WO2015162878A1 - 無線通信システムにおける無線通信制御方法および装置、ならびに無線通信装置 - Google Patents

無線通信システムにおける無線通信制御方法および装置、ならびに無線通信装置 Download PDF

Info

Publication number
WO2015162878A1
WO2015162878A1 PCT/JP2015/002082 JP2015002082W WO2015162878A1 WO 2015162878 A1 WO2015162878 A1 WO 2015162878A1 JP 2015002082 W JP2015002082 W JP 2015002082W WO 2015162878 A1 WO2015162878 A1 WO 2015162878A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
attenuation amount
communication device
attenuation
predicted
Prior art date
Application number
PCT/JP2015/002082
Other languages
English (en)
French (fr)
Inventor
譚生 李
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016514700A priority Critical patent/JP6627752B2/ja
Priority to CN201580022095.XA priority patent/CN106465191A/zh
Priority to RU2016146093A priority patent/RU2666629C2/ru
Priority to US15/301,852 priority patent/US10419958B2/en
Publication of WO2015162878A1 publication Critical patent/WO2015162878A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to a wireless communication system, and more particularly to a wireless communication control technique in an environment where radio field intensity is attenuated due to weather conditions and a wireless communication apparatus using the wireless communication control technique.
  • Radio wave intensity at frequencies above the microwave band is greatly affected by weather conditions such as rain, fog, and humidity, and it is known that the radio wave intensity is greatly attenuated by rain and snow, especially in the quasi-millimeter wave and millimeter wave bands above 10 GHz. ing.
  • the relationship between the attenuation rate ⁇ R (dB / km) and the rainfall per hour R (mm / h) is expressed by the following equation (1).
  • k and ⁇ are coefficients that depend on the frequency of the radio wave. Since attenuation of radio wave intensity caused by such weather conditions degrades the quality of the radio channel, various techniques for avoiding or suppressing this influence have been proposed.
  • the wireless device disclosed in Patent Document 1 a sensor that acquires weather information such as rainfall, snowfall, and humidity is provided, and radio frequency and modulation are performed so as to achieve good communication quality according to the acquired weather information. Control the method. Further, the line bandwidth control device disclosed in Patent Document 2 predicts the rainfall intensity distribution and the moving speed from the rain information obtained in advance, and controls the line bandwidth so as to avoid the deterioration of the quality of the radio line.
  • an object of the present invention is to provide a radio communication control method and apparatus and a radio communication apparatus that can appropriately control radio channel quality in response to weather changes without adding a special apparatus. .
  • the wireless communication control device is based on the attenuation amount prediction means for predicting the future attenuation amount from the history of the attenuation amount of the radio field intensity from another wireless communication device to the wireless communication device, and the predicted attenuation amount.
  • Control means for controlling the wireless communication device.
  • the attenuation amount prediction means predicts the future attenuation amount from the history of the attenuation amount of the radio field intensity from another wireless communication device to the wireless communication device, and the control means predicts the predicted attenuation amount.
  • the wireless communication device is controlled based on the amount.
  • a wireless communication system is a wireless communication system including a wireless communication device and a wireless communication control device that controls the wireless communication device, from a history of attenuation of radio field intensity from other wireless communication devices to the wireless communication device.
  • An attenuation amount prediction unit that predicts a future attenuation amount, and a control unit that controls the wireless communication device based on the predicted attenuation amount.
  • a wireless communication device is a wireless communication device capable of wireless communication with another wireless communication device, and includes wireless communication means for performing wireless communication, and radio wave intensity from the other wireless communication device to the wireless communication device.
  • An attenuation amount prediction unit that predicts a future attenuation amount from a history of attenuation amount, and a control unit that controls the wireless communication unit based on the predicted attenuation amount.
  • a future attenuation value is predicted from a time-series radio field intensity attenuation amount, and wireless communication control is executed based on the predicted value, so that it is possible to cope with weather changes without adding a special device.
  • Wireless channel quality can be controlled appropriately.
  • FIG. 1 is a block diagram showing a schematic configuration of a radio communication control apparatus in a radio communication system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the radio communication control method according to the first embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration of a radio communication control apparatus in the radio communication system according to the second embodiment of the present invention.
  • FIG. 4 is a flowchart showing a radio communication control method according to the second embodiment.
  • FIG. 5 is a block diagram showing a schematic configuration of a radio communication control apparatus in the radio communication system according to the third embodiment of the present invention.
  • FIG. 6 is a flowchart showing a wireless communication control method according to the third embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a radio communication control apparatus in a radio communication system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the radio communication control method according to the first embodiment.
  • FIG. 3 is a block diagram
  • FIG. 7 is a block diagram showing a schematic configuration of a radio communication control apparatus in a radio communication system according to the fourth embodiment of the present invention.
  • FIG. 8 is a flowchart showing a wireless communication control method according to the fourth embodiment.
  • FIG. 9 is a block diagram showing a schematic configuration of a radio communication control apparatus in a radio communication system according to the fifth embodiment of the present invention.
  • FIG. 10 is a block diagram showing a schematic configuration of a radio communication control apparatus in a radio communication system according to the sixth embodiment of the present invention.
  • FIG. 11 is a block diagram showing a schematic configuration of a radio communication control apparatus in a radio communication system according to the seventh embodiment of the present invention.
  • a future attenuation value is predicted from the radio field intensity attenuation stored in time series, and wireless communication control is executed based on the predicted value. Since the future attenuation amount is predicted from the time-series attenuation amount up to now, it is possible to predict with high accuracy against a sudden weather change, and it is not necessary to add a special device, and the processing load is reduced.
  • embodiments of the present invention will be described in detail with reference to the drawings.
  • a wireless communication device 10 and a wireless communication device 11 perform wireless communication, and a wireless communication control device. 100 is assumed to control the wireless communication parameters (transmission power, modulation method, frequency band used, etc.) of the wireless communication device 10.
  • Various weather conditions (rainfall, snowfall, humidity, etc.) that attenuate the radio field intensity are assumed between the wireless communication device 10 and the wireless communication device 11, and the presence or absence of precipitation including rainfall and snowfall will be considered below.
  • the wireless communication control device 100 has a function of controlling the wireless communication parameters of the wireless communication device 10 and includes, as functional elements, an attenuation amount acquisition unit 101, a time series attenuation amount storage unit 102, an attenuation amount prediction unit 103, and a control unit 104.
  • the control unit 104 controls the attenuation acquisition unit 101, the time-series attenuation storage unit 102, and the attenuation prediction unit 103 to optimize the wireless communication function of the wireless communication device 10 according to weather conditions. Control.
  • the same functions as the attenuation amount acquisition unit 101, the attenuation amount prediction unit 103, and the control unit 104 may be realized by executing a program stored in a storage device (not shown) on a computer or a CPU (Central Processing Unit). it can.
  • a storage device not shown
  • CPU Central Processing Unit
  • the attenuation amount acquisition unit 101 acquires the current attenuation amount A occurring between the wireless communication devices 10 and 11 at a predetermined period (operation S201).
  • the sequentially acquired attenuation amount A is stored in time series in the time series attenuation amount storage unit 102 (operation S202).
  • the attenuation amount A may be calculated from, for example, a transmission power value notified from the transmission side and a reception power measurement value on the reception side. If the transmission power value on the transmission side cannot be obtained, it can be estimated using a preset reception power reference value and reception power value in fine weather. That is, the attenuation amount A can be calculated as a difference from the attenuation value in fine weather. Radar information can also be used.
  • the time-series attenuation amount A is simulated by radar information, and the simulation result is stored in the time-series attenuation storage unit 102. This simulation result may be used as training data for machine learning.
  • the control unit 104 compares the acquired current attenuation amount A with a predetermined attenuation threshold value, and determines whether or not precipitation has occurred (operation S203). If the attenuation amount A exceeds the attenuation threshold value, it is determined that rain or snow is occurring between the wireless communication devices 10 and 11. If precipitation has occurred (operation S203; YES), the attenuation amount prediction unit 103 extracts a change in attenuation amount from the time series attenuation amount stored in the time series attenuation amount storage unit 102 according to the control of the control unit 104. Then, the attenuation amount Ae at the next acquisition time point or a future time point is predicted (operation S204).
  • a machine learning method such as a neural network method can be used to extract the attenuation change.
