WO2015162776A1 - 通信システム及び通信装置 - Google Patents

通信システム及び通信装置 Download PDF

Info

Publication number
WO2015162776A1
WO2015162776A1 PCT/JP2014/061683 JP2014061683W WO2015162776A1 WO 2015162776 A1 WO2015162776 A1 WO 2015162776A1 JP 2014061683 W JP2014061683 W JP 2014061683W WO 2015162776 A1 WO2015162776 A1 WO 2015162776A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
communication
packet
bit
cycle
Prior art date
Application number
PCT/JP2014/061683
Other languages
English (en)
French (fr)
Inventor
日下部 進
Original Assignee
Quadrac株式会社
日下部 進
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quadrac株式会社, 日下部 進 filed Critical Quadrac株式会社
Priority to CN201480077081.3A priority Critical patent/CN106105072B/zh
Priority to EP14890031.9A priority patent/EP3136634A4/en
Priority to PCT/JP2014/061683 priority patent/WO2015162776A1/ja
Priority to JP2016514658A priority patent/JP6347527B2/ja
Priority to US15/306,364 priority patent/US10148410B2/en
Publication of WO2015162776A1 publication Critical patent/WO2015162776A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • H04L5/225Arrangements affording multiple use of the transmission path using time-division multiplexing combined with the use of transition coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/493Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems by transition coding, i.e. the time-position or direction of a transition being encoded before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0094Bus

