端)の全てを起点にして付勢方向の延長線上に可動体120Aの発生磁気トルクの略中心G1が位置するように、可動体120Aを可動可能に支持されている。
 このように構成されるアクチュエータ100Aでは、固定体110Aにおける電磁石ユニットのコイル部114に、アクチュエータ100と同様に、交流供給部140から電力供給を行う。図11に示すように、第1のコイル部114-1が巻回される磁極コア1121の磁極面116がN極に、これに対向する第2のコイル部114-2が巻回された磁極コア1121の磁極面116がS極となるように交流を供給して励磁する。
 これにより、可動体120Aは、上下面側でそれぞれ矢印D方向のトルクが作用し、D方向のねじり方向に変位する。なお、コイル部114のコイル巻線は、図示しない基板(切り替えスイッチ等を備える基板)に接続されている。基板は、外部端子を介して接続される交流供給部140からコイル部114への交流電源(交流電圧)の供給を制御してもよい。
 次いで、復元力により弾性体130Aが基準位置に戻る際に、実施の形態1と同様に、第1のコイル部114-1と隣り合う第3のコイル部114-3(図9参照)とそれに対向する第4のコイル部114-4(図9参照)に交流電流を供給して互いに異なる磁極となるように励磁する。具体的には、第3コイル部114-1をS極で、この第3コイル部114-3と対向する第4のコイル部114-4をN極となるように励磁する。そして、復元力により弾性体130Aが基準位置に戻る際に、第1コイル部114-1の隣の第3のコイル部114-3を、N極となるように励磁し、第3のコイル部114-3に対向するコイル部114-4を、S極となるように励磁する。これを周方向で、順次、交互に繰り返して制御することによって、実施の形態1と同様の運動原理で、可動体120Aは、可動体120Aの仮想中心線VL(図8及び図11参照)が円を描くようなすりこぎ運動等の運動を行う。
 また、本実施の形態2では、すりこぎ運動等の運動を行う可動体120Aは、複数の弾性体130Aによって、固定体110Aに対して可動自在に支持されている。これにより、弾性体130Aに衝撃が加わった際に応力分散が図られることになり、不具合が発生しにくく、信頼性の向上を確保できる。また、固定体110A及び可動体120A間に架設される弾性体130Aが、可動体120Aの上下で挟むように配置されている。これにより、弾性体130Aは、実施の形態1と異なり、固定体110Aの内部に設ける必要がなく、実施の形態1の構成よりもバネ設計の自由度が高い。これは、固定体110の内部に弾性体130を配置する場合、固定体110内では、電磁石ユニットも配置されるため、弾性体130の配置場所は予め決められており、その場所の領域内でのバネ設計を行う必要が生じるからである。
 また、アクチュエータ100Aもアクチュエータ100と同様に、ばねマス系を持つ構造となる。これにより、コイル部114への入力周波数を、可動体120Aのイナーシャとばね定数により決定できる共振周波数に近い値にして、磁気回路を駆動することによって、消費電力の抑制が可能であり、高効率なアクチュエータを提供することが可能となる。
 また、アクチュエータ100Aにおいて、単極マグネット122Aの上面側をN極・下面側をS極とし、固定体110Aのコイル部114を励磁して磁極を全てN極にする。すると、単極マグネット122Aの下面側で吸引力が働き、上面側は反発力が働く。これにより、例えば、全磁極をS極となるように励磁することによって、可動体120Aを上方向に移動させ、弾性体130Aの復元力により基準位置に戻るタイミングで、全磁極をN極に励磁することによって、可動体120Aを下方向に移動させることができる。すなわち、これを繰り返すことで、アクチュエータ100Aは、アクチュエータ100と同様に、可動体120Aを上下方向に振動させることができる。この振動の制御は、例えば、図示しない基板を用いて、コイル部114への電源供給を制御することによって行う。
 また、このアクチュエータ100Aを、アクチュエータ100と同様に、図7に示すエアポンプ1に用いても良い。すなわち、本実施の形態のアクチュエータ100Aを適用したポンプでは、DCモータの回転をすりこぎ運動に変換する変換機構を用いることなく、可動体の上面と、ポンプ室底面のダイヤフラムとを直接接続するだけで、従来の小型ポンプにおけるダイヤフラムを上下動させることができる。これにより、DCモータの回転をすりこぎ運動に変換する変換機構を用いた特許文献1に示す従来の小型ポンプの構成と比較して、一層の小型化を図ることができる。