  • the control unit 104 optimally controls the wireless communication parameters of the wireless communication device 10 so as to maintain good communication according to the predicted attenuation amount Ae (operation S205). For example, it is possible to increase the transmission power of the wireless communication device 10 so as to reduce the predicted attenuation amount, or to switch to a frequency band or a modulation method in which attenuation due to precipitation becomes smaller. More specifically, communication quality indicators such as CNR (Carrier Noise Ratio), Eb / N0 (Energy per Bit to Noise power spectral density ratio), and BER (Bit Error Rate) are calculated and calculated. Based on the result, one or both of the modulation method and the used frequency are controlled. If the amount of attenuation is equal to or less than the attenuation threshold (operation S203; NO), it is determined that precipitation has not occurred, and the prediction of the amount of attenuation and the update of the wireless communication parameters are not performed.
  • CNR Carrier Noise Ratio
  • Eb / N0 Energy
  • the radio wave intensity is attenuated in advance before the attenuation of the radio wave intensity due to a large weather change occurs.
  • the wireless communication parameters of the communication device can be controlled, and communication failure can be avoided in advance.
  • the wireless communication device 10 and the wireless communication device 11 are wireless. It is assumed that communication is performed and the wireless communication control device 100a controls wireless communication parameters (transmission power, modulation scheme, used frequency band, etc.) of the wireless communication device 10.
  • the wireless communication device 10 and the wireless communication device 11 are separated from each other by a physical distance L, and various weather conditions (rainfall, snowfall, humidity, etc.) that attenuate the radio wave intensity are assumed between them. Consider the presence or absence of precipitation, including snowfall.
  • the wireless communication control device 100a has a function of controlling wireless communication parameters of the wireless communication device 10, and includes as functional elements an attenuation / distance acquisition unit 101a, a time-series attenuation storage unit 102, an attenuation / precipitation prediction unit. 103 a and the control unit 104.
  • the control unit 104 controls the attenuation / distance acquisition unit 101a, the time-series attenuation storage unit 102, and the attenuation / precipitation prediction unit 103a, and controls the wireless communication device 10 according to weather conditions. Optimum control of wireless communication functions.
  • the same functions as the attenuation / distance acquisition unit 101a, the attenuation / precipitation prediction unit 103a, and the control unit 104 may be realized by executing a program stored in a storage device (not shown) on a computer or CPU. it can.
  • the attenuation / distance acquisition unit 101 a calculates the physical distance L between the wireless communication devices 10 and 11 and the current attenuation A generated between the wireless communication devices 10 and 11. Acquired at a predetermined period, and stores the acquired attenuation amount and distance in the time-series attenuation amount storage unit 102 in time series (operation S301).
  • the attenuation amount A may be calculated from, for example, the transmission power value notified from the transmission side and the reception power measurement value at the reception side. If the transmission power value on the transmission side cannot be obtained, it can be estimated using a preset reception power reference value and reception power value in fine weather. Radar information can also be used.
  • the current rainfall rate R (mm / h) is calculated using equation (2) (operation S302).
  • the control unit 104 compares the calculated rainfall rate R with a predetermined threshold value to determine whether or not precipitation has occurred (operation S303). If the rainfall rate R exceeds the threshold value, it is determined that rain or snow is occurring between the wireless communication devices 10 and 11. If precipitation has occurred (operation S303; YES), the attenuation amount / precipitation amount prediction unit 103a determines the attenuation amount from the time series attenuation amount stored in the time series attenuation amount storage unit 102 according to the control of the control unit 104. The change is extracted, and the attenuation amount Ae and the rainfall rate Re at the next acquisition time point or the future time point are predicted (operation S304).
  • the control unit 104 optimally controls the wireless communication parameters of the wireless communication device 10 so as to maintain good communication according to the predicted attenuation amount Ae (operation S305). For example, it is possible to increase the transmission power of the wireless communication device 10 so as to reduce the predicted attenuation amount, or to switch to a frequency band or a modulation method in which attenuation due to precipitation becomes smaller. If the rainfall rate R is equal to or less than the threshold value (operation S303; NO), it is determined that precipitation has not occurred, and the attenuation amount and the rainfall rate are not predicted and the wireless communication parameters are not updated.
  • the present embodiment predicts the future attenuation amount from the time-series attenuation amount up to now, and thus has the same effect as the first embodiment. It is also possible to calculate the precipitation rate and its predicted value using the target distance.
  • a wireless communication control device 100b according to a third embodiment of the present invention adds a location information acquisition unit 105 to the wireless communication control device 100a according to the second embodiment. Have a configuration. Therefore, blocks having the same functions as those in FIG.
  • the location information acquisition unit 105 acquires the geographical location information of the wireless communication devices 10 and 11.
  • the geographical location of each radio can be measured in various ways. If the wireless communication devices 10 and 11 are both fixed, the longitude / latitude information of each installation location can be used. If either one of the wireless communication devices is a mobile station, the mobile station may be provided with a GPS (Global Positioning System) receiver, or from three or more nearest fixed wireless communication devices (base stations). The position may be specified using received radio waves.
  • the position information of the wireless communication device 11 can be acquired by a position information acquisition unit provided in a wireless communication control device (not shown) connected to the wireless communication device 11.
  • the wireless communication device 10 can receive the position information of the other wireless communication device 11 by a control message.
  • the attenuation amount / distance acquisition unit 101 a includes the current geographical position information of the wireless communication devices 10 and 11 and the current attenuation amount A generated between the wireless communication devices 10 and 11. Are acquired in a predetermined cycle, and the acquired attenuation amount and position information are stored in the time-series attenuation amount storage unit 102 in time series (operation S401).
  • the attenuation amount A may be calculated from, for example, the transmission power value notified from the transmission side and the reception power measurement value at the reception side. If the transmission power value on the transmission side cannot be obtained, it can be estimated using a preset reception power reference value and reception power value in fine weather. Radar information can also be used.
  • the control unit 104 calculates the current physical distance L (km) between the radio communication devices 10 and 11 from the geographical position information, and uses the equation (2) as described in the second embodiment.
  • the current rainfall rate R (mm / h) is calculated (operation S402).
  • the control unit 104 compares the calculated rainfall rate R with a predetermined threshold value to determine whether or not precipitation has occurred (operation S403). If the rainfall rate R is equal to or less than the threshold (operation S403; NO), it is then determined whether or not the current position information of the wireless communication devices 10 and 11 has changed from the previous acquisition time (operation S404). If precipitation has occurred or if there is a change in position (operation S403; YES or operation S404; YES), the attenuation / precipitation prediction unit 103a stores the time-series attenuation storage unit 102 in accordance with the control of the control unit 104. A change in attenuation is extracted from the stored time-series attenuation, and an attenuation Ae and a rainfall rate Re at the next acquisition time or a future time are predicted (operation S405).
  • the control unit 104 optimally controls the wireless communication parameters of the wireless communication device 10 so as to maintain good communication according to the predicted attenuation amount Ae (operation S406). For example, it is possible to increase the transmission power of the wireless communication device 10 so as to reduce the predicted attenuation amount, or to switch to a frequency band or a modulation method in which attenuation due to precipitation becomes smaller. If there is no precipitation and no change in position (operation S403; NO and operation S404; NO), the attenuation amount and the rainfall rate are not predicted and the wireless communication parameters are not updated.
  • the present embodiment predicts the future attenuation amount from the time-series attenuation amount up to the present, and further uses the physical distance between the wireless communication devices to calculate the precipitation rate and its predicted value. Since calculation is also possible, it has the same effect as the second embodiment. Further, by recording the position information of the wireless communication devices 10 and 11 in time series, it is possible to detect a change in the position of both, and even when the wireless communication device moves, accurate wireless communication control according to weather conditions is possible. It becomes possible.
  • a radio communication control apparatus 100c adds a communication network connection unit 106 to the radio communication control apparatus 100 according to the first embodiment. Have a configuration. Therefore, the blocks having the same functions as those in FIG.
  • the communication network connection unit 106 is an interface with the communication network 20, and can communicate with another wireless communication control device 100 c and the management device 30 of the wireless communication system through the communication network 20. As will be described later, the wireless communication control device 100c can notify the other wireless communication control device or the management device 30 of the result predicted using the time-series attenuation amount.
  • the communication network 20 is a packet communication network, for example.
  • the same effect as that of the first embodiment can be obtained, and the other can be obtained by notifying the other wireless communication control device of the predicted attenuation amount.