Definitions

  • Non-Patent Document 1 A method is known in which data transmitted from a plurality of communication devices is transmitted through one shared transmission line (see Non-Patent Document 1).
  • FDMA frequency division multiplexing
  • TDMA time division multiplexing
  • CDMA code division multiplexing
  • the conventional multiplexing technique has a problem that it is difficult to start or continue communication when the communication environment deteriorates or the communication distance is increased.
  • a communication system in which one transmission path is shared by a plurality of communication devices, and each of the plurality of communication devices repeats one packet at a cycle of its own communication device until a predetermined condition is satisfied.
  • a communication system comprising: a transmission unit that transmits a signal; and a reception unit that integrates a signal on the transmission path with a period of another communication device until a predetermined condition is satisfied.
  • communication can be started or continued even if the communication environment deteriorates or the communication distance is increased.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a communication system according to a first embodiment. It is a conceptual diagram which shows a mode that the packet repeated with the period T is distinguished and extracted from the noise containing the packet repeated with another period by integrating the signal on a transmission line with the period T.
  • FIG. 1 is a schematic diagram illustrating functions of a communication device according to a first embodiment.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a communication system according to the first embodiment.
  • the communication system 1 according to the first embodiment is a communication system in which one transmission line L is shared by a plurality of communication devices 10 to 40, and each of the plurality of communication devices 10 to 40 is A transmission unit that repeatedly transmits one packet to the transmission line L at a cycle of the communication device (eg, cycle T1 if the communication device 10) until a predetermined condition is satisfied; And a receiving unit that integrates in a cycle of another communication device (for example, at least one cycle of cycles T2, T3, and T4 in the case of the communication device 10) until the condition is satisfied.
  • a cycle of the communication device eg, cycle T1 if the communication device
  • a receiving unit that integrates in a cycle of another communication device (for example, at least one cycle of cycles T2, T3, and T4 in the case of the communication device 10) until the condition is satisfied.
  • each packet transmitted from the plurality of communication apparatuses 10 to 40 can be amplified without any upper limit (amplitude amplification) while individually distinguishing between the packets. Communication can be started or continued even if the distance (distance between communication devices) increases.
  • a communication system in which a communication distance (distance between communication devices) is not fixed for example, communication is started by approaching a ticket gate, and communication is performed even if the ticket gate is separated from the communication device.
  • a station ticket gate system that can be continued that can be continued.
  • a communication network in which the communication environment and the communication distance are likely to change for example, a network in which a number of wireless devices with sensors are arranged in a space to collect data, installed in a city Wireless communication spots
  • a communication network in which the communication environment and the communication distance are likely to change for example, a network in which a number of wireless devices with sensors are arranged in a space to collect data, installed in a city Wireless communication spots
  • the transmission path L is shared by a plurality of communication devices 10-40.
  • the type of the transmission line L is not limited.
  • the transmission line L may be a wireless transmission line or a wired transmission line. Transmission of the transmission line L can be performed using, for example, an optical signal, an electric signal, a sound signal, or the like.
  • Communication devices 10 to 40 The types of communication devices 10 to 40 are not limited. Examples of the communication devices 10 to 40 include NFC (Near Field Communication) communication terminals, sensor network communication terminals, public wireless terminals, mobile phones, smartphones, and the like. Further, the communication method of the plurality of communication devices 10 to 40 is not limited. For example, the plurality of communication devices 10 to 40 may perform communication using a master / slave method or may perform communication using a peer-to-peer method.
  • NFC Near Field Communication
  • Each of the plurality of communication devices 10 to 40 includes a transmission unit and a reception unit.
  • Each of the plurality of communication devices 10 to 40 includes a transmission unit that repeatedly transmits one packet to the transmission line L at a cycle of the own communication device until a predetermined condition is satisfied.
  • the communication device 10 repeatedly transmits one packet P1 to the transmission line L at a cycle T1 until a predetermined condition is satisfied, and the communication device 20 transmits one packet P2 at a cycle T2 until the predetermined condition is satisfied.
  • the communication apparatus 30 repeatedly transmits one packet P3 to the transmission line L at a period T3 until a predetermined condition is satisfied, and the communication apparatus 40 satisfies the predetermined condition with the one packet P4. Until it is repeatedly sent to the transmission line L at a cycle T4.
  • One packet P1, P2, P3, P4 sent from each of the plurality of communication devices 10 to 40 may have the same content or may be different from each other. After the predetermined condition is satisfied, each of the plurality of communication apparatuses 10 to 40 repeats, for example, one packet different from the previously sent one packet at the cycle of the own communication apparatus until the predetermined condition is satisfied. Send to transmission line L.
  • the predetermined condition examples include, for example, that another communication apparatus has correctly received the packet of its own communication apparatus and that the number of repetitions has reached a predetermined number. Whether or not the other communication device has correctly received the packet of the own communication device is determined by, for example, an error detection code (eg, CRC: Cyclic Redundancy Check, parity bit) in the response packet received from the other communication device. be able to.
  • the predetermined condition may be the same among the plurality of communication devices 10 to 40 or may be different.
  • the period refers to a predetermined time interval, and each of the plurality of communication devices 10 to 40 repeats one packet so that the time width from the leading end P to the terminal end Q of the one packet matches this time interval.
  • one packet P1, P2, P3, P4 sent from each of the plurality of communication devices 10 to 40 is repeated in each cycle T1, T2, T3, T4.
  • the time width from the leading end P to the end Q of the packet can be changed by changing the number of bits constituting the packet or the time width of one bit.
  • the method for assigning the period of the own communication device is not limited.
  • the periods T1, T2, T3, and T4 may be assigned in advance to each of the plurality of communication devices 10 to 40, and these may be stored in the storage means provided in each.
  • a plurality of cycles T1, T2, T3, and T4 are stored in advance in storage means included in each of the plurality of communication devices 10 to 40, and each of the plurality of communication devices 10 to 40 is stored.
  • One period may be selected at random from the plurality of periods T1, T2, T3, and T4.
  • one cycle may be selected at random from a plurality of cycles.
  • the period assigned to each of the plurality of communication apparatuses 10 to 40 is preferably a combination in which the least common multiple of these periods is larger. In this way, it is possible to increase the number of integrations while individually distinguishing each packet transmitted from the plurality of communication devices 10 to 40.
  • each of the plurality of communication apparatuses 10 to 40 is assigned a period of period T1, period T2, period T3, and period T4 (T1 ⁇ T2 ⁇ T3 ⁇ T4).
  • Each of the plurality of communication devices 10 to 40 includes a signal on the transmission line L (a signal on the transmission line L is composed of a plurality of symbols. One symbol may be composed of 1 bit, In this embodiment, a case where each of a plurality of symbols constituting a signal on the transmission line L is composed of one bit is taken as an example.)
  • a receiving unit that integrates in a cycle of another communication device (for example, at least one cycle of cycles T2, T3, and T4 in the case of the communication device 10) is provided.
  • the signals on the transmission line L are separated by a time interval having a length equal to the period of the other communication device, and the separated signals are superimposed on each other.
  • the predetermined condition for example, it is possible to correctly receive a packet from another communication device.
  • Whether or not a packet has been correctly received from another communication device can be determined by, for example, an error detection code (eg, CRC: cyclic redundancy check, parity bit) in the packet extracted by integration.
  • CRC cyclic redundancy check, parity bit
  • Each of the plurality of communication devices 10 to 40 only needs to be able to perform integration in at least one cycle of other communication devices.
  • the communication device 10 only needs to be able to integrate at least one of the periods T2, T3, and T4, and the communication device 20 is at least one of the periods T1, T3, and T4.
