WO2015162174A1 - Pneumatique pour véhicule industriel lourd - Google Patents

Pneumatique pour véhicule industriel lourd Download PDF

Info

Publication number
WO2015162174A1
WO2015162174A1 PCT/EP2015/058712 EP2015058712W WO2015162174A1 WO 2015162174 A1 WO2015162174 A1 WO 2015162174A1 EP 2015058712 W EP2015058712 W EP 2015058712W WO 2015162174 A1 WO2015162174 A1 WO 2015162174A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
protective
working
equal
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2015/058712
Other languages
English (en)
French (fr)
Inventor
Emmanuel Clement
Alain Domingo
Olivier Sejalon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Compagnie Generale des Etablissements Michelin SCA filed Critical Michelin Recherche et Technique SA Switzerland
Priority to US15/304,933 priority Critical patent/US10940719B2/en
Priority to JP2016564237A priority patent/JP2017513769A/ja
Priority to EP15720642.6A priority patent/EP3134279B1/fr
Priority to CN201580021141.4A priority patent/CN106232377B/zh
Publication of WO2015162174A1 publication Critical patent/WO2015162174A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0613Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the rope configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • B60C2009/0085Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • B60C2009/0092Twist structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2048Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by special physical properties of the belt plies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2077Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2083Density in width direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/209Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2096Twist structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • B60C2200/065Tyres specially adapted for particular applications for heavy duty vehicles for construction vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/14Tyres specially adapted for particular applications for off-road use
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/208Enabling filler penetration

Definitions

  • the invention relates to a tire, especially for civil engineering vehicles.
  • radial carcass reinforcement comprising a tread, two inextensible beads, two flanks connecting the beads to the tread and a crown reinforcement. disposed circumferentially between the carcass reinforcement and the tread.
  • This crown reinforcement comprises several layers of rubber, possibly reinforced by reinforcing elements such as metal cables.
  • the crown reinforcement comprises at least two superimposed layers, called working plies, whose reinforcing ropes are disposed substantially parallel to each other inside a ply, but crossed with a ply of plywood. other, that is to say inclined, symmetrically or otherwise, with respect to the median circumferential plane, an angle which is generally between 15 ° and 40 ° depending on the type of tire considered.
  • the crown reinforcement also comprises one or more so-called protective plies responsible for protecting the rest of the crown reinforcement from external aggressions, in particular perforations.
  • the crown reinforcement may also comprise other plies, for example so-called hooping plies comprising cables oriented substantially in the circumferential direction (also called zero degree plies), which they be radially external or internal with respect to the working plies.
  • hooping plies comprising cables oriented substantially in the circumferential direction (also called zero degree plies), which they be radially external or internal with respect to the working plies.
  • the invention therefore aims a tire to maximize the use of the tread.
  • the subject of the invention is a tire comprising a tread and a crown reinforcement arranged radially inside the tread, the crown reinforcement comprising:
  • a protective reinforcement comprising at least one protective ply having a breaking force of greater than or equal to 1300 daN.crm -1 , the protective ply comprising reinforcing elements, referred to as protection elements, each reinforcing protection element having a force at break greater than or equal to
  • a working armature arranged radially inside the protective armature, comprising at least one working ply comprising reinforcing elements, said working elements, each work reinforcing element comprising a working cable comprising at least one strand comprising at least one inner layer of yarns and an outer layer of yarns wound helically around the inner layer, the outer yarn layer being unsaturated.
  • the protective ply of the tire according to the invention has a particularly high resistance to aggression. Indeed, the combination of a high breaking force of the sheet and a breaking force of each high cable ensures maximum endurance of the protective layer. Contrary to a low-breaking-force ply for which a too high local stress could not be absorbed by the protective ply, the protective ply of the tire according to the invention has a breaking force sufficient to take up without risk of rupture. most efforts imposed by a rough surface.
  • the cables of the sheet of protection of the tire according to the invention also have an individual breaking force sufficient to absorb the forces imposed by a rough coating.
  • the unsaturation of the outer layer of the strands of the cables of the working ply makes it possible to obtain highly penetrable cables by the eraser.
  • the gum is penetrated as much as possible in all the spaces between the threads of the outer layer. Indeed, if this penetration is insufficient, too many empty channels or capillaries are formed along the cable, and the corrosive agents likely to penetrate the tire following the aggressions, walk along these channels and reduce the duration of life of the cable and therefore that of the working plies.
  • the total use of the tread therefore limits or even eliminates the financial loss related to the non-use of a portion of the tread due to premature degradation of the tread of summit.
  • the fracture force measurements denoted Fr (maximum load in N) are made in traction according to the ISO 6892-1 standard of October 2009 on reinforcing elements extracted from tires, preferably substantially new, comprising tire rubber.
  • the breaking strength of the ply denoted by Fm, is obtained by dividing the breaking force Fr by the laying pitch. It is recalled that the pitch is the distance axis to axis between two adjacent reinforcing elements.
  • an unsaturated layer of son is such that there is sufficient space in this layer to add at least one (X + 1) th thread of the same diameter as the X son of the layer, several son can then be in contact with each other. Conversely, this layer is said to be saturated if there is not enough space in this layer to add at least one (X + 1) th thread of the same diameter as the N son of the layer.
  • any range of values designated by the expression “between a and b” represents the range of values from more than a to less than b (that is, terminals a and b excluded).
  • any range of values designated by the expression “from a to b” means the range of values from the terminal "a" to the terminal "b” that is to say including the strict limits " a "and” b ".
  • each protective and / or working reinforcement element is a wire element.
  • Wire element means any elongate element of great length relative to its cross section, whatever the shape of the latter, for example circular, oblong, rectangular or square, or even flat, this wire element can be rectilinear as non-rectilinear , for example twisted, or corrugated.
  • the protective reinforcement and / or work elements are metallic.
  • metal is meant by definition a reinforcing element consisting, in mass, predominantly (that is to say for more than 50% of these son) or integrally (for 100% son) of a metallic material, by example of steel.
  • carbon steel When carbon steel is used, its carbon content (% by weight of steel) is preferably between 0.5% and 0.9%. It is preferable to use a steel cord type steel with normal resistance (called “NT” for “Normal Tensile”), high resistance (called “HT” for “High Tensile”) or very high resistance (called SHT for “Super” High Tensile) whose tensile strength (Rm) is preferably greater than 2500 MPa, more preferably greater than 3000 MPa and even more preferably 3500 MPa (measured in traction according to the ISO 6892-1 standard of 2009.
  • NT normal resistance
  • HT high resistance
  • SHT very high resistance
  • the tire comprises a carcass reinforcement arranged radially inside the crown reinforcement and anchored in two beads, a flank connecting each bead to the tread.
  • the protective armature is interposed radially between the tread and the armature work.
  • the tire comprises a crown surmounted by the tread, two flanks, two beads, each flank connecting each bead at the top, a carcass reinforcement anchored in each of the beads and extending in the flanks into the flange. Mountain peak.
  • the carcass reinforcement is arranged radially inside the crown reinforcement.
  • the carcass reinforcement comprises at least one carcass ply comprising carcass reinforcing elements, the carcass reinforcement elements making an angle greater than or equal to 65 °, preferably to 80 ° and more. preferably ranging from 80 ° to 90 ° with respect to the circumferential direction of the tire.
  • the tire has a WRU-type dimension in which U ⁇ 35, preferably U ⁇ 49 and more preferably U ⁇ 57.
  • the protective reinforcement comprises two protective plies, each protective ply having a breaking force greater than or equal to 1300 daN.cm -1 , each protective reinforcing element of each protective ply having a force at break greater than or equal to 3000 N.
  • the protection of the working plies and the endurance of the tire in general are further improved.
  • the breaking force of each protective ply is greater than or equal to 1400 daN.cm -1 , preferably 1500 daN.cm -1 and more preferably 1600 daN.cm -1 .
  • the breaking force of each protective reinforcement element is greater than or equal to 3500 N, preferably 4500 N and more preferably 5500 N.
  • the laying pitch of the protective reinforcing elements ranges from 1.2 to 6.5 mm, preferably from 2.5 to 5.0 mm, and more preferably from 3.5 to 4.5 mm. .
  • a step of laying too large would lead to the recovery efforts by a limited number of reinforcing elements and a risk of rupture of these reinforcing elements step by step.
  • a step of installation too small would lead to a heavy tire, increase the industrial cost of the tire and not necessarily to make it more enduring.
  • the reinforcing elements of the protective ply or plies form an angle of at least 10 °, preferably ranging from 10 ° to 35 ° and more preferably from 15 ° to 35 ° with the circumferential direction. of the tire.
  • each protective reinforcement element comprises a protection cable comprising at least one strand comprising at least one inner layer of wires and an outer layer of wires wound helically around the inner layer, the outer layer being unsaturated.
  • the desaturation of the outer layer of the strand (s) of the protection cable makes it possible to obtain highly penetrable cables with the eraser. Thanks to the penetration of the rubber, it avoids the formation of too many channels or empty capillaries along the cable, and the risk of penetration of corrosive agents in the tire following the aggressions, their path along these channels and the reduction the life of the cable and therefore that of the protection plies.
  • each protective reinforcement element comprises a protection cable of (K + L) x (M + P) structure comprising:
  • an outer layer of the cable consisting of L outer strands wound helically around the inner layer of the cable
  • each inner and outer strand comprising:
  • an outer layer of the strand consisting of N external wires wound helically around the inner layer of the strand.
  • K> 1 and / or M> 1 are preferentially preferred.
  • the cable is of the type "HE" that is to say with high elasticity .
  • the cables therefore deform easily regardless of the coating, especially on rough terrain.
  • the outer layer of the cable is unsaturated.
  • an unsaturated layer of strands is such that there is sufficient space in this layer to add at least one (L + 1) th strand of the same diameter as the L strands of the layer, several strands can then be in contact with each other. Conversely, this layer is said to be saturated if there is not enough space in this layer to add at least one (L + 1) th strand of the same diameter as the L strands of the layer.
  • each protective reinforcement element comprises a protection cable of structure K x (M + P) comprising a single layer consisting of K strands, each strand comprising:
  • an outer layer of the strand consisting of N external wires wound helically around the inner layer of the strand.
  • the working reinforcement comprises two working plies, each working ply comprising working reinforcement elements, each work reinforcing element of each working ply comprising a working cable comprising at least one strand comprising at least one inner layer of wires and an outer layer of wires helically wrapped around the inner layer, the outer layer being unsaturated.
  • the inter-wire distance of the wires of the outer layer is greater than or equal to 25 ⁇ , or even 30 ⁇ , preferably 40 ⁇ and more preferably 50 ⁇ .
  • the interfil distance of a layer is defined, on a section of the cable perpendicular to the main axis of the cable, as the smallest distance separating, on average on said layer, two adjacent wires of said layer.
  • each working cable comprises at least one inner layer of the cable comprising at least one inner strand and one outer layer of the cable comprising a plurality of outer strands.
  • Each outer strand comprises at least one inner layer of wires and one outer layer of wires wound helically around the inner layer of wires, the outer layer of wires being unsaturated.
  • the penetration of the rubber is allowed through the outer strands of the cables of the reinforcement.
  • the breaking force of each working ply is greater than or equal to 2000 daN.cm -1 , preferably 3500 daN.crm -1 and more preferably 4000 daN.cm -1 .
  • the breaking force of each working reinforcement element is greater than or equal to 15000 N, preferably 20000 N and more preferably 25000 N.
  • the laying pitch of each work reinforcing element ranges from 3.5 to 7.5 mm, preferably from 4.0 to 7.0 mm and more preferably from 4.5 to 6.5 mm. .
  • the work reinforcement elements are crossed from one working sheet to the other and make an angle at most equal to 60 °, preferably ranging from 15 ° to 40 ° with the circumferential direction of the pneumatic.
  • the reinforcing element comprising an inner layer of the cable constituted by J inner strand (s) and an outer layer of the cable and constituted by Q outer strands
  • the strand comprising an outer layer of unsaturated son is one of the outer Q strands.
  • each of the outer Q strands comprises an outer layer of unsaturated son.
  • each of the outer strands and each of the inner strands comprises an outer layer of unsaturated strands.
  • each working cable is of structure (J + Q) x (A + B) and comprises:
  • each inner and outer strand comprising:
  • an outer layer of the strand consisting of B external wires wound helically around the inner layer of the strand.
  • each working cable is of structure (J + Q) x (A + C + B) and comprises:
  • each inner and outer strand comprising:
  • the crown reinforcement comprises a hooping reinforcement comprising at least one hooping web.
  • the hooping reinforcement comprises two hooping webs.
  • each hoop comprises reinforcing elements, said hooping, hooping reinforcing elements are at an angle at most equal to 10 °, preferably ranging from 5 ° to 10 ° with the circumferential direction of the tire .
  • the hooping frame is arranged radially inside the working frame.
  • the hooping frame is arranged between the working frame and the protective frame.
  • each hooping sheet has a breaking force Fm NS F of greater than or equal to 1300 daN.cm -1 , preferably 1500 daN.cm -1 , more preferably to 1800 daN.cm -1 and even more preferably at 2000 daN.cm -1 .
  • each hoop reinforcing element has a breaking force greater than or equal to 2500 N, preferably 4000 N, more preferably 6000 N and even more preferentially 8500 N.
  • the laying pitch of the hooping reinforcing elements ranges from 1.8 to 6.5 mm, preferably from 3.0 to 5.5 mm, and more preferably from 3.7 to at 4.8 mm.
  • Figure 1 is a simplified sectional view of a tire according to a first embodiment of the invention
  • FIG. 2 is a detailed view of part I of the tire of FIG. 1;
  • - Figure 3 is a sectional view perpendicular to the axis of the protective reinforcement element (assumed rectilinear and at rest) of a reinforcing element of a protective layer of the tire of Figure 1;
  • Figure 4 is a view similar to that of Figure 3 of a reinforcing element of a protective layer of the tire of Figure 1;
  • FIG. 5 is a view similar to that of FIG. 3 of a reinforcement element of a working ply of the tire of FIG. 1.
  • the term refers to a radius of the tire. It is in this sense that a point, a ply or an armature P1 is said to be “radially interior” at a point, a ply or a reinforcement P2 (or " radially inside the P2 point) if it is closer to the axis of rotation of the tire than the point, the ply or the reinforcement P2.
  • a point, a ply or a reinforcement P3 is said to be "radially outside a point, a ply or a reinforcement P4 (or” radially outside “the point, of a ply or of a reinforcement P4) if it is farther from the axis of rotation of the tire than the point, the ply or the armature P4.
  • a reinforcing element or an armature is said to be "radial" when the reinforcing element or the reinforcing elements of the reinforcement make with the circumferential direction an angle greater than or equal to 65 ° and less than or equal to at 90 °.
  • An "axial” direction is a direction parallel to the axis of rotation of the tire.
  • a point, a ply or a reinforcement P5 is said to be “axially interior” at a point, a ply or a reinforcement P6 (or “axially inside” the point, the ply or the reinforcement P6) if is closer to the median plane M of the tire than the point, the ply or the armature P6.
  • a point, a ply or an armature P7 is said to be “axially outside” at a point P8 (or “axially outside” of the point, the ply or the armature P8) if it is farther from the median plane M of the tire as the point, the ply or the armature P8.
  • the "median plane” M of the tire is the plane which is normal to the axis of rotation of the tire and which is equidistant from the annular reinforcement structures each bead.
  • a "circumferential" direction is a direction that is perpendicular to both a tire radius and the axial direction.
  • FIGS. 1 and 2 show a vehicle tire of the civil engineering type, for example of the "dumper" type, and designated by the general reference 10.
  • the tire 10 has a WRU-type dimension, for example example 40.00 R 57 or 59/80 R 63.
  • W denotes:
  • the nominal H / B aspect ratio as defined by the ETRTO H being the height of the section of the tire and B being the width of the section of the tire
  • H B, H and B being as defined above.
  • U represents the diameter, in inches, of the seat of the rim on which the tire is intended to be mounted
  • R denotes the type of carcass reinforcement of the tire, here radial.
  • U ⁇ 35 preferably U ⁇ 49 and more preferably U ⁇ 57.
  • the tire 10 has a vertex 12 reinforced by a crown reinforcement 14, two sidewalls 16 and two beads 18, each of these beads 18 being reinforced with a rod 20.
  • the top 12 is surmounted by a tread 22
  • the crown reinforcement 14 is arranged radially inside the tread 22.
  • a carcass reinforcement 24, arranged radially inside the crown reinforcement 14, is anchored in each bead 18, here rolled up. around each rod 20 and comprises a reversal 26 disposed towards the outside of the tire 10 which is shown here mounted on a rim 28.
  • the carcass reinforcement 24 comprises at least one carcass ply 30 comprising reinforcement elements, said carcass (not shown).
  • the carcass reinforcement elements make an angle greater than or equal to 65 °, preferably 80 ° and more preferably 80 ° to 90 ° with respect to the circumferential direction of the tire.
  • the carcass reinforcement elements are arranged substantially parallel to each other and extend from one bead 18 to the other. Examples of such carcass reinforcement elements are described in documents EP0602733 or else EP0383716.
  • the tire 10 also comprises a sealing ply 32 made of an elastomer (commonly called “inner rubber”) which defines the radially inner face 34 of the tire 10 and which is intended to protect the carcass ply 30 of the tire. air diffusion from the interior space to the tire 10.
  • a sealing ply 32 made of an elastomer (commonly called "inner rubber”) which defines the radially inner face 34 of the tire 10 and which is intended to protect the carcass ply 30 of the tire. air diffusion from the interior space to the tire 10.
  • the crown reinforcement 14 comprises, radially from the outside towards the inside of the tire 10, a protective reinforcement 36 arranged radially inside the tread 22, a working reinforcement 38 arranged radially at the inside of the protective armature 36 and a shrink reinforcement 39 arranged radially inside the working armature 38.
  • the protective armature 36 is interposed radially between the tread 22 and the working frame 38.
  • the protective armature 36 comprises first and second protective plies 42, 44, the first protective ply 42 being arranged radially inside the second protective ply 44.
  • the working reinforcement 38 comprises first and second working plies 46, 48, the first working ply 46 being arranged radially inside the second working ply 48.
  • the hoop reinforcement 39 also called limiter block, whose function is to partially recover the mechanical stresses of inflation, comprises first and second hooping plies 40, 41, the first hoop 40 being arranged radially. inside the second hooping sheet 41.
  • FIGS. 3, 4 and 5 respectively show a first protective reinforcement element 50 of the first protection ply 42, a second protective reinforcement element 52 of the second protective ply 44 and a reinforcement element. 54, 56 of the first and second working plies 46, 48.
  • the work reinforcing elements 54, 56 of the first and second plies 46, 48 may be different.
  • Each of these elements 50, 52, 54, 56 comprises a wire rope.
  • Wire rope means by definition a cable formed of son consist predominantly (that is to say, for more than 50% of these son) or integrally (for 100% son) of a metal material.
  • the invention is preferably implemented using a steel cable, more preferably a carbon pearlitic (or ferritoclastic) steel, hereinafter referred to as "carbon steel”, or else stainless steel (by definition, steel comprising at least one minus 11% chromium and at least 50% iron). But it is of course possible to use other steels or other alloys.
  • carbon steel When carbon steel is used, its carbon content (% by weight of steel) is preferably between 0.7% and 0.9%. These grades represent a good compromise between the mechanical properties required for the tire and the feasibility of the wires.
  • the metal or steel used is coated with a metal layer, here with a layer of brass (Zn-Cu alloy) or zinc.
  • each first protective reinforcing element 50 of the first protective ply 42 comprises a metal cable 58, referred to as protection cable, of structure K 'x ( ⁇ ' + ⁇ ').
  • Each metal wire 58 of protection comprises K 'strands 60 helically wound at a pitch p.
  • Each strand 60 comprises an inner layer 62 of the strand and an outer layer 64 of the strand.
  • the inner layer 62 is made of M 'internal thread (s) 66 wound (s) in a helix at a step pi.
  • the outer layer 64 consists of P 'external wires 68 wound helically around the inner layer 62 at the pitch p2.
  • External threads 68 are wound in the same direction as K 'strands 60. In a variant, they are wound in different directions.
  • the outer layer 64 is unsaturated.
  • the pitch p is greater than or equal to 3 mm and less than or equal to 15 mm, preferably greater than or equal to 5 mm and less than or equal to 10 mm.
  • p 8 mm.
  • the step p1 is here infinite.
  • the pitch p2 is greater than or equal to 3 mm and less than or equal to 10.
  • p2 5 mm.
  • the diameter D1, D2 respectively of (s) internal thread (s) 66 and external 68 is greater than or equal to 0.10 mm and less than or equal to 0.50 mm, preferably greater than or equal to 0.15 mm and less than or equal to 0.35 mm, in this case equal to 0.26 mm.
  • the cable 58 is called cable "24.26".
  • the breaking force Fr NS pi of each first protective reinforcement element 50 is equal to 2550 N.
  • the pitch of the first protective reinforcement elements 50 is equal to 2.5 mm.
  • the breaking force of Fm NS pi of the first protective ply 42 is equal to 1020 daN.cm -1 .
  • each second protective reinforcement element 52 of the second protective ply 44 comprises a metal cable 70, said protective, structure (K + L) x (M + P).
  • each wire rope 70 comprises an inner layer 71 of the cable consisting of K internal strands 73 and an outer layer 75 of the cable and consisting of L> 1 outer strands 77 wound helically around the inner layer 71 .
  • the outer layer 75 of the cable is unsaturated.
  • Each inner strand 73 and outer 77 comprises an inner layer 74 consisting of M internal son 78 and an outer layer 76 consisting of P external son 80.
  • the outer layer 76 of each inner strand 73 and outer 77 is unsaturated.
  • the inner threads M 78 are wound in the same direction as the outer P son 80 and in the same direction as the K strands 73.
  • the M internal son 78 are wound in the same direction as the P external son 80 and in the opposite direction to the winding direction of K strands 73.
  • K internal strands 73 and L outer strands 77 are wound in the same direction of torsion.
  • the diameter D1, D2 respectively of (s) internal thread (s) 78 and external 80 is greater than or equal to 0.10 mm and less than or equal to 0.50 mm, preferably greater than or equal to 0.15 mm and less than or equal to 0.35 mm, in this case equal to 0.26 mm.
  • the cables 70 are called cables "55.26".
  • the pitch of the second protective reinforcement elements 52 is from 1.2 to 6.5 mm, preferably from 2.5 to 5.0 mm, and more preferably from 3.5 to 4.5 mm. and here is equal to 3.7 mm
  • the breaking force of Fm NS p2 of the second protection ply 44 is greater than or equal to 1300 daN.cm -1 , or even 1400 daN.cm -1 , preferably 1500 daN.cm -1 and more. preferably at 1600 daN.cm -1 .
  • Fm NS p2 1709 daN.cm -1 .
  • the first 50 and second 52 protection reinforcing elements are, respectively within each first 42 and second 44 protective ply at least equal to 10 °, preferably ranging from 10 ° to 35 ° and more preferably from 15 ° to 35 °. ° at 35 ° with the circumferential direction Z of the tire 10 and here equal to 24 °.
  • the protective reinforcing elements 50, 52 are substantially parallel to each other within each protective ply 42, 44 and crossed by a protective ply 42, 44 to the other.
  • each work reinforcing element 54, 56 of the first and second working plies 46, 48 respectively comprises a metal cable 82, 84, referred to as working, of structure (J + Q) x (A + B).
  • Each cable 82, 84 comprises an inner layer 86 of the cable consisting of J inner strand (s) 88 and an outer layer 90 of the cable and consisting of Q outer strands 92 wound helically around the inner layer 86
  • J> 1 the inner J strands are helically wound at pitch pi '.
  • the outer strands are rolled up at a time.
  • Each inner and outer strand 88 and 88 comprises an inner layer 94 consisting of an inner wire (s) 96 and an outer layer 98 consisting of B external wires 100 wound helically around the inner layer 94.
  • the internal Afils 96 are helically wound.
  • Each diameter D1, D2 of the inner wires 96 and outer 100 is greater than or equal to 0.15 mm and less than or equal to 0.45 mm, preferably greater than or equal to 0.20 mm and less than or equal to 0. , 40 mm, more preferably greater than or equal to 0.22 mm and less than or equal to 0.38 mm, in this case equal to 0.35 mm.
  • each cable 82, 84 is called cable "63.35".
  • the outer layer 98 of B external son 100 is unsaturated.
  • Internal ⁇ ils 96 and B external wires 100 are wound in different winding directions. In a variant, they are wound in identical winding directions.
  • each first and second work reinforcing element 54, 56 ranges from 3.5 to 7.5 mm, preferably from 4.0 to 7.0 mm and more preferably from 4.5 to 6.5 mm and here is equal to 5.5 mm.
  • the breaking force of Fm NS -n, Fm NS T2 of each first and second working ply 46, 48 is greater than or equal to 2000 daN.crm- 1 .
  • the breaking force of Fm NS -n, Fm NS T2 of each first and second working ply 46, 48 is greater than or equal to 3500 daN.cm- 1 and more preferably 4000 daN. cm "1 .
  • the first 54 and second 56 work reinforcement elements make, respectively within each first 46 and second 48 working ply, an angle at most equal to 60 °, preferably from 15 ° to 40 ° with the circumferential direction Z of the tire 10 and here equal to 19 ° for the first ply 46 and 33 ° for the second ply 48.
  • the work reinforcing elements 54, 56 are substantially parallel to each other within each working ply 46, 48 and crossed a working ply 46, 48 to another.
  • Each shrink web 40, 41 comprises reinforcing metal reinforcing elements (not shown), for example metal cables identical to the protective reinforcing elements, and making an angle at most equal to 10 °, preferably ranging from from 5 ° to 10 ° with the circumferential direction Z of the tire 10. Here the angle is equal to 8 °.
  • the hoop reinforcing elements are crossed from one hooping web 40, 41 to the other.
  • the hooping and protection plies are identical.
  • each hoop reinforcing element consists of a wire rope having a structure K 'x ( ⁇ ' + ⁇ '), comprising a single layer consisting of K 'strands, each strand comprising:
  • Each metal unit wire has a diameter ranging from 0.10 mm to 0.35 mm.
  • Each hoop reinforcing element has a breaking force Fr greater than or equal to 2500 N, preferably 4000 N, more preferably 6000 N and more preferably greater than or equal to 8500 N.
  • the laying pitch of the hoop reinforcing elements of each hooping sheet 42, 44 is from 1.8 to 6.5 mm, preferably from 3.0 to 5.5 mm, and more preferably from 3, 7 to 4.8 mm.
  • Each shrink web 40, 41 has respectively a breaking force Fm NS Fi, Fm NS F2 greater than or equal to 1300 daN.cm -1 , preferably 1500 daN.cm -1 , more preferably 1800 daN. cm -1 and even more preferably at 2000 daN.cm -1 .
  • hoop reinforcing elements different from those of the protective armature.
  • each first and second protective ply 42, 44 respectively comprises first and second protective reinforcement elements 50, 52 comprising identical protective metal cables 58, 70 and , according to the usual nomenclature, called "55.26" cables.
  • Fr NS pi of each metal cable 58 of protection is greater than or equal to 3000N, or even 3500 N, preferably 4500 N and more preferably 5500 N.
  • the pitch of the first protective reinforcing elements 50 is from 1.2 to 6.5 mm, preferably from 2.5 to 5.0 mm, and more preferably from 3.5 to 4.5 mm. .
  • the metal cables 58, 70, 82, 84 are manufactured by wiring or by twisting, according to conventional methods known to those skilled in the art.
  • a tire of the state of the art T0, two control tires T1 and T2 and the tire 10 according to the first embodiment were compared below.
  • each first and second protective ply of the tire of the state of the art T0 comprises metal reinforcing elements comprising metal cables "24.26" described above.
  • the outer layer of the C wires of each cable "189.23” is saturated. Indeed, the interfil distance d3 of the outer layer of each strand of the metal cables "189.23” is equal to 6 ⁇ .
  • each first and second protective ply of the control tire T1 comprises metal reinforcing elements comprising metal cables "24.26" as described above.
  • each first and second working ply of the tire T2 comprises metal reinforcing elements comprising metal cables "189.23" as described above.
  • a significant number of each tire T0, T1, T2 and 10 were rolled, here between 10 and 20, on various uneven ground, for example extraction mines.
  • a significant number of tires of the state of the art T0 have been compared to a significant number of T1 control tires.
  • the same comparison was made between tires T0 and T2.
  • the same comparison was made between tires T0 and 10.
  • the proportion of tires was also counted which could be used almost completely the tread, that is to say, the wear U at the retraction of the tire is greater than or equal to 95%.
  • tires comprising layered metal cables comprising a single strand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Ropes Or Cables (AREA)
PCT/EP2015/058712 2014-04-22 2015-04-22 Pneumatique pour véhicule industriel lourd Ceased WO2015162174A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/304,933 US10940719B2 (en) 2014-04-22 2015-04-22 Tire for heavy industrial vehicle
JP2016564237A JP2017513769A (ja) 2014-04-22 2015-04-22 産業用重車両用タイヤ
EP15720642.6A EP3134279B1 (fr) 2014-04-22 2015-04-22 Pneumatique pour véhicule industriel lourd
CN201580021141.4A CN106232377B (zh) 2014-04-22 2015-04-22 用于重工业车辆的轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1453592 2014-04-22
FR1453592A FR3020016B1 (fr) 2014-04-22 2014-04-22 Pneumatique pour vehicule industriel lourd

Publications (1)

Publication Number Publication Date
WO2015162174A1 true WO2015162174A1 (fr) 2015-10-29

Family

ID=51210577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/058712 Ceased WO2015162174A1 (fr) 2014-04-22 2015-04-22 Pneumatique pour véhicule industriel lourd

Country Status (7)

Country Link
US (1) US10940719B2 (enExample)
EP (1) EP3134279B1 (enExample)
JP (1) JP2017513769A (enExample)
CN (1) CN106232377B (enExample)
CL (1) CL2016002645A1 (enExample)
FR (1) FR3020016B1 (enExample)
WO (1) WO2015162174A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016017654A1 (ja) * 2014-07-28 2017-04-27 株式会社ブリヂストン ゴム物品補強用スチールコード
FR3044967A1 (fr) * 2015-12-15 2017-06-16 Michelin & Cie Sommet de pneumatique pour vehicule lourd de type genie civil
CN109070636A (zh) * 2016-04-15 2018-12-21 株式会社普利司通 施工车辆用轮胎及钢丝帘线
WO2019058053A1 (fr) * 2017-09-22 2019-03-28 Compagnie Generale Des Etablissements Michelin Armature de sommet de pneumatique pour vehicule lourd de type genie civil

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020017B1 (fr) 2014-04-22 2017-06-09 Michelin & Cie Pneumatique pour vehicule de genie civil
FR3032978B1 (fr) 2015-02-19 2017-10-27 Michelin & Cie Cable multitorons de structure 1xn pour armature de protection de pneumatique
FR3033287B1 (fr) 2015-03-05 2017-03-10 Michelin & Cie Armature de sommet de pneumatique pour vehicule lourd de type genie civil
FR3058929A1 (fr) * 2016-11-21 2018-05-25 Compagnie Generale Des Etablissements Michelin Sommet de pneumatique pour vehicule lourd de type genie civil
EP3732064B1 (fr) * 2017-12-28 2022-02-02 Compagnie Generale Des Etablissements Michelin Armature de frettage d'un pneumatique pour vehicule lourd de type genie civil
CA3102045A1 (fr) * 2018-06-20 2019-12-26 Compagnie Generale Des Etablissements Michelin Cable multi-torons a deux couches a penetrabilite amelioree
FR3099087B1 (fr) 2019-07-23 2021-07-02 Michelin & Cie Pneumatique pour vehicule lourd de type genie civil avec une armature sommet simplifiee
FR3102097A1 (fr) * 2019-10-16 2021-04-23 Compagnie Generale Des Etablissements Michelin Pneumatique a emission de bruit reduit et son procede de fabrication
CN114729504B (zh) * 2019-11-15 2023-07-11 米其林集团总公司 具有包覆的内层和改善的渗透性的双层多线股帘线
FR3103500A1 (fr) * 2019-11-22 2021-05-28 Compagnie Generale Des Etablissements Michelin Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
US20230032614A1 (en) * 2019-12-24 2023-02-02 Compagnie Generale Des Etablissements Michelin Tire for improved noise performance
FR3106530B1 (fr) * 2020-01-29 2022-01-07 Michelin & Cie architecture optimisée de pneumatique de type poids-lourd, agricole ou génie civil
FR3106529B1 (fr) * 2020-01-29 2022-01-07 Michelin & Cie architecture optimisée de pneumatique de type poids-lourd, agricole ou génie civil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143890A (ja) * 1995-11-17 1997-06-03 Bridgestone Metalpha Kk タイヤ補強用スチ−ルコ−ド及びそれを用いた空気入りタイヤ
WO2002090135A1 (fr) * 2001-05-03 2002-11-14 Societe De Technologie Michelin Armature de sommet pour pneumatique
WO2013174896A1 (fr) * 2012-05-25 2013-11-28 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'un câble metallique multi-torons à deux couches

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947636A (en) 1989-02-13 1990-08-14 The Goodyear Tire & Rubber Company Metal wire cord for elastomer reinforcement
JPH07108602B2 (ja) 1989-12-28 1995-11-22 株式会社ブリヂストン 荒地走行用空気入りスチールラジアルタイヤ
US5318643A (en) * 1990-03-21 1994-06-07 The Goodyear Tire & Rubber Company Vehicle tires including plies with high strength reinforcement
CA2109904C (en) 1992-12-18 2004-09-14 Pol Bruyneel Multi-strand steel cord
JP3464501B2 (ja) 1993-07-06 2003-11-10 株式会社ブリヂストン 重荷重用ラジアルタイヤ
JP3942649B2 (ja) * 1994-08-25 2007-07-11 株式会社ブリヂストン 重荷重用ラジアルタイヤ
US6247514B1 (en) * 1994-12-20 2001-06-19 The Goodyear Tire & Rubber Company Tires with high strength reinforcement
US5806296A (en) * 1995-05-26 1998-09-15 Bridgestone Metalpha Corporation Corrosion resistant spiral steel filament and steel cord made therefrom
JPH1193087A (ja) * 1997-09-11 1999-04-06 Bridgestone Corp ゴム物品補強用スチールコードおよび空気入りタイヤ
JP4450452B2 (ja) * 1999-06-30 2010-04-14 株式会社ブリヂストン ゴム物品補強用スチールコード
US6817395B2 (en) 2002-07-30 2004-11-16 The Goodyear Tire & Rubber Company Crown reinforcement for heavy duty tires
FR2864556B1 (fr) 2003-12-24 2006-02-24 Michelin Soc Tech Cable a couches pour armature de carcasse de pneumatique
FR2873721A1 (fr) * 2004-08-02 2006-02-03 Michelin Soc Tech Cable a couches pour armature de sommet de pneumatique
WO2006080373A1 (ja) * 2005-01-28 2006-08-03 Bridgestone Corporation 建設車輌用ラジアルタイヤ
US7775247B2 (en) * 2005-12-22 2010-08-17 The Goodyear Tire & Rubber Company Steel cord for reinforcement of off-the-road tires
FR2916160B1 (fr) * 2007-05-14 2009-07-17 Michelin Soc Tech Pneumatique pour vehicules lourds
CN201037216Y (zh) * 2007-09-06 2008-03-19 江苏兴达钢帘线股份有限公司 一种高伸长钢帘线
JP2009067321A (ja) 2007-09-14 2009-04-02 Bridgestone Corp 重荷重用空気入りタイヤ
FR2954219A1 (fr) * 2009-11-17 2011-06-24 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse presentant des permeabilites differentes
EP2504485B1 (en) * 2009-11-27 2014-07-30 NV Bekaert SA Open multi-strand cord
FR2969181B1 (fr) * 2010-12-21 2013-10-04 Michelin Soc Tech Cable metallique multitorons a haute permeabilite
FR2990963B1 (fr) * 2012-05-25 2014-12-05 Michelin & Cie Cable metallique multi-torons a deux couches.
FR2999614B1 (fr) 2012-12-14 2015-08-21 Michelin & Cie Cable metallique a couches a haute penetrabilite
FR3020017B1 (fr) 2014-04-22 2017-06-09 Michelin & Cie Pneumatique pour vehicule de genie civil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143890A (ja) * 1995-11-17 1997-06-03 Bridgestone Metalpha Kk タイヤ補強用スチ−ルコ−ド及びそれを用いた空気入りタイヤ
WO2002090135A1 (fr) * 2001-05-03 2002-11-14 Societe De Technologie Michelin Armature de sommet pour pneumatique
WO2013174896A1 (fr) * 2012-05-25 2013-11-28 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'un câble metallique multi-torons à deux couches

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016017654A1 (ja) * 2014-07-28 2017-04-27 株式会社ブリヂストン ゴム物品補強用スチールコード
EP3196353A4 (en) * 2014-07-28 2017-08-16 Bridgestone Corporation Steel cord for reinforcing rubber article
US10173470B2 (en) 2014-07-28 2019-01-08 Bridgestone Corporation Steel cord for reinforcing rubber article
FR3044967A1 (fr) * 2015-12-15 2017-06-16 Michelin & Cie Sommet de pneumatique pour vehicule lourd de type genie civil
WO2017103478A1 (fr) * 2015-12-15 2017-06-22 Compagnie Générale Des Établissements Michelin Sommet de pneumatique pour véhicule lourd de type génie civil
CN108698449A (zh) * 2015-12-15 2018-10-23 米其林集团总公司 用于土木工程型重型车辆的轮胎胎冠
CN108698449B (zh) * 2015-12-15 2019-10-25 米其林集团总公司 用于土木工程型重型车辆的轮胎胎冠
CN109070636A (zh) * 2016-04-15 2018-12-21 株式会社普利司通 施工车辆用轮胎及钢丝帘线
EP3444127A4 (en) * 2016-04-15 2019-04-10 Bridgestone Corporation TIRES FOR CONSTRUCTION VEHICLES AND STEEL ROPES
WO2019058053A1 (fr) * 2017-09-22 2019-03-28 Compagnie Generale Des Etablissements Michelin Armature de sommet de pneumatique pour vehicule lourd de type genie civil
CN111132854A (zh) * 2017-09-22 2020-05-08 米其林集团总公司 用于施工场地类型的重型车辆的轮胎的胎冠增强件
CN111132854B (zh) * 2017-09-22 2021-10-22 米其林集团总公司 用于施工场地类型的重型车辆的轮胎的胎冠增强件

Also Published As

Publication number Publication date
FR3020016B1 (fr) 2016-04-01
JP2017513769A (ja) 2017-06-01
CN106232377B (zh) 2017-10-10
US20170182846A1 (en) 2017-06-29
US10940719B2 (en) 2021-03-09
EP3134279B1 (fr) 2019-12-04
CN106232377A (zh) 2016-12-14
CL2016002645A1 (es) 2017-04-07
FR3020016A1 (fr) 2015-10-23
EP3134279A1 (fr) 2017-03-01

Similar Documents

Publication Publication Date Title
EP3134279B1 (fr) Pneumatique pour véhicule industriel lourd
EP3134280B1 (fr) Pneumatique pour véhicule de génie civil
EP3728727B1 (fr) Câbles multi-torons à deux couches à très bas, bas et moyen modules
EP3283306A1 (fr) Armature de renforcement de pneumatique
EP3728729B1 (fr) Câbles multi-torons à deux couches à très bas, bas et moyen modules
EP3728728A1 (fr) Câbles multi-torons à deux couches à très bas, bas et moyen modules
EP2855764A1 (fr) Câble métallique multi-torons à deux couches
WO2019122724A1 (fr) Câbles multi-torons à deux couches à très bas, bas et moyen modules
WO2013174896A1 (fr) Procede de fabrication d'un câble metallique multi-torons à deux couches
WO2014048897A1 (fr) Pneumatique pour vehicule lourd de type genie civil
EP3728730A1 (fr) Câbles multi-torons à deux couches à très bas, bas et moyen modules
WO2019058053A1 (fr) Armature de sommet de pneumatique pour vehicule lourd de type genie civil
FR3111923A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
WO2019202239A1 (fr) Armature de protection a couches differenciees pour pneumatique pour vehicule lourd de type genie civil
EP4172408A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
WO2019202240A1 (fr) Armature de protection de pneumatique pour vehicule lourd de type genie civil
FR3111921A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
EP4058303B1 (fr) Armature de sommet de pneumatique pour vehicule lourd de genie civil
EP3541636A1 (fr) Armature de frettage d'un pneumatique pour vehicule lourd de type genie civil
WO2015162213A1 (fr) Pneumatique comportant des epaisseurs de melanges caoutchouteux reduites et des elements de renforcement d'armature de carcasse gaines
FR3130858A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
EP4058628A1 (fr) Câble multi-torons à deux couches avec couche interne gainée à rendement amélioré
FR3122674A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
FR3122673A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
FR3122678A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15720642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15304933

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016564237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015720642

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015720642

Country of ref document: EP