WO2015160026A1 - 전도성 복합재료 및 그의 제조방법 - Google Patents

전도성 복합재료 및 그의 제조방법 Download PDF

Info

Publication number
WO2015160026A1
WO2015160026A1 PCT/KR2014/004229 KR2014004229W WO2015160026A1 WO 2015160026 A1 WO2015160026 A1 WO 2015160026A1 KR 2014004229 W KR2014004229 W KR 2014004229W WO 2015160026 A1 WO2015160026 A1 WO 2015160026A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composite material
conductive composite
parts
surfactant
Prior art date
Application number
PCT/KR2014/004229
Other languages
English (en)
French (fr)
Inventor
이영태
이준혁
한신호
Original Assignee
이영태
이준혁
한신호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영태, 이준혁, 한신호 filed Critical 이영태
Publication of WO2015160026A1 publication Critical patent/WO2015160026A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/18Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a soft and hard electrically conductive composite material exhibiting an antistatic function and stable mechanical properties, and a method of manufacturing the same.
  • ESD electrostatic discharge
  • composite materials having good mechanical properties are rubber and thermoplastic materials, which are used as electrically conductive materials that exhibit excellent processability, light weight, stretchability and meet ESD requirements.
  • carbon-based particles such as carbon black, carbon nanotube, and graphene are used for this purpose.
  • the electrical conductivity for the antistatic should generally be included in the room temperature 104 ⁇ 1011 ⁇ / sq, the internal content of the conductive particles must be increased to pass the allowable range, the rubber hardness value of the material increases with the content of the conductive particles If so, the mechanical properties of the composite material is inferior.
  • dispersing carbon nanotubes which are more conductive than carbon black, in rubber and thermoplastic plastics, is advantageous for its composition as an antistatic material.
  • dispersion amount of carbon nanotubes is increased compared to rubber and thermoplastic plastics, technical limitations and costs There is a problem of increase, there is a limit that does not become a constant dispersion when the carbon nanotube dispersion amount increases.
  • barriers to the commercialization of carbon nanotubes are high price of CNTs and lack of CNT dispersion technology, and CNTs are not evenly dispersed in the mixture and are concentrated on one side, making it difficult to realize surface resistance for stable ESD.
  • the addition of carbon nanotubes to natural rubber and thermoplastics improves the surface resistance.However, when the natural rubber and thermoplastic composites are mechanically modified, such as by stretching or shrinking, the carbon nanotubes are made from natural rubber and thermoplastics. The stable dispersion of the connection is separated, the conductivity is significantly reduced, the surface resistance value is significantly poor, there is a need for technical development excellent in electrical conductivity while reducing the carbon nanotube content.
  • the present invention has been made to solve the problems of the prior art, to provide a conductive composite material and a method of manufacturing the same, which includes an antistatic function, and prevents the conductive and mechanical property degradation caused by the deformation of the composite material.
  • the purpose is to provide a conductive composite material and a method of manufacturing the same, which includes an antistatic function, and prevents the conductive and mechanical property degradation caused by the deformation of the composite material. The purpose.
  • Thermoplastic resin to be a resin
  • Conductive composite material comprising a.
  • the liquid surfactant preferably has a viscosity of 750 to 850 mPa.s.
  • the surfactant is preferably a fatty derivative containing nitrogen, at least one or more composed of cationic, anionic, amphoteric, and nonionic surfactants.
  • the surfactant is preferably included in 0.01 to 2.5 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • thermoplastic resin is nitrile rubber, natural rubber, acrylic rubber, silicone rubber, epoxy resin, polystyrene styrenic elastomer (TPS), polyolefin resin (TPO), polyurethane resin (thermoplastic polyurethane) , TPU), polyethylene resin (TPEE), polyester resin (TPEE), polyamide resin (TPA), polyvinyl chloride resin (TPVC), phenol resin, and melamine coefficient It may include one or two or more resins selected from the group containing paper.
  • the polyolefin resin is poly propylene (Poly Propylene), polystyrene (Poly Stylene), polyethylene (Poly Ethylene), nylon (nylon), styrene acrylonitrile (Styrene-acrylonitrile), EPDM (ethylene propylene rubber), It may include one or more compounds selected from the group consisting of natural rubber, and SBR (styrene-butadiene rubber).
  • the conductive particles are preferably made of carbon-based particles.
  • the carbon-based particles may be at least one selected from the group consisting of carbon nanotubes, carbon black, and graphene.
  • the conductive particles are preferably 0.02 to 28 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • the conductive composite material may further include a hardness modifier.
  • the hardness modifier may include at least one selected from the group consisting of white oil, dioctylphthalate (DOP), and tricresyl postate (tricresyl postate).
  • DOP dioctylphthalate
  • tricresyl postate tricresyl postate
  • the hardness modifier is preferably included 30 to 110 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • the conductive composite material may further include a dissolution inhibitor.
  • the dissolution inhibiting agent is a solid particle having an average particle diameter of 0.3 ⁇ m 10 ⁇ m, it is preferable to form a gap in which the liquid surfactant is stored between the solid particles and the thermoplastic resin.
  • the dissolution inhibitor is preferably composed of carbon black, TiO 2 or ferric oxide (Fe 2 O 3).
  • the dissolution inhibitor is preferably contained in 0.05 to 1.4 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • the conductive composite material may further include at least one additive selected from the group consisting of UV stabilizers, adhesives, and antioxidants.
  • the conductive particles can be stably dispersed in a composite material such as rubber and thermoplastic, and a conductive composite material having excellent mechanical properties can be produced.
  • FIG. 1 is a conceptual diagram and a SEM photograph of a conductive composite prepared by an embodiment of the present invention.
  • a composite material refers to a material having an effective function by combining two or more kinds of materials having different constituents or shapes in a macroscopically distinct interface with each other.
  • the electrically conductive composite material according to the present invention includes a thermoplastic resin, conductive particles, and a surfactant.
  • the surface resistance of the electrically conductive composite material required by the industrial site may be appropriately 104 ⁇ 1011s / sq at room temperature, which can be controlled by the conductive particles, surfactants and other additives.
  • Thermoplastic resin is used as resin of electrically conductive composite materials, nitrile rubber, natural rubber, acrylic rubber, silicone rubber, epoxy resin, polystyrene styrenic elastomer (TPS), polyolefin resin (TPO) , Polyurethane plastic (TPU), polyethylene resin (TPEE), polyester resin (TPEE), polyamide resin (TPAE), polyvinyl chloride resin (TPVC), It may be one or more than one selected from the group comprising phenolic resin, and melamine resin.
  • the olefin-based may be one or more selected from Poly Propylene, Poly Stylene, Poly Ethylene, nylon, Styrene-acrylonitrile, ethylene propylene rubber (EPDM), natural rubber, and styrene-butadiene rubber (SBR).
  • the conductive particles may be carbon-based particles, for example, carbon nanotubes, carbon black, and graphene may be used.
  • Carbon nanotubes are single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes (MWCNTs). , And one or more selected from the group consisting of rope carbon nanotubes.
  • Single-walled carbon nanotubes and multi-walled carbon nanotubes may be used individually or in combination.
  • Single-walled carbon nanotubes preferably have a diameter of 1 to 10 nm and a length of 1 to 20 nm. It is preferable that it is 5-30 nm and a length is 1-20 nm.
  • the diameter and the length of the single-walled carbon nanotubes and the multi-walled carbon nanotubes represent the circular diameter of one end surface of the carbon nanotubes and the transverse length of the carbon nanotubes, respectively.
  • Limiting the diameter and length of carbon nanotubes is a complex consideration of manufacturing process technologies related to high cost, dispersibility, and synthesis technology, and is not necessarily limited to the above values. May be used.
  • Carbon black may be used as another example of the conductive particles, and may be any one or more than one from the group consisting of Furnace carbon black and thermal carbon black, which are rubber filler carbon blacks.
  • Carbon black may be classified into Hard / Soft Black, High / Low Black, and Tread / Carcass Black according to the particle size, and the particle size of 5 to 500 nm is preferable in the form of fine particles composed of 95% or more of amorphous carbonaceous material. Particles having a particle size of 5 nm or less are not appropriate due to the price increase factor, and particles having a size of 500 nm or more are not suitable for the problem of the carbon black particles falling out of the resin and polluting the surroundings.
  • the particulate form is spherical, linear, ellipsoid, pentagonal, hexahedral, seven-column, eight-sided, cylindrical, hexahedral, hexahedral pillars curved, hexahedral curved corners and their It may have a shape selected from the group consisting of a combination, but is not limited thereto.
  • Carbon black is influenced by the physical and chemical properties of the surface such as particle size or specific surface area at the interface with the resin, the structure of the particle and the type of unsaturated atoms or terminals, and the degree of physical bonding acting at the interface between the carbon black and the binder. This determines the physical properties of the composite material.
  • carbon nanotubes and carbon blacks are used as conductive particles
  • the present invention is not limited thereto, and includes all materials made of at least one combination of carbon nanotubes, carbon black, and electrically conductive carbonized powder. can do.
  • the conductive particles may be 0.02 to 28 parts by weight based on 100 parts by weight of the thermoplastic resin. More preferably, the conductive particles are 0.02 to 3 parts by weight based on 100 parts by weight of the thermoplastic resin. If less than 0.02 parts by weight relative to 100 parts by weight of the thermoplastic resin, which is the conductive particles, the conductivity is weakened, which is inadequate for meeting the antistatic requirements, and when it exceeds 28 parts by weight, difficulty of dispersion increases, and problems such as high cost occur.
  • surfactants are electrically conductive, they can usually be used as antistatic agents in various kinds of plastics, but may be particularly suitable as antistatic agents of polyolefins and polystyrenes.
  • the surfactant when the surfactant is embedded in the resin as a liquid, it is possible to improve the conductivity by connecting the conductive particles dispersed in the resin.
  • ethanol, 2,2'iminobis-, N-coco alkyl derivatives (ETHANOL, 2,2'IMINOBIS-, N-COCO ALKYL DERIVATIVES) and the like can be used. Even if a resin having a mechanical advantage of tension and contraction is repeatedly contracted and expanded, since the liquid surfactant repeats the contracted expansion and expansion along the resin, the conductive particles in the resin can be electrically connected to each other to maintain conductivity. to be.
  • the liquid surfactant preferably has a viscosity of 750 to 850 mPa ⁇ s. If the surfactant is less than 750, there will be a problem that the liquid surfactant is eluted excessively, as will be described later, if it exceeds 850 it is difficult to disperse.
  • the surfactant used in the present invention is not limited as long as it includes nitrogen. That is, the surfactant may include one or two or more of a cationic, anionic, amphoteric, and nonionic surfactant as a fatty derivative containing nitrogen, and may preferably be a cationic and amphoteric surfactant. have.
  • the nitrogen-based cationic surfactants are classified into amine salts composed of primary amines, secondary amines, and tertiary amines and ammonium salts composed of quaternary amines.
  • amine salts include octadecyldiethanolamine, lauryldipolyglycolamine, diethylene triamide stearate and ethanol ethylene diamide.
  • ammonium salt include trimethyldodecyl ammonium bromide and alkyl dibutyl. Dodecyl ammonium bromide, and the like.
  • Nitrogen-based amphoteric surfactants are surfactants that can be charged with negative and positive zwitterions in one molecule, structurally betaine amphoteric surfactants, glycine amphoteric surfactants, alanine amphoteric surfactants, and sulfo It can be divided into betaine amphoteric surfactant.
  • aliphatic surfactants containing these structures include dioctylethylenetriaminoacetic acid, dodecyldiaminoethylglycine hydrochloride, and the like.
  • the surfactant used in the embodiments of the present invention may be a surfactant including an amine or a modified amine, and an example of the amine or modified amine may be represented by the following formula.
  • R is saturated or unsaturated, substituted or unsubstituted, branched with 8 to 24 carbon atoms
  • R 1 and R 2 may be the same or different and represent hydrogen or 1 to 24 carbon atoms It may be selected from a hydrocarbon chain having a).
  • R has the same meaning as in Chemical Formula 1, and R3 is a straight or branched hydrocarbon radical having 1 to 6 carbon atoms.
  • R has the same meaning as in Formula 1, x and y are independently 0, 1 or 2, and each R 4 is independently selected from H or CH 3.
  • R and R3 have the same meaning as in Formula 2, x, y and z are independently selected from 0, 1, and 2, x + y + z ⁇ 5, each of R 4 is Independently from H or CH3.
  • 0.01-2.5 weight part is preferable with respect to 100 weight part of thermoplastic resins.
  • the surfactant is less than 0.01 parts by weight with respect to 100 parts by weight of thermoplastic resin, the amount of distribution is small in the resin and thus the conductivity is weakened. Therefore, the surface resistance is less than the surface resistance required by the industrial site. It is unsuitable for such a deteriorating factor.
  • the surfactant when the surfactant is 2.5 parts by weight or more based on 100 parts by weight of the thermoplastic resin, the amount of dispersion increases, but it does not affect the surface resistance improvement required in the industrial field, and the surfactant is eluted from the resin surface. There is a possibility of contaminating or contaminating the worker's hand and increase the cost.
  • the internal content of the surfactant may be 0.2 to 1.5 parts by weight based on 100 parts by weight of the thermoplastic resin, and the internal content of the surfactant when using carbon black is based on 100 parts by weight of the thermoplastic resin. It may be 0.5 to 2.0 parts by weight.
  • an additive may be further included.
  • the additive may be one or more selected from the group consisting of plasticizers, UV stabilizers, antioxidants, oil absorbers and adhesives.
  • Plasticizers are added to facilitate molding at high temperatures by improving the plasticity of thermoplastics, and also affect heat resistance, cold resistance, flame resistance, and electrical properties.
  • a plasticizer at least one of white oil, DOP (dioctyl phthalate), DOA (Dioctyladipate) or TCP (Tricresyl phosphate) may be used. It is preferable that it contains 30-110 weight part with respect to a weight part, More preferably, it is 34-45 weight part.
  • UV stabilizers are UV stabilizers capable of absorbing at least 70%, preferably at least 80%, more preferably at least 90% of UV light having a wavelength of 180-380 nm, preferably 280-350 nm.
  • the UV stabilizer is particularly preferred if it is thermally stable at temperatures of 260-300 ° C., ie it does not decompose or change to gas.
  • UV stabilizers also include 2-hydroxybenzophenone, 2-hydroxy-benzotriazole, organonickel compounds, salicylic esters, cinnamic ester derivatives, resorcinol monobenzoates, oxanilides, hydroxybenzos. It contains at least one from the group consisting of esters, steric hindered amines, triazine, preferably 0.7 to 1. 45 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • Antioxidants are used to prevent the oxidation of the conductive composite material, that is, aging. Any antioxidants commonly used in the art for this purpose may be used, but preferably pentaerythritol- Tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate], 2,2'-thiodiethylbis- [3- (3,5-di-t- Butyl-4-hydroxyphenyl) -propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4'-thiobis (6- t-butyl-m-cresol), triethylene glycol-bis-3 (3-t-butyl-4-hydroxy-5-methylphenyl) propionate 4,4'-thiobis [2- (1,1- Phenolic antioxidants such as di-methyl) -5-methyl-phenol and tetrakis-methylene (3,5-di-
  • the surfactant of the liquid leaks to the surface of the resin over time, the resin can be cured.
  • the dissolution inhibitor is a solid particle having an average particle diameter of 0.3 ⁇ m to 10 ⁇ m that allows the surfactant to easily control the oil dissolution on the surface of the composition.
  • the dissolution inhibitor is not limited as long as it is a material that forms fine pores between the solid particles and the resin.
  • the liquid surfactant is absorbed and stored in the fine pores between the solid particles and the resin so as not to elute to the outside.
  • the dissolution inhibitor may be preferably carbon black, TiO 2, or ferric oxide (Fe 2 O 3), and preferably 0.05 to 1.4 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • the dissolution inhibitor may be more preferably a conductive material in view of the electrical conductivity of the composite material. If the dissolution inhibitor is contained less than 0.05, there is a problem of dissolution inhibition due to the small amount of oil absorption, if the amount exceeds 1.4 parts by weight, the absorption of oil is increased, causing a stable conductivity inhibition, the problem of dispersion occurs, the hardness of the resin becomes stronger limit of hardness control There is a problem of cracking in the resin due to the increase in hardness.
  • the adhesive may improve the adhesiveness so that the prepared conductive composite material may be fused to other materials such as nylon and urethane, and MA Graft PE and MHA may be used, and 0 to 26 parts by weight based on 100 parts by weight of thermoplastic resin. It may be included, 0.3 to 26 parts by weight is preferred.
  • the adhesive is less than 0.3 and the adhesive strength is weak and tends to inhibit the fusion to other materials such as nylon, urethane, etc. If contained in more than 26 parts by weight, there is a disadvantage that the hardness of the resin is increased, there is a disadvantage that precedes the price increase, There is a problem that can not effectively exhibit the natural characteristics of antistatic.
  • FIG. 1 is a conceptual diagram and a SEM photograph of a conductive composite prepared by one embodiment of the present invention.
  • FIG. 1 is a photograph taken by SEM of a cross section of a compound in which a nanocarbon tube is embedded in a thermoplastic resin, and the white color of the photograph is in a state in which the nanocarbon tube is dispersed in the thermoplastic resin. It is seen.
  • the left schematic shows that having a uniform line shape of white light maintains uniform conductivity by connecting nanocarbon tube particles dispersed in thermoplastic resin uniformly in three dimensions.
  • the carbon nanotube particles and the particles dispersed in the resin are spaced apart from each other at regular intervals, so that it is difficult for the resin to obtain stable conductivity. Furthermore, when the resin is subjected to external impact and tensile force, the gap of the carbon nanotube particles is changed. The conductivity can be sharply lowered.
  • a surfactant may be added to the resin to connect the gaps between the carbon nanotube particles, to ensure stable conductivity, and to allow the resin to exhibit conductivity.
  • the surfactant is embedded in the resin in a liquid state and evenly distributed to surround the carbon nanotube particles and the particles so that conductivity is connected, and the non-conductor resin has stable conductivity.
  • the surfactant In the state where the carbon nanotubes and the surfactant are dispersed in the resin, even if the resin is subjected to impact or tensile force by external force and deformation occurs, the surfactant is in a liquid state and ductility and malleability are freely deformed as the resin is deformed to maintain conductivity. It does not change the surface resistance.
  • the surfactant can secure a stable conductivity by connecting the gap between the carbon black particles, it is possible to make the resin exhibit the conductivity.
  • the surfactant is a liquid substance and is evenly distributed in the resin to surround the carbon black particles and the particles.
  • the conductivity is stably maintained, and even though the resin is deformed by external force, impact, or tensile force, the surfactant is a liquid substance and is characterized by ductility and malleability according to the deformation of the resin.
  • the carbon black is freely deformed to cover the carbon black, so that the conductivity is maintained. Therefore, the surface resistance is not changed.
  • the carbon black is dispersed in the resin to fill the resin, the filling effect is expressed, it is possible to improve the mechanical properties such as strength, wear resistance of the composite material.
  • Composite materials according to the present invention was prepared in the composition shown in Table 1.
  • Tensile test is to measure mechanical properties such as yield point, strength, tensile strength, elongation, drawing, etc. by gradually applying tensile load by biting both parts of test specimen to tensile tester.
  • the thickness of the specimen is to be 6 mm or more in order not to be affected by other materials when measuring. Things less than 6 mm are made 6 mm or more in overlap.
  • the measuring face of the test specimen shall be smooth and at least sized so that the pressure reference plane of the test machine fits within the measuring face.
  • the tester uses spring type hardness tester type A. If the hardness of this tester is 90 or more, type D durometer as specified in KS M ISO 868 ⁇ Measurement of indentation hardness using plastic and ebonite durometer (Shore hardness) ⁇ is used. (Type A indenter unit: mm D type indenter unit: mm) Measure the hardness by pressing the test surface vertically and pressing the test surface so that the indenter is perpendicular to the test piece measuring surface.
  • the sheet resistance of the conductive composites prepared in Examples and Comparative Examples of the present invention was measured using a four-pole measuring instrument, and the resistivity value was obtained by multiplying the measured value by the thickness of the thin film.
  • the surface of the prepared composite material was visually observed for the liquid surfactant eluted from the inside to confirm elution.
  • Example 1-3 For Example 1-3 and Comparative Example 4, the surface resistance measurement experiment was performed according to the tensile rate and summarized in Table 2.
  • Comparative Example 3 does not contain carbon nanotubes and nitrogen-containing fat derivatives
  • Examples 1, 3 and 5 are test examples of test specimens having conductivity by adding carbon nanotubes and nitrogen-containing fat derivatives. .
  • a-1 was 1010 ⁇ / Square as an example according to ASTM D257-07 (") as a surface measurement method without the tensile force applied to the test specimen.
  • a-2 shows the same 1010 ⁇ / Square as the state without the tensile force in the example of the surface measurement method with the tensile force corresponding to 10% of the total volume to the test piece.
  • Comparative Example 3 is a state in which carbon nanotubes and nitrogen-containing fat derivatives are not internalized, and in comparison, when 3 is a tensile force, the total surface resistance represents an insulator and the tensile strength is 5.58 MPa, The properties of elongation, 755% and hardness 29 are shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 전기전도성 복합재료 및 그의 제조방법에 관한 것으로서, 더욱 상세하게는 수지가 되는 열가소성수지, 상기 수지에 분산되는 전도성입자, 및 상기 수지에 분산된 상기 전도성입자를 서로 연결해주는 계면활성제를 혼합한 후 가열을 포함한 성형작업을 통해 구성됨으로써, 정전기 방지 기능, 안정된 기계적 물성을 나타내는 전기전도성 복합재료 및 그의 제조방법에 관한 것이다.

Description

전도성 복합재료 및 그의 제조방법
본 발명은 정전기 방지 기능과 안정된 기계적 물성을 나타내는 연질 및 경질의 전기전도성 복합재료 및 그의 제조방법에 관한 것이다.
IT 산업 등 첨단산업의 발전에 따라 전기전도성을 갖는 산업용 ESD(Electrostatic Discharge)의 수요는 증가추세이며, 대전방지제, 반도체 부품, 자동차 전자부품, 항공기 부품 및 소재로, 세부적으로는 패킹 링, 파이프, 전선의 도전성피복, 패드, 부품 및 제품케이스, 포장용기 등에까지 다양한 분야에서 사용되고 있다.
기계적 특성이 양호한 복합재료의 대표적인 예는, 고무 및 열가소성 플라스틱 재료이며, 이러한 재료는 우수한 가공성, 경량성, 신축성을 나타내며 ESD 요건을 충족하는 전기전도성 소재로 사용되고 있다.
정전기방지를 위해서는 전기전도성을 향상시켜야 하며, 이를 위해 카본블랙, 카본나노튜브, 그래핀등의 카본계 입자가 사용되고 있다.
정전기방지를 위한 전기전도성은 일반적으로 상온에서 104~1011Ω/sq에 포함되어야 하는데, 상기 허용범위에 통과하려면 전도성입자의 내첨량이 증가되어야하고, 전도성입자의 함량 증가에 따라 재료의 고무경도 수치가 증가되면, 복합재료의 기계적물성이 떨어진다.
세부적으로는, 내첨되는 전도성입자의 증가에 따라 안정적 분산이 용이하지 못한 단점과 전도성입자의 내첨량 증가로 연질물성이 경화되는 단점이 있다.
특히 전도성입자 중에서 카본블랙보다는 도전성이 월등한 카본나노튜브를 고무 및 열가소성 플라스틱에 분산시키면, 정전기 방지용 소재로서 그 조성에 유리하지만, 카본나노튜브의 고무 및 열가소성 플라스틱대비 분산량이 증가할수록 기술적 한계와 비용증가의 문제가 발생되며, 카본나노튜브 분산량이 많아지면 일정한 분산이 되지 않는 한계가 있다.
특히 카본나노튜브의 상용화 장애요인은 CNT의 높은 가격과 CNT분산기술 부족이며, CNT가 혼합물 내에서 골고루 분산되지 않고, 한쪽부분에 몰려있게 되어, 안정적인 ESD 충족을 위한 표면 저항치를 구현하기 어렵다.
또한, CNT와 혼합물의 안정화 미흡으로 CNT합성소재의 표준화, 규격화가 정립되지 않고 있으며, CNT 및 CNT합성소재가 환경에 대한 유해성기준이 명확하지 않은 문제점이 있다.
구체적으로, 카본나노튜브의 첨가량이 증가될수록 연질복합재료의 기계적 물성이 경화되는 단점을 나타내고, 카본나노튜브의 가격부담이 가중되어 산업현장에서 범용으로 사용하지 못하는 실정이다.
한편 천연고무 및 열가소성 플라스틱에 카본나노튜브를 첨가하면, 표면저항치가 개선되지만, 천연고무 및 열가소성 플라스틱 복합재료를 인장하거나 수축 등 기계적으로 그 형태를 변형하면, 카본나노튜브가 천연고무 및 열가소성플라스틱에서 안정적으로 분산된 연결이 분리되어, 도전성이 현격하게 저하되고, 표면저항수치가 현격하게 불량하게 되는 문제점이 있어서, 카본나노튜브 함량을 줄이면서 전기전도성이 우수한 기술적 개발이 요구되고 있다.
또한 천연고무 및 연질 플라스틱의 경우 외부의 층격이나 인장력을 가하면 분자들은 힘 방향으로 늘어나며, 힘이 끊기면 신속히 무질서한 배열로 회복되면서 탄성력이 발생하여 복원되는데, 이러한 소재의 인장강도, 신장률, 듀로미터경도등의 물성에 따라 사용용도에 적합한 소재를 구분하여 사용하고 있다.
따라서 소재의 인장강도, 신장률, 듀로미터경도 수치의 물성조성을 필요에 따라 각각 다르게 조성하는 기술과 함께 안정적인 ESD 요건이 충족될 수 있는 물성조성이 요구되고 있다.
(선행기술문헌)
(특허문헌)
한국공개특허 KR20110147896A
한국등록특허 KR20087032200A
본 발명은 상기 종래기술의 문제점들을 해결하고자 한 것으로서, 정전기 방지 기능을 포함하고, 복합재료의 형태가 변형됨에 따라 발생하는 전도성 및 기계적 물성저해를 방지하는 전도성 복합재료 및 그 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 일측면은,
수지가 되는 열가소성수지;
상기 수지 내에 분산되는 전도성입자; 및
상기 수지 내의 포함되어 상기 전도성입자를 서로 전기적으로 연결해주는 액체 계면활성제;
를 포함하는 전도성 복합재료이다.
이 때 상기 액체 계면활성제는 750 내지 850 mPa.s의 점도를 가지는 것이 바람직하다.
또한, 상기 계면활성제는 질소를 함유한 지방 유도체로서 양이온계, 음이온계, 양쪽성, 및 비이온계 계면활성제로 구성되는 적어도 1종이상이 포함되는 것이 바람직하다.
또한, 상기 계면활성제는 열가소성수지 100 중량부에 대하여 0.01~2.5중량부로 포함되는 것이 바람직하다.
또한, 상기 열가소성수지는 니트릴고무, 천연고무, 아크릴고무, 실리콘고무, 에폭시계수지, 폴리스타이렌계수지(thermoplastic styrenic elastomer, TPS ), 폴리올레핀계수지(thermoplastic olefinic elastomer, TPO), 폴리우레탄계수지(thermoplastic polyurethane, TPU), 폴리에틸렌계수지(TPEE), 폴리에스터계수지(thermoplastic polyester elastomer, TPEE), 폴리아마이드계수지(thermoplastic polyamide, TPAE), 폴리염화비닐계수지(TPVC), 페놀계수지, 및 멜라민계수지를 포함하는 군에서 선택되는 1종 또는 2종 이상의 수지를 포함할 수 있다.
또한, 상기 폴리올레핀계수지는 폴리플로필렌(Poly Propylene), 폴리스타이렌(Poly Stylene), 폴리에틸렌(Poly Ethylene), 나일론(nylon), 스타이렌아크릴로나이트릴(Styrene-acrylonitrile), EPDM(ethylene propylene rubber), 천연고무, 및 SBR(styrene-butadiene rubber)를 포함하는 군에서 선택되는 하나 또는 하나 이상의 화합물을 포함할 수 있다.
또한, 상기 전도성입자는 카본계 입자로 이루어지는 것이 바람직하다.
이 때, 상기 카본계 입자는 카본나노튜브, 카본블랙, 및 그래핀으로 구성되는 군에서 선택되는 적어도 1종 이상일 수 있다.
또한, 상기 전도성입자는 상기 열가소성수지 100 중량부에 대하여 0.02 내지 28중량부인 것이 바람직하다.
또한, 상기 전도성 복합재료는 경도조절제를 더 포함할 수 있다.
또한, 상기 경도조절제는 화이트오일(white oil), 다이옥틸프탈레이트(DOP), 및 트라이크레실포스테이트(트라이크레실포스테이트)로 구성되는 군에서 선택되는 적어도 1종을 포함할 수 있다.
이 때, 상기 경도조절제는 열가소성수지 100중량부에 대해서 30 내지 110중량부로 포함되는 것이 바람직하다.
또한, 상기 전도성 복합재료는 용출억제제를 더 포함할 수 있다.
또한, 상기 용출억제제는 평균입경이 0.3㎛ 내지 10㎛의 고체입자로서, 상기 고체입자와 상기 열가소성수지 사이에 상기 액체 계면활성제가 저장되는 공극을 형성하는 것이 바람직하다.
이 때, 상기 용출억제제는 카본블랙, TiO2 또는 산화제이철(Fe2O3) 로 구성되는 것이 바람직하다.
또한, 상기 용출억제제는 상기 열가소성수지 100중량부에 대해서 0.05 ~ 1.4 중량부로 포함되는 것이 바람직하다.
또한, 상기 전도성 복합재료에 UV 안정제, 접착제, 및 산화방지제로 구성된 군에서 선택되는 1종 이상의 첨가제를 더 포함할 수 있다.
본 발명에 따르면, 고무 및 열가소성 플라스틱 등의 복합재료에 전도성입자가 안정적으로 분산되고, 기계적 물성이 뛰어난 전도성 복합재료를 제조할 수 있다.
또한, 복합재료에 외부의 힘 및 인장력을 가한 변형에도 전기전도성이 뛰어난 전도성 복합재료를 제조할 수 있다.
도 1은 본 발명의 일실시예에 의해 제조된 전도성 복합재료의 개념도 및 SEM사진이다.
본 출원에서 "포함한다" 와 같은 용어는 명세서상에 기재된 특징이나 단계 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지는 않는 것으로 이해되어야 한다. 다르게 정의하지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야 에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
이하, 본 발명의 일 실시예에 따른 전기전도성 복합재료를 설명한다. 아래의 실시예는 본원발명의 내용을 이해하기 위해 제시된 것일 뿐이며, 당해 분야에서 통상의 지식을 가진 자라면 본원발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서, 본원발명의 권리범위가 이러한 실시예에 한정되는 것으로 해석되어서는 안 된다.
일반적으로 복합재료란 성분이나 형태가 다른 두 종류 이상의 소재가 거시적으로 서로 간에 구분되는 계면을 가지도록 조합되어 유효한 기능을 가지는 재료를 일컫는다.
본 발명에 따른 전기전도성 복합재료는 열가소성수지, 전도성입자, 및 계면활성제를 포함한다. 이때, 산업현장에서 요구하는 전기전도성 복합재료의 표면저항은 적절하게는 상온에서 104~1011Ω/sq 일수 있으며, 이는 전도성입자, 계면활성제 및 기타 첨가제에 의해서 조절될 수 있다.
열가소성수지는 전기전도성 복합재료의 수지로 사용되며, 니트릴고무, 천연고무, 아크릴고무, 실리콘고무, 에폭시계수지, 폴리스타이렌계수지(thermoplastic styrenic elastomer, TPS ), 폴리올레핀계수지(thermoplastic olefinic elastomer, TPO), 폴리우레탄계수지(thermoplastic polyurethane, TPU), 폴리에틸렌계수지(TPEE), 폴리에스터계수지(thermoplastic polyester elastomer, TPEE), 폴리아마이드계수지(thermoplastic polyamide, TPAE), 폴리염화비닐계수지(TPVC), 페놀계수지, 및 멜라민계수지를 포함하는 군에서 선택되는 하나 또는 하나 이상일 수 있다.
또한, Olefin계는 Poly Propylene, Poly Stylene, Poly Ethylene, nylon, Styrene-acrylonitrile, EPDM(ethylene propylene rubber), 천연고무, 및 SBR(styrene-butadiene rubber)등에서 선택되는 하나 또는 하나 이상일수 있다.
전도성입자는 카본계 입자가 사용될 수 있으며, 예를 들어, 카본나노튜브, 카본블랙, 및 그래핀등이 사용될 수 있다.
카본나노튜브(CNT)는 단일벽 카본나노튜브(SWCNT; single-walled carbon nanotube), 이중벽 카본나노튜브(DWCNT; double-walled carbon nanotube), 다중벽 카본나노튜브(MWCNT; multi-walled carbon nanotube), 및 다발형 카본나노튜브(rope carbon nanotube)로 이루어진 군에서 선택되는 하나 또는 하나 이상일 수 있다.
단일벽 카본나노튜브와 다중벽 카본나노튜브가 각각 또는 혼합하여 사용될 수 있으며, 단일벽 카본나노튜브는 지름이 1~10nm, 길이가 1~20nm인 것이 바람직하고, 다중벽 카본나노튜브는 지름이 5~30nm, 길이가 1~20nm인 것이 바람직하다.
이때, 단일벽 카본나노튜브와 다중벽 카본나노튜브의 지름 및 길이는 각각 카본나노튜브 일단면의 원 지름 및 카본나노튜브의 횡 길이를 나타내는 것이다.
카본나노튜브의 지름 및 길이를 제한하는 것은 고비용, 분산성 및 합성기술에 관한 제조공정 기술을 복합적으로 고려한 것으로 반드시 위의 수치로 한정하는 것은 아니며, 정전기방지기능이 발현된다면 어떠한 조건의 카본나노튜브를 사용하여도 무방하다.
전도성입자의 다른 일예로 카본블랙이 사용될 수 있으며, 고무충전제 카본블랙인 Furnace 카본블랙 및 Thermal 카본블랙으로 이루어진 군에서 어느 하나 또는 하나 이상일 수 있다.
카본블랙은 입자 크기에 따라 Hard/Soft Black, High/Low Black, Tread/Carcass Black으로 구분할 수 있으며, 95% 이상의 무정형 탄소질로 이루어지는 미립자 형태로 5~500nm의 입자크기가 바람직하다. 입자의 크기가 5nm 이하인 입자는 가격상승요인으로 적정하지 않으며, 500nm 이상 크기의 입자는 수지내에서 카본블랙 입자가 떨어져 나와 주변을 오염시키는 문제로 적합하지 않다.
이때, 미립자 형태는 구형, 선형, 타원체, 오면기둥형, 육면기둥형, 칠면기둥형, 팔면기둥형, 원기둥형, 육면체형, 모서리가 굴곡된 육면 기둥형, 모서리가 굴곡된 육면체형 및 이들의 조합으로 이루어진 군에서 선택되는 형상을 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
카본블랙은 수지와의 계면에서 입자의 크기 또는 비표면적, 입자의 구조 및 불포화 원자 또는 말단의 종류 등과 같은 표면의 물리화학적 성질에 영향을 받으며, 카본블랙과 결합재의 계면에서 작용하는 물리적 결합의 정도에 따라 복합재료의 물성이 결정된다.
전도성입자로 카본나노튜브, 카본블랙이 각각 사용되는 것을 설명하였으나, 반드시 이에 제한되는 것은 아니며, 카본나노튜브, 카본블랙, 및 전기전도성 탄화분말로 이루어진 군에서 적어도 하나 이상의 조합으로 이루어진 물질을 모두 포함할 수 있다.
또한, 전도성입자는 열가소성 수지 100 중량부에 대하여 0.02~28중량부 일 수 있다. 보다 바람직하게는 전도성입자가 열가소성수지 100 중량부에 대하여 0.02 ~ 3중량부 인 것이 바람직하다. 전도성입자인 열가소성수지 100 중량부에 대하여 0.02 중량부 미만일 경우는 도전성이 약화되어 정전기 방지 요건 충족에 부적절하며, 28 중량부를 초과할 경우에는 분산의 어려움이 가중되며, 고비용 등의 문제가 발생한다.
계면활성제는 전기전도성을 가지므로 통상 여러 종류의 플라스틱에 대전방지제로 사용가능하지만, 특별히 폴리올레핀 및 폴리스틸렌의 정전기방지제로서 적합할 수 있다.
특히 계면활성제가 액체로 수지에 내첨되면, 수지에 분산된 전도성입자를 연결하여 도전성을 향상시킬 수 있다. 계면활성제를 액상으로 만들기 위해 용제는 에탄올, 2,2'이미노비스-, N-코코 알킬 유도체(ETHANOL, 2,2'IMINOBIS-, N-COCO ALKYL DERIVATIVES)등이 사용될 수 있다. 인장 및 수축되는 기계적 장점을 가지는 수지가 반복적으로 수축ㅇ팽창되더라도, 액체인 계면활성제가 수지를 따라 수축팽창을 함께 반복하기 때문에 수지 내의 전도성입자를 전기적으로 서로 연결하게 되어 도전성이 유지될 수 있기 때문이다.
액체 계면활성제는 750 내지 850 mPa.s의 점도를 가지는 것이 바람직하다. 계면활성제가 750 미만이면 후술할 바와 같이 액체의 계면활성제가 과도히 용출되는 문제가 있고, 850을 초과하면 분산하기 어렵다.
본 발명에 사용되는 계면활성제는 질소를 포함하는 것이면 제한되지 않는다. 즉, 계면활성제는 질소를 함유한 지방 유도체로서 양이온계, 음이온계, 양쪽성, 및 비이온계 계면활성제 중 하나 또는 둘 이상을 포함할 수 있으며, 바람직하게는 양이온계 및 양쪽성 계면활성제일 수 있다.
질소계 양이온계 계면활성제는 1차 아민, 2차 아민, 및 3차 아민으로 구성되는 아민염과 4차 아민으로 구성되는 암모늄염으로 구분된다. 아민염의 예로는 옥타데실디에탄올아민, 라우릴디폴리글리콜아민, 스테아르산디에틸렌트리아미드, ??아르산에탄올에틸렌디아미드 등이 있으며, 암모늄염의 예로는 트라이메틸도데실암모니움브로마이드, 알킬디부틸도데실암모니움브로마이드, 등이 있다.
질소계 양쪽성 계면활성제는 1개의 분자 중에 음과 양 양쪽 이온으로 하전할 수 있는 계면활성제로, 구조적으로 베타인형 양쪽성 계면활성제, 글리신형 양쪽성 계면활성제, 알라닌형 양쪽성 계면활성제, 및 술포베타인형 양쪽성 계면활성제로 구분할 수 있다. 이들 구조를 포함하는 지방족 계면활성제의 예로는 디옥틸에틸렌트리아미노아세트산, 도데실디아미노에틸글리신염산염 등이 있다.
본 발명의 실시예들에 사용되는 계면활성제는 아민 또는 개질아민을 포함하는 계면활성제일 수 있으며, 아민 또는 개질아민의 예는 아래의 화학식으로 표시될 수 있다.
(화학식1) 아민
Figure PCTKR2014004229-appb-I000001
(화학식1에서, R은 8~24개의 탄소 원자를 가진 포화 또는 불포화형, 치환 또는 비치환된, 분지형이고, R1 및 R2는 동일하거나 상이할 수 있고, 수소 또는 1~24개의 탄소 원자를 가진 탄화수소 사슬로부터 선택될 수 있다.)
(화학식2) 디아민 및 폴리아민
Figure PCTKR2014004229-appb-I000002
(화학식2에서, R은 상기 화학식1에서와 동일한 의미를 가지며, R3는 1~6개의 탄소 원자를 가진 직쇄형 또는 분지형 탄화수소 라디칼이다.)
(화학식3) 에톡시화 및/또는 프로폭시화 아민
Figure PCTKR2014004229-appb-I000003
(화학식3에서, R은 상기 화학식1에서와 동일한 의미를 가지며, x와 y는 독립적으로 0, 1 또는 2이고, 각각의 R4는 독립적으로 H 또는 CH3로부터 선택된다.)
(화학식4) 에톡시화 및/또는 프로폭시화 알킬디아민 및 에톡시화 알킬폴리아민
Figure PCTKR2014004229-appb-I000004
(화학식4에서, R 및 R3은 상기 화학식2에서와 동일한 의미를 가지며, x, y 및 z는 독립적으로 0, 1, 및 2로부터 선택되고, x+y+z≤5이고, 각각의 R4는 독립적으로 H 또는 CH3로부터 선택된다.)
(화학식5) 아미도아민
Figure PCTKR2014004229-appb-I000005
(화학식5에서, R, R1, R2 및 R3은 상기 화학식1에서와 동일한 의미를 가진다.)
(화학식6) 아미도폴리아민 및 이미다졸린
Figure PCTKR2014004229-appb-I000006
(화학식6에서, R 및 R3은 화학식2에서와 동일한 의미를 가지며, x는 1 내지 10의 정수이다.)
계면활성제의 내첨량은 열가소성수지 100 중량부에 대하여, 0.01~2.5중량부가 바람직하다.
계면활성제가 열가소성수지 100 중량부에 대하여 0.01중량부 미만일 경우 수지에 분포량이 적어 도전성이 약화됨으로 산업현장에서 요구하는 표면저항치에 미치지 못하며, 수지에 외부의 충격, 인방 등의 영향이 미칠 때 표면저항력이 저하되는 요인 등으로 부적합하다.
또한, 계면활성제가 열가소성수지 100 중량부에 대하여 2.5중량부 이상일 때는 분산량이 많아지지만 산업현장에서 요구하는 표면저항치 향상에 영향을 주지 않으며, 수지 표면에서 계면활성제가 용출되는데, 용출된 계면활성제 유분이 작업자의 손에 묻거나 오염시킬 가능성이 있고 비용증가 등의 문제가 있다.
더욱 바람직하게는 전도성입자로 카본나노튜브를 사용할 때 계면활성제의 내첨량이 열가소성수지 100 중량부에 대하여 0.2~1.5중량부일 수 있고, 카본블랙을 사용할 때 계면활성제의 내첨량이 열가소성수지 100 중량부에 대하여 0.5~2.0중량부일 수 있다.
전기전도성 복합재료의 일실시예에 의하면 첨가제가 더 포함될 수 있다.
첨가제는 가소제, UV안정제, 산화방지제, 유분흡수제 및 접착제로 이루어진 군에서 선택되는 하나 또는 하나 이상일 수 있다.
가소제는 열가소성 수지의 가소성을 향상시킴으로써 고온에서 성형가공을 용이하게 하기위해 첨가되며, 내열성ㅇ내한성ㅇ내연성ㅇ전기적 성질 에도 영향을 미친다. 가소제로는 화이트오일(white oil), DOP(다이옥틸프탈레이트:dioctyl phthalate)ㅇDOA(다이옥틸아디페이트:Dioctyladipate)ㅇTCP(트라이크레실포스테이트:Tricresyl phosphate ) 중에서 적어도 하나가 사용될 수 있으며 열가소성수지 100중량부에 대해서 30 내지 110중량부, 보다 바람직하게는 34 ~ 45중량부로 포함되는 것이 바람직하다.
UV안정제는 180~380㎚, 바람직하게는 280~350㎚의 파장을 가지는 UV광의 적어도 70%이상, 바람직하게는 80%이상, 더욱 바람직하게는 90%이상을 흡수할 수 있는 UV안정제이다. 상기 UV 안정화제는 260~300℃의 온도에서 열적으로 안정하면, 즉 분해되지 않거나 가스로 변화하지 않으면 특히 바람직하다.
또한, UV안정제는 2-히드록시벤조페논, 2-히드록시-벤조트리아졸, 유기니켈 화합물, 살리실 에스테르, 시남 에스테르 유도제, 레조르시놀 모노벤조에이트, 옥사닐라이드(oxanilide), 히드록시벤조 에스테르, 입체 힌더드 아민(sterically hindered amines), 트리아진 으로 이루어진 군으로부터 적어도 하나를 포함하는 것으로, 열가소성수지 100중량부에 대해서 0.7 내지 1. 45 중량부 포함되는 것이 바람직하다.
산화방지제는 전도성 복합재료가 산화되는 것, 즉 노화되는 것을 방지하기 위한 것으로서, 이러한 목적을 위해 당업계에서 통상적으로 사용하는 산화방지제라면 어떠한 것을 사용하여도 무방하지만, 바람직하게는 펜타에리트리틸-테트라키스[3-(3,5-디-t-부틸-4-히드록시페닐)-프로피오네이트], 2,2'-티오디에틸비스-[3-(3,5-디-t-부틸-4-히드록시페닐)-프로피오네이트], 옥타데실-3-(3,5-디-t-부틸-4-히드록시페닐)프로피오네이트, 4,4'-티오비스(6-t-부틸-m-크레졸), 트리에틸렌글리콜-비스-3(3-t-부틸-4-히드록시-5-메틸페닐)프로피오네이트 4,4'-싸이오비스[2-(1,1-디-메티에틸)-5-메틸-페놀, 테트라키스-메틸렌(3,5-디-터트-뷰틸-4-하이드록시시나네이트)-메탄 등의 페놀계 산화방지제, 또는 디라우릴 티오디프로피오네이트 등의 에스테르계 산화방지제로 이루어진 군으로부터 적어도 하나를 포함하는 것으로, 열가소성수지 100중량부에 대해서 0.77 내지 1.43 중량부 포함되는 것이 바람직하다.
한편 액체의 계면활성제는 시간이 지날수록 수지의 표면으로 누수되어, 수지가 경화될 수 있다. 이러한 현상을 보완하기 위해서, 수지 내부에 공극을 만들고 그 공극 사이에 계면활성제가 삼투되도록 하여 수지 표면에 용출된 유분을 억제거나 유분용출을 지연시키는 역할을 하는 용출억제제를 내첨할 수 있다.
용출억제제는 계면활성제가 조성물의 표면에서 유분용출을 용이하게 제어할 수 있도록 하는 평균입경 0.3㎛ 내지 10㎛의 고체입자로서, 고체입자와 수지사이에 미세한 공극을 형성하는 물질이면 종류에 제한되지 않으며 고체입자와 수지 사이에 미세한 공극에 액체 계면활성제가 흡수 저장되어 외부로 용출되지 않게 한다.
용출억제제는 카본블랙, TiO2, 또는 산화제이철(Fe2O3), 하나가 바람직하게 사용될 수 있으며, 열가소성수지 100중량부에 대해서 0.05 ~ 1.4 중량부 포함되는 것이 바람직하다. 용출억제제는 복합재료의 전기전도성을 고려할 때 전도성을 가진 재료가 더 바람직할 수 있다. 용출억제제가 0.05 미만으로 포함되면 흡유량이 적어 용출억제의 문제가 있고, 1.4중량부를 초과하면 흡유량이 많아져 안정적인 도전성 저해를 초래하며, 분산의 문제가 발생하며, 수지의 경도가 강해져 경도조절의 한계와 경도가 강해짐으로 수지에 균열의 문제가 있다.
접착제는 제조된 전도성 복합재료가 나일론, 우레탄 등 기타소재에 융착될 수 있도록 접착성을 향상 시킬 수 있으며, MA Graft PE, MHA 등이 사용될 수 있으며, 열가소성수지 100중량부에 대해서 0 내지 26중량부 포함될 수 있고, 0.3 내지 26중량부가 바람직하다. 접착제가 0.3 미만이며 접착력이 약해 나일론, 우레탄 등 기타소재에 융착에 저해되는 경향이 있고, 26 중량부 이상 포함되면, 수지의 경도가 높아지는 단점이 있으며, 가격상승을 초례하는 단점이 발생하고, 수지에 정전기 방지라는 본연의 특성을 효과적으로 발휘할 수 없는 문제점이 있다.
한편 도 1은 본 발명의 일실시예에 의해 제조된 전도성 복합재료의 개념도 및 SEM사진이다. 도 1 우측의 사진은 열가소성수지에 나노카본튜브(Nanocarbon tube)를 내첨된 컴파운드의 시험편 단면을 SEM으로 촬영한 사진이며, 사진의 흰색은 나노카본튜브(Nanocarbon tube)가 열가소성수지에 분산된 상태에서 보여지는 모습이다.
좌측 모형도는 흰색 빛의 일정한 선의 형상을 가지는 것이 열가소성수지에 분산된 나노카본튜브(Nanocarbon tube) 입자들을 계면활성제 균일하게 입체적으로 연결함으로 균일한 도전성이 유지되는 것을 설명한다.
도 1에서와 같이 수지에 분산된 카본나노튜브 입자와 입자는 일정한 간격으로 서로 이격되어 있어서, 수지가 안정적인 도전성을 얻기에는 어려우며, 더욱이 수지가 외부의 충격 및 인장력을 받으면 카본나노튜브 입자의 간격변화로 도전성이 급격히 저하될 수 있다.
따라서, 수지에 계면활성제를 내첨하여 카본나노튜브 입자간의 간격을 연결하고, 안정된 도전성을 확보하여, 수지가 도전성을 나타내도록 할 수 있다. 계면활성제는 액체상태로 수지에 내첨되어 고르게 분포되면서 카본나노튜브입자와 입자를 감싸게 되어 도전성이 연결되는 원리이며, 부도체인 수지가 안정적인 도전성을 띠게 되는 것이다.
수지에 카본나노튜브 및 계면활성제가 분산된 상태에서는, 수지가 외부의 힘으로 충격 또는 인장력을 받아 변형이 발생되더라도, 계면활성제가 액체상태로 수지 변형에 따라 연성과 전성이 자유롭게 변형되면서 도전성을 유지하게 되므로 표면저항치에 변화를 주지 않는다.
또한, 계면활성제는 카본블랙 입자간의 간격을 연결하여 안정된 도전성 확보하여, 수지가 도전성을 나타내게 할 수 있다.
계면활성제는 액체물질로 수지에 고르게 분포되어 카본블랙입자와 입자를 감싸게 된다. 수지에 카본블랙 및 계면활성제가 분산되면 안정적으로 도전성이 유지되며, 외부의 힘 또는 충격 및 인장력을 받아 수지가 변형되더라도, 계면활성제는 액체물질로 수지의 변형에 따라 연성과 전성의 특징으로 형상이 자유롭게 변형되면서도 카본블랙을 감싸고 있어, 도전성이 유지하게 되므로, 표면저항치에 변화를 주지 않는 특징이 있다.
한편, 카본블랙이 수지에 분산되어 수지를 채움으로써 충전 효과가 발현되어, 복합재료의 강도, 내마모도 등 기계적 물성을 향상시킬 수 있다.
<실시예>
본 발명에 따른 복합재료를 표 1과 같은 조성으로 제조하였다.
표 1
Figure PCTKR2014004229-appb-T000001
<실험예 1>
전술한 실시예와 비교예들에 대해서 하기 인장시험 및 표면저항시험 방법에 따라 실험을 진행하고 그 결과를 표1에 정리하였다.
1. 인장시험(Tensile test)
인장시험은 인장시험기에 시험편의 양쪽 부분을 물려 서서히 인장하중을 가해서 재료의 항복점, 내력, 인장강도, 신장, 드로잉 등 기계적 특징을 측정하는 것이다.
2. 경도측정
시험편의 두께는 측정할 때 다른 재료에 의한 영향을 받지 않도록 하기 위하여 6 ㎜이상으로 한다. 6 ㎜ 미만인 것은 겹쳐서 6 ㎜이상으로 한다. 시험편의 측정 면은 평활 하여야 하며 적어도 시험기의 가압 기준면이 측정면내에 들어갈 수 있을만한 크기를 가져야 한다.
시험기는 스프링식 경도 시험기 A타입을 사용한다. 이 시험기에 의한 경도가 90이상일 경우 KS M ISO 868 {플라스틱 및 에보나이트 -듀로미터를 사용한 압입 경도 측정(쇼어 경도)}에 규정한 D타입의 듀로미터를 사용한다. (A타입 압자 단위 : mm D타입 압자 단위 : mm) 시험기를 수직으로 하고 압자가 시험편 측정면에 수직이 되도록 가압면을 접촉시켜서 시험편에 9.8 N의 하중을 가하여 압착시켜 경도를 측정한다.
3. 표면저항측정(Surface Resistance)
표면저항은 절연물 표면에 전기를 흐르게 하여 누설 전류에서 구한 단위 면적당의 저항이며, 절연물 표면의 저항을 상대하는 극 사이의 1cm2의 저항으로 환산한 것이다. 인장시험은 표준화된 시편을 동일한 조건에서 실시하는데, 그 규격은 ASTM D257-07(") (KS B 0801 : 2007)이다.
본 발명의 일 실시예 및 비교예에서 제조된 전도성 복합재료를 4극점 측정기를 사용하여 면저항을 측정하였고, 그 측정값에 박막의 두께를 곱하여 비저항값을 구하였다.
4. 액상의 계면활성제 표면용출
제조된 복합재료의 표면에 내부에서 용출되는 액상의 계면활성제를 육안 관찰하여 용출여부를 확인하였다
표 2
Figure PCTKR2014004229-appb-T000002
<실험예 2>
실시예 1-3, 비교예 4에 대해서 인장률에 따른 표면저항 측정실험을 진행하고 표2에 정리하였다.
1. 인장률의 변화에 따른 표면저항 측정
전술된 실험예1의 인장시험 및 표면저항 측정과 같은 방법으로 사용하였으며, 실시예 1, 3,5 비교예 3에 해당하는 각 샘플의 신장률을 체적대비 10%, 20%, 30%, 40%하였을 때, 각각의 표면저항을 측정하였다.
표 3
Figure PCTKR2014004229-appb-T000003
비교예3은 카본나노튜브 및 질소함유 지방유도체를 내첨하지 않은 것이며, 실시예1, 실시예3, 실시예5은 카본나노튜브 및 질소함유 지방유도체를 내첨하여 도전성을 지닌 시험편의 시험실시예이다.
시편에 인장력과 표면저항시험을 병행한 테스트에서 a-1은 시험편에 인장력을 가하지 않은 상태의 표면측정방법으로 ASTM D257-07(") 준한 실시예로 1010Ω/Square 를 나타내었다.
a-2은 시험편에 전체 체적의 10%에 해당하는 인장력을 가한 상태로 표면측정방법의 실시예로 인장력을 가하지 않은 상태와 동일한 1010Ω/Square 가 나타났다.
a-3은 시험편에 전체 체적의 20%에 해당하는 인장력을 가한 상태로 표면측정방법의 실시예로 인장력을 가하지 않은 상태와 동일한 1010Ω/Square 가 나타났다.
a-4는 시험편에 전체 체적의 30%에 해당하는 인장력을 가한 상태로 표면측정방법의 실시예로 인장력을 가하지 않은 상태와 동일한 1010Ω/Square 가 나타났다.
a-5는 시험편에 전체 체적의 40%에 해당하는 인장력을 가한 상태로 표면측정방법의 실시예로 인장력을 가하지 않은 상태와 동일한 1010Ω/Square 가 나타났다.
즉, 수지에 전도성입자 및 계면활성제가 함께 내첨되는 본원발명의 실시예에 따른 전도성 복합재료의 경우 외부의 힘 및 인장력에 의한 변형이 발생하여도, 변형전의 전도성이 유지될 수 있다.
한편, 상기 표2에서 비교예3은 카본나노튜브 및 질소함유 지방유도체를 내첨하지 않은 상태로, 비교에 3은 인장력이 가해지는 경우 전표면저항은 부도체를 나타내며 물성시험 실시예로 인장강도 5.58MPa, 신장률, 755%, 경도29의 특성을 나타낸다.
이상에서는 본 발명의 실시예에 따른 전도성 복합재료의 조성물에 대해 설명하였으나, 본 발명은 상술한 실시예들에 한정되지 않으며, 본 발명이 속한 분야의 통상의 지식을 가진 자는 본 발명의 개념을 벗어나지 않고 변형이 가능하고 이러한 변형은 본 발명의 범위에 속한다.
전술한 발명에 대한 권리범위는 이하의 청구범위에서 정해지는 것으로서, 명세서 본문의 기재에 구속되지 않으며, 청구범위의 균등범위에 속하는 변형과 변경은 모두 본 발명의 범위에 속할 것이다.

Claims (17)

  1. 수지가 되는 열가소성수지;
    상기 수지 내에 분산되는 전도성입자; 및
    상기 수지 내의 포함되어 상기 전도성입자를 서로 전기적으로 연결해주는 액체 계면활성제;
    를 포함하는 전도성 복합재료.
  2. 제1항에 있어서,
    상기 액체 계면활성제는 750 내지 850 mPa.s의 점도를 가지는 전도성 복합재료.
  3. 제2항에 있어서,
    상기 계면활성제는 질소를 함유한 지방 유도체로서 양이온계, 음이온계, 양쪽성, 및 비이온계 계면활성제로 구성되는 적어도 1종이상이 포함되는 전도성 복합재료.
  4. 제3항에 있어서,
    상기 계면활성제는 열가소성수지 100 중량부에 대하여 0.01~2.5중량부로 포함되는 전도성 복합재료.
  5. 제1항에 있어서,
    상기 열가소성수지는 니트릴고무, 천연고무, 아크릴고무, 실리콘고무, 에폭시계수지, 폴리스타이렌계수지(thermoplastic styrenic elastomer, TPS ), 폴리올레핀계수지(thermoplastic olefinic elastomer, TPO), 폴리우레탄계수지(thermoplastic polyurethane, TPU), 폴리에틸렌계수지(TPEE), 폴리에스터계수지(thermoplastic polyester elastomer, TPEE), 폴리아마이드계수지(thermoplastic polyamide, TPAE), 폴리염화비닐계수지(TPVC), 페놀계수지, 및 멜라민계수지를 포함하는 군에서 선택되는 1종 또는 2종 이상의 수지를 포함하는 전도성 복합재료.
  6. 제5항에 있어서,
    상기 폴리올레핀계수지는 폴리플로필렌(Poly Propylene), 폴리스타이렌(Poly Stylene), 폴리에틸렌(Poly Ethylene), 나일론(nylon), 스타이렌아크릴로나이트릴(Styrene-acrylonitrile), EPDM(ethylene propylene rubber), 천연고무, 및 SBR(styrene-butadiene rubber)를 포함하는 군에서 선택되는 하나 또는 하나 이상의 화합물을 포함하는 전도성 복합재료.
  7. 제1항에 있어서,
    상기 전도성입자는 카본계 입자로 이루어지는 전도성 복합재료.
  8. 제7항에 있어서,
    상기 카본계 입자는 카본나노튜브, 카본블랙, 및 그래핀으로 구성되는 군에서 선택되는 적어도 1종 이상인 전도성 복합재료.
  9. 제1항에 있어서,
    상기 전도성입자는 상기 열가소성수지 100 중량부에 대하여 0.02 내지 28중량부인 전도성 복합재료.
  10. 제1항에 있어서,
    상기 전도성 복합재료는 경도조절제를 더 포함하는 전도성 복합재료.
  11. 제10항에 있어서,
    상기 경도조절제는 화이트오일(white oil), 다이옥틸프탈레이트(DOP), 및 트라이크레실포스테이트(트라이크레실포스테이트)로 구성되는 군에서 선택되는 적어도 1종을 포함하는 전도성 복합재료.
  12. 제11항에 있어서,
    상기 경도조절제는 열가소성수지 100중량부에 대해서 30 내지 110중량부로 포함되는 전도성 복합재료.
  13. 제12항에 있어서,
    상기 전도성 복합재료는 용출억제제를 더 포함하는 전도성 복합재료.
  14. 제13항에 있어서,
    상기 용출억제제는 평균입경이 0.3㎛ 내지 10㎛의 고체입자로서, 상기 고체입자와 상기 열가소성수지 사이에 상기 액체 계면활성제가 저장되는 공극을 형성하는 전도성 복합재료.
  15. 제14항에 있어서,
    상기 용출억제제는 카본블랙, TiO2, 및 산화제이철(Fe2O3)로 구성되는 군에서 선택되는 하나이상인 전도성 복합재료.
  16. 제15항에 있어서,
    상기 용출억제제는 상기 열가소성수지 100중량부에 대해서 0.05 ~ 1.4 중량부로 포함되는 전도성 복합재료.
  17. 제16항에 있어서,
    상기 전도성 복합재료에 UV 안정제, 접착제, 및 산화방지제로 구성된 군에서 선택되는 1종 이상의 첨가제를 더 포함하는 전도성 복합재료.
PCT/KR2014/004229 2013-05-10 2014-05-12 전도성 복합재료 및 그의 제조방법 WO2015160026A1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20130053324 2013-05-10
KR1020140044482A KR101459635B1 (ko) 2013-05-10 2014-04-14 전도성 복합재료 및 그의 제조방법
KR10-2014-0044482 2014-04-14

Publications (1)

Publication Number Publication Date
WO2015160026A1 true WO2015160026A1 (ko) 2015-10-22

Family

ID=52291792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004229 WO2015160026A1 (ko) 2013-05-10 2014-05-12 전도성 복합재료 및 그의 제조방법

Country Status (2)

Country Link
KR (1) KR101459635B1 (ko)
WO (1) WO2015160026A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283402A (zh) * 2019-05-29 2019-09-27 安徽同心林塑胶科技有限公司 Pvc地板用石墨烯基添加剂及其制备方法
TWI758423B (zh) * 2017-03-02 2022-03-21 日商東洋紡股份有限公司 導電性糊劑、利用該導電性糊劑之伸縮性配線及具有伸縮性配線的衣服型電子設備

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119412B1 (ko) * 2018-09-28 2020-06-05 재단법인 한국탄소융합기술원 저전력 고효율 피치계 탄소섬유기반 탄소종이 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050036352A (ko) * 2003-10-16 2005-04-20 주식회사 엘지화학 전도성 장척 마블바닥재 및 이의 연속공법에 의한 제조방법
KR20050090742A (ko) * 2004-03-09 2005-09-14 동우전기공업(주) 열가소성수지로 성형제조된 옥내용 폴리머 지지애자
KR20100059156A (ko) * 2008-11-26 2010-06-04 신일화학공업(주) 대전방지제, 이를 이용한 대전방지 마스터배치, 상기 마스터배치를 이용한 대전방지 열가소성 수지 조성물, 대전방지 마스터배치의 제조방법 및 대전방지 열가소성 수지 조성물의 제조방법
KR20110062665A (ko) * 2009-12-04 2011-06-10 한국과학기술연구원 이차전지용 전극 및 그 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356112B2 (ja) * 2008-05-30 2013-12-04 三洋化成工業株式会社 導電性または帯電防止性樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050036352A (ko) * 2003-10-16 2005-04-20 주식회사 엘지화학 전도성 장척 마블바닥재 및 이의 연속공법에 의한 제조방법
KR20050090742A (ko) * 2004-03-09 2005-09-14 동우전기공업(주) 열가소성수지로 성형제조된 옥내용 폴리머 지지애자
KR20100059156A (ko) * 2008-11-26 2010-06-04 신일화학공업(주) 대전방지제, 이를 이용한 대전방지 마스터배치, 상기 마스터배치를 이용한 대전방지 열가소성 수지 조성물, 대전방지 마스터배치의 제조방법 및 대전방지 열가소성 수지 조성물의 제조방법
KR20110062665A (ko) * 2009-12-04 2011-06-10 한국과학기술연구원 이차전지용 전극 및 그 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI758423B (zh) * 2017-03-02 2022-03-21 日商東洋紡股份有限公司 導電性糊劑、利用該導電性糊劑之伸縮性配線及具有伸縮性配線的衣服型電子設備
CN110283402A (zh) * 2019-05-29 2019-09-27 安徽同心林塑胶科技有限公司 Pvc地板用石墨烯基添加剂及其制备方法

Also Published As

Publication number Publication date
KR101459635B1 (ko) 2014-11-27

Similar Documents

Publication Publication Date Title
Bouhamed et al. Assessing the electrical behaviour of MWCNTs/epoxy nanocomposite for strain sensing
WO2015160026A1 (ko) 전도성 복합재료 및 그의 제조방법
Zhang et al. MgO nanoparticles-decorated carbon fibers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite
Song et al. High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films
Zhu et al. Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy
Jiang et al. Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite
Chen et al. Poly (methyl methacrylate)-functionalized graphene/polyurethane dielectric elastomer composites with superior electric field induced strain
Shehzad et al. Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites
US20130310495A1 (en) Elastomer composite with improved dielectric properties and production method thereof
KR101805961B1 (ko) 탄소 나노튜브를 함유하는 폴리아미드 12 조성물
Tamburrano et al. The piezoresistive effect in graphene-based polymeric composites
Zhang et al. Self-modulated band gap in boron nitride nanoribbons and hydrogenated sheets
KR20130125763A (ko) 중합체 및 전기전도성 탄소로 제조된 조성물
Sánchez et al. Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis
Soltani et al. The role of interfacial compatibilizer in controlling the electrical conductivity and piezoresistive behavior of the nanocomposites based on RTV silicone rubber/graphite nanosheets
US20240113454A1 (en) Electrically-conductive corrosion-protective covering
WO2014204165A1 (ko) 편광판 및 이를 포함하는 디스플레이 장치
JP2008069313A (ja) センサー用架橋エラストマー体およびその製法
WO2011112016A2 (ko) 정렬된 카본 나노튜브와 고분자 복합체를 사용한 열전도성 플라스틱 및 그 제조방법
KR101796761B1 (ko) Pvc 테이프 및 그 제조 방법
WO2018016680A1 (ko) 고전도도의 탄소 나노튜브 미세 구조체의 3d 프린팅 방법 및 그에 사용되는 잉크
WO2013187675A1 (ko) 탄소나노튜브 코팅막 및 상기 탄소나노튜브 코팅막을 형성하는 탄소나노튜브 용액 조성물
WO2013147466A1 (en) Non-crosslinked polyethylene composition for power cable
WO2014204164A1 (ko) 편광판 및 상기 편광판을 포함하는 디스플레이 장치
WO2018014425A1 (zh) 纳米导电橡胶传感单元及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889660

Country of ref document: EP

Kind code of ref document: A1