  • the wireless communication control device wireless control in consideration of the attenuation amount of other devices can be performed.
  • a radio communication control apparatus 100d according to the fifth embodiment of the present invention has a configuration in which a communication network connection unit 106 according to the fourth embodiment is added to the radio communication control apparatus 100b according to the third embodiment. Since this embodiment is a combination of the functions described in the third and fourth embodiments, details are omitted.
  • the functions of the wireless communication control device and the functions of the wireless communication device 10 according to the first to third embodiments described above are combined into one wireless communication device 600. It can also be included. That is, the wireless communication device 600 according to the present embodiment includes a wireless unit 601 for performing wireless communication with other wireless communication devices, and a wireless communication control unit 602 having the functions of the wireless communication control device according to the above embodiment.
  • the function of the wireless communication control unit 602 is the same as that of the first embodiment, but may be the same as that of the wireless communication control devices 100a and 100b according to the second and third embodiments.
  • the functions of the wireless communication control device and the function of the wireless communication device 10 according to the fourth and fifth embodiments described above are combined into one wireless communication device 600a. It can also be included. That is, the wireless communication device 600a according to the present embodiment includes a wireless unit 601 for performing wireless communication with other wireless communication devices, and a wireless communication control unit 602a having the same function as the wireless communication control device according to the above embodiment. . In FIG. 11, the function of the wireless communication control unit 602a is the same as that of the fourth embodiment, but may be the same as that of the wireless communication control device 100d according to the fifth embodiment.
  • the wireless / weather condition monitoring apparatus 300 can collect the attenuation amount or the rainfall rate predicted from each wireless communication apparatus 600a, and can accurately determine the weather condition.
  • a wireless communication control device for controlling a wireless communication device, Attenuation amount predicting means for predicting the future attenuation amount from the history of the attenuation amount of the radio field intensity from the other wireless communication device to the wireless communication device, Control means for controlling the wireless communication device based on the predicted attenuation amount;
  • a wireless communication control device comprising: (Appendix 2) The control means determines the presence or absence of precipitation by comparing the latest attenuation amount and a precipitation threshold value, and when it is determined that there is precipitation, the attenuation amount prediction means predicts the future attenuation amount.
  • the wireless communication control device according to Supplementary Note 1, wherein the wireless communication control device is characterized in that: (Appendix 3) The control means detects the latest precipitation situation based on the latest attenuation amount and the distance between the other wireless communication devices, and when it is determined that there is precipitation, the attenuation amount prediction means determines the future The wireless communication control device according to appendix 1, wherein an attenuation amount of the signal is predicted. (Appendix 4) The wireless communication control device according to appendix 3, wherein the attenuation amount prediction means predicts a future rainfall rate based on the predicted attenuation amount and a distance between the other wireless communication devices. .
  • the control unit causes the attenuation amount prediction unit to predict the future attenuation amount when there is precipitation or when the relative position with the other wireless communication device changes.
  • the wireless communication control device according to any one of the above. (Appendix 6) Any one of Supplementary notes 1-5, wherein the attenuation amount prediction means extracts a time-series change in attenuation amount from the attenuation amount history by a machine learning method, and predicts the future attenuation amount.
  • a wireless communication control method for controlling a wireless communication device comprising: Attenuation amount predicting means predicts future attenuation amount from the history of attenuation amount of radio field intensity from other wireless communication devices to the wireless communication device, A control unit controls the wireless communication device based on the predicted attenuation amount; A wireless communication control method.
  • the control means determines the presence or absence of precipitation by comparing the latest attenuation and the precipitation threshold, When it is determined that there is precipitation, the control unit causes the attenuation amount prediction unit to predict the future attenuation amount.
  • the wireless communication control method according to appendix 7, wherein (Appendix 9)
  • the control means detects the latest precipitation situation based on the latest attenuation and the distance between the other wireless communication devices, When it is determined that there is precipitation, the control unit causes the attenuation amount prediction unit to predict the future attenuation amount.
  • the wireless communication control method according to appendix 7, wherein (Appendix 10)
  • the wireless communication control according to appendix 9, wherein the attenuation amount prediction means predicts a future rainfall rate based on the predicted attenuation amount and a distance between the other wireless communication devices.
  • the position acquisition means further comprises position acquisition means for acquiring geographical position information of the wireless communication device,
  • the control means makes the attenuation prediction means predict the future attenuation when there is precipitation or when the relative position with the other wireless communication device changes;
  • the wireless communication control method according to any one of appendices 8-10, wherein: (Appendix 12) Any one of appendixes 7-11, wherein the attenuation amount predicting means extracts a time-series change in attenuation amount from a history of the attenuation amount by a machine learning method and predicts the future attenuation amount.
  • a wireless communication system including a wireless communication device and a wireless communication control device that controls the wireless communication device, Attenuation amount predicting means for predicting the future attenuation amount from the history of the attenuation amount of the radio field intensity from the other wireless communication device to the wireless communication device, Control means for controlling the wireless communication device based on the predicted attenuation amount;
  • a wireless communication system comprising: (Appendix 14) The control means determines the presence or absence of precipitation by comparing the latest attenuation amount and a precipitation threshold value, and when it is determined that there is precipitation, the attenuation amount prediction means predicts the future attenuation amount. 14.
  • the wireless communication system according to appendix 13, which is a feature.
  • the control means detects the latest precipitation situation based on the latest attenuation amount and the distance between the other wireless communication devices, and when it is determined that there is precipitation, the attenuation amount prediction means determines the future 14.
  • the wireless communication device further includes position acquisition means for acquiring geographical position information,
  • the control unit causes the attenuation amount prediction unit to predict the future attenuation amount when there is precipitation or when the relative position with the other wireless communication device changes.
  • the wireless communication system according to any one of the above.
  • the wireless communication system according to any one of appendices 13 to 18, wherein the wireless communication device and the wireless communication control device are provided in one wireless communication device.
  • Appendix 20 A communication network, and the wireless communication control device and the management device are connected to the communication network; 20.
  • Appendix 21 A communication network, and the wireless communication control device and the management device are connected to the communication network;
  • the wireless communication system according to supplementary note 16, wherein the wireless communication control device transmits the predicted attenuation amount and / or the predicted rainfall rate to the management device through the communication network.
  • a wireless communication device capable of wireless communication with another wireless communication device, Wireless communication means for performing wireless communication; Attenuation amount predicting means for predicting a future attenuation amount from a history of attenuation amount of radio field intensity from the other wireless communication device to the wireless communication device, Control means for controlling the wireless communication means based on the predicted attenuation amount;
  • a wireless communication apparatus comprising: (Appendix 23) A program for causing a computer to function as a wireless communication control device for controlling a wireless communication device, Attenuation amount prediction function for predicting future attenuation amount from a history of attenuation amount of radio field intensity from other wireless communication devices to the wireless communication device, A control function for controlling the wireless communication device based on the predicted attenuation amount; Is realized by the computer.
  • the present invention can be applied to a wireless communication control technique in a wireless communication system in an environment where radio field intensity is attenuated due to weather conditions.
  • Wireless communication device 10
  • Communication network 30 Management device 100, 100a to 100d Wireless communication control device 101 Attenuation acquisition unit 101a Attenuation / distance acquisition unit 102 Time series attenuation storage unit 103 Attenuation prediction unit 103a Attenuation / precipitation Quantity prediction unit 104 Control unit 105 Position information acquisition unit 106 Communication network connection unit 300 Wireless / weather condition monitoring device 601 Radio units 602, 602a Wireless communication control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明は、特別な装置を追加することなく、気象変化に対応して無線回線品質を適切に制御することができる無線通信制御方法および装置ならびに無線通信装置を提供することを目的とする。そのために本発明では、無線通信制御装置(100)は、他の無線通信機(11)から無線通信機(10)までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測部(103)と、予測された減衰量に基づいて無線通信機(10)を制御する制御部(104)とを有する。

Description

無線通信システムにおける無線通信制御方法および装置、ならびに無線通信装置
 本発明は無線通信システムに係り、特に気象状況により電波強度が減衰する環境における無線通信制御技術およびそれを利用した無線通信装置に関する。
 マイクロ波帯以上の周波数の電波強度は雨、霧、湿度等の気象状況に大きく影響され、特に10GHz以上の準ミリ波、ミリ波帯では降雨や降雪により電波強度が大きく減衰することが知られている。たとえば、非特許文献1によれば、減衰率γR(dB/km)と時間当たりの降雨量R(mm/h)との関係は次式(1)で表される。
γR=kRα ・・・(1)
ここでkおよびαは電波の周波数に依存する係数である。このような気象状況に起因する電波強度の減衰は無線回線品質を劣化させるために、この影響を回避あるいは抑制する技術が種々提案されている。
 たとえば、特許文献1に開示された無線装置では、降雨、降雪、湿度等の気象情報を取得するセンサを設け、取得された気象情報に応じて、良好な通信品質となるように無線周波数や変調方式を制御する。また、特許文献2に開示された回線帯域制御装置では、予め入手した降雨情報から降雨強度分布および移動速度を予測し、これによる無線回線品質劣化を回避するように回線帯域を制御する。
特開2003-318795号公報 特開2004-363679号公報 特開2007-221357号公報 特開2004-354080号公報 特開2000-036784号公報
国際電気通信連合の無線通信部門による勧告ITU-R P.838
 しかしながら、特許文献1に開示された無線装置では、気象情報を取得するセンサを新たに設ける必要があり、無線装置の構成を複雑化するとともに高コストになるという問題がある。また、特許文献2に開示された回線帯域制御装置では、降雨情報を予め外部から入手する必要があり、また予測精度が降雨情報の精度に依存するためにローカルで急激な気象変化に対応することができない。さらに、画像処理技術を用いて降雨情報から降雨強度分布や移動速度を予測する必要があるために装置の処理負荷が大きくなるという難点もある。
 そこで、本発明の目的は、特別な装置を追加することなく、気象変化に対応して無線回線品質を適切に制御することができる無線通信制御方法および装置ならびに無線通信装置を提供することにある。
 本発明による無線通信制御装置は、他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測手段と、前記予測された減衰量に基づいて前記無線通信機を制御する制御手段と、を有することを特徴とする。
 本発明による無線通信制御方法は、減衰量予測手段が他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測し、制御手段が前記予測された減衰量に基づいて前記無線通信機を制御する、ことを特徴とする。
 本発明による無線通信システムは、無線通信機とそれを制御する無線通信制御装置とを含む無線通信システムであって、他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測手段と、前記予測された減衰量に基づいて前記無線通信機を制御する制御手段と、を有することを特徴とする。
 本発明による無線通信装置は、他の無線通信装置と無線通信可能な無線通信装置であって、無線通信を行う無線通信手段と、前記他の無線通信装置から当該無線通信装置までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測手段と、前記予測された減衰量に基づいて前記無線通信手段を制御する制御手段と、を有することを特徴とする。
 本発明によれば、時系列の電波強度減衰量から将来の減衰値を予測し、その予測値に基づいて無線通信制御を実行するので、特別な装置を追加することなく、気象変化に対応して無線回線品質を適切に制御することができる。
図1は本発明の第1実施形態による無線通信システムにおける無線通信制御装置の概略的構成を示すブロック図である。 図2は第1実施形態による無線通信制御方法を示すフローチャートである。 図3は本発明の第2実施形態による無線通信システムにおける無線通信制御装置の概略的構成を示すブロック図である。 図4は第2実施形態による無線通信制御方法を示すフローチャートである。 図5は本発明の第3実施形態による無線通信システムにおける無線通信制御装置の概略的構成を示すブロック図である。 図6は第3実施形態による無線通信制御方法を示すフローチャートである。 図7は本発明の第4実施形態による無線通信システムにおける無線通信制御装置の概略的構成を示すブロック図である。 図8は第4実施形態による無線通信制御方法を示すフローチャートである。 図9は本発明の第5実施形態による無線通信システムにおける無線通信制御装置の概略的構成を示すブロック図である。 図10は本発明の第6実施形態による無線通信システムにおける無線通信制御装置の概略的構成を示すブロック図である。 図11は本発明の第7実施形態による無線通信システムにおける無線通信制御装置の概略的構成を示すブロック図である。
 <実施形態の概略>
 本発明の実施形態によれば、時系列で格納した電波強度減衰量から将来の減衰値を予測し、その予測値に基づいて無線通信制御を実行する。現在までの時系列減衰量から将来の減衰量を予測するので、急激な気象変化に対して高精度の予測が可能となり、特別な装置を追加する必要はなく処理負荷も軽減される。以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
 1.第1実施形態
 1.1)システム構成
 図1に示すように、本発明の第1実施形態による無線通信システムでは、無線通信機10と無線通信機11とが無線通信を行い、無線通信制御装置100が無線通信機10の無線通信パラメータ(送信電力、変調方式、使用周波数帯域など)を制御するものとする。
無線通信機10と無線通信機11との間には電波強度を減衰させる種々の気象状況(降雨、降雪、湿度など)が想定されるが、以下、降雨、降雪を含む降水の有無を考える。
 無線通信制御装置100は無線通信機10の無線通信パラメータを制御する機能を有し、機能的要素として、減衰量取得部101、時系列減衰量格納部102、減衰量予測部103および制御部104を有する。制御部104は、次に説明するように、減衰量取得部101、時系列減衰量格納部102および減衰量予測部103を制御し、気象状況に応じて無線通信機10の無線通信機能を最適制御する。なお、減衰量取得部101、減衰量予測部103および制御部104と同じ機能は、図示しない記憶装置に格納されたプログラムをコンピュータあるいはCPU(Central Processing Unit)上で実行することにより実現することもできる。
 1.2)動作
 図2において、減衰量取得部101は、無線通信機10および11の間で生じている現在の減衰量Aを所定周期で取得する(動作S201)。順次取得された減衰量Aは、時系列減衰量格納部102に時系列で格納される(動作S202)。なお、減衰量Aは、たとえば送信側から通知された送信電力値と受信側での受信電力測定値とから計算されてもよい。送信側の送信電力値が得られない場合には、予め設定された晴天時の受信電力基準値と受信電力値とを用いて推定することもできる。すなわち、減衰量Aは晴天時の減衰値との差として計算可能である。また、レーダ情報を利用することもできる。たとえば、レーダ情報により時系列の減衰量Aを模擬して、その模擬結果を時系列減衰量格納部102に格納する。この模擬結果は機械学習のトレーニングデータとして利用されてもよい。
 制御部104は、取得された現在の減衰量Aと所定の減衰閾値とを比較し、降水が発生しているか否かを判別する(動作S203)。減衰量Aが減衰閾値を超えていれば、無線通信機10と11との間で降雨あるいは降雪が発生していると判定される。降水が発生していれば(動作S203;YES)、制御部104の制御に従って、減衰量予測部103は、時系列減衰量格納部102に格納された時系列減衰量から減衰量の変化を抽出し、次の取得時点あるいは未来の時点での減衰量Aeを予測する(動作S204)。この減衰量変化の抽出には、機械学習法、たとえばニューラルネットワーク手法を用いることができる。
 続いて、制御部104は、予測減衰量Aeに応じて、良好な通信が維持されるように無線通信機10の無線通信パラメータを最適制御する(動作S205)。たとえば、予測される減衰量が低減するように無線通信機10の送信電力を上昇させたり、降水による減衰がより小さくなる周波数帯域あるいは変調方式に切り替えたりすることができる。より具体的には、予測減衰量Aeでの通信品質指標、たとえばCNR(Carrier Noise Ratio)、Eb/N0(Energy per Bit to Noise power spectral density ratio)、BER(Bit Error Rate)を算出し、その結果に基づいて変調方式および使用周波数の一方あるいは両方を制御する。なお、減衰閾値以下の減衰量であれば(動作S203;NO)、降水が発生していないと判断し、減衰量の予測および無線通信パラメータの更新は行わない。
 1.3)効果
 上述したように、本実施形態によれば、現在までの時系列減衰量から将来の減衰量を予測するので、大きな気象変化による電波強度の減衰が発生する前に、予め無線通信機の無線通信パラメータを制御することができ、通信障害を未然に回避することができる。
 2.第2実施形態
 2.1)システム構成
 図3に示すように、本発明の第2実施形態による無線通信システムでは、第1実施形態と同様に、無線通信機10と無線通信機11とが無線通信を行い、無線通信制御装置100aが無線通信機10の無線通信パラメータ(送信電力、変調方式、使用周波数帯域など)を制御するものとする。無線通信機10と無線通信機11とは物理的距離Lだけ離れており、その間には電波強度を減衰させる種々の気象状況(降雨、降雪、湿度など)が想定されるが、以下、降雨、降雪を含む降水の有無を考える。
 無線通信制御装置100aは無線通信機10の無線通信パラメータを制御する機能を有し、機能的要素として、減衰量・距離取得部101a、時系列減衰量格納部102、減衰量・降水量予測部103aおよび制御部104を有する。制御部104は、次に説明するように、減衰量・距離取得部101a、時系列減衰量格納部102、減衰量・降水量予測部103aを制御し、気象状況に応じて無線通信機10の無線通信機能を最適制御する。なお、減衰量・距離取得部101a、減衰量・降水量予測部103aおよび制御部104と同じ機能は、図示しない記憶装置に格納されたプログラムをコンピュータあるいはCPU上で実行することにより実現することもできる。
 2.2)動作
 図4において、減衰量・距離取得部101aは、無線通信機10と11との物理的距離Lと無線通信機10および11の間で生じている現在の減衰量Aとを所定周期で取得し、取得された減衰量および距離を時系列減衰量格納部102に時系列で格納する(動作S301)。減衰量Aは、上述したように、たとえば送信側から通知された送信電力値と受信側での受信電力測定値とから計算されてもよい。送信側の送信電力値が得られない場合には、予め設定された晴天時の受信電力基準値と受信電力値とを用いて推定することもできる。また、レーダ情報を利用することもできる。
 制御部104は、取得された現在の減衰量A(dB)と上記物理的距離L(km)とを用いて減衰率γR(dB/km)=A/Lを得ることができるので、次式(2)を用いて、現在の降雨率R(mm/h)を算出する(動作S302)。
γR=A/L=kRα ・・・(2)
 続いて、制御部104は算出された降雨率Rと所定の閾値とを比較し、降水が発生しているか否かを判別する(動作S303)。降雨率Rが閾値を超えていれば、無線通信機10と11との間で降雨あるいは降雪が発生していると判定される。降水が発生していれば(動作S303;YES)、制御部104の制御に従って、減衰量・降水量予測部103aは、時系列減衰量格納部102に格納された時系列減衰量から減衰量の変化を抽出し、次の取得時点あるいは未来の時点での減衰量Aeおよび降雨率Reを予測する(動作S304)。
 続いて、制御部104は、予測減衰量Aeに応じて、良好な通信が維持されるように無線通信機10の無線通信パラメータを最適制御する(動作S305)。たとえば、予測される減衰量が低減するように無線通信機10の送信電力を上昇させたり、降水による減衰がより小さくなる周波数帯域あるいは変調方式に切り替えたりすることができる。なお、閾値以下の降雨率Rであれば(動作S303;NO)、降水が発生していないと判断し、減衰量および降雨率の予測および無線通信パラメータの更新は行わない。
 2.3)効果
 上述したように、本実施形態は、現在までの時系列減衰量から将来の減衰量を予測するので第1実施形態と同様の効果を有し、さらに無線通信機間の物理的距離を用いて降水率及びその予測値の算出も可能となる。
 3.第3実施形態
 3.1)システム構成
 図5に示すように、本発明の第3実施形態による無線通信制御装置100bは、第2実施形態による無線通信制御装置100aに位置情報取得部105を加えた構成を有する。したがって、図3と同じ機能を有するブロックには同一参照番号を付して詳細な説明は省略する。
 位置情報取得部105は、無線通信機10および11の地理的位置情報を取得する。各無線通信機の地理的位置は種々の方法で測定可能である。無線通信機10および11が共に固定されていれば、それぞれの設置場所の経度・緯度情報を利用することができる。いずれか一方の無線通信機が移動局であれば、移動局にGPS(Global Positioning System)受信機等を設けてもよいし、あるいは3個以上の最寄りの固定無線通信機(基地局)からの受信電波を利用して位置を特定してもよい。なお、無線通信機11の位置情報は、無線通信機11に接続した無線通信制御装置(図示せず。)に設けられた位置情報取得部により取得することができる。無線通信機10は、他方の無線通信機11の位置情報を制御メッセージにより受信することができる。
 3.2)動作
 図6において、減衰量・距離取得部101aは、無線通信機10および11の現在の地理的位置情報と無線通信機10および11の間で生じている現在の減衰量Aとを所定周期で取得し、取得された減衰量および位置情報を時系列減衰量格納部102に時系列で格納する(動作S401)。減衰量Aは、上述したように、たとえば送信側から通知された送信電力値と受信側での受信電力測定値とから計算されてもよい。送信側の送信電力値が得られない場合には、予め設定された晴天時の受信電力基準値と受信電力値とを用いて推定することもできる。また、レーダ情報を利用することもできる。
 制御部104は、無線通信機10および11のそれぞれの地理的位置情報から両者間の現在の物理的距離L(km)を計算し、第2実施形態で述べたように式(2)を用いて、現在の降雨率R(mm/h)を算出する(動作S402)。
 続いて、制御部104は算出された降雨率Rと所定の閾値とを比較し、降水が発生しているか否かを判別する(動作S403)。閾値以下の降雨率Rであれば(動作S403;NO)、続いて無線通信機10および11の現在の位置情報が前の取得時点から変化しているか否かを判別する(動作S404)。降水が発生しているか、あるいは位置変化があれば(動作S403;YESまたは動作S404;YES)、制御部104の制御に従って、減衰量・降水量予測部103aは、時系列減衰量格納部102に格納された時系列減衰量から減衰量の変化を抽出し、次の取得時点あるいは未来の時点での減衰量Aeおよび降雨率Reを予測する(動作S405)。
 続いて、制御部104は、予測減衰量Aeに応じて、良好な通信が維持されるように無線通信機10の無線通信パラメータを最適制御する(動作S406)。たとえば、予測される減衰量が低減するように無線通信機10の送信電力を上昇させたり、降水による減衰がより小さくなる周波数帯域あるいは変調方式に切り替えたりすることができる。なお、降水も位置変化もなければ(動作S403;NOかつ動作S404;NO)、減衰量および降雨率の予測および無線通信パラメータの更新は行わない。
 3.3)効果
 上述したように、本実施形態は、現在までの時系列減衰量から将来の減衰量を予測し、さらに無線通信機間の物理的距離を用いて降水率及びその予測値の算出も可能になるので、第2実施形態と同様の効果を有する。さらに無線通信機10および11の位置情報を時系列で記録することで、両者の位置変化を検出することができ、無線通信機が移動する場合でも、気象状況に応じた正確な無線通信制御が可能となる。
 4.第4実施形態
 4.1)システム構成
 図7に示すように、本発明の第4実施形態による無線通信制御装置100cは、第1実施形態による無線通信制御装置100に通信網接続部106を加えた構成を有する。したがって、図1と同じ機能を有するブロックには同一参照番号を付して詳細な説明は省略する。
 通信網接続部106は通信網20とのインターフェースであり、通信網20を通して、他の無線通信制御装置100cおよび無線通信システムの管理装置30などと相互に通信可能である。無線通信制御装置100cは、後述するように、時系列減衰量を用いて予測した結果を他の無線通信制御装置あるいは管理装置30へ通知することができる。通信網20は、たとえばパケット通信ネットワークである。
 4.2)動作
 図8における動作S501~S505は、図2における動作S201~S205と同じであるから説明は省略する。制御部104は、既に述べたように、予測減衰量Aeに応じて無線通信機10の無線通信パラメータを最適制御すると(動作S505)、その予測減衰量Aeを通信網接続部106を通して他の無線通信制御装置または管理装置30へ送信する(動作S506)。
 4.3)効果
 上述したように、本実施形態によれば、第1実施形態と同様の効果を得ることができると共に、他の無線通信制御装置へ予測減衰量を通知することで、当該他の無線通信制御装置において他の装置の減衰量を考慮した無線制御が可能となる。
 5.その他の実施形態
 本発明は、上述した第1~第4実施形態に限定されるものではなく、以下に述べる実施形態も本発明に含まれる。
 <第5実施形態>
 図9に示すように、本発明の第5実施形態による無線通信制御装置100dは、第3実施形態による無線通信制御装置100bに第4実施形態における通信網接続部106を加えた構成を有する。本実施形態は、上記第3および第4実施形態で説明した機能の組み合わせであるから詳細は省略する。
 <第6実施形態>
 図10に示すように、本発明の第6実施形態によれば、上述した第1~第3実施形態による無線通信制御装置の機能と無線通信機10の機能とを一つの無線通信装置600に含むこともできる。すなわち、本実施形態による無線通信装置600は、他の無線通信装置と無線通信するための無線部601と、上記実施形態による無線通信制御装置の機能を有する無線通信制御部602と、を有する。図10において、無線通信制御部602の機能は第1実施形態と同じであるが、第2、第3実施形態による無線通信制御装置100a、100bと同じであってもよい。
 <第7実施形態>
 図11に示すように、本発明の第7実施形態によれば、上述した第4、第5実施形態による無線通信制御装置の機能と無線通信機10の機能とを一つの無線通信装置600aに含むこともできる。すなわち、本実施形態による無線通信装置600aは、他の無線通信装置と無線通信するための無線部601と、上記実施形態による無線通信制御装置と同じ機能を有する無線通信制御部602aと、を有する。図11において、無線通信制御部602aの機能は第4実施形態と同じであるが、第5実施形態による無線通信制御装置100dと同じであってもよい。
 本実施形態によれば、無線/気象状況監視装置300が各無線通信装置600aからそれぞれで予測された減衰量あるいは降雨率を収集し、気象状況を正確に判断することが可能となる。
 6.付記
 上述した実施形態の一部あるいは全部は、以下の付記のようにも記載されうるが、これらに限定されるものではない。
 (付記1)
 無線通信機を制御する無線通信制御装置であって、
 他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測手段と、
 前記予測された減衰量に基づいて前記無線通信機を制御する制御手段と、
を有することを特徴とする無線通信制御装置。
(付記2)
 前記制御手段は、最新の減衰量と降水閾値とを比較することで降水の有無を判別し、降水があると判定されると、前記減衰量予測手段により前記将来の減衰量を予測させること
を特徴とする付記1に記載の無線通信制御装置。
(付記3)
 前記制御手段は、最新の減衰量と前記他の無線通信機との間の距離とに基づいて最新の降水状況を検知し、降水があると判定されると、前記減衰量予測手段により前記将来の減衰量を予測させることを特徴とする付記1に記載の無線通信制御装置。
(付記4)
 前記減衰量予測手段は、前記予測された減衰量と前記他の無線通信機との間の距離とに基づいて将来の降雨率を予測することを特徴とする付記3に記載の無線通信制御装置。
(付記5)
 自機の地理上の位置情報を取得する位置取得手段を更に有し、
 前記制御手段は、降水がある時または前記他の無線通信機との相対的な位置が変化した時、前記減衰量予測手段により前記将来の減衰量を予測させることを特徴とする付記2-4のいずれか1項に記載の無線通信制御装置。
(付記6)
 前記減衰量予測手段は、前記減衰量の履歴から機械学習法により減衰量の時系列変化を抽出し、前記将来の減衰量を予測することを特徴とする付記1-5のいずれか1項に記載の無線通信制御装置。
(付記7)
 無線通信機を制御する無線通信制御方法であって、
 減衰量予測手段が他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測し、
 制御手段が前記予測された減衰量に基づいて前記無線通信機を制御する、
ことを特徴とする無線通信制御方法。
(付記8)
 前記制御手段が最新の減衰量と降水閾値とを比較することで降水の有無を判別し、
 降水があると判定されると、前記制御手段が前記減衰量予測手段に前記将来の減衰量を予測させる、
ことを特徴とする付記7に記載の無線通信制御方法。
(付記9)
 前記制御手段が最新の減衰量と前記他の無線通信機との間の距離とに基づいて最新の降水状況を検知し、
 降水があると判定されると、前記制御手段が前記減衰量予測手段に前記将来の減衰量を予測させる、
ことを特徴とする付記7に記載の無線通信制御方法。
(付記10)
 前記減衰量予測手段が、前記予測された減衰量と前記他の無線通信機との間の距離とに基づいて将来の降雨率を予測する、ことを特徴とする付記9に記載の無線通信制御方法。
(付記11)
 位置取得手段が前記無線通信機の地理上の位置情報を取得する位置取得手段を更に有し、
 前記制御手段が、降水がある時または前記他の無線通信機との相対的な位置が変化した時、前記減衰量予測手段により前記将来の減衰量を予測させる、
ことを特徴とする付記8-10のいずれか1項に記載の無線通信制御方法。
(付記12)
 前記減衰量予測手段が、前記減衰量の履歴から機械学習法により減衰量の時系列変化を抽出し前記将来の減衰量を予測する、ことを特徴とする付記7-11のいずれか1項に記載の無線通信制御方法。
(付記13)
 無線通信機とそれを制御する無線通信制御装置とを含む無線通信システムであって、
 他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測手段と、
 前記予測された減衰量に基づいて前記無線通信機を制御する制御手段と、
を有することを特徴とする無線通信システム。
(付記14)
 前記制御手段は、最新の減衰量と降水閾値とを比較することで降水の有無を判別し、降水があると判定されると、前記減衰量予測手段により前記将来の減衰量を予測させることを特徴とする付記13に記載の無線通信システム。
(付記15)
 前記制御手段は、最新の減衰量と前記他の無線通信機との間の距離とに基づいて最新の降水状況を検知し、降水があると判定されると、前記減衰量予測手段により前記将来の減衰量を予測させることを特徴とする付記13に記載の無線通信システム。
(付記16)
 前記減衰量予測手段は、前記予測された減衰量と前記他の無線通信機との間の距離とに基づいて将来の降雨率を予測することを特徴とする付記15に記載の無線通信システム。
(付記17)
 前記無線通信機は地理上の位置情報を取得する位置取得手段を更に有し、
 前記制御手段は、降水がある時または前記他の無線通信機との相対的な位置が変化した時、前記減衰量予測手段により前記将来の減衰量を予測させることを特徴とする付記14-16のいずれか1項に記載の無線通信システム。
(付記18)
 前記減衰量予測手段は、前記減衰量の履歴から機械学習法により減衰量の時系列変化を抽出し、前記将来の減衰量を予測することを特徴とする付記13-17のいずれか1項に記載の無線通信システム。
(付記19)
 前記無線通信機および前記無線通信制御装置がひとつの無線通信装置に設けられていることを特徴とする付記13-18のいずれか1項に記載の無線通信システム。
(付記20)
 通信網を更に有し、前記通信網に前記無線通信制御装置および管理装置が接続されており、
 前記無線通信制御装置が前記予測された減衰量を前記通信網を通して前記管理装置へ送信することを特徴とする付記13-19のいずれか1項に記載の無線通信システム。
(付記21)
 通信網を更に有し、前記通信網に前記無線通信制御装置および管理装置が接続されており、
 前記無線通信制御装置が前記予測された減衰量および/または前記予測された降雨率を前記通信網を通して前記管理装置へ送信することを特徴とする付記16に記載の無線通信システム。
(付記22)
 他の無線通信装置と無線通信可能な無線通信装置であって、
 無線通信を行う無線通信手段と、
 前記他の無線通信装置から当該無線通信装置までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測手段と、
 前記予測された減衰量に基づいて前記無線通信手段を制御する制御手段と、
を有することを特徴とする無線通信装置。
(付記23)
 無線通信機を制御する無線通信制御装置としてコンピュータを機能させるためのプログラムであって、
 他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測機能と、
 前記予測された減衰量に基づいて前記無線通信機を制御する制御機能と、
を前記コンピュータに実現させることを特徴とするプログラム。
 本発明は気象状況により電波強度が減衰する環境における無線通信システムにおける無線通信制御技術に適用可能である。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2014年4月25日に出願された日本出願特願2014-091965を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10、11 無線通信機
20 通信網
30 管理装置
100、100a~100d 無線通信制御装置
101 減衰量取得部
101a 減衰量・距離取得部
102 時系列減衰量格納部
103 減衰量予測部
103a 減衰量・降水量予測部
104 制御部
105 位置情報取得部
106 通信網接続部
300 無線/気象状況監視装置
601 無線部
602、602a 無線通信制御部

Claims (10)

  1. 無線通信機を制御する無線通信制御装置であって、
     他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測手段と、
     前記予測された減衰量に基づいて前記無線通信機を制御する制御手段と、
    を有することを特徴とする無線通信制御装置。
  2.  前記制御手段は、最新の減衰量と降水閾値とを比較することで降水の有無を判別し、降水があると判定されると、前記減衰量予測手段により前記将来の減衰量を予測させることを特徴とする請求項1に記載の無線通信制御装置。
  3.  前記制御手段は、最新の減衰量と前記他の無線通信機との間の距離とに基づいて最新の降水状況を検知し、降水があると判定されると、前記減衰量予測手段により前記将来の減衰量を予測させることを特徴とする請求項1に記載の無線通信制御装置。
  4.  前記減衰量予測手段は、前記予測された減衰量と前記他の無線通信機との間の距離とに基づいて将来の降雨率を予測することを特徴とする請求項3に記載の無線通信制御装置。
  5.  前記無線通信機の地理上の位置情報を取得する位置取得手段を更に有し、
     前記制御手段は、降水がある時または前記他の無線通信機との相対的な位置が変化した時、前記減衰量予測手段により前記将来の減衰量を予測させることを特徴とする請求項2-4のいずれか1項に記載の無線通信制御装置。
  6.  無線通信機を制御する無線通信制御方法であって、
     減衰量予測手段が他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測し、
     制御手段が前記予測された減衰量に基づいて前記無線通信機を制御する、
    ことを特徴とする無線通信制御方法。
  7.  無線通信機とそれを制御する無線通信制御装置とを含む無線通信システムであって、
     他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測手段と、
     前記予測された減衰量に基づいて前記無線通信機を制御する制御手段と、
    を有することを特徴とする無線通信システム。
  8.  通信網を更に有し、前記通信網に前記無線通信制御装置および管理装置が接続されており、
     前記無線通信制御装置が前記予測された減衰量を前記通信網を通して前記管理装置へ送信することを特徴とする請求項7に記載の無線通信システム。
  9.  他の無線通信装置と無線通信可能な無線通信装置であって、
     無線通信を行う無線通信手段と、
     前記他の無線通信装置から当該無線通信装置までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測手段と、
     前記予測された減衰量に基づいて前記無線通信手段を制御する制御手段と、
    を有することを特徴とする無線通信装置。
  10.  無線通信機を制御する無線通信制御装置としてコンピュータを機能させるためのプログラムを記録した記録媒体であって、
     他の無線通信機から前記無線通信機までの電波強度の減衰量の履歴から将来の減衰量を予測する減衰量予測機能と、
     前記予測された減衰量に基づいて前記無線通信機を制御する制御機能と、
    を前記コンピュータに実現させることを特徴とするプログラムを記録した記録媒体。
PCT/JP2015/002082 2014-04-25 2015-04-15 無線通信システムにおける無線通信制御方法および装置、ならびに無線通信装置 WO2015162878A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016514700A JP6627752B2 (ja) 2014-04-25 2015-04-15 無線通信システムにおける無線通信制御方法および装置、ならびに無線通信装置
CN201580022095.XA CN106465191A (zh) 2014-04-25 2015-04-15 无线通信控制系统中的无线通信控制方法和设备以及无线通信设备
RU2016146093A RU2666629C2 (ru) 2014-04-25 2015-04-15 Устройство и способ управления беспроводной связью в системе управления беспроводной связью и устройство беспроводной связи
US15/301,852 US10419958B2 (en) 2014-04-25 2015-04-15 Wireless communication control method and device in wireless communication control system, and wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-091965 2014-04-25
JP2014091965 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015162878A1 true WO2015162878A1 (ja) 2015-10-29

Family

ID=54332057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002082 WO2015162878A1 (ja) 2014-04-25 2015-04-15 無線通信システムにおける無線通信制御方法および装置、ならびに無線通信装置

Country Status (5)

Country Link
US (1) US10419958B2 (ja)
JP (1) JP6627752B2 (ja)
CN (1) CN106465191A (ja)
RU (1) RU2666629C2 (ja)
WO (1) WO2015162878A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216383A (ja) * 2018-06-14 2019-12-19 国立研究開発法人宇宙航空研究開発機構 通信装置、通信方法及びプログラム
JPWO2019116417A1 (ja) * 2017-12-11 2020-12-17 日本電気株式会社 通信品質低下予測システム、方法およびプログラム
WO2023152967A1 (ja) * 2022-02-14 2023-08-17 日本電気株式会社 情報処理システム、情報処理装置、情報処理方法及びプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327377B (zh) * 2018-12-14 2022-08-19 中兴通讯股份有限公司 场强预测方法、装置、设备及存储介质
JP2021180406A (ja) * 2020-05-14 2021-11-18 日本電気株式会社 通信装置、通信システム、通信方法及び通信プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318795A (ja) * 2002-04-18 2003-11-07 Matsushita Electric Ind Co Ltd 無線装置
JP2004354080A (ja) * 2003-05-27 2004-12-16 Nippon Telegr & Teleph Corp <Ntt> 雨量観測装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223086A (ja) * 1995-02-15 1996-08-30 Kokusai Denshin Denwa Co Ltd <Kdd> 回線状況案内機能を有する無線通信システム
CN1136741C (zh) * 1996-11-27 2004-01-28 株式会社日立制作所 移动通信系统发送功率控制方法,移动终端及基地台
JP2000036784A (ja) 1998-07-17 2000-02-02 Nec Eng Ltd 送信電力制御装置
JP2004363679A (ja) 2003-06-02 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> 回線帯域制御装置
RU2368104C2 (ru) * 2004-10-29 2009-09-20 Телефонактиеболагет Лм Эрикссон (Пабл) Распределение ресурсов в сетях связи
JP2007221357A (ja) 2006-02-15 2007-08-30 Ntt Docomo Inc 無線中継装置、無線中継方法
US8385817B2 (en) * 2009-06-12 2013-02-26 Viasat, Inc. Multi-band satellite communication fade mitigation
RU2414723C1 (ru) * 2009-07-31 2011-03-20 Юрий Федорович Кузнецов Способ измерения ослабления радарного излучения облаками и осадками
US9748989B1 (en) * 2012-09-05 2017-08-29 RKF Engineering Solutions, LLC Rain fade mitigation in a satellite communications system
ES2658405T3 (es) 2013-07-16 2018-03-09 Huawei Technologies Co., Ltd. Método y sistema para el control de la potencia de transmisión y dispositivo de transmisión
CN103414674B (zh) 2013-07-18 2016-08-10 西安空间无线电技术研究所 一种mapsk自适应解调系统
JP2015201795A (ja) * 2014-04-09 2015-11-12 株式会社Kddi研究所 経路制御装置、メッシュネットワークシステムおよびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318795A (ja) * 2002-04-18 2003-11-07 Matsushita Electric Ind Co Ltd 無線装置
JP2004354080A (ja) * 2003-05-27 2004-12-16 Nippon Telegr & Teleph Corp <Ntt> 雨量観測装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019116417A1 (ja) * 2017-12-11 2020-12-17 日本電気株式会社 通信品質低下予測システム、方法およびプログラム
US11381331B2 (en) 2017-12-11 2022-07-05 Nec Corporation Communication quality deterioration prediction system, method, and program
JP2019216383A (ja) * 2018-06-14 2019-12-19 国立研究開発法人宇宙航空研究開発機構 通信装置、通信方法及びプログラム
JP7097056B2 (ja) 2018-06-14 2022-07-07 国立研究開発法人宇宙航空研究開発機構 通信装置、通信方法及びプログラム
WO2023152967A1 (ja) * 2022-02-14 2023-08-17 日本電気株式会社 情報処理システム、情報処理装置、情報処理方法及びプログラム

Also Published As

Publication number Publication date
US20170026862A1 (en) 2017-01-26
RU2016146093A (ru) 2018-05-25
JPWO2015162878A1 (ja) 2017-04-13
RU2666629C2 (ru) 2018-09-11
CN106465191A (zh) 2017-02-22
JP6627752B2 (ja) 2020-01-08
RU2016146093A3 (ja) 2018-05-25
US10419958B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2015162878A1 (ja) 無線通信システムにおける無線通信制御方法および装置、ならびに無線通信装置
US10547365B2 (en) Beamforming in a wireless communication system
US10698081B2 (en) Radar detection and/or protection in a wireless communication system operating in a spectrum shared with at least one radar system
EP3198932B1 (en) Triggering pilot transmission for mobility measurements
JP6104398B2 (ja) 移動局および基地局
US10477425B2 (en) Method and apparatus for connectivity adjustment in a wireless communication network
JP2012514209A5 (ja)
US11838993B2 (en) Communication system and method for high-speed low-latency wireless connectivity in mobility application
EP3079325A1 (en) Communication method, device and system
US11737169B2 (en) Communication system and method for high-reliability low-latency wireless connectivity in mobility application
EP4231687A1 (en) Radio wave map update device and communication quality determination device
EP3017623B1 (en) Method and apparatus of switching communications from a first channel to a second channel of higher-frequency
EP3424252B1 (en) Adapting reference signal density
US11610478B2 (en) Communication system and method for controlling cooperation between edge devices arranged in vehicle
US20230239829A1 (en) Enhancing positioning efficiency
EP3016458A1 (en) Apparatus, Mobile Device, Base Station Transceiver, Adaptation Server, Method and Computer Program for providing information related to a predicted channel state
EP4241472A1 (en) Alternative coordinate system for sensor sharing
JP2010226440A (ja) 送信電力制御方法及び無線通信システム
GB2547724A (en) Adapting reference signal density
JP2023182503A (ja) 無線制御装置、無線通信システム、無線制御方法及び無線制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514700

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15301852

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016146093

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15782315

Country of ref document: EP

Kind code of ref document: A1