 アクチュエータ100Aは、エアポンプ以外にも適用してもよい。また、アクチュエータ100Aは、エアポンプ1等のすりこぎ運動を実現するための駆動源として用いることができる点に加えて、2軸の回転運動を実現することができ、レーザーレーダーのミラー駆動用途や走査機能を必要とするレーザー走査機器等に用いてもよい。また、アクチュエータ100Aをアクチュエータ100と同様に美顔器としてマッサージ器の理美容機器等に用いて小型化を図ることもできる。
 (実施の形態3)
 図12は、本発明の実施の形態3に係るアクチュエータ100Bを示す斜視図であり、図13は、同アクチュエータ100Bの要部分解斜視図である。なお、このアクチュエータ100Bの要部を示す概略断面図は、符号のみ異なり、図3と同様である。
 実施の形態3のアクチュエータ100Bは、アクチュエータ100と同様の基本的構成を有しており、アクチュエータ100と比較して、固定体110側の磁極数及び弾性体の板状弾性アーム部132の数のみ異なる構成とした。本実施の形態3のアクチュエータ100Bは、実施の形態1のアクチュエータ100において、電磁石の磁極(コイル部114及び磁極コア1121)の数を、奇数個である3つにした。
 具体的には、アクチュエータ100Bは、固定体110Bと、可動体120Bと、固定体110Bに可動体120Bを可動自在に支持する弾性体(弾性支持部)130Bと、交流供給部140B(図13参照)とを有する。
 可動体120Bは、可動体120と同様に構成されており、弾性体130Bを介して、固定体110Bに、上下方向(着磁方向)を含み且つ水平方向への移動を規制した状態で多自由度方向に移動自在に取り付けられている。すなわち、可動体120Bには、弾性体130Bが、可動体120Bの可動中心を、可動体120Bの発生磁気トルクの略中心(中心も含む)に一致させた状態で、取り付けられている。
 アクチュエータ100Bでは、可動体120Bは、固定体110Bに対して、上下方向或いは2自由度方向に移動する。可動体120Bは、交流供給部140Bからの電力供給によって、回転軸部材、或いは、回転中心となる部材を用いることなく、所定の角度範囲内で正逆方向に回転往復振動、具体的には、ねじり方向で回転し基準位置に戻ろうとする運動を繰り返す。これを用いて、可動体120Bは、所謂、仮想中心線VL回りに、仮想中心線VLから所定角度傾いて、可動体120Bの発生磁気トルクの略中心を通る軸線の一端で円を描くように回転する運動、つまり、すりこぎ運動を行うことができる。
 固定体110Bは、固定基部111Bと、コア部112Bと、コアカバー113Bと、コイル部114Bと、を有する。なお、コア部112B、コアカバー113B及びコイル部114Bにより電磁石ユニットを構成する。
 固定基部111Bは、有底筒状をなし、底面部の中央部に開口部が形成されている。固定基部111Bにおいて底面部の中央の開口部を囲むように電磁石ユニットが配置されている。この開口部内には、弾性体130Bを介して可動体120Bが配置されている。
 コア部112Bは、磁極を形成する3つの棒状の磁極コア1121(図3参照)を有する。これら磁極コア1121は、固定基部111B内で底面上に、中央の開口部を中心に放射状に配置されている。磁極コア1121の一端部の磁極面116は、開口部の外縁に沿って、等間隔を開けて配置されている。磁極面116は、固定基部111Bの中央部分に配置された可動体120Bの単極マグネット122に対して、単極マグネット122の着磁方向と交差する方向(ここでは直交する方向)で対向し、且つ、単極マグネット122の外周を囲むように配置されている。なお、磁極面116は、可動体120Bの外周(ここでは、単極マグネット122の外周の中央部分)に対向し、且つ、可動体120Bの外周に沿う円弧状に構成されている。
 コア部112Bの磁極コア1121(図3参照)は、それぞれ絶縁性を有するコアカバー113Bにより被覆されている。磁極コア1121の外周には、それぞれコアカバー113Bを介して、コイル部114Bが巻回されており、コイル部114Bに電流が供給されると磁極面116が励磁する。
 可動体120Bは、単極マグネット122と、磁性体123、124とを有し、可動体120と同様の構成であるため、単極マグネット122と、磁性体123、124の説明は省略する。
