WO2015159536A1 - 誘導加熱装置 - Google Patents

誘導加熱装置 Download PDF

Info

Publication number
WO2015159536A1
WO2015159536A1 PCT/JP2015/002064 JP2015002064W WO2015159536A1 WO 2015159536 A1 WO2015159536 A1 WO 2015159536A1 JP 2015002064 W JP2015002064 W JP 2015002064W WO 2015159536 A1 WO2015159536 A1 WO 2015159536A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
induction heating
current
heating coil
sub
Prior art date
Application number
PCT/JP2015/002064
Other languages
English (en)
French (fr)
Inventor
洋一 黒瀬
北泉 武
宮内 貴宏
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014083269A external-priority patent/JP6340550B2/ja
Priority claimed from JP2014105866A external-priority patent/JP6340551B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112015001830.1T priority Critical patent/DE112015001830T5/de
Publication of WO2015159536A1 publication Critical patent/WO2015159536A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/03Heating plates made out of a matrix of heating elements that can define heating areas adapted to cookware randomly placed on the heating plate

Definitions

  • this type of induction heating device lays out disc-shaped heating coils on a single plane, a place where the heating coil exists below and a place where the heating coil does not exist below inevitably occur. In order to prevent uneven heating due to this structural feature, it is necessary to arrange the heating coils as close as possible.
  • the magnetic fields generated from the respective heating coils interfere with each other. If there is a frequency difference in the high-frequency magnetic field generated from the adjacent heating coil, an unpleasant interference sound corresponding to the frequency difference is generated.
  • Patent Document 1 A conventional technique capable of solving the above problems is disclosed in Patent Document 1.
  • This prior art includes a plurality of heating coils connected in parallel to an inverter circuit having two switching elements connected in series, and one sub-switching element connected in series to each heating coil. Have.
  • the sub-switching element is controlled so as to provide a section in which no current flows in the heating coil for a certain period.
  • the current flowing through the plurality of heating coils has the same frequency as the operating frequency of the inverter circuit. Therefore, even if the operating frequency of the inverter circuit changes, no interference sound is generated.
  • pan detection determining whether an object to be heated has been placed above the heating coil.
  • the place to be described as “the object to be heated is placed on the top plate above the heating coil” or “the object to be heated is placed above the heating coil” should be described as “the object to be heated”. Is placed on the heating coil.
  • the pan If the pan is placed on this heating coil, the pan that does not need to be heated will be heated. If no pan is placed on the heating coil, a large current flows through the heating coil, which may cause destruction of circuit components or an increase in leakage magnetic field.
  • the present disclosure solves the above-described conventional problems, and prevents the current or voltage in the switching element from abruptly changing even when the same operating frequency is used for pan detection and induction heating. Can do. As a result, it aims at providing the induction heating apparatus which can suppress switching loss and noise.
  • an induction heating device includes a top plate, a plurality of heating coils, a DC power supply, a plurality of resonance capacitors, an inverter circuit, and a sub switching element. And a pan detector.
  • the object to be heated is placed on the top plate.
  • the plurality of heating coils are disposed below the top plate.
  • the DC power source converts AC power from a commercial power source into DC power.
  • the plurality of resonance capacitors are connected to each of the plurality of heating coils to form a resonance circuit.
  • the sub switching element is connected in series between the inverter circuit and the resonance circuit.
  • the control unit drives the first and second main switching elements and the sub switching elements.
  • the pan detection unit performs pan detection according to current or voltage information related to the resonance circuit.
  • the control unit drives the first and second main switching elements and the sub switching elements at the same frequency, and adjusts an overlapping period between the ON period of the first main switching element and the ON period of the sub switching element. By this, it is comprised so that the electric current which flows into a heating coil may be controlled.
  • the inverter circuit and the sub switching element are driven in synchronization, it is easy to perform power control on the heating coil.
  • the fundamental frequency of the current flowing through the heating coil can be made the same as the operating frequency of the inverter circuit. For this reason, for example, even if a plurality of adjacent heating coils are driven simultaneously, no interference sound is generated.
  • FIG. 1 is a schematic plan view of the induction heating device according to the first embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a circuit configuration of the induction heating apparatus according to the first embodiment.
  • FIG. 3 is a waveform diagram showing control signals for the main switching element and the sub switching element and the current flowing through the heating coil in the first embodiment.
  • FIG. 4 is a diagram showing a reference for pan detection in the first embodiment.
  • FIG. 5 is a waveform diagram showing a control signal for the switching element and a current flowing through the heating coil in the first embodiment.
  • FIG. 6 is a waveform diagram showing a control signal for the switching element and a current flowing through the heating coil when the high resistance object to be heated is inductively heated in the first embodiment.
  • FIG. 1 is a schematic plan view of the induction heating device according to the first embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a circuit configuration of the induction heating apparatus according to the first embodiment.
  • FIG. 3 is a wave
  • FIG. 7 is a waveform diagram showing a control signal for the switching element and a current flowing in the heating coil when the low-resistance object to be heated is inductively heated in the first embodiment.
  • FIG. 8 is a block diagram illustrating another example relating to the circuit configuration of the induction heating apparatus according to the first embodiment.
  • FIG. 9 is a block diagram illustrating a circuit configuration of the induction heating apparatus according to the second embodiment of the present disclosure.
  • FIG. 10 is a waveform diagram showing a control signal for the main switching element and the sub switching element, a current flowing through the heating coil, and a voltage applied to the sub switching element in the second embodiment.
  • FIG. 11 is a block diagram illustrating another example of the circuit configuration of the induction heating apparatus according to the second embodiment.
  • FIG. 12 is a block diagram illustrating a circuit configuration of the induction heating apparatus according to the third embodiment of the present disclosure.
  • FIG. 13 is a waveform diagram showing a control signal for the switching element, a current flowing through the heating coil, and a voltage applied to the switching element in the third embodiment.
  • FIG. 14 is a block diagram showing another circuit configuration of the induction heating apparatus according to the third embodiment.
  • FIG. 15 is a block diagram illustrating a circuit configuration of the induction heating apparatus according to the fourth embodiment of the present disclosure.
  • FIG. 16 is a waveform diagram showing a control signal for the switching element, a current flowing through the heating coil, and a voltage applied to the switching element in the fourth embodiment.
  • the induction heating device includes a top plate, a plurality of heating coils, a DC power supply, a plurality of resonance capacitors, an inverter circuit, a sub-switching element, and a pan detector.
  • the object to be heated is placed on the top plate.
  • the plurality of heating coils are disposed below the top plate.
  • the DC power source converts AC power from a commercial power source into DC power.
  • the plurality of resonance capacitors are connected to each of the plurality of heating coils to form a resonance circuit.
  • the inverter circuit includes a first main switching element that controls connection of a current path between the DC power source and the heating coil, and a second main switching element connected in series to the first main switching element, Power is supplied to one or more heating coils.
  • the sub switching element is connected in series between the inverter circuit and the resonance circuit.
  • the control unit drives the first and second main switching elements and the sub switching elements.
  • the pan detection unit performs pan detection according to current or voltage information related to the resonance circuit.
  • the control unit drives the first and second main switching elements and the sub switching elements at the same frequency, and adjusts an overlapping period between the ON period of the first main switching element and the ON period of the sub switching element. By this, it is comprised so that the electric current which flows into a heating coil may be controlled.
  • the inverter circuit and the sub switching element are driven in synchronization, it is easy to perform power control on the heating coil.
  • the fundamental frequency of the current flowing through the heating coil can be made the same as the operating frequency of the inverter circuit. For this reason, for example, even if a plurality of adjacent heating coils are driven simultaneously, no interference sound is generated.
  • the induction heating device is configured such that, in the first aspect, the pot detection unit performs pot detection according to information at a time point when the first switching element is turned off. Is.
  • the current flowing in the heating coil during pan detection is reduced, if a heated object is placed on the heating coil, unnecessary heating of the pot can be prevented, and the heated object is placed on the heating coil. If not, the leakage magnetic field can be suppressed.
  • the control unit includes a state in which a current flows through the heating coil and a state in which no current flows through the heating coil in one operation cycle of the inverter circuit.
  • the first and second main switching elements and the sub switching elements are driven so as to be provided.
  • the pan detection is performed in the next operation cycle at the time when the object is placed. It can be performed.
  • the control unit causes the sub-switching element to have a current flowing when the first main switching element is turned off. It drives switching.
  • noise generated during the switching operation of the main switching element can be prevented from being applied to the sub switching element, and the sub switching element can be prevented from being destroyed.
  • An induction heating device is the sub-switching according to the fourth aspect, wherein the control unit causes the maximum current to flow through the heating coil when the first main switching element is turned off.
  • the device is controlled. According to this aspect, pan detection can be performed with high accuracy.
  • control unit is at least one of the operating frequency and the on period of the first main switching element during the pot detection and the induction heating. Are set identically.
  • the rated power or the power close to the rated power can be supplied to the high-resistance object to be heated and the low-resistance object to be heated without any trouble.
  • An induction heating device includes, in the first aspect, a voltage reduction unit that is provided in series connection or parallel connection with the sub switching element and that reduces the maximum voltage applied to the sub switching element. In addition.
  • the voltage applied to the sub switching element due to the parasitic vibration generated in the sub switching element can be reduced below the withstand voltage of the sub switching element, thereby preventing the sub switching element from being destroyed. can do.
  • the voltage reduction unit includes a Zener diode connected in parallel to the sub switching element.
  • the breakdown of the sub switching element is prevented by using a Zener diode having a breakdown voltage that is equal to or lower than the withstand voltage value of the sub switching element. be able to.
  • the voltage reduction unit includes a capacitor connected in parallel to the sub switching element.
  • the combined capacity of the parasitic capacitance of the sub-switching element and the capacity of the capacitor according to this aspect can be made larger than the parasitic capacity of the sub-switching element.
  • the Q value of the resonant circuit can be reduced, and the voltage value caused by the parasitic vibration can be reduced.
  • the sub switching element can be prevented from being destroyed.
  • the voltage reduction unit includes a diode connected in series to the sub switching element.
  • the diode becomes conductive. Therefore, the voltage applied to the sub switching element can be made the same as the output voltage of the DC power supply. Therefore, if the output voltage of the DC power supply is smaller than the withstand voltage of the sub switching element, the sub switching element can be prevented from being destroyed.
  • FIG. 1 is a top view of the induction heating apparatus 10 according to the first embodiment of the present disclosure.
  • the induction heating apparatus 10 includes a top plate 13 for placing an object to be heated and 45 heating coils arranged in a matrix below the top plate 13. 11 and an operation unit 12 for operating heating start and stop, heating power adjustment, and the like.
  • the operation unit 12 may include display means for visually indicating a placement position of the object to be heated and a heating state of each object to be heated when a plurality of objects to be heated are placed on the top plate 13. .
  • FIG. 2 is a block diagram showing a circuit configuration for supplying power to the heating coil 11 provided in the induction heating apparatus 10. That is, the induction heating apparatus 10 according to the present embodiment is provided with the circuit configuration shown in FIG. 2 for each heating coil 11.
  • a DC power supply 42 includes a diode bridge and an LC filter, and converts AC power from a commercial power supply (not shown) into DC power by rectifying and smoothing.
  • the inverter circuit 61 is connected to the output terminal of the DC power supply 42.
  • a switching element 43 that is a first main switching element and a switching element 44 that is a second main switching element are connected in series.
  • a reverse conducting diode 51 is connected in parallel to the switching element 43, and a reverse conducting diode 52 is connected in parallel to the switching element 44.
  • the inverter circuit 61 converts DC power output from the DC power source 42 into high-frequency AC power.
  • outputting a control signal for turning on and off the switching element is referred to as on / off control of the switching element.
  • the inverter circuit 61 includes a snubber capacitor 48 connected in parallel with the switching element 44.
  • the snubber capacitor 48 can suppress switching loss that occurs when the switching element 43 and the switching element 44 are turned off.
  • the heating coil 11, the resonant capacitor 46, and the switching element 45, which is a sub-switching element, are connected in series to the output terminal of the inverter circuit 61.
  • a reverse conducting diode 53 is connected to the switching element 45 in parallel.
  • a resonance circuit 62 is configured by the heating coil 11 and the resonance capacitor 46.
  • a current detection unit 47 for detecting a current flowing through the heating coil 11 is connected to a connection path between the output terminal of the inverter circuit 61 and the heating coil 11.
  • the pan detection unit 50 receives the output value of the current detection unit 47 and determines whether or not an object to be heated is placed on the heating coil 11.
  • the control unit 49 is connected to the switching elements 43 to 45, outputs a control signal for turning on and off the switching elements 43 to 45, and drives the switching elements 43 to 45.
  • the control part 49 and the pan detection part 50 are comprised by the software which operate
  • the pan detection unit 50 can also determine the material of the object to be heated placed on the heating coil 11.
  • the presence / absence of the object to be heated, the material, and the information on how the object is placed are determined as the state of the object to be heated, and the pot detection includes only the presence / absence of the object to be heated. It is assumed that the determination of the material and the like is included.
  • the current detection unit 47 calculates the phase difference between the current flowing through the resonance circuit 62 and the on / off control of the switching element 43, the switching element 44, or the switching element 45. A value for determination may be detected.
  • a voltage detection unit that detects the voltage across the resonance capacitor 46 may be provided, and the pan detection unit 50 may perform pan detection using the detected voltage.
  • FIG. 3 is a waveform diagram showing control signals for the switching elements 43 to 45 and the current flowing through the heating coil 11 in the present embodiment.
  • the switching element 43 and the switching element 44 are exclusively controlled to be turned on and off at the operation cycle Tf (ie, the operation frequency 1 / Tf). Is done. Further, even if a delay occurs between the time when the control signal is supplied to the switching element and the time when the switching element is actually turned off or on, the switching element is prevented from being short-circuited. 43 and a dead time period Td in which the switching element 44 is turned off are provided.
  • the heating coil 11 is adjusted by adjusting Ta1, which is a period in which the ON period of the switching element 43 overlaps with the ON period of the switching element 45 (hereinafter referred to as an overlap period). Is controlled.
  • the switching element 44 When the switching element 43 is turned off and the dead time period Td elapses, the switching element 44 is turned on. When the switching element 44 is turned on, a resonance operation occurs in the resonance circuit 62, and the direction of the current Ic flowing through the resonance circuit 62 is reversed.
  • the current Ic is reversed again by the resonance operation of the resonance circuit 62, when the switching element 45 is turned off in the period Tc1 and the current path is cut off, the current Ic does not flow through the resonance circuit 62 in the period Tg1.
  • the current Ic becomes the maximum value Ip1 when the switching element 43 is turned off.
  • the behavior of the current and voltage at the time of the state transition of the switching elements 43 and 44 is made the same as in the case of the circuit configuration in which the switching element 45 is not provided, and the noise and switching loss in the switching elements 43 and 44 are reduced. It can be reduced to the same extent as in the case of a circuit configuration in which no is provided.
  • the present embodiment it is determined whether or not the object to be heated is placed on the heating coil 11 and whether or not the material of the object to be heated is determined when the object to be heated is placed. This is performed before the start of the heating operation is instructed by 12. Thereby, for example, information for visually indicating the placement position of the object to be heated to the operation unit 12 can be obtained.
  • the induction heating device 10 it is possible to configure the induction heating device 10 at a low cost if a sensor for detecting the pan is not provided. However, if a circuit for performing induction heating is used to determine the state of an object to be heated, circuit components may be destroyed, power at the time of state determination may be increased, or a leakage magnetic field may be increased.
  • the overlapping period Ta1 is not more than half of the on period Tm1.
  • the pan detection unit 50 makes the ON period Tm1 and the overlap period Ta1 constant or changes, for example, so that the current flowing from the AC power supply 41 to the inverter circuit 61 and the current flowing to the resonance circuit 62 are changed. Pot detection can be performed from the relationship with the maximum value Ip1. As described above, the maximum value Ip1 is detected when the switching element 43 is turned off.
  • an intermittent energization mode Intermittent-energization mode in which there are periods Tb1 and Tc1 in which current flows in the heating coil 11 and a period Tg1 in which no current flows in the heating coil 11 is performed. Is called. Thereby, the electric current which flows into the heating coil 11 by resonance operation is suppressed. As a result, it is possible to reduce power consumption when detecting the pan.
  • the resonance frequency changes depending on the state of the object to be heated.
  • the current does not flow after the current flows through the heating coil 11 for one period by the resonance operation.
  • the electric current detection value according to the new state of the to-be-heated object can be obtained. In this way, the pan detection can be performed accurately without being affected by the change in the resonance characteristics depending on the state of the heated object.
  • the basic frequency of the current flowing through the heating coil 11 is the operating frequency of the switching element. If the operating frequency of each circuit is the same, for example, even when a plurality of heating coils 11 and other circuits are arranged close to each other and different objects to be heated are heated, interference noise can be suppressed.
  • the current flowing when the switching element 43 is turned off overlaps the maximum value of the output value of the current detector 47 by detecting the pan when the current flowing through the switching element 45 reaches the maximum value.
  • the state of the object to be heated can be determined from the relationship of the period Ta1. For this reason, pan detection can be performed with low cost and high accuracy without using a peak hold circuit.
  • control signal Vm1 for the switching element 43, the control signal Vm2 for the switching element 44, and the control signal Vs for the switching element 45 all have the same frequency. Thereby, the current Ic flowing through the heating coil 11 can be suppressed. As a result, the current detection unit 47 having a smaller capacity can be used, and the ripple of the output voltage of the DC power supply 42 can be reduced.
  • the switching element 43 When the switching element 43 is turned on (rising of Vm1), the current flows through the reverse conducting diode 51 connected in parallel with the switching element 43 and does not flow into the switching element 43. Thus, since the zero voltage switching and zero current switching are performed in the switching element 43, switching loss can be suppressed.
  • the switching element 45 When the switching element 45 is turned on (rising of Vs), the current flowing through the switching element 45 gradually rises from zero with a constant slope. For this reason, zero current switching is performed and switching loss can be reduced.
  • the switching element 45 When the switching element 45 is turned off (falling of Vs), the current flows through the reverse conducting diode 53 connected in parallel with the switching element 45 and does not flow into the switching element 45. Thus, in the switching element 45, zero voltage switching and zero current switching are performed, and switching loss can be suppressed.
  • the period Tg1 during which no current flows through the heating coil 11 is provided. Thereby, regardless of the resonance frequency of the resonance circuit 62 and the operating frequency of the inverter circuit 61, zero voltage switching or zero current switching is performed in the switching elements 43 to 45.
  • the overlapping period Ta1 becomes longer when the switching element 45 is turned on earlier, and the overlapping period Ta1 becomes shorter when the switching element 45 is turned on later.
  • the current Ic flowing through the heating coil 11 is controlled by adjusting the ON period Tm1 and the overlap period Ta1.
  • the impedance of the heating coil 11 as viewed from the inverter circuit 61 changes depending on whether the object to be heated is placed or not. The same applies to the material of the object to be heated.
  • the impedance of the heating coil 11 changes, the maximum value Ip1 of the current Ic changes even if the overlap period Ta1 is constant. Using this relationship, the state of the object to be heated can be determined.
  • the current Ic is less than the value Y1 (region A1), and the current Ic is greater than or equal to the value Y1 and less than the value Y2 ( Region A2) is divided into three regions when current Ic is greater than or equal to value Y2 (region A3).
  • the state of the object to be heated is determined depending on which region the point determined by the overlap period Ta1 and the maximum value Ip1 of the current Ic is included.
  • the placed object to be heated in the case of the area A1, it is determined that the placed object to be heated is a magnetic material, and in the case of the area A2, it is determined that the placed object to be heated is a non-magnetic material. In the case of A3, it is determined that the object to be heated is not placed.
  • the state of the object to be heated can be determined without providing a special sensor or circuit component for determining the state of the object to be heated.
  • FIG. 5 is a waveform diagram showing the control signals Vm1, Vm2 and Vs for the switching elements 43 to 45 and the current Ic flowing through the heating coil 11 as in FIG. As shown in FIG. 5, in the present embodiment, the overlap period is set to Ta2, which is longer than Ta1.
  • the inverter circuit 61 and the switching corresponding to the heating coil 11 on which the object to be heated is placed are switched.
  • the element 45 is driven, and the object to be heated is induction-heated.
  • the operating frequency of the inverter circuit 61 is the same for the pot detection and induction heating. You may set the ON period of the switching element 43 at the time of induction heating and the time of pan detection.
  • the overlap period is Ta2, which is longer than Ta1, the period in which the current Ic flows becomes longer (Tb2 + Tc2> Tb1 + Tc1), and the maximum value of the current also increases (Ip2> Ip1).
  • the controller 49 performs the intermittent energization mode and the continuous energization mode by adjusting the time when the switching element 45 is turned on and the ON period of the switching element 45, and supplies the heated object to the object to be heated.
  • the same operating frequency is used in all the inverter circuits 61 included in the induction heating device 10 regardless of whether the pot is detected or induction heating of the object to be heated. Therefore, even if the heating coil 11 that performs state determination and the heating coil 11 that performs induction heating exist at the same time, the frequency difference of the high-frequency magnetic field does not occur and no interference sound is generated.
  • FIG. 6 is a waveform diagram showing the control signals Vm1, Vm2, Vs and current Ic when induction heating is performed on a pot made of magnetic stainless steel having a large electrical resistance value with rated power or power close to the rated power. is there.
  • FIG. 7 is a waveform diagram showing the control signals Vm1, Vm2, Vs and the current Ic when an iron pan having a small electrical resistance value is induction-heated with rated power.
  • the overlapping period Ta3 is set to be the same as the ON period Tm1 of the switching element 43, and the heating coil 11 is controlled to perform the continuous energization mode. Thereby, it becomes possible to heat the to-be-heated object with a large resistance value with the rated power or the power close to the rated power.
  • the switching element 45 is continuously turned on, but the switching element 45 may be turned off as long as a current flows continuously through the heating coil 11.
  • the switching elements 43 to 45 are provided so that the overlapping period Ta4 is shorter than Tm1 and the period Tg4 in which the current Ic does not flow is provided. To control. Thereby, it is possible to prevent the power supplied to the object to be heated from exceeding the rated value. Note that in the case of an object to be heated with a small resistance value, it is desirable that the overlap period is not more than half of the on period Tm1.
  • FIG. 8 is a block diagram showing another example of the circuit configuration of the induction heating device 10.
  • FIG. 8 in addition to the circuit configuration shown in FIG. 2, another series of circuits including a current detection unit 47, a resonance circuit 62, and a switching element 45 in which a reverse conducting diode 53 is connected in parallel.
  • the body is connected to the output terminal of the inverter circuit 61.
  • FIG. 8 Furthermore, if the same series body as the series body added in FIG. 8 is similarly added to the circuit configuration shown in FIG. 8, more heating coils 11 can be simultaneously driven by one inverter circuit 61.
  • An inexpensive induction heating device 10 can be configured.
  • FIG. 9 is a block diagram showing a circuit configuration for supplying power to the heating coil 11 provided in the induction heating apparatus 10. That is, as in the first embodiment, the induction heating apparatus 10 according to the present embodiment is provided with the circuit configuration shown in FIG. 9 for each heating coil 11. Since the circuit configuration shown in FIG. 9 is substantially the same as the circuit configuration shown in FIG. 2, only the differences will be described.
  • a Zener diode 71 that is a voltage reduction unit for reducing the voltage applied to the switching element 45 is connected in parallel with the switching element 45 formed of a MOSFET or the like. Thereby, the collector-emitter voltage Vce1 of the switching element 45 can be prevented from exceeding the breakdown voltage of the Zener diode 71.
  • the pan detection unit 50 performs pan detection according to the current value detected by the current detection unit 47 and the voltage value generated in the resonance capacitor 46. Instead of the voltage value generated in the resonant capacitor 46, a value for determining the phase difference between the current flowing in the resonant circuit 62 and the on / off control of the switching element 43, 44 or 45, or the current value flowing in the resonant circuit 62 is used. It may be used.
  • the output of the current detection unit 47 is also supplied to the control unit 49.
  • FIG. 10 is a waveform diagram showing control signals Vm1, Vm2, and Vs for switching elements 43 to 45, a current Ic flowing through heating coil 11, and a collector-emitter voltage Vce1 of switching element 45 in the present embodiment.
  • control signals Vm1, Vm2, and Vs and current Ic are the same as those in FIG. 3, so only the differences from FIG. 3 will be described below.
  • the switching element 45 When the switching element 45 is formed of a MOSFET, there are capacitances between the gate terminal and the drain terminal and between the gate terminal and the source terminal, respectively. A junction capacitance is formed between the drain terminal and the source terminal due to the formation of a PN junction.
  • parasitic capacitance such as electrostatic capacitance and junction capacitance similarly exists. Due to this parasitic capacitance, even if the switching element 45 is turned off, a new resonance circuit is formed via the switching element 45.
  • the current flowing through the heating coil 11 is zero or almost zero, so that even if a new resonance circuit is configured, the resonance current hardly flows.
  • the parasitic capacitance is extremely small and at least smaller than the capacitance of the resonance capacitor 46, when the voltage applied to the parasitic capacitance, that is, the voltage applied to the switching element 45 increases, the voltage oscillates due to the resonance operation.
  • the Zener diode 71 As shown in FIG. 10, by using the Zener diode 71, the maximum value Vp1 of the oscillating voltage is reduced below the withstand voltage of the switching element 45, so that the switching element 45 can be prevented from being destroyed. As a result, the power can be continuously adjusted from the intermittent energization mode to the supply of rated power in the continuous energization mode.
  • FIG. 11 is a block diagram showing another example of the circuit configuration of the induction heating apparatus 10 according to the present embodiment.
  • FIG. 11 in addition to the circuit configuration shown in FIG. 9, another series of serial bodies including a resonance circuit 62 and a switching element 45 in which a reverse conducting diode 53 and a Zener diode 71 are connected in parallel are provided. Are connected to the output terminal of the inverter circuit 61.
  • the two heating coils 11 can be simultaneously driven by one inverter circuit 61, and the induction heating apparatus 10 can be configured at a lower cost.
  • FIG. 11 Furthermore, if the same serial body as the serial body added in FIG. 11 is similarly added to the circuit configuration shown in FIG. 11, more heating coils 11 can be simultaneously driven by one inverter circuit 61.
  • An inexpensive induction heating device 10 can be configured.
  • FIG. 12 is a block diagram illustrating a circuit configuration for supplying electric power to the heating coil 11 provided in the induction heating device 10 according to the third embodiment of the present disclosure. That is, as in Embodiments 1 and 2, induction heating apparatus 10 according to the present embodiment is provided with the circuit configuration shown in FIG. 12 for each heating coil 11. Since the circuit configuration shown in FIG. 12 is almost the same as the circuit configuration shown in FIG. 9, only the differences will be described.
  • a capacitor 72 is provided in parallel to the switching element 45 instead of the Zener diode 71 in FIG.
  • the voltage across the capacitor 72 that is, the collector-emitter voltage of the switching element 45 is Vce2.
  • FIG. 13 is a waveform diagram showing control signals Vm1, Vm2, and Vs for switching elements 43 to 45, a current Ic flowing through heating coil 11, and a collector-emitter voltage Vce2 of switching element 45 in the present embodiment.
  • the control signals Vm1, Vm2, and Vs and the current Ic are the same as those in FIGS. 3 and 10, and therefore only the differences from FIG. 10 will be described.
  • the capacitor 72 By connecting the capacitor 72 in parallel with the switching element 45, the combined capacity of the parasitic capacity of the switching element 45 and the capacity of the capacitor 72 is increased. For this reason, the maximum value Vp2 of the collector-emitter voltage Vce2 when the resonance current flows can be reduced. As a result, destruction of the switching element 45 can be prevented.
  • FIG. 14 is a block diagram showing another circuit configuration for supplying power to the heating coil 11 in the present embodiment.
  • the charge charged in the capacitor 72 when the switching element 45 is turned on is short-circuited via the switching element 45.
  • a resistor 73 for avoiding discharging is connected in series with the capacitor 72.
  • the resistor 73 causes a large short-circuit current to flow and generate noise, which can prevent other devices from malfunctioning.
  • induction heating can be performed efficiently by connecting the diode 74 to the resistor 73 in parallel.
  • FIG. 15 is a block diagram illustrating a circuit configuration for supplying electric power to the heating coil 11 provided in the induction heating device 10 according to the fourth embodiment of the present disclosure. Only the differences between the circuit configuration shown in FIG. 15 and the circuit configuration shown in FIG. 12 will be described.
  • the capacitor 72 in FIG. 12 is eliminated, and a diode 75 is provided as a voltage reduction unit.
  • the anode of the diode 75 is connected to the high potential terminal of the switching element 45, and the cathode of the diode 75 is connected to the high potential side terminal of the DC power supply 42.
  • FIG. 16 is a waveform diagram showing control signals Vm1, Vm2 and Vs for switching elements 43 to 45, a current Ic flowing through heating coil 11, and a collector-emitter voltage Vce3 of switching element 45 in the present embodiment.
  • control signals Vm1, Vm2, and Vs and current Ic are the same as those in FIGS.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

 誘導加熱装置において、インバータ回路(61)は、直列接続された第1および第2の主スイッチング素子(43、44)を有し、一つ以上の加熱コイル(11)に電力を供給する。副スイッチング素子(45)は、インバータ回路(61)と共振回路(62)との間に直列接続される。鍋検知部(50)は、共振回路(62)に関連する電流または電圧の情報に応じて鍋検知を行う。制御部(49)は、第1および第2の主スイッチング素子(43、44)と副スイッチング素子(45)とを、同一の周波数で駆動し、第1の主スイッチング素子(43)のオン期間と副スイッチング素子(45)のオン期間との重複期間を調整することにより、加熱コイル(11)に流れる電流を制御するように構成される。本構成によれば、誘導加熱装置におけるスイッチング損失とノイズとを抑制可能である。

Description

誘導加熱装置
 本開示は、特に、天板上に載置された被加熱物を誘導加熱する誘導加熱装置に関する。
 近年、天板(Top plate)の下方に、マトリクス状に配置された複数の円盤状の加熱コイルを有し、金属製の鍋などの被加熱物が載置された領域の下方に位置する一つまたは複数の加熱コイルに高周波電流を供給することにより、天板上の任意の位置に載置された鍋を誘導加熱することが可能な誘導加熱装置が知られている。この種の誘導加熱装置によれば、鍋の載置位置に制約が少ないため、使い勝手が向上する。
 この種の誘導加熱装置は、円盤状の加熱コイルを一平面上に敷き詰めるため、加熱コイルが下方に存在する場所と、加熱コイルが下方に存在しない場所とが必然的に生じる。この構造的特徴による加熱ムラが生じないようにするため、加熱コイルを可能な限り近接して配置する必要がある。
 しかしながら、上記構造のため、それぞれの加熱コイルから発生される磁界が互いに干渉し合う。近接する加熱コイルから発生する高周波磁界に周波数差が存在すると、その周波数差に応じた不快な干渉音が発生する。
 上記問題点を解決することができる従来技術が、特許文献1に開示される。この従来技術は、直列接続された二つのスイッチング(Switching)素子を有するインバータ(Inverter)回路に並列に接続された複数の加熱コイルと、各加熱コイルに直列接続された一つの副スイッチング素子とを有する。この従来技術では、加熱コイルに電流が一定期間流れない区間を設けるように、副スイッチング素子が制御される。
 上記従来技術によれば、一つのインバータ回路で複数の加熱コイルに電力を供給するため、複数の加熱コイルに流れる電流が、インバータ回路の動作周波数と同一の周波数を有する。そのため、インバータ回路の動作周波数が変化しても、干渉音が生じない。
 以下、簡単のため、加熱コイルの上方に被加熱物が載置されたか否かを判断することを鍋検知と呼ぶ。また、正確には「被加熱物が加熱コイルの上方の天板に載置される」または「被加熱物が加熱コイルの上方に載置される」と記載するべきところを、「被加熱物が加熱コイルに載置される」と表現する。
独国特許出願公開第9054582号明細書
 上記従来技術では、電力が供給されている加熱コイルと、電力が供給されていない加熱コイルとが混在する状態の場合、電力が供給されていない加熱コイルに鍋が載置されたか否かを検知することが困難である。
 以下、具体的に説明する。インバータ回路を構成する二つのスイッチング素子が、所望の動作周波数およびデューティ(Duty)で駆動されると、このインバータ回路に接続された複数の加熱コイルのうち、副スイッチング素子がオンされた加熱コイルに誘導加熱電流が供給される。
 この場合において、誘導加熱を行っていない加熱コイルに鍋が載置されているか否かを判別するために、この加熱コイルに接続された副スイッチング素子をオンすると、この加熱コイルにも誘導加熱電流が流れてしまう。
 この加熱コイルに鍋が載置されていれば、加熱不要の鍋を加熱することになる。この加熱コイルに鍋が載置されていなければ、この加熱コイルに大きな電流が流れてしまい、回路部品の破壊または漏洩磁界の増大を招く可能性がある。
 加熱コイル毎にインバータ回路が設けられた回路構成において、すべてのインバータ回路を同一周波数で動作させると、干渉音は発生しない。しかし、鍋検知のための電力を供給するために、誘導加熱のための電力を供給する場合より小さなデューティでインバータ回路を駆動すると、スイッチング素子に流れる電流がスイッチング素子と並列に接続した逆導通ダイオードに流れる。
 そのため、その期間に、スイッチング素子をオフにすると、このスイッチング素子に流れる電流、および、このスイッチング素子に印加される電圧が急激に変化する。この急激な電流または電圧の変化が、スイッチング損失およびノイズの原因となる。
 本開示は、上記従来の問題点を解決するもので、鍋検知の場合と誘導加熱の場合とで同一の動作周波数を用いても、スイッチング素子における電流または電圧が急激に変化しないようにすることができる。その結果、スイッチング損失およびノイズを抑制可能な誘導加熱装置を提供することを目的とする。
 上記従来の問題点を解決するために、本開示の一態様に係る誘導加熱装置は、天板と、複数の加熱コイルと、直流電源と、複数の共振コンデンサと、インバータ回路と、副スイッチング素子と、鍋検知部とを備える。
 天板には被加熱物が載置される。複数の加熱コイルは、天板の下方に配置される。直流電源は、商用電源からの交流電力を直流電力に変換する。複数の共振コンデンサは、複数の加熱コイルの各々と接続され、それぞれ共振回路を構成する。
 インバータ回路は、直流電源と加熱コイルとの間の電流経路の接続を制御する第1の主スイッチング素子と、第1の主スイッチング素子に直列接続された第2の主スイッチング素子とを有し、一つ以上の加熱コイルに電力を供給する。
 副スイッチング素子は、インバータ回路と共振回路との間に直列接続される。制御部は、第1および第2の主スイッチング素子と副スイッチング素子とを駆動する。鍋検知部は、共振回路に関連する電流または電圧の情報に応じて、鍋検知を行う。
 制御部は、第1および第2の主スイッチング素子と副スイッチング素子とを、同一の周波数で駆動し、第1の主スイッチング素子のオン期間と副スイッチング素子のオン期間との重複期間を調整することにより、加熱コイルに流れる電流を制御するように構成される。
 本態様によれば、スイッチング動作時に主スイッチング素子に流れる電流の変化を抑制することができ、その結果、スイッチング損失を低減することができる。
 また、本態様によれば、インバータ回路と副スイッチング素子とが同期して駆動されるため、加熱コイルに対する電力制御が行い易い。
 さらに、本態様によれば、加熱コイルに流れる電流の基本周波数を、インバータ回路の動作周波数と同一にすることができる。このため、例えば、近接して設けられた複数の加熱コイルが同時に駆動されても、干渉音が発生しない。
図1は、本開示の実施の形態1に係る誘導加熱装置の概略平面図である。 図2は、実施の形態1に係る誘導加熱装置の回路構成を示すブロック図である。 図3は、実施の形態1における主スイッチング素子および副スイッチング素子に対する制御信号と加熱コイルに流れる電流とを示す波形図である。 図4は、実施の形態1における鍋検知のための基準を示す図である。 図5は、実施の形態1におけるスイッチング素子に対する制御信号と加熱コイルに流れる電流とを示す波形図である。 図6は、実施の形態1において、高抵抗の被加熱物を誘導加熱する場合の、スイッチング素子に対する制御信号と加熱コイルに流れる電流とを示す波形図である。 図7は、実施の形態1において、低抵抗の被加熱物を誘導加熱する場合の、スイッチング素子に対する制御信号と加熱コイルに流れる電流とを示す波形図である。 図8は、実施の形態1に係る誘導加熱装置の回路構成に関する他の例を示すブロック図である。 図9は、本開示の実施の形態2に係る誘導加熱装置の回路構成を示すブロック図である。 図10は、実施の形態2における主スイッチング素子および副スイッチング素子に対する制御信号と加熱コイルに流れる電流と副スイッチング素子に印加される電圧とを示す波形図である。 図11は、実施の形態2に係る誘導加熱装置の回路構成に関する他の例を示すブロック図である。 図12は、本開示の実施の形態3に係る誘導加熱装置の回路構成を示すブロック図である。 図13は、実施の形態3におけるスイッチング素子に対する制御信号と加熱コイルに流れる電流とスイッチング素子に印加される電圧とを示す波形図である。 図14は、実施の形態3に係る誘導加熱装置の他の回路構成を示すブロック図である。 図15は、本開示の実施の形態4に係る誘導加熱装置の回路構成を示すブロック図である。 図16は、実施の形態4におけるスイッチング素子に対する制御信号と加熱コイルに流れる電流とスイッチング素子に印加される電圧とを示す波形図である。
 本開示の第1の態様に係る誘導加熱装置は、天板と、複数の加熱コイルと、直流電源と、複数の共振コンデンサと、インバータ回路と、副スイッチング素子と、鍋検知部とを備える。
 天板には被加熱物が載置される。複数の加熱コイルは、天板の下方に配置される。直流電源は、商用電源からの交流電力を直流電力に変換する。複数の共振コンデンサは、複数の加熱コイルの各々と接続され、それぞれ共振回路を構成する。
 インバータ回路は、直流電源と加熱コイルとの間の電流経路の接続を制御する第1の主スイッチング素子と、第1の主スイッチング素子に直列接続された第2の主スイッチング素子とを有し、一つ以上の加熱コイルに電力を供給する。
 副スイッチング素子は、インバータ回路と共振回路との間に直列接続される。制御部は、第1および第2の主スイッチング素子と副スイッチング素子とを駆動する。鍋検知部は、共振回路に関連する電流または電圧の情報に応じて、鍋検知を行う。
 制御部は、第1および第2の主スイッチング素子と副スイッチング素子とを、同一の周波数で駆動し、第1の主スイッチング素子のオン期間と副スイッチング素子のオン期間との重複期間を調整することにより、加熱コイルに流れる電流を制御するように構成される。
 本態様によれば、スイッチング動作時に主スイッチング素子に流れる電流の変化を抑制することができ、その結果、スイッチング損失を低減することができる。
 また、本態様によれば、インバータ回路と副スイッチング素子とが同期して駆動されるため、加熱コイルに対する電力制御が行い易い。
 さらに、本態様によれば、加熱コイルに流れる電流の基本周波数を、インバータ回路の動作周波数と同一にすることができる。このため、例えば、近接して設けられた複数の加熱コイルが同時に駆動されても、干渉音が発生しない。
 本開示の第2の態様に係る誘導加熱装置は、第1の態様において、鍋検知部が、第1のスイッチング素子がオフされる時点の情報に応じて、鍋検知を行うように構成されるものである。
 本態様によれば、鍋検知時に加熱コイルに流れる電流を低減できるため、スイッチング損失の少ない鍋検知を行うことができる。
 鍋検知時に加熱コイルに流れる電流が低減されるため、加熱コイルに被加熱物が載置されていた場合、鍋の不必要な加熱を防止することができ、加熱コイルに被加熱物が載置されていない場合、漏洩磁界を抑制することができる。
 本開示の第3の態様に係る誘導加熱装置は、第1の態様において、制御部が、インバータ回路の一動作周期において、加熱コイルに電流が流れる状態と加熱コイルに電流が流れない状態とを設けるように、第1および第2の主スイッチング素子と副スイッチング素子とを駆動するものである。
 本態様によれば、インバータ回路の動作周期ごとに、必ず加熱コイルに流れる電流がリセットされるため、どうような被加熱物であっても、載置された時点の次の動作周期において鍋検知を行うことができる。
 本開示の第4の態様に係る誘導加熱装置は、第1の態様において、制御部が、第1の主スイッチング素子がオフされる時点で、副スイッチング素子に電流が流れているように、副スイッチングを駆動するものである。
 本態様によれば、主スイッチング素子のスイッチング動作時に発生するノイズが、副スイッチング素子に印加されないようにすることができ、副スイッチング素子の破壊を防止することができる。
 本開示の第5の態様に係る誘導加熱装置は、第4の態様において、制御部が、第1の主スイッチング素子がオフされる時点で、加熱コイルに最大の電流が流れるように、副スイッチング素子を制御するものである。本態様によれば、精度よく鍋検知を行うことができる。
 本開示の第6の態様に係る誘導加熱装置は、第1の態様において、制御部が、鍋検知時と誘導加熱時とで、第1の主スイッチング素子の動作周波数およびオン期間の少なくともいずれかを同一に設定するものである。
 本態様によれば、近接して設置された二つの加熱コイルの一方に関しては鍋検知を行い、他方に関しては誘導加熱を行っても、干渉音が発生しないようにすることができる。
 本開示の第7の態様に係る誘導加熱装置は、第1の態様において、制御部が、インバータ回路の一動作周期において、一定期間、加熱コイルに電流が流れない状態を有する間欠通電モードと、一定期間、加熱コイルに電流が流れない状態を有しない連続通電モードとを用いて、被加熱物に供給する電力を制御するものである。
 本態様によれば、高抵抗の被加熱物と低抵抗の被加熱物のいずれに対しても、定格電力または定格電力に近い電力を不具合なく供給することができる。
 本開示の第8の態様に係る誘導加熱装置は、第1の態様において、副スイッチング素子に直列接続または並列接続されて設けられ、副スイッチング素子に印加される最大電圧を低減する電圧低減部をさらに備えたものである。
 本態様によれば、副スイッチング素子に発生する寄生振動に起因して副スイッチング素子に印加される電圧を、副スイッチング素子の耐電圧以下に低減することができるため、副スイッチング素子の破壊を防止することができる。
 本開示の第9の態様に係る誘導加熱装置は、第8の態様において、電圧低減部が、副スイッチング素子に並列接続されたツェナーダイオードを含むものである。
 本態様によれば、副スイッチング素子には降伏電圧を超過する電圧が印加されないため、副スイッチング素子の耐電圧値以下である降伏電圧を有するツェナーダイオードを用いて、副スイッチング素子の破壊を防止することができる。
 本開示の第10の態様に係る誘導加熱装置は、第8の態様において、電圧低減部が、副スイッチング素子に並列接続されたコンデンサを含むものである。
 本態様によれば、副スイッチング素子の寄生容量と、本態様に係るコンデンサの容量との合成容量を、副スイッチング素子の寄生容量より大きくすることができる。これにより、共振回路のQ値を低下させて、寄生振動により生じる電圧値を低減することができ、その結果、副スイッチング素子の破壊を防止することができる。
 本開示の第11の態様に係る誘導加熱装置は、第8の態様において、電圧低減部が、副スイッチング素子に直列接続されたダイオードを含むものである。
 本態様によれば、副スイッチング素子に印加される電圧が、直流電源の出力電圧を超過すると、ダイオードが導通する。これにより、副スイッチング素子に印加される電圧が直流電源の出力電圧と同一にすることができる。そのため、直流電源の出力電圧が副スイッチング素子の耐電圧より小さければ、副スイッチング素子の破壊を防止することができる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本開示が限定されるものではない。なお、以下の全ての図において、同一又は相当部分には、同一の符号を付し、重複する説明は省略する。
 (実施の形態1)
 図1は、本開示の実施の形態1に係る誘導加熱装置10の上面図である。
 図1に示すように、本実施の形態に係る誘導加熱装置10は、被加熱物を載置するための天板13と、天板13の下方にマトリクス状に配置された45個の加熱コイル11と、加熱の開始および停止、火力調節などを操作するための操作部12とを有する。
 操作部12は、天板13に複数の被加熱物が載置された時に、被加熱物の載置位置、および、各被加熱物に対する加熱状態を視覚的に示す表示手段を備えてもよい。
 図2は、誘導加熱装置10に設けられた加熱コイル11に電力を供給するための回路構成を示すブロック図である。すなわち、本実施の形態に係る誘導加熱装置10は、各々の加熱コイル11に対してそれぞれ図2に示す回路構成が設けられる。
 ここで、図2に示す回路構成について説明する。図2において、直流電源42は、ダイオードブリッジおよびLCフィルタを含み、商用電源(不図示)からの交流電力を整流し平滑することにより、直流電力に変換する。
 インバータ回路61は、直流電源42の出力端子に接続される。インバータ回路61において、第1の主スイッチング素子であるスイッチング素子43と、第2の主スイッチング素子であるスイッチング素子44とが直列接続される。スイッチング素子43には逆導通ダイオード51が並列接続され、スイッチング素子44には逆導通ダイオード52が並列接続される。
 スイッチング素子43とスイッチング素子44とを排他的にオンおよびオフすることにより、インバータ回路61は、直流電源42から出力される直流電力を高周波の交流電力に変換する。以下、スイッチング素子に対してオンおよびオフする制御信号を出力することを、スイッチング素子をオンオフ制御するという。
 本実施の形態に係るインバータ回路61は、スイッチング素子44と並列接続されたスナバコンデンサ48を含む。スナバコンデンサ48により、スイッチング素子43、スイッチング素子44をオフさせる際に発生するスイッチング損失を抑制することができる。
 インバータ回路61の出力端子には、加熱コイル11と、共振コンデンサ46と、副スイッチング素子であるスイッチング素子45とが直列接続されている。スイッチング素子45には逆導通ダイオード53が並列接続される。加熱コイル11と共振コンデンサ46とにより、共振回路62が構成される。
 インバータ回路61の出力端子と加熱コイル11との接続経路には、加熱コイル11に流れる電流を検出するための電流検出部47が接続される。
 鍋検知部50は、電流検出部47の出力値を受け、加熱コイル11に被加熱物が載置されているか否かを判別する。
 制御部49は、スイッチング素子43~45に接続され、スイッチング素子43~45をオンおよびオフする制御信号を出力して、スイッチング素子43~45を駆動する。制御部49と鍋検知部50とは、マイクロコンピュータ内で動作するソフトウェアにより構成される。
 鍋検知部50は、加熱コイル11に載置された被加熱物の材質を判別することも可能である。以下、鍋検知部50により判別される被加熱物の有無、材質、および、どのように載置されているかの情報を被加熱物の状態と呼び、鍋検知には、被加熱物の有無だけでなく、その材質などの判別が含まれるものとする。
 電流検出部47は、共振回路62に流れる電流の値を検出するもの以外に、共振回路62に流れる電流と、スイッチング素子43、スイッチング素子44、または、スイッチング素子45のオンオフ制御との位相差を判断するための値を検出するものであってもよい。電流検出部の代わりに、共振コンデンサ46の両端電圧を検出する電圧検出部を設け、鍋検知部50は、検出された電圧を用いて鍋検知を行ってもよい。
 以下、上記構成を有する誘導加熱装置の動作について説明する。
 図3は、本実施の形態におけるスイッチング素子43~45に対する制御信号と、加熱コイル11に流れる電流とを示す波形図である。
 図3において、Vm1はスイッチング素子43に対する制御信号、Vm2はスイッチング素子44に対する制御信号、Vsはスイッチング素子45に対する制御信号、Icは加熱コイル11に流れる電流をそれぞれ表す。
 各スイッチング素子は、制御信号が高い(図に示すH)場合にオンされ、制御信号が低い(図に示すL)場合にオフされる。すなわち、スイッチング素子43はオン期間Tm1に、スイッチング素子44はオン期間Tm2にそれぞれオンされる。以下、スイッチング素子がオンされる期間をオン期間(On-period)という。
 図3に示すように、インバータ回路61の出力側に高周波の電圧を発生するために、スイッチング素子43とスイッチング素子44は、動作周期Tf(すなわち、動作周波数1/Tf)で排他的にオンオフ制御される。また、スイッチング素子に制御信号が供給されてからスイッチング素子が実際にオフまたはオンするまでに、万一遅れが生じたとしても、直流電源42の出力端子が短絡することのないように、スイッチング素子43とスイッチング素子44とが共にオフされるデットタイム期間Tdが設けられる。
 直流電源42の動作中に、高電位側のスイッチング素子であるスイッチング素子43をオンすると、インバータ回路61の出力端子間に電圧が印加される。このとき、スイッチング素子45がオフされていると、加熱コイル11には電流が流れない。一方、スイッチング素子45がオンされていると、スイッチング素子45を介して電流経路が形成され、加熱コイル11に電流が流れる。
 このように、本実施の形態において、スイッチング素子43のオン期間とスイッチング素子45のオン期間とが重なる期間(以下、重複期間(Overlap period)という)であるTa1を調整することによって、加熱コイル11に流れる電流が制御される。
 重複期間Ta1が長いほど、加熱コイル11により多くの電流が流れるため、加熱コイル11に載置された被加熱物により大きな電力が供給される。
 スイッチング素子43がオフされ、デットタイム期間Tdが経過すると、スイッチング素子44がオンされる。スイッチング素子44がオンされると、共振回路62において共振動作が発生し、共振回路62に流れる電流Icの方向が反転する。
 スイッチング素子44に電流Icが流れる期間Tc1においては、電流Icは、逆導通ダイオード53に流れ、スイッチング素子45には流れない。このため、期間Tc1にスイッチング素子45をオフすることにより、スイッチング動作によりスイッチング素子45で生じる損失をなくすことができる。
 共振回路62の共振動作により電流Icは再び反転する様子を示すが、期間Tc1にスイッチング素子45をオフして電流経路を遮断すると、期間Tg1では共振回路62に電流Icが流れない。
 鍋検知時において、少なくとも重複期間Ta1の間、スイッチング素子45をオンしておくと、スイッチング素子43がオフされる時点で、電流Icは最大値Ip1となる。
 従って、スイッチング素子43がオフされる時点で、電流検出部47により電流Icの値を検出することにより、電流Icをサンプルホールドする回路を設けることなく、最大値Ip1を検出することができる。
 本実施の形態では、スイッチング素子43をオフする時点、および、スイッチング素子44をオンする時点を跨いで、スイッチング素子45に電流が流れているように、スイッチング素子45が制御される。
 これにより、スイッチング素子43、44の状態遷移時における電流および電圧の振る舞いを、スイッチング素子45が設けられない回路構成の場合と同様にし、スイッチング素子43、44におけるノイズおよびスイッチング損失を、スイッチング素子45が設けられない回路構成の場合と同程度に低減することができる。
 本実施の形態によれば、加熱コイル11に被加熱物が載置されているか否かの判別と、被加熱物が載置されている場合は被加熱物の材質の判別とが、操作部12により加熱動作の開始が指示される前に行われる。これにより、例えば、被加熱物の載置位置を操作部12に視覚的に示すための情報を得ることができる。
 当然のことながら、鍋検知するためのセンサなどを設けない方が、誘導加熱装置10を安価に構成できる。しかし、誘導加熱を行うための回路を、被加熱物の状態判別のために用いると、回路部品の破壊、状態判別時の電力の増大または漏洩磁界の増大を招くおそれがある。
 この問題を解決するために、鍋検知時には、誘導加熱時より小さな電流を加熱コイル11に流すようにする。本実施の形態では、図3に示す重複期間Ta1が短くなるように、スイッチング素子45をオンする時点を制御する。これにより、インバータ回路61から加熱コイル11および被加熱物への供給電力を少なくして、スイッチング損失を抑えつつ被加熱物の状態判別が可能となる。
 鍋検知時の被加熱物への供給電力を低減するために、重複期間Ta1はオン期間Tm1の半分以下であることが望ましい。
 オン期間Tm1と重複期間Ta1が一定であっても、天板13に載置された被加熱物の状態によって、共振回路62に流れる電流の最大値Ip1が異なる。
 これを利用して、鍋検知部50は、例えば、オン期間Tm1と重複期間Ta1を一定にして、または、変化させて、交流電源41からインバータ回路61に流れる電流と共振回路62に流れる電流の最大値Ip1との関係から、鍋検知を行うことができる。上記のように、最大値Ip1が検出されるのは、スイッチング素子43がオフされる時点である。
 被加熱物の判別のための情報として、共振回路62に流れる電流値の他、共振回路62に発生する電圧値を用いてもよい。最大値Ip1の情報を維持できる回路を追加すれば、電流Icを検出するのは、スイッチング素子43がオフされる時点でなくてもよい。
 本実施の形態では、重複期間Ta1をなくすと、加熱コイル11には電流が流れない。すなわち、本実施の形態によれば、スイッチング素子43がオンされていても、加熱コイル11に電流が流れないように制御することができる。
 図3に示すように、鍋検知時は、加熱コイル11に電流が流れる期間Tb1、Tc1と、加熱コイル11に電流が流れない期間Tg1とが存在する間欠通電モード(Intermittent-energization mode)が行われる。これにより、共振動作により加熱コイル11に流れる電流が抑制される。その結果、鍋検知時における消費電力を低減することができる。
 通常、誘導加熱装置では、被加熱物の状態に応じて共振周波数が変化する。しかし、本実施の形態によれば、共振動作により加熱コイル11に電流が一周期の間流れた後、電流が流れない状態となる。そして、次の重複期間Ta1において、被加熱物の新たな状態に応じた電流検出値を得ることができる。このようにして、被加熱物の状態による共振特性の変化に影響されることなく、鍋検知を精度よく行うことができる。
 スイッチング素子43~45が同一の周波数で動作するため、加熱コイル11に流れる電流の基本周波数はスイッチング素子の動作周波数となる。各回路の動作周波数を同じにすれば、例えば複数の加熱コイル11や他の回路を近接して配置し、異なる被加熱物を加熱する場合でも、干渉音を抑制することができる。
 加熱コイル11に供給される電力が少ない時は、加熱コイル11に電流が流れない期間Tg1が存在する。このため、被加熱物の状態に応じて共振回路62の共振周波数が変化しても、期間Tg1の長さが変化するだけで、スイッチング素子45は短絡せず、その動作に変化はない。その結果、効率よく回路を動作させることができる。
 本実施の形態では、スイッチング素子43がオフされた時点に流れる電流が、スイッチング素子45に流れる電流の最大値となる時点で鍋検知することにより、電流検出部47の出力値の最大値と重複期間Ta1の関係から、被加熱物の状態判別を行うことができる。このため、ピークホールド回路を用いることなく、安価で且つ精度よく鍋検知することができる。
 図3に示すように、スイッチング素子43に対する制御信号Vm1、スイッチング素子44に対する制御信号Vm2、スイッチング素子45に対する制御信号Vsは、全て同じ周波数を有する。これによって、加熱コイル11に流れる電流Icを抑制することができる。その結果、より小さい容量の電流検出部47が使用でき、直流電源42の出力電圧のリップルを低減することができる。
 加熱コイル11に流れる電流の基本周波数は、スイッチング素子43~45の動作周波数と同一であるため、近接して設けられた複数の加熱コイルや他の回路を同時に動作させても、干渉音を生じることなく、鍋検知することができる。
 スイッチング素子43がオンされるとき(Vm1の立ち上がり)、電流は、スイッチング素子43と並列に接続された逆導通ダイオード51に流れ、スイッチング素子43に流れない。このように、スイッチング素子43において、零電圧スイッチングかつ零電流スイッチングが行われるため、スイッチング損失を抑制することができる。
 スイッチング素子43がオフされるとき(Vm1の立ち下がり)、スイッチング素子44と並列に設けられたスナバコンデンサ48により、スイッチング素子43に印加される電圧は緩やかに上昇する。このため、零電圧スイッチングが行われ、スイッチング損失を抑制することができる。
 スイッチング素子43と同様に、スイッチング素子44がオンされるとき(Vm2の立ち上がり)、零電圧スイッチングかつ零電流スイッチングが行われ、スイッチング損失を抑制することができる。スイッチング素子44がオフされるとき(Vm1の立ち下がり)、零電圧スイッチングが行われ、スイッチング損失を抑制することができる。
 すなわち、加熱コイル11に流れる電流が低減するため、オン期間Tm1と重複期間Ta1とを短くしても、スイッチング素子43~45において、少なくとも零電圧スイッチング、零電流スイッチングのいずれか行われるため、スイッチング素子43~45におけるスイッチング損失を低減することができる。
 スイッチング素子45がオンされるとき(Vsの立ち上がり)、スイッチング素子45に流れる電流が零から一定の傾きで緩やかに上昇する。このため、零電流スイッチングが行われ、スイッチング損失を低減することができる。スイッチング素子45がオフされるとき(Vsの立ち下がり)、電流は、スイッチング素子45と並列に接続された逆導通ダイオード53に流れ、スイッチング素子45に流れない。このように、スイッチング素子45において、零電圧スイッチングかつ零電流スイッチングが行われ、スイッチング損失を抑制することができる。
 以上のように、本実施の形態によれば、加熱コイル11に電流が流れない期間Tg1が設けられる。これにより、共振回路62の共振周波数、および、インバータ回路61の動作周波数に関わらず、スイッチング素子43~45において、零電圧スイッチングまたは零電流スイッチングが行われる。
 このため、鍋検知時と誘導加熱時とで同一の動作周波数を用いてインバータ回路61を駆動しても、スイッチング損失とノイズとを抑制することができる。その結果、近接して設置された複数の加熱コイル11に、同時に電力を供給しても干渉音を抑制することができる。
 ここで、本実施の形態において、鍋検知部50がどのように鍋検知するかについて説明する。
 上記説明から容易に理解できるように、オン期間Tm1が一定の場合、スイッチング素子45をより早くオンすると重複期間Ta1は長くなり、スイッチング素子45をより遅くオンすると重複期間Ta1は短くなる。このように、オン期間Tm1と重複期間Ta1とを調整することにより、加熱コイル11に流れる電流Icを制御する。
 被加熱物が載置される場合と載置されない場合とで、インバータ回路61からみた加熱コイル11のインピーダンスが変化する。載置された被加熱物の材質に応じても同様である。加熱コイル11のインピーダンスが変化すると、重複期間Ta1が一定であっても電流Icの最大値Ip1が変化する。この関係性を用いて、被加熱物の状態が判別できる。
 図4は、本実施の形態における鍋検知のための基準を示す図である。図4において、横軸は重複期間Ta1、縦軸は電流Icの最大値Ip1をそれぞれ表す。
 図4に示すように、例えば、重複期間Ta1が値X1に設定されると、電流Icが値Y1未満である場合(領域A1)と、電流Icが値Y1以上、値Y2未満である場合(領域A2)と、電流Icが値Y2以上である場合(領域A3)との三つの領域に区画される。
 その時の重複期間Ta1と電流Icの最大値Ip1とで決定される点が、どの領域に含まれるかにより、被加熱物の状態が判別される。
 本実施の形態では、領域A1の場合、載置された被加熱物が磁性体であると判断し、領域A2の場合、載置された被加熱物が非磁性体であると判断し、領域A3の場合、被加熱物が載置されていないと判断する。
 このようにして、被加熱物の状態判別のために特別なセンサや回路部品を設けることなく、被加熱物の状態を判別することができる。
 以下、重複期間がTa1より長いTa2である場合における、誘導加熱装置10の動作について説明する。
 図5は、図3と同様に、本実施の形態におけるスイッチング素子43~45に対する制御信号Vm1、Vm2およびVsと、加熱コイル11に流れる電流Icとを示す波形図である。図5に示すように、本実施の形態では、重複期間はTa1より長いTa2に設定される。
 例えば、被加熱物が載置されたことを確認されている状態で、操作部12により加熱開始が指示されると、被加熱物が載置された加熱コイル11に対応するインバータ回路61とスイッチング素子45とが駆動され、載置された被加熱物が誘導加熱される。
 インバータ回路61の動作周波数は、鍋検知時と誘導加熱時とで同一にする。スイッチング素子43のオン期間を、誘導加熱時と鍋検知時とで同一に設定してもよい。
 図5に示すように、重複期間をTa1より長いTa2とすると、電流Icが流れる期間が長くなり(Tb2+Tc2>Tb1+Tc1)、電流の最大値も大きくなる(Ip2>Ip1)。
 すなわち、被加熱物に供給される電力は、重複期間が長いほど大きくなる。また、重複期間Ta2が零の場合、被加熱物に供給される電力は零になる。重複期間Ta1がオン期間Tm1と一致する場合、被加熱物に供給される電力は最大になる。後者の場合、一定期間、加熱コイル11に電流Icが流れない状態を有せず、加熱コイル11に連続的に電流Icが流れる連続通電モード(Continuous-energization mode)が行われる(図6参照)。
 本実施の形態によれば、制御部49が、スイッチング素子45をオンする時点とスイッチング素子45のオン期間とを調整することにより、間欠通電モードと連続通電モードとを行い、被加熱物に供給する電力を、零から最大値まで連続的に制御する。
 本実施の形態によれば、鍋検知時でも、被加熱物の誘導加熱時でも、誘導加熱装置10が有するすべてのインバータ回路61において同一の動作周波数が用いられる。これにより、状態判別を行う加熱コイル11と、誘導加熱を行う加熱コイル11とが同時に存在しても、高周波磁界の周波数差が発生することがなく、干渉音が生じない。
 図6は、電気的な抵抗値が大きい、磁性ステンレス製などの鍋を定格電力または定格電力に近い電力で誘導加熱する場合における、制御信号Vm1、Vm2、Vsと電流Icとを示す波形図である。図7は、電気的な抵抗値が小さい、鉄製などの鍋を定格電力で誘導加熱する場合における、制御信号Vm1、Vm2、Vsと電流Icとを示す波形図である。
 抵抗値の大きい被加熱物の場合、共振回路62内の加熱コイル11に電流が流れにくいため、被加熱物に供給できる電力は小さい。そのため、抵抗値の大きな被加熱物に所望の電力を供給するためには、抵抗値が小さい被加熱物と比較して重複期間を長くする必要がある。
 そこで、図6に示すように、重複期間Ta3をスイッチング素子43のオン期間Tm1と同じにして、加熱コイル11に連続通電モードを行うように制御する。これにより、抵抗値の大きい被加熱物を定格電力または定格電力に近い電力で加熱することが可能となる。
 なお、図6においては、スイッチング素子45が連続してオンされるが、加熱コイル11に連続的に電流が流れれば、スイッチング素子45がオフされてもよい。
 一方、抵抗値が小さい被加熱物の場合、図7に示すように、抵抗値が大きな被加熱物の場合と比較して、加熱コイル11に電流が流れやすく、電流の最大値も大きくなる(Ip4>Ip3)。
 そこで、抵抗値の小さい被加熱物の場合は、定格値を供給する場合であっても、重複期間Ta4をTm1より短くし、電流Icが流れない期間Tg4を設けるように、スイッチング素子43~45を制御する。これにより、被加熱物に供給される電力が定格値を超えないようにすることができる。なお、抵抗値の小さい被加熱物の場合、重複期間はオン期間Tm1の半分以下が望ましい。
 本実施の形態では、鍋検知時と誘導加熱時とで、同一の動作周波数でインバータ回路61を駆動するため、図8に示す構成も利用可能である。図8は、誘導加熱装置10の回路構成に関する他の例を示すブロック図である。
 図8に示すように、図2に示す回路構成に加えて、電流検出部47と、共振回路62と、逆導通ダイオード53が並列接続されたスイッチング素子45とで構成されるもう一系統の直列体が、インバータ回路61の出力端子に接続される。この構成により、一つのインバータ回路61で二つの加熱コイル11を同時に駆動することができ、より安価な誘導加熱装置10を構成することが可能となる。
 さらに、図8に示す回路構成に、図8において追加された直列体と同じ直列体を同様に追加すれば、一つのインバータ回路61でより多くの加熱コイル11を同時に駆動することができ、さらに安価な誘導加熱装置10を構成することが可能となる。
 (実施の形態2)
 特許文献1で開示された回路構成において、副スイッチング素子は半導体材料で構成されるため、副スイッチング素子がオフされても、副スイッチング素子が有する接合容量や静電容量などの寄生容量が加熱コイルと共振回路を構成する。
 このため、加熱コイルに流れる電流が零になったときに加熱コイルや副スイッチング素子に印加される電圧が、加熱コイルに流れる電流が零になる前の状態から変化することにより発生する共振動作によって、副スイッチング素子にリンギング電圧が発生する。
 つまり、特許文献1で開示された回路構成においては、副スイッチング素子をオフして加熱コイルに流れる電流を零にするとき、副スイッチング素子には電源の電圧と共振コンデンサの電圧の和が印加され、リンギング電圧など寄生振動により生じる電圧がそれに加わる。この副スイッチング素子に印加される電圧が耐電圧を超過し、副スイッチング素子を破壊する可能性があるという問題がある。
 特に、一定期間、加熱コイルに流れる電流が零とする場合に、大きな電力を供給しようとすると、寄生振動により生じる電圧値が大きくなるため、副スイッチング素子が破壊され易くなる。本開示の実施の形態2は、上記問題点を解決するものである。
 図9は、誘導加熱装置10に設けられた加熱コイル11に電力を供給するための回路構成を示すブロック図である。すなわち、実施の形態1と同様に、本実施の形態に係る誘導加熱装置10は、各々の加熱コイル11に対して図9に示す回路構成が設けられる。図9に示す回路構成は、図2に示す回路構成とほぼ同じであるため、相違点のみについて説明する。
 本実施の形態では、MOSFETなどで構成されるスイッチング素子45と並列に、スイッチング素子45に印加される電圧を低減するための電圧低減部であるツェナーダイオード71が接続される。これにより、スイッチング素子45のコレクタ-エミッタ電圧Vce1がツェナーダイオード71の降伏電圧を超過しないようにすることができる。
 加熱コイル11に流れる電流を検出するために、インバータ回路61の出力側と加熱コイル11とを含む共振回路62の接続経路に、カレントトランスやシャント抵抗(電流検知用抵抗)などで構成される電流検出部47が設けられる。
 鍋検知部50は、電流検出部47により検出された電流値と、共振コンデンサ46に発生した電圧値とに応じて鍋検知を行う。共振コンデンサ46に発生した電圧値の代わりに、共振回路62に流れる電流とスイッチング素子43、44または45のオンオフ制御との位相差を判断するための値、または、共振回路62に流れる電流値を用いてもよい。
 電流検出部47の出力は、制御部49にも供給される。
 ここで、本実施の形態における誘導加熱装置10の動作を説明する。図10は、本実施の形態におけるスイッチング素子43~45に対する制御信号Vm1、Vm2およびVsと、加熱コイル11に流れる電流Icと、スイッチング素子45のコレクタ-エミッタ電圧Vce1とを示す波形図である。図10において、制御信号Vm1、Vm2およびVsと、電流Icとは、図3と同じであるため、以下、図3との相違点のみについて説明する。
 スイッチング素子45をMOSFETで構成すると、ゲート端子とドレイン端子との間、および、ゲート端子とソース端子との間には、それぞれ静電容量が存在する。ドレイン端子とソース端子との間には、PN接合が形成されることによる接合容量が存在する。
 MOSFETの代わりにIGBTを用いても、同様に静電容量や接合容量などの寄生容量が存在する。この寄生容量より、スイッチング素子45をオフしても、スイッチング素子45を介して新たな共振回路が構成される。
 寄生容量を含む新たな共振回路が構成されるとき、加熱コイル11に流れる電流は零またはほぼ零のため、新たな共振回路が構成されても共振電流はほとんど流れない。しかし、寄生容量は極めて小さく、また少なくとも共振コンデンサ46の容量より小さいため、寄生容量に印加される電圧、すなわち、スイッチング素子45に印加される電圧が大きくなると、共振動作によって電圧が振動する。
 図10に示すように、ツェナーダイオード71を用いて、この振動する電圧の最大値Vp1をスイッチング素子45の耐電圧以下に低減することにより、スイッチング素子45の破壊を防止することができる。その結果、間欠通電モードから連続通電モードとなる定格電力の供給まで、連続的に電力を調整することができる。
 本実施の形態では、鍋検知時と誘導加熱時とで、同一の動作周波数でインバータ回路61を駆動するため、図11に示す構成も利用可能である。図11は、本実施の形態に係る誘導加熱装置10の回路構成に関する他の例を示すブロック図である。
 図11に示すように、図9に示す回路構成に加えて、共振回路62と、逆導通ダイオード53およびツェナーダイオード71が並列接続されたスイッチング素子45とで構成されるもう一系統の直列体が、インバータ回路61の出力端子に接続される。この構成により、一つのインバータ回路61で二つの加熱コイル11を同時に駆動することができ、より安価な誘導加熱装置10を構成することが可能となる。
 さらに、図11に示す回路構成に、図11において追加された直列体と同じ直列体を同様に追加すれば、一つのインバータ回路61でより多くの加熱コイル11を同時に駆動することができ、さらに安価な誘導加熱装置10を構成することが可能となる。
 (実施の形態3)
 図12は、本開示の実施の形態3における誘導加熱装置10に設けられた加熱コイル11に電力を供給するための回路構成を示すブロック図である。すなわち、実施の形態1および2と同様に、本実施の形態に係る誘導加熱装置10は、各々の加熱コイル11に対してそれぞれ図12に示す回路構成が設けられる。図12に示す回路構成は、図9に示す回路構成とほぼ同じであるため、相違点のみについて説明する。
 図12に示すように、本実施の形態では、図9におけるツェナーダイオード71の代わりに、コンデンサ72がスイッチング素子45に並列に設けられる。ここで、コンデンサ72の両端電圧、すなわち、スイッチング素子45のコレクタ-エミッタ電圧をVce2とする。
 図13は、本実施の形態におけるスイッチング素子43~45に対する制御信号Vm1、Vm2およびVsと、加熱コイル11に流れる電流Icと、スイッチング素子45のコレクタ-エミッタ電圧Vce2とを示す波形図である。図13において、制御信号Vm1、Vm2およびVsと、電流Icとは、図3、図10と同じであるため、図10との相違点のみについて説明する。
 スイッチング素子45と並列にコンデンサ72を接続することにより、スイッチング素子45が有する寄生容量とコンデンサ72の容量との合成容量が大きくなる。このため、共振電流が流れたときのコレクタ-エミッタ電圧Vce2の最大値Vp2を低減することができる。その結果、スイッチング素子45の破壊を防止することができる。
 図14は、本実施の形態における加熱コイル11に電力を供給するための他の回路構成を示すブロック図である。図14に示すように、電圧低減部として、スイッチング素子45に並列接続されたコンデンサ72に加え、スイッチング素子45がオンしたときにコンデンサ72に充電された電荷がスイッチング素子45を介して短絡状態で放電することを回避するための抵抗73が、コンデンサ72に直列接続される。
 抵抗73により、大きな短絡電流が流れてノイズが発生し、例えば他の機器を誤作動させるなどの影響を与えないようにすることができる。
 また、コンデンサ72を充電するときの電流が抵抗73を流れると損失を生じ、加熱効率低減の要因となるため、抵抗73にダイオード74を並列接続することにより、効率よく誘導加熱を行うことができる。
 (実施の形態4)
 図15は、本開示の実施の形態4における誘導加熱装置10に設けられた加熱コイル11に電力を供給するための回路構成を示すブロック図である。図15に示す回路構成において、図12に示す回路構成との相違点のみについて説明する。
 図15に示すように、本実施の形態では、図12におけるコンデンサ72をなくし、電圧低減部としてダイオード75が設けられる。ダイオード75のアノードは、スイッチング素子45の高電位端子に接続され、ダイオード75のカソードは、直流電源42の高電位側端子に接続される。
 図16は、本実施の形態におけるスイッチング素子43~45に対する制御信号Vm1、Vm2およびVsと、加熱コイル11に流れる電流Icと、スイッチング素子45のコレクタ-エミッタ電圧Vce3とを示す波形図である。図16において、制御信号Vm1、Vm2およびVsと、電流Icとは、図3、図10、図13と同じである。
 図15において、スイッチング素子45のコレクタ-エミッタ電圧Vce3が直流電源42の出力電圧を超過すると、ダイオード75が導通する。これにより、図16に示すように、スイッチング素子45に印加される電圧の最大値Vp3を、直流電源42の出力電圧と同一にすることができる。そのため、直流電源42の出力電圧がスイッチング素子45の耐電圧より小さければ、スイッチング素子45の破壊を防止することができる。
 以上のように、本開示に係る誘導加熱装置によれば、鍋検知および誘電加熱を同一の周波数で行うことが可能であり、加熱コイルに流れる電流を制御する副スイッチング素子の破壊を防止することが可能である。そのため、本開示は、特に複数の加熱コイルがマトリクス状に近接して設置される誘導加熱調理器(Induction Hob)において有用である。
 10 誘導加熱装置
 11 加熱コイル
 12 操作部
 13 天板
 41 交流電源
 42 直流電源
 43,44,45 スイッチング素子
 46 共振コンデンサ
 47 電流検出部
 48 スナバコンデンサ
 49 制御部
 50 鍋検知部
 51,52,53 逆導通ダイオード
 61 インバータ回路
 62 共振回路
 71 ツェナーダイオード
 72 コンデンサ
 73 抵抗
 74,75 ダイオード

Claims (11)

  1.  被加熱物を載置するための天板と、
     前記天板の下方に配置された複数の加熱コイルと、
     商用電源からの交流電力を直流電力に変換する直流電源と、
     前記複数の加熱コイルの各々と接続され、それぞれ共振回路を構成する複数の共振コンデンサと、
     前記直流電源と前記加熱コイルとの間の電流経路の接続を制御する第1の主スイッチング素子と、前記第1の主スイッチング素子に直列接続された第2の主スイッチング素子とを有し、一つ以上の前記加熱コイルに高周波電流を供給するインバータ回路と、
     前記インバータ回路と前記共振回路との間に直列接続された副スイッチング素子と、
     前記第1および第2の主スイッチング素子と、前記副スイッチング素子とを駆動する制御部と、
     前記共振回路に関連する電流または電圧の情報に応じて、鍋検知を行う鍋検知部と、
    を備え、
     前記制御部は、前記第1および第2の主スイッチング素子と前記副スイッチング素子とを、同一の周波数で駆動し、前記第1の主スイッチング素子のオン期間と前記副スイッチング素子のオン期間との重複期間を調整することにより、前記加熱コイルに流れる電流を制御するように構成された誘導加熱装置。
  2.  前記鍋検知部は、前記第1のスイッチング素子がオフされる時点の情報に応じて、鍋検知を行うように構成された請求項1に記載の誘導加熱装置。
  3.  前記制御部は、前記インバータ回路の一動作周期において、前記加熱コイルに電流が流れる状態と前記加熱コイルに電流が流れない状態とを設けるように、前記第1および第2の主スイッチング素子と前記副スイッチング素子とを駆動する請求項1に記載の誘導加熱装置。
  4.  前記制御部は、前記第1の主スイッチング素子がオフされる時点で、前記副スイッチング素子に電流が流れているように、前記副スイッチングを駆動する請求項1に記載の誘導加熱装置。
  5.  前記制御部は、前記第1の主スイッチング素子がオフされる時点で、前記加熱コイルに最大の電流が流れるように、前記副スイッチング素子を制御する請求項4に記載の誘導加熱装置。
  6.  前記制御部は、鍋検知時と誘導加熱時とで、前記第1の主スイッチング素子の動作周波数およびオン期間の少なくともいずれかを同一に設定する請求項1に記載の誘導加熱装置。
  7.  前記制御部は、前記インバータ回路の一動作周期において、一定期間、前記加熱コイルに電流が流れない状態を有する間欠通電モードと、前記加熱コイルに電流が流れ続ける状態を有する連続通電モードとを用いて、被加熱物に供給する電力を制御する請求項1に記載の誘導加熱装置。
  8.  前記副スイッチング素子に直列接続または並列接続されて設けられ、前記副スイッチング素子に印加される最大電圧を低減する電圧低減部をさらに備えた請求項1に記載の誘導加熱装置。
  9.  前記電圧低減部は、前記副スイッチング素子に並列接続されたツェナーダイオードを含む請求項8に記載の誘導加熱装置。
  10.  前記電圧低減部は、前記副スイッチング素子に並列接続されたコンデンサを含む請求項8に記載の誘導加熱装置。
  11.  前記電圧低減部は、前記副スイッチング素子に直列接続されたダイオードを含む請求項8に記載の誘導加熱装置。
PCT/JP2015/002064 2014-04-15 2015-04-14 誘導加熱装置 WO2015159536A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015001830.1T DE112015001830T5 (de) 2014-04-15 2015-04-14 Induktions-Heizeinrichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014083269A JP6340550B2 (ja) 2014-04-15 2014-04-15 誘導加熱装置
JP2014-083269 2014-04-15
JP2014105866A JP6340551B2 (ja) 2014-05-22 2014-05-22 誘導加熱装置
JP2014-105866 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015159536A1 true WO2015159536A1 (ja) 2015-10-22

Family

ID=54323760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002064 WO2015159536A1 (ja) 2014-04-15 2015-04-14 誘導加熱装置

Country Status (2)

Country Link
DE (1) DE112015001830T5 (ja)
WO (1) WO2015159536A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211099A1 (de) * 2017-06-29 2019-01-03 E.G.O. Elektro-Gerätebau GmbH Induktionskochvorrichtung und Verfahren zur Ansteuerung einer Induktionskochvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313293A (ja) * 1986-07-04 1988-01-20 松下電器産業株式会社 誘導加熱調理器
JP2004220783A (ja) * 2001-12-11 2004-08-05 Matsushita Electric Ind Co Ltd 誘導加熱装置
DE102009054582A1 (de) * 2008-12-19 2010-06-24 BSH Bosch und Siemens Hausgeräte GmbH Kochfeld mit einer Mehrzahl von Heizelementen
JP2011253682A (ja) * 2010-06-01 2011-12-15 Mitsubishi Electric Corp 誘導加熱調理器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313293A (ja) * 1986-07-04 1988-01-20 松下電器産業株式会社 誘導加熱調理器
JP2004220783A (ja) * 2001-12-11 2004-08-05 Matsushita Electric Ind Co Ltd 誘導加熱装置
DE102009054582A1 (de) * 2008-12-19 2010-06-24 BSH Bosch und Siemens Hausgeräte GmbH Kochfeld mit einer Mehrzahl von Heizelementen
JP2011253682A (ja) * 2010-06-01 2011-12-15 Mitsubishi Electric Corp 誘導加熱調理器

Also Published As

Publication number Publication date
DE112015001830T5 (de) 2016-12-29

Similar Documents

Publication Publication Date Title
EP1895814B1 (en) Induction heating apparatus
KR100306985B1 (ko) 고주파인버터및그것을응용한유도가열조리기
JP5677203B2 (ja) 誘導加熱調理器
JP2009512147A (ja) 誘導加熱装置を動作させる方法
JP5872235B2 (ja) 電磁誘導加熱装置
US20180063891A1 (en) Induction heating device
US11805576B2 (en) Domestic appliance
US9350255B2 (en) DC-DC conversion device including pulse width modulation control
US20190261466A1 (en) Domestic appliance
WO2015159536A1 (ja) 誘導加熱装置
JP6340550B2 (ja) 誘導加熱装置
US11153940B2 (en) Domestic appliance device
JP6178676B2 (ja) インバータ回路の制御回路、この制御回路を備えたインバータ装置、このインバータ装置を備えた誘導加熱装置、および、制御方法
JP5223315B2 (ja) 誘導加熱装置
JP6361240B2 (ja) 誘導加熱装置の制御回路
JP6340551B2 (ja) 誘導加熱装置
JP5456096B2 (ja) 誘導加熱調理器
JP4983318B2 (ja) 電磁調理器
JP2005078914A (ja) 誘導加熱装置
JP6717426B2 (ja) 電力変換装置
JP4048928B2 (ja) 誘導加熱装置
JP4049206B2 (ja) 誘導加熱装置
JP4107150B2 (ja) 誘導加熱装置
JP2006134690A (ja) 誘導加熱装置
JP2973575B2 (ja) 誘導加熱用インバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015001830

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780115

Country of ref document: EP

Kind code of ref document: A1