  • the communication device 30 can integrate with at least one of the cycles T1, T2, and T4, and the communication device 40 has the cycles T1, T2, and T3. It is only necessary that the integration can be performed in at least one of the periods.
  • FIG. 2A to 2F are conceptual diagrams showing how a packet repeated at a period T is integrated with a signal on a transmission line at a period T to be distinguished and extracted from noise including a packet repeated at another period. It is. As shown in FIG. 2A, since there are packets that are repeated at various periods on the transmission line L, packets that are repeated at the period T are repeated at other periods as long as the number of integrations at the period T is small. It cannot be distinguished from the noise (the part shown in gray) that contains the packets that are received. However, as shown in FIG. 2A ⁇ FIG.
  • a packet repeated in the cycle T is amplified (amplitude) as the number of integrations in the cycle T is increased, and eventually, in other cycles, as shown in FIG. 2F.
  • the amplitude becomes larger than the noise (the portion shown in gray) including the repeated packet, and is extracted separately from the noise. Since there is no limit on the number of integrations, a packet repeated in the cycle T can be amplified (amplitude amplification) without an upper limit by increasing the number of integrations.
  • FIG. 3 is a schematic diagram illustrating functions of the communication apparatus according to the first embodiment. As illustrated in FIG. 3, the communication apparatus according to the first embodiment includes a transmission unit 100 and a reception unit 200. Hereinafter, it demonstrates in order.
  • the transmission unit 100 includes an antenna unit 110, a modulation unit 120, a DA conversion unit 130, a repetition unit 140, an encoder 150 unit, an error detection code generation unit 160, and a buffer unit 170.
  • the transmission unit 100 may include an error correction code generation unit in addition to the error detection code generation unit 160.
  • the operation of the transmission unit 100 will be described.
  • the bit string temporarily stored on the buffer unit 170 is output to the error detection code generation unit 160.
  • the error detection code generation unit 160 adds an error detection code to the bit string output from the buffer unit 170 and outputs this to the encoding unit 150.
  • the encoding unit 150 adds a synchronization bit sequence, a packet identification bit sequence, and the like to the bit sequence output from the error detection code generation unit 160, and outputs this to the repetition unit 140 as a single packet.
  • the repeater 140 repeatedly outputs one packet output from the encoder 150 to the DA converter 130.
  • the DA conversion unit 130 converts one packet (digital signal) output from the repetition unit 140 into an analog signal and outputs the analog signal to the modulation unit 120.
  • Modulation section 120 modulates the carrier wave using the analog signal output from DA conversion section 130, and transmits this to transmission path L from antenna section 110.
  • the repeating unit 140 includes a selector S and registers A1 to AN.
  • the selector S is connected to either the encoding unit 150 or the register AN.
  • the number of registers A is assumed to be equal to the number of bits (N, where N is an integer equal to or greater than 1) of a packet transmitted from the communication apparatus.
  • N is an integer equal to or greater than 1
  • the repeater 140 may be realized by hardware or software. Hereinafter, the operation of the repeating unit 140 will be described.
  • the repetition unit 140 resets and initializes the registers A1 to AN.
  • the repetition unit 140 stores N bits constituting one packet output from the encoding unit 150 in the registers A1 to AN, respectively. Specifically, when the first bit constituting one packet is output from the encoding unit 150, the repetition unit 140 outputs this bit to the DA conversion unit 130 and stores it in the register A1.
  • the repetition unit 140 outputs this bit to the DA conversion unit 130 and also stores the first bit stored in the register A1. Are moved to the register A2, and the second bit output from the encoding unit 150 is stored in the register A1.
  • the repetition unit 140 outputs this bit to the DA conversion unit 130 and also stores the first bit stored in the register A2. Are moved to the register A3, the second bit stored in the register A1 is moved to the register A2, and then the third bit output from the encoding unit 150 is stored in the register A1.
  • the repetition unit 140 repeats the above processing until the Nth bit constituting one packet is output from the encoding unit 150.
  • the repetition unit 140 connects the selector S to the register AN after the Nth bit constituting the packet is output from the encoding unit 150, and outputs the bit stored in the register AN to the DA converter 130.
  • repeating section 140 moves each bit stored in registers A1 to A (N-1) to registers A2 to AN, and further stores the bits output to DA converter 130 in resist A1. By repeating the above processing, the repeating unit 140 repeatedly outputs N bits constituting one packet to the DA converter 130.
  • the reception unit 200 includes an antenna unit 210, a demodulation unit 220, an AD conversion unit 230, an integration unit 240, a decoding unit 250, an error detection code check unit 260, a buffer unit 270, and a synchronization unit 280. I have.
  • the receiving unit 200 may include an error correction unit in addition to the error detection code checking unit 260. Hereinafter, the operation of the receiving unit 200 will be described.
  • a signal on the transmission line L received by the antenna unit 210 is input to the demodulation unit 220.
  • the demodulator 220 demodulates the signal output from the antenna unit 210 and outputs the demodulated signal to the AD converter 230.
  • the AD conversion unit 230 converts the signal output from the demodulation unit 220 into a digital signal (that is, a bit string) and outputs the digital signal to the integration unit 240.
  • the integration unit 240 integrates the bit string output from the AD conversion unit 230 and outputs it to the decoding unit 250.
  • the decoding unit 250 attempts to detect a synchronization bit sequence, a packet identification bit sequence, and the like from the bit sequence output from the integration unit 240.
  • the decoding unit 250 extracts one packet from the bit string output from the integration unit 240 using the detection result, and extracts the packet from the error detection code checking unit 260 and the synchronization unit 280. Output.
  • the error detection code checking unit 260 performs error detection on the bit string output from the decoding unit 250 and outputs it to the buffer unit 270.
  • the buffer unit 270 temporarily stores the bit string output from the error detection code checking unit 260.
  • the synchronization unit 280 synchronizes the movement of each unit with the bit string output from the integration unit 240 using the bit string output from the integration unit 240.
  • the integrating unit 240 includes an adding unit C and registers B1 to BN.
  • the adding unit C adds the output of the register BN to the bit (signal) output from the AD conversion unit 230 and outputs the addition result to the decoding unit 250.
  • Each of the registers B1 to BN has a capacity enough to store the addition result.
  • the number of registers B is equal to or greater than the number of bits of a packet output from another communication device. When the number of bits of a packet output from another communication device is known in advance, the same number of registers B1 to BN as the number of bits (N) of a packet output from another communication device can be used. .
  • the number of registers B is set from another communication device.
  • the number of bits of the packet to be output (N) may be increased and dummy bits may be stored in a surplus register (“number of registers B” ⁇ “number of bits constituting the packet”).
  • the number of bits of a packet output from another communication device may be stored in advance in the integration unit 240 or may be input to the integration unit 240 from the outside.
  • Each communication device only needs to include one or more integration units 240, but may include the same number of integration units 240 as the number of other communication devices (three in the first embodiment). In the present embodiment, it is assumed that the number of integrating units 240 is one for the sake of simplification of description.
  • the integration unit 240 may be realized by hardware or software. Hereinafter, the operation of the integration unit 240 will be described.
  • the integrator 240 resets and initializes the registers B1 to BN.
  • the integration unit 240 stores this in the register B1.
  • the integration unit 240 moves the first bit stored in the register B1 to the register B2, and is output from the AD conversion unit 230.
  • the second bit is stored in register B1.
  • the integration unit 240 moves the first bit stored in the register B2 to the register B3, and then stores the first bit in the register B1.
  • the second bit is moved to the register B2, and the third bit output from the AD conversion unit 230 is stored in the register B1.
  • the integration unit 240 After the N + 1th bit is output from the AD conversion unit 230, the integration unit 240 adds the value stored in the register BN to the bit and stores the value in the registers B1 to B (N ⁇ 1). Each value is moved to the registers B2 to BN, and the addition result is stored in the resist B1.
  • the integration unit 240 repeats the above processing to integrate the bit string output from the AD conversion unit 230 (a bit string obtained by AD conversion of the signal on the transmission path) at a cycle of another communication device until a predetermined condition is satisfied. To do.
  • the integrator 240 resets the registers B1 to BN when a predetermined condition is satisfied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