 この可動体120Bは、弾性変形する弾性体130Bによって、磁性体124に固定されたホルダ150を介して、単極マグネット122の着磁方向に、固定体110Bの固定基部111の開口部が位置するように、支持されている。ホルダ150は、その厚みにより弾性体130Bによる着磁マグネット122に対する支持位置、つまり、固定体110B及び可動体120B間の架設位置を設定する。この構成により、固定体110B及び可動体120B間における板状弾性アーム部132は、可動体120Bの発生磁気トルクの略中心を通る水平面上に位置するように、固定体110Bと可動体120Bのそれぞれに固定されている。加えて、放射状に配置される各板状弾性アーム部132の架設位置は、平面視した際の可動体120Bの中心に対して、それぞれ対称となる位置となっている。本実施の形態では、可動体120Bは、3方に配置された3つの板状弾性アーム部132を介して、可動自在に支持されている。弾性体130Bは、可動体120Bに接続される位置(固定端)の全てを起点にして付勢方向の延長線上に可動体120Bの発生磁気トルクの略中心が位置するように、可動体120Bを可動可能に支持されている。また、平面視して、基準位置における可動体120Bの中心(仮想中心線VL)は、固定体110Bの中心と一致している。
 コイル部114Bは、コイル部114と同様であり、コア部112Bの磁極コア1121の外周に絶縁性を有するコアカバー113Bを介して巻回されている。コイル部114Bは、磁極面116を有する磁極コア(図3に示す磁極コア1121と同様の構成であり、図示省略)とともに電磁石を構成し、アクチュエータ100Bの駆動に用いられる。コイル部114Bの軸心は、それぞれ巻回されるコア部112の磁極コア(図示省略)の軸心と同一であることが望ましい。コイル部114Bのコイル巻線は、図示しない基板に接続されており、基板を介して外部端子に接続される。コイル部114Bには、外部端子を介して交流供給部140Bから交流電源(交流電圧)が供給される。
 コイル部114Bの磁極面116の極性は、供給電流の向きによって適宜変更する。具体的には、コイル部114Bの磁極面116の極性は、交流供給部140Bから可動体120Bの共振周波数に略等しい周波数の交流を供給することで、適宜変更される。このようにコイル部114Bを適宜励磁し、これを繰り返すことによって、可動体120Bは可動する。
 弾性体130Bは、弾性体130と同様の材料、例えば、ステンレス、りん青銅等の非磁性材料を用いることにより構成されている。これによりアクチュエータ100Bにおいて、不要な漏れ磁束が低減でき、アクチュエータ100B自体の組立性の向上を図ることができる。ここでは、弾性体130Bは、板バネを用いることで、アクチュエータ100B自体のコストを低減できる。
 弾性体130Bは、弾性体130と同様の基本的構成を有する。すなわち、弾性体130Bは、一端が固定端の葛折り状部を有する板状弾性アーム部132と、板状弾性アーム部132の他端部に接続され、可動体120Bの周囲に外嵌されるリング部134Bとを有する。
 リング部134Bは、可動体120Bの外周に外嵌されるホルダ150に一体的に固定されている。これにより、固定体110B及び可動体120B間における板状弾性アーム部132の架設位置は、平面視して、等間隔で位置する可動体120Bの外周と対向する磁極面116との組の間に、可動体120Bの中心で点対称となる位置に配置されている。
 これら板状弾性アーム部132は、実施の形態1と同様に、可動体120Bの発生磁気トルクの略中心を通る水平面上に位置するように、固定体110Bと可動体120Bのそれぞれに固定されている。本実施の形態では、可動体120Bは、3方に配置された3つの板状弾性アーム部132を介して、可動自在に支持されている。
 これにより、可動体120Bは、弾性体130Bを介して、可動体120Bの中心をコア部112の各磁極面116間の水平方向での中心に一致させた状態で、固定体110Bにより保持されている。可動体120Bは、回転軸に相当する部材、軸受け等を用いることなく、固定体110Bに対して、上下方向(着磁方向)を含み且つ水平方向への移動を規制した状態で多自由度方向に移動可能に固定体110Bに取り付けられている。
 弾性体130Bは、単極マグネット122の回動方向に対して一定のばね定数を得ることができ、可動体120Bに対してトルクが作用する。これにより、可動体120Bは、可動体120と同様にねじり方向に可動する(図4参照)。すなわち、弾性体130Bによりアクチュエータ100Bにおける共振周波数が調整できる。
 上記構成のアクチュエータ100Bでは、コイル部114Bへ入力される交流波により磁極コア1121、具体的には磁極面116が磁化され、可動体120の単極マグネット122に対して、効率的に磁気吸引力及び反発力を発生する。
 磁極が3極であるため、3つのコイル部114Bに120度位相をずらした電流を入力する。これを、周方向で、順次、位相をずらした電流を供給することによって、4極構成(アクチュエータ100)と同様に、可動体120Bに、可動体120の仮想中心線VL(図1及び図4参照)が円を描くようにすりこぎ運動をさせる。
 なお、このアクチュエータ100Bも、アクチュエータ100と同様に、上記式(2)、(3)を満たし、上記式(1)で示す共振周波数を用いた共振現象により駆動する。アクチュエータ100Bによれば、アクチュエータ100よりも、コイル部114の数を減らすこと(4つ→3つ)ができ、工数の削減を図ることができる。また、図示しない駆動回路のスイッチング素子(一般にMOSFET)の数を減らすことができるため、更にコストの削減を図ることができる。
 また、アクチュエータ100Bにおいて、単極マグネット122Bの上面側をN極・下面側をS極とし、固定体110Bのコイル部114Bを励磁して磁極を全てN極にする。すると、単極マグネット122Bの下面側で吸引力が働き、上面側は反発力が働く。これにより、例えば、全磁極をS極にすることによって、可動体120Bを上方向に移動させ、復元力により弾性体130Bが基準位置に戻る際に、コイル部114Bを励磁して全磁極をN極にすることによって、可動体120Bを下方向に移動させることができる。すなわち、これを繰り返すことで、アクチュエータ100Bは、アクチュエータ100と同様に、可動体120Bを上下方向に振動させることができる。
 また、このアクチュエータ100Bを、アクチュエータ100と同様に、図7に示すエアポンプ1に用いても良い。すなわち、本実施の形態のアクチュエータ100Bを適用したポンプでは、DCモータの回転をすりこぎ運動に変換する変換機構を用いることなく、可動体の上面と、ポンプ室底面のダイヤフラムとを直接接続するだけで、従来の小型ポンプにおけるダイヤフラムを上下動させることができる。これにより、DCモータの回転をすりこぎ運動に変換する変換機構を用いた特許文献1に示す従来の小型ポンプの構成と比較して、一層の小型化を図ることができる。
 アクチュエータ100Bは、エアポンプ以外にも適用してもよい。また、アクチュエータ100Bは、エアポンプ1等のすりこぎ運動を実現するための駆動源として用いることができる点に加えて、2軸の回転運動を実現することができ、レーザーレーダーのミラー駆動用途や走査機能を必要とするレーザー走査機器等に用いてもよい。また、アクチュエータ100Bをアクチュエータ100と同様に美顔器としてマッサージ器等の理美容機器に用いて小型化を図ることもできる。
 (実施の形態4)
 実施の形態4は、実施の形態1のアクチュエータ100と同様に偶数の磁極を構成する電磁石を備えるアクチュエータ100Cにおいて、励磁する電磁石の極性を変えて可動体120を駆動させる。
 図14に示すアクチュエータ100Cは、アクチュエータ100と同様の構成である。すなわち、固定体110は、単極マグネット122の周囲に等間隔で配置された偶数個(ここでは4個)の電磁石を有する。また、電磁石で囲まれる可動体120は、上下方向を着磁方向とした単極マグネット122の両磁極面に磁性体123、124を取り付けることで構成されている。単極マグネット122において、上面は、N極で着磁され、下面はS極で着磁されている。
 この構成のアクチュエータ100Cは、隣り合う2個の第1群の電磁石(第1のコイル部114-1と第3のコイル部114-3をそれぞれ有する電磁石)の磁極を同磁極(例えば、N極)で励磁し、第1群の電磁石に相対する第2群の電磁石(第2のコイル部114-2と第4のコイル部114-4をそれぞれ有する電磁石)の磁極を、第1群の電磁石の磁極と反対の磁極(例えば、S極)に励磁する。
 すると、可動体120は、可動中心を基準に傾く方向に変位する。そして、この可動体120が傾いて、元の位置(基準位置)に戻ろうとする際に、各群を構成する電磁石(具体的にはコイル部114)への供給電源の電流の向きを逆向きに切り替える。これにより、可動体120が弾性体130の復元力により元の位置に移動するときに、先の極性とは異なる磁極で励磁される第1群の電磁石と第2群の電磁石によって、可動体は中心C1を中心に先の傾きとは逆の方向に傾く。この動作を繰りかえすことで可動体120は、中心線C1を基準に、中心線C回りで、往復揺動運動を行う。これにより、アクチュエータ100Cは、可動体120に振動を加えることができ、発電機として用いることができる。また、アクチュエータ100Cを、アクチュエータ100と同様に美顔器としてマッサージ器の理美容機器等に用いて小型化を図ることもできる。
 なお、各実施の形態における単極マグネット122、122A、122Bの上下の磁極面の極性は、上面側、つまり表面側をS極で着磁し、下面側、つまり、裏面側をN極で着磁してもよい。この場合、各アクチュエータ100、100A、100Bでは、上述したアクチュエータ100、100A、100Bでの可動体120、120A、120Bの運動と同様の運動をさせるべく、固定体110、110A、110B側の磁気回路を変更する。具体的には、対応するコイル部114、114Bに電流を流す方向を逆にする。
 また、各実施の形態のアクチュエータ100、100A、100B、100Cは、磁極位置が可動体120の外周側に配置したインナーロータ式で構成されている。これにより、可動体を固定部の外側に位置させるアウターロータ式と比べて、可動する可動体を保持する機構を、可動体の外部に別途設ける必要が無く、一層の薄型化を図ることができる。さらに、アクチュエータ100、100A、100B、100Cは、PM駆動方式を適用できるため、一般に、VCMによる駆動方式に比べ出力を大きくできる。
 なお、上記本発明は、本発明の精神を逸脱しない限り、種々の改変をなすことができ、そして本発明が該改変させたものに及ぶことは当然である。
 以上、本発明の実施の形態について説明した。なお、以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されない。つまり、上記装置の構成や各部分の形状についての説明は一例であり、本発明の範囲においてこれらの例に対する様々な変更や追加が可能であることは明らかである。
 2014年4月25日出願の特願2014-091860の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係るアクチュエータは、簡易な構成で組み立てやすく、低コスト化、薄型化による小型化を図りつつ、高出力を実現できる効果を有し、可動体にすりこぎ運動させる装置に適用できるアクチュエータとして有用である。
 100、100A、100B、100C アクチュエータ
 110、110A、110B 固定体
 111、111B 固定基部
 111A 固定ケース
 111a、111b 開口部
 112、112B コア部
 113、113B コアカバー
 114、114B コイル部
 116 磁極面
 120、120A、120B 可動体
 122、122A 単極マグネット(着磁マグネット)
 123、123A、124、124A 磁性体
 130、130A、130B 弾性体
 132、132A 板状弾性アーム部
 134、134B リング部
 140、140B 交流供給部
 150、151、152 ホルダ
 1111 上ケース
 1112 下ケース
 1121 磁極コア
 1321 葛折り状部
 

Claims (14)

  1.  単極着磁された単極マグネットを含む可動体と、
     磁性体であるコア及びこのコアを励磁するコイルを有する電磁石を複数備え、これら電磁石の磁極が、前記単極マグネットの着磁方向と直交する位置に3極以上配置されている固定体と、
     前記可動体と前記固定体間に架設され、且つ、前記コイルに電流が供給された際に弾性変形して、前記可動体を前記単極マグネットの着磁方向及び2自由度方向に移動可能に支持する弾性体と、
     を有し、
     前記弾性体は、前記可動体の可動中心を、前記可動体の発生磁気トルクの略中心に一致するように前記可動体に取り付けられている、
     アクチュエータ。
  2.  前記電磁石は、それぞれ磁極を順次励することにより前記単極マグネットを2自由度方向に移動させて、前記可動体をすりこぎ運動させる、
     請求項1に記載のアクチュエータ。
  3.  前記可動体は、前記単極マグネットの磁極面のそれぞれに設けられた磁性体を有する、
     請求項1に記載のアクチュエータ。
  4.  前記弾性体は、板ばねである、
     請求項1に記載のアクチュエータ。
  5.  前記単極マグネットは前記電磁石に囲まれる位置で、移動自在に配置されている、
     請求項1に記載のアクチュエータ。
  6.  前記単極マグネットは、ネオジウムマグネットである、
     請求項1に記載のアクチュエータ。
  7.  前記単極マグネットは、フェライトマグネットである、
     請求項1に記載のアクチュエータ。
  8.  前記弾性体は、非磁性材料で構成されている、
     請求項1に記載のアクチュエータ。
  9.  前記可動体は、複数の前記弾性体により支持されている、
     請求項1に記載のアクチュエータ。
  10.  前記電磁石へ供給される電力の入力周波数は、前記可動体の回転共振周波数と略等しい、
     請求項1に記載のアクチュエータ。
  11.  請求項1に記載のアクチュエータを備える、
     エアポンプ。
  12.  請求項1に記載のアクチュエータを備える、
     理美容機器。
  13.  請求項1に記載のアクチュエータを備える、
     レーザー走査機器。
  14.  前記固定体は、前記単極マグネットの周囲に等間隔で配置されたN個(Nは偶数)の前記電磁石を有し、
     前記N個の電磁石は、隣り合うN/2個の第1群の電磁石の磁極を同極に励磁し、前記N/2個の電磁石に相対する残りのN/2個の第2群の電磁石の磁極を、前記第1群の電磁石の反対の磁極に励磁することにより、前記可動体を、前記可動中心を基準に傾く方向に往復運動させる、
     請求項1に記載のアクチュエータ。
PCT/JP2015/002214 2014-04-25 2015-04-23 アクチュエータ及びエアポンプ、理美容機器及びレーザー走査機器 WO2015162933A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/305,907 US10615677B2 (en) 2014-04-25 2015-04-23 Actuator, air pump, beauty treatment device, and laser scanning device
CN201580021241.7A CN106233594B (zh) 2014-04-25 2015-04-23 致动器及气泵、理美容设备及激光扫描设备
EP15782350.1A EP3136572B1 (en) 2014-04-25 2015-04-23 Actuator, air pump, beauty treatment device, and laser scanning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014091860A JP6287546B2 (ja) 2014-04-25 2014-04-25 アクチュエータ及びエアポンプ、理美容機器及びレーザー走査機器
JP2014-091860 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015162933A1 true WO2015162933A1 (ja) 2015-10-29

Family

ID=54332107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002214 WO2015162933A1 (ja) 2014-04-25 2015-04-23 アクチュエータ及びエアポンプ、理美容機器及びレーザー走査機器

Country Status (5)

Country Link
US (1) US10615677B2 (ja)
EP (1) EP3136572B1 (ja)
JP (1) JP6287546B2 (ja)
CN (1) CN106233594B (ja)
WO (1) WO2015162933A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3148060A1 (en) * 2015-09-24 2017-03-29 Mitsumi Electric Co., Ltd. Electromagnetic converter, actuator, and pump

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10744531B2 (en) * 2016-09-23 2020-08-18 Apple Inc. Multi-core, multi-dimension electromagnet
US11340336B2 (en) 2017-12-07 2022-05-24 Ouster, Inc. Rotating light ranging system with optical communication uplink and downlink channels
JP7081791B2 (ja) * 2018-02-28 2022-06-07 ミネベアミツミ株式会社 振動アクチュエータ
CN109828257A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种扫描装置及激光雷达
US11947264B2 (en) * 2019-05-09 2024-04-02 Asml Netherlands B.V. Guiding device
JP7155099B2 (ja) * 2019-12-13 2022-10-18 ミツミ電機株式会社 光走査装置
DE102020123803A1 (de) 2020-09-11 2022-03-17 Physik Instrumente (PI) GmbH & Co KG Stellvorrichtung und Stellsystem sowie Computerprogrammprodukt

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252870A (en) * 1991-03-01 1993-10-12 Jacobsen Stephen C Magnetic eccentric motion motor
JPH0865990A (ja) * 1994-08-24 1996-03-08 Namiki Precision Jewel Co Ltd 振動アクチュエータ
JP3038707B1 (ja) * 1998-11-12 2000-05-08 日本電気株式会社 揺動駆動装置
JP2003116255A (ja) * 2001-10-05 2003-04-18 Matsushita Electric Ind Co Ltd 駆動装置及びレンズ駆動機構
JP2010057226A (ja) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd アクチュエータ
JP4617554B2 (ja) * 2000-09-28 2011-01-26 ミツミ電機株式会社 小型ポンプ
JP2011128203A (ja) * 2009-12-15 2011-06-30 Toyota Central R&D Labs Inc 光学装置
JP4757573B2 (ja) * 2005-09-07 2011-08-24 アルプス電気株式会社 2軸型アクチュエータ及びこれを用いたホログラフィー装置
JP2012191817A (ja) * 2011-03-14 2012-10-04 Sinfonia Technology Co Ltd 電磁アクチュエータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB624530A (en) 1947-01-30 1949-06-10 Scophony Ltd Improvements in and relating to impulse-operated electro-magnetic devices
DE3234288C2 (de) 1982-09-16 1984-07-26 Philips Patentverwaltung Gmbh, 2000 Hamburg Optische Vorrichtung zur Lenkung bzw. Ausrichtung eines Strahlenbündels
NL8501665A (nl) 1985-06-10 1987-01-02 Philips Nv Optische aftasteenheid met positie- en standdetektiestelsel voor een elektromagnetisch gelagerd objektief.
JPH0763674B2 (ja) 1986-04-25 1995-07-12 大和製衡株式会社 加振器
US5187612A (en) 1990-11-15 1993-02-16 Gap Technologies, Inc. Gyrating programmable scanner
US6188502B1 (en) 1998-03-26 2001-02-13 Nec Corporation Laser pointing apparatus and on-fulcrum drive apparatus
WO2007029643A1 (ja) 2005-09-07 2007-03-15 Alps Electric Co., Ltd. アクチュエータ及びこれを用いたホログラフィー装置
JP5641176B2 (ja) * 2009-06-19 2014-12-17 国立大学法人東北大学 電磁駆動アクチュエータ
JP5509742B2 (ja) * 2009-09-04 2014-06-04 ミツミ電機株式会社 圧電アクチュエータ及びこれを用いた光走査装置
JP2013127492A (ja) * 2011-06-09 2013-06-27 Panasonic Corp レンズアクチュエータ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252870A (en) * 1991-03-01 1993-10-12 Jacobsen Stephen C Magnetic eccentric motion motor
JPH0865990A (ja) * 1994-08-24 1996-03-08 Namiki Precision Jewel Co Ltd 振動アクチュエータ
JP3038707B1 (ja) * 1998-11-12 2000-05-08 日本電気株式会社 揺動駆動装置
JP4617554B2 (ja) * 2000-09-28 2011-01-26 ミツミ電機株式会社 小型ポンプ
JP2003116255A (ja) * 2001-10-05 2003-04-18 Matsushita Electric Ind Co Ltd 駆動装置及びレンズ駆動機構
JP4757573B2 (ja) * 2005-09-07 2011-08-24 アルプス電気株式会社 2軸型アクチュエータ及びこれを用いたホログラフィー装置
JP2010057226A (ja) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd アクチュエータ
JP2011128203A (ja) * 2009-12-15 2011-06-30 Toyota Central R&D Labs Inc 光学装置
JP2012191817A (ja) * 2011-03-14 2012-10-04 Sinfonia Technology Co Ltd 電磁アクチュエータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136572A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3148060A1 (en) * 2015-09-24 2017-03-29 Mitsumi Electric Co., Ltd. Electromagnetic converter, actuator, and pump
US10277104B2 (en) 2015-09-24 2019-04-30 Mitsumi Electric Co., Ltd. Electromagnetic converter, actuator, and pump

Also Published As

Publication number Publication date
JP2015211552A (ja) 2015-11-24
EP3136572A4 (en) 2017-12-20
US20170047835A1 (en) 2017-02-16
JP6287546B2 (ja) 2018-03-07
CN106233594B (zh) 2019-05-17
EP3136572B1 (en) 2020-03-25
EP3136572A1 (en) 2017-03-01
US10615677B2 (en) 2020-04-07
CN106233594A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6287546B2 (ja) アクチュエータ及びエアポンプ、理美容機器及びレーザー走査機器
US8144380B2 (en) Drive mechanism
JP5592800B2 (ja) 共振モータで使用する磁気スプリング系
JP5842789B2 (ja) アクチュエータ及び電動理美容器具
TWI326619B (ja)
JP2017518119A (ja) パーソナルケア器具のための駆動システム及びパーソナルケア器具の動作方法
JPWO2020004514A1 (ja) 回転往復駆動アクチュエータ
WO2018000448A1 (zh) 用于电动清洁用具驱动装置的固定结构
JP5410754B2 (ja) パーソナルケア電気器具用の振子駆動系
JP5168087B2 (ja) アクチュエータ及びこれを用いた電動歯ブラシ
CA2994624C (en) Actuator and electric beauty device
JP2020518223A (ja) 揺動モータに使用される制御方法および揺動モータ
JP4020073B2 (ja) 振動型リニアアクチュエータ及びこれを駆動源とする往復式電動切断器具
JP2016027790A (ja) アクチュエータ及び電動理美容器具
JP2005160134A (ja) 振動型リニアアクチュエータ
JP2001218445A (ja) 揺動構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15305907

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015782350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015782350

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE