WO2015161029A1 - Ultra-seal gasket for joining high purity fluid pathways - Google Patents

Ultra-seal gasket for joining high purity fluid pathways Download PDF

Info

Publication number
WO2015161029A1
WO2015161029A1 PCT/US2015/026093 US2015026093W WO2015161029A1 WO 2015161029 A1 WO2015161029 A1 WO 2015161029A1 US 2015026093 W US2015026093 W US 2015026093W WO 2015161029 A1 WO2015161029 A1 WO 2015161029A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
axial end
end surface
stress concentration
sealing region
Prior art date
Application number
PCT/US2015/026093
Other languages
English (en)
French (fr)
Inventor
Kim Ngoc Vu
Original Assignee
Vistadeltek, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201580020189.3A priority Critical patent/CN106233047B/zh
Application filed by Vistadeltek, Llc filed Critical Vistadeltek, Llc
Priority to KR1020167028786A priority patent/KR102357624B1/ko
Priority to SG11201608262UA priority patent/SG11201608262UA/en
Priority to IL304860A priority patent/IL304860A/he
Priority to JP2017506623A priority patent/JP6531162B2/ja
Priority to IL284910A priority patent/IL284910B2/he
Priority to KR1020237039496A priority patent/KR20230163573A/ko
Priority to EP15779865.3A priority patent/EP3132162B1/en
Priority to KR1020227002878A priority patent/KR102480804B1/ko
Priority to EP21153442.5A priority patent/EP3835629A1/en
Priority to KR1020227044680A priority patent/KR102604479B1/ko
Publication of WO2015161029A1 publication Critical patent/WO2015161029A1/en
Priority to IL248085A priority patent/IL248085B/he

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3232Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips
    • F16J15/3236Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips with at least one lip for each surface, e.g. U-cup packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0806Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0881Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by plastic deformation of the packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0887Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing

Definitions

  • Embodiments of the present invention are related to malleable, primarily metallic, gaskets for sealing joints between portions of a fluid pathway.
  • Many combinations of interface structures and associated gaskets are well known in the design of fluid delivery apparatus. These structures include flanges, glands, component connections, and other functions that enable mechanical assembly of various apparatus elements forming a collection of interconnected fluid pathways.
  • Representative fluid delivery apparatus are found among industrial equipment producing fine chemicals, petroleum products, flat panel electronic displays, or semiconductors, and may be subjected to vacuum, or pressure, or purity requirements, and combinations thereof.
  • semiconductor manufacturing equipment usually require attention to maintaining high purity of the delivered reactants and also typically have a much smaller cross-section than fluid pathways used in petrochemical plants, for example.
  • metallic gaskets provide superior performance, particularly regarding diffusion of process fluid or contaminants through the gasket and consequent resistance to undesirable leakage, in preference over polymer materials.
  • One known type of fluid pathway joint uses a ring-shaped gasket, initially flat in a radial direction, axially compressed between nominally identical shaped annular projections that surround circular conduit openings of opposing apparatus elements.
  • the annular projections are urged axially toward each other causing permanent plastic deformation of the ductile metallic gasket creating a seal that will resist leakage of even difficult to contain fluids such as helium.
  • Another known type of fluid pathway joint uses a ring-shaped gasket of predetermined cross sectional profile compressed between nominally identical shaped annular projections that surround circular conduit openings of opposing apparatus elements.
  • Representative examples of such joints may be seen in U.S. Pat. No. 4,854,597 issued to Leigh, in U.S. Pat. No. 5,505,464 issued to McGarvey, and in U.S. Pat. No. 6,135,155 issued to Ohmi et al. (an early version of the W-Seal joint type).
  • the patent to Ohmi et al. additionally provides a separate retainer means for holding and centering the gasket during joint assembly.
  • Other separate retainer structures may also be seen in U.S. Pat. No. 5,673,946 and U.S. Pat. No. 5,758,910 both issued to Barber and Aldridge, and in U.S. Pat. No. 7,140,647 issued to Ohmi et al.
  • C-Seal joint type uses a ring-shaped metallic gasket of complex shape compressed between opposing apparatus elements having simple flat surfaces in contact with the gasket. Most usually the face of at least one apparatus element has a circular counterbore depression to receive the gasket.
  • High purity fluid delivery components and fluid pathway elements are often made from a vacuum refined variation of type 316L stainless steel or nickel alloys such as Hastelloy® C-22®. Both of those metallic materials can only be hardened by mechanical work rather than heat treatments and consequently are at risk of being damaged by the localized forces accompanying metallic gaskets.
  • High purity fluid delivery components made from polymer materials are also well known and often used when controlling flow of certain liquid fluids where potential contamination with metallic ions is a concern.
  • fluid pathway joints also use opposed flat surfaces (with or without counterbores) with an interposed gasket. Gaskets made from polymer materials for use in such joints may also benefit from the inventive designs described in this disclosure.
  • Embodiments of the present invention are directed to a ring-shaped gasket for sealingly joining opposed fluid conduit ports.
  • the fluid conduit ports may correspond to adjacent fluid conduit ports of a fluid delivery system, such as a semiconductor gas panel, a petrochemical production or distribution system, etc.
  • the gasket has a body, pierced through by a hole creating a fluid pathway and defining a radial inner surface, and additionally having a radial outer surface, a first axial end surface and a second axial end surface. At least one of the first and second axial end surfaces has a stress concentration feature radially adjacent to a gasket sealing region, the gasket sealing region constructed and arranged to be in contact with a face surface of a corresponding fluid conduit port.
  • the stress concentration feature defines a lip in the gasket sealing region that includes a protective ridge and a sealing surface. Prior to joint assembly the sealing region lip desirably projects axially outward beyond the corresponding axial end surface.
  • the stress concentration feature comprises a groove in either one or both of the axial end surfaces and adjacent the one or both corresponding gasket sealing regions.
  • the stress concentration groove undercuts one or both sealing regions.
  • the stress concentration groove has a V-shape undercutting one or both sealing regions, and in other embodiments, the stress concentration groove has a U-shape with substantially parallel sides undercutting one, or both sealing regions.
  • the stress concentration feature comprises a regular arrangement of blind cavities projecting into either one or both of the axial end surfaces.
  • the regularly arranged stress concentrating blind cavities undercut a one or both sealing region lips.
  • the circumferential phase relationship of the blind cavities may be coincident or interposed in anti-phase.
  • a first axial end surface has a stress concentration feature that includes a regular arrangement of blind cavities undercutting a first sealing region and a second axial end surface has a second sealing region initially flat in a radial direction.
  • a first axial end surface has a stress concentration feature including a groove undercutting a first sealing region and a second axial end surface has a second sealing region initially flat in a radial direction.
  • the groove may have a V-shape, or a U-shape with substantially parallel sides.
  • either one or both of the axial end surfaces may have a circumferential region adjacent the gasket radial outer surface which serves as a stop to limit compression of the deformable sealing region.
  • the ring-shaped gasket of the various embodiments described herein may be formed of a malleable material.
  • the malleable material can include a unitary metallic material selected from the group consisting of a stainless steel alloy, a chromium alloy, a nickel alloy, commercially pure nickel, a copper alloy, and commercially pure copper, a unitary metallic material substantially identical to type 316 series stainless steel alloy, a unitary polymer material selected from the group consisting of polypropylene (PP), polyvinylidene fluoride (PVDF),
  • PFA perfluoroalkoxy polymer
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • polyimide or a unitary polymer material substantially identical to polyimide.
  • a method of forming a high purity fluid joint wherein a gasket, starting as a closed loop of malleable material having an undeformed gasket sealing surface angled athwart a proximal interior axis of the gasket loop shape, is compressed between opposing fluid delivery apparatus elements until a portion of the gasket sealing surface is bent substantially perpendicular to the proximal interior axis of the gasket loop shape.
  • Fig.lA is a first representative gasket sectioned on a diameter
  • Fig. IB is an enlarged cross-section of the first representative gasket shown in Fig.lA;
  • Fig.2 A is a second representative gasket sectioned on a diameter;
  • Fig.2B is an enlarged cross-section of the second representative gasket shown in Fig.2A;
  • Fig.3A is a third representative gasket sectioned on a diameter;
  • Fig.3B is an enlarged cross-section of the third representative gasket shown in Fig.3A;
  • Fig.3C is the third representative gasket of Fig.3A shown in perspective view
  • Fig.4 A is a fourth representative gasket sectioned on a diameter
  • Fig.4B is an enlarged cross-section of the fourth representative gasket
  • Fig.5A is a fifth representative gasket sectioned at two locations
  • Fig.5B a plan view of the fifth representative gasket showing the not diametric (antiphase) relationship of the two sectioning locations;
  • Fig.6A illustrates the fourth representative gasket located by a keeper and positioned within fluid conduit port counterbores prior to the application of axial sealing force to make the joint;
  • Fig.6B illustrates the fourth representative gasket in fluid conduit port counterbores after the joint has been made
  • Fig.7A is a sixth representative gasket sectioned on a diameter
  • Fig.7B is an enlarged cross-section of the sixth representative gasket shown in Fig.7A;
  • Fig.7C is an enlarged cross-section of an alternative example of the sixth representative gasket in which the stress concentration feature on the first axial end surface of the gasket includes a stress concentration groove;
  • Fig.8A illustrates the sixth representative gasket located by a keeper and positioned between a fluid conduit port counterbore having a flat bottom and a fluid conduit port counterbore having a shaped annular projection prior to application of axial sealing force to make the joint;
  • Fig.8B illustrates the sixth representative gasket between corresponding fluid conduit port counterbores after the joint has been made;
  • Fig.9A is a seventh representative gasket sectioned on a diameter
  • Fig.9B is an enlarged cross-section of the seventh representative gasket shown in Fig.9A;
  • Fig.lOA illustrates the seventh representative gasket located by a keeper and positioned within fluid conduit port counterbores prior to the application of axial sealing force to make the joint;
  • Fig.1 OB illustrates the seventh representative gasket in fluid conduit port counterbores after the joint has been made.
  • a related and often simultaneously used technique to more easily achieve gasket plastic deformation is to anneal the gasket material into a maximally soft condition.
  • Another known design challenge is the relatively high Young's Modulus (Modulus of Elasticity) of metals causing relatively small reversible metallic gasket rebound after elastic deformation and also limiting the amount of strain that may be imparted to a metallic gasket before plastic deformation occurs.
  • annealing does not appreciably affect the stiffness (Modulus of Elasticity) of the gasket but will appreciably lower its yield strength.
  • the strain-hardening which occurs subsequent to initial yield of many gasket materials can be a significant contributor to the eventual rebound properties of the gasket.
  • a further design challenge is the fact a gasket lacking sufficient bulk hardness may exhibit cold flow relaxation over time and thereby develop a leak despite having been suitably tight initially.
  • FIG.lA and Fig. IB A first representative example 100 of Applicant's ring-shaped gasket is illustrated in Fig.lA and Fig. IB.
  • the gasket body 150 is pierced through by a hole 151 defining a fluid pathway bore 155 comprising an inner radial surface 156 which may conveniently be
  • the outer radial extent of the gasket body is defined by a radial outer surface 190 which may have a circumferential groove 192 to accommodate a keeper (not shown in Fig. lA) for locating the gasket 100 in a fluid delivery component assembly (also not shown in Fig.lA).
  • the first representative gasket example may have a first axial end surface 110 including a stress concentration feature 120 which appears as a groove in the first axial end surface 110.
  • the stress concentration groove 120 removes gasket body material from the region immediately adjacent the intended gasket sealing region to thereby form a lip 130 which desirably projects axially outward beyond the first axial end surface prior to making the joint.
  • the lip 130 includes an axially prominent protective ridge 132 and an immediately adjacent sealing surface 134. In the event the gasket is slid across a rough surface, during normal factory handling, the protective ridge 132 may be damaged but the sealing surface 134 will remain pristine.
  • the sealing surface 134 is a circumferential sector exhibiting a generally constant angle with respect to the gasket bore 155 axis, and also to the plane of the first axial end surface 110, but may advantageously have a slightly convex shape for some gasket materials.
  • the gasket sealing region lip 130 may be appreciated as resembling a frustoconical shell flaring outward from the gasket bore 155 toward the radial outer surface 190.
  • the radial extent of the sealing surface 134 is beneficially greater than the reduced contact area of prior designs so as to create a radially much longer leak resisting contact between the gasket and fluid conduit port face.
  • the protective ridge 132 When the gasket 100 is made into a leak tight fluid pathway joint by axial compression between opposing flat apparatus faces, the protective ridge 132 will be plastically deformed and the sealing surface 134 slightly deflected radially outward contacting the flat apparatus face, in concert with further axial compression, by virtue of the groove 120 allowing the lip 130 to bend over.
  • the first representative gasket example may have a second axial end surface 160 including a stress concentration feature 170 which appears as a groove in the second axial end surface 160.
  • the stress concentration groove 170 removes gasket body material from the region immediately adjacent the intended gasket sealing region to thereby form a lip 180 which desirably projects axially outward beyond the second axial end surface prior to making the joint.
  • the lip 180 includes an axially prominent protective ridge 182 and an immediately adjacent sealing surface 184. In the event the gasket is slid across a rough surface, during normal factory handling, the protective ridge 182 may be damaged but the sealing surface 184 will remain pristine.
  • the sealing surface 184 is a circumferential sector exhibiting a generally constant angle with respect to the gasket bore 155 axis, and also to the plane of the second axial end surface 160, but may advantageously have a slightly convex shape for some gasket materials.
  • the radial extent of the sealing surface 184 is beneficially greater than the reduced contact area of prior designs so as to create a radially much longer leak resisting contact between the gasket and fluid conduit port face.
  • the protective ridge 182 When the gasket 100 is made into a leak tight fluid pathway joint by axial compression between opposing flat apparatus faces, the protective ridge 182 will be plastically deformed and the sealing surface 184 slightly deflected radially outward contacting the flat apparatus face, in concert with further axial compression, by virtue of the groove 170 allowing the lip 180 to bend over.
  • the axial end surfaces 110,160 may function as relatively hard stops preventing excessive compression of the gasket lips 130,180 by contacting the face surface of the corresponding fluid conduit ports. Very minor compositional and manufacturing variations within the gasket 100 may cause an axial end surface 110,160 to contact the corresponding fluid conduit port face before the other axial end surface 160,110 during the process of gasket compression as the joint is being made. The noted hard stop function ensures both opposed gasket lips 130,180 are eventually compressed equally and fully. It should also be appreciated that the end regions 157,158 of the fluid pathway bore 155 will preferably have less axial extent than the axial end surfaces 110,160 to prevent formation of virtual leak cavities within the fluid pathway when the joint is fully mated. Designers may also understand the existence of unaltered central material within the gasket body 150 makes deformation behavior of the first axial end surface lip 130 substantially independent of the deformation behavior of the second axial end surface lip 180.
  • FIG.2A and Fig.2B A second representative example 200 of Applicant's ring-shaped gasket is illustrated in Fig.2A and Fig.2B and is similar to the first example.
  • the gasket body 250 is pierced through by a hole 251 defining a fluid pathway bore 255 comprising an inner radial surface 256 which may conveniently be substantially straight to reduce fluid turbulence in the fluid delivery apparatus coupling joint.
  • the outer radial extent of the gasket body is defined by a radial outer surface 290 which may have a circumferential groove 292 to accommodate a keeper (not shown in Fig.2A nor Fig.2B) for locating the gasket 200 in a fluid delivery component assembly (also not shown).
  • the second representative gasket example may have first 210 and second 260 axial end surfaces including stress concentration features 220,270 which appear as grooves in the axial end surfaces 210,260.
  • the stress concentration grooves 220,270 remove gasket body material from the region immediately adjacent both intended gasket sealing regions to thereby form lips 230,280 on the axial end surfaces 210,260 which lips desirably project axially outward beyond the corresponding axial end surfaces 210,260 prior to making the joint.
  • the stress concentration grooves 220,270 have inner walls 221,271 closest the gasket radial inner surface 256 forming an acute angle with the plane of each associated gasket axial end surface 210,260 thereby forming an undercut of each gasket sealing region.
  • the lips 230,280 each include an axially prominent protective ridge 232,282 and an immediately adjacent sealing surface 234,284.
  • the protective ridges 232,282 may be damaged but the sealing surfaces 234,284 will remain pristine.
  • the sealing surfaces 234,284 are circumferential sectors exhibiting a generally constant angle with respect to the gasket bore 255 axis, and also to the plane of each associated axial end surface 210,260, but may advantageously have a slightly convex shape for some gasket materials.
  • the gasket sealing region lips 230,280 may be appreciated as resembling opposite directed frustoconical shells flaring outward from the gasket bore 255 toward the radial outer surface 290.
  • the radial extent of the sealing surfaces 234,284 is beneficially greater than the reduced contact area of prior designs so as to create a radially much longer leak resisting contact between the gasket and fluid conduit port face.
  • the protective ridges 232,282 When the gasket 200 is made into a leak tight fluid pathway joint by axial compression between opposing flat apparatus faces, the protective ridges 232,282 will be plastically deformed and the sealing surfaces 234,284 slightly deflected radially outward contacting the flat apparatus faces in concert with further axial compression, as a consequence of the undercut grooves 220,270 allowing the gasket lips 230,280 to controllably bend.
  • the axial end surfaces 210,260 may function as relatively hard stops preventing excessive compression of the gasket lips 230,280 by contacting the face surface of the corresponding fluid conduit ports.
  • Very minor compositional and manufacturing variations within the gasket 200 may cause an axial end surface 210,260 to contact the corresponding fluid conduit port face before the other axial end surface 260,210 during the process of gasket compression as the joint is being made.
  • the noted hard stop function ensures both opposed gasket lips 230,280 are eventually compressed equally and fully.
  • end regions 257,258 of the fluid pathway bore 255 will preferably have less axial extent than the axial end surfaces 210,260 to prevent formation of virtual leak cavities within the fluid pathway when the joint is fully mated.
  • Designers may also understand the existence of unaltered central material within the gasket body 250 makes deformation behavior of the first axial end surface lip 230 substantially independent of the deformation behavior of the second axial end surface lip 280. This independence of deformation behavior between the opposite axial end surface lips 230,280 can allow, at the designer's choice, fabrication of gaskets having intentionally different characteristics on opposite sides. Skilled designers will appreciate that lip bending characteristics may be adjusted by choice of the undercut acute angle along with groove depth and width.
  • one or more of the undercut acute angle, the groove depth, and the groove width may be different on one side of the gasket relative to the undercut acute angle, the groove depth, or the groove width on the opposing side of the gasket.
  • a ring- shaped gasket may be provided with a stress concentration groove on one axial end surface that is similar to stress concentration groove 120 illustrated in Figs. lA-lC, and a stress concentration groove on the opposing axial end surface that is similar to stress concentration groove 220 illustrated in Figs.2A-2C in which an inner wall 271 of the stress concentration groove 220 closest to the gasket inner radial surface is formed at an acute angle with the plane of gasket axial end surface 260.
  • a third representative example 300 of Applicant's ring-shaped gasket is illustrated in
  • the gasket body 350 is pierced through by a hole 351 defining a fluid pathway bore 355 comprising an inner radial surface 356 which may conveniently be substantially straight to reduce fluid turbulence in the fluid delivery apparatus coupling joint.
  • the outer radial extent of the gasket body is defined by a radial outer surface 390 which may have a circumferential groove 392 to accommodate a keeper (not shown in Fig.3A, 3B, nor 3C) for locating the gasket 300 in a fluid delivery component assembly (also not shown in the Figures).
  • the third representative gasket example may have a first axial end surface 310 including a stress concentration feature 320 comprised of a regular arrangement of blind cavities projecting into the first axial end surface 310.
  • the stress concentration cavities 325,326,327, et seq. remove gasket body material from the region immediately adjacent the intended gasket sealing region to thereby form a lip 330 on the axial first end surface 310 which desirably projects axially outward beyond the first axial end surface prior to making the joint.
  • the lip 330 includes an axially prominent protective ridge 332 and an immediately adjacent sealing surface 334.
  • the sealing surface 334 is a circumferential sector exhibiting a generally constant angle with respect to the gasket bore 355 axis, and also to the plane of the first axial end surface 310, but may advantageously have a slightly convex shape for some gasket materials.
  • the gasket sealing region lip 330 may be appreciated as resembling a frustoconical shell flaring outward from the gasket bore 355 toward the radial outer surface 390.
  • the radial extent of the sealing surface 334 is beneficially greater than the reduced contact area of prior designs so as to create a radially much longer leak resisting contact between the gasket and fluid conduit port face.
  • the protective ridge 332 may be damaged but the sealing surface 334 will remain pristine.
  • the protective ridge 332 will be plastically deformed and the sealing surface 334 slightly deflected radially outward, in concert with further axial compression, by virtue of the cavities 325,326,327, et seq., allowing the lip 330 to bend over.
  • the third representative gasket example may have a second axial end surface 360 including a stress concentration feature 370 that includes a regular arrangement of blind cavities projecting into the second axial end surface 360.
  • the stress concentration cavities 375,376,377, et seq. remove gasket body material from the region immediately adjacent the intended gasket sealing region to thereby form a lip 380 on the second axial end surface 360 which desirably projects axially outward beyond the corresponding axial end surface prior to making the joint.
  • the lip 380 includes an axially prominent protective ridge 382 and an immediately adjacent sealing surface 384.
  • the sealing surface 384 is a circumferential sector exhibiting a generally constant angle with respect to the gasket bore 355 axis, and also to the plane of the second axial end surface 360, but may advantageously have a slightly convex shape for some gasket materials.
  • the radial extent of the sealing surface 384 is beneficially greater than the reduced contact area of prior designs so as to create a radially much longer leak resisting contact between the gasket and fluid conduit port face. In the event the gasket is slid across a rough surface, during normal factory handling, the protective ridge 382 may be damaged but the sealing surface 384 will remain pristine.
  • the protective ridge 382 When the gasket 300 is made into a leak tight fluid pathway joint by axial compression between opposing flat apparatus faces, the protective ridge 382 will be plastically deformed and the sealing surface 384 slightly deflected radially outward, in concert with further axial compression, by virtue of the cavities 375,376,377, et seq. allowing the lip 380 to bend over.
  • the stress concentration cavities 325,326,327 and 375,376,377 disposed on opposing axial faces of the gasket 300 are illustrated to be in phase with one another around the circumference of the gasket, it should be appreciated that they may instead be disposed in anti-phase with one another, as described further below with respect to Fig.5A and Figs.5B.
  • the axial end surfaces 310,360 may function as relatively hard stops preventing excessive compression of the gasket lips 330,380 by contacting the face surface of the corresponding fluid conduit ports.
  • Very minor compositional and manufacturing variations within the gasket 300 may cause an axial end surface 310,360 to contact the corresponding fluid conduit port face before the other axial end surface 360,310 during the process of gasket compression as the joint is being made.
  • the noted hard stop function ensures both opposed gasket lips 330,380 are eventually compressed equally and fully.
  • end regions 357,358 of the fluid pathway bore 355 will preferably have less axial extent than the axial end surfaces 310,360 to prevent formation of virtual leak cavities within the fluid pathway when the joint is fully mated.
  • Designers may also understand the existence of unaltered central material within the gasket body 350 makes deformation behavior of the first axial end surface lip 330 substantially independent of the deformation behavior of the second axial end surface lip 380.
  • a fourth representative example 400 of Applicant's ring-shaped gasket illustrated in Fig.4A and Fig.4B is similar to the third example.
  • the gasket body 450 is pierced through by a hole 451 defining a fluid pathway bore 455 comprising an inner radial surface 456 which may conveniently be substantially straight to reduce fluid turbulence in the fluid delivery apparatus coupling joint.
  • the outer radial extent of the gasket body is defined by a radial outer surface 490 which may have a circumferential groove 492 to accommodate a keeper (not shown in Fig.4A nor Fig.4B) for locating the gasket 400 in a fluid delivery component assembly (also not shown).
  • the fourth representative gasket example may have first 410 and second 460 axial end surfaces including stress concentration features 420,470 including regular arrangements of blind cavities 425,475 projecting into both the axial end surfaces 410,460.
  • the stress concentration cavities 425,475 remove gasket body material from the region immediately adjacent both intended gasket sealing regions to thereby form lips 430,480 on the axial end surfaces 410,460 which lips desirable project axially outward beyond the corresponding axial end surfaces 410,460 prior to making the joint.
  • Each cavity among the plurality of stress concentration cavities 425,475 has individual volumetric axes 421,471 forming an acute angle with the plane of the associated gasket axial end surface 410,460 thereby forming a plurality of undercuts of the gasket sealing regions.
  • the lips 430,480 each include an axially prominent protective ridge 432,482 and an immediately adjacent sealing surface 434,484.
  • the protective ridges 432,482 may be damaged but the sealing surfaces 434,484 will remain pristine.
  • the sealing surfaces 434,484 are circumferential sectors exhibiting a generally constant angle with respect to the gasket bore 455 axis, and also to the plane of each associated axial end surface 410,460, but may advantageously have a slightly convex shape for some gasket materials.
  • the gasket sealing region lips 430,480 may be appreciated as resembling opposite directed frustoconical shells flaring outward from the gasket bore 455 toward the radial outer surface 490.
  • the radial extent of the sealing surfaces 434,484 is beneficially greater than the reduced contact area of prior designs so as to create a radially much longer leak resisting contact between the gasket and fluid conduit port face.
  • the protective ridges 432,482 When the gasket 400 is made into a leak tight fluid pathway joint by axial compression between opposing flat apparatus faces, the protective ridges 432,482 will be plastically deformed and the sealing surfaces 434,484 slightly deflected radially outward in concert with further axial compression, as a consequence of the undercut cavities 425,475 allowing the gasket lips 430,480 to controllably bend.
  • the axial end surfaces 410,460 may function as relatively hard stops preventing excessive compression of the gasket lips 430,480 by contacting the face surface of the corresponding fluid conduit ports.
  • Very minor compositional and manufacturing variations within the gasket 400 may cause an axial end surface 410,460 to contact the corresponding fluid conduit port face before the other axial end surface 460,410 during the process of gasket compression as the joint is being made.
  • the noted hard stop function ensures both opposed gasket lips 430,480 are eventually compressed equally and fully.
  • end regions 457,458 of the fluid pathway bore 455 will preferably have less axial extent than the axial end surfaces 410,460 to prevent formation of virtual leak cavities within the fluid pathway when the joint is fully mated.
  • Designers may also understand the existence of unaltered central material within the gasket body 450 makes deformation behavior of the first axial end surface lip 430 substantially independent of the deformation behavior of the second axial end surface lip 480.
  • first and second axial end surface shapes acting relatively independently also contemplates a design combination comprised of a stress concentration groove on one face and a plurality of stress concentration cavities on the opposite face.
  • the stress concentration feature on one face may be similar to the stress concentration grooves 120,170 of Figs.lA-C, or the stress concentration grooves 220,270 of Figs.2A-C, while the stress concentration feature on the opposing face may include a plurality of stress concentration cavities similar to the stress concentration cavities 325,326,327 of Figs.3A-C, or the stress concentration cavities 425,475 of Figs.4A-B.
  • a plurality of stress concentration cavities when a plurality of stress concentration cavities is designed into both the first and second axial end surfaces, then the individual volumetric axes of opposing cavities may be circumferentially aligned as in Fig.4A or may alternatively be interleaved as in Fig.5A and Fig.5B illustrating a fifth gasket example 500.
  • Corresponding elements in Fig.5A include a gasket body 550, an inner radial surface 556, a first axial end surface 510 with lip 530 and associated blind cavities 525, and a second axial end surface 560 with lip 580 and associated blind cavities 565.
  • Fig.5B shows how the cross sectioned illustration reveals the cavities of one axial end surface are substantially anti-phase interposed with the cavities of the opposite axial end surface.
  • Fig.5A illustrates a gasket wherein the radial outer surface 590 lacks a groove for a keeper since the keeper groove is optional in all examples.
  • Fig.6A and Fig.6B illustrate how a seal is effected when a ring-shaped metallic gasket of the fourth exemplary shape 400 is compressed between opposing apparatus elements 605,660 having simple flat surfaces 630,680 in contact with the gasket 400.
  • the sealing region lips 430,480 initially contact the fluid delivery apparatus element flat surfaces 630,680 along the protective ridges 432,482 when the apparatus elements 605,660 are urged toward each other by fasteners or mating component threads as illustrated in Fig.6A.
  • a thin keeper 495 engaged with an exterior circumferential groove 492 may assist with positioning of the gasket 400 between the opposing fluid conduit ports 610,690.
  • the opposing apparatus elements 605,660 abut the gasket axial end surfaces 410,460 and the gasket lips 430,480 have bent outward so that the sealing surfaces 434,484 have come into flat contact with the corresponding fluid delivery apparatus element fluid conduit port face surfaces 614,664.
  • the radial extent of the radial outer surface 490 of the gasket 400 is preferably less than the radial extent of the flat surfaces 630,680 of the opposing apparatus elements, both before and after compression between the opposing apparatus elements 605,660, as shown in Figs.6A and 6B.
  • a sixth representative example 700 of Applicant's ring-shaped gasket is illustrated in
  • the gasket body 750 is pierced through by a hole defining a fluid pathway bore 755 comprising an inner radial surface 756 which may conveniently be substantially straight to reduce fluid turbulence in the fluid delivery apparatus coupling joint.
  • the outer radial extent of the gasket body is defined by a radial outer surface 790 which may have a circumferential groove 792 to accommodate a keeper (not shown in Fig.7A nor Fig.7B) for locating the gasket 700 in a fluid delivery component assembly (also not shown).
  • the sixth representative gasket example may have a first axial end surface 710 including a stress concentration feature that includes a regular arrangement of blind cavities 718,719,720, et seq. & 725,726,727 et seq. projecting into the first axial end surface 710.
  • the stress concentration cavities 725,etc. remove gasket body material from the region immediately adjacent the intended gasket sealing region to thereby form a lip 730 on the first axial end surface 710 which lip desirably projects axially outward beyond the corresponding first axial end surface 710 prior to making the joint.
  • the lip 730 includes an axially prominent protective ridge 732 and an immediately adjacent sealing surface 734.
  • the sealing surface 734 is a circumferential sector exhibiting a generally constant angle with respect to the gasket bore 755 axis, and also to the plane of the associated first axial end surface 710, but may advantageously have a slightly convex shape for some gasket materials.
  • the radial extent of the sealing surface 734 is beneficially greater than the reduced contact area of prior designs so as to create a radially much longer leak resisting contact between the gasket and fluid conduit port face.
  • the protective ridge 732 will be plastically deformed and the sealing surface 734 slightly deflected radially outward in concert with further axial compression, as a consequence of the undercut cavities 725, etc. allowing the gasket lip 730 to controllably bend.
  • a groove stress concentration feature as previously described in the first and second gasket examples, may alternatively be used on the first axial end surface of the presently described gasket example.
  • FIG.7C Such an alternative example 701 of Applicant's sixth representative gasket example is illustrated in Fig.7C, in which reference designators 710,720,730,732,734, and 757 correspond to features 110,120,130,132,134, and 157 described previously with respect to Figs. lA-C. Although not shown, it should be appreciated that a stress concentration groove similar to that described with respect to Figs.2A-C could alternatively be used.
  • the sixth representative gasket example may have a second axial end surface 760 including an exterior chamfer 770 blending into the radial outer surface 790 for convenience.
  • a sealing region 785 initially flat in a radial direction suitable for use with fluid delivery elements having annular projections surrounding circular conduit openings, is formed as a circumferential sector generally perpendicular with respect to the gasket bore 755 axis and parallel to the plane of the second axial end surface 760.
  • the axial extent of the initially flat sealing region 785 may advantageously be less than the second axial end surface 760 so as to be effectively recessed within the second axial end surface 760.
  • the second axial end surface 760 may be damaged but the sealing surface 785 will remain pristine.
  • an annular projection will cause permanent plastic deformation of the gasket sealing region 785 as further described below.
  • the first axial end surface 710 may function as a relatively hard stop preventing excessive compression of the gasket lip 730 by contacting the face surface of a corresponding first fluid conduit port. It should also be appreciated that the first end region 757 of the fluid pathway bore 755 will preferably have less axial extent than the first axial end surface 710 to prevent formation of virtual leak cavities within the fluid pathway when the joint is fully mated. Designers may also understand the existence of unaltered central material within the gasket body 750 makes deformation behavior of the first axial end surface lip 730 substantially independent of the deformation behavior of the second axial end surface sealing region 785. This independence of deformation behavior is used to advantage in the sixth representative gasket example as further described below with respect to Fig.8A and Fig.8B.
  • Fig.8A and Fig.8B illustrate how a seal is effected when a ring-shaped metallic gasket of the sixth exemplary shape 700 is compressed between opposing fluid delivery apparatus elements 805,860.
  • Fig.8A illustrates the sixth representative gasket located by a keeper 795 and positioned between an upper fluid conduit port counterbore 830 having a flat bottom and a lower fluid conduit port counterbore 880 having a shaped annular projection 885 prior to application of axial sealing force to make the joint.
  • Fig.8B illustrates the sixth representative gasket 700 between corresponding fluid conduit port counterbores after the joint has been made.
  • the sealing region lip 730 initially contacts the fluid delivery apparatus element flat surface 830 along the protective ridge 732, and the initially flat sealing region 785 contacts the annular projection 885, when the apparatus elements 805,860 are urged toward each other by fasteners (or mating component threads or other means) as illustrated in Fig.8 A.
  • the thin keeper 795 engaged with an exterior circumferential groove 792 may assist with positioning of the gasket 700 between the opposing fluid conduit ports 810,890.
  • the axial extent of the second axial end surface 760 may be chosen in conjunction with thickness of the keeper 795 so as to ensure a gap between the second axial end surface 760 and the bottom of the lower fluid conduit port counterbore 880.
  • a gap may be desired to ensure sealing occurs only between the shaped annular projection 885 and the initially flat (but now deformed) second axial end surface sealing region 785 while also allowing helium leak detection methods of testing joint integrity.
  • the radial extent of the radial outer surface 790 of the gasket 700 is preferably less than the radial extent of the counterbore 830 of the fluid delivery apparatus element 805 and the radial extent of the counterbore 880 of the fluid delivery apparatus element 860, both before and after compression between the opposing apparatus elements 805,860, as shown in Figs.8A and 8B.
  • a seventh representative example 900 of Applicant's ring-shaped gasket is illustrated in Fig.9A and Fig.9B and is similar to the first and second representative examples.
  • the gasket body 950 is pierced through by a hole 951 defining a fluid pathway bore 955 comprising an inner radial surface 956 which may conveniently be substantially straight to reduce fluid turbulence in the fluid delivery apparatus coupling joint.
  • the outer radial extent of the gasket body is defined by a radial outer surface 990 which may again have a circumferential groove 992 to
  • a keeper (not shown in Fig.9A nor Fig.9B) for locating the gasket 900 in a fluid delivery component assembly (also not shown).
  • the presence of groove 992 to accommodate a keeper is optional in this representative example, as previously described with respect to the prior representative gasket examples.
  • the seventh representative gasket example may have first 910 and second 960 axial end surfaces including stress concentration features 920,970 which again appear as grooves in the axial end surfaces 910,960.
  • the stress concentration grooves 920,970 remove gasket body material from the region immediately adjacent both intended gasket sealing regions to thereby form lips 930,980 on the axial end surfaces 910,960 which lips desirably project axially outward beyond the corresponding axial end surfaces 910,960 prior to making the joint.
  • the stress concentration grooves 920,970 have inner walls closest the gasket radial inner surface 956 that form an acute angle with the plane of each associated gasket axial end surface 910,960 thereby forming an undercut of each gasket sealing region.
  • the stress concentration grooves 920,970 of this seventh representative gasket example have radially inner and outer groove walls that are substantially parallel to one another thereby defining a U-shaped groove, rather than the substantially V-shaped grooves 220,270 depicted in the second representative gasket example of Figs.2A and 2B.
  • the substantially parallel radially inner and outer groove walls of the stress concentration grooves 920,970 thereby each form an acute angle with the plane of each associated gasket axial end surface 910,960.
  • the lips 930,980 each include an axially prominent protective ridge 932,982 and an immediately adjacent sealing surface 934,984.
  • the protective ridges 932,982 may be damaged but the sealing surfaces 934,984 will remain pristine.
  • the sealing surfaces 934,984 are circumferential sectors exhibiting a generally constant angle with respect to the gasket bore 955 axis, and also to the plane of each associated axial end surface 910,960, but as previously described may advantageously have a slightly convex shape for some gasket materials. It will be appreciated that the gasket sealing region lips 930,980 may again resemble opposite directed frustoconical shells flaring outward from the gasket bore 955 toward the radial outer surface 990. As in the previously described representative gasket examples, the radial extent of the sealing surfaces 934,984 is beneficially greater than the reduced contact area of prior designs so as to create a radially much longer leak resisting contact between the gasket and fluid conduit port face.
  • the axial end surfaces 910,960 may function as relatively hard stops preventing excessive compression of the gasket lips 930,980 by contacting the face surface of the corresponding fluid conduit ports.
  • Very minor compositional and manufacturing variations within the gasket 900 may cause an axial end surface 910,960 to contact the corresponding fluid conduit port face before the other axial end surface 960,910 during the process of gasket compression as the joint is being made.
  • the noted hard stop function ensures both opposed gasket lips 930,980 are eventually compressed equally and fully.
  • the end regions 957,958 of the fluid pathway bore 955 will preferably have less axial extent than the axial end surfaces 910,960 to prevent formation of virtual leak cavities within the fluid pathway when the joint is fully mated.
  • a ring-shaped gasket may be provided with a stress concentration groove on one axial end surface that is similar to the stress concentration groove 120 illustrated in Figs. lA-lC, or the stress
  • ring-shaped gaskets may be provided with a stress concentration feature on one axial end surface that is similar to the stress concentration grooves 920,970 described above, with the opposing axial end surface being constructed to form a fluid tight seal with fluid delivery elements having annular projections surrounding circular conduit openings in the manner previously described with respect to Figs.7 A and 7B.
  • Fig.10A and Fig.10B illustrate how a seal is effected when a ring-shaped metallic gasket of the seventh exemplary shape 900 is compressed between opposing apparatus elements 605,660 having simple flat surfaces 630,680 in contact with the gasket 900.
  • the sealing region lips 930,980 initially contact the fluid delivery apparatus element flat surfaces 630,680 along the protective ridges 932,982 when the apparatus elements 605,660 are urged toward each other by fasteners or mating component threads as illustrated in Fig.1 OA.
  • a thin keeper 995 engaged with an exterior circumferential groove 992 of the gasket 900 may assist with positioning of the gasket 900 between the opposing fluid conduit ports 610,690. As illustrated in Fig.
  • the opposing apparatus elements 605,660 abut the gasket axial end surfaces 910,960 and the gasket lips 930,980 have bent outward so that the sealing surfaces 934,984 have come into flat contact with the corresponding fluid delivery apparatus element fluid conduit port face surfaces 614,664.
  • the radial extent of the radial outer surface 990 of the gasket 900 is again preferably less than the radial extent of the flat surfaces 630,680 of the opposing apparatus elements, both before and after compression between the opposing apparatus elements 605,660 as shown in Figs. lOA and 10B.
  • gasket designs described herein are particularly useful in high purity fluid delivery apparatus situations wherein gasket materials may have mechanical properties similar to the apparatus elements intended to be sealingly joined in fluid communication.
  • the use of fluid delivery system components made from high purity 316L stainless steel with fluid conduit ports having flat-bottomed counterbores is well known.
  • the difficulties of achieving molecular level leak tightness with such components can be lessened by using the described designs.
  • high purity liquid delivery apparatus made from polymer materials there are essentially identical problems and these designs are similarly applicable to those situations too.
  • the various gasket designs described herein permit opposing axial faces of the gasket to be independently tailored to meet the physical and mechanical requirements of the adjacent face surface of the fluid delivery apparatus against which they abut.
  • the gasket sealing surface on one side of the gasket may be constructed to sealingly engage an annular projection surrounding a circular conduit opening in one apparatus element, while the opposing side of the gasket may be constructed to sealingly engage a recessed flat surface surrounding a circular conduit opening in an opposing apparatus element.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gasket Seals (AREA)
  • Flanged Joints, Insulating Joints, And Other Joints (AREA)
  • Joints With Pressure Members (AREA)
  • Joints With Sleeves (AREA)
  • Sealing Material Composition (AREA)
PCT/US2015/026093 2014-04-17 2015-04-16 Ultra-seal gasket for joining high purity fluid pathways WO2015161029A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
IL284910A IL284910B2 (he) 2014-04-17 2015-04-16 אטם אולטרא–אטום לחיבור דרכי נוזלים בעלי טוהר גבוה
KR1020167028786A KR102357624B1 (ko) 2014-04-17 2015-04-16 고순도 유체 통로를 접합하기 위한 초밀봉 가스켓
SG11201608262UA SG11201608262UA (en) 2014-04-17 2015-04-16 Ultra-seal gasket for joining high purity fluid pathways
IL304860A IL304860A (he) 2014-04-17 2015-04-16 אטם אולטרא–אטום לחיבור דרכי נוזלים בעלי טוהר גבוה
JP2017506623A JP6531162B2 (ja) 2014-04-17 2015-04-16 高純度流体通路を接合するための超密閉ガスケット
CN201580020189.3A CN106233047B (zh) 2014-04-17 2015-04-16 用于接合高纯度流体通路的超密封垫圈
KR1020237039496A KR20230163573A (ko) 2014-04-17 2015-04-16 고순도 유체 통로를 접합하기 위한 초밀봉 가스켓
EP21153442.5A EP3835629A1 (en) 2014-04-17 2015-04-16 Gasket with ultra-sealing effect for joining high purity fluid pathways
KR1020227002878A KR102480804B1 (ko) 2014-04-17 2015-04-16 고순도 유체 통로를 접합하기 위한 초밀봉 가스켓
EP15779865.3A EP3132162B1 (en) 2014-04-17 2015-04-16 Ultra-seal gasket for joining high purity fluid pathways
KR1020227044680A KR102604479B1 (ko) 2014-04-17 2015-04-16 고순도 유체 통로를 접합하기 위한 초밀봉 가스켓
IL248085A IL248085B (he) 2014-04-17 2016-09-27 אטם אולטרא–אטום לחיבור דרכי נוזלים בעלי טוהר גבוה

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461980823P 2014-04-17 2014-04-17
US61/980,823 2014-04-17

Publications (1)

Publication Number Publication Date
WO2015161029A1 true WO2015161029A1 (en) 2015-10-22

Family

ID=54321663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/026093 WO2015161029A1 (en) 2014-04-17 2015-04-16 Ultra-seal gasket for joining high purity fluid pathways

Country Status (9)

Country Link
US (9) US9739378B2 (he)
EP (2) EP3835629A1 (he)
JP (1) JP6531162B2 (he)
KR (4) KR102357624B1 (he)
CN (2) CN106233047B (he)
IL (3) IL284910B2 (he)
SG (2) SG11201608262UA (he)
TW (5) TWI687611B (he)
WO (1) WO2015161029A1 (he)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7376657B1 (ja) 2022-09-22 2023-11-08 三菱電線工業株式会社 環状金属シール、環状金属シールの取付構造及び環状金属シールの取付方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015179155A1 (en) 2014-05-19 2015-11-26 Microflex Technologies Llc Ring seal with sealing surface extension
DE102016215304A1 (de) * 2016-08-17 2018-02-22 Robert Bosch Gmbh Elektromagnetisch betätigbares Saugventil und Kraftstoff-Hochdruckpumpe
US20180073235A1 (en) * 2016-09-09 2018-03-15 Fluidmaster, Inc. Gasket system and methods of use
JP7015672B2 (ja) * 2017-10-24 2022-02-03 Nok株式会社 ガスケット
JP6948911B2 (ja) * 2017-10-24 2021-10-13 Nok株式会社 ガスケット
FR3090063B1 (fr) * 2018-12-14 2021-03-19 Commissariat Energie Atomique Joint d’étanchéité métallique comportant une couche externe d’étanchéité texturée
JP7382150B2 (ja) * 2019-03-25 2023-11-16 エドワーズ株式会社 真空ポンプ、及び、真空ポンプに用いられるシール部材
GB201908783D0 (en) * 2019-06-19 2019-07-31 Tokamak Energy Ltd Metal sealing ring and method of forming a metal-to-metal seal
WO2021221449A1 (ko) * 2020-04-29 2021-11-04 주식회사 케이엠더블유 필터 및 이의 제조 방법
JP7193516B2 (ja) * 2020-11-17 2022-12-20 三菱電線工業株式会社 金属シール
US11555565B2 (en) * 2020-12-23 2023-01-17 Fiskars Finland Oy Ab Seal ring and hose connector assembly
WO2023219876A1 (en) * 2022-05-10 2023-11-16 Frederick Rezaei System and method for sealing a fluid pathway

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB558544A (en) 1943-01-01 1944-01-10 Angus George Co Ltd Improvements in oil seals
US4303251A (en) 1978-12-04 1981-12-01 Varian Associates, Inc. Flange sealing joint with removable metal gasket
US4854597A (en) 1988-01-22 1989-08-08 General Components, Inc. Metal gasket having conical and radial sealing surfaces and method of using the gasket with a tubular element
US5002290A (en) * 1989-03-07 1991-03-26 Procal Static seal
US5261677A (en) 1991-07-30 1993-11-16 Nitto Kohki Co., Ltd. Seal ring
US5505464A (en) 1989-08-11 1996-04-09 General Components, Inc. Minimum dead volume fitting
US5673946A (en) 1995-07-07 1997-10-07 Ewal Manufacturing Co., Inc. Gasket assembly for a fluid coupling
US5730448A (en) 1997-01-03 1998-03-24 Eg&G Pressure Science, Inc. Seal retainer plate
US5797604A (en) 1995-12-25 1998-08-25 Ckd Corporation Metal gasket
US5984318A (en) 1996-07-16 1999-11-16 Ckd Corporation Gasket holder
US5992463A (en) 1996-10-30 1999-11-30 Unit Instruments, Inc. Gas panel
US6135155A (en) 1995-05-31 2000-10-24 Fujikin Incorporated Fluid control device
US6357760B1 (en) 2000-05-19 2002-03-19 Michael Doyle Ring seal
US6409180B1 (en) 2000-04-21 2002-06-25 Perkinelmer, Inc. Metallic seal
US6769697B1 (en) * 1999-09-09 2004-08-03 Ace Inc. Gasket
US20050001388A1 (en) * 2003-07-01 2005-01-06 Thierry Travers Annular gasket for a fluid transfer coupling, and a coupling fitted with such a gasket
US6845984B2 (en) 2000-11-27 2005-01-25 Michael Doyle Keeper for positioning ring seals
US6945539B2 (en) 2002-02-20 2005-09-20 Garlock Sealing Technologies Llc Seal retainer
US7140647B2 (en) 2000-10-05 2006-11-28 Tadahiro Ohmi Fluid coupling
US20090261534A1 (en) * 2008-04-18 2009-10-22 Le Joint Francais Sealing gasket and uses of such a gasket

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1819036A (en) * 1925-11-23 1931-08-18 William F Oberhuber Disk pipe joint
US2926937A (en) * 1955-07-05 1960-03-01 Specialties Dev Corp Fluid tight joint
US2841429A (en) * 1955-10-04 1958-07-01 Parker Hannifin Corp Sealing ring and joint
US2888281A (en) * 1957-01-23 1959-05-26 Chicago Rawhide Mfg Co Self-compensating seal
US3208758A (en) 1961-10-11 1965-09-28 Varian Associates Metal vacuum joint
US3158376A (en) * 1963-05-10 1964-11-24 Minnesota Rubber Co Low pressure seal
US3521910A (en) 1968-11-12 1970-07-28 Cajon Co Tube coupling
US4266576A (en) 1977-11-30 1981-05-12 Eaton Corporation Flow control device in a protective housing
US4344459A (en) 1980-11-03 1982-08-17 Nelson Walter R Flow control device employing elastomeric element
US4650227B1 (en) 1982-08-23 2000-11-28 Cajon Co Fluid coupling
US4552389A (en) 1982-08-23 1985-11-12 Cajon Company Fluid coupling
US4557296A (en) 1984-05-18 1985-12-10 Byrne Thomas E Meter tube insert and adapter ring
US4830057A (en) 1987-03-18 1989-05-16 Hendrickson Brothers Screen and flow regulator assembly
US4880034A (en) 1987-08-10 1989-11-14 Man Design Co., Ltd. Fluid pressure regulating apparatus
FI81186C (fi) * 1989-02-24 1990-09-10 Erkki Rinne Taetning.
DE4029183A1 (de) 1990-09-14 1992-03-19 Dieter Kuhn Durchflussregler
US5163721A (en) 1990-10-24 1992-11-17 Cajon Company Fluid coupling with gasket retainer having interlocking portions
US5069252A (en) 1990-12-18 1991-12-03 Daniel Industries, Inc. Orifice system intermediate interface
US5085250A (en) 1990-12-18 1992-02-04 Daniel Industries, Inc. Orifice system
US5181542A (en) 1991-02-22 1993-01-26 Daniel Industries, Inc. Orifice system mounting assembly
JP2540559Y2 (ja) 1991-05-20 1997-07-09 清原 まさ子 管継手用リテーナ
US5401065A (en) 1992-05-11 1995-03-28 Kabushiki Kaisha Toshiba Fluid coupling
JP3431631B2 (ja) 1993-10-06 2003-07-28 ユニット インストルメンツ インコーポレーテッド プロセス流体の処理装置
JP3388291B2 (ja) 1993-10-28 2003-03-17 忠弘 大見 管継手
US5423580A (en) 1994-01-26 1995-06-13 Cajon Company Fluid coupling with gasket retainer
CA2176652C (en) 1995-08-09 2007-07-17 Tadahiro Ohmi Pipe joint
CN1165260A (zh) * 1996-05-10 1997-11-19 益冈照明 多叶片状横截面的o形环
US5904381A (en) 1996-10-15 1999-05-18 Ohmi,Tadahiro, Miyagi Fluid coupling
US5713582A (en) 1997-01-03 1998-02-03 Eg&G Pressure Science, Inc. Seal retainer
US6623047B2 (en) 1997-06-16 2003-09-23 Swagelok Company Tube coupling
JP3876351B2 (ja) 1997-06-18 2007-01-31 忠弘 大見 管継手
US6318766B1 (en) 1997-09-15 2001-11-20 Swagelok Company Face seal gland with raised peripheral ring having circumferentially spaced recesses
JPH11108198A (ja) * 1997-10-01 1999-04-20 Nok Corp 密封装置
US6158455A (en) 1998-08-06 2000-12-12 Marshall; William H. Antifreeze cap for faucet
FR2806144B1 (fr) * 2000-03-09 2002-04-26 Legris Sa Joint d'etancheite annulaire de section quadrilobe
US6539968B1 (en) 2000-09-20 2003-04-01 Fugasity Corporation Fluid flow controller and method of operation
US6561521B2 (en) * 2001-03-27 2003-05-13 Fmc Technologies, Inc. Metal-to-metal seal with soft metal insert
JP3986380B2 (ja) * 2002-06-26 2007-10-03 トピー工業株式会社 履帯用シール
US7045936B2 (en) * 2002-10-01 2006-05-16 Hitachi Electronic Devices (Usa), Inc. Projection coupler with contrast ribs
US7169231B2 (en) 2002-12-13 2007-01-30 Lam Research Corporation Gas distribution system with tuning gas
CA2527865C (en) * 2003-06-16 2011-10-25 G A Gold Seal Development Ltd Pressure resistant static and dynamic expeller shaft sealing
JP4193612B2 (ja) 2003-06-30 2008-12-10 オムロン株式会社 整流素子の取付け構造
FR2866410B1 (fr) 2004-02-17 2006-05-19 Gaz De France Conditionneur d'ecoulement pour canalisation de transport de fluide
US7086131B2 (en) * 2004-05-14 2006-08-08 Victaulic Company Deformable mechanical pipe coupling
SE527822C2 (sv) * 2004-09-23 2006-06-13 G A Gold Seal Dev Ltd C O Kpmg Tätningssystem för förband
JP4589686B2 (ja) * 2004-09-28 2010-12-01 興国インテック株式会社 二重吸着ガスケット
WO2006038328A1 (ja) * 2004-09-30 2006-04-13 Eagle Engineering Aerospace Co., Ltd. シール部品
US7222643B2 (en) 2004-10-21 2007-05-29 Vernay Laboratories, Inc. Internal post flow control
US7314590B2 (en) * 2005-09-20 2008-01-01 Bayer Materialscience Llc Method of preparing a coated molded plastic article
EP1959171B1 (en) * 2005-12-06 2018-09-12 NOK Corporation Rod sealing system
FR2909007B1 (fr) * 2006-11-24 2009-06-26 Cummins Filtration Sarl Cartouche de filtration destinee a cooperer avec un tube central, comprenant un joint d'etancheite monte dans une cavite pour cooperer avec ledit tube, ledit joint etant retenu radialement
DE602007003556D1 (de) * 2007-03-07 2010-01-14 Joint Francais Y-Dichtung, Verfahren zur Herstellung einer solchen Dichtung und ihre Verwendung zum Verringern der aufgewendeten Kräfte beim Einstecken eines Verbinders
FR2928844B1 (fr) * 2008-03-21 2010-12-17 Cummins Filtration Ensemble de filtrage du type comprenant un tube central destine a cooperer avec une cartouche de filtration, un joint d'etancheite etant monte de facon permanente sur le tube central
JP5204550B2 (ja) * 2008-05-20 2013-06-05 国立大学法人東北大学 メタルガスケット
CN201461935U (zh) * 2009-07-30 2010-05-12 南方天合底盘系统有限公司 高强度密封皮圈
EP2472148B1 (en) * 2009-08-26 2017-08-16 Toki Engineering Co., Ltd. Metal seal ring and conduit device using metal seal ring
CN201651299U (zh) * 2010-03-09 2010-11-24 广东联塑科技实业有限公司 一种内衬pvc-u钢塑复合管件密封圈
CN201659188U (zh) * 2010-04-23 2010-12-01 李富龙 一种内高压成形管件端部的密封冲头
EP2410216B1 (en) * 2010-06-10 2014-12-31 Wartsila Japan Ltd. Seal ring and stern tube sealing device
US8356843B2 (en) 2010-09-27 2013-01-22 Hamilton Sundstrand Corporation Refrigeration system connection fitting
CN103180643B (zh) 2010-12-23 2015-03-25 伊格尔工业股份有限公司 利用了磁性流体的密封装置
CN201924438U (zh) * 2011-01-19 2011-08-10 厦门市鹭声橡塑有限公司 抽水马桶排水管鱼骨型密封圈
JP5973781B2 (ja) * 2011-07-20 2016-08-23 三菱電線工業株式会社 耐腐食性複合シール構造
CN202209425U (zh) * 2011-08-31 2012-05-02 徐州马龙节能环保设备有限公司 管磨机主轴承支撑座壳体与中空轴间的密封结构
CN202510708U (zh) * 2012-03-29 2012-10-31 上海通用汽车有限公司 一种汽车高压转向油管密封垫片
JP5102908B1 (ja) * 2012-04-12 2012-12-19 ニチアス株式会社 金属ガスケット
DE102013214370A1 (de) * 2012-08-02 2014-02-06 Schaeffler Technologies AG & Co. KG Nehmerzylinder für eine hydraulische Ausrückanordnung zur Betätigung einer Kupplung
CN203384366U (zh) * 2013-08-08 2014-01-08 安徽宇金机电工程有限公司 一种改进型密封垫

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB558544A (en) 1943-01-01 1944-01-10 Angus George Co Ltd Improvements in oil seals
US4303251A (en) 1978-12-04 1981-12-01 Varian Associates, Inc. Flange sealing joint with removable metal gasket
US4854597A (en) 1988-01-22 1989-08-08 General Components, Inc. Metal gasket having conical and radial sealing surfaces and method of using the gasket with a tubular element
US5002290A (en) * 1989-03-07 1991-03-26 Procal Static seal
US5505464A (en) 1989-08-11 1996-04-09 General Components, Inc. Minimum dead volume fitting
US5261677A (en) 1991-07-30 1993-11-16 Nitto Kohki Co., Ltd. Seal ring
US6135155A (en) 1995-05-31 2000-10-24 Fujikin Incorporated Fluid control device
US5673946A (en) 1995-07-07 1997-10-07 Ewal Manufacturing Co., Inc. Gasket assembly for a fluid coupling
US5758910A (en) 1995-07-07 1998-06-02 Parker-Hannifin Corporation Gasket assembly for a fluid coupling
US5797604A (en) 1995-12-25 1998-08-25 Ckd Corporation Metal gasket
US5984318A (en) 1996-07-16 1999-11-16 Ckd Corporation Gasket holder
US5992463A (en) 1996-10-30 1999-11-30 Unit Instruments, Inc. Gas panel
US5730448A (en) 1997-01-03 1998-03-24 Eg&G Pressure Science, Inc. Seal retainer plate
US6769697B1 (en) * 1999-09-09 2004-08-03 Ace Inc. Gasket
US6409180B1 (en) 2000-04-21 2002-06-25 Perkinelmer, Inc. Metallic seal
US6357760B1 (en) 2000-05-19 2002-03-19 Michael Doyle Ring seal
US6688608B2 (en) 2000-05-19 2004-02-10 Michael Doyle Ring seal
US7140647B2 (en) 2000-10-05 2006-11-28 Tadahiro Ohmi Fluid coupling
US6845984B2 (en) 2000-11-27 2005-01-25 Michael Doyle Keeper for positioning ring seals
US6945539B2 (en) 2002-02-20 2005-09-20 Garlock Sealing Technologies Llc Seal retainer
US20050001388A1 (en) * 2003-07-01 2005-01-06 Thierry Travers Annular gasket for a fluid transfer coupling, and a coupling fitted with such a gasket
US20090261534A1 (en) * 2008-04-18 2009-10-22 Le Joint Francais Sealing gasket and uses of such a gasket

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7376657B1 (ja) 2022-09-22 2023-11-08 三菱電線工業株式会社 環状金属シール、環状金属シールの取付構造及び環状金属シールの取付方法
WO2024062740A1 (ja) * 2022-09-22 2024-03-28 三菱電線工業株式会社 環状金属シール、環状金属シールの取付構造及び環状金属シールの取付方法

Also Published As

Publication number Publication date
TWI736124B (zh) 2021-08-11
TW201923264A (zh) 2019-06-16
CN108980353A (zh) 2018-12-11
IL304860A (he) 2023-10-01
US20180306322A1 (en) 2018-10-25
IL248085A0 (he) 2016-11-30
JP2017514087A (ja) 2017-06-01
US11781651B2 (en) 2023-10-10
US20180259071A1 (en) 2018-09-13
TW201544739A (zh) 2015-12-01
US9970547B2 (en) 2018-05-15
US20170356549A1 (en) 2017-12-14
TW202020344A (zh) 2020-06-01
JP6531162B2 (ja) 2019-06-12
CN106233047B (zh) 2018-10-12
KR102357624B1 (ko) 2022-02-04
KR20220019064A (ko) 2022-02-15
TWI789323B (zh) 2023-01-01
US20180259070A1 (en) 2018-09-13
US11300205B2 (en) 2022-04-12
EP3132162A4 (en) 2018-03-14
CN108980353B (zh) 2021-02-02
US10982768B2 (en) 2021-04-20
US20200191271A1 (en) 2020-06-18
US20240068568A1 (en) 2024-02-29
EP3835629A1 (en) 2021-06-16
KR20230003420A (ko) 2023-01-05
IL284910A (he) 2021-08-31
US20150300495A1 (en) 2015-10-22
US11255433B2 (en) 2022-02-22
KR102480804B1 (ko) 2022-12-26
TW202242283A (zh) 2022-11-01
CN106233047A (zh) 2016-12-14
US20210310560A1 (en) 2021-10-07
TWI687611B (zh) 2020-03-11
US9739378B2 (en) 2017-08-22
SG10202000471YA (en) 2020-03-30
KR20230163573A (ko) 2023-11-30
US10422429B2 (en) 2019-09-24
EP3132162A1 (en) 2017-02-22
US10533662B2 (en) 2020-01-14
KR20160145026A (ko) 2016-12-19
TW202314146A (zh) 2023-04-01
US20200182354A1 (en) 2020-06-11
TW202138701A (zh) 2021-10-16
SG11201608262UA (en) 2016-10-28
IL284910B1 (he) 2023-09-01
EP3132162B1 (en) 2021-01-27
TWI652424B (zh) 2019-03-01
KR102604479B1 (ko) 2023-11-22
TWI773416B (zh) 2022-08-01
IL248085B (he) 2021-08-31
IL284910B2 (he) 2024-01-01

Similar Documents

Publication Publication Date Title
US11781651B2 (en) Ultra-seal gasket for joining high purity fluid pathways
JP2017514087A5 (he)
JP6699992B2 (ja) 流体継手用ガスケットおよび流体継手
WO2015179155A1 (en) Ring seal with sealing surface extension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 248085

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2017506623

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167028786

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015779865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015779865

Country of ref document: EP