 一の伝送路が複数の通信装置により共有された通信システムであって、前記複数の通信装置の各々は、一のパケットを所定の条件が満たされるまで自通信装置の周期で繰り返し前記伝送路へ送出する送信部と、前記伝送路上の信号を所定の条件が満たされるまで他の通信装置の周期で積分する受信部と、を備える通信システムである。

Description

通信システム及び通信装置
 通信システム及び通信装置に関する。
 複数の通信装置から送信されたデータを1つの共有された伝送路で伝送する方式が知られている(非特許文献1参照)。例えば、周波数分割多重方式(FDMA)、時分割多重方式(TDMA)、符号分割多重方式(CDMA)などはその一例である。
フリー百科事典「ウィキペディア(Wikipedia)」、多重化、[平成26年4月21日検索]、インターネット<URL:http://ja.wikipedia.org/wiki/多重化>
 しかしながら、上記従来の多重化技術では、通信環境が悪化したり通信距離が離れたりなどすると通信を開始したり継続したりなどすることが困難になるという問題があった。
 一の伝送路が複数の通信装置により共有された通信システムであって、前記複数の通信装置の各々は、一のパケットを所定の条件が満たされるまで自通信装置の周期で繰り返し前記伝送路へ送出する送信部と、前記伝送路上の信号を所定の条件が満たされるまで他の通信装置の周期で積分する受信部と、を備えることを特徴とする通信システムである。
 上記通信システムや通信装置によれば、通信環境が悪化したり通信距離が離れたりなどしても通信を開始したり継続したりなどすることができる。
実施形態1に係る通信システムの構成例を示す模式図である。 伝送路上の信号を周期Tで積分していくことにより周期Tで繰り返されるパケットが他の周期で繰り返されるパケットを含んだノイズから区別されて取り出される様子を示す概念図である。 実施例1に係る通信装置の機能を示す模式図である。
[実施形態1に係る通信システム]
 図1は実施形態1に係る通信システムの構成例を示す模式図である。図1に示すように、実施形態1に係る通信システム1は、一の伝送路Lが複数の通信装置10~40により共有された通信システムであって、複数の通信装置10~40の各々は、一のパケットを所定の条件が満たされるまで自通信装置の周期(例:通信装置10であれば周期T1)で繰り返し伝送路Lへ送出する送信部と、伝送路L上の信号を所定の条件が満たされるまで他の通信装置の周期(例:通信装置10であれば周期T2、T3、及びT4のうちの少なくとも1つの周期)で積分する受信部と、を備える通信システムである。
 実施形態1に係る通信システムによれば、複数の通信装置10~40から送出された各パケットを個々に区別しつつ上限なく増幅(振幅増幅)することができるため、通信環境が悪化したり通信距離(通信装置間の距離)が離れたりなどしても通信を開始したり継続したりなどすることができる。
 実施形態1の通信システムによれば、例えば、通信距離(通信装置間の距離)が固定されていない通信システム(例:改札機に近づくことによって通信が開始され、改札機から離れても通信を継続することができる駅の改札システム)を実現することができる。また、実施形態1の通信システムによれば、例えば、通信環境や通信距離が変化しやすい通信ネットワーク(例:多数のセンサ付き無線機を空間に配置してデータを収集するネットワーク、街中に設置された無線通信スポットなど)を安定して運営することができる。
 以下、詳細に説明する。
(伝送路L)
 伝送路Lは複数の通信装置10~40により共有される。伝送路Lの種類は限定されない。伝送路Lは、無線伝送路であってもよいし、有線伝送路であってもよい。伝送路Lの伝送は、例えば、光信号、電気信号、音信号などを用いて行うことができる。
(通信装置10~40)
 通信装置10~40の種類は限定されない。通信装置10~40の一例としては、例えば、NFC(Near Field Communication)通信端末、センサーネットワーク通信端末、公衆無線端末、携帯電話、スマートフォンなどを挙げることができる。また、複数の通信装置10~40の通信方式は限定されない。例えば、複数の通信装置10~40は、マスタースレーブ方式で通信を行ってもよいし、ピアツーピア方式で通信を行ってもよい。
 複数の通信装置10~40の各々は、送信部と、受信部と、を備えている。
(送信部)
 複数の通信装置10~40の各々は、一のパケットを所定の条件が満たされるまで自通信装置の周期で繰り返し伝送路Lへ送出する送信部を備えている。本実施形態では、通信装置10は一のパケットP1を所定の条件が満たされるまで周期T1で繰り返し伝送路Lへ送出し、通信装置20は一のパケットP2を所定の条件が満たされるまで周期T2で繰り返し伝送路Lへ送出し、通信装置30は一のパケットP3を所定の条件が満たされるまで周期T3で繰り返し伝送路Lへ送出し、通信装置40は一のパケットP4を所定の条件が満たされるまで周期T4で繰り返し伝送路Lへ送出するものとする。複数の通信装置10~40の各々から送出される一のパケットP1、P2、P3、P4は、互いに同じ内容であってもよいし異なっていてもよい。複数の通信装置10~40の各々は、所定の条件が満たされた後、例えば、先に送出した一のパケットとは異なる一のパケットを所定の条件が満たされるまで自通信装置の周期で繰り返し伝送路Lへ送出する。
 所定の条件としては、例えば、他の通信装置が自通信装置のパケットを正しく受信できたことや繰り返しの回数が所定の回数に達したことなどを一例として挙げることができる。他の通信装置が自通信装置のパケットを正しく受信できたかどうかは、例えば、他の通信装置から受信した応答パケット中の誤り検出符号(例:CRC:Cyclic Redundancy Check、パリティビット)などで判断することができる。所定の条件は、複数の通信装置10~40間で同じであってもよいし異なっていてもよい。
 周期とは所定の時間間隔をいい、複数の通信装置10~40の各々は、一のパケットの先端Pから終端Qまでの時間幅がこの時間間隔に一致するよう一のパケットを繰り返し伝送路Lへ送出する。これにより、伝送路Lでは、複数の通信装置10~40の各々から送出された一のパケットP1、P2、P3、P4がそれぞれの周期T1、T2、T3、T4で繰り返される。なお、パケットの先端Pから終端Qまでの時間幅は、パケットを構成するビットの数や1ビットの時間幅を変えることなどにより変えることができる。
 自通信装置の周期の割り当て方法は限定されない。例えば、複数の通信装置10~40の各々に予め周期T1、T2、T3、T4を割り当てておき、これらを各々が備える記憶手段に記憶しておいてもよい。また、例えば、複数の通信装置10~40の各々が備える記憶手段に複数の周期T1、T2、T3、T4を予め記憶させておき、複数の通信装置10~40の各々がこれらの記憶されている複数の周期T1、T2、T3、T4の中からランダムに一の周期を選択することにしてもよい。通信の確立や継続に失敗したと判断した場合は、再度、複数の周期の中からランダムに一の周期を選択するようにしてもよい。複数の通信装置10~40の各々に割り当てられる周期は、これらの周期の最小公倍数がより大きくなる組み合わせであることが好ましい。このようにすれば、複数の通信装置10~40から送出された各パケットを個々に区別しつつ積分回数を増やしていくことができる。なお、本実施形態では、複数の通信装置10~40の各々に、それぞれ、周期T1、周期T2、周期T3、及び周期T4(T1<T2<T3<T4)の周期が割り当てられるものとする。
(受信部)
 複数の通信装置10~40の各々は、伝送路L上の信号(伝送路L上の信号は複数のシンボルにより構成される。1つのシンボルは1ビットで構成されていてもよいし、複数のビットで構成されていてもよい。本実施形態では、伝送路L上の信号を構成する複数のシンボルの各々が1つのビットで構成されている場合を一例として採り上げている。)を所定の条件が満たされるまで他の通信装置の周期(例:通信装置10であれば周期T2、T3、及びT4のうちの少なくとも1つの周期)で積分する受信部を備えている。これにより、伝送路L上の信号が他の通信装置の周期に等しい長さの時間間隔で区切られ、区切られた信号が互いに重ね合わされる。例えば、伝送路L上の信号が「11(-1)1(-1)1・・・」(1ビットの時間幅=1ms)であって他の通信装置の周期が「2ms」であるとすると、3回の積分により、「11」、「(-1)1」、「(-1)1」・・・が互いに重ね合わせられ、「(-1)3」という積分結果が得られる。また、例えば、伝送路L上の信号が「3(-1)(-1)2(-4)1・・・」(1ビットの時間幅=2ms)であって他の通信装置の周期が「1.9ms」であるとすると、3回の積分により、「3(-1)」、「(-1)2」、「(-4)1」・・・が互いに重ね合わせられ、「(-2)2」という積分結果が得られる。
 所定の条件としては、例えば、他の通信装置からパケットを正しく受信できたことなどを一例として挙げることができる。他の通信装置からパケットを正しく受信できたかどうかは、例えば、積分することによって取り出されたパケット中の誤り検出符号(例:CRC:Cyclic Redundancy Check、パリティビット)などで判断することができる。
 伝送路L上の信号を他の通信装置の周期で積分することにより、他の通信装置から送出されているパケットを個々に区別して増幅(振幅増幅)することが可能となる。一の周期(例:T2)で繰り返されているパケットは、一の周期(例:T2)での積分過程において規則的に出現するため、一の周期(例:T2)で積分をすると増幅(振幅増幅)されるが、一の周期(例:T2)と異なる周期(例:T1、T3、T4)で繰り返されているパケットは、一の周期(例:T2)で繰り返されるという規則性を有しておらず、一の周期(例:T2)での積分過程においてランダムに出現するため、一の周期(例:T2)で積分をしても増幅(振幅増幅)されないためである。
 複数の通信装置10~40の各々は、他の通信装置の周期の少なくとも1つで積分を行うことができればよい。例えば、通信装置10であれば周期T2、T3、及びT4のうちの少なくとも1つの周期で積分することができればよく、通信装置20であれば周期T1、T3、及びT4のうちの少なくとも1つの周期で積分することができればよく、通信装置30であれば周期T1、T2、及びT4のうちの少なくとも1つの周期で積分することができればよく、通信装置40であれば周期T1、T2、及びT3のうちの少なくとも1つの周期で積分することができればよい。
[周期Tでの積分]
 図2A~図2Fは、伝送路上の信号を周期Tで積分していくことにより周期Tで繰り返されるパケットが他の周期で繰り返されるパケットを含んだノイズから区別されて取り出される様子を示す概念図である。図2Aに示すように、伝送路L上には様々な周期で繰り返されるパケットが存在しているため、周期Tでの積分回数が少ないうちは、周期Tで繰り返されるパケットを他の周期で繰り返されるパケットを含んだノイズ(灰色で示した部分)から区別して取り出すことができない。しかしながら、図2A→図2Eに示すように、周期Tで繰り返されるパケットは、周期Tでの積分回数を増やしていくと増幅(振幅)され、やがて、図2Fに示すように、他の周期で繰り返されるパケットを含んだノイズ(灰色で示した部分)より振幅が大きくなり当該ノイズから区別して取り出される。積分回数に制限はないため、周期Tで繰り返されるパケットは、積分回数を増やすことにより上限なく増幅(振幅増幅)することができる。
 図3は、実施例1に係る通信装置の機能を示す模式図である。図3に示すように、実施例1に係る通信装置は、送信部100と、受信部200と、を備えている。以下、順に説明する。
[送信部100]
 送信部100は、アンテナ部110と、変調部120と、DA変換部130と、繰り返し部140と、エンコーダ150部と、誤り検出符号生成部160と、バッファ部170と、を備えている。送信部100は、誤り検出符号生成部160に加えて誤り訂正符号生成部を備えていてもよい。以下、送信部100の動作を説明する。
 まず、バッファ部170上に一時的に記憶されているビット列が誤り検出符号生成部160に出力される。誤り検出符号生成部160はバッファ部170から出力されたビット列に誤り検出符号を付加してこれをエンコード部150に出力する。エンコード部150は誤り検出符号生成部160から出力されたビット列に同期用のビット列やパケット識別用のビット列などを付加してこれを一のパケットとして繰り返し部140に出力する。繰り返し部140はエンコード部150から出力された一のパケットをDA変換部130に繰り返し出力する。DA変換部130は繰り返し部140から出力された一のパケット(デジタル信号)をアナログ信号に変換し変調部120に出力する。変調部120は、DA変換部130から出力されたアナログ信号を用いて搬送波を変調し、これをアンテナ部110から伝送路Lに送出する。
(繰り返し部140)
 繰り返し部140は、セレクタSと、レジスタA1~ANと、を有している。セレクタSは、エンコード部150かレジスタANかのいずれかに接続される。レジスタAの数は自通信装置から送出されるパケットのビット数(N個。Nは1以上の整数)に等しいものとする。自通信装置から送出されるパケットのビット数は、例えば、繰り返し部140において予め記憶させておいてもよいし、外部から繰り返し部140に入力してもよい。繰り返し部140はハードウェアで実現されてもよいしソフトウェアで実現されてもよい。以下、繰り返し部140の動作を説明する。
 まず、繰り返し部140はレジスタA1~ANをリセットして初期化する。次いで、繰り返し部140は、セレクタSをエンコード部150に接続した後、エンコード部150から出力される一のパケットを構成するN個のビットをレジスタA1~レジスタANにそれぞれ格納する。具体的に説明すると、繰り返し部140は、一のパケットを構成する1つ目のビットがエンコード部150から出力されると、このビットをDA変換部130に出力するとともにレジスタA1に格納する。次いで、繰り返し部140は、一のパケットを構成する2つ目のビットがエンコード部150から出力されると、このビットをDA変換部130に出力するとともに、レジスタA1に格納している1つ目のビットをレジスタA2に移動させ、エンコード部150から出力された2つ目のビットをレジスタA1に格納する。次いで、繰り返し部140は、一のパケットを構成する3つ目のビットがエンコード部150から出力されると、このビットをDA変換部130に出力するとともに、レジスタA2に格納している1つ目のビットをレジスタA3に移動させ、さらにレジスタA1に格納している2つ目のビットをレジスタA2に移動させ、その後、エンコード部150から出力された3つ目のビットをレジスタA1に格納する。繰り返し部140は、以上の処理をエンコード部150から一のパケットを構成するN個目のビットが出力されるまで繰り返す。繰り返し部140は、エンコード部150からパケットを構成するN個目のビットが出力された後にセレクタSをレジスタANに接続し、レジスタANに格納されているビットをDA変換器130に出力する。そして、繰り返し部140は、レジスタA1~A(N-1)に格納されている各ビットをレジスタA2~ANにそれぞれ移動させ、さらにDA変換器130に出力したビットをレジストA1に格納する。以上の処理を繰り返すことにより、繰り返し部140は、一のパケットを構成するN個のビットをDA変換器130に繰り返し出力する。
[受信部200]
 受信部200は、アンテナ部210と、復調部220と、AD変換部230と、積分部240と、デコード部250と、誤り検出符号検査部260と、バッファ部270と、同期部280と、を備えている。受信部200は、誤り検出符号検査部260に加えて誤り訂正部を備えていてもよい。以下、受信部200の動作を説明する。
 まず、アンテナ部210で受信された伝送路L上の信号が復調部220に入力される。復調部220は、アンテナ部210から出力された信号を復調し、AD変換部230に出力する。AD変換部230は、復調部220から出力された信号をデジタル信号(すなわちビット列)に変換して積分部240に出力する。積分部240はAD変換部230から出力されたビット列を積分しつつデコード部250に出力する。デコード部250は積分部240から出力されたビット列から同期用のビット列やパケット識別用のビット列などの検出を試みる。デコード部250は、これらのビット列が検出できた場合、その検出結果を利用して積分部240から出力されたビット列から一のパケットを取り出し、これを誤り検出符号検査部260と同期部280とに出力する。誤り検出符号検査部260はデコード部250から出力されたビット列に対して誤り検出を行いバッファ部270に出力する。バッファ部270は誤り検出符号検査部260から出力されたビット列を一時的に記憶する。同期部280は積分部240から出力されたビット列を用いて各部の動きを積分部240から出力されたビット列に同期させる。
(積分部240)
 積分部240は、加算部Cと、レジスタB1~BNと、を有している。加算部Cは、AD変換部230から出力されるビット(信号)にレジスタBNの出力を加算し、加算結果をデコード部250に出力する。レジスタB1~BNは、それぞれ加算結果を格納できるだけの容量を有している。レジスタBの数は他の通信装置から出力されるパケットのビット数以上とされる。他の通信装置から出力されるパケットのビット数が予め明らかである場合は、他の通信装置から出力されるパケットのビット数(N個)と同じ数のレジスタB1~BNを使用することができる。また、他の通信装置から出力されるパケットのビット数が予め明らかでない場合や様々なビット数から構成されるパケットに対応できるようにする場合などにおいては、レジスタBの数を他の通信装置から出力されるパケットのビット数(N個)よりも多くして、余ったレジスタ(「レジスタBの数」-「パケットを構成するビット数」)にダミービットを格納することにしてもよい。他の通信装置から出力されるパケットのビット数は、例えば、積分部240において予め記憶させておいてもよいし、外部から積分部240に入力してもよい。各通信装置は、1つ以上の積分部240を備えていればよいが、他の通信装置の数(実施形態1であれば3つ)と同じ数の積分部240を備えていてもよい。本実施例では、説明の簡略化のため、積分部240の数が1つであるものとする。積分部240はハードウェアで実現されてもよいしソフトウェアで実現されてもよい。以下、積分部240の動作を説明する。
 まず、積分部240はレジスタB1~BNをリセットして初期化する。次いで、積分部240は、AD変換部230から1つ目のビットが出力されると、これをレジスタB1に格納する。次いで、積分部240は、AD変換部230から2つ目のビットが出力されると、レジスタB1に格納している1つ目のビットをレジスタB2に移動させ、AD変換部230から出力された2つ目のビットをレジスタB1に格納する。次いで、積分部240は、AD変換部230から3つ目のビットが出力されると、レジスタB2に格納している1つ目のビットをレジスタB3に移動させた後、レジスタB1に格納している2つ目のビットをレジスタB2に移動させ、AD変換部230から出力された3つ目のビットをレジスタB1に格納する。積分部240は、AD変換部230からN+1個目のビットが出力された後は、これにレジスタBNに格納されている値を加算するとともに、レジスタB1~B(N-1)に格納されている各値をレジスタB2~BNにそれぞれ移動させ、加算結果をレジストB1に格納する。積分部240は、以上の処理を繰り返すことにより、所定の条件が満たされるまでAD変換部230から出力されるビット列(伝送路上の信号がAD変換されたビット列)を他の通信装置の周期で積分する。積分部240は、所定の条件が満たされた場合、レジスタB1~BNをリセットする。
 以上、実施形態及び実施例について説明したが、これらの説明は一例に関するものであり、特許請求の範囲に記載された構成は、これらの説明によって何ら限定されるものではない。
1   通信システム
10  通信装置
20  通信装置
30  通信装置
40  通信装置
100 送信部
110 アンテナ部
120 変調部
130 DA変換部
140 繰り返し部
150 エンコード部
160 誤り検出部
170 バッファ部
200 受信部
210 アンテナ部
220 復調部
230 AD変換部
240 積分部
250 デコード部
260 誤り検出部
270 バッファ部
A1~AN レジスタ
B1~BN レジスタ
C   加算部
L   伝送路
P   一のパケットの先端
Q   一のパケットの終端
S   セレクタ
T   周期
 

Claims (6)

  1.  一の伝送路が複数の通信装置により共有された通信システムであって、
     前記複数の通信装置の各々は、
     一のパケットを所定の条件が満たされるまで自通信装置の周期で繰り返し前記伝送路へ送出する送信部と、
     前記伝送路上の信号を所定の条件が満たされるまで他の通信装置の周期で積分する受信部と、
     を備えることを特徴とする通信システム。
  2.  前記伝送路上の信号は複数のシンボルにより構成され、前記複数のシンボルの各々は1つのビットにより構成されていることを特徴とする請求項1に記載の通信システム。
  3.  前記伝送路上の信号は複数のシンボルにより構成され、前記複数のシンボルの各々は複数のビットにより構成されていることを特徴とする請求項1に記載の通信システム。
  4.  一の伝送路を他の通信装置と共有する通信装置であって、
     一のパケットを所定の条件が満たされるまで自通信装置の周期で繰り返し前記伝送路へ送出する送信部と、
     前記伝送路上の信号を所定の条件が満たされるまで他の通信装置の周期で積分する受信部と、
     を備えることを特徴とする通信装置。
  5.  前記伝送路上の信号は複数のシンボルにより構成され、前記複数のシンボルの各々は1つのビットにより構成されていることを特徴とする請求項4に記載の通信装置。
  6.  前記伝送路上の信号は複数のシンボルにより構成され、前記複数のシンボルの各々は複数のビットにより構成されていることを特徴とする請求項4に記載の通信装置。
     
PCT/JP2014/061683 2014-04-25 2014-04-25 通信システム及び通信装置 WO2015162776A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480077081.3A CN106105072B (zh) 2014-04-25 2014-04-25 通信系统及通信装置
EP14890031.9A EP3136634A4 (en) 2014-04-25 2014-04-25 Communication system and communication equipment
PCT/JP2014/061683 WO2015162776A1 (ja) 2014-04-25 2014-04-25 通信システム及び通信装置
JP2016514658A JP6347527B2 (ja) 2014-04-25 2014-04-25 通信システム及び通信装置
US15/306,364 US10148410B2 (en) 2014-04-25 2014-04-25 Communication system and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061683 WO2015162776A1 (ja) 2014-04-25 2014-04-25 通信システム及び通信装置

Publications (1)

Publication Number Publication Date
WO2015162776A1 true WO2015162776A1 (ja) 2015-10-29

Family

ID=54331963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061683 WO2015162776A1 (ja) 2014-04-25 2014-04-25 通信システム及び通信装置

Country Status (5)

Country Link
US (1) US10148410B2 (ja)
EP (1) EP3136634A4 (ja)
JP (1) JP6347527B2 (ja)
CN (1) CN106105072B (ja)
WO (1) WO2015162776A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424536A (en) * 1987-07-20 1989-01-26 Yamatake Honeywell Co Ltd Multiplex radio transmitting method
EP2490340A1 (en) * 2009-10-16 2012-08-22 Quadrac Co., Ltd. Wireless communication system, transmitter apparatus, receiver apparatus, receiving method, and transmitting method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844952A (en) * 1993-05-19 1998-12-01 Ntt Mobile Communications Network Inc. Time diversity receiver
KR100735406B1 (ko) * 2000-06-23 2007-07-04 삼성전자주식회사 부호분할 다중접속 시스템의 핸드오프 단말기의 순방향링크 데이터 서비스 장치 및 방법
KR100434459B1 (ko) * 2000-06-27 2004-06-05 삼성전자주식회사 이동통신 시스템에서 패킷의 전송 제어방법 및 장치
US7210077B2 (en) * 2004-01-29 2007-04-24 Hewlett-Packard Development Company, L.P. System and method for configuring a solid-state storage device with error correction coding
US7512077B2 (en) * 2005-09-01 2009-03-31 Network Equipment Technologies, Inc. Compensation for independent clocks in relayed communication over packet-based networks
US7894490B2 (en) * 2005-12-07 2011-02-22 Nippon Telegraph And Telephone Corporation Signal separating circuit, signal separating method, signal multiplexing circuit and signal multiplexing method
JP4947353B2 (ja) * 2006-12-26 2012-06-06 ソニー株式会社 信号処理装置および信号処理方法、並びにプログラム
EP2000810B1 (en) * 2007-06-07 2013-09-04 Mitsubishi Electric Information Technology Centre Europe B.V. Determination of sine wave period
US8751907B2 (en) * 2010-09-14 2014-06-10 King Saud University Joint encoding and decoding methods for improving the error rate performance
US8937994B2 (en) * 2012-06-25 2015-01-20 Rambus Inc. Partial response decision feedback equalizer with selection circuitry having hold state
US9036764B1 (en) * 2012-12-07 2015-05-19 Rambus Inc. Clock recovery circuit
US8923445B1 (en) * 2013-08-29 2014-12-30 L-3 Communications Corp. Complex symbol de-mapping using sectoring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424536A (en) * 1987-07-20 1989-01-26 Yamatake Honeywell Co Ltd Multiplex radio transmitting method
EP2490340A1 (en) * 2009-10-16 2012-08-22 Quadrac Co., Ltd. Wireless communication system, transmitter apparatus, receiver apparatus, receiving method, and transmitting method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136634A4 *

Also Published As

Publication number Publication date
JP6347527B2 (ja) 2018-06-27
CN106105072B (zh) 2018-11-02
CN106105072A (zh) 2016-11-09
EP3136634A4 (en) 2017-12-06
JPWO2015162776A1 (ja) 2017-04-13
EP3136634A1 (en) 2017-03-01
US20170048056A1 (en) 2017-02-16
US10148410B2 (en) 2018-12-04

Similar Documents

Publication Publication Date Title
US11070247B2 (en) Optimized hopping patterns for different sensor nodes and variable data lengths on the basis of the telegram splitting transmission method
JP2016519527A5 (ja)
US20100081466A1 (en) Wireless Communication System
JP6462985B2 (ja) ネットワーク圧縮転送方式を用いる協調通信システム、送信機、中継機及び受信機
US11824579B2 (en) Multiple chirp data alignment with early message rejection for chirp spread spectrum
KR102704811B1 (ko) 다채널 전송 수신을 위한 1-채널 수신기의 효율적인 사용
US11728840B2 (en) Single chirp data alignment with early message rejection for chirp spread spectrum
JP2013536641A5 (ja)
US11736142B2 (en) Single chirp data alignment for chirp spread spectrum
WO2016030571A1 (en) Wirelessly determining an orientation of a device
KR102370904B1 (ko) 초 저전력 디코더 및 디코딩 방법
JP2013123087A (ja) 情報処理装置、情報処理方法、及びプログラム
JP6347527B2 (ja) 通信システム及び通信装置
JP6270222B2 (ja) 無線受信機と受信信号処理方法
WO2010101330A9 (ko) 자기장 통신 네트워크를 위한 무선 통신 방법 및 코디네이터의 복조 장치
MX2017008967A (es) Aparato de transmision y aparato de recepcion y metodo de procesamiento por señal de los mismos.
US8798096B2 (en) Method for configuring preamble for communication system, preambler, and apparatus for generating packet using the same
JP4739287B2 (ja) 盗聴検出器
JP5474875B2 (ja) 無線通信システム
JP5611896B2 (ja) 無線通信システムおよびダイバーシチ受信装置
JP5466432B2 (ja) フレーム同期装置
JP4260845B2 (ja) デジタル通信システムの監視情報伝送方式
JP5809650B2 (ja) 無線通信システム及び無線通信方法
US20140241337A1 (en) Method and apparatus for generation of balanced weight preamble sequences
JP6537321B2 (ja) 送信装置及び受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514658

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014890031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014890031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15306364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE