WO2015159887A1 - 有機エレクトロルミネッセンス素子の製造方法 - Google Patents

有機エレクトロルミネッセンス素子の製造方法 Download PDF

Info

Publication number
WO2015159887A1
WO2015159887A1 PCT/JP2015/061484 JP2015061484W WO2015159887A1 WO 2015159887 A1 WO2015159887 A1 WO 2015159887A1 JP 2015061484 W JP2015061484 W JP 2015061484W WO 2015159887 A1 WO2015159887 A1 WO 2015159887A1
Authority
WO
WIPO (PCT)
Prior art keywords
film support
sealing
sealing film
organic
base
Prior art date
Application number
PCT/JP2015/061484
Other languages
English (en)
French (fr)
Inventor
伸明 高橋
真昭 村山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016513796A priority Critical patent/JPWO2015159887A1/ja
Publication of WO2015159887A1 publication Critical patent/WO2015159887A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to a method for producing an organic electroluminescence element.
  • Organic light-emitting elements (hereinafter also referred to as “organic EL elements”) using organic electroluminescence (Electro Luminescence: EL) are thin film type complete light sources capable of emitting light at a low voltage of several volts to several tens of volts. It is a solid element and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. Therefore, in recent years, it has been attracting attention as a backlight for various displays, a display board such as a signboard or an emergency light, and a surface light emitter such as an illumination light source.
  • a display board such as a signboard or an emergency light
  • a surface light emitter such as an illumination light source.
  • the organic EL element includes an organic light emitting layer formed between a first electrode formed on a substrate, a second electrode serving as a counter electrode of the first electrode, and the first electrode and the second electrode. And an element structure including a compound layer.
  • the element structure has a structure laminated on a base material, and is covered with a sealing member from the opposite side of the base material, so that a sealing process is performed to prevent deterioration due to water or oxygen. .
  • a sealing member having a property is bonded and bonded via an adhesive layer.
  • an extremely thin organic EL element using a thin film substrate made of a resin film having a thickness of 50 ⁇ m or less is particularly known. Since such a thin film substrate is difficult to handle, such as easily adhering to other members in the manufacturing process of the organic EL element, or being stuck to other thin films even if trying to peel off, It becomes a factor which causes deterioration of the manufacturing accuracy and manufacturing workability of the organic EL element. Therefore, only during the manufacturing process of the organic EL element, a technique in which the thin film substrate is temporarily bonded and supported on a support having high rigidity is used.
  • a light-transmitting insulating film having a thickness of 5 to 50 ⁇ m and a light-transmitting resin having a flexibility in which conductive powder is dispersed are printed on the entire surface of one side of the insulating film or at a predetermined position.
  • a dispersive electroluminescent device comprising a light-transmitting electrode layer formed in this manner, and a light-emitting layer, a dielectric layer, and a back electrode layer that are printed on the light-transmitting electrode layer one after another.
  • Insulating from temporary substrate after printing and forming light transmissive electrode layer and light emitter layer, dielectric layer, back electrode layer, power supply pattern, wiring pattern on insulating film affixed to temporary substrate with higher rigidity than film A technique for peeling a film to form a dispersive electroluminescent element is disclosed.
  • a sealing member for sealing an element structure is a thin film having a thickness of about 50 ⁇ m or less. It is desirable to form the resin film. That is, a thin resin film (corresponding to a resin sealing film) is handled by adhering and supporting in advance on a highly rigid support, and the base material on which the element structure is formed and the sealing member are bonded. After finishing, there is a demand for a technique for appropriately removing the support that does not constitute the element.
  • the adhesive member is applied to be in a state of being bonded and fixed to the element structure, so that the bonding is performed. Later, it is not easy to remove only the support from the sealing member bonded to the element structure.
  • the present invention provides a sealing film that is attached to a resin sealing film to assist in handling in the production of an organic electroluminescence element sealed by a sealing member including the resin sealing film. It aims at providing the manufacturing method of the organic electroluminescent element which made it possible to remove a support body easily from a resin-made sealing film.
  • An organic compound layer comprising a first electrode formed on a substrate, a second electrode serving as a counter electrode of the first electrode, and an organic light emitting layer formed between the first electrode and the second electrode Is an organic electroluminescent element manufacturing method in which an element structure formed by laminating is sealed by a sealing member including a resin sealing film, and has higher rigidity than the resin sealing film.
  • a step of supporting the sealing member comprising the resin sealing film on one main surface of the sealing film support, and bonding to the sealing member supported by the sealing film support A step of forming an agent layer, a step of sticking a sealing film support peeling material on the other main surface of the sealing film support, the base material on which the element structure is formed, and the sealing film support
  • the sealing film to which the peeling material is affixed The step of pasting the sealing member supported by the rum support through the adhesive layer, the sealing film support together with the sealing film support peeling material from the pasted sealing member
  • the manufacturing method of the organic electroluminescent element characterized by including the process of peeling a body.
  • An element structure formed by laminating an organic compound layer including a light emitting layer is a method for producing an organic electroluminescent element sealed by a sealing member including a resin sealing film, A step of supporting the sealing member comprising the resin sealing film on one main surface of the sealing film support having higher rigidity than the resin sealing film, supported by the sealing film support
  • Base film support having A step of supporting a base material comprising the resin base material film on one main surface, the first electrode and the organic compound layer on the base material supported by the base material film support.
  • the second electrode are sequentially laminated to form an element structure, the substrate on which the element structure is formed, and the sealing film support on which the sealing film support peeling material is affixed
  • the step of pasting the sealing member supported on the adhesive layer through the adhesive layer, and peeling the sealing film support together with the sealing film support peeling material from the pasted sealing member A step of attaching a base film support peeling material on the other main surface of the base film support, the base film support together with the base film support peeling material from the pasted base material Including a step of peeling Method of manufacturing an organic electroluminescent element.
  • the substrate and the substrate film support to which the substrate film support peeling material has been pasted are cut out leaving the substrate film support peeling material, and the substrate is an elemental form of an organic electroluminescence element 3.
  • the base material and the sealing member are long and flexible, and the bonding via the adhesive layer is performed by the base material on which the element structure is formed and the sealing member. 4.
  • the substrate is long and flexible, and the substrate film support is peeled off after the supported substrate is cut and formed into a short length. 3.
  • the adhesive layer is formed by bonding via the adhesive layer between the adhesive support with the adhesive applied on one main surface and the sealing member supported by the sealing film support. 6.
  • the sealing member bonded to the adhesive support is cut while leaving the adhesive support, and the sealing member is shaped according to the element shape of the organic electroluminescence element. 6.
  • the sealing film adhered to the resin sealing film for the assistance of handling. It is possible to provide a method for producing an organic electroluminescent element that makes it possible to easily remove the support from the resin sealing film.
  • a state in which the laminate is cut (d) is a state before applying the sealing film support peeling material, and (e) is a state in which the sealing film support peeling material is applied and the adhesive support 100 is peeled off. Respectively.
  • (A) is a state before pasting a base material and a sealing member
  • (b) is a state pasting a base material and a sealing member via an adhesive layer
  • (c) is sealing. The state which peeled the sealing film support body with the film support body peeling material is each shown.
  • FIG. 1 It is a schematic flowchart of the base film support body peeling material sticking process, base material laminated body cutting process, and base film support body peeling process in the manufacturing method of the organic EL element which concerns on 2nd Embodiment.
  • A is a state before applying the base film support peeling material
  • (b) is a state where the base film support peeling material is attached
  • (c) is a state where the base laminate is cut
  • ( d) shows the state which peeled the base film support body with the base film support base peeling material, respectively.
  • organic electroluminescence element organic electroluminescence element
  • FIG. 1 is a cross-sectional view schematically showing an example of the configuration of the organic EL element according to the first embodiment.
  • the organic EL element 1 mainly includes a base material 10, an element structure 20, an adhesive layer 30, and a sealing member 40.
  • a patterned element structure 20 is laminated on a base material 10.
  • the sealing member 40 is bonded to the main surface of the element structure 20 opposite to the main surface in contact with the base material 10 via the adhesive layer 30.
  • the element structure 20 is sealed by covering the main surface and the side opposite to the main surface in contact with the base material 10 with the adhesive layer 30 and the sealing member 40, and is made of water or oxygen. Deterioration is suppressed.
  • the adhesive layer 30 is filled so as to fill a space between the base material 10 and the sealing member 40, and is in a form in which the adhesive layer 30 is tightly sealed by the adhesive layer 30. Yes.
  • the element structure 20 has a structure in which a pair of first electrode 21 and second electrode 23 and an organic compound layer 22 including an organic light emitting layer are stacked.
  • the first electrode 21 is an anode
  • the second electrode 23 provided as a counter electrode of the first electrode 21 is a cathode.
  • Each of the first electrode 21 and the second electrode 23 has an extraction electrode portion, and a predetermined voltage is applied from the outside through the extraction electrode portion. In order to apply a voltage from the outside, it is necessary to expose a part of these extraction electrode portions, and usually a sealing member that is pattern-cut so as to paste the element structure 20 except for the extraction electrode portion. 40 is used.
  • the organic compound layer 22 is a layer mainly composed of an organic compound, and includes at least an organic light emitting layer containing an organic light emitting material. That is, the organic compound layer 22 is composed of a single layer composed of an organic light emitting layer or a plurality of layers including an organic light emitting layer and another organic compound layer.
  • Other organic compound layers include, for example, a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc. For example, a layer that performs the function.
  • the organic light emitting layer is positively connected from the first electrode 21 that is an anode. Holes are supplied, and electrons are supplied from the second electrode 23 which is a cathode. Then, inside the organic light emitting layer or in the vicinity of the layer interface, the supplied holes and electrons recombine to form an excited state of molecules of the organic light emitting material, and when this excited state transitions to the ground state Light emission will occur. Details of the structure of the element structure 20 that generates such light emission will be described later.
  • the sealing member 40 is a thin film member including a resin film (resin sealing film 42) having a thickness of 10 ⁇ m or more and 50 ⁇ m or less as a base, A barrier layer 41 is laminated on a resin sealing film 42 as a substrate.
  • the base material 10 of the organic EL element 1 has a thickness exceeding 50 ⁇ m and employs a base material having relatively high rigidity.
  • the organic EL device manufacturing method includes a first electrode 21 formed on the substrate 10 as shown in FIG. 1, a second electrode 23 that is a counter electrode of the first electrode 21, and An element structure 20 formed by laminating an organic compound layer 22 formed between the first electrode 21 and the second electrode 23 and including an organic light emitting layer is sealed with a resin sealing film 42.
  • This is a suitable method for manufacturing the organic EL element 1 sealed by the stop member 40.
  • the sealing film 42 is used in order to improve handling (handling) such as conveyance, cutting, placement, and peeling of the resin sealing film 42 that is a thin film.
  • the organic EL element 1 is manufactured by previously supporting the sealing member 40 including the material on the sealing film support 60 having high rigidity. At this time, in order to be able to easily remove the sealing film support 60 that does not constitute an element in the subsequent stage of the manufacturing process, the sealing film support 60 and the sealing film 42 are separated from each other.
  • the sealing film support peeling material 120 is used (see FIG. 3).
  • FIG. 2 is a diagram illustrating an example of a process of the method for manufacturing the organic EL element according to the first embodiment.
  • the manufacturing method of the organic EL device mainly includes a sealing laminate forming step S110, an adhesive layer forming step S120, a sealing laminate cutting step S130, and a sealing film support peeling material. It includes a pasting step S140, an element structure forming step S160, a pasting step S170, and a sealing film support peeling step S180.
  • sealing laminated body formation process S110, adhesive bond layer formation process S120, sealing film support body peeling material sticking process S140, pasting process S170, sealing film support body peeling process S180 Will be implemented sequentially.
  • element structure formation process S160 it can implement separately by arbitrary front-and-back relations before bonding process S170.
  • the sealing member 40 including the sealing film 42 is supported on one main surface of the sealing film support 60. That is, in order to improve the handleability of the thin sealing film 42, the sealing film 42 is temporarily fixed by being attached to the sealing film support 60 having a high rigidity, and the sealing film 42 and the sealing having a high rigidity are provided. By making it unite in the state which can be attached or detached with the film support body 60, the sealing laminated body 5 which consists of the sealing member 40 containing the sealing film 42 and the sealing film support body 60 (FIG. 3). (See (a)).
  • a method for supporting the sealing film 42 on the sealing film support 60 for example, a method in which the sealing film 42 is adhered to the sealing film support 60 and attached using static electricity, and the sealing film 42 is sealed. Either a method of sticking to the film support 60 with an adhesive or a method of forming the sealing film 42 on the sealing film support 60 can be applied.
  • the sealing film support 60 has a rigidity higher than that of the resin sealing film 42, and is a temporary member such as a sheet-like body or a plate-like body that supports the thin-film sealing film 42 in a close contact state over substantially the entire surface. It is a substrate.
  • any material can be used as long as it has higher rigidity than the sealing film 42 and is suitable for handling such as film formation, conveyance, cutting, placement, peeling, and the like.
  • the material is not limited to a hard material such as a metal or glass, and a flexible resin material such as a sheet or plate can be used.
  • the material of the sealing film support 60 is particularly preferably polyethylene terephthalate (PET), and the thickness thereof is, for example, about 75 ⁇ m to 250 ⁇ m. Can do.
  • Examples of the adhesive that affixes the sealing film 42 to the sealing film support 60 include, for example, a hot-melt adhesive, a pressure-sensitive adhesive, a thermosetting adhesive, an ultraviolet curable adhesive, and an electron beam curable adhesive.
  • Various adhesives such as a chemical curable adhesive can be used.
  • a spin coating method for example, a casting method, an ink jet method, a printing method, a slot die method, a spray coating method, a dip coating, depending on the material.
  • Known film forming methods such as a method, a blade method, and a slit coating method can be used.
  • the layer of the sealing film 42 can be formed by applying a material using such a film forming method and then drying it.
  • the barrier layer 41 may be formed by depositing a material on the main surface opposite to the sealing film support 60 of the sealing film 42 attached to the sealing film support 60.
  • the sealing film 42 may be previously formed on the main surface of the sealing film 42 before the sealing film 42 is attached to the sealing film support 60.
  • a functional layer such as the barrier layer 41 for improving the sealing property of the organic EL element 1 or imparting other functionality to the organic EL element 1 is adjacent to the sealing film 42. It is also possible to provide the above. In such a case, a functional layer is formed so as to be positioned between the sealing film 42 and the adhesive layer 30 or between the sealing film 42 and the sealing film support 60, What is necessary is just to make it support to the support body 60.
  • vapor deposition As a method for forming the functional layer, depending on the material, for example, vapor deposition, sputtering, chemical vapor deposition (CVD), spin coating, casting, ink jet, printing, slot die
  • CVD chemical vapor deposition
  • a known film forming method such as a spray coating method, a dip coating method, a blade method, or a slit coating method can be used.
  • an ultraviolet curable compound, an electron beam curable compound, or the like as a material
  • an ultraviolet irradiation treatment an electron beam irradiation treatment, or the like may be performed after the film formation.
  • sealing laminated body formation process S110 As shown in the upper stage of FIG. 3A, the sealing film support 60 and the sealing member 40 supported by the sealing film support 60 are used.
  • the sealing laminated body 5 which becomes is formed.
  • the formed sealing laminated body 5 is provided to adhesive bond layer formation process S120.
  • FIG. 3 is a schematic flowchart of an adhesive layer forming step, a sealing laminate cutting step, and a sealing film support stripping material attaching step in the method for manufacturing an organic EL element according to the first embodiment.
  • A is the state before bonding the sealing laminate and the adhesive support
  • (b) is the state where the sealing laminate and the adhesive support are bonded
  • (c) is the sealing.
  • a state in which the laminate is cut is a state before applying the sealing film support peeling material
  • (e) is a state in which the sealing film support peeling material is applied and the adhesive support 100 is peeled off.
  • an adhesive layer is formed on the sealing member 40 supported by the sealing film support 60. That is, it is set as the state by which the layer of the adhesive agent used as the adhesive bond layer 30 (refer FIG. 1) was laminated
  • FIG. 1 the layer of the adhesive agent used as the adhesive bond layer 30 (refer FIG. 1) was laminated
  • the adhesive layer As a method for forming the adhesive layer, a method in which the adhesive is directly applied, a method in which the adhesive is transferred and applied, and a method in which the adhesive already in the form of a sheet is laminated are formed. Any of the methods may be used.
  • the film thickness of the formed adhesive layer 30 is preferably 10 ⁇ m or more and 50 ⁇ m or less, and preferably 20 ⁇ m or more and 50 ⁇ m or less from the viewpoint of preventing water and oxygen from entering from the side surface of the adhesive layer 30. Is more preferable.
  • the adhesive layer 100 is formed on the main surface of the adhesive support 100 (FIG. 3A).
  • the sealing member 40 supported by the sealing film support 60 is performed by transfer coating by bonding via an adhesive (30) (see FIG. 3B).
  • an adhesive (30) see FIG. 3B.
  • the adhesive support 100 is a sheet-like body, a plate-like body, or the like used for transferring and applying an adhesive.
  • any suitable material can be used as long as the adhesive strength to the adhesive (30) is weaker than the adhesive strength between the adhesive (30) and the sealing member 40 and the adhesive can be easily separated. Materials can be used.
  • the material is not limited to a hard material such as metal, glass, or resin, and a resin material having flexibility and elasticity can also be used.
  • the surface of the adhesive support 100 can be smoothed by laminating a resin layer or the like to improve the peelability and used.
  • Examples of the method for directly applying the adhesive include, for example, known film forming methods such as a spin coating method, a casting method, an inkjet method, a printing method, a slot die method, a spray coating method, a dip coating method, a blade method, and a slit coating method. Can be used.
  • known film forming methods such as a spin coating method, a casting method, an inkjet method, a printing method, a slot die method, a spray coating method, a dip coating method, a blade method, and a slit coating method. Can be used.
  • the adhesive for example, various adhesives such as a hot melt adhesive, a pressure sensitive adhesive, a thermosetting adhesive, an ultraviolet curable adhesive, an electron beam curable adhesive, and a chemical curable adhesive are used. be able to. Among these, curable adhesives such as thermosetting adhesives and ultraviolet curable adhesives having high sealing properties are desirable among these.
  • sealing laminated body cutting process S130 as shown in FIG.3 (c), the sealing member 40 bonded with the adhesive support body 100 is cut, leaving the adhesive support body 100, and a sealing member 40 can be formed according to the element shape of the organic EL element 1. That is, the sealing is performed so that the sealing laminate 5 including the sealing film support 60 and the sealing member 40 is pattern-cut with the adhesive layer (30) leaving the adhesive support 100. This is performed in a direction substantially perpendicular to the main surface of the laminate 5. At this time, as a shape to be formed by cutting, as long as the entire surface of the element structure 20 is covered by the cut sealing member 40, an appropriate length dimension is set according to the element shape of the organic EL element. The desired shape can be obtained.
  • the sealing member 40 is cut after the adhesive layer is formed in this way, so that the element shape is cut into an element shape that is cut and excludes the extraction electrode portion (elements).
  • the step of applying an adhesive layer individually to the sealing member 40 thus formed is omitted.
  • the element-shaped sealing member 40 is left together with the sealing film support 60 on the uncut cutting adhesive support 100.
  • the handleability of the small-sized resin-made sealing film 42 can be improved.
  • the adhesive support 100 is not cut into pieces by cutting, the work of peeling and removing the adhesive support 100 that is not included in the element configuration of the organic EL element 1 becomes easy.
  • the long adhesive support 100 is formed. By using it, it is possible to simplify the workability of peeling off the adhesive support 100 and the workability of forming the adhesive layer, and to improve the film forming accuracy of the adhesive.
  • sealing material support peeling material sticking process S140 on the other main surface on the opposite side to the one main surface to which the sealing member 40 of the sealing film support 60 has adhered.
  • the sealing film support peeling material 120 is affixed to.
  • the sealing film support body peeling material 120 is affixed on the sealing film support body 60 through the main surface which has adhesiveness.
  • the sealing film support peeling material 120 is a sheet-like body, a film-like body, a tape-like body or the like having adhesiveness on at least one main surface.
  • any material can be used as long as the adhesive strength to the sealing film support 60 is stronger than the adhesive strength between the adhesive constituting the adhesive layer 30 and the adhesive support 100. Materials can be used.
  • a pressure-sensitive adhesive adheresive adhesive
  • thermosetting adhesive thermosetting adhesive
  • ultraviolet curable adhesive A sheet-like body coated with an electron beam curable adhesive or the like can be used.
  • the sealing film support peeling material 120 is preferably a sheet-like body coated with a pressure-sensitive adhesive.
  • pressure-sensitive adhesives for example, adhesives composed of various resins such as acrylic resins, vinyl acetate resins, silicone resins, epoxy resins, polyester resins, and the like and generally known as high initial adhesive properties are generally known. It has been.
  • a pressure-sensitive adhesive When a pressure-sensitive adhesive is used, strong adhesion exceeding other adhesion points can be easily realized, and the sealing film support 60 can be peeled and removed easily and reliably without requiring a curing time.
  • the thing used as the hardening conditions different from the adhesive which forms the contact bonding layer 30 is preferable.
  • the sealing film support peeling material 120 is preferably long and flexible, and more preferably has a length dimension equivalent to that of the sealing film support 60.
  • the long sealing film support peeling material 120 is used in the sealing laminate cutting step S130. It can be made to affix on each of the some sealing film support body 60 cut and element-shaped. Therefore, a plurality of sealing film supports 60 formed into an element can be connected to each other by a long sealing film support peeling material 120, and a plurality of sealing film supports is described later. 60 can be easily and collectively peeled off.
  • the sealing support 5 to which the sealing film support peeling material 120 is stuck is peeled and removed from the adhesive support 100 as shown in FIG. 3 (e). After that, it is used for bonding process S170 with the base material 10 with which the element structure 20 was formed.
  • the element structure 20 is formed by sequentially stacking the first electrode 21, the organic compound layer 22, and the second electrode 23 on the main surface of the substrate 10.
  • the specific laminated structure of the element structure 20 formed here is as described later.
  • the first electrode 21 can be formed by depositing an electrode material on the main surface of the substrate 10.
  • a method for forming the first electrode 21 a method described later such as a vapor deposition method or a sputtering method can be used.
  • the organic compound layer 22 can be formed by depositing the material described later constituting each organic compound layer 22 on the surface of the first electrode 21 formed on the surface opposite to the surface in contact with the substrate 10. . That is, an organic light emitting layer, a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer, an electron injection layer, and the like are formed using various materials to form a single layer structure or a plurality of layers It is possible to form the organic compound layer 22 having a configuration.
  • a method for forming the organic compound layer 22 depending on the material, for example, a vapor deposition method, a spin coating method, a casting method, an ink jet method, a printing method, a slot die method, a spray coating method, a Langmuir-Blodgett method (LB) Method), dip coating method, blade method, slit coating method and the like can be used.
  • a vapor deposition method for example, a spin coating method, a casting method, an ink jet method, a printing method, a slot die method, a spray coating method, a Langmuir-Blodgett method (LB) Method
  • LB Langmuir-Blodgett method
  • the second electrode 23 can be formed by depositing an electrode material on the surface of the formed organic compound layer 22 opposite to the surface in contact with the first electrode 21.
  • a method for forming the second electrode 23 a method described later such as a vapor deposition method or a sputtering method can be used.
  • the base material 10 (see FIG. 4A) on which the element structure 20 is formed through the element structure forming step S160 is supplied to the bonding step S170 with the sealing member 40 (sealing laminate 5).
  • the element structure 20 is preferably subjected to the bonding step S170 while being held in a high vacuum atmosphere or a high purity inert gas atmosphere.
  • FIG. 4 is a schematic flowchart of a bonding step and a sealing film support peeling step in the method for manufacturing an organic EL element according to the first embodiment.
  • (A) is a state before pasting a base material and a sealing member
  • (b) is a state pasting a base material and a sealing member via an adhesive layer
  • (c) is sealing. The state which peeled the sealing film support body with the film support body peeling material is each shown.
  • bonding process S170 As shown to Fig.4 (a), it is supported by the sealing film support body 60 in which the base material 10 in which the element structure 20 was formed, and the sealing film support body peeling material 120 were affixed.
  • the sealing member 40 is bonded via an adhesive layer (30). That is, the main surface (surface on the second electrode 23 side) opposite to the substrate 10 of the element structure 20 formed in the element structure formation step S160 and the adhesive layer are formed in the adhesive layer formation step S120.
  • the main surface (the surface of the sealing member 40) on the opposite side to the sealing film support peeling material 120 of the sealing laminate 5 thus bonded is pressed through the adhesive layer (30).
  • the bonding in the bonding step S170 includes the base member 10 on which the element structure 20 is formed and the sealing member 40 supported by the sealing film support 60 to which the sealing film support peeling material 120 is attached. It is preferable to carry out by roll pressing.
  • the base material 10 and the sealing member 40 are both long and flexible, the roll in which the base material 10 on which the element structure 20 is formed and the sealing laminate 5 are wound.
  • the sealing member 40 is connected to the long sealing film support stripping material 120 by crimping the rolls through the adhesive (30) while unrolling the wound rolls, respectively. Can be bonded continuously.
  • the sealing film support 60 can be easily removed from the long sealing member 40 by peeling off the sealing film support peeling material 120. Is possible.
  • sealing film support peeling process S180 as shown in FIG.4 (c), the sealing film support 60 is peeled with the sealing film support peeling material 120 from the bonded sealing member 40.
  • the sealing member 40 bonded in bonding process S170 is the state laminated
  • the sealing film support body 60 In the manufacturing method which concerns on this embodiment, it is set as the structure which peels and removes the sealing film support body 60 with the sealing film support body peeling material 120 stuck on the other main surface of the sealing film support body 60 in this way.
  • the sealing film support peeling material 120 is pasted after the sealing laminate cutting step S130, and the sealing film support cut by cutting the sealing film support peeling material 120 is not cut. It is possible to remove the sealing film support 60 regardless of the shape and size of 60.
  • a plurality of sealing film supports 60 cut into an element shape by peeling off the sealing film support peeling material 120 are formed into sealing films. Since it can peel and remove collectively from the state connected with the support body peeling material 120, the process regarding peeling of the sealing film support body 60 can be performed simply.
  • FIG. 5 is a cross-sectional view schematically showing an example of the configuration of the organic EL element according to the second embodiment.
  • the organic EL element 1 ⁇ / b> A mainly includes a base material 10 ⁇ / b> A, an element structure 20, an adhesive layer 30, and a sealing member 40.
  • the difference between the organic EL element 1A and the organic EL element 1 is that, as a base material on which the element structure 20 is formed, the thickness is 10 ⁇ m or more instead of the base material 10 having relatively high rigidity. It is a point provided with 10 A of base materials which comprise the resin film (resin base film 12) of 50 micrometers or less.
  • the sealing member 40 is configured to include the resin sealing film 42 having a thickness of 10 ⁇ m or more and 50 ⁇ m or less as a base, and the base material 10A is formed to have a thickness.
  • the resin base film 12 having a thickness of 10 ⁇ m or more and 50 ⁇ m or less as a base, light extraction from both the base 10A side and the sealing member 40 side, storage property, portability, and curving are performed.
  • An ultra-thin element structure suitable for curved surface use is formed.
  • the manufacturing method of the organic EL element according to the second embodiment includes a first electrode 21 formed on a base material 10A including a resin base film 12 as shown in FIG.
  • the element structure 20 formed by laminating the second electrode 23 serving as a counter electrode and the organic compound layer 22 formed between the first electrode 21 and the second electrode 23 and including the organic light emitting layer is a resin.
  • This is a method suitable for manufacturing the organic EL element 1 ⁇ / b> A sealed by the sealing member 40 including the made sealing film 42.
  • the sealing member 40 including the sealing film 42 is rigid in order to assist the handling of the resin sealing film 42 and the resin base film 12.
  • the organic EL element 1A is manufactured by supporting the base film 10A including the base film 12 in advance on the base film support 70 having high rigidity while supporting it in advance on the high sealing film support 60. And in order to be able to remove easily the sealing film support body 60 and the base film support body 70 which do not comprise an element in the latter stage of the manufacturing process, the sealing film support body 60 and the sealing film 42
  • the sealing film support peeling material 120 for peeling each other and the base film support peeling material 130 for peeling the base film support 70 and the base film 12 from each other are used. (See FIGS. 7 and 8).
  • FIG. 6 is a diagram illustrating an example of a process of the method for manufacturing an organic EL element according to the second embodiment.
  • the manufacturing method of the organic EL device mainly includes a sealing laminate forming step S110, an adhesive layer forming step S120, a sealing laminate cutting step S130, and a sealing film support peeling material.
  • Affixing step S140, a substrate laminate forming step S150, an element structure forming step S160, a bonding step S170, a sealing film support peeling step S180, a substrate film support peeling material applying step S190, The substrate laminate cutting step S200 and the substrate film support peeling step S210 are included.
  • sealing laminated body formation process S110, adhesive bond layer formation process S120, sealing film support body peeling material sticking process S140, pasting process S170, sealing film support body peeling process S180, Will be implemented sequentially.
  • base material laminated body formation process S150, element structure formation process S160, bonding process S170, and base film support body peeling process S210 are each implemented sequentially.
  • any pre-relationship relationship before the bonding step S170. Can be implemented separately.
  • the base material film support peeling material sticking process S190 it is possible to carry out at an arbitrary stage before the base film support peeling process S210, and regarding the base material laminate cutting process S200, It is implemented after the film support peeling material sticking step S190.
  • one main surface of the sealing film support 60 is the same as in the first embodiment.
  • the sealing member 40 including the sealing film 42 is supported thereon, an adhesive layer is formed on the sealing member 40 supported by the sealing film support 60, and the sealing film support 60
  • the sealing film support peeling material 120 is affixed on the other main surface on the opposite side to the one main surface to which the sealing member 40 adheres.
  • the adhesive support body 100 is bonded together and an adhesive bond layer is formed, the sealing laminated body 5 to which the sealing film support body peeling material 120 was affixed is formed (refer FIG.3 (e)).
  • the sealing member 40 can be formed according to the element shape of the organic EL element 1. Then, the formed sealing laminate 5 is bonded to the base material 10 on which the element structure 20 is formed after the adhesive support 100 is peeled and removed in the same manner as in FIG. Provided to step S170.
  • the substrate 10A including the resin substrate film 12 is supported on one main surface of the substrate film support 70. That is, in order to improve the handleability of the thin base film 12, the base 10A is attached to the base film support 70 having a high rigidity and temporarily fixed, and the base film 12 and the base film having a high rigidity are provided.
  • the support body 70 integral with each other, the base material laminate 6 (see FIG. 7A) composed of the base material 10A including the base material film 12 and the base material film support body 70 is formed.
  • the base film 12 is brought into close contact with the base film support 70 using the static electricity as in the first embodiment. Any of a method of attaching, a method of sticking the base film 12 to the base film support 70 with an adhesive, and a method of forming a film of the base film 12 on the base film support 70 can be applied. It is.
  • the base film support 70 has a rigidity higher than that of the resin base film 12, and is a temporary support such as a sheet-like body or a plate-like body that supports the thin base film 12 in a close contact state over substantially the entire surface. It is a substrate.
  • any material can be used as long as it has a higher rigidity than the base film 12 and is suitable for handling such as film formation, conveyance, cutting, and peeling.
  • the material is not limited to a hard material such as a metal or glass, and a flexible resin material such as a sheet or plate can be used.
  • the material of the base film support 70 is preferably polyethylene terephthalate (PET) or the like, and the thickness can be, for example, about 75 ⁇ m to 250 ⁇ m. .
  • Examples of the adhesive for attaching the base film 12 to the base film support 70 include, for example, a hot melt adhesive, a pressure sensitive adhesive, a thermosetting adhesive, an ultraviolet curable adhesive, and an electron beam curable adhesive.
  • Various adhesives such as a chemical curable adhesive can be used.
  • a spin coating method for example, a casting method, an ink jet method, a printing method, a slot die method, a spray coating method, a dip coating, depending on the material.
  • Known film forming methods such as a method, a blade method, and a slit coating method can be used.
  • the layer of the base film 12 can be formed by applying a material using such a film forming method and then drying the material.
  • a base material laminate forming step S150 as shown in the lower part of FIG. 7A, the base material film support 70 and the base material 10A supported by the base film support 70 are formed. A substrate laminate 6 is formed. And the formed base-material laminated body 6 is provided to element structure formation process S160.
  • the element structure 20 is formed by sequentially laminating the first electrode 21, the organic compound layer 22, and the second electrode 23 on the main surface of the substrate 10A. That is, the first electrode 21, the organic compound layer 22, and the second electrode are formed on the surface of the base material laminate 6 on the base material 10A side (the surface of the barrier layer 11) in the same manner as in the first embodiment.
  • the electrode 23 is stacked.
  • the base material laminate 6 (see FIG. 7A) on which the element structure 20 is formed through the element structure forming step S160 is applied to the bonding step S170 with the sealing member 40 (sealing laminate 5). Provided.
  • FIG. 7 is a schematic flowchart of a bonding step and a sealing film support peeling step in the method for manufacturing an organic EL element according to the second embodiment.
  • (A) is a state before pasting a base material and a sealing member
  • (b) is a state pasting a base material and a sealing member via an adhesive layer
  • (c) is sealing. The state which peeled the sealing film support body with the film support body peeling material is each shown.
  • the base material laminated body 6 and the sealing laminated body 5 are bonded together by giving the hardening process of an adhesive agent, and the adhesive layer 30 of the hardened state is formed, and it shows in FIG.7 (b).
  • the element structure 20 on the base material 10 ⁇ / b> A is sealed with the sealing member 40 and the adhesive layer 30.
  • the bonding in the bonding step S ⁇ b> 170 may be performed by roll pressing between the base material 10 ⁇ / b> A on which the element structure 20 is formed and the sealing laminate 5, as in the first embodiment.
  • sealing film support body peeling process S180 as shown in FIG.7 (c), the sealing film support body 60 is peeled with the sealing film support body peeling material 120 from the bonded sealing member 40.
  • the sealing member 40 bonded in bonding process S170 is the state laminated
  • FIG. 8 is a schematic flowchart of the base film support peeling material attaching step, the base material laminate cutting step, and the base film support peeling step in the method of manufacturing an organic EL element according to the second embodiment.
  • (A) is a state before applying the base film support peeling material
  • (b) is a state where the base film support peeling material is attached
  • (c) is a state where the base laminate is cut
  • ( d) shows the state which peeled the base film support body with the base film support base peeling material, respectively.
  • the base film support peeling material pasting step S190 as shown in FIGS. 8A and 8B, the other side opposite to the one main surface to which the base 10A of the base film support 70 is attached.
  • a base film support peeling material 130 is stuck on the main surface. That is, the base material film support peeling material 130 is affixed to the base material film support 70 through the main surface having adhesiveness.
  • the time before sticking may be the time before the base material laminated body 20 is formed, or the time before the base material laminated body 20 is formed and before sealing.
  • the base film support peeling material 130 is a sheet-like body, a film-like body, a tape-like body or the like having adhesiveness on at least one main surface.
  • an appropriate material is used as long as the adhesive strength to the base film support 70 is stronger than the adhesive strength between the base film support 70 and the base 10A.
  • the thing of the structure similar to the said sealing film support body peeling material 120 can be used.
  • the base film support peeling material 130 is long and preferably flexible, and preferably has a length dimension equivalent to that of the base 10A.
  • the long base film support peeling material 130 is formed in the base material laminate cutting step S200. It can be made to affix on each of the some base film support body 70 cut and formed into the element shape. Therefore, the plurality of substrate film supports 70 formed into an element can be connected to each other by the substrate film support peeling material 130, and the organic EL element 1A described later can be easily collected. It becomes.
  • the base material film support 70 is peeled off from the base material 10A and the base film support 70 to which the base material support stripping material 130 is attached.
  • the base material 10A is formed according to the element shape of the organic electroluminescence element by cutting a part (half cut) of the material 130 while cutting. That is, the cutting is substantially performed with respect to the main surface of the base material laminate 6 so that the base material laminate 6 in which the element structure 20 is sealed is pattern-cut leaving the base material film support peeling material 130. Do it vertically.
  • the shape to be formed by cutting is a desired shape according to the element shape of the organic EL element as long as the element structure 20 can be included together with an instrumentation region such as an electrode or other equipment. be able to.
  • the base material 10A is cut while leaving the base film support peeling material 130 in this way, the base film support peeling material 130 is reduced to an element shape. Therefore, the work of peeling and removing the base film support peeling material 130 that is not included in the element configuration of the organic EL element 1A becomes easy. Therefore, even in a manufacturing method such as a roll-to-roll method, the base film support peeling material 130 is maintained in a long length, and the workability of peeling the base film support peeling material 130 can be simplified. it can. Furthermore, the organic EL element 1A cut and formed by cutting the base material 10A leaving the base film support peeling material 130 is not cut together with the base film support 70. It can be made to remain on the support peeling material 130. Therefore, the handleability of the extremely thin organic EL element 1A can be improved even after this step.
  • the base film support 70 is peeled off together with the base film support peeling material 130 from the base 10A bonded to the sealing member 40.
  • 10 A of base materials bonded in bonding process S170 will be in the state by which the structure of each organic EL element, the base film support body 70 which does not comprise an element, and the base material film support peeling material 130 were laminated
  • the ultrathin organic EL element 1 ⁇ / b> A including the base material 10 ⁇ / b> A and the sealing member 40 including the sealing film 42 is collected.
  • the base film support 70 is bonded and supported by the base film support stripping material 130 attached to the other main surface of the base film support 70 in this manner. Regardless of the shape and dimensions of the cut base film support 70, the base film support 70 can be reliably fixed. Therefore, when the organic EL element 1A is peeled from the base film support 70, the base film support 70 that has been fragmented becomes difficult to be dragged by the peeled organic EL element 1A, and the organic EL element 1A is recovered. It can be easily performed. Also, in a manufacturing method such as a roll-to-roll method, a plurality of base film support members 70 that have been cut into an element shape are collectively connected to a long base material support member peeling material 130. Since it can fix, the process regarding collection
  • the base material laminate cutting step S200 is performed after the base material film support peeling material attaching step S190. Specifically, in the base film support peeling material pasting step S190, the base film support peeling is performed on the other main surface of the base film support 70 opposite to the one main surface to which the base 10A is attached. After the material 130 is pasted, in the base material laminate cutting step S200, the base material 10A and the base film support 70 to which the base film support stripping material 130 is pasted are used as the base film support stripping material 130. The remaining material is cut to form the base material 10A into an element shape of an organic electroluminescence element. However, instead of this, the base material dividing step (S200A) may be performed before the base material film support peeling material attaching step S190.
  • FIG. 9 is a diagram illustrating an example of a process of a method for manufacturing an organic EL element according to a modification.
  • the manufacturing method according to the modification mainly includes a sealing laminate forming step S110, an adhesive layer forming step S120, a sealing laminate cutting step S130, a sealing film support peeling material attaching step S140, Material laminate forming step S150, element structure forming step S160, bonding step S170, sealing film support peeling step S180, base material dividing step S200A, and base film support peeling material sticking step S190A
  • the substrate laminate cutting step S200B and the substrate film support peeling step S210 are included.
  • the base material dividing step S200A is sequentially performed.
  • the manufacturing method according to such a modification is suitable when the base material 10A and the sealing member 40 are both long and flexible, and are manufactured in a roll-to-roll type or the like. The method can be advantageously applied.
  • the substrate 10A supported by the substrate film support 70 is cut and formed into a short length. Cutting is performed after the element structure 20 is sealed by the sealing member 40 and the sealing film support 60 is peeled and removed (the same state as in FIG. 7C) and on the base film support 70. It is performed before the base film support peeling material 130 is attached. Further, the base material 10A and the base film support 70 are both cut in a direction substantially perpendicular to the main surface of the base material 10A so that the base material 10A and the base material film support 70 are cut together and divided into short sheets. It is done so as to cross in the width direction.
  • the length dimension formed by cutting is not particularly limited, and a plurality of element structures 20 formed on the long base material 10A in the length direction are formed from a smaller number. It is sufficient that the base material 10A that is cut into the groups is made to have a length more suitable for handling.
  • the base film support peeling material pasting step S190A the base film support peeling material on the other main surface opposite to the one main surface to which the base material 10A of the cut base film support 70 is attached.
  • Affix 130 That is, the base film support peeling material 130 is pasted on the other main surface of the base film support 70 which has been cut to be short with the base material 10A, through the main surface having adhesiveness.
  • the base film support peeling material 130 may have a long dimension so as to be affixed to a plurality of base film supports 70 divided into short pieces, and a single base film support divided into short pieces. The size may be short so as to be affixed to the body 70, and may be affixed for each of the plurality of base film support members 70 divided into a short length.
  • the base material 10A and the base film support 70 to which the base film support stripping material 130 is attached are partially (half cut) of the base film support stripping material 130. It cuts leaving, and shape
  • the base film support peeling material 130 is pasted.
  • the plurality of substrate film supports 70 can be collectively fixed in a state where they are connected by the substrate film support peeling material 130. Therefore, it is possible to easily remove the base film support 70, and it is possible to easily perform the process related to the separation and collection of the organic EL element 1A.
  • the specific layer structure of the organic EL element can be, for example, the following stacked structure in order from the layer on the anode side.
  • substrate / anode / light emitting layer / electron transport layer / cathode (2) substrate / anode / hole transport layer / light emitting layer / electron transport layer / cathode (3) substrate / anode / hole transport layer / Light emitting layer / hole blocking layer / electron transport layer / cathode (4) substrate / anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode (5) substrate / anode / Hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode (6) substrate / anode / hole injection layer / hole transport layer / electron blocking layer / electron blocking layer
  • the substrate constituting the substrate
  • the substrate there is no particular limitation on the type of glass, plastic and the like, and it may be transparent or opaque.
  • the base material is transparent.
  • the transparent substrate preferably used include glass, quartz, and a transparent resin film.
  • a particularly preferable substrate is a resin film that can give flexibility to the organic EL element.
  • the resin film examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), Examples thereof include cellulose triacetate (TAC) and cellulose acetate propionate (CAP).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyetheretherketone polyphenylene sulfide
  • PC polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the like are preferable.
  • the surface of the substrate may be subjected to a surface treatment such as imparting easy adhesion in order to ensure wettability and adhesion of the coating solution.
  • a surface treatment such as imparting easy adhesion in order to ensure wettability and adhesion of the coating solution.
  • the surface treatment include surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • an easy-adhesive layer is formed by applying polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer, etc. Also good.
  • the base material may be one in which a barrier layer made of an inorganic material, an organic material, or a hybrid thereof is formed.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g / (m 2 ⁇ 24 h. -Atm) or lower barrier layer is preferable
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 -3 ml / (m 2 ⁇ 24 h ⁇ atm) or less
  • the water vapor permeability (25 A barrier layer having ⁇ 0.5 ° C. and a relative humidity (90 ⁇ 2)% RH) of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h ⁇ atm) or less is preferable.
  • the material for forming the barrier layer may be any material that has a function of suppressing the intrusion of moisture, oxygen, or the like that degrades the element.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the barrier layer preferably has a laminated structure.
  • the laminated structure can be formed, for example, by alternately laminating inorganic layers and organic layers a plurality of times.
  • barrier layer for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method, plasma CVD Method, laser CVD method, thermal CVD method, coating method and the like.
  • sealing member Specifically as a sealing member (base
  • the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), Examples thereof include cellulose triacetate (TAC) and cellulose acetate propionate (CAP).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEN polyethersulfone
  • PES polyetherimide
  • polyetheretherketone polyphenylene sulfide
  • PC polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and the like are preferable.
  • the thermoplastic resin film may be a multilayer film formed by co-extrusion of plural types, a multilayer film bonded by changing the stretching angle, or the like.
  • the metal film include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the sealing member (substrate constituting the sealing member) may be formed with a barrier layer made of an inorganic material, an organic material, or a hybrid thereof.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g / (m 2 ⁇ 24 h. -Atm) or less barrier layer is preferred
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 -3 ml / (m2 ⁇ 24 h ⁇ atm) or less
  • the water vapor permeability (25 ⁇ A barrier layer having a temperature of 0.5 ° C. and a relative humidity (90 ⁇ 2)% RH) of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h ⁇ atm) or less is preferable.
  • the material for forming the barrier layer may be any material that has a function of suppressing the intrusion of moisture, oxygen, or the like that degrades the element.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • a method for forming the barrier layer for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method, plasma CVD Method, laser CVD method, thermal CVD method, coating method and the like.
  • a barrier layer for example, a method of laminating a metal foil such as aluminum, copper, or nickel, or an alloy foil such as stainless steel or aluminum alloy is also conceivable.
  • the adhesive for bonding the sealing member examples include photo-curing or thermosetting adhesives such as acrylic resins having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and 2- Moisture curable adhesives such as cyanoacrylates, thermosetting or chemical curable (two-component mixed) adhesives such as epoxy resins, hot melt polyamide, polyester, and polyolefin adhesives And a cationic curing type ultraviolet curing epoxy resin adhesive and a silicone resin adhesive.
  • the adhesive may be added with a filler.
  • the filler include soda glass, alkali-free glass, silica, metal oxides such as titanium dioxide, antimony oxide, titania, alumina, zirconia, and tungsten oxide.
  • the adhesive can be applied by a coating method such as roll coating, spin coating, screen printing, or spray coating, or a printing method.
  • a coating method such as roll coating, spin coating, screen printing, or spray coating, or a printing method.
  • an epoxy-based cured resin that is excellent in moisture resistance and water resistance and has little shrinkage upon curing is more preferable.
  • anode, cathode, light emitting layer, hole injection layer, hole transport layer, electron transport layer, electron injection layer, hole blocking layer, electron blocking layer, etc. specifically, for example, Anode, cathode, light emitting layer, hole injection layer, hole transport layer, electron transport layer, electron injection layer, hole blocking layer described in JP 2014-029883 A, JP 2014-045101 A, etc.
  • the same materials and methods as those used in each component such as the electron blocking layer can be applied.
  • the above organic EL element can be used as a display device, a display, and various light emission sources.
  • light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. However, it is not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 樹脂製封止フィルムを含んでなる封止部材によって封止された有機エレクトロルミネッセンス素子(有機EL素子)の製造において、取り扱いの補助のために樹脂製封止フィルムと付着させていた封止フィルム支持体を、樹脂製封止フィルムから容易に取り除くことを可能とした有機EL素子の製造方法を提供する。有機EL素子の製造方法は、基材10上に形成された素子構造体20が、樹脂製封止フィルム42を含んでなる封止部材40で封止された有機EL素子1の製造方法であって、剛性を有する封止フィルム支持体60の一主面上に封止部材40を支持させる工程、封止部材40に接着剤層(30)を形成する工程、封止フィルム支持体60の他主面上に封止フィルム支持体剥離用材120を貼付する工程、基材10と封止部材40とを貼合する工程、封止部材40から封止フィルム支持体剥離用材120と共に封止フィルム支持体60を剥離する工程を含む。

Description

有機エレクトロルミネッセンス素子の製造方法
 本発明は、有機エレクトロルミネッセンス素子の製造方法に関する。
 有機材料のエレクトロルミネッセンス(Electro Luminescence:EL)を利用した有機発光素子(以下、「有機EL素子」ともいう。)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有している。そのため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。
 有機EL素子は、基材上に形成された第1電極と、第1電極の対極となる第2電極と、第1電極と第2電極との間に形成され有機発光層を含んでなる有機化合物層と、からなる素子構造体を有している。素子構造体は、基材上に積層された構造を有し、基材とは反対側から封止部材によって覆われることで、水や酸素による劣化を防止するための封止処理を施される。一般に、有機EL素子を薄型の形態とする場合には、可撓性を有する基材上に素子構造体をパターン形成し、その後、素子構造体が形成された基材と、別体の可撓性を有する封止部材とを、接着剤の層を介して貼合させて封止することが多い。
 可撓性を有する薄型の有機EL素子としては、特に、厚さ50μm以下の樹脂製フィルムからなる薄膜基材を使用した極薄型の有機EL素子が知られている。このような薄膜基材は、有機EL素子の製造工程において、他の部材と容易に接着したり、剥離しようとしても他の薄膜等と癒着して離れなくなったりするなど取り扱いに難があるため、有機EL素子の製造精度や製造作業性の悪化を招く要因となる。そこで、有機EL素子の製造工程中に限り、薄膜基材を剛性が高い支持体に一時的に接着支持させて取り扱う技術が利用されている。
 例えば、特許文献1には、厚さが5~50μmの光透過性の絶縁フィルムと、この絶縁フィルム片面の全面或いは所定の箇所に、導電粉を分散した柔軟性を有する光透過性樹脂を印刷して形成された光透過性電極層と、光透過性電極層上に順次重ねて印刷形成された発光体層及び誘電体層、背面電極層からなる分散型エレクトロルミネッセンス素子を製造するにあたって、絶縁フィルムよりも剛性が高い仮基材に貼付した絶縁フィルムに、光透過性電極層及び発光体層、誘電体層、背面電極層や給電パターン、配線パターンを印刷形成した後、仮基材から絶縁フィルムを剥がして分散型エレクトロルミネッセンス素子とする技術が開示されている。
特開平11-219791号公報
 極薄型の有機EL素子を製造するにあたっては、特許文献1に開示されるように薄膜基材を用いるのみならず、素子構造体を封止する封止部材についても厚さが50μm程度以下の薄膜の樹脂製フィルムで形成することが望まれる。すなわち、薄膜の樹脂製フィルム(樹脂製封止フィルムに相当する。)を、剛性が高い支持体にあらかじめ接着支持させて取り扱い、素子構造体が形成された基材と封止部材との貼合を終えた後には、素子を構成しないその支持体を適切に取り除く技術が求められている。
 しかしながら、封止部材は、素子構造体が形成された基材と貼合される際には、接着剤を塗布されて素子構造体と接着固定された状態となるため、貼合が行われた後に、素子構造体に接着している封止部材から支持体のみを取り除くことは容易ではない。特に、ロールツーロール形式等のように、可撓性を有する大面積の基材上に多数の素子構造体を形成し、封止後に断裁して個々の有機EL素子を製造するような製造形態においては、断裁を行う際には、薄膜の封止部材が支持体に支持されている状態が取り扱い性の観点から望まれる一方で、一旦断裁が行われてしまうと、支持体は薄膜の封止部材と共に素子形に応じて小片化されてしまうことになるため、個々の有機EL素子から支持体のみを剥離除去する作業が煩雑になってしまうという問題がある。
 そこで、本発明は、樹脂製封止フィルムを含んでなる封止部材によって封止された有機エレクトロルミネッセンス素子の製造において、取り扱いの補助のために樹脂製封止フィルムと付着させていた封止フィルム支持体を、樹脂製封止フィルムから容易に取り除くことを可能とした有機エレクトロルミネッセンス素子の製造方法を提供することを目的とする。
 本発明の上記目的は、下記構成により達成される。
 1.基材上に形成された第1電極と、前記第1電極の対極となる第2電極と、前記第1電極と前記第2電極との間に形成され有機発光層を含んでなる有機化合物層と、が積層されてなる素子構造体が、樹脂製封止フィルムを含んでなる封止部材によって封止された有機エレクトロルミネッセンス素子の製造方法であって、前記樹脂製封止フィルムよりも高い剛性を有する封止フィルム支持体の一主面上に、前記樹脂製封止フィルムを含んでなる前記封止部材を支持させる工程、前記封止フィルム支持体に支持されている前記封止部材に接着剤層を形成する工程、前記封止フィルム支持体の他主面上に封止フィルム支持体剥離用材を貼付する工程、前記素子構造体が形成された前記基材と、前記封止フィルム支持体剥離用材が貼付された前記封止フィルム支持体に支持されている前記封止部材と、を前記接着剤層を介して貼合する工程、貼合された前記封止部材から前記封止フィルム支持体剥離用材と共に前記封止フィルム支持体を剥離する工程を含むことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
 2.樹脂製基材フィルムを含んでなる基材上に形成された第1電極と、前記第1電極の対極となる第2電極と、前記第1電極と前記第2電極との間に形成され有機発光層を含んでなる有機化合物層と、が積層されてなる素子構造体が、樹脂製封止フィルムを含んでなる封止部材によって封止された有機エレクトロルミネッセンス素子の製造方法であって、前記樹脂製封止フィルムよりも高い剛性を有する封止フィルム支持体の一主面上に、前記樹脂製封止フィルムを含んでなる前記封止部材を支持させる工程、前記封止フィルム支持体に支持されている前記封止部材に接着剤層を形成する工程、前記封止フィルム支持体の他主面上に封止フィルム支持体剥離用材を貼付する工程、前記樹脂製基材フィルムよりも高い剛性を有する基材フィルム支持体の一主面上に、前記樹脂製基材フィルムを含んでなる基材を支持させる工程、前記基材フィルム支持体に支持されている前記基材上に、前記第1電極と前記有機化合物層と前記第2電極とを順に積層して素子構造体を形成する工程、前記素子構造体が形成された前記基材と、前記封止フィルム支持体剥離用材が貼付された前記封止フィルム支持体に支持されている前記封止部材と、を前記接着剤層を介して貼合する工程、貼合された前記封止部材から前記封止フィルム支持体剥離用材と共に前記封止フィルム支持体を剥離する工程、前記基材フィルム支持体の他主面上に基材フィルム支持体剥離用材を貼付する工程、貼合された前記基材から前記基材フィルム支持体剥離用材と共に前記基材フィルム支持体を剥離する工程を含むことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
 3.前記基材と前記基材フィルム支持体剥離用材が貼付された前記基材フィルム支持体とを、前記基材フィルム支持体剥離用材を残して断裁し、前記基材を有機エレクトロルミネッセンス素子の素子形に応じて成形することを特徴とする前記2に記載の有機エレクトロルミネッセンス素子の製造方法。
 4.前記基材及び前記封止部材が、長尺であると共に可撓性を有し、前記接着剤層を介した貼合が、前記素子構造体が形成された前記基材と前記封止部材とのロール圧着によって行われることを特徴とする前記1から前記3のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。
 5.前記基材が、長尺であると共に可撓性を有し、前記基材フィルム支持体は、支持されている前記基材が断裁されて短尺に成形された後に、前記基材フィルム支持体剥離用材を貼付されることを特徴とする前記2に記載の有機エレクトロルミネッセンス素子の製造方法。
 6.前記接着剤層の形成が、接着剤が一主面上に塗布された接着剤支持体と前記封止フィルム支持体に支持された前記封止部材との前記接着剤層を介した貼合によって行われることを特徴とする前記1から前記5のいずれかに記載の有機エレクトロルミネッセンス素子の製造方法。
 7.前記接着剤支持体と貼合された前記封止部材を、前記接着剤支持体を残して断裁し、前記封止部材を有機エレクトロルミネッセンス素子の素子形に応じて成形することを特徴とする前記6に記載の有機エレクトロルミネッセンス素子の製造方法。
 本発明によれば、樹脂製封止フィルムを含んでなる封止部材によって封止された有機エレクトロルミネッセンス素子の製造において、取り扱いの補助のために樹脂製封止フィルムと付着させていた封止フィルム支持体を、樹脂製封止フィルムから容易に取り除くことを可能とした有機エレクトロルミネッセンス素子の製造方法を提供することができる。
第1実施形態に係る有機EL素子の構成の一例を模式的に示す断面図である。 第1実施形態に係る有機EL素子の製造方法の工程の一例を示す図である。 第1実施形態に係る有機EL素子の製造方法における接着剤層形成工程、封止積層体断裁工程及び封止フィルム支持体剥離用材貼付工程の概略流れ図である。(a)は、封止積層体と接着剤支持体とを貼合する前状態、(b)は、封止積層体と接着剤支持体とを貼合した状態、(c)は、封止積層体を断裁した状態、(d)は、封止フィルム支持体剥離用材を貼付する前状態、(e)は、封止フィルム支持体剥離用材を貼付し、接着剤支持体100を剥離した状態をそれぞれ示す。 第1実施形態に係る有機EL素子の製造方法における貼合工程及び封止フィルム支持体剥離工程の概略流れ図である。(a)は、基材と封止部材とを貼合する前状態、(b)は、基材と封止部材とを接着剤層を介して貼合した状態、(c)は、封止フィルム支持体剥離用材と共に封止フィルム支持体を剥離した状態をそれぞれ示す。 第2実施形態に係る有機EL素子の構成の一例を模式的に示す断面図である。 第2実施形態に係る有機EL素子の製造方法の工程の一例を示す図である。 第2実施形態に係る有機EL素子の製造方法における貼合工程及び封止フィルム支持体剥離工程の概略流れ図である。(a)は、基材と封止部材とを貼合する前状態、(b)は、基材と封止部材とを接着剤層を介して貼合した状態、(c)は、封止フィルム支持体剥離用材と共に封止フィルム支持体を剥離した状態をそれぞれ示す。 第2実施形態に係る有機EL素子の製造方法における基材フィルム支持体剥離用材貼付工程、基材積層体断裁工程及び基材フィルム支持体剥離工程の概略流れ図である。(a)は、基材フィルム支持体剥離用材を貼付する前状態、(b)は、基材フィルム支持体剥離用材を貼付した状態、(c)は、基材積層体を断裁した状態、(d)は、基材フィルム支持体剥離用材と共に基材フィルム支持体を剥離した状態をそれぞれ示す。 変形例に係る有機EL素子の製造方法の工程の一例を示す図である。
 以下、本発明の一実施形態に係る有機エレクトロルミネッセンス素子(有機EL素子)の製造方法について詳細に説明する。なお、共通する構成については、同一の符号を付し、重複した説明を省略する。
[第1実施形態]
 はじめに、第1実施形態に係る有機EL素子の製造方法を用いて製造される有機EL素子の概略構成について説明する。
 図1は、第1実施形態に係る有機EL素子の構成の一例を模式的に示す断面図である。
[有機EL素子(第1実施形態)]
 第1実施形態に係る有機EL素子1は、図1に示すように、主に、基材10と、素子構造体20と、接着剤層30と、封止部材40とを備えている。この有機EL素子1では、基材10上に、パターニングされた素子構造体20が積層されている。また、素子構造体20の基材10に接する主面と反対側の主面には、封止部材40が接着剤層30を介して貼合されている。このように素子構造体20は、接着剤層30と封止部材40とによって、基材10に接する主面と反対側の主面及び側面を覆われることで封止されて、水や酸素による劣化が抑制されている。なお、有機EL素子1において、接着剤層30は、基材10と封止部材40との間の空間を満たすように充填されており、接着剤層30によって密着封止された形態となっている。
 素子構造体20は、対となる第1電極21及び第2電極23と、有機発光層を含んでなる有機化合物層22とが積層された構造を有している。第1電極21は例えば陽極とされ、第1電極21の対極として備えられる第2電極23は陰極とされる。これら第1電極21及び第2電極23は、それぞれ取り出し電極部を有しており、これら取り出し電極部を介して外部から所定電圧が印加されることになる。電圧を外部から印加するためには、これらの取り出し電極部の一部を露出する必要があり、通常は取り出し電極部を除いて素子構造体20を貼合する様にパターンカットされた封止部材40が用いられる。
 有機化合物層22は、主として有機化合物で組成される層であり、有機発光材料を含有する有機発光層を少なくとも含んでなる。すなわち、有機化合物層22は、有機発光層からなる一層又は有機発光層と他の有機化合物の層を含む複数層で構成されている。他の有機化合物の層としては、例えば、正孔注入層、正孔輸送層、電子阻止層、正孔阻止層、電子輸送層、電子注入層等の、有機発光層に対する電荷の供給や遮断のための機能を果たす層が挙げられる。
 このような構成の素子構造体20では、第1電極21と第2電極23との間に、所定電圧が印加されると、有機発光層には、陽極とされた第1電極21からは正孔が供給され、陰極とされた第2電極23からは電子が供給される。そして、有機発光層の層内部や層界面近傍において、供給された正孔と電子とが再結合して有機発光材料の分子の励起状態を形成し、この励起状態が基底状態に遷移する際に発光を生じることになる。なお、このような発光を生じる素子構造体20の構成の詳細については後記する。
 一般的には、有機EL素子の封止部材としては、機能や用途に応じて、種々の厚さのガラスやバリア性の高い樹脂製フィルム等が採用されている。これに対して、本実施形態に係る有機EL素子1では、封止部材40を、厚さが10μm以上50μm以下の樹脂製フィルム(樹脂製封止フィルム42)を基体として含む薄膜の部材とし、基体としての樹脂製封止フィルム42にバリア層41が積層された構成としてある。その一方で、有機EL素子1の基材10については、厚さが50μmを超えるものとし、比較的高い剛性を有する基材を採用している。
[製造方法(第1実施形態)]
 次に、第1実施形態に係る有機EL素子の製造方法について説明する。
 第1実施形態に係る有機EL素子の製造方法は、図1に示されるような、基材10上に形成された第1電極21と、第1電極21の対極となる第2電極23と、第1電極21と第2電極23との間に形成され有機発光層を含んでなる有機化合物層22と、が積層されてなる素子構造体20が、樹脂製封止フィルム42を含んでなる封止部材40によって封止された有機EL素子1を製造するのに好適な方法である。本実施形態に係る有機EL素子の製造方法においては、薄膜とされた樹脂製封止フィルム42の搬送、断裁、載置、剥離等の取り扱い性(ハンドリング)を改善するために、封止フィルム42を含んでなる封止部材40を剛性が高い封止フィルム支持体60にあらかじめ支持させて、有機EL素子1の製造を行う。このとき、製造工程の後段において、素子を構成しない封止フィルム支持体60を容易に取り除くことができるようにするために、封止フィルム支持体60と封止フィルム42とを互いに剥離させるための封止フィルム支持体剥離用材120を用いるようにしている(図3参照)。
 図2は、第1実施形態に係る有機EL素子の製造方法の工程の一例を示す図である。
 第1実施形態に係る有機EL素子の製造方法は、主に、封止積層体形成工程S110と、接着剤層形成工程S120と、封止積層体断裁工程S130と、封止フィルム支持体剥離用材貼付工程S140と、素子構造体形成工程S160と、貼合工程S170と、封止フィルム支持体剥離工程S180とを含んでなる。この製造方法においては、封止積層体形成工程S110と、接着剤層形成工程S120と、封止フィルム支持体剥離用材貼付工程S140と、貼合工程S170と、封止フィルム支持体剥離工程S180とは、それぞれ順次実施されることになる。その一方で、素子構造体形成工程S160に関しては、貼合工程S170以前に任意の先後関係で別途実施することができる。
 封止積層体形成工程S110では、封止フィルム支持体60の一主面上に、封止フィルム42を含んでなる封止部材40を支持させる。すなわち、薄膜の封止フィルム42の取り扱い性を改善するために、封止フィルム42を、剛性が高い封止フィルム支持体60に付着させて仮固定し、封止フィルム42と剛性が高い封止フィルム支持体60とが脱着可能な状態で一体となるようにすることで、封止フィルム42を含んでなる封止部材40と封止フィルム支持体60とからなる封止積層体5(図3(a)参照)を形成する。封止フィルム42を封止フィルム支持体60に支持させる方法としては、例えば、封止フィルム42を封止フィルム支持体60に密着させて静電気を用いて付着させる方法、封止フィルム42を封止フィルム支持体60に接着剤で貼付する方法、封止フィルム42を封止フィルム支持体60上に成膜する方法等のいずれかを適用することが可能である。
 封止フィルム支持体60は、樹脂製封止フィルム42よりも高い剛性を有し、薄膜の封止フィルム42を略全面に亘って密着状態で面支持するシート状体、板状体等の仮基材である。封止フィルム支持体60としては、封止フィルム42よりも剛性が高く、成膜、搬送、断裁、載置、剥離等の取り扱いに適した材料であれば、適宜の材料を用いることができる。例えば、金属製、ガラス製等の硬質材料に限られず、可撓性を有するシート状乃至板状等の樹脂材料を用いることも可能である。ロールツーロール形式の製造方法等にあたっては、封止フィルム支持体60の材料としては、特に、ポリエチレンテレフタレート(PET)等が好適であり、その厚さは、例えば、75μm以上250μm以下程度とすることができる。
 封止フィルム42を封止フィルム支持体60に貼付する接着剤としては、例えば、ホットメルト型接着剤、感圧型接着剤、熱硬化型接着剤、紫外線硬化型接着剤、電子線硬化型接着剤、化学硬化型接着剤等の各種の接着剤を用いることができる。
 封止フィルム42を封止フィルム支持体60上に成膜する方法としては、材料に応じて、例えば、スピンコート法、キャスト法、インクジェット法、印刷法、スロットダイ法、スプレーコート法、ディップコート法、ブレード法、スリットコート法等の公知の成膜法を利用することができる。封止フィルム42の層は、このような成膜法を利用して材料を塗布した後に乾燥させて形成することができる。
 バリア層41は、封止フィルム支持体60に付着した封止フィルム42の封止フィルム支持体60とは反対側の主面上に材料を成膜させることで形成すればよい。あるいは、封止フィルム42を封止フィルム支持体60に付着させる前に、封止フィルム42の主面上にあらかじめ形成しておいてもよい。こうしたバリア層41のような、有機EL素子1の封止性を向上させたり有機EL素子1に他の機能性を付与させたりするための機能性層は、封止フィルム42に隣接して一層以上設けることも可能である。このような場合には、封止フィルム42と接着剤層30との間や、封止フィルム42と封止フィルム支持体60との間に位置するように機能性層を形成し、封止フィルム支持体60に支持させればよい。
 機能性層の成膜の方法としては、材料に応じて、例えば、蒸着法、スパッタリング法、化学気相成長法(CVD法)、スピンコート法、キャスト法、インクジェット法、印刷法、スロットダイ法、スプレーコート法、ディップコート法、ブレード法、スリットコート法等の公知の成膜法を利用することができる。なお、材料として、紫外線硬化性化合物、電子線硬化性化合物等を用いる場合には、成膜した後に、紫外線照射処理や電子線照射処理等を行えばよい。
 このような封止積層体形成工程S110において、図3(a)の上段に示されるように、封止フィルム支持体60と封止フィルム支持体60に支持された状態の封止部材40とからなる封止積層体5が形成される。そして、形成された封止積層体5は、接着剤層形成工程S120に供される。なお、バリア層41の表面には、後記する貼合工程S170を実施するまでの間に、バリア層41を保護する着脱自在な保護フィルムを一時的に貼付しておくことが好ましい。保護フィルムを貼付することによって、封止フィルム支持体60に支持された封止部材40がロール状に捲回される際等にバリア層41の表面を保護することが可能となり、バリア層41の健全性を良好に確保することができる。
 図3は、第1実施形態に係る有機EL素子の製造方法における接着剤層形成工程、封止積層体断裁工程及び封止フィルム支持体剥離用材貼付工程の概略流れ図である。(a)は、封止積層体と接着剤支持体とを貼合する前状態、(b)は、封止積層体と接着剤支持体とを貼合した状態、(c)は、封止積層体を断裁した状態、(d)は、封止フィルム支持体剥離用材を貼付する前状態、(e)は、封止フィルム支持体剥離用材を貼付し、接着剤支持体100を剥離した状態をそれぞれ示す。
 接着剤層形成工程S120では、封止フィルム支持体60に支持されている封止部材40に接着剤層を形成する。すなわち、形成された封止積層体5における封止部材40側の表面(バリア層41の表面)に、接着剤層30(図1参照)となる接着剤の層が積層された状態とする。
 接着剤層を形成する方法としては、接着剤を直接塗布して形成する方法、接着剤を転写塗布して形成する方法、及び、既にシート状になっている接着剤をラミネートすることにより形成する方法のいずれを用いてもよい。形成される接着剤層30の膜厚としては、接着剤層30の側面側からの水や酸素の侵入を防止する観点から、10μm以上50μm以下とすることが好ましく、20μm以上50μm以下とすることがより好ましい。なお、本実施形態に係る製造方法においては、図3に示すように、接着剤層の形成を、接着剤(30)が一主面上に塗布された接着剤支持体100(図3(a)参照)と封止フィルム支持体60に支持された封止部材40との接着剤(30)を介した貼合による転写塗布によって行うものとしている(図3(b)参照)。このように接着剤支持体100に塗布された接着剤(30)を介して貼合することによって、接着剤によって形成される接着剤層30の膜厚を高精度で均一な薄膜とすることができる。
 接着剤支持体100は、接着剤を転写塗布するために用いるシート状体、板状体等である。接着剤支持体100としては、接着剤(30)に対する接着力が接着剤(30)と封止部材40との接着力よりも弱く、接着剤を容易に乖離し得る材料であれば、適宜の材料を用いることができる。例えば、金属製、ガラス製、樹脂製等の硬質材料に限られず、可撓性や弾性を有する樹脂材料を用いることも可能である。また、接着剤支持体100の表面を、樹脂層を積層する等して平滑化させて剥離性を向上させて用いることもできる。
 接着剤を直接塗布する方法としては、例えば、スピンコート法、キャスト法、インクジェット法、印刷法、スロットダイ法、スプレーコート法、ディップコート法、ブレード法、スリットコート法等の公知の成膜法を利用することができる。
 接着剤としては、例えば、ホットメルト型接着剤、感圧型接着剤、熱硬化型接着剤、紫外線硬化型接着剤、電子線硬化型接着剤、化学硬化型接着剤等の各種の接着剤を用いることができる。接着剤としては、これらの中でも、封止性の高い熱硬化型接着剤、紫外線硬化型接着剤等の硬化型接着剤が望ましい。
 封止積層体断裁工程S130では、図3(c)に示すように、接着剤支持体100と貼合されている封止部材40を、接着剤支持体100を残して断裁し、封止部材40を有機EL素子1の素子形に応じて成形することができる。すなわち、断裁は、封止フィルム支持体60と封止部材40とからなる封止積層体5が、接着剤支持体100を残して接着剤の層(30)と共にパターンカットされるように封止積層体5の主面に対して略垂直方向に行う。このとき、断裁によって成形する形状としては、断裁された封止部材40によって素子構造体20の全面が覆われるような形状であれば、有機EL素子の素子形に応じて適宜の長さ寸法を有する所望の形状とすることができる。
 本実施形態に係る製造方法においては、このように接着剤層が形成された後に封止部材40を断裁するものとすることで、断裁されて取り出し電極部を除いた素子形に小片化(素子形化に相当する。)された封止部材40に対して個別に接着剤層を塗布等するような工程を省略化させている。また、接着剤支持体100を残して封止部材40を断裁するため、素子形化された封止部材40が、断裁されていない接着剤支持体100上に封止フィルム支持体60と共に残されるようになり、小片化した薄膜の樹脂製封止フィルム42の取り扱い性を改善することができる。他方、接着剤支持体100は断裁によって小片化されないため、有機EL素子1の素子構成には含まれない接着剤支持体100を剥離除去する作業は容易となる。さらには、ロールツーロール形式等のように大面積に形成された多数の有機EL素子を所望の形状の個々の素子にパターン化するような製造方法においても、長尺の接着剤支持体100を用いることによって、接着剤支持体100の剥離の作業性や接着剤層形成の作業性を簡易化できると共に、接着剤の成膜精度を良好なものとすることが可能である。
 封止フィルム支持体剥離用材貼付工程S140では、図3(d)に示すように、封止フィルム支持体60の封止部材40が付着している一主面とは反対側の他主面上に封止フィルム支持体剥離用材120を貼付する。なお、封止フィルム支持体剥離用材120は、接着性を有する主面を介して、封止フィルム支持体60に貼付されることになる。
 封止フィルム支持体剥離用材120は、少なくとも一主面に接着性を有するシート状体、フィルム状体、テープ状体等である。封止フィルム支持体剥離用材120としては、封止フィルム支持体60に対する接着力が、接着層30を構成する接着剤と接着剤支持体100との接着力よりも強い材料であれば、適宜の材料を用いることができる。封止フィルム支持体剥離用材120としては、例えば、封止フィルム支持体60に強接着することが可能な感圧型接着剤(粘着型接着剤)、熱硬化型接着剤、紫外線硬化型接着剤、電子線硬化型接着剤等が塗布されたシート状体等を用いることができる。封止フィルム支持体剥離用材120は、好ましくは感圧型接着剤が塗布されたシート状体等である。このような感圧型接着剤としては、例えば、アクリル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリエステル系樹脂等の各種樹脂で組成され、初期接着性が高い接着剤が一般に知られている。感圧型接着剤を利用すると、他の接着箇所を超える強接着が容易に実現されると共に、硬化時間を要することなく簡易且つ確実に、封止フィルム支持体60を剥離除去することが可能である。なお、硬化型接着剤を用いる場合は、接着層30を形成する接着剤とは異なる硬化条件となるものが好ましい。
 封止フィルム支持体剥離用材120は、長尺であると共に可撓性を有することが好ましく、封止フィルム支持体60と同等の長さ寸法を有することがより好ましい。このような封止フィルム支持体剥離用材120を用いることによって、ロールツーロール形式等のような製造方法においても、長尺の封止フィルム支持体剥離用材120が、封止積層体断裁工程S130で断裁されて素子形化した複数の封止フィルム支持体60のそれぞれに貼付されるようにすることができる。そのため、素子形化した複数の封止フィルム支持体60を、長尺の封止フィルム支持体剥離用材120で連結させた状態とすることができ、後記するように、複数の封止フィルム支持体60の剥離を一括して容易に行うことができるようになる。
 封止フィルム支持体剥離用材貼付工程S140において、封止フィルム支持体剥離用材120が貼付された封止積層体5は、図3(e)に示すように、接着剤支持体100が剥離除去された後に、素子構造体20が形成された基材10との貼合工程S170に供される。
 素子構造体形成工程S160では、基材10の主面上に第1電極21と有機化合物層22と第2電極23とを順に積層して素子構造体20を形成する。ここで形成する素子構造体20の具体的な積層構成については後記するとおりである。
 第1電極21は、基材10の主面上に電極材料を成膜させることによって形成することができる。なお、第1電極21の成膜の方法としては、蒸着法、スパッタリング法等の後記する方法を利用することが可能である。
 有機化合物層22は、形成された第1電極21の基材10に接する面とは反対側の面上に各有機化合物層22を構成する後記の材料を成膜させることによって形成することができる。すなわち、有機発光層、正孔注入層、正孔輸送層、電子阻止層、正孔阻止層、電子輸送層、電子注入層等を各種材料を使用して成膜し、単層構成又は複数層構成の有機化合物層22を形成することが可能である。有機化合物層22の成膜の方法としては、材料に応じて、例えば、蒸着法、スピンコート法、キャスト法、インクジェット法、印刷法、スロットダイ法、スプレーコート法、ラングミュア-ブロジェット法(LB法)、ディップコート法、ブレード法、スリットコート法等の公知の成膜法を利用することができる。
 第2電極23は、形成された有機化合物層22の第1電極21に接する面とは反対側の面上に電極材料を成膜させることによって形成することができる。なお、第2電極23の成膜の方法としては、蒸着法、スパッタリング法等の後記する方法を利用することが可能である。
 素子構造体形成工程S160を経て、素子構造体20が形成された基材10(図4(a)参照)は、封止部材40(封止積層体5)との貼合工程S170に供される。なお、形成された素子構造体20は、水や酸素等によって劣化するため、高真空雰囲気や高純度不活性ガス雰囲気下に保持したまま貼合工程S170に供することが好ましい。
 図4は、第1実施形態に係る有機EL素子の製造方法における貼合工程及び封止フィルム支持体剥離工程の概略流れ図である。(a)は、基材と封止部材とを貼合する前状態、(b)は、基材と封止部材とを接着剤層を介して貼合した状態、(c)は、封止フィルム支持体剥離用材と共に封止フィルム支持体を剥離した状態をそれぞれ示す。
 貼合工程S170では、図4(a)に示すように、素子構造体20が形成された基材10と、封止フィルム支持体剥離用材120が貼付された封止フィルム支持体60に支持されている封止部材40とを接着剤層(30)を介して貼合する。すなわち、素子構造体形成工程S160において形成された素子構造体20の基材10とは反対側の主面(第2電極23側の面)と、接着剤層形成工程S120において接着剤層が形成された封止積層体5の封止フィルム支持体剥離用材120とは反対側の主面(封止部材40の表面)とを、接着剤の層(30)を介して圧着させる。そして、接着剤の硬化処理を施すことによって、図4(b)に示すように、素子構造体20が形成された基材10と封止積層体5とを貼合させると共に、接着剤が硬化した状態の接着剤層30を形成して、基材10上の素子構造体20を封止部材40及び接着剤層30で封止する。
 貼合工程S170における貼合は、素子構造体20が形成された基材10と、封止フィルム支持体剥離用材120が貼付された封止フィルム支持体60に支持されている封止部材40と、のロール圧着によって行うことが好ましい。基材10及び封止部材40が、いずれも長尺であると共に可撓性を有する場合には、素子構造体20が形成された基材10が捲回されたロールと封止積層体5が捲回されたロールとをそれぞれ捲き解きなどしつつ接着剤(30)を介してロール圧着させることで、封止部材40を、長尺の封止フィルム支持体剥離用材120に連結させた状態で連続的に貼合することができる。そして、後記するように、貼合された後には、封止フィルム支持体剥離用材120を引き剥がすことによって、長尺の封止部材40から封止フィルム支持体60を一括して容易に取り除くことが可能となる。
 封止フィルム支持体剥離工程S180では、図4(c)に示すように、貼合された封止部材40から封止フィルム支持体剥離用材120と共に封止フィルム支持体60を剥離する。貼合工程S170において貼合された封止部材40は、有機EL素子を構成しない封止フィルム支持体60及び封止フィルム支持体剥離用材120と積層された状態になっている。そこで、封止フィルム支持体剥離用材120を引き剥がすことによって、封止部材40と封止フィルム支持体60とを互いに剥離させることで、封止フィルム42を含んでなる封止部材40によって封止された有機EL素子1を回収する。
 本実施形態に係る製造方法においては、このように封止フィルム支持体60の他主面上に貼付された封止フィルム支持体剥離用材120で封止フィルム支持体60を剥離除去する構成とすることによって、接着剤からなる層(30)を介して貼合されている封止部材40から、封止フィルム支持体60のみを容易且つ確実に除去できるようにしている。また、封止積層体断裁工程S130の後に封止フィルム支持体剥離用材120を貼付するものとし、封止フィルム支持体剥離用材120を断裁しない構成とすることによって、断裁された封止フィルム支持体60の形状や寸法に関わらず封止フィルム支持体60を除去することが可能とされている。さらには、ロールツーロール形式等のような製造方法においても、封止フィルム支持体剥離用材120を引き剥がすことによって、断裁されて素子形化した複数の封止フィルム支持体60を、封止フィルム支持体剥離用材120で連結された状態から一括して剥離除去することができるため、封止フィルム支持体60の剥離に関わる工程を簡便に行うことができる。
[第2実施形態]
 次に、第2実施形態に係る有機EL素子の製造方法を用いて製造される有機EL素子の概略構成について説明する。
 図5は、第2実施形態に係る有機EL素子の構成の一例を模式的に示す断面図である。
[有機EL素子(第2実施形態)]
 第2実施形態に係る有機EL素子1Aは、図5に示すように、主に、基材10Aと、素子構造体20と、接着剤層30と、封止部材40とを備えている。この有機EL素子1Aが、前記の有機EL素子1と異なる点は、素子構造体20が形成される基材として、前記の比較的高い剛性を有する基材10に代えて、厚さが10μm以上50μm以下の樹脂製フィルム(樹脂製基材フィルム12)を含んでなる基材10Aを備えている点である。なお、基材10Aは、基体としての樹脂製基材フィルム12にバリア層11が積層された構成としてある。このように本実施形態に係る有機EL素子1Aでは、封止部材40を、厚さが10μm以上50μm以下の樹脂製封止フィルム42を基体として含む構成とすると共に、基材10Aを、厚さが10μm以上50μm以下の樹脂製基材フィルム12を基体として含む構成とすることによって、基材10A側及び封止部材40側の両面からの光取り出し性、収納性、携帯性、湾曲させて行う曲面使用等に適した極薄型の素子構造が形成されるようにしている。
[製造方法(第2実施形態)]
 次に、第2実施形態に係る有機EL素子の製造方法について説明する。
 第2実施形態に係る有機EL素子の製造方法は、図5に示されるような、樹脂製基材フィルム12を含んでなる基材10A上に形成された第1電極21と、第1電極21の対極となる第2電極23と、第1電極21と第2電極23との間に形成され有機発光層を含んでなる有機化合物層22と、が積層されてなる素子構造体20が、樹脂製封止フィルム42を含んでなる封止部材40によって封止された有機EL素子1Aを製造するのに好適な方法である。本実施形態に係る有機EL素子の製造方法においては、樹脂製封止フィルム42及び樹脂製基材フィルム12の取り扱い性を補助するために、封止フィルム42を含んでなる封止部材40を剛性が高い封止フィルム支持体60にあらかじめ支持させると共に、基材フィルム12を含んでなる基材10Aを剛性が高い基材フィルム支持体70にあらかじめ支持させて、有機EL素子1Aの製造を行う。そして、製造工程の後段において、素子を構成しない封止フィルム支持体60や基材フィルム支持体70を容易に取り除くことができるようにするために、封止フィルム支持体60と封止フィルム42とを互いに剥離させるための封止フィルム支持体剥離用材120と、基材フィルム支持体70と基材フィルム12とを互いに剥離させるための基材フィルム支持体剥離用材130とをそれぞれ用いるようにしている(図7及び図8参照)。
 図6は、第2実施形態に係る有機EL素子の製造方法の工程の一例を示す図である。
 第2実施形態に係る有機EL素子の製造方法は、主に、封止積層体形成工程S110と、接着剤層形成工程S120と、封止積層体断裁工程S130と、封止フィルム支持体剥離用材貼付工程S140と、基材積層体形成工程S150と、素子構造体形成工程S160と、貼合工程S170と、封止フィルム支持体剥離工程S180と、基材フィルム支持体剥離用材貼付工程S190と、基材積層体断裁工程S200と、基材フィルム支持体剥離工程S210とを含んでなる。この製造方法においては、封止積層体形成工程S110と、接着剤層形成工程S120と、封止フィルム支持体剥離用材貼付工程S140と、貼合工程S170と、封止フィルム支持体剥離工程S180とは、それぞれ順次実施されることになる。また、基材積層体形成工程S150と、素子構造体形成工程S160と、貼合工程S170と、基材フィルム支持体剥離工程S210とは、それぞれ順次実施されることになる。その一方で、封止積層体形成工程S110及び接着剤層形成工程S120と、基材積層体形成工程S150及び素子構造体形成工程S160との間については、貼合工程S170以前に任意の先後関係として別途実施することができる。なお、基材フィルム支持体剥離用材貼付工程S190に関しては、基材フィルム支持体剥離工程S210より前の任意の段階で実施することが可能であり、基材積層体断裁工程S200に関しては、基材フィルム支持体剥離用材貼付工程S190より後に実施される。
 封止積層体形成工程S110、接着剤層形成工程S120及び封止フィルム支持体剥離用材貼付工程S140においては、前記の第1実施形態においてと同様にして、封止フィルム支持体60の一主面上に、封止フィルム42を含んでなる封止部材40を支持させ、封止フィルム支持体60に支持されている封止部材40に接着剤層を形成すると共に、封止フィルム支持体60の封止部材40が付着している一主面とは反対側の他主面上に封止フィルム支持体剥離用材120を貼付する。そして、接着剤支持体100が貼合されて接着剤層が形成されると共に、封止フィルム支持体剥離用材120が貼付された封止積層体5を形成する(図3(e)参照)。なお、封止積層体断裁工程S130では、封止部材40を有機EL素子1の素子形に応じて成形することができる。そして、形成された封止積層体5は、図3(e)においてと同様にして、接着剤支持体100が剥離除去された後に、素子構造体20が形成された基材10との貼合工程S170に供される。
 基材積層体形成工程S150では、基材フィルム支持体70の一主面上に、樹脂製基材フィルム12を含んでなる基材10Aを支持させる。すなわち、薄膜の基材フィルム12の取り扱い性を改善するために、基材10Aを、剛性が高い基材フィルム支持体70に付着させて仮固定し、基材フィルム12と剛性が高い基材フィルム支持体70とが一体となるようにすることで、基材フィルム12を含んでなる基材10Aと基材フィルム支持体70とからなる基材積層体6(図7(a)参照)を形成する。基材フィルム12を基材フィルム支持体70に支持させる方法としては、前記の第1実施形態においてと同様に、例えば、基材フィルム12を基材フィルム支持体70に密着させて静電気を用いて付着させる方法、基材フィルム12を基材フィルム支持体70に接着剤で貼付する方法、基材フィルム12を基材フィルム支持体70上に成膜させる方法等のいずれかを適用することが可能である。
 基材フィルム支持体70は、樹脂製基材フィルム12よりも高い剛性を有し、薄膜の基材フィルム12を略全面に亘って密着状態で面支持するシート状体、板状体等の仮基材である。基材フィルム支持体70としては、基材フィルム12よりも剛性が高く、成膜、搬送、断裁、剥離等の取り扱いに適した材料であれば、適宜の材料を用いることができる。例えば、金属製、ガラス製等の硬質材料に限られず、可撓性を有するシート状乃至板状等の樹脂材料を用いることも可能である。ロールツーロール形式の製造方法等にあたっては、基材フィルム支持体70の材料としては、ポリエチレンテレフタレート(PET)等が好適であり、その厚さは、例えば、75μm以上250μm以下程度とすることができる。
 基材フィルム12を基材フィルム支持体70に貼付する接着剤としては、例えば、ホットメルト型接着剤、感圧型接着剤、熱硬化型接着剤、紫外線硬化型接着剤、電子線硬化型接着剤、化学硬化型接着剤等の各種の接着剤を用いることができる。
 基材フィルム12を基材フィルム支持体70上に成膜させる方法としては、材料に応じて、例えば、スピンコート法、キャスト法、インクジェット法、印刷法、スロットダイ法、スプレーコート法、ディップコート法、ブレード法、スリットコート法等の公知の成膜法を利用することができる。基材フィルム12の層は、このような成膜法を利用して材料を塗布した後に乾燥させて形成することができる。
 このような基材積層体形成工程S150において、図7(a)の下段に示されるように、基材フィルム支持体70と基材フィルム支持体70に支持された状態の基材10Aとからなる基材積層体6が形成される。そして、形成された基材積層体6は、素子構造体形成工程S160に供される。
 素子構造体形成工程S160では、基材10Aの主面上に第1電極21と有機化合物層22と第2電極23とを順に積層して素子構造体20を形成する。すなわち、形成された基材積層体6における基材10A側の表面(バリア層11の表面)に、前記の第1実施形態においてと同様にして、第1電極21と有機化合物層22と第2電極23とを積層する。
 素子構造体形成工程S160を経て、素子構造体20が形成された基材積層体6(図7(a)参照)は、封止部材40(封止積層体5)との貼合工程S170に供される。
 図7は、第2実施形態に係る有機EL素子の製造方法における貼合工程及び封止フィルム支持体剥離工程の概略流れ図である。(a)は、基材と封止部材とを貼合する前状態、(b)は、基材と封止部材とを接着剤層を介して貼合した状態、(c)は、封止フィルム支持体剥離用材と共に封止フィルム支持体を剥離した状態をそれぞれ示す。
 貼合工程S170では、図7(a)及び(b)に示すように、素子構造体20が形成された基材10Aと、封止フィルム支持体剥離用材120が貼付された封止フィルム支持体60に支持されている封止部材40とを接着剤層(30)を介して貼合する。すなわち、素子構造体形成工程S160において素子構造体20が形成された基材積層体6における基材支持体70とは反対側の主面(第2電極23側の面)と、接着剤層形成工程S120において形成された封止積層体5の封止フィルム支持体剥離用材120とは反対側の主面(封止部材40の表面)とを、接着剤からなる層(30)を介して圧着させる。そして、接着剤の硬化処理を施すことによって、基材積層体6と封止積層体5とを貼合させると共に、硬化した状態の接着剤層30を形成して、図7(b)に示すように、基材10A上の素子構造体20を封止部材40及び接着剤層30で封止する。なお、貼合工程S170における貼合は、前記の第1実施形態においてと同様に、素子構造体20が形成された基材10Aと封止積層体5とのロール圧着によって行ってもよい。
 封止フィルム支持体剥離工程S180では、図7(c)に示すように、貼合された封止部材40から封止フィルム支持体剥離用材120と共に封止フィルム支持体60を剥離する。貼合工程S170において貼合された封止部材40は、有機EL素子を構成しない封止フィルム支持体60及び封止フィルム支持体剥離用材120と積層された状態になっている。そこで、封止フィルム支持体剥離用材120を引き剥がすことによって、封止部材40と封止フィルム支持体60とを互いに剥離させることで、封止部材40から封止フィルム支持体60を取り除く。そして、封止フィルム支持体60が取り除かれた基材積層体6を、基材フィルム支持体剥離用材貼付工程S190に供する。
 図8は、第2実施形態に係る有機EL素子の製造方法における基材フィルム支持体剥離用材貼付工程、基材積層体断裁工程及び基材フィルム支持体剥離工程の概略流れ図である。(a)は、基材フィルム支持体剥離用材を貼付する前状態、(b)は、基材フィルム支持体剥離用材を貼付した状態、(c)は、基材積層体を断裁した状態、(d)は、基材フィルム支持体剥離用材と共に基材フィルム支持体を剥離した状態をそれぞれ示す。
 基材フィルム支持体剥離用材貼付工程S190では、図8(a)及び(b)に示すように、基材フィルム支持体70の基材10Aが付着している一主面とは反対側の他主面上に基材フィルム支持体剥離用材130を貼付する。すなわち、基材フィルム支持体剥離用材130は、接着性を有する主面を介して、基材フィルム支持体70に貼付されることになる。なお、貼付する時期は、基材積層体20が形成される前の時期、あるいは基材積層体20が形成されてから封止される前の時期であってもよい。
 基材フィルム支持体剥離用材130は、少なくとも一主面に接着性を有するシート状体、フィルム状体、テープ状体等である。基材フィルム支持体剥離用材130としては、基材フィルム支持体70に対する接着力が、基材フィルム支持体70と基材10Aとの接着力よりも強い材料であれば、適宜の材料を用いることができ、例えば、前記の封止フィルム支持体剥離用材120と同様の構成のものを用いることができる。
 基材フィルム支持体剥離用材130は、長尺であると共に可撓性を有することが好ましく、基材10Aと同等の長さ寸法を有することが好ましい。このような基材フィルム支持体剥離用材130を用いることによって、ロールツーロール形式等のような製造方法においても、長尺の基材フィルム支持体剥離用材130が、基材積層体断裁工程S200で断裁されて素子形化した複数の基材フィルム支持体70のそれぞれに貼付されるようにすることができる。そのため、素子形化した複数の基材フィルム支持体70を、基材フィルム支持体剥離用材130で連結された状態とすることができ、後記する有機EL素子1Aの回収を容易に行うことが可能となる。
 基材積層体断裁工程S200では、図8(c)に示すように、基材10Aと基材フィルム支持体剥離用材130が貼付された基材フィルム支持体70とを、基材フィルム支持体剥離用材130の一部(半切り)を残して断裁し、基材10Aを有機エレクトロルミネッセンス素子の素子形に応じて成形する。すなわち、断裁は、素子構造体20が封止された基材積層体6が、基材フィルム支持体剥離用材130を残してパターンカットされるように基材積層体6の主面に対して略垂直方向に行う。このとき、断裁によって成形する形状としては、素子構造体20が電極や他の機器類等の計装領域と共に包含され得る形状であれば、有機EL素子の素子形に応じて所望の形状とすることができる。
 本実施形態に係る製造方法においては、このように基材フィルム支持体剥離用材130を残して基材10Aを断裁するものとしているため、基材フィルム支持体剥離用材130が素子形化されて小さくなることが無く、有機EL素子1Aの素子構成には含まれない基材フィルム支持体剥離用材130を剥離除去する作業が容易となる。そのため、ロールツーロール形式等のような製造方法においても、基材フィルム支持体剥離用材130が長尺のまま維持され、基材フィルム支持体剥離用材130の剥離の作業性を簡便化することができる。さらには、基材フィルム支持体剥離用材130を残して基材10Aを断裁することによって、断裁されて成形された有機EL素子1Aが、基材フィルム支持体70と共に、断裁されていない基材フィルム支持体剥離用材130上に残されるようにすることができる。そのため、この工程以降においても、極薄型である有機EL素子1Aの取り扱い性を改善することができる。
 基材フィルム支持体剥離工程S210では、図8(d)に示すように、封止部材40と貼合された基材10Aから基材フィルム支持体剥離用材130と共に基材フィルム支持体70を剥離する。貼合工程S170において貼合された基材10Aは、個々の有機EL素子の構成と、素子を構成しない基材フィルム支持体70及び基材フィルム支持体剥離用材130とが積層された状態になっている。そこで、有機EL素子1Aと基材フィルム支持体剥離用材130に強接着している基材フィルム支持体70とを互いに剥離させることで基材フィルム支持体70を取り除き、基材フィルムを含んでなる基材10Aと、封止フィルム42を含んでなる封止部材40と、を備えた極薄型の有機EL素子1Aを回収する。
 本実施形態に係る製造方法においては、このように基材フィルム支持体70の他主面上に貼付された基材フィルム支持体剥離用材130で基材フィルム支持体70を接着支持させることによって、断裁された基材フィルム支持体70の形状や寸法に関わらず、基材フィルム支持体70を確実に固定させることができる。そのため、有機EL素子1Aを基材フィルム支持体70から剥離させる際に、小片化した基材フィルム支持体70が、剥離される有機EL素子1Aに引きずられ難くなり、有機EL素子1Aの回収を容易に行うことが可能となる。また、ロールツーロール形式等のような製造方法においても、断裁されて素子形化した複数の基材フィルム支持体70を、長尺の基材フィルム支持体剥離用材130で連結された状態に一括固定させることができるため、有機EL素子1Aの回収に関わる工程を簡便に行うことができるようになる。
[変形例]
 次に、変形例に係る有機EL素子の製造方法について説明する。
 前記の第2実施形態に係る有機EL素子の製造方法では、基材フィルム支持体剥離用材貼付工程S190の後に、基材積層体断裁工程S200を実施するものとしている。詳細には、基材フィルム支持体剥離用材貼付工程S190において、基材フィルム支持体70の基材10Aが付着している一主面とは反対側の他主面上に基材フィルム支持体剥離用材130を貼付した後に、基材積層体断裁工程S200において、基材10Aと基材フィルム支持体剥離用材130が貼付された基材フィルム支持体70とを、基材フィルム支持体剥離用材130を残して断裁し、基材10Aを有機エレクトロルミネッセンス素子の素子形に成形するものとしている。しかしながら、これに代えて、基材フィルム支持体剥離用材貼付工程S190よりも前に、基材分割工程(S200A)を実施するものとしてもよい。
 図9は、変形例に係る有機EL素子の製造方法の工程の一例を示す図である。
 変形例に係る製造方法は、主に、封止積層体形成工程S110と、接着剤層形成工程S120と、封止積層体断裁工程S130と、封止フィルム支持体剥離用材貼付工程S140と、基材積層体形成工程S150と、素子構造体形成工程S160と、貼合工程S170と、封止フィルム支持体剥離工程S180と、基材分割工程S200Aと、基材フィルム支持体剥離用材貼付工程S190Aと、基材積層体断裁工程S200Bと、基材フィルム支持体剥離工程S210とを含んでなる。この製造方法においては、封止積層体形成工程S110と、接着剤層形成工程S120と、封止フィルム支持体剥離用材貼付工程S140と、貼合工程S170と、封止フィルム支持体剥離工程S180と、基材分割工程S200Aとは、それぞれ順次実施されることになる。このような変形例に係る製造方法は、基材10A及び封止部材40が、いずれも長尺であると共に可撓性を有するような場合に好適であり、ロールツーロール形式等のような製造方法に有利に適用することができる。
 基材分割工程S200Aでは、基材フィルム支持体70に支持されている基材10Aを断裁して短尺に成形する。断裁は、素子構造体20が封止部材40によって封止され、封止フィルム支持体60が剥離除去された後(図7(c)と同様の状態)、且つ、基材フィルム支持体70に基材フィルム支持体剥離用材130を貼付する前に行う。また、基材10Aと基材フィルム支持体70とが、共に断裁されて短尺のシート状に分割されるように、基材10Aの主面に対して略垂直方向且つ長尺の基材10Aの幅方向に横断するように行う。断裁で成形する長さ寸法は、特に制限されるものではなく、長尺の基材10A上に長さ方向に亘って形成された複数の素子構造体20が、より少ない数から構成される複数の群に分割されると共に、断裁された基材10Aがより取り扱いに適した長さとなるようにすればよい。
 基材フィルム支持体剥離用材貼付工程S190Aでは、断裁された基材フィルム支持体70の基材10Aが付着している一主面とは反対側の他主面上に基材フィルム支持体剥離用材130を貼付する。すなわち、断裁されて基材10Aと共に短尺とされた基材フィルム支持体70の他主面上に、基材フィルム支持体剥離用材130を、接着性を有する主面を介して貼付する。なお、基材フィルム支持体剥離用材130は、短尺に分割された複数の基材フィルム支持体70に貼付されるように長尺の寸法としてよく、短尺に分割された単一の基材フィルム支持体70に貼付されるように短尺の寸法とし、短尺に分割された複数の基材フィルム支持体70毎に貼付されるようにしてもよい。
 基材積層体断裁工程S200Bでは、基材10Aと基材フィルム支持体剥離用材130が貼付された基材フィルム支持体70とを、基材フィルム支持体剥離用材130の一部(半切り)を残して断裁し、基材10Aを有機エレクトロルミネッセンス素子の素子形に応じて成形する(図8(c)と同様)。すなわち、断裁は、シート状に分割されると共に、素子構造体20が封止された基材積層体6が、基材フィルム支持体剥離用材130を残して、基材フィルム支持体70と共にパターンカットされるように基材積層体6の主面に対して略垂直方向に行う。そして、断裁されて個々の有機エレクトロルミネッセンス素子の素子形に成形された基材積層体6を、基材フィルム支持体剥離工程S210に供することで、有機EL素子1Aを回収する。
 変形例に係る製造方法においては、このように基材フィルム支持体70に支持されている基材フィルム12を断裁して短尺に成形した後に、基材フィルム支持体剥離用材130の貼付を行うため、複数の有機EL素子1Aが形成された枚葉のシート状体を個別に取り扱うことを可能としている。そのため、素子形が互いに相違するような多数のシート状体毎に、別個の基材積層体断裁工程S200Bを実施するような場合においても、各シート状体毎について、断裁されて素子形化した複数の基材フィルム支持体70を、基材フィルム支持体剥離用材130で連結された状態に一括して固定することができるようになる。よって、基材フィルム支持体70を容易に取り除くことができ、有機EL素子1Aの剥離回収に関わる工程を簡便に行うことが可能となる。
[有機EL素子]
 次に、前記の有機EL素子の層構成と各構成要素について説明する。有機EL素子の具体的な層構成は、陽極側の層から順に、例えば、次のような積層構成とすることができる。
(1)基材/陽極/発光層/電子輸送層/陰極
(2)基材/陽極/正孔輸送層/発光層/電子輸送層/陰極
(3)基材/陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(4)基材/陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
(5)基材/陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
(6)基材/陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 上記の積層構成における構成要素の材料及び製造方法については、一般的な有機EL素子に適用され得る公知の材料及び方法を用いれば良い。
(基材)
 基材(基材を構成する基体)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。基材側から光を取り出す場合には、基材は透明であることが好ましい。好ましく用いられる透明な基材としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基材は、有機EL素子にフレキシブル性を与えることが可能な樹脂製フィルムである。樹脂製フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等が挙げられる。この中でも、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等が好ましい。
 基材の表面には、塗布液の濡れ性や接着性を確保するために、易接着性を付与する等の表面処理がなされていてもよい。表面処理としては、例えば、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を塗布して易接着剤層を形成してもよい。
 基材は、無機物、有機物又はこれらのハイブリッドによるバリア層が形成されたものでもよい。具体的には、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、0.01g/(m・24h・atm)以下のバリア層が好ましく、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-5g/(m・24h・atm)以下のバリア層が好ましい。
 バリア層を形成する材料としては、素子を劣化させる水分や酸素等の浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに、バリア層の脆弱性を改良させるために、バリア層には、積層構造を持たせることが好ましい。積層構造は、例えば、無機層と有機層を交互に複数回積層することにより形成することができる。バリア層を形成する方法としては、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等が挙げられる。
(封止部材)
 封止部材(封止部材を構成する基体)としては、具体的には、例えば、樹脂製フィルム、金属フィルム等が挙げられる。樹脂製フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等が挙げられる。この中でも、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等が好ましい。熱可塑性樹脂フィルムは、複数種を共押出しして形成した多層フィルム、延伸角度を変えて貼合した多層フィルム等であってもよい。金属フィルムとしては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
 封止部材(封止部材を構成する基体)は、無機物、有機物又はこれらのハイブリッドによるバリア層が形成されたものでもよい。具体的には、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、0.01g/(m・24h・atm)以下のバリア層が好ましく、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m2・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-5g/(m2・24h・atm)以下のバリア層が好ましい。
 バリア層を形成する材料としては、素子を劣化させる水分や酸素等の浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。バリア層を形成する方法としては、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等が挙げられる。他にバリア層として、例えば、アルミニウム、銅、ニッケル等の金属箔や、ステンレス、アルミニウム合金等の合金箔をラミネートする方法も考えられる。
 封止部材を貼合するための接着剤としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマーのような反応性ビニル基を有するアクリル系樹脂等の光硬化型又は熱硬化型接着剤や、2-シアノアクリル酸エステル等の湿気硬化型接着剤や、エポキシ系樹脂等の熱硬化型又は化学硬化型(二液混合)接着剤や、ホットメルト型のポリアミド系、ポリエステル系、ポリオレフィン系等の接着剤や、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤や、シリコーン樹脂接着剤が挙げられる。接着剤は、フィラーが添加されものであってもよい。フィラーとしては、例えば、ソーダガラス、無アルカリガラス、シリカや、二酸化チタン、酸化アンチモン、チタニア、アルミナ、ジルコニアや、酸化タングステン等の金属酸化物が挙げられる。接着剤は、ロールコート、スピンコート、スクリーン印刷法、スプレーコート等のコーティング法や、印刷法によって塗布することができる。接着剤としては、耐湿性や耐水性に優れ、硬化時の収縮が少ないエポキシ系硬化樹脂がより好ましい。
(その他の構成要素)
 その他の構成要素(陽極、陰極、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔阻止層、電子阻止層等)については、具体的には、例えば、特開2014-029883号公報、特開2014-045101号公報等に記載されている陽極、陰極、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔阻止層、電子阻止層等の各構成要素におけるものと同様の材料や方法を適用することができる。
[用途]
 以上の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。
1,1A 有機EL素子
5 封止積層体
6 基材積層体
10,10A 基材
11 バリア層
12 基材フィルム(樹脂製基材フィルム)
20 素子構造体
21 陽極(第1電極)
22 有機化合物層
23 陰極(第2電極)
30 接着剤層
40 封止部材
41 バリア層
42 封止フィルム(樹脂製封止フィルム)
60 封止フィルム支持体
70 基材フィルム支持体
100 接着剤支持体
120 封止フィルム支持体剥離用材
130 基材フィルム支持体剥離用材
S110 封止積層体形成工程
S120 接着剤層形成工程
S130 封止積層体断裁工程
S140 封止フィルム支持体剥離用材貼付工程
S150 基材積層体形成工程
S160 素子構造体形成工程
S170 貼合工程
S180 封止フィルム支持体剥離工程
S190 基材フィルム支持体剥離用材貼付工程
S200 基材積層体断裁工程
S210 基材フィルム支持体剥離工程

Claims (7)

  1.  基材上に形成された第1電極と、前記第1電極の対極となる第2電極と、前記第1電極と前記第2電極との間に形成され有機発光層を含んでなる有機化合物層と、が積層されてなる素子構造体が、樹脂製封止フィルムを含んでなる封止部材によって封止された有機エレクトロルミネッセンス素子の製造方法であって、
     前記樹脂製封止フィルムよりも高い剛性を有する封止フィルム支持体の一主面上に、前記樹脂製封止フィルムを含んでなる前記封止部材を支持させる工程、
     前記封止フィルム支持体に支持されている前記封止部材に接着剤層を形成する工程、
     前記封止フィルム支持体の他主面上に封止フィルム支持体剥離用材を貼付する工程、
     前記素子構造体が形成された前記基材と、前記封止フィルム支持体剥離用材が貼付された前記封止フィルム支持体に支持されている前記封止部材と、を前記接着剤層を介して貼合する工程、
     貼合された前記封止部材から前記封止フィルム支持体剥離用材と共に前記封止フィルム支持体を剥離する工程を含む
    ことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
  2.  樹脂製基材フィルムを含んでなる基材上に形成された第1電極と、前記第1電極の対極となる第2電極と、前記第1電極と前記第2電極との間に形成され有機発光層を含んでなる有機化合物層と、が積層されてなる素子構造体が、樹脂製封止フィルムを含んでなる封止部材によって封止された有機エレクトロルミネッセンス素子の製造方法であって、
     前記樹脂製封止フィルムよりも高い剛性を有する封止フィルム支持体の一主面上に、前記樹脂製封止フィルムを含んでなる前記封止部材を支持させる工程、
     前記封止フィルム支持体に支持されている前記封止部材に接着剤層を形成する工程、
     前記封止フィルム支持体の他主面上に封止フィルム支持体剥離用材を貼付する工程、
     前記樹脂製基材フィルムよりも高い剛性を有する基材フィルム支持体の一主面上に、前記樹脂製基材フィルムを含んでなる基材を支持させる工程、
     前記基材フィルム支持体に支持されている前記基材上に、前記第1電極と前記有機化合物層と前記第2電極とを順に積層して素子構造体を形成する工程、
     前記素子構造体が形成された前記基材と、前記封止フィルム支持体剥離用材が貼付された前記封止フィルム支持体に支持されている前記封止部材と、を前記接着剤層を介して貼合する工程、
     貼合された前記封止部材から前記封止フィルム支持体剥離用材と共に前記封止フィルム支持体を剥離する工程、
     前記基材フィルム支持体の他主面上に基材フィルム支持体剥離用材を貼付する工程、
     貼合された前記基材から前記基材フィルム支持体剥離用材と共に前記基材フィルム支持体を剥離する工程を含む
    ことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
  3.  前記基材と前記基材フィルム支持体剥離用材が貼付された前記基材フィルム支持体とを、前記基材フィルム支持体剥離用材を残して断裁し、前記基材を有機エレクトロルミネッセンス素子の素子形に応じて成形する
    ことを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子の製造方法。
  4.  前記基材及び前記封止部材が、長尺であると共に可撓性を有し、
     前記接着剤層を介した貼合が、前記素子構造体が形成された前記基材と前記封止部材とのロール圧着によって行われる
    ことを特徴とする請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。
  5.  前記基材が、長尺であると共に可撓性を有し、
     前記基材フィルム支持体は、支持されている前記基材が断裁されて短尺に成形された後に、前記基材フィルム支持体剥離用材を貼付される
    ことを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子の製造方法。
  6.  前記接着剤層の形成が、接着剤が一主面上に塗布された接着剤支持体と前記封止フィルム支持体に支持された前記封止部材との前記接着剤層を介した貼合によって行われる
    ことを特徴とする請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。
  7.  前記接着剤支持体と貼合されている前記封止部材を、前記接着剤支持体を残して断裁し、前記封止部材を有機エレクトロルミネッセンス素子の素子形に応じて成形する
    ことを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子の製造方法。
PCT/JP2015/061484 2014-04-15 2015-04-14 有機エレクトロルミネッセンス素子の製造方法 WO2015159887A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016513796A JPWO2015159887A1 (ja) 2014-04-15 2015-04-14 有機エレクトロルミネッセンス素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014083800 2014-04-15
JP2014-083800 2014-04-15

Publications (1)

Publication Number Publication Date
WO2015159887A1 true WO2015159887A1 (ja) 2015-10-22

Family

ID=54324092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061484 WO2015159887A1 (ja) 2014-04-15 2015-04-14 有機エレクトロルミネッセンス素子の製造方法

Country Status (2)

Country Link
JP (1) JPWO2015159887A1 (ja)
WO (1) WO2015159887A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171826A1 (ja) * 2018-03-05 2019-09-12 富士フイルム株式会社 ガスバリアフィルム、光学素子およびガスバリアフィルムの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205601A (ja) * 2002-12-24 2004-07-22 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、電子機器
JP2008109123A (ja) * 2006-09-29 2008-05-08 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
WO2008102866A1 (ja) * 2007-02-22 2008-08-28 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子
JP2012224063A (ja) * 2011-04-22 2012-11-15 Dainippon Printing Co Ltd ガラスフィルム積層体、ガラスフィルム積層体ロール、カラーフィルタ用の画素付ガラスフィルム積層体およびガラスフィルム積層体の製造方法
JP2014048619A (ja) * 2012-09-04 2014-03-17 Panasonic Corp フレキシブルデバイスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205601A (ja) * 2002-12-24 2004-07-22 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、電子機器
JP2008109123A (ja) * 2006-09-29 2008-05-08 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
WO2008102866A1 (ja) * 2007-02-22 2008-08-28 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子
JP2012224063A (ja) * 2011-04-22 2012-11-15 Dainippon Printing Co Ltd ガラスフィルム積層体、ガラスフィルム積層体ロール、カラーフィルタ用の画素付ガラスフィルム積層体およびガラスフィルム積層体の製造方法
JP2014048619A (ja) * 2012-09-04 2014-03-17 Panasonic Corp フレキシブルデバイスの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171826A1 (ja) * 2018-03-05 2019-09-12 富士フイルム株式会社 ガスバリアフィルム、光学素子およびガスバリアフィルムの製造方法
JPWO2019171826A1 (ja) * 2018-03-05 2021-02-18 富士フイルム株式会社 ガスバリアフィルム、光学素子およびガスバリアフィルムの製造方法
US11450835B2 (en) 2018-03-05 2022-09-20 Fujifilm Corporation Gas barrier film, optical element including gas barrier film, and method for producing gas barrier film

Also Published As

Publication number Publication date
JPWO2015159887A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4972094B2 (ja) フレキシブル基板を備えた素子の製造方法及びこれによって製造されたフレキシブル基板を備えた素子
JP6386306B2 (ja) 貼り合わせ装置、及び積層体の作製装置
JP5573678B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子
JP5898949B2 (ja) フレキシブルデバイスの製造方法
JP6053221B1 (ja) 有機el素子及びその製造方法
JP6384328B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP2013539216A (ja) 基板シート
WO2015159887A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP6213254B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2015215952A (ja) 有機エレクトロルミネッセンス素子の製造方法、及び、有機エレクトロルミネッセンス素子
JP4742743B2 (ja) エレクトロルミネッセンス装置およびその製造方法
KR101463227B1 (ko) 금속배선이 함입된 유연기판 제조 장치
WO2012108217A1 (ja) 有機エレクトロルミネッセンス素子の製法
JP2012182005A (ja) 有機エレクトロルミネッセンス素子の製法
CN110225994B (zh) 掩模、掩模套件、制膜方法以及制膜装置
JP2002367778A (ja) 有機電界発光表示素子製造工程用積層シート
JP6269674B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、及び、製造装置
JP2020113389A (ja) 有機el装置の製造方法
JP2008300045A (ja) エレクトロルミネッセンス素子の製造方法
JP2007109592A (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP2011171128A (ja) 有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法
WO2017061380A1 (ja) 有機電子素子の製造方法、及び、有機電子素子
JP2018200843A (ja) 有機el装置の製造方法
KR102067417B1 (ko) 플렉서블 필름을 이용한 표시장치의 제조 방법
JP6779061B2 (ja) 保護シート、構造体及び有機デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513796

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779846

Country of ref document: EP

Kind code of ref document: A1