WO2015158296A1 - 前导符号的接收方法及装置 - Google Patents

前导符号的接收方法及装置 Download PDF

Info

Publication number
WO2015158296A1
WO2015158296A1 PCT/CN2015/076815 CN2015076815W WO2015158296A1 WO 2015158296 A1 WO2015158296 A1 WO 2015158296A1 CN 2015076815 W CN2015076815 W CN 2015076815W WO 2015158296 A1 WO2015158296 A1 WO 2015158296A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
preamble symbol
sequence
frequency domain
receiving
Prior art date
Application number
PCT/CN2015/076815
Other languages
English (en)
French (fr)
Inventor
黄戈
徐洪亮
邢观斌
张文军
郭序峰
Original Assignee
上海数字电视国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410153040.XA external-priority patent/CN105007145B/zh
Priority claimed from CN201410168180.4A external-priority patent/CN105007146B/zh
Priority claimed from CN201410177035.2A external-priority patent/CN105024952B/zh
Priority claimed from CN201410184919.0A external-priority patent/CN105024791B/zh
Priority claimed from CN201410185112.9A external-priority patent/CN105024963A/zh
Priority claimed from CN201410229558.7A external-priority patent/CN105323048B/zh
Priority claimed from CN201410259080.2A external-priority patent/CN105282076B/zh
Priority claimed from CN201410274626.1A external-priority patent/CN105282078B/zh
Priority claimed from CN201410326504.2A external-priority patent/CN105245479B/zh
Priority claimed from CN201410753506.XA external-priority patent/CN105743624B/zh
Priority claimed from CN201510039510.4A external-priority patent/CN105991495B/zh
Priority claimed from CN201510061935.5A external-priority patent/CN105991266B/zh
Priority claimed from CN201510076216.0A external-priority patent/CN105991502B/zh
Priority claimed from CN201510076151.XA external-priority patent/CN105991500B/zh
Priority claimed from CN201510076155.8A external-priority patent/CN105991501B/zh
Priority to KR1020167032058A priority Critical patent/KR102033742B1/ko
Application filed by 上海数字电视国家工程研究中心有限公司 filed Critical 上海数字电视国家工程研究中心有限公司
Priority to CA2945857A priority patent/CA2945857C/en
Priority to KR1020207014009A priority patent/KR102223654B1/ko
Priority to KR1020197018441A priority patent/KR102114352B1/ko
Priority to US15/304,851 priority patent/US11071072B2/en
Publication of WO2015158296A1 publication Critical patent/WO2015158296A1/zh
Priority to US17/351,197 priority patent/US11799706B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2663Coarse synchronisation, e.g. by correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3818Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for receiving a preamble symbol.
  • the OFDM system in order for the receiving end of the OFDM system to correctly demodulate the data transmitted by the transmitting end, the OFDM system must implement accurate and reliable time synchronization between the transmitting end and the receiving end. At the same time, because the OFDM system is very sensitive to the carrier frequency offset, the receiving end of the OFDM system needs to provide an accurate and efficient carrier frequency estimation method to accurately estimate and correct the carrier frequency offset.
  • an OFDM system is composed of physical frames, and each frame usually has a synchronization frame header, which is called a preamble symbol or a bootstrap, and implements time synchronization between the transmitting end and the receiving end.
  • the preamble symbol is a sequence of symbols known to both the transmitting end and the receiving end of the OFDM system.
  • the preamble symbol is used as the beginning of the physical frame and usually contains the P1 symbol.
  • the use of the P1 symbol (preamble) or the bootstrap symbol includes:
  • the problem solved by the present invention is that in the current DVB_T2 standard and other standards, the DVB_T2 time domain structure cannot be applied to coherent detection, and the preamble symbol fails in the DBPSK differential decoding under the complex frequency selective fading channel, and the receiving algorithm detects the probability of failure.
  • the embodiments of the present invention provide a method and an apparatus for receiving the following preamble symbols.
  • An embodiment of the present invention provides a method for receiving a preamble symbol, including the steps of: processing a received signal; determining whether there is a preamble symbol that is expected to be received in the obtained processed signal; and determining that it is YES Determining a location of the preamble symbol and solving signaling information carried by the preamble symbol, where the received preamble symbol comprises a first end three-segment structure and/or a second three-segment structure according to a predetermined generation rule according to a predetermined generation rule.
  • the structure is freely combined to generate at least one time domain symbol, and the first three-segment structure includes: a time domain body signal, a prefix generated based on all or part of the time domain body signal, and all or part of the generation based on the part of the time domain body signal
  • the suffix, the second three-segment structure includes: a time domain body signal, a prefix generated based on all or part of the time domain body signal, and a super pre
  • the receiving method of the provided preamble symbol further characterized by: determining whether there is a preamble symbol that is expected to be received in the obtained processed signal, and determining that the preamble is determined to be YES
  • the step of solving the position of the symbol and solving the signaling information carried by the preamble symbol includes at least one of the following steps: initial timing synchronization, integer multiple frequency offset estimation, precise timing synchronization, channel estimation, decoding analysis, and fractional multiple Frequency offset estimation.
  • the receiving method of the provided preamble symbol there is further characterized by: determining, by using at least one of the following, whether there is a preamble symbol that is expected to be received in the processed signal: an initial timing synchronization manner, Integer multiple frequency offset estimation method, precise timing synchronization method, channel estimation method, decoding result analysis method and fractional multiple frequency offset estimation method.
  • a position of the preamble symbol is initially determined by an initial timing synchronization manner, and based on a result of the initial timing synchronization, determining the processed signal Whether there is a preamble symbol containing a three-segment structure that is expected to be received.
  • the method further includes: wherein the location of the preamble symbol is initially determined by any initial timing synchronization manner, where the first initial timing synchronization manner includes: utilizing a predetermined three-stage time domain structure and/or a processing relationship between any two segments of the second predetermined three-stage time domain structure performs necessary inverse processing on the processed signal and then performs delayed sliding autocorrelation to obtain a basic accumulated correlation value;
  • the basic accumulated correlation values are grouped according to different delay lengths of the delay sliding autocorrelation, and each group performs at least one intersymbol delay according to a specific splicing relationship of at least two time domain symbols.
  • the relationship matching and/or phase adjustment After the relationship matching and/or phase adjustment, mathematical operations are performed to obtain a final accumulated correlation value of a certain delay length.
  • the final accumulated correlation value is the basic accumulated correlation value.
  • the operation value is used for the initial timing synchronization, and the second initial timing synchronization mode includes: when the time domain main signal in the three-segment structure of the current pilot symbol contains the known signal, the time domain main signal is according to the predetermined N differences.
  • the value is subjected to a difference operation, and the time domain signal corresponding to the known information is also subjected to a difference operation, and then the two are cross-correlated to obtain a differential correlation result of the N sets and the N difference values one by one, based on the N sets of differences
  • the correlation result is initially synchronized, and a processed value is obtained for initially determining the position of the preamble symbol, where N ⁇ 1, wherein when the first initial timing synchronization manner and the second initial timing synchronization manner are completed, respectively,
  • the processing value is then subjected to a weighting operation, and initial timing synchronization is completed based on the weighting operation value.
  • the method further includes: wherein, in the first initial timing synchronization manner, the method includes: wherein, when the time domain symbols of the two three-segment structure are included, The basic accumulated correlation values are grouped according to different delay lengths of the delay sliding autocorrelation. Each group performs a mathematical operation on the delay relationship matching and/or phase adjustment according to the specific splicing relationship of the two time domain symbols, and obtains several The final accumulated correlation value for a certain delay length.
  • the number of delays implemented in each delay sliding autocorrelation process is further included Perform a certain range of adjustments to form a plurality of adjusted delay numbers, and then perform a plurality of delay sliding autocorrelations according to the obtained adjusted multiple delay numbers and the number of delays, and select the most obvious related result as the basic accumulated correlation value.
  • the method further includes: wherein the N difference values are selected according to any at least one predetermined difference selection rule for performing initial synchronization: first
  • the predetermined differential selection rule includes: selecting any number of different difference values within a length range of the local time domain sequence corresponding to the known information; and the second predetermined difference selection rule includes: localizing corresponding to the known information Within the length of the time domain sequence, select several different values that satisfy the arithmetic progression.
  • the receiving method of the provided preamble symbol further having a feature, wherein when the N difference values are selected by the first predetermined difference selection rule, the obtained one-to-one correspondence is obtained
  • the N sets of differential correlation results are weighted by absolute value addition or averaging; or when selected by a first predetermined differential selection rule or a second predetermined differential selection rule, based on the selected N sets of differential correlations
  • the result is weighted vector addition or averaging.
  • the fractional multiple frequency offset estimation is performed by using a result of the first initial timing synchronization manner and/or the second initial timing synchronization manner
  • the result includes a predetermined processing operation based on a processing relationship corresponding to the time domain body signal and the prefix in the first three-segment structure and/or the second three-segment structure.
  • the result of the first initial timing synchronization manner further comprises the time domain according to the first three-segment structure and/or the second three-segment structure The processing relationship corresponding to the main signal and the suffix/super-prefix and the processing relationship corresponding to the prefix and the suffix/super-prefix, and the two final accumulated correlation values obtained by the predetermined processing operation, and calculating the third small value according to the two accumulated correlation values a multiple octave offset value based on the obtained second fractional octave bias value and Fractional multiple frequency offset estimation by any one of at least one of the third fractional octave bias values, based on the first fractional octave bias value when utilizing the results of the first initial timing synchronization mode and the second initial timing synchronization mode And a combination of any one of the second fractional octave offset value and the third
  • the receiving method of the provided preamble symbol further having a feature, wherein, based on a result of the initial timing synchronization mode, if it is detected that the result satisfies a preset condition, determining to determine the processed signal
  • the preset condition includes: performing a specific operation based on the initial timing synchronization result, and then determining whether the maximum value of the operation result exceeds a predetermined threshold threshold, or further combining the integer multiple frequency offset estimation result and / or decode the result to determine.
  • the method further includes: wherein the receiving method of the preamble symbol further comprises: performing fractional multiple frequency offset estimation by using a result of the initial timing synchronization manner.
  • the method further includes: wherein, in determining the location of the preamble symbol and solving the signaling information carried by the preamble symbol, the method includes: utilizing All or part of the time domain waveform of the preamble symbol and/or the frequency domain signal obtained by Fourier transform of all or part of the time domain waveform of the preamble symbol to solve the signaling information carried by the preamble symbol.
  • the method further includes: wherein, in the predetermined generation rule, the generated preamble symbol comprises: a plurality of the first three segments that are arranged in no particular order a free combination of time domain symbols of the structure and/or several time domain symbols having a second three-segment structure comprising: a time domain body signal, a prefix generated based on the back of the time domain body signal And a suffix generated based on the back of the time domain body signal, the second three-segment structure includes: a time domain body signal, a prefix generated based on the back of the time domain body signal, and a signal based on the time domain body signal The super prefix generated by the department.
  • the transmitting end realizes transmission when a partial signal is intercepted from the time domain body signal with a different starting point to generate a suffix or a super prefix.
  • the signaling is parsed based on the different delay relationships between the prefix and the suffix or super-prefix, and/or the time domain body signal and the suffix or super-prefix.
  • the parsed signaling comprises an emergency broadcast.
  • the preamble symbol is processed by using a frequency domain symbol
  • the generating step of the frequency domain symbol comprises: separately generating the fixed sequence
  • the signaling sequence is arranged in a predetermined arrangement rule and then padded onto the effective subcarriers.
  • the method further includes the step of: decoding the signaling information carried by the preamble symbol, including: by including all or part of the signaling sequence subcarriers The signal is compared with the signalling sequence subcarrier set or the time domain signal corresponding to the whole or part of the signaling sequence subcarrier set to solve the signaling information carried by the signaling sequence subcarrier in the preamble symbol.
  • the receiving method of the provided preamble symbol there is further characterized in that precise timing synchronization is performed by using a fixed subcarrier sequence included in at least one time domain symbol.
  • the receiving method of the provided preamble symbol there is further characterized in that, when the time domain body signal or the corresponding frequency domain body signal in the current pilot symbol includes a known signal, the reception of the preamble symbol
  • the method further includes performing integer multiple frequency offset estimation in any of the following manners: according to the result of the initial timing synchronization, intercepting a time domain signal including at least all or part of the time domain body signal, and using the frequency sweeping method to intercept the time domain of the segment After the signals are modulated with different frequency offsets, a number of N frequency-swept time-domain signals corresponding to the frequency offset values are obtained, which are obtained by inverse Fourier transform of the known frequency domain sequence.
  • the maximum correlation peak of the N cross-correlation results is compared, and the frequency offset of the swept time domain signal corresponding to the largest cross-correlation result is modulated.
  • the value is an integer multiple frequency offset estimation value; or the time domain signal intercepting the length of the main body time domain signal according to the result of the initial timing synchronization is subjected to Fourier transform, and the obtained frequency domain subcarrier is shifted according to different frequency in the frequency sweep range.
  • the value is cyclically shifted, the receiving sequence corresponding to the effective subcarrier is intercepted, and the received sequence and the known frequency domain sequence are subjected to a predetermined operation and then inversely transformed, and the inverse transform results based on the one-to-one correspondence of the plurality of sets of shift values are performed.
  • the selection is performed to obtain an optimal shift value, and the integer octave bias estimation value is obtained by using the correspondence between the bit value and the integer octave bias estimation value.
  • the method further includes: the step of channel estimation, including: performing in the time domain arbitrarily and/or in the frequency domain: when the previous time domain body After the signal decoding is completed, the obtained decoded information is used as the known information, and the channel estimation is performed again in the time domain/frequency domain, and a specific operation is performed with the previous channel estimation result to obtain a new channel estimation result.
  • Channel estimation for signaling resolution of the next time domain body signal including: performing in the time domain arbitrarily and/or in the frequency domain: when the previous time domain body After the signal decoding is completed, the obtained decoded information is used as the known information, and the channel estimation is performed again in the time domain/frequency domain, and a specific operation is performed with the previous channel estimation result to obtain a new channel estimation result.
  • the method further includes: the received preamble symbol is obtained by processing the frequency domain subcarrier, and the frequency domain subcarrier is generated based on the frequency domain body sequence.
  • the step of generating a frequency domain subcarrier includes: a predetermined sequence generation rule for generating a frequency domain body sequence; and/or a predetermined processing rule for processing the frequency domain body sequence for generating frequency domain subcarriers, a predetermined sequence
  • the generation rule includes any one or two combinations of the following: generating based on different sequence generations; and/or generating the sequence based on the same sequence generation, and further processing the generated sequence, the predetermined processing rule includes:
  • the pre-generated subcarriers processed by the main sequence are phase modulated according to the frequency offset value.
  • the receiving method of the provided preamble symbol there is further characterized in that, in the case that the first one of the at least one time domain symbol included in the preamble symbol contains the known information, the known The signal is accurately timed synchronized.
  • the receiving method of the provided preamble symbol there is further characterized in that, in the step of parsing the signaling information, all possible different root values of the frequency domain body sequence transmitted by the transmitting end are utilized. / or a set of known signaling sequences resulting from different frequency domain shift values and all possible frequency domain modulation frequency offset values to resolve the signaling.
  • the receiving method of the provided preamble symbol there is further characterized in that, when the time domain body signal or the corresponding frequency domain body signal in the current pilot symbol includes a known signal, the reception of the preamble symbol
  • the method further includes performing integer multiple frequency offset estimation in any of the following manners: according to the result of the initial timing synchronization, intercepting a time domain signal including at least all or part of the time domain body signal, and using the frequency sweeping method to intercept the time domain of the segment After the signals are modulated with different frequency offsets, a plurality of N frequency-swept time domain signals corresponding to the frequency offset values are obtained, and the known time domain signals obtained by transforming the known frequency domain sequences and each of the frequency-swept time domain signals are obtained.
  • the frequency offset value of the swept time domain signal corresponding to the largest cross-correlation result is an integer multiple frequency offset estimation value; or
  • the result of the initial timing synchronization intercepts the time domain signal of the length of the main body time domain signal and performs Fourier transform, and shifts the obtained frequency domain subcarriers into different frequency sweep ranges.
  • Performing cyclic shifting intercepting a receiving sequence corresponding to the effective subcarrier, performing predetermined operations on the received sequence and the known frequency domain sequence, and performing inverse transform, and performing inverse transform results based on one-to-one correspondence of the plurality of sets of shift values Selecting, obtaining the optimal shift value, and obtaining the integer multiple frequency offset estimation value by using the correspondence between the bit value and the integer multiple frequency offset estimation value.
  • the method further includes: the step of channel estimation, including: performing in the time domain arbitrarily and/or in the frequency domain: when the previous time domain body After the signal decoding is completed, the obtained decoded information is used as the known information, and the channel estimation is performed again in the time domain/frequency domain, and a specific operation is performed with the previous channel estimation result to obtain a new channel estimation result.
  • Channel estimation for signaling resolution of the next time domain body signal including: performing in the time domain arbitrarily and/or in the frequency domain: when the previous time domain body After the signal decoding is completed, the obtained decoded information is used as the known information, and the channel estimation is performed again in the time domain/frequency domain, and a specific operation is performed with the previous channel estimation result to obtain a new channel estimation result.
  • the method further includes: after completing the integer frequency offset estimation, the frequency offset is compensated, and then the transmission signaling is parsed.
  • the receiving method of the provided preamble symbol there is further characterized in that, during the generation process of the frequency domain subcarrier, the generation based on the different sequence generation and/or the generation based on the same sequence are adopted.
  • the generated sequence is further cyclically shifted, the frequency domain signaling subcarrier and the channel estimation value and all possible frequency domain subject sequences are subjected to specific mathematical operations for signaling analysis, wherein the specific mathematical operation includes any one of the following Species: Maximum likelihood correlation operation combined with channel estimation; or channel equalization of channel estimation values to frequency domain signaling subcarriers, and then correlation operations with all possible frequency domain subject sequences, selecting the maximum correlation value as signaling analysis The decoding result.
  • the method further includes: performing phase modulation or inverse FFT on the pre-generated subcarrier with the frequency offset value in the process of generating the frequency domain subcarrier.
  • the leaf transform is cyclically shifted in the time domain.
  • the method further includes: wherein, in determining the location of the preamble symbol and parsing the signaling information carried by the preamble symbol, the method includes: The time domain main signal of the time domain symbol is subjected to Fourier transform to extract a valid subcarrier; each valid subcarrier and the known frequency domain signaling of the time domain symbol are concentrated in a known sub-sequence corresponding to each frequency domain known sequence.
  • the carrier and the channel estimate are subjected to a predetermined mathematical operation followed by an inverse Fourier transform, and an inverse Fourier result is obtained corresponding to each frequency domain known sequence; and each time domain symbol is based on a first predetermined selection rule from one or
  • the inverse Fourier selection result selected from the plurality of inverse Fourier results is subjected to a predetermined processing operation between the plurality of time domain symbols, and the signaling information is solved based on the obtained intersymbol processing result.
  • the inverse Fourier selection result is taken as an absolute value or an absolute value squared, and then the first predetermined selection rule Select the inverse Fourier selection result.
  • the first predetermined selection rule comprises selecting with a peak maximum and/or selecting with a peak-to-average ratio maximum.
  • the method further includes: a filtering process step, including: filtering the inverse Fourier result of each time domain symbol Processing, retain large values, all small values are set to zero.
  • the method further includes: the parsed signaling information includes: different frequency domain sequence transmission signaling and/or frequency domain modulation frequency offset real-time domain The signal is transmitted by the cyclic shift value.
  • the known frequency domain signaling set refers to a frequency domain subcarrier modulation phase of the main time domain signal corresponding to each time domain symbol. All possible sequences of the frequency domain sequence pre-filled to the subcarriers.
  • the first predetermined selection rule is The unique inverse Fourier result of each time domain symbol is directly taken as the inverse Fourier selection result, and then predetermined processing operations are performed between the plurality of time domain symbols, and the signaling information is solved based on the obtained intersymbol processing result.
  • the predetermined mathematical operation comprises: conjugate multiplication or division.
  • the receiving method of the provided preamble symbol there is further characterized in that a predetermined processing operation is performed between the plurality of time domain symbols, and the signaling information is solved based on the obtained inter-symbol processing result.
  • the step includes: cyclically shifting the latter time domain symbol, multiplying or conjugate multiplied with the previous time domain symbol, and accumulating to obtain an accumulated value, and finding corresponding to all predetermined frequency offset values or cyclic shift values The shift value having the largest accumulated value is derived from the shift value to derive signaling information.
  • the step includes: each The known frequency domain signaling set of the time domain symbol is extended to a known frequency domain signaling extension set; the time domain main signal of each time domain symbol is Fourier transformed to extract the effective subcarrier; each valid sub The carrier performs predetermined mathematical operations on the known subcarriers corresponding to each known sequence in the frequency domain signaling extension set and the channel estimation value to obtain an operation value, and then performs accumulation of the operation values on all valid subcarriers; and The predetermined selection rule selects an accumulated value from the plurality of accumulated values, and uses the frequency domain known sequence of the corresponding known frequency domain signaling extension set to derive the frequency domain modulation frequency offset value and the real domain cyclic shift transmission signal. And the corresponding frequency domain sequence in the known frequency domain signaling set before the original unexpanded is obtained, and the signaling information transmitted
  • the second predetermined selection rule comprises selecting to take an absolute value maximum value or a real part maximum value.
  • the known frequency domain signaling set refers to a frequency domain subcarrier modulation phase of the main time domain signal corresponding to each time domain symbol. All possible sequences of the frequency domain sequence pre-filled to the subcarriers.
  • the known frequency domain signaling extension set is obtained by: each of the known frequency domain signaling sets is The known frequency-frequency domain sequence modulates the sub-carrier phase according to all possible frequency offset values, and all possible S-modulation frequency offset values thereof will generate a known sequence after S modulation frequency offsets.
  • the known frequency domain signaling set has only one known sequence, that is, only depends on frequency domain modulation.
  • the frequency domain signaling extension set includes a total of S known frequency domain sequences, and the corresponding frequency domain signaling extension set corresponding to the modulation frequency offset s is utilized.
  • the frequency domain known sequence can be used to derive the modulation frequency offset value, and obtain the signaling information of the frequency domain modulation frequency offset real-time cyclic shift transmission.
  • the predetermined mathematical operation comprises: conjugate multiplication or division.
  • the method further includes: wherein, in determining the location of the preamble symbol and parsing the signaling information carried by the preamble symbol, The step includes: performing Fourier transform on the time domain main signal of each time domain symbol to extract valid subcarriers; and concentrating each of the effective subcarriers and the known frequency domain signaling of the time domain symbol in each frequency domain.
  • Knowing subcarriers corresponding to the sequence and channel estimation values are subjected to a predetermined mathematical operation and then inverse Fourier transform, corresponding to each frequency domain known sequence to obtain an inverse Fourier result; and each time domain symbol is based on the first Predetermining the selection result from the inverse Fourier selection result selected from one or more inverse Fourier results, and performing predetermined processing operations between the plurality of time domain symbols, and solving the result based on the obtained intersymbol processing result Signaling information.
  • the receiving method of the provided preamble symbol further having such a feature, further comprising: taking an absolute value or an absolute value squared for the inverse Fourier selection result, and then using the first predetermined The selected rule selects the inverse Fourier selection result.
  • the first predetermined selection rule comprises selecting with a peak maximum and/or selecting with a peak-to-average ratio maximum.
  • a noise filtering processing step comprising: filtering the inverse Fourier result of each time domain symbol Processing, retain large values, all small values are set to zero.
  • the method further includes: the parsed signaling information includes: different frequency domain sequence transmission signaling and/or frequency domain modulation frequency offset real-time domain The signal is transmitted by the cyclic shift value.
  • the known frequency domain signaling set refers to a frequency domain subcarrier modulation phase of the main time domain signal corresponding to each time domain symbol. All possible sequences of the frequency domain sequence pre-filled to the subcarriers.
  • the first predetermined selection rule is The unique inverse Fourier result of each time domain symbol is directly taken as the inverse Fourier selection result, and then predetermined processing operations are performed between the plurality of time domain symbols, and the signaling information is solved based on the obtained intersymbol processing result.
  • the predetermined mathematical operation comprises: conjugate multiplication or division.
  • the receiving method of the provided preamble symbol there is further characterized in that a predetermined processing operation is performed between the plurality of time domain symbols, and the signaling information is solved based on the obtained inter-symbol processing result.
  • the step includes: cyclically shifting the latter time domain symbol, multiplying or conjugate multiplied with the previous time domain symbol, and accumulating to obtain an accumulated value, and finding corresponding to all predetermined frequency offset values or cyclic shift values The shift value having the largest accumulated value is derived from the shift value to derive signaling information.
  • the embodiment of the present invention further provides a method for receiving a preamble symbol, which includes the following steps: processing a received signal; determining whether there is a preamble symbol that is expected to be received in the obtained processed signal; When the determination is yes, the location of the preamble symbol is determined and the signaling information carried by the preamble symbol is solved, where the received preamble symbol is processed by using a frequency domain symbol, and the step of generating the frequency domain symbol includes: The separately generated fixed sequence and signaling sequence are arranged in a predetermined arrangement rule and then filled onto the effective subcarriers.
  • the receiving method of the provided preamble symbol there is further characterized by: determining, by using at least one of the following, whether there is a preamble symbol that is expected to be received in the processed signal: an initial timing synchronization manner, Integer multiple frequency offset estimation method, precise timing synchronization method, channel estimation method, decoding result analysis method and fractional multiple frequency offset estimation method.
  • the receiving method of the provided preamble symbol further characterized by: determining whether there is a preamble symbol that is expected to be received in the obtained processed signal; and determining the preamble when the determination is yes Step of locating the symbol and solving the signaling information carried by the preamble symbol
  • the method includes any at least one of the following steps: initial timing synchronization, integer multiple frequency offset estimation, precise timing synchronization, channel estimation, decoding analysis, and fractional multiple frequency offset estimation.
  • the receiving method of the provided preamble symbol further characterized by: performing integer multiple frequency offset estimation or channel estimation by using a fixed sequence, comprising the following steps: according to the determined position of the leading symbol, Intercepting a signal including all or a part of the fixed subcarriers; and computing the signal including all or part of the fixed subcarriers with a frequency domain fixed subcarrier sequence or a time domain signal corresponding to the frequency domain fixed subcarrier sequence to obtain an integer multiple frequency Bias estimation or channel estimation.
  • the receiving method of the provided preamble symbol there is further characterized in that precise timing synchronization is performed by using a fixed subcarrier sequence included in at least one time domain symbol in the preamble symbol.
  • the method further includes: wherein, in determining the location of the preamble symbol and solving the signaling information carried by the preamble symbol, the method includes: utilizing All or part of the time domain waveform of the preamble symbol and/or the frequency domain signal obtained by Fourier transform of all or part of the time domain waveform of the preamble symbol to solve the signaling information carried by the preamble symbol.
  • the receiving method of the provided preamble symbol there is further characterized in that, when the time domain body signal or the corresponding frequency domain body signal in the current pilot symbol includes a known signal, the reception of the preamble symbol
  • the method further includes the step of performing any one of the following integer frequency offset estimation: intercepting a time domain signal including at least all or part of the time domain body signal according to the result of the initial timing synchronization, and using the frequency sweeping method to intercept the segment
  • the time domain signal is modulated with different frequency offsets, a plurality of N frequency-swept time domain signals corresponding to the frequency offset values are obtained, and the known time domain signals obtained by inversely transforming the known frequency domain sequences and each frequency sweep are obtained.
  • the maximum correlation peak of the N cross-correlation results is compared, and the frequency offset value of the frequency-domain time domain signal corresponding to the largest cross-correlation result is an integer multiple frequency offset estimation value; Or performing a Fourier transform on the time domain signal that intercepts the length of the main body time domain signal according to the result of the initial timing synchronization, and the obtained frequency domain subcarrier is not in the frequency sweep range.
  • Shift value Performing a cyclic shift, intercepting a receiving sequence corresponding to the effective subcarrier, performing a predetermined operation on the received sequence and the known frequency domain sequence, and performing an inverse Fourier transform, and the plurality of groups corresponding to the one-to-one correspondence of the plurality of sets of shift values
  • the transformation result is selected to obtain an optimal shift value
  • the integer octave bias estimation value is obtained by using the correspondence between the bit value and the integer octave bias estimation value.
  • the method further includes the step of: decoding the signaling information carried by the preamble symbol, including: by including all or part of the signaling sequence subcarriers
  • the signal is calculated by the time domain signal corresponding to the signaling sequence subcarrier set or the signaling sequence subcarrier set to solve the signaling information carried by the signaling sequence subcarrier in the preamble symbol.
  • an embodiment of the present invention further provides a method for receiving a preamble symbol, including the steps of: processing a received signal; determining whether there is a preamble symbol that is expected to be received in the obtained processed signal; When the determination is yes, the location of the preamble symbol is determined and the signaling information carried by the preamble symbol is solved, where the received preamble symbol is obtained by performing inverse Fourier transform on the frequency domain subcarrier, and the frequency domain subcarrier is obtained.
  • Generating a frequency domain subcarrier based on the frequency domain main sequence comprising: generating a predetermined sequence generation rule for generating a frequency domain main sequence; and/or processing the frequency domain main sequence for generating a frequency domain subcarrier a predetermined processing rule, the predetermined sequence generation rule comprising any one or two combinations of the following: generating based on different sequence generation; and/or generating the sequence based on the same sequence generation, further cyclically shifting the generated sequence, predetermined processing rule
  • the method comprises: phase-modulating a pre-generated subcarrier processed according to a frequency domain main sequence according to a frequency offset value
  • the receiving method of the provided preamble symbol further characterized by: determining whether there is a preamble symbol that is expected to be received in the obtained processed signal, and determining that the preamble is determined to be YES
  • the step of solving the position of the symbol and solving the signaling information carried by the preamble symbol includes at least one of the following steps: initial timing synchronization, integer multiple frequency offset estimation, precise timing synchronization, channel estimation, decoding analysis, and fractional multiple Frequency offset estimation.
  • the receiving method of the provided preamble symbol there is further characterized by: determining, by using at least one of the following, whether there is a preamble symbol that is expected to be received in the processed signal: an initial timing synchronization manner, Integer multiple frequency offset estimation method, precise timing synchronization method, channel estimation method, and decoding result analysis method. Perform fractional octave bias estimation.
  • the receiving method of the provided preamble symbol there is further characterized in that, when the first one of the at least one time domain symbol in the current pilot symbol contains the known information, the known signal is used to perform the precision. Timing synchronization.
  • the method further includes: the step of channel estimation, including: performing in the time domain arbitrarily and/or in the frequency domain: when the previous time domain body After the signal decoding is completed, the obtained decoded information is used as the transmission information, and the channel estimation is performed again in the time domain/frequency domain, and a specific operation is performed with the previous channel estimation result to obtain a new channel estimation result, which is used for Channel estimation for signaling resolution of the next time domain body signal.
  • the receiving method of the provided preamble symbol there is further characterized in that, when the time domain body signal or the corresponding frequency domain body signal in the current pilot symbol includes a known signal, the reception of the preamble symbol
  • the method further includes performing an integer multiple frequency offset estimation in any of the following manners: after sweeping all or part of the time domain signals intercepted by different frequency offsets, a plurality of frequency sweep time domain signals are obtained, which are known frequencies.
  • the frequency offset value modulated by the swept time domain signal of the maximum correlation peak is an integer multiple frequency offset estimation value;
  • the frequency domain subcarrier obtained by performing the Fourier transform on the main time domain signal according to the position result of the initial timing synchronization is cyclically shifted according to different shift values in the frequency sweeping range, and the receiving sequence corresponding to the effective subcarrier is intercepted.
  • the method further includes: after completing the integer frequency offset estimation, the frequency offset is compensated, and then the transmission signaling is parsed.
  • the receiving method of the provided preamble symbol there is further characterized in that, during the generation process of the frequency domain subcarrier, the generation based on the different sequence generation and/or the generation based on the same sequence are adopted.
  • the generated sequence is further cyclically shifted, the frequency domain signaling subcarrier and the channel estimation value and all possible frequency domain subject sequences are subjected to specific mathematical operations for signaling analysis, wherein the specific mathematical operation includes any one of the following Species: Maximum likelihood correlation operation combined with channel estimation; or channel equalization of channel estimation values to frequency domain signaling subcarriers, and then correlation operations with all possible frequency domain subject sequences, selecting the maximum correlation value as signaling analysis The decoding result.
  • the method further includes: wherein, in determining the location of the preamble symbol and solving the signaling information carried by the preamble symbol, the method includes: utilizing All or part of the time domain waveform of the preamble symbol and/or the frequency domain signal obtained by Fourier transform of all or part of the time domain waveform of the preamble symbol to solve the signaling information carried by the preamble symbol.
  • the method further includes: performing phase modulation or inverse FFT on the pre-generated subcarrier with the frequency offset value in the process of generating the frequency domain subcarrier.
  • the leaf transform is cyclically shifted in the time domain.
  • the method further includes: wherein, in determining the location of the preamble symbol and parsing the signaling information carried by the preamble symbol, the method includes: The time domain main signal of the time domain symbol is subjected to Fourier transform to extract a valid subcarrier; each valid subcarrier and the known frequency domain signaling of the time domain symbol are concentrated in a known sub-sequence corresponding to each frequency domain known sequence.
  • the carrier and the channel estimate are subjected to a predetermined mathematical operation followed by an inverse Fourier transform, and an inverse Fourier result is obtained corresponding to each frequency domain known sequence; and each time domain symbol is based on a first predetermined selection rule from one or
  • the inverse Fourier selection result selected from the plurality of inverse Fourier results is subjected to a predetermined processing operation between the plurality of time domain symbols, and the signaling information is solved based on the obtained intersymbol processing result.
  • the receiving method of the provided preamble symbol further having such a feature, further comprising: taking an absolute value or an absolute value squared for the inverse Fourier selection result, and then selecting by the first predetermined The rule selects the result of the inverse Fourier selection.
  • the first predetermined selection rule comprises selecting with a peak maximum and/or selecting with a peak-to-average ratio maximum.
  • a noise filtering processing step comprising: performing a filtering process on the inverse Fourier result of each time domain symbol, The large value is retained and the small value is all set to zero.
  • the method further includes: the parsed signaling information includes: different frequency domain sequence transmission signaling and/or frequency domain modulation frequency offset real-time domain The signal is transmitted by the cyclic shift value.
  • the known frequency domain signaling set refers to a frequency domain subcarrier modulation phase of the main time domain signal corresponding to each time domain symbol. All possible sequences of the frequency domain sequence pre-filled to the subcarriers.
  • the first predetermined selection rule is The unique inverse Fourier result of each time domain symbol is directly taken as the inverse Fourier selection result, and then predetermined processing operations are performed between the plurality of time domain symbols, and the signaling information is solved based on the obtained intersymbol processing result.
  • the predetermined mathematical operation comprises: conjugate multiplication or division.
  • the receiving method of the provided preamble symbol there is further characterized in that a predetermined processing operation is performed between the plurality of time domain symbols, based on the obtained inter-symbol processing result solution
  • the step of signaling information includes: cyclically shifting the latter time domain symbol, multiplying or conjugate multiplied with the previous time domain symbol, and accumulating to obtain an accumulated value, and finding corresponding to all predetermined frequency offset values Or a shift value having the largest accumulated value among the cyclic shift values, and the signaling information is derived from the shift value.
  • the method further includes: wherein, in determining the location of the preamble symbol and parsing the signaling information carried by the preamble symbol, the step includes: The known frequency domain signaling set of each time domain symbol is extended to a known frequency domain signaling extension set; the time domain body signal of each time domain symbol is Fourier transformed to extract effective subcarriers; The effective subcarriers perform predetermined mathematical operations on the known subcarriers corresponding to the known sequence of each frequency domain in the known frequency domain signaling extension set, and the channel estimation values to obtain an operation value, and then perform the accumulation of the operation values on all the effective subcarriers; The second predetermined selection rule selects an accumulated value from the plurality of accumulated values, and uses the frequency domain known sequence of the corresponding known frequency domain signaling extension set to derive the frequency domain modulation frequency offset value instantaneous domain cyclic shift
  • the signaling is transmitted, and the known frequency domain sequence in the known frequency domain signaling set before the original unexpanded
  • the second predetermined selection rule comprises selecting to take an absolute value maximum value or a real part maximum value.
  • the known frequency domain signaling set refers to a frequency domain subcarrier modulation phase of the main time domain signal corresponding to each time domain symbol. All possible sequences of the frequency domain sequence pre-filled to the subcarriers.
  • the known frequency domain signaling extension set is obtained by: each of the known frequency domain signaling sets is The known frequency-frequency domain sequence modulates the sub-carrier phase according to all possible frequency offset values, and all possible S-modulation frequency offset values thereof will generate a known sequence after S modulation frequency offsets.
  • the known frequency domain signaling set has only one known sequence, that is, only depends on the frequency domain.
  • the frequency domain signaling extension set includes a total of S known frequency domain sequences, and the corresponding frequency domain signaling extension corresponding to the modulation frequency offset s is utilized.
  • the set frequency domain known sequence can be used to derive the modulation frequency offset value, and obtain the signaling information of the frequency domain modulation frequency offset real-time cyclic shift transmission.
  • the predetermined mathematical operation comprises: conjugate multiplication or division.
  • the method further includes: wherein, in determining the location of the preamble symbol and parsing the signaling information carried by the preamble symbol, the step includes: The time domain main signal of each time domain symbol is subjected to Fourier transform to extract a valid subcarrier; each valid subcarrier and the known frequency domain signaling of the time domain symbol are respectively corresponding to a known sequence of each frequency domain.
  • an inverse Fourier transform corresponding to each frequency domain known sequence to obtain an inverse Fourier result; and each time domain symbol is based on the first predetermined selection rule
  • the inverse Fourier selection result selected from the one or more inverse Fourier results, and then performing predetermined processing operations between the plurality of time domain symbols, and decoding the signaling information based on the obtained intersymbol processing result.
  • the method further includes: the predetermined transmission rule includes: processing, by using the frequency domain main sequence corresponding to the time domain main signal in each time domain symbol sent After the pre-generated subcarriers are generated, each effective subcarrier is subjected to phase modulation or inverse Fourier transform with a predetermined frequency offset value S in the frequency domain, and then cyclically shifted in the time domain.
  • the predetermined transmission rule includes: processing, by using the frequency domain main sequence corresponding to the time domain main signal in each time domain symbol sent After the pre-generated subcarriers are generated, each effective subcarrier is subjected to phase modulation or inverse Fourier transform with a predetermined frequency offset value S in the frequency domain, and then cyclically shifted in the time domain.
  • the receiving method of the provided preamble symbol further having such a feature, further comprising: taking an absolute value or an absolute value squared for the inverse Fourier selection result, and then selecting by the first predetermined The rule selects the result of the inverse Fourier selection.
  • the first predetermined selection rule comprises selecting with a peak maximum and/or selecting with a peak-to-average ratio maximum.
  • a noise filtering processing step comprising: performing a filtering process on the inverse Fourier result of each time domain symbol, The large value is retained and the small value is all set to zero.
  • the method further includes: the parsed signaling information includes: different frequency domain sequence transmission signaling and/or frequency domain modulation frequency offset real-time domain The signal is transmitted by the cyclic shift value.
  • the known frequency domain signaling set refers to a frequency domain subcarrier modulation phase of the main time domain signal corresponding to each time domain symbol. All possible sequences of the frequency domain sequence pre-filled to the subcarriers.
  • the first predetermined selection rule is The unique inverse Fourier result of each time domain symbol is directly taken as the inverse Fourier selection result, and then predetermined processing operations are performed between the plurality of time domain symbols, and the signaling information is solved based on the obtained intersymbol processing result.
  • the predetermined mathematical operation comprises: conjugate multiplication or division.
  • the receiving method of the provided preamble symbol there is further characterized in that a predetermined processing operation is performed between the plurality of time domain symbols, and the signaling information is solved based on the obtained inter-symbol processing result.
  • the step includes: cyclically shifting the latter time domain symbol, multiplying or conjugate multiplied with the previous time domain symbol, and accumulating to obtain an accumulated value, and finding corresponding to all predetermined frequency offset values or cyclic shift values The shift value having the largest accumulated value is derived from the shift value to derive signaling information.
  • an embodiment of the present invention further provides a receiving apparatus for a preamble symbol, including: a receiving processing unit that processes a received signal; and a determining unit that determines the obtained processed signal Whether there is a preamble symbol that is expected to be received in the signal; and a positioning parsing unit, when the determination is yes, determining the location of the preamble symbol and solving the signaling information carried by the preamble symbol, wherein the preamble symbol received by the receiving processing unit Included in the at least one time domain symbol generated by the transmitting end according to a predetermined generation rule in any number of the first three-segment structure and/or the second three-segment structure, the first three-segment structure includes: a time domain body signal, based on the a prefix generated by all or part of the time domain body signal, and a suffix generated based on all or part of the partial time domain body signal, the second three-segment structure comprising: a time domain body signal, based on all or part
  • an embodiment of the present invention further provides a receiving apparatus for a preamble symbol, including: a receiving processing unit that processes a received signal; and a determining unit that determines whether there is an expected receiving in the obtained processed signal. a preamble symbol; and a positioning parsing unit, determining the location of the preamble symbol and determining the signaling information carried by the preamble symbol when the determination is yes, wherein the preamble symbol received by the receiving processing unit is processed by using the frequency domain symbol
  • the step of generating the frequency domain symbol includes: respectively, the fixed sequence and the signaling sequence generated separately are arranged in a predetermined arrangement rule and then filled onto the effective subcarrier.
  • an embodiment of the present invention further provides a receiving device for a preamble symbol, including: a receiving unit that processes a received signal; and a determining unit that determines whether the obtained processed signal has an expected receiving. a preamble symbol; and a positioning parsing unit, determining the location of the preamble symbol and determining signaling information carried by the preamble symbol when the determination is yes, wherein the preamble symbol received by the receiving unit is based on reversing the frequency domain subcarrier Obtaining by Fourier transform, the frequency domain subcarrier is generated based on a frequency domain main sequence, and in the step of generating a frequency domain subcarrier, includes: a predetermined sequence generation rule for generating a frequency domain main sequence; and/or a frequency domain main body The sequence is processed for generating a predetermined frequency domain subcarrier Processing rules, the predetermined sequence generation rules include any one or two combinations of the following: generating based on different sequence generations; and/or generating the generated sequences based on the same sequence generation
  • the preamble symbols can be, but are not limited to, time domain symbols containing one or two three-segment structures.
  • the domain main body signal is an OFDM symbol
  • coherent detection can be implemented, and the non-coherent detection performance is solved. Falling and the problem of DBPSK differential decoding failure under complex frequency selective fading channels, and generating a modulated signal based on all or part of the time domain body signal of the cyclic prefix length intercepted above, so that the generated leading symbols have good decimals Multiplier bias estimation performance and timing synchronization performance.
  • the time domain symbol having the three-segment structure may be selected as the preamble symbol according to the requirements of transmission efficiency and robustness; when the current pilot symbol includes at least one symbol of the three-segment structure, based on the same OFDM symbol body, Signaling is transmitted by utilizing different starting points of the second portion selected from the first portion, such as emergency broadcasts, hook information, transmitter flag information, or other transmission parameters.
  • the emergency broadcast is identified by designing two different three-segment structures; when the symbols of the two three-segment structures are transmitted as the preamble symbols, the two OFDM symbol bodies are different, and the three-segment structure adopted is also different. On the basis of this, the emergency broadcast is identified by the ordering of the two three-segment structures. Through the three-segment structure with two different symbols, the problem of small partial estimation failure occurring under certain special-length multipath channels can be avoided.
  • the use of three segments of partially identical content ensures that significant peaks can be obtained at the receiving end using delayed sliding autocorrelation.
  • the modulation signal of the time domain body information is designed to avoid continuous wave interference or single frequency interference at the receiving end, or a multipath channel having a length equal to the length of the modulated signal, or a guard interval in the received signal. A false detection peak occurs when the length and the modulation signal length are the same.
  • FIG. 1 is a schematic diagram of time domain symbols of a first three-segment structure in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a time domain symbol of a second three-segment structure in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an acquisition process of a time domain symbol based on a first three-segment structure in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an acquisition process of a time domain symbol based on a second three-segment structure in an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a first three-segment structure and a second three-segment structure spliced by the first splicing method in the embodiment of the present invention
  • FIG. 6 is a schematic structural view of a first three-segment structure and a second three-segment structure spliced by a second splicing method according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of an acquisition process based on a first splicing method in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an acquisition process based on a second splicing method in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing an arrangement of a frequency domain structure according to a first predetermined staggered arrangement rule in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing an arrangement of a frequency domain structure according to a second predetermined staggered arrangement rule in an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of relative overall shifting with a first shift value according to a third predetermined association rule in an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of relative overall shifting with a second shift value according to a third predetermined association rule in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the arrangement of a frequency domain structure 2 corresponding to a time domain symbol in the embodiment of the present invention.
  • FIG. 14 is a logic diagram of a correlation result to be detected corresponding to a three-segment structure CAB in a method for receiving a preamble symbol in an embodiment of the present invention.
  • FIG. 15 is a logic diagram of a correlation result to be detected corresponding to a three-segment structure BCA in a method for receiving a preamble symbol in an embodiment of the present invention.
  • 16 is a logic operation block diagram of obtaining a preliminary timing synchronization to be detected when the C-A-B-B-C-A splicing method is performed in the embodiment of the present invention
  • 17 is a logic operation block diagram of obtaining a preliminary timing synchronization to be detected when the B-C-A-C-A-B splicing method is performed in the embodiment of the present invention
  • 18 is a logic operation block diagram of obtaining preliminary timing synchronization results by using four sets of accumulated correlation values of four time domain symbols in an embodiment of the present invention
  • 19 is a logic operation block diagram of obtaining preliminary timing synchronization results by using two sets of accumulated correlation values of two time domain symbols in an embodiment of the present invention
  • 20 is a waveform diagram of an inverse Fourier result of a time domain body signal in AWGN in an embodiment of the present invention
  • Figure 21 is a waveform diagram showing the inverse Fourier result of a time domain body signal in the embodiment under the channel of 0 dB two paths;
  • Figure 22 (a) is a waveform diagram of the inverse Fourier result of the time domain main signal in the previous time domain symbol before the noise filtering process in the channel of 0 dB two paths;
  • 22(b) is a waveform diagram of the inverse Fourier result of the time domain main signal in the time domain symbol before the noise filtering process in the embodiment, in the 0 dB two-path channel;
  • Figure 23 (a) is a waveform diagram of the inverse Fourier result of the time domain main signal in the previous time domain symbol after the noise filtering process in the embodiment of the 0 dB two-path channel;
  • 23(b) is a waveform diagram of the inverse Fourier result of the time domain main signal in the time domain symbol after the noise filtering process in the embodiment, in the 0 dB two-path channel;
  • Figure 24 is a waveform diagram of the inverse Fourier result of a time domain body signal in Example 2 of the analytical signaling of the present invention at AWGN.
  • a method for generating a preamble symbol includes the following steps:
  • a preamble symbol is generated based on at least one time domain symbol.
  • 1 is a schematic diagram of time domain symbols of a first three-segment structure in an embodiment of the present invention.
  • 2 is a schematic diagram of time domain symbols of a second three-segment structure in an embodiment of the present invention.
  • the time domain structure of the time domain symbols included in the above preamble symbols will be described below with reference to FIGS. 1 and 2.
  • the time domain structure comprises a three-segment structure, which has two cases, a first three-segment structure and a second three-segment structure.
  • the first three-segment structure is: a time domain body signal (part A), a prefix (part C) generated based on a partial time domain body signal intercepted from a time domain body signal, based on the portion A modulated signal (Part B) generated by part or all of the domain body signal.
  • the second three-segment structure is: a time domain body signal (part A), a prefix (part C) generated based on a partial time domain body signal intercepted from the time domain body signal, according to the portion The super prefix generated by the domain body signal (Part B).
  • a time domain main signal (indicated by A in the figure) is taken as the first part, and the first The last part of the part is taken out according to a predetermined acquisition rule, processed according to the first predetermined processing rule and copied to the front part of the first part to generate a third part (indicated by C in the figure) as a prefix, and simultaneously from the first part
  • the latter part is taken out according to the predetermined acquisition rule, processed according to the second predetermined processing rule and copied to the back of the first part or processed and copied to the front of the prefix to generate a second part (marked by B in the figure) to respectively correspond
  • a suffix or super prefix respectively, a first three-segment structure (CAB structure) in which B is suffixed as shown in FIG. 1 and a second three-segment structure (BCA) as shown in FIG. structure).
  • the first predetermined processing rule includes: direct copying; or multiplying each sampling signal in the extracted part by an identical fixed coefficient or Different coefficients are predetermined.
  • the second predetermined processing rule includes: performing modulation processing when the first predetermined processing rule is a direct copy; or when the first predetermined processing rule is multiplying each of the sampled signals in the extracted portion by an identical fixed coefficient or a predetermined different coefficient The modulation process is performed after multiplying by the corresponding coefficient.
  • the third part when the third part is a direct copy as a prefix, the second part is modulated and then used as a suffix or super prefix, and when the third part is multiplied by the corresponding coefficient, the second part also needs to be multiplied by the coefficient and Modulation processing is performed as a suffix or super prefix.
  • FIG. 3 is a schematic diagram of an acquisition process of a time domain symbol based on a first three-segment structure in an embodiment of the present invention.
  • the C segment is a direct copy of the A segment
  • the B segment is the modulated signal segment of the A segment.
  • the length of A is 1024
  • the length of intercept C is 520
  • the length of B is 504.
  • each sample of the signal can be multiplied by a fixed coefficient, or each sample is multiplied by a different coefficient.
  • the data range of B does not exceed the data range of C, that is, the range of the portion A selected for the modulated signal segment B does not exceed the range of the portion A intercepted as the prefix C.
  • the sum of the length of B and the length of C is the length of A.
  • N A be the length of A
  • Len C be the length of C
  • Len B be the length of the modulated signal segment B.
  • A's sampling point number be 0,1,...N A -1.
  • N1 be the first sampling point number of the first part A corresponding to the starting point of the second part B of the modulation signal segment
  • N2 is the selective copying modulation.
  • the second sample point number of the first portion A corresponding to the end point of the second portion B of the signal segment.
  • the first sample point sequence number and the second sample point sequence number satisfy the following predetermined constraint relationship:
  • the modulation performed on the second part B segment is a modulation frequency offset, that is, multiplied by a frequency shift sequence, a modulated M sequence or other sequences, etc.
  • the modulation frequency offset is taken as an example, and P1_A(t) is A.
  • the time domain expression, then the time domain expression of the first CAB three-segment structure is
  • the frequency shift sequence can be arbitrarily selected as the initial phase. In order to make the correlation peak sharp, f SH can also be selected as 1/(Len B T).
  • the autocorrelation delay of the CA segment containing the same content is N A
  • the autocorrelation delay of the CB segment containing the same content is N A +Len B
  • the autocorrelation delay of the AB segment containing the same content is Len B .
  • the length of the C segment is exactly the same as the B segment, that is, the B segment can be regarded as a complete adjustment frequency offset segment of the C segment.
  • a cyclic prefix C is spliced at the front of the time domain OFDM symbol A as a guard interval
  • the modulated signal segment B is spliced at the rear of the OFDM symbol as a modulation frequency offset sequence to generate a first type
  • FIG. 4 is a schematic diagram of a time domain symbol acquisition process based on a second three-segment structure in an embodiment of the present invention.
  • the time domain expression of the second three-segment structure time domain symbol is, note that in order to make the receiving end processing method as consistent as possible, in the BCA structure, the modulation frequency offset value is exactly opposite to the CAB structure, and modulation The frequency offset sequence can be arbitrarily selected as the initial phase.
  • the autocorrelation delay of the CA segment containing the same content is N A
  • the autocorrelation delay of the BC segment containing the same content is Len B
  • the autocorrelation delay of the BA segment containing the same content is N A +Len B .
  • the current pilot symbol includes a symbol of a three-segment structure, whether it includes the first three-segment structure or the second three-segment structure, based on the same OFDM symbol body, the following method may also be adopted.
  • the domain structure transmits signaling.
  • the predetermined length is 1024
  • Len C is 512
  • Len B is 256.
  • N1 can take 512+i*16 0 ⁇ i ⁇ 16, which can represent 16 different methods and transmit 4bit signaling parameters.
  • Different transmitters can transmit the corresponding identifier of the transmitter by taking different N1, the same transmitter can also transmit the transmission parameter by changing N1 in a time-sharing manner.
  • the emergency broadcast identity EAS_flag is transmitted using 1-bit signaling.
  • N1 512-L, that is, the corresponding number of the OFDM symbol with N A is 1024 is 512-L ⁇ 1023-2L, and the frequency offset sequence is modulated to generate B, which is placed at the back of A. .
  • N1 512+L, that is, the corresponding number of the OFDM symbol with N A is 1024 is 512+L ⁇ 1023 and modulate the frequency offset sequence to generate B, and put it to the back of A.
  • N A 1024
  • Len C is 520
  • Len B is 504
  • a different three-segment structure may be used to identify the emergency broadcast.
  • the preamble symbol can contain two threes in addition to a three-segment time domain symbol.
  • the splicing of the time domain symbols of the segment structure When the three-segment structure of the two time-domain symbols is the same, the two three-segment symbols are directly spliced; for two different three-segment structures, there are two splicing methods in different order.
  • the splicing of two different three-segment structures has the following advantages: when a multi-path so-called dangerous multipath with a special delay is generated, the rear portion of the front A segment may be exactly offset by the C segment whose rear diameter is exactly the same as A. The timing synchronization performance is degraded, and even more serious is that the small bias estimation cannot work. At this time, two different three-segment structures are used for splicing, and even when dangerous multipath occurs, the small deviation can be estimated normally.
  • the preamble symbol includes a plurality of free time combinations of time domain symbols having the first three-segment structure and/or a plurality of time domain symbols having the second three-segment structure.
  • two three-segment structures are taken as an example, and the two three-segment structures adopt a first three-segment structure and a second three-segment structure, respectively.
  • Fig. 5 is a schematic view showing the first two-stage three-segment structure splicing method in the embodiment.
  • Fig. 6 is a schematic view showing a second two-stage structure splicing method in the embodiment.
  • the two time domain main signals are different, and the three-segment structure adopted is also different, and is formed by different sequential ordering of two time domain symbols.
  • the first splicing method in FIG. 5 and the second splicing method in FIG. 5 are different, and the three-segment structure adopted is also different, and is formed by different sequential ordering of two time domain symbols.
  • the time domain body signals (ie, A) of the two time domain symbols in FIG. 5 and FIG. 6 may be different, so that the capacity of the transmission signaling after the two symbols are spliced is a single three-segment structure time domain symbol. Twice or nearly twice.
  • the time domain body signals of at least one time domain symbol included in the preamble symbol may be different or the same.
  • the detection of the time domain symbols of a single three-segment structure utilizes the delay autocorrelation of the CB segment, the CA segment and the BA segment to obtain the peak value, in the case of using two three-segment structure time domain symbol splicing, in order to make the two three-segment structure time domain symbols
  • the autocorrelation values can be added to obtain more robust performance, and the parameter N1 of each of the two three-segment structure time domain symbols (ie, N1 is the sampling point number of A corresponding to the start of the modulation signal segment B) needs to be satisfied.
  • N1 of the first symbol be N1_1
  • N1 of the second symbol be N1_2
  • it is necessary to satisfy N1_1+N1_2 2N A -(Len B +Len c ).
  • the modulation used for the B segment is the modulation frequency offset, the frequency offset value is exactly the opposite.
  • the time domain expressions of the spliced time domain symbols including the first three-segment structure and the second three-segment structure of the first connection according to the first splicing method are:
  • the spliced time domain expressions of the second three-segment structure including the sequentially connected and the time domain symbols of the first three-segment structure according to the second splicing method are:
  • N A 1024
  • FIG. 7 is a schematic diagram of an acquisition process based on a first splicing method in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of acquisition processing based on a second splicing method in an embodiment of the present invention.
  • the two three-segment structures shown in FIG. 7 and FIG. 8 respectively adopt the first three-segment structure (CAB) and the second three-segment.
  • the structure (BCA) can also be transmitted from the first part (Part A) by selecting different starting points of the second part (Part B, as a suffix or a super prefix) according to the time domain symbols of each three-segment structure. Signaling.
  • the selection starting point N1_1 of the first three-segment structure time domain symbol and the selection starting point N1_2 of the second three-segment structure time domain symbol satisfy a certain constraint relationship.
  • N1_1+N1_2 2N A -(Len B +Len c ) (Equation 13)
  • the emergency broadcast identity EAS_flag is transmitted using 1-bit signaling. Combine the following Table 1 with specific expressions.
  • Table 1 Corresponding table of the selection starting point of the emergency broadcast identifier and the suffix or super prefix under the predetermined time domain body signal length
  • the emergency broadcast can also be identified by different ordering of the two time-domain symbols.
  • two symbols can be spliced.
  • the system When based on the first splicing method, the system is transmitting a general broadcast service; when based on the second splicing method. , indicating that the system is sending emergency broadcast services. It can also be based on the first splicing method, indicating that the system is transmitting an emergency broadcast service, and based on the second splicing method, indicating that the system is generally transmitting Broadcast service.
  • the preamble symbol or bootstrap may include only CAB or BCA, or may be several CABs or several BCAs, or may be any free combination of a number of CABs and an unlimited number of BCAs. It should be particularly noted that the preamble symbol or bootstrap of the present invention is not limited to a structure including only C-A-B or B-C-A, and may also include other time domain structures, such as a conventional CP structure.
  • the current pilot symbol contains at least two three-segment time domain symbols, it usually includes at least one set of C-A-B structures and a cascade of B-C-A structures.
  • the number of at least one time domain symbol included in the preamble symbol is set to transmit four symbols, and several more preferred four time domain symbol structures are given below, which are sequentially arranged in any one of the following structures. :
  • the structure of four time-domain symbols such as C-A-B, B-C-A, C-A-B, and B-C-A maximizes the effect of cascading.
  • the structure of four time-domain symbols such as C-A-B, B-C-A, B-C-A, and B-C-A, which lengthens the guard interval of the subsequent symbol A portion, and usually the first symbol is a known signal, so C-A-B is used.
  • time domain symbols It is not limited to four time domain symbols.
  • the first time domain symbol is a C-A-B three-segment structure, and the latter three-segment structure is all a specific embodiment of the sequentially connected B-C-A. It is assumed that the total number of the first or second three-segment structures included in the preamble or bootstrap is M time-domain symbols.
  • the present invention also provides a method for generating frequency domain symbols, which are respectively used by a frequency domain OFDM symbol having a frequency domain structure 1 described below and a frequency domain OFDM symbol having a frequency domain structure 2 described below.
  • the generation method is explained.
  • the time domain main signal (Part A) is inversely Fourier transformed by the frequency domain OFDM symbol. Obtained by forming a time domain OFDM symbol.
  • the method for generating the frequency domain symbols provided by the present invention is not limited to use only in the symbols in which the time domain is the three-segment structure shown in FIG. 1 to FIG. 8 described above, and may be applied to Symbols of other arbitrary time domain structures.
  • P1_X be the corresponding frequency domain OFDM symbol
  • P1_X i be the inverse discrete Fourier transform to obtain the time domain OFDM symbol
  • M is the power sum of valid non-zero subcarriers.
  • the frequency domain structure of the first type of P1_X is described, which is defined as the frequency domain structure one.
  • the method for generating the frequency domain symbols includes the following steps:
  • the fixed sequence and the signaling sequence are arranged and padded to a valid subcarrier for forming a frequency domain symbol.
  • the P1_X frequency domain structure that is, the frequency domain OFDM symbols respectively include a virtual subcarrier, a signaling sequence (referred to as SC) subcarrier, and a fixed sequence (referred to as FC) subcarrier.
  • SC signaling sequence
  • FC fixed sequence
  • the predetermined staggered rule includes any of the following two rules:
  • a first predetermined interleaving rule arranged in a parity interleave or an even odd interleave;
  • the second predetermined interleaving rule placing a part of the signaling sequence on the odd subcarriers, another part of the signaling sequence on the even subcarriers, and placing a part of the fixed sequence on the odd subcarriers, and another part of the fixed sequence on the even subcarriers.
  • the first predetermined interleaving rule is SC and FC parity interleaving or even odd interleaving emissions, such that FC is used as pilot rule emissions;
  • the second predetermined interleaving rule requires partial SC sequences to be placed on odd subcarriers, and remaining SC sequences in even numbers. Subcarriers; at the same time, some FC sequences need to be placed on odd subcarriers, and the remaining FC sequences are placed on even subcarriers, so that FC or SC are all placed on odd or even subcarriers, and all will fall under certain special multipaths. And such emissions will increase the negligible complexity of channel estimation and are therefore a better choice.
  • FIG. 9 is a schematic diagram showing the arrangement of signaling sequence subcarriers, fixed sequence subcarriers, and virtual subcarriers according to a first predetermined interleaving rule in an embodiment of the present invention.
  • the step includes: filling a certain zero sequence subcarriers on both sides of the effective subcarriers to form a frequency domain OFDM symbol of a predetermined length.
  • the length N A of the time domain body signal A in the time domain structure described above is 1024, and the length formed by the Fourier transform FFT in the frequency domain is N FFT of 1024.
  • the N FFT has a predetermined length of 1024
  • the two sides are padded with (1024-LP)/2 zero sequence subcarriers.
  • the (11) fixed sequence generating step the fixed sequence is composed of 353 complex numbers whose modulus is constant, and the nth value of the fixed sequence subcarrier is expressed as:
  • R is the power ratio of FC and SC
  • SC i mode is constant to 1
  • the radians value ⁇ n of the fixed sequence subcarriers is determined by the first predetermined fixed subcarrier radians value table in Table 2 below;
  • the (12) signaling sequence generating step includes two types, that is, the following first signaling sequence generating manner and the second signaling sequence generating manner.
  • the signaling sequence generated in the frequency domain may adopt any one of the following two manners. The specific manner of generating the signaling sequence is described in detail below.
  • the first signaling sequence is generated:
  • the root value is chosen to be the length of the signaling sequence.
  • the sequence length L For example, determine the sequence length L and the number of signaling. For example, to transmit N bits, the signaling number num is 2N and the root value of exp(j ⁇ qn(n+1)/root) in the CAZAC sequence generation formula is selected. among them, The sequence length L is less than or equal to the root value, and the root value is greater than or equal to 2*num. Usually the root value is a prime number.
  • k is the number of bits of the cyclic shift.
  • the selected q i (0 ⁇ i ⁇ num-1) must satisfy the following conditions: any two q i , q j (0 ⁇ i , j ⁇ num-1) Meet q i +q j ⁇ root.
  • each of the num sequences is truncated as a contiguous partial sequence or a full sequence of length L as a signaling sequence.
  • the value of q ranges from 1 to 352, and the number of cyclic shift bits per sequence ranges from 1 to 353.
  • the following 128 groups are preferred, the q value and the cyclic shift bits are as shown in the q value value table of Table 3 and the cyclic shift bit table of Table 4, respectively:
  • the second signaling sequence is generated in the following way:
  • the root value is chosen to be the length of the signaling sequence.
  • the sequence length L determines the sequence length L and the number of signaling. For example, to transmit N bits, the number of signaling num is 2N, and select some K root k (0 ⁇ k ⁇ K-1) of exp(j ⁇ qn(n+1)/root) in the CAZAC sequence generation formula. .
  • the signaling sequence length L is less than or equal to the minimum value of all root k , and the sum of several root k is greater than or equal to 2*num, that is, Usually root k is a prime number.
  • the selected q i (0 ⁇ i ⁇ num k -1) must satisfy the following conditions: any two q i , q j (0 ⁇ i , j ⁇ num k - 1) Satisfy q i +q j ⁇ root k .
  • cyclically truncating a sequence of consecutive parts of length L for each of the num sequences or All sequences are used as signaling sequences.
  • each sequence is cyclically intercepted by length 353.
  • the step generated by the (12)th signaling sequence generates a total of 512 signaling sequences, that is, Seq 0 , Seq 1 , . . . Seq 511 , and each signaling sequence Seq 0 ⁇ Seq according to the second signaling sequence generation manner.
  • 511 further takes the opposite number, that is, -Seq 0 to -Seq 511 , and the receiving end uses the positive and negative of the correlation value to distinguish whether it is a positive sequence or an inverse sequence, that is, a total of 10 bits of signaling information is transmitted
  • 512 signaling sequences can be further divided into 4 groups, each group of 128 signaling sequences, each group of 128 signaling sequence generation sub-steps are as follows:
  • Sub-step 1 Generating a reference sequence zc i (n), which is a Zadoff-Chu sequence zc(n) of length N:
  • Sub-step 2 Producing a length of 2N by copying zc i (n) twice
  • Step 3 From A particular starting position k i intercepts a sequence of length 353, yielding SC i (n):
  • the N values, u i and shift values k i of each set of signalling sequences Seq 0 to Seq 127 are respectively determined by respective respective Tables 5 to 8 predetermined signaling sequence parameter tables.
  • the N values of the first set of sequences Seq 0 to Seq 127 , u i and the shift value k i are as shown in Table 5 below.
  • the steps of generating the second set of sequences Seq 128 to Seq 255 are the same as those of the first set of sequences, and the N values, u i and shift values k i are as shown in Table 6 below.
  • the steps of generating the third set of sequences Seq 256 to Seq 383 are the same as those of the first set of sequences, and the N values, u i and shift values k i are as shown in Table 7 below.
  • the generation steps of the fourth set of sequences Seq 384 to Seq 511 are the same as those of the first set of sequences, and the N values, u i and shift values k i are shown in Table 8 below.
  • FIG. 10 is a schematic diagram showing the arrangement of signaling sequence subcarriers, fixed sequence subcarriers, and virtual subcarriers according to a second predetermined interleaving rule in the embodiment of the present invention.
  • the signaling sequence of the first half of the figure on the left side of the dotted line is placed on the odd subcarriers, and the signaling sequence of the other half of the right side of the dotted line is placed on the even subcarriers, and is located on the left side of the dotted line.
  • the first half of the fixed sequence is placed on the even subcarriers, and the latter part of the fixed sequence on the right side of the dotted line is placed on the odd subcarriers. That is, P1_X 0 , P1_X 1 , . . . , P1_X 1023 are generated according to the second predetermined interleaving rule.
  • the odd carrier In the first half of the SC, the odd carrier is placed, the FC is put into the even carrier, and the second half of the SC is placed in the even carrier, and the FC is placed in the odd carrier.
  • the signaling sequence, the parity of the fixed sequence is exchanged.
  • Fixed sequence subcarrier Signaling sequence subcarrier The parity positions are interchangeable and have no effect on transmission performance.
  • the lengths of the zero-sequence sub-carriers filled in the left and right sides may also be different, but it is not suitable for too much difference.
  • the frequency domain OFDM symbol generated according to the second predetermined interleaving rule includes the following steps:
  • a (21) fixed sequence generating step wherein the fixed sequence generating step is the same as in the (11) fixed sequence generating step, and only the fixed sequence subcarrier radians value ⁇ n is obtained by using a second predetermined fixed subcarrier radians value table. Determined; wherein the second predetermined fixed subcarrier radians value table is as shown in Table 9 below:
  • Table 9 fixed subcarrier radians value table (according to the second predetermined staggered arrangement rule)
  • the signaling sequence and the fixed sequence obtained by the (21) step and the (22) step are alternately arranged in a parity and even odd-even manner, and after zero-carriers are filled on the left and right sides, the frequency is formed according to the following formula. Domain OFDM symbol,
  • a frequency-domain OFDM symbol generating step of a structure of time-domain OFDM symbols of two time-domain body signals includes the steps of generating any of the above-mentioned signaling sequences or
  • the frequency domain OFDM symbol structure corresponding to the time domain symbols of the two three-segment structures may also satisfy any of the following three predetermined associations. At least one of the rules:
  • First predetermined association rule two time domain OFDM symbols each take the same set of signaling sequences. For example, if 10 bits are transmitted as described above for a single symbol, the total transmission capacity is 20 bits.
  • a second predetermined association rule the fixed sequence of the second time domain OFDM symbol remains the same as the fixed sequence of the first time domain OFDM symbol.
  • the effective subcarrier position including the fixed sequence and the signaling sequence in the second time domain OFDM symbol is a left shift or a right shift of the effective subcarrier position in the first time domain OFDM symbol, and is shifted
  • the bit value is usually controlled in the range of 0-5.
  • FIG. 11 and FIG. 12 are frequency domain symbols corresponding to two time domain main signals, respectively, according to a third predetermined
  • the first shift value in FIG. 11 is 1, and the second shift value in FIG. 12 is 2.
  • a joint time domain symbol comprising a plurality of three-segment structures, taking two three-segment structures as an example, the time domain body signal A1 in the first three-segment structure and the time domain body signal in the second three-segment structure
  • the preferred embodiment of the generation of the frequency domain symbols of A2 is as follows:
  • the frequency domain symbol corresponding to the time domain main signal A1 of the first time domain symbol in the joint preamble symbol is identical to the frequency domain symbol in the ordinary preamble symbol generated by the second predetermined interleaving rule described above, FC and SC sequences And the frequency domain placement position and the padding zero carrier are exactly the same.
  • the frequency domain symbol corresponding to the time domain main signal A2 of the second time domain symbol in the joint preamble symbol is the same as the FC and SC sequence of the ordinary preamble symbol generated according to the second predetermined interleaving rule described above, and the frequency corresponding to A2
  • the effective subcarrier position of the domain symbol is that the frequency domain symbol corresponding to A1 is shifted left by one bit as a whole. which is
  • the frequency domain structure of the second type of P1_X is described as being defined as the frequency domain structure 2.
  • the method for generating the frequency domain symbols includes the following steps:
  • the predetermined sequence generation rule includes any one or two of the following combinations:
  • the predetermined processing rule includes: phase-modulating the pre-generated subcarriers processed based on the frequency domain subject sequence according to a predetermined frequency offset value.
  • FIG. 13 is a schematic diagram showing the arrangement of a frequency domain structure 2 corresponding to a time domain symbol in a preamble symbol according to an embodiment of the present invention.
  • the preamble symbol as described above includes at least one time domain symbol, and the frequency domain subcarrier corresponding to the time domain symbol is obtained based on the frequency domain subject sequence.
  • the frequency domain subcarriers comprise predetermined sequence generation rules for generating a frequency domain subject sequence and/or predetermined processing rules for processing the frequency domain body sequences for generating frequency domain subcarriers.
  • the generation process of the frequency domain main sequence is flexible, and the predetermined sequence generation rule includes any one or two combinations of the following: generating based on different sequence generation; and/or generating based on the same sequence generation formula Further, the generated sequence is cyclically shifted.
  • the constant envelope zero autocorrelation sequence (CAZAC sequence) is used, that is, the different sequence generation formulas are obtained by assigning different root values of the same CAZAC sequence, or the same sequence generation formula may be passed. The same value is given to the CAZAC sequence.
  • the frequency domain body sequence is generated based on one or more CAZAC sequences having a predetermined sequence length N ZC .
  • the predetermined sequence length N ZC is not greater than the Fourier transform length N FFT of the time domain body signal.
  • Processing the filling step of the frequency domain main sequence generally comprising: mapping the frequency domain main sequence into a positive frequency subcarrier and a negative frequency subcarrier with reference to a predetermined sequence length N ZC ; referring to a Fourier transform length N FFT at a positive frequency subcarrier And a predetermined number of virtual subcarriers and DC subcarriers are filled with the outer edge of the negative frequency subcarrier; and the obtained subcarrier is cyclically shifted to the left so that the zero subcarrier corresponds to the first position of the inverse Fourier transform.
  • a frequency domain subject sequence (Zadoff-Chu, sequence, ZC) of N ZC length is generated, which is a kind of CAZAC sequence.
  • N ZC can be equal to or less than N root , which can be generated by complete or truncation of a complete Zadoff-Chu sequence of a certain value. Then, it can be selected to modulate a PN sequence of the same length for the ZC sequence to obtain a ZC_M sequence, which will be ZC_M.
  • the sequence is divided into two parts, the length of the left half is Map to the negative frequency portion, the right half is the length Map to the positive frequency part, N ZC can choose a natural number, not more than the length of the A segment FFT; in addition, at the edge of the negative frequency, make up The number of zeros, while at the edge of the positive frequency, The number of zeros is the virtual subcarrier; therefore, the specific sequence is Zero, PN modulated ZC sequence, 1 DC subcarrier, PN-modulated ZC sequences and The zero sequence is composed; the number of valid subcarriers is N ZC +1.
  • the generation process of the frequency domain main body sequence such as a sequence formula
  • a plurality of different root values q may be selected, and for each sequence generated by the root value q, different cyclic shifts may be performed to obtain more sequences, and signaling may be transmitted by any one or two of the two methods.
  • each of the 256 sequences can be 0-
  • the signaling is mapped to a bit field, and the transmitted signaling may include a frame format parameter for indicating a physical frame and/or for indicating emergency broadcast content, wherein the frame format parameters are: frame number, frame length, subsequent signaling The bandwidth of the symbol, the bandwidth of the data area, the FFT size and guard interval length of the signaling symbols, the modulation and coding parameters of the signaling symbols, and so on.
  • the cyclic shift in the above predetermined sequence generation rule may be performed before the PN sequence modulation of the ZC sequence, or after the PN sequence modulation, and for the frequency corresponding to each of the time domain body signals.
  • the PN sequences of the PN modulation performed by the domain body sequence are the same or different.
  • the physical frame structure includes a preamble symbol and a data region, wherein the preamble symbol can include: a physical layer format control portion PFC and a physical layer content control portion PCC.
  • the time domain body signal of the first time domain symbol in the at least one time domain symbol corresponds to a frequency domain body sequence known in advance
  • the frequency domain body sequence and the corresponding frequency offset value are not used for transmission signaling.
  • the physical layer format control part of the PFC in the subsequent time domain symbols transmits signaling.
  • the frequency domain main sequence (ZC sequence) used in the last time domain OFDM symbol is 180 degrees out of phase with the frequency domain main sequence (ZC sequence) used in the first OFDM symbol, which is used to indicate the last time domain OFDM symbol of the PFC.
  • the ZC sequence used in the first time domain OFDM symbol in the PFC is generally a root sequence with no cyclic shift of a certain length, and at this length, the ZC sequence has a set, so the present invention selects one of the sets.
  • a sequence which may indicate a certain information, such as a version number or indicating a type or mode of traffic transmitted in the data frame; furthermore, utilizing the corresponding root value in the first time domain body signal and/or for performing PN modulation
  • the initial phase transmission information of the PN sequence, the initial phase of the PN also has a certain signaling capability, such as indicating the version number.
  • Each CAZAC sequence has a corresponding subsequence length L M , and a subsequence having a subsequence length L M is generated for each CAZAC sequence according to the above predetermined sequence generation rule, and the plurality of subsequences are spliced into a frequency domain having a predetermined sequence length N ZC .
  • the subject sequence is a corresponding subsequence length L M , and a subsequence having a subsequence length L M is generated for each CAZAC sequence according to the above predetermined sequence generation rule, and the plurality of subsequences are spliced into a frequency domain having a predetermined sequence length N ZC .
  • the M CAZAC sequences are composed, and the lengths of the M CAZAC sequences are respectively L 1 , L 2 , . . . L M , and are satisfied.
  • the method for generating each CAZAC sequence is the same as the above, and only one step is added. After the M CAZAC sequences are generated, the sequence is spliced into a sequence of length N ZC , and the ZC_M can be selected after being modulated by the PN sequence, and then frequency domain interleaving is performed.
  • N ZC can choose a natural number, not more than the length of the A segment FFT; in addition, at the edge of the negative frequency, make up The number of zeros, while at the edge of the positive frequency, The number of zeros is the virtual subcarrier; therefore, the specific sequence is Zero, PN modulated ZC sequence, 1 DC subcarrier, PN-modulated ZC sequences and The zero sequence is composed, wherein the step of modulating the PN can also be performed after the frequency domain interleaving.
  • the subcarrier position filling may also take other processing filling steps, which are not limited herein.
  • the subcarriers filled by the above processing are cyclically shifted to the left, and after the first half and the second half of the spectrum are interchanged, similar to the fftshift in Matlab, the zero subcarrier is corresponding to the first position of the discrete inverse Fourier transform, and the predetermined position is obtained.
  • Pre-generated subcarriers of frequency domain OFDM symbols of length N FFT are cyclically shifted to the left, and after the first half and the second half of the spectrum are interchanged, similar to the fftshift in Matlab, the zero subcarrier is corresponding to the first position of the discrete inverse Fourier transform, and the predetermined position is obtained.
  • a predetermined processing rule for processing the frequency domain body sequence to generate frequency domain subcarriers may be more preferably used.
  • the present invention does not limit the use of any one or both of the predetermined processing rule and the predetermined sequence generation rule to form a frequency domain subcarrier.
  • the predetermined processing rule includes: phase-modulating the pre-generated subcarriers according to the frequency offset value S, wherein the pre-generated subcarriers are obtained by performing the steps of processing and filling the frequency domain main body sequence, and shifting the left direction.
  • the frequency domain subcarrier corresponding to the same time domain main signal A is used in the same
  • the frequency offset value S is phase-modulated for each of the effective sub-carriers in the frequency domain sub-carriers, and the frequency-domain sub-carriers corresponding to the frequency domain sub-carriers of the different time-domain main signals A are different in S.
  • the subcarrier expression of the original OFDM symbol is set to:
  • the frequency offset value s can be selected as an integer of [-(N FFT -1), +(N FFT -1)], and the frequency offset value s is determined based on the Fourier transform length N FFT of the time domain main signal. Different values can be used to transmit signaling.
  • phase-modulating each pre-generated subcarrier by the frequency offset value S can also be implemented in the time domain. Equivalent to: the original unmodulated phase of the frequency domain OFDM symbol is obtained by IFFT transform to obtain the time domain ODFM symbol, and the time domain OFDM symbol can be cyclically shifted to generate the time domain main body signal A, which is transmitted through different cyclic shift values. Signaling.
  • description is made by phase-modulating each effective subcarrier by a certain frequency offset value in the frequency domain, and an obvious time domain phase equivalent operation method is also within the present invention.
  • the foregoing embodiment may perform the foregoing predetermined sequence generation rule (1a) and the predetermined sequence generation rule (1b) and the predetermined processing rule (2) based on the frequency domain body sequence selection. Any one or at least two free combinations.
  • a method of generating a preamble symbol of a predetermined sequence generation rule (1a) is used to transmit signaling.
  • a method of generating a preamble symbol of a predetermined sequence generation rule (1a) and a predetermined process rule (2) is used to transmit signaling.
  • the present invention does not limit the left shift or the right shift of the cyclic shift.
  • the corresponding time domain loop shifts to the left, for example, the value is 8, corresponding to the time domain loop left shift 8; when s is negative
  • the value is -8, corresponding to the time domain loop right shift 8.
  • the method for transmitting the frequency domain modulated frequency offset value real-time domain shift value signaling is not limited, that is, the method includes directly transmitting the signaling by using the current symbol absolute shift value, and also includes Signaling is transmitted by the difference between the shift values of the preceding and succeeding symbols, and the signaling analysis of the two methods can be explicitly introduced by one of them.
  • the correspondence between the signaling and the shift value is not limited, and the originating end can be freely set, and the receiving end can be reversely pushed according to the predetermined rule.
  • the signaling using the absolute value of the shift value of each symbol is as follows: for example, there are 4 symbols in total, wherein the first symbol does not transmit signaling, and the signaling values to be transmitted of the second to fourth symbols are respectively S1, S2, S3. Assuming that the shift value is 4 times the value of the signaling, the shift value of the second symbol is 4S1, the shift value of the second symbol is 4S2, and the shift value of the third symbol is 4S3;
  • the signaling values of the difference values of the preceding and following symbols are as follows: for example, there are 4 PFC symbols in total, wherein the first symbol does not transmit signaling, and the signaling values to be transmitted of the second to fourth symbols are respectively S1. , S2, S3.
  • the shift value of the second symbol is 4S1
  • the shift value of the second symbol is 4 (S1+S2)
  • the shift of the third symbol The value is 4 (S1+S2+S3).
  • a method for receiving a preamble symbol is also provided, and the method for receiving the preamble symbol is applicable to a preamble symbol generated by a sending end by using a predetermined generation rule.
  • the generated preamble symbol includes the above-mentioned time domain angle as in the present embodiment. Illustrating, for example, all of the technical elements involved in the first three-segment structure and/or the second three-segment structure, and/or including, for example, the frequency domain structure as described above in the frequency domain.
  • the first and the frequency domain structure 2 relate to all the technical elements, and are not repeated here. Therefore, in short, the applicable predetermined generation rule does not generally include the above-mentioned method and method for generating the preamble from the time domain perspective. A method of generating a frequency domain symbol illustrated by a frequency domain angle.
  • the preamble symbols generated for the predetermined generation rule respectively satisfy the time domain symbols having the above three-segment structure, the frequency domain symbols corresponding to the frequency domain structure one, and the frequency domain symbols having the frequency domain structure two, respectively.
  • a description of the method of receiving the preamble symbol is performed.
  • This embodiment provides a method for receiving a preamble symbol, including the following steps:
  • Step S11 processing the received signal
  • Step S12 determining whether there is a preamble symbol including the three-segment structure that is expected to be received in the processed signal;
  • Step S13 If the result of the foregoing determination is yes, determine the location of the preamble symbol and solve the signaling information carried by the preamble symbol.
  • the received preamble symbol includes at least one time domain symbol generated by the transmitting end to be freely combined according to a predetermined generation rule according to any number of the first three-segment structure and/or the second three-segment structure.
  • the first three-segment structure as described above includes a time domain body signal, a prefix generated based on all or part of the time domain body signal, and a suffix generated based on all or part of the partial time domain body signal.
  • the second three-segment structure as described above includes a time domain body signal, a prefix generated based on all or part of the time domain body signal, and a super prefix generated based on all or part of the partial time domain body signal.
  • the received physical frame signal is processed to obtain a baseband signal as described in step S11.
  • the signal received by the receiving end is an analog signal, so it needs to be analog-to-digital converted to obtain a digital signal, and then subjected to filtering, downsampling, etc. to obtain a baseband signal.
  • the receiving end receives the intermediate frequency signal, it needs to perform spectrum shifting after it has undergone analog-to-digital conversion processing. After the filtering, downsampling and the like, the baseband signal is obtained.
  • step S12 it is determined whether there is a preamble symbol including the three-segment structure that is desired to be received in the baseband signal.
  • the receiving end determines whether there is a preamble symbol that is expected to be received in the received baseband signal, that is, whether the received signal meets the receiving standard. For example, if the receiving end needs to receive data of the DVB_T2 standard, it is necessary to determine the received data. Whether the signal contains the leading symbol of the DVB_T2 standard, similarly, it is necessary to judge whether the received signal contains the time domain symbol of the CAB and/or BCA three-segment structure.
  • the above steps S12 and S13 include any at least one of the following steps: initial timing synchronization, integer multiple frequency offset estimation, precise timing synchronization, channel estimation, decoding analysis, and fractional multiple frequency offset estimation.
  • the reliability judgment may be freely combined by using any one of the following methods or any two at least two ways, that is, determining whether there is a preamble symbol that is expected to be received in the processed signal: an initial timing synchronization manner, an integer multiple frequency offset estimation manner, and an accurate timing Synchronization method, channel estimation method, decoding result analysis method and fractional multiple frequency offset estimation method.
  • the step S12 includes an S12-1 initial timing synchronization mode for initially determining the position of the preamble symbol in the physical frame, and further comprising: S12-2 determining, according to a result of the initial timing synchronization manner, whether the baseband signal is expected to be received. Contains the leading symbols of the three-segment structure.
  • the initial timing synchronization mode may take the following initial synchronization by any one or both of the following (1) initial timing synchronization method and (2) initial timing synchronization mode.
  • the (1) initial timing synchronization method includes the following steps:
  • the basic accumulated correlation values are grouped according to different delay lengths of the delay sliding autocorrelation, and each group performs at least one symbol according to a specific splicing relationship of at least two time domain symbols.
  • mathematical operations are performed to obtain a final accumulated correlation value of a certain delay length, and when there is only one time domain symbol of the three-segment structure, the final accumulated correlation value is the basic accumulation.
  • the operational values are used for initial timing synchronization after delay relationship matching and/or a particular predetermined mathematical operation based on at least one of the final accumulated correlation values.
  • performing one or two or more inter-symbol delay relationship matching and/or phase adjustment includes that performing an inter-symbol delay relationship matching and/or phase adjustment is equivalent to performing two or more without any operation.
  • the inter-symbol delay relationship matching and/or phase adjustment only includes the actual operation.
  • the necessary inverse processing and/or signal solution is performed on the baseband signal.
  • three accumulative correlations between the third portion C and the first portion A, the first portion A and the second portion B, and the third portion C and the second portion B in the three-segment structure are obtained.
  • the value is any one of U ca '(n), U cb '(n), U ab '(n) or any at least two.
  • a correlation value to be detected is obtained based on at least one of the above-described accumulated correlation values.
  • the three-segment structure is a C-A-B structure.
  • the received signal is subjected to a delayed sliding autocorrelation, and the delay correlation expression Uca (n) and the delay-related accumulated value Uca '(n) are as follows:
  • the received signal is subjected to delay sliding autocorrelation and demodulation frequency offset, paying attention to the delay correlation expression U cb (n) and the delay correlation accumulated value U cb '(n) is as follows:
  • the received signal is subjected to delay sliding correlation based on the processing relationship of the second portion B and the first portion A and the modulation frequency offset value, and the delay correlation expression U ab (n) and the delay correlation accumulated value U ab '(n) are as follows:
  • corr_len can take 1/f SH T to avoid continuous wave interference or take Len B to make the peak sharp.
  • the delay-related accumulated values U ca '(n), U cb '(n), U ab '(n) are used to perform the required delay matching and perform mathematical operations, the mathematical operations including multiplication or addition, such as U cb '(n ) ⁇ U ab ' * (n), or,
  • FIG. 14 is a logic diagram of a correlation result to be detected corresponding to a three-segment structure CAB in an embodiment of the present invention.
  • C, A, and B in the figure represent the lengths of the C segment, the A segment and the B segment signal, respectively, and the sliding average filter may be a power normalization filter.
  • A is N A
  • B is Len B
  • C is Len C .
  • the three-segment structure is a B-C-A structure.
  • the received signal is subjected to a delayed sliding autocorrelation, and the delay correlation expression Uca (n) and the delay-related accumulated value Uca '(n) are as follows:
  • the received signal is subjected to delay sliding autocorrelation and demodulation frequency offset, paying attention to the delay correlation expression U cb (n) and delay correlation accumulation.
  • the value U cb '(n) is as follows:
  • the received signal is subjected to delay sliding correlation based on the processing relationship of the second portion B segment and the first portion A segment and the modulation frequency offset value, and the delay correlation expression U ab (n) and the delay correlation accumulated value U ab '(n) as follows:
  • corr_len can take 1/f SH T to avoid continuous wave interference or take Len B to make the peak sharp.
  • Figure 15 is a logic diagram of the correlation result to be detected corresponding to the three-segment structure BCA in the embodiment of the present invention.
  • a correlation value of the preliminary timing synchronization is formed based on the correlation result 1 to be detected and/or the correlation result 2 to be detected.
  • the transmission preamble symbol includes the following two cases (a) and (b),
  • the initial timing synchronization is completed by any one or a combination of the above (1) initial timing synchronization method and the following (2) initial timing synchronization method. Wherein, based on the two completions, the first preliminary synchronization operation value obtained in the (1) initial timing synchronization manner and the second preliminary synchronization operation value obtained in the (2) initial timing synchronization manner are further weighted, The weighted operation value completes the initial timing synchronization.
  • the (2) initial timing synchronization method will be specifically described below.
  • the (2) initial timing synchronization mode may pass
  • the time domain main body signal A performs differential operation according to predetermined N differential values, and performs time difference calculation on the time domain signal corresponding to the known information, and then cross-correlates the two to obtain N-group and the N difference values one-to-one correspondence.
  • the result of the differential correlation is initially synchronized based on the results of the N sets of differential correlations, and a processed value is obtained for initially determining the position of the leading symbol, where N ⁇ 1.
  • the baseband data is subjected to differential operation by differential value.
  • the phase rotation caused by the carrier frequency offset becomes a fixed carrier phase e j2 ⁇ D ⁇ f , where ⁇ f represents the carrier frequency deviation.
  • the local time domain sequence (such as the fixed subcarrier is filled according to the corresponding position and the remaining positions are 0 and then IFFT is obtained to obtain the corresponding time domain sequence)
  • the correlation peak can be well given and the peak value is not affected by the carrier deviation.
  • the frame synchronization/timing synchronization position is obtained by the following equation
  • the differential correlation algorithm can resist the influence of any large carrier frequency offset, but the signal noise is enhanced due to the differential operation of the received sequence first, and the noise enhancement is very serious at low SNR. , causing the signal to noise ratio to deteriorate significantly.
  • N the value of N is 64, and 64 sets of differential correlation are implemented.
  • D(0), D(1), ..., D(N-1) are the selected N different difference values.
  • any one of the following two may be adopted based on performance requirements of the transmission system:
  • the difference value D(i) arbitrarily selects N different values and satisfies D(i) ⁇ L, where L is the length of the local time domain sequence corresponding to the known information.
  • a predetermined processing operation is performed on the N results (64) to obtain a final correlation result.
  • the predetermined processing operation herein, which are separately explained.
  • the first predetermined processing operation is a predetermined processing operation
  • the N different differential correlation results are subjected to predetermined processing operations by the following formula to obtain a final differential result.
  • the following equation is an example in which absolute values are added to obtain a final differential result.
  • the difference value selected according to this rule is obtained as After the difference correlation value, the adjacent two sets of differential correlation values are conjugate multiplied, and the conjugate multiplied by the N-1 group is obtained by the following formula.
  • the obtained N-1 group RM i,m can be weighted vector addition. Or the average difference result is averaged to get better performance than the first predetermined processing operation.
  • the following equation is an example of vector addition to obtain the final difference result.
  • the conjugate multiplication value can be obtained not only in the second predetermined processing operation but also the weight vector addition or average.
  • the final correlation result it is also possible to match at least two directly in accordance with the first predetermined processing operation described above.
  • the differential correlation results are summed or averaged by weighted absolute values to obtain the final correlation result.
  • the position within a certain range of the maximum value position of the correlation value of the initial timing synchronization can be utilized. To initially determine the position of the leading symbol in the physical frame. The value corresponding to the position is used to further determine whether the received preamble symbol is included in the received signal, or the subsequent positional estimation and/or decoding operation is performed by using the position to further receive whether the signal includes the desired preamble symbol.
  • the preamble symbol including the three-segment structure desired to be received exists in the processed signal, that is, the baseband signal. Specifically, the detection is performed based on the result of the initial timing synchronization. If the result of the detection satisfies the preset condition, it is determined that there is a preamble symbol including the three-segment structure that is expected to be received in the baseband signal.
  • the satisfaction of the preset condition herein may mean that the result of the initial synchronization according to the initial timing itself satisfies the preset condition determination, and may also mean that the result of the synchronization according to the initial timing is not sufficient, and then according to other subsequent steps such as an integer multiple.
  • the frequency offset estimation and/or decoding result is determined.
  • the direct determination is based on the initial timing synchronization result
  • the preset condition includes the initial timing synchronization result to perform a specific operation, and then it is determined whether the maximum value of the operation result exceeds the threshold threshold.
  • the predetermined acquisition rule between the C-part, the A-part, and the B-part of the first three-segment structure and the second three-segment structure may be used.
  • And/or predetermined processing rules obtaining two sets of delay-related accumulated values corresponding to two three-segment structures, three values per group, and generating two groups based on at least one of three delay-related accumulated values of each of the two groups The correlation result is detected, thereby detecting and judging whether the leading symbol contains a three-segment structure and which three-segment structure is included.
  • the preamble symbol includes two three-segment structures at the same time.
  • the initial timing synchronization resolves the emergency broadcast by any combination of any one or any of the following: the third part and the Different delay relationships of the same content between the two parts; and different delay relationships of the same content between the first part and the second part to distinguish between sending emergency broadcasts and ordinary broadcasts.
  • the receiving end will implement a multi-branch step S12-1 included in the above step S12: an initial timing synchronization manner for initially determining the position of the preamble symbol in the physical frame; As a result, it is judged whether or not there is a preamble symbol desired to be received and the transmitted time domain signaling.
  • the delayed sliding autocorrelation defining N1 of a certain value described above is one branch.
  • Each branch contains the above three delay-related accumulated values.
  • the receiving end simultaneously performs the above-mentioned delayed sliding autocorrelation branches of 2 Q different N1 values, and then from 2 Q U 2 '(n) ⁇ U 3 ' * (n) or U ca '(nN A +N1) ⁇ In the absolute value of U cb '(n) ⁇ U ab ' * (n), it is determined whether or not there is a desired leading symbol.
  • any of the absolute values does not exceed the threshold threshold, then there is no signal expected to be received in the baseband signal.
  • the received signal delays 1024 sample points and performs sliding autocorrelation with the received signal
  • the received signal delays 1528 sample points and the received signal of the demodulated frequency offset is subjected to sliding autocorrelation
  • the received signal delays 504 samples and performs sliding autocorrelation with the received signal after demodulation frequency offset
  • the received signal delays 1024 sample points and performs sliding autocorrelation with the received signal after demodulation frequency offset
  • the received signal delays 1544 sample points and the received signal of the demodulated frequency offset is subjected to sliding autocorrelation
  • the received signal delays 520 sample points and performs a sliding autocorrelation with the received signal after the demodulation frequency offset.
  • threshold threshold is used as a preset condition to determine whether or not there is a preamble symbol that is expected to be received
  • the current pilot symbol contains only one of the first three-segment structure and the second three-segment structure to identify the non-emergency broadcast, and the other is used to identify the emergency broadcast, which is parsed by the following.
  • Step S12-1 may obtain two corresponding three segments according to a predetermined acquisition rule and/or a predetermined processing rule between the C segment, the A segment, and the B segment of the first three-segment structure and the second three-segment structure.
  • each branch has 3 values
  • step S12-2 includes detecting the correlation value to be detected of each of the two branches.
  • the fractional frequency offset estimation can also be performed by using the preliminary timing synchronization result of the (1) mode and/or the (2) mode.
  • the angle of the maximum value in U ca '(n) is taken to calculate the second small offset value, and then U cb '(n) and U ab '(n) are conjugated.
  • the third small offset value can be calculated by taking the angle corresponding to the maximum value.
  • the angles in the logic operation block diagrams in FIG. 14 and FIG. 15 are used to obtain the small partial deviation, and the small partial estimation can be performed based on the second small offset value and any one or two of the third small offset values.
  • the corresponding phase is e j2 ⁇ K ⁇ f , and ⁇ f can be calculated and converted into the corresponding first small offset value.
  • the transmission preamble symbol includes the features required by the (1)th preliminary timing synchronization mode and the (2) preliminary timing synchronization mode, based on any one of the first, second, and third small offset values or any at least The combination of two to get a small bias estimate.
  • the first (1) initial timing synchronization manner includes the following steps:
  • Step S2-1A Performing corresponding corresponding reverse processing on the baseband signal according to a predetermined acquisition rule and/or a predetermined processing rule between the CAB structure and the C segment, the A segment, and the B segment of the BCA structure in the preamble symbol that is expected to be received.
  • delay sliding autocorrelation is performed to obtain the basic delay-related accumulated value (for example, U 1,ca '(n), U 1,cb '(n), U 1,ab '(n) in the CABBCA structure , U 2,ca '(n), U 2,cb '(n), U 2,ab '(n).)
  • Step S2-1B grouping the basic delay-related accumulated values of step S2-1A according to different delay lengths of the delayed sliding auto-correlation in the previous step (divided into three groups), each group being specified according to two time-domain symbols
  • mathematical operations are performed to obtain a corresponding The final accumulated correlation value of a delay length in the previous step, a total of three final delay correlation values of different delay lengths are obtained;
  • Step S2-1C Perform delay matching based on one, two or three of the three final accumulated correlation values and perform a mathematical operation to obtain a correlation value of the correlation value to be detected, that is, the initial timing synchronization.
  • U 1,ca '(n), U 1,cb '(n) are obtained according to the above method.
  • U 1,ab '(n), U 2,ca '(n), U 2,cb '(n), U 2,ab '(n) then U 1,ca '(n-(N A +2Len B +Len C )) and U 2,ca '(n) are added, since they are all obtained by a sliding autocorrelator with a delay length of N A , resulting in U A (n).
  • U 1,cb '(n-(N A +2Len B )) and U 2,ab '(n) are added, since they are all obtained by a sliding autocorrelator with a delay length of N A +Len B , resulting in U A +B (n).
  • U 1,ab '(n-(2Len B )) and U 2,cb '(n) are added, since they are all obtained by a sliding autocorrelator with a delay length of Len B , and U B (n) is obtained.
  • FIG. 16 is a block diagram showing the logical operation of obtaining the preliminary timing synchronization to be detected under the CABBCA splicing method in the present embodiment.
  • A is N A
  • B is Len B
  • C is Len C .
  • a logic operation block diagram for obtaining preliminary timing synchronization to be detected under the BCACAB splicing method in the present embodiment is given by FIG.
  • A is N A
  • B is Len B
  • C Len C .
  • step S2-1A when the FC sequences of the two time domain symbols of the joint preamble symbol are the same, the delay correlation cumulative value of the combined splicing portion of the C+A segments of the two symbols before and after is also obtained; It can also be used in the mathematical calculation in step S2-1C, and then the correlation result to be detected is further obtained to further improve the detection performance.
  • the (1) initial timing synchronization manner includes the following steps:
  • step S2-1B the delay-dependent accumulated value of step S2-1A (actually the output of three delay sliding correlators, here defined as six for the representation), is defined as as well as (The first time domain symbol and the second time domain symbol are respectively delayed by N A +Len B , N A , and Len B.
  • the delay relationship matching is performed according to a specific splicing relationship with these values having the same delay. And / or phase adjustment and then add or average, because there are two different splicing methods, so here also corresponds to the delay relationship between the two different symbols. Specifically, as well as
  • the correlation results of the two branches are finally obtained, wherein if the first branch detection result satisfies the preset condition, Determining, in the baseband signal, that there is a joint preamble symbol of the three-segment structure that is expected to be received in the first splicing manner; if the second branch detection result satisfies a preset condition, determining that there is an expected reception in the baseband signal.
  • the joint preamble symbol of the three-segment structure spliced according to the second splicing method; if both groups are satisfied, it needs to be judged separately, for example, the peak-to-noise ratio of the two branches can be judged.
  • step S2-1A when the FC sequences of the two time domain symbols of the joint preamble symbol are the same, the delay correlation cumulative value of the combined splicing portion of the C+A segments of the two time domain symbols before and after is obtained.
  • the delay-dependent accumulated value of the combined splicing portion of the C+A segments of the two preceding and last time domain symbols of the two branches can be obtained accordingly; in S2-1C
  • the lieutenant can also use the values of the two branches for the mathematical calculation of the two branches, and then obtain the correlation results of the two branches to further improve the detection performance.
  • the receiver can detect the preset condition by detecting the joint preamble symbol or by detecting a single three-segment structure.
  • the detection result by the joint preamble symbol is significantly better than the detection result of a single three-segment structure, it can be determined that there is a preamble symbol containing a plurality of time domain symbols having a three-segment structure in the received signal.
  • the presupposition condition may be determined by a single condition according to the preset condition to be detected, or may be determined according to the related result to be detected, and may be determined according to other subsequent steps such as integer multiple frequency offset.
  • the estimation and/or decoding results are determined.
  • the fractional frequency offset estimation may also be performed by using the preliminary timing synchronization result of the (1) preliminary timing synchronization mode and/or the (2) preliminary timing synchronization mode.
  • the angle of the maximum value in U A (n) is taken, and the second small offset value can be calculated, and then U A+B ( n) multiplication with U B (nN A ) conjugate (corresponding to CABBCA cascading method) or U A+B (n) and U B (n) conjugate multiplication (corresponding to BCACAB cascading method)
  • the angle corresponding to the value can be used to calculate the third small offset value.
  • the angles in the logic operation block diagram 16 and FIG. 17 are used to obtain the small partial deviation, and the small partial estimation can be performed based on the second small offset value and any one of the third small offset values.
  • One or more of the delay correlations and/or phase adjustments between the symbols are added or averaged to obtain the final U A (n). This is because they have the same phase value.
  • Examples of delay matching are as follows:
  • delay matching is performed and a specific operation is performed.
  • the delay matching is as follows:
  • the initial timing synchronization is completed based on the result of the operation, and the specific numerical operation can be an absolute value addition. For example, take the maximum position to complete the initial timing synchronization.
  • the delay number may be adjusted within a certain range, for example, the delay number of some delay correlators should be increased or decreased by one.
  • the three delays are added to and subtracted from each other, and then multiple delay sliding autocorrelations are performed according to the obtained adjusted multiple delays and the number of delays.
  • the sliding delay autocorrelation is implemented according to the three delay numbers, and then the correlation is selected. The most obvious result is that the timing deviation can be estimated at the same time.
  • FIG. 18 is a logic operation block diagram for obtaining preliminary timing synchronization results by using four sets of accumulated correlation values of four time domain symbols in the present embodiment; and FIG. 19 shows two groups using two time domain symbols in the present embodiment.
  • the first one is the CAB structure, and the following is the first (1) preliminary timing synchronization manner of the K time-domain symbols of the BCA structure of the sequential connection.
  • the starting point of the selected suffix or super prefix (part B) in the CAB structure corresponds to the first sampling point number N1_1 of the time domain main body signal A
  • N A is 2048
  • Len C is 520
  • Len B 504
  • N1_1 1544
  • N1_2 1528
  • f SH 1/(2048T) is taken as an example.
  • the delay sliding autocorrelation obtains the accumulated correlation value formula as follows:
  • the conjugate operation * in U 1 (n) can also be implemented by r(n), and r(nN A ) is not conjugated.
  • each C-A-B or B-C-A three cumulative correlation values of CA, AB and CB based on the same content can be separately obtained.
  • each CAB or BCA can get three correlation values: U ca '(n), U cb '(n), U cb '(n)
  • the sliding delay correlation is performed using the same portion of the B segment and the A segment that only modulates the frequency offset:
  • corr_len can take 1/f SH T to avoid continuous wave interference, or take Len B to make the peak sharp.
  • three accumulated correlation values of CA, AB and CB can be obtained, that is, U ca '(n), U cb '(n), U Ab '(n), using any one or any of at least two of U ca '(n), U cb '(n), U ab '(n) to obtain an accumulated correlation value, performing a symbol or based on the accumulated correlation value
  • a delay relationship match and/or a mathematical operation between a plurality of symbols yields a final operational value that is used for initial synchronization.
  • the arrangement is CAB, BCA, BCA, BCA, ..., BCA.
  • the first symbol is the CAB structure
  • the subsequent K-1 are Is the BCA structure, get Actually the output of three delayed sliding autocorrelors,
  • One or more of the delay relationship matching and/or phase adjustment according to the relationship between one symbol or a plurality of symbols are added or averaged to obtain the final U A (n). This is because they have the same phase value. When only one is taken, the actual delay relationship match and/or phase adjustment is equal to no operation.
  • Delay matching and / or phase adjustment include all or part of the following, for example:
  • N A is 2048
  • Len C be 520
  • Len B 504
  • ie (N A +Len B +Len C ) 3072, so To make a phase adjustment, multiply by e j ⁇ .
  • Delay matching includes all or part of the following, for example:
  • N A is 2048
  • Len C be 520
  • Len B 504
  • ie (N A +Len B +Len C ) 3072, so To make a phase adjustment, multiply by e j ⁇ .
  • Delay matching includes all or part of the following, for example:
  • N A is 2048
  • Len C be 520
  • Len B 504
  • ie (N A +Len B +Len C ) 3072, so To multiply by e j ⁇ .
  • delay matching is performed and a specific operation is performed.
  • the delay matching includes all or part of the following, as follows:
  • the initial timing synchronization is completed based on the result of the operation, and the specific numerical operation can be an absolute value addition. For example, take the maximum position to complete the initial timing synchronization.
  • the step S12-2 includes an initial timing synchronization mode for initially determining that the preamble symbol is in the physical frame. s position. Further, after the initial synchronization, the integer multiple frequency offset estimation manner may also be performed based on the result obtained by the initial timing synchronization manner.
  • the receiving end may further perform integer multiple frequency offset estimation by using the fixed sequence, that is, the receiving method of the preamble symbol of the present invention may further include the following integer multiple frequency offset estimation step:
  • the first integer multiple frequency offset estimation method includes: intercepting a time domain signal including at least all or part of the time domain main signal according to the result of the initial timing synchronization, and using the frequency sweeping method to differentiate the intercepted time domain signal
  • a plurality of N frequency-swept time domain signals corresponding to the frequency offset values are obtained, and the known time domain signals obtained by inverse Fourier transform of the known frequency domain sequence and each of the frequency sweep time domain signals are obtained.
  • the maximum correlation peaks of the N cross-correlation results are compared, and the frequency offset value of the swept time domain signal corresponding to the largest cross-correlation result is an integer multiple frequency offset estimation value; and/or
  • the second integer multiple frequency offset estimation method includes:
  • the time domain signal of the length of the main body time domain signal is intercepted according to the result of the initial timing synchronization, and the obtained frequency domain subcarrier is cyclically shifted according to different shift values in the frequency sweeping range, and the effective subcarrier is intercepted.
  • An integer multiple frequency offset estimation value is obtained by using the correspondence between the shift value and the integer multiple frequency offset estimation value.
  • the time domain main signal A corresponds to the frequency domain structure one, that is, the frequency domain OFDM symbols respectively include a virtual subcarrier and a signaling sequence (referred to as SC) subcarriers.
  • the wave and fixed sequence (referred to as FC) subcarrier three parts, then the known frequency domain sequence mentioned below is a fixed subcarrier; and the time domain body signal A corresponding to the frequency domain structure 2, that is, the preamble symbol.
  • the first time domain symbol is known information
  • the known frequency domain sequence mentioned below is the known information of the first time domain symbol.
  • the first integer multiple frequency offset estimation method intercepts all or part of the time domain waveform of the received preamble symbol according to the position of the preamble symbol detected by the initial timing synchronization, and adopts a frequency sweep method, that is, a step of changing at a fixed frequency.
  • the path for example, corresponding to the integer multiple frequency offset interval, after the partial time domain waveform is modulated with different frequency offsets, several time domain signals are obtained.
  • T is the sampling period and f s is the sampling frequency.
  • the frequency offset value y modulated by it is an integer multiple frequency offset estimation value.
  • the sweep range corresponds to the frequency offset range that the system needs to combat.
  • the frequency offset of positive and negative 500K is needed, and the system sampling rate is 9.14M, and the main body of the leading symbol is 2K length, then the sweep frequency range is That is [-114,114].
  • the second integer multiple frequency offset estimation method intercepts the main time domain signal A according to the position of the preamble symbol detected by the initial timing synchronization, and performs FFT to perform different shift values of the frequency domain subcarrier after the FFT. Cyclic shift, and then intercept the received sequence corresponding to the effective subcarrier, perform some operation (usually conjugate multiplication, or division) with the received sequence and the known frequency domain sequence, and then perform the result IFFT, IFFT
  • the result is a specific operation, such as taking the maximum diameter energy, or taking a number of large-path energy accumulations. Then a number of shift values, after several IFFTs, each time get an operation result, you will get several sets of operation results. Based on the results of the plurality of groups, it is determined which shift value corresponds to the integer multiple frequency offset estimation, thereby obtaining an integer multiple frequency offset estimation value.
  • the usual judging method is to select the corresponding shift value of the group with the largest energy as the integer octave bias estimation value based on the results of several groups.
  • the domain main signal A corresponds to the above-mentioned frequency domain structure
  • the following generalized offset estimation method can also be adopted.
  • the time domain main signal A of the corresponding symbol in the preamble symbol is subjected to Fourier transform to obtain a frequency domain OFDM symbol, and the transformed frequency domain OFDM symbol is cyclically shifted by the above-mentioned frequency sweep range, and the FC is on the subcarrier.
  • the position and the interval between the two fixed-sequence sub-carriers are differentially multiplied by the interval, and the correlation is performed with the differential multiplication value of the known fixed-sequence sub-carriers to obtain a series of correlation values, and the maximum correlation value is selected. Cyclic shift, you can get the integer octave bias estimate.
  • R i,1,j is the received value at the corresponding FC position after the shift j in the first symbol frequency domain
  • R i,2,j is the corresponding FC position in the frequency domain of the second symbol after shifting j Received value
  • M is the total number of known FCs, so that a series of accumulated values corresponding to the cyclic shift values are obtained, and the maximum accumulated value is selected.
  • Corresponding cyclic shifts can be obtained to obtain integer multiple frequency offset estimates.
  • the frequency offset is compensated, and then the transmission signaling is analyzed.
  • the precise timing synchronization mode is performed by using the known information in the preamble symbol.
  • the fixed subcarrier sequence FC included in one or more frequency domain symbols is used to perform accurate timing synchronization
  • the known signal is used to perform a precise timing synchronization manner.
  • the step of determining the position of the preamble symbol in the physical frame and solving the signaling information carried by the preamble symbol is described in detail.
  • the step includes the following:
  • Determining the location of the preamble symbol includes determining a location of the preamble symbol in a physical frame based on a result of the detection that satisfies the preset condition;
  • the position at which the preamble symbol appears is determined according to the portion of the value or the maximum value at which the peak value of the correlation value to be detected is large.
  • the channel estimation method is also included in the step of parsing the transmission signaling.
  • channel estimation can be performed by using the received signal containing a fixed sequence subcarrier and a known frequency domain fixed sequence subcarrier and/or its time domain signal corresponding to the inverse Fourier transform.
  • the time domain is performed and/or performed in the frequency domain, and details are not described herein again.
  • the channel estimation method includes: after decoding the last time domain main body signal, using the obtained decoding information as the transmission information, performing channel estimation again in the time domain/frequency domain, and performing some sort of channel estimation result with the previous channel.
  • a specific operation results in a new channel estimation result for channel estimation of the signaling analysis of the next time domain subject signal.
  • the position or data symbol of the subsequent signaling symbol may be obtained according to the parameter content and the determined position of the preamble symbol. And based on this, the subsequent analysis of signaling symbols or data symbols.
  • the step of parsing the signaling signal includes: using all or part of the time domain waveform of the preamble symbol and/or all of the preamble symbol Or the frequency domain signal obtained by the Fourier transform of the partial time domain waveform to solve the signaling information carried by the preamble symbol.
  • the signaling sequence subcarrier set is generated based on a known set of signaling sequences.
  • the signal including the signaling sequence subcarrier includes: all or part of the time domain waveform of the received preamble symbol, or one of the one or more main body OFDM symbols after Fourier transform is intercepted from the preamble symbol or Multiple frequency domain OFDM symbols.
  • the signaling sequence subcarrier set is a set formed by filling each signaling sequence in the signaling sequence set onto the effective subcarrier.
  • one or more frequency domain OFDM symbols obtained by performing Fourier transform on the time domain signals of the N A length corresponding to the ODFM symbol body are intercepted; then, the zero carrier is removed, and the carrier position is removed according to the signaling subcarrier position.
  • the frequency domain decoding function is completed by performing specific mathematical operations on the channel estimation values and the known signaling sequence subcarrier sets.
  • the foregoing process may also be performed in the time domain, and the frequency domain symbols of the corresponding length generated by the known signalling sequence subcarrier set after zero padding at the appropriate position are inversely transformed by Fourier transform.
  • the time domain signaling waveform set is directly related to the time domain receiving signal for acquiring the accurate location of the multipath, and the one with the largest absolute value of the correlation value can also solve the signaling information of the frequency domain transmission, which will not be described here.
  • the FFT operation of the corresponding length is performed, the zero carrier is removed, and the received frequency domain subcarrier is extracted according to the effective subcarrier position. Use it for signaling analysis.
  • the receiving end may first perform demodulation PN operation on the received frequency domain subcarrier, and then perform ZC sequence signaling analysis. Signaling resolution can also be directly performed directly with the received frequency domain subcarriers of the undemodulated PN. The only difference between the two is that the method of the known sequence set is different, as will be explained below.
  • the known signaling sequence set generated by using all possible different root values and/or different frequency domain shift values of the frequency domain main sequence transmitted by the transmitting end and all possible The frequency domain modulates the frequency offset value to resolve the signaling.
  • the collection of known sequences here contains the following meanings:
  • the known sequence set may refer to both the sequence set after modulating the PN and the pre-modulation PN. Sequence collection. If the receiving end performs the demodulation PN operation in the frequency domain, the known sequence set adopts the sequence set before the modulation PN. If the receiving end does not adopt the demodulation PN in the frequency domain, the known sequence set adopts the sequence set after the modulation PN. To use the time domain waveform corresponding to the known sequence set, the sequence set of the PN must be modulated by the CAZAC sequence.
  • the known sequence set may refer to the sequence set of the CAZAC sequence/and or the frequency domain interleaved after the PN is modulated, or may be referred to before the frequency domain interleaving. Sequence collection. If the receiving end performs the interleaving operation in the frequency domain, the known sequence set adopts the sequence set before the frequency domain interleaving, and is known if the receiving end does not use the deinterleaving operation in the frequency domain. The sequence set uses a frequency domain interleaved sequence set.
  • the CAZAC sequence and/or the modulation PN must be used and the set of sequences that are interleaved, that is, the set of sequence components that are finally mapped to the subcarriers.
  • the generated sequence is further cyclically shifted based on different sequence generation and/or based on the same sequence generation.
  • the frequency domain signaling subcarrier and the channel estimation value and all possible frequency domain subject sequences are subjected to specific mathematical operations for signaling analysis, wherein the specific mathematical operation includes any one of the following:
  • H i is a channel estimation value corresponding to each signaling subcarrier
  • SC_rec i is a received frequency domain signaling subcarrier value
  • the decoding process of the frequency domain transmission signaling may also be performed in the time domain, and the time domain signaling waveform set corresponding to the IWT transform by using the known signaling subcarrier set is directly related to obtaining the accurate location of the multipath.
  • area The received signal is synchronously correlated, and the one with the largest absolute value of the correlation value is obtained, and the frequency domain transmission signaling can also be solved, which will not be described here.
  • the receiving end obtains the frequency domain effective subcarrier, performs corresponding frequency domain deinterleaving operation, demodulates the PN operation, and performs ZC. Sequence signaling analysis. If the modulation PN is before the frequency domain interleaving, the frequency domain deinterleaving is performed first, and then the demodulation PN is performed. If the modulation PN is interleaved in the frequency domain, the PN is demodulated first, then the frequency domain deinterleaving is performed, or the frequency domain deinterleaving is performed first, and then the demodulation PN is performed. However, the demodulated PN sequence at this time is the demultiplexed PN sequence of the original PN.
  • the predetermined transmission rule to be satisfied includes: processing the frequency domain main sequence corresponding to the time domain main signal in each time domain symbol sent to obtain a pre-generated subcarrier, and using a predetermined frequency offset value S in the frequency domain. Cyclic shifting is performed in the time domain after phase modulation or inverse Fourier transform for each effective subcarrier. Below we refer to the symbol of the transmission basic parameter contained in the preamble symbol as the PFC symbol.
  • the analysis receiving algorithm has the following three examples of analysis signaling, which are ⁇ Example 1 of analysis signaling, ⁇ Example 2 of analysis signaling>, and Example 3 of ⁇ analysis signaling>.
  • the time domain main signal A corresponding to each time domain symbol generated by the above rule in the preamble symbol is subjected to FFT operation to obtain a frequency domain signal, and the frequency domain signal is taken out of the effective subcarrier value.
  • each subcarrier and a subcarrier corresponding to each frequency domain known sequence of the known frequency domain signaling set of the symbol performing an IFFT operation, and each frequency domain known sequence corresponds to an IFFT result, and each The symbols are based on the results of one or more IFFTs, select one of the most reliable IFFT results for each symbol, and can perform predetermined processing, and then use the processing results between multiple symbols to further Performing some operation between symbols to solve the transmitted signaling information (including different frequency domain sequence transmission signaling and/or frequency domain modulation frequency offset real-time cyclic shift value signaling).
  • the known frequency domain signaling set here includes all possible sequences of the frequency domain sequence in which the time domain main signal A corresponding to each time domain symbol is filled to the subcarrier before the frequency domain subcarrier modulation phase. If the transmitting end has a modulated PN operation, it refers to all possible frequency domain sequences after modulating the PN.
  • the parsing method in the receiving method in the first example of parsing signaling Can be simplified as follows:
  • the time domain main signal A corresponding to each time domain symbol is subjected to FFT operation to obtain a frequency domain signal, and the frequency domain signal is taken out of the value of the effective subcarrier, and each valid subcarrier is associated with the symbol.
  • the IFFT operation is performed, and based on the IFFT result, the predetermined processing is selectively performed, and the IFFT result between the plurality of symbols is further used to further The predetermined processing operation between the time domain symbols is performed to solve the transmitted signaling (frequency domain modulation frequency offset real-time cyclic shift value signaling).
  • the time domain main signal A is known to transmit the frequency domain pre-generated subcarrier without the phase modulation before the expression is A k , and the phase modulated expression is
  • H k is the channel frequency domain response, and after receiving the channel, the received frequency domain data expression is
  • the physical meaning is the product of the channel estimation value of each subcarrier and the modulation phase value; and another formula for the predetermined mathematical operation (Formula 67)
  • each time domain symbol will get the result of t IFFT operations, and the result will be taken as an absolute value.
  • the most reliable method of judging by the first predetermined selection rule may be peak maximum or peak-to-average ratio, and the like.
  • the step of selecting the most reliable one of the T results as the operation result of the symbol may be omitted, and each symbol is directly taken.
  • the only IFFT result can be selected as the IFFT selection result.
  • Figure 20 is a waveform diagram of the inverse Fourier result of a time domain body signal in AWGN in the first example of the analysis signaling of the present invention. As shown in FIG. 20, the maximum value of the discrete inverse Fourier transform appears as a sequence number of 1049 with a value of 1.024.
  • C(q) can be the result of a certain original IFFT selected from T results, or it can be the result of obtaining the absolute value or the square of the absolute value.
  • Figure 21 provides an example of analytical signaling.
  • the inverse Fourier operation result of each time domain symbol can be further subjected to noise filtering processing, that is, the large value is reserved, and the small value is all set to zero. This step is optional.
  • the following is a schematic diagram of C'(q-1) and C'(q) before and after the processing of two symbols before and after the 0 dB two-path channel.
  • 22(a) and 22(b) are the previous time domain symbols before the noise filtering process in the embodiment, and the inverse Fourier results of the time domain body signals in the latter time domain symbol are respectively under the channel of 0 dB two paths.
  • the waveform diagrams of Fig. 23(a) and Fig. 23(b) are the previous time domain symbols after the noise filtering process in the embodiment, and the inverse Fourier results of the time domain body signals in the latter time domain symbol are respectively 0 dB. Waveforms under the channel of the path.
  • the transmitted signaling can be derived from the corresponding shift value, and the transmission signaling is generated by the frequency domain sequence of the time domain main signal A corresponding to the time domain symbol in the preamble symbol, and then the S value is generated.
  • Each effective subcarrier is phase modulated, that is, equivalent to the cyclic shift of the time domain OFDM symbol after IFFT.
  • C'(q) is cyclically shifted by V to obtain C"(q, V), and the left shift or the right shift can be selected.
  • the right shift is selected.
  • the predetermined processing operation between the plurality of time domain symbols is only an example, and is not necessarily limited to conjugate multiplication, and the multiplication and accumulation operation may not need to do N FFT points, only a few large The value is OK.
  • the Accum(V) with the largest absolute value is selected, and the corresponding V value can infer the transmission signal of the frequency domain modulation frequency offset real-time cyclic shift value.
  • the method of the calculation is not limited here.
  • the flow of the parsing signaling is included in the receiving method of the preamble corresponding to the first example of the parsing signaling, and the receiving method of the preamble is omitted in the second example of the parsing signaling.
  • the parsing step of the signaling includes the following specific steps:
  • Each time domain symbol is based on an inverse Fourier selection result selected from one or more inverse Fourier results in a first predetermined selection rule for directly solving signaling information and/or utilizing multiple
  • a predetermined processing operation is performed between the time domain symbols, and the signaling information is solved based on the obtained inter-symbol processing result.
  • the time domain main signal A corresponding to each time domain symbol is subjected to FFT operation to obtain a frequency domain signal, and the frequency domain signal is taken out of the effective subcarrier value, and each effective subcarrier is
  • the symbol is known to be a valid subcarrier corresponding to each frequency domain known sequence of the frequency domain signaling set and the channel estimation value is subjected to a predetermined mathematical operation (conjugate multiplication/division operation), and then an IFFT operation is performed, and each frequency domain has been
  • the sequence of knowledge corresponds to an IFFT result, and each symbol is selected based on the result of one or more IFFTs, and one of the most reliable IFFT selection results for each symbol is selected according to a predetermined selection rule, and optionally predetermined processing is performed, which can be selected based on IFFT.
  • Transmission signaling including different frequency domain sequence transmission signaling and/or frequency domain modulation frequency offset real-time cyclic shift value signaling).
  • the known frequency domain signaling set refers to all possible sequences of the frequency domain sequence in which the time domain main signal A corresponding to each time domain symbol is filled to the subcarrier before the frequency domain subcarrier modulation phase, for example, the transmitting end has a modulation PN operation, where Refers to all possible frequency domain sequences after modulating the PN.
  • the second example of the parsing signaling can be simplified as follows:
  • a predetermined mathematical operation conjuggate multiplication/division operation
  • an IFFT operation is performed, and based on the result of the IFFT, and optionally performing predetermined processing, the signal transmission can be directly obtained.
  • the value may also be reused for processing results between multiple symbols, and further delay correlation between symbols is used to solve the transmitted signaling (frequency domain modulation frequency offset real-time cyclic shift value signaling).
  • the main time domain signal A is known to transmit the frequency domain pre-generated subcarrier without the phase modulation before the expression is A k , and the phase modulated expression is
  • H k is the channel frequency domain response, and after receiving the channel, the received frequency domain data expression is
  • each time domain symbol will get the result of t IFFT operations, and the result will be taken as an absolute value.
  • the most reliable judgment method in the predetermined selection rule may be the peak maximum or the peak-to-average ratio.
  • the step of selecting the peak-to-average ratio of the T results as the operation result of the symbol may be omitted, and each of them is directly taken.
  • the unique IFFT result of the symbol is sufficient.
  • Figure 24 is a waveform diagram of the inverse Fourier result of a time domain body signal in Example 2 of the analytical signaling of the present invention at AWGN. As shown in the figure, the maximum value of the discrete inverse Fourier transform appears as 633 with a value of 0.9996.
  • the time domain cyclic shift value can be directly derived by using the position of the peak with the largest absolute value in C(q), thereby introducing the frequency domain modulation frequency offset immediately.
  • the signal transmitted by the domain cyclic shift value for example, the position corresponding to the maximum peak in the above figure is 633. (There is no limit to the calculation method here.)
  • the transmitted signaling can be derived from its corresponding shift value.
  • the transmission signaling satisfies the frequency domain sequence of the time domain main signal A corresponding to the time domain symbol in the predetermined transmission rule of the transmitting end, and then generates a pre-generated subcarrier according to the S value, and performs phase modulation on each valid subcarrier according to the S value, that is, the equivalent It is implemented by cyclically shifting the time domain OFDM symbols after IFFT.
  • C'(q) is cyclically shifted by V to obtain C"(q, V), and left shift or right shift can be selected.
  • right shift is selected, V ⁇ [0, N FFT -1],
  • the above is only an example, and it is not limited to the conjugate multiplication.
  • the multiplication and accumulation operation does not need to do N FFT points, and only a few large value points can be used.
  • the Accum(V) with the largest absolute value is selected, and the corresponding V value corresponds to the transmitted signaling.
  • the channel estimation value H est used in the above introduction the first time domain symbol of the preamble symbol is generally known, and the time domain/frequency domain estimation method is available from the known sequence, such as receiving frequency in the frequency domain.
  • the domain signal is obtained in a known frequency domain sequence.
  • the channel estimation of the subsequent symbols, after the decoding of the previous symbol is completed, assumes that the decoding is correct, and uses the previous decoding information as the transmission information, and performs channel estimation again in the time domain/frequency domain, and the previous channel estimation. As a result, a specific operation is performed to obtain a new channel estimation result, which is used for channel estimation of the signaling of the next symbol.
  • the first example of the analysis signaling and the IFFT operation mentioned in the second example of the analysis signaling have a specific mathematical relationship based on the IFFT operation and the FFT operation, and if the FFT is equivalently implemented, the present invention is not deviated from the present invention. content.
  • Both the first example of the parsing signaling and the second example of the parsing signaling use coherent demodulation, and the noise is eliminated in the time domain, and has very robust performance in multipath channels and low SNR.
  • the present invention avoids amplification noise compared to the prior art method of utilizing direct and differential symbol frequency domain direct difference in the background art.
  • the relative displacement of the arithmetic structure of the front and rear symbols is further utilized to solve the problem of misjudgment when the channel estimation is not accurate or the interference path occurs for various reasons.
  • the flow of the parsing signaling in the method for receiving the preamble symbol is included in the method for receiving the preamble symbol corresponding to the first example of the parsing signaling, and the example of the parsing signaling is The overall overview of the method of receiving the leading symbols is omitted.
  • the known frequency domain signaling set of each time domain symbol is first extended to a known frequency domain signaling extension set. Then, the time domain main signal A corresponding to each time domain symbol in the preamble symbol is subjected to FFT operation to obtain a frequency domain signal, and the frequency domain signal is taken out of the value of the effective subcarrier, and each effective subcarrier and the known frequency domain signal are obtained. After performing predetermined mathematical operations (conjugate multiplication/division) on the subcarriers corresponding to the known sequence of each frequency domain of the extended set and the channel estimation values, the accumulated values of the operation values on all the subcarriers are added to obtain an accumulated value.
  • predetermined mathematical operations conjuggate multiplication/division
  • the most reliable one is selected according to the second predetermined selection rule, and the frequency domain known sequence of the corresponding known frequency domain signaling extension set is used to derive the modulation frequency offset value, thereby Obtaining the transmission signal of the frequency domain modulation frequency offset in the real-time cyclic shift, and simultaneously extracting the known frequency domain sequence in the known frequency domain signaling set before the original unexpanded, and solving the different sequences in the frequency domain Signaling of the transmission.
  • the uniquely known frequency domain sequence for each symbol is first extended to a known frequency domain signaling extension set. Then, the time domain main signal A corresponding to each time domain symbol is subjected to FFT operation to obtain a frequency domain signal, and the frequency domain signal is taken out of the value of the effective subcarrier, and each effective subcarrier and the known frequency domain signaling extension set are obtained. After performing a predetermined digital operation (conjugate multiplication/division operation) on the subcarriers corresponding to the known sequence of each frequency domain and the channel estimation value, the accumulated values of the operation values on all the subcarriers are added to obtain an accumulated value.
  • a predetermined digital operation conjuggate multiplication/division operation
  • the most reliable one is selected, and the frequency domain known sequence of the corresponding known frequency domain signaling extension set is used to derive the modulation frequency offset value, thereby obtaining the frequency domain modulation frequency offset.
  • the real-time domain cyclic shift transmits signaling.
  • the known frequency domain signaling set here refers to the time domain main body signal A corresponding to each time domain symbol in the frequency domain.
  • the carrier modulation phase is pre-filled to all possible sequences of the frequency domain sequence of the subcarriers, such as the modulation PN operation at the transmitting end, here refers to all possible frequency domain sequences after modulating the PN.
  • the frequency domain signaling extension set is obtained by modulating subcarrier phases by all possible frequency offset values corresponding to each known frequency domain sequence in the known frequency domain signaling set, all possible S of which are possible. Modulating the frequency offset value will generate a known sequence of S modulation frequency offsets. For example, if there are T known frequency domain sequences L 1 , L 2 ..., L T in the original known frequency domain signaling set, each known frequency domain sequence L t will be modulated by the S frequency offset value. L t,1 , L t,2 ,..., L t,S, etc. are obtained , respectively. for example:
  • T known frequency domain sequences will be extended to T ⁇ S known frequency domain sequences to form a known frequency domain signaling extension. set.
  • the extended set includes a total of S known frequency domain sequences.
  • N zc be the number of effective subcarriers
  • H est,k be the channel estimation value corresponding to the kth effective subcarrier
  • R k is the received kth
  • the values of the effective subcarriers, L k, t, s are the kth values of the t, s sequences of the known frequency domain sequence extension set.
  • the modulation frequency offset value can be derived, thereby obtaining frequency domain modulation.
  • the signal transmitted by the frequency domain is cyclically shifted; and the known frequency domain sequence in the known frequency domain signaling set before the original unexpanded is extracted by using t, and the transmission is performed by different sequences in the frequency domain. Signaling.
  • the extended set includes a total of S known frequency domain sequences.
  • the modulation frequency offset value can be derived, thereby obtaining the signaling transmitted by the frequency domain modulation frequency offset real-time cyclic shift.
  • the channel estimate H est used in the above introduction the PFC part in the first time domain symbol is generally known, and the time domain/frequency domain estimation method is available from known sequences, such as receiving in the frequency domain.
  • the frequency domain signal is obtained by the known frequency domain sequence, and the channel estimation of the subsequent symbol, when the decoding of the previous symbol is completed, assumes that the decoding is correct, and uses the previous decoding information as the transmission information, and then in the time domain/frequency domain.
  • the channel estimation is performed once, and a specific operation is performed with the previous channel estimation result to obtain a new channel estimation result, which is used for channel estimation of the signaling analysis of the next symbol.
  • the apparatus for receiving a preamble symbol according to the above description is further provided, wherein the receiving means of the preamble symbol of the preamble symbol respectively corresponds to the receiving method of the preamble symbol in the foregoing embodiment, and then the structure of the apparatus has The technical elements and the technical elements may be formed by corresponding conversion of the receiving method, and the description thereof will not be repeated here.

Abstract

本发明提供了一种前导符号的接收方法及装置,其特征在于,包括以下步骤:对接收信号进行处理;判断得到的处理后的信号中是否存在期望接收的前导符号;以及在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息,其中,接收的前导符号包含发送端根据预定生成规则以任意数量第一种三段结构和/或第二种三段结构自由组合生成的至少一个时域符号,第一种三段结构包含:时域主体信号、基于该时域主体信号全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的后缀,第二种三段结构包含:时域主体信号、基于该时域主体信号的全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的超前缀。

Description

前导符号的接收方法及装置 技术领域
本发明涉及通信技术领域,特别涉及前导符号的接收方法及装置。
背景技术
通常为了使OFDM系统的接收端能正确解调出发送端所发送的数据,OFDM系统必须实现发送端和接收端之间准确可靠的时间同步。同时,由于OFDM系统对载波的频偏非常敏感,OFDM系统的接收端还需要提供准确高效的载波频率估计方法,以对载波频偏进行精确的估计和纠正。
目前,OFDM系统中由物理帧组成,每一帧都通常有一个同步帧头,称为前导符号或bootstrap,实现发送端和接收端时间同步。前导符号是OFDM系统的发送端和接收端都已知的符号序列,前导符号做为物理帧的开始,通常包含P1符号。P1符号(preamble)或者bootstrap符号的用途包括有:
1)使接收端快速地检测以确定信道中传输的是否为期望接收的信号;2)提供基本传输参数(例如FFT点数、帧类型信息等),以使接收端可以进行后续接收处理;3)检测出初始载波频偏和定时误差,进行补偿后达到频率和定时同步;4)紧急警报或广播系统唤醒。
现有例如DVB_T2标准中提出了基于已有时域结构的P1符号设计,较好地实现了上述功能。但是,在低复杂度接收算法上仍然有一些局限。例如,在1024、542、或者482个符号的长多径信道时,定时粗同步会发生较大偏差,导致频域上估计载波整数倍频偏出现错误。另外,在复杂频率选择性衰落信道时,例如长多径时,DBPSK差分解码也可能会失效。而且,由于DVB_T2时域结构中没有循环前缀,若和需要进行信道估计的频域结构组合,将造成其频域信道估计性能严重下降的问题。
发明内容
本发明解决的问题是目前DVB_T2标准及其他标准中,DVB_T2时域结构不能适用于相干检测,而且前导符号在复杂频率选择性衰落信道下DBPSK差分解码失效,接收算法检测出现失败概率的问题。
为解决上述问题,本发明实施例提供了以下前导符号的接收方法及装置。
<方法一>
本发明实施例提供了一种前导符号的接收方法,其特征在于,包括以下步骤:对接收信号进行处理;判断得到的处理后的信号中是否存在期望接收的前导符号;以及在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息,其中,接收的前导符号包含发送端根据预定生成规则以任意数量第一种三段结构和/或第二种三段结构自由组合生成的至少一个时域符号,第一种三段结构包含:时域主体信号、基于该时域主体信号全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的后缀,第二种三段结构包含:时域主体信号、基于该时域主体信号的全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的超前缀。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在判断得到的处理后的信号中是否存在期望接收的前导符号及在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含以下任意至少一种步骤:初始定时同步、整数倍频偏估计、精准定时同步、信道估计、解码分析以及小数倍频偏估计。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,利用以下任意至少一种来判断处理后的信号中是否存在期望接收的前导符号:初始定时同步方式、整数倍频偏估计方式、精准定时同步方式、信道估计方式、解码结果分析方式以及小数倍频偏估计方式。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,通过初始定时同步方式初步确定前导符号的位置,基于该初始定时同步的结果,判断处理后的信号中是否存在期望接收的包含三段结构的前导符号。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,通过以下任意初始定时同步方式来初步确定前导符号的位置,第一初始定时同步方式,包含:利用第一预定三段时域结构和/或第二预定三段时域结构中任意两段间的处理关系对处理后的信号进行必要反处理后进行延迟滑动自相关来获取基础累加相关值;当包含至少两个三段结构的时域符号时,将基础累加相关值依据延迟滑动自相关的不同延迟长度进行分组,每一组按照至少两个时域符号特定的拼接关系再进行至少一个符号间延迟关系匹配和/或相位调整后进行数学运算,得到若干个某一延迟长度的最终累加相关值,则当仅有一个三段结构的时域符号时,该最终累加相关值即为基础累加相关值;以及基于最终累加相关值中的至少一个进行延迟关系匹配和/或特定的预定数学运算后,将运算值用于初始定时同步,第二初始定时同步方式,包含:当前导符号中任意三段结构中时域主体信号包含已知信号时,将时域主体信号依照预定N个差分值进行差分运算,并将已知信息对应的时域信号也进行差分运算,再将两者进行互相关得到N组与该N个差分值一一对应的差分相关的结果,基于该N组差分相关的结果进行初始同步,得到处理值,用于初步确定前导符号的位置,其中N≥1,其中,当基于第一初始定时同步方式和第二初始定时同步方式完成时,则将分别所得的处理值再进行加权运算,基于该加权运算值完成初始定时同步。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在第一初始定时同步方式中,包含:其中,当包含两个三段结构的时域符号时,将基础累加相关值依据延迟滑动自相关的不同延迟长度进行分组,每一组按照两个时域符号特定的拼接关系再进行一个符号间延迟关系匹配和/或相位调整后进行数学运算,得到若干个某一延迟长度的最终累加相关值。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在第一初始定时同步方式中,还包括对每一个延迟滑动自相关过程中实施的应有延迟数进行一定范围内的调整,形成调整后的多个延迟数,再依据所得调整后多个延迟数及应有延迟数进行多个延迟滑动自相关,选择最明显的那个相关结果作为基础累加相关值。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,N个差分值依据以下任意至少一种预定差分选定规则选出,用以进行初始同步:第一预定差分选定规则包含:在与已知信息相对应的本地时域序列的长度范围内,选择任意若干个不同差分值;第二预定差分选定规则包含:在与已知信息相对应的本地时域序列的长度范围内,选择满足等差数列的若干个不同值。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当通过第一预定差分选定规则选定出N个差分值时,则将一一对应的获得的N组差分相关的结果进行加权绝对值相加或平均;或当通过第一预定差分选定规则或第二预定差分选定规则选定出时,则将基于选定出的N组差分相关的结果进行加权矢量相加或平均。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,利用第一初始定时同步方式和/或第二初始定时同步方式的结果进行小数倍频偏估计,当利用第一初始定时同步方式的结果时,该结果包含用依据第一种三段结构和/或第二种三段结构中时域主体信号和前缀对应的的处理关系进行预定处理运算得到的最终累加相关值,由该累加相关值计算出第二小数倍频偏值;第一初始定时同步方式的结果还包含依据第一种三段结构和/或第二种三段结构中时域主体信号和后缀/超前缀对应的的处理关系以及前缀和后缀/超前缀对应的的处理关系,进行预定处理运算得到的两个最终累加相关值,依据该两个累加相关值计算出第三小数倍频偏值,可基于得到的第二小数倍频偏值和 第三小数倍频偏值的任意至少之一来进行小数倍频偏估计,当利用第一初始定时同步方式和第二初始定时同步方式的结果时,基于第一小数倍频偏值、第二小数倍频偏值以及第三小数倍频偏值中的任意之一或者任意至少之二的组合来得到小数倍频偏值。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,基于初始定时同步方式的结果,若检测出该结果满足预设条件,则判断为确定处理后的信号中存在期望接收的包含三段结构的前导符号,预设条件包含:基于初始定时同步结果进行特定运算,然后判断运算结果的最大值是否超过预定阈值门限,或进一步结合整数倍频偏估计结果和/或解码结果来确定。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,前导符号的接收方法还包括:利用初始定时同步方式的结果进行小数倍频偏估计。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含:利用前导符号的全部或部分时域波形和/或该前导符号的全部或部分时域波形经过傅里叶变换后得到的频域信号,以解出该前导符号所携带的信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在预定生成规则中,所生成的前导符号包含:不分先后排列的若干个具有第一种三段结构的时域符号和/或若干个具有第二种三段结构的时域符号的自由组合,第一种三段结构包含:时域主体信号、基于该时域主体信号的后部生成的前缀、以及基于该时域主体信号的后部生成的后缀,第二种三段结构包含:时域主体信号、基于该时域主体信号的后部生成的前缀、以及基于该时域主体信号的后部生成的超前缀。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当发送端通过以不同起点从时域主体信号中截取部分信号以生成后缀或超前缀时来实现传输不同的信令信息时,基于以下来解析信令:前缀与后缀或超前缀、和/或时域主体信号与后缀或超前缀两两之间所具有的相同内容的不同延迟关系。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,所解析的信令包含紧急广播。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,前导符号通过频域符号经处理得到,该频域符号的生成步骤包含:将所分别生成的固定序列和信令序列以预定排列规则进行排列后填充至有效子载波上。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,解出前导符号所携带的信令信息的步骤,包含:通过包含全部或者部分信令序列子载波的信号与信令序列子载波集合或该全部或者部分信令序列子载波集合对应的时域信号进行运算,以解出该前导符号中由信令序列子载波所携带的信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,利用至少一个时域符号所包含的固定子载波序列进行精准定时同步。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当前导符号中时域主体信号或所对应的频域主体信号包含已知信号时,前导符号的接收方法还包括进行以下任意方式的整数倍频偏估计:根据初始定时同步的结果,截取至少包含全部或部分时域主体信号的一段时域信号,采用扫频方式对所截取出的该段时域信号以不同频偏进行调制后,得到若干N个与频偏值一一对应的扫频时域信号,将由已知频域序列进行傅里叶反变换所得的 已知时域信号与每个扫频时域信号进行滑动互相关后,比较N个互相关结果的最大相关峰值,其最大的那个互相关结果所对应的扫频时域信号被调制的频偏值即为整数倍频偏估计值;或将根据初始定时同步的结果截取主体时域信号长度的时域信号进行傅里叶变换,将所得的频域子载波在扫频范围内按不同移位值进行循环移位,截取有效子载波所对应的接收序列,对该接收序列和已知频域序列进行预定运算再进行反变换,基于若干组移位值的一一对应的若干组反变换结果进行选择,得到最优的移位值,利用位值和整数倍频偏估计值之间的对应关系,获得整数倍频偏估计值。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,信道估计的步骤,包含:任意在时域进行和/或在频域进行:当上一个时域主体信号译码结束后,利用所得到译码信息作为已知信息,在时域/频域再一次进行信道估计,并和之前的信道估计结果进行某种特定运算,得到新的信道估计结果,用于下一个时域主体信号的信令解析的信道估计。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,接收的前导符号是基于对频域子载波进行处理得到,该频域子载波基于频域主体序列生成,在生成频域子载波的步骤中,包含:用于生成频域主体序列的预定序列生成规则;和/或对频域主体序列进行处理用于生成频域子载波的预定处理规则,预定序列生成规则包含以下任意一种或两种组合:基于不同的序列生成式产生;和/或基于同一序列生成式产生,进一步将该产生的序列进行循环移位,预定处理规则包含:对基于频域主体序列进行处理所得的预生成子载波按照频偏值进行相位调制。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在前导符号所包含的至少一个时域符号中第一个包含已知信息情况下,利用该已知信号进行精准定时同步。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在解析信令信息步骤中,利用发送端所发送的频域主体序列的所有可能的不同根值和/或不同频域移位值而产生的已知信令序列集合以及所有可能的频域调制频偏值来解析信令。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当前导符号中时域主体信号或所对应的频域主体信号包含已知信号时,前导符号的接收方法还包括进行以下任意方式的整数倍频偏估计:根据初始定时同步的结果,截取至少包含全部或部分时域主体信号的一段时域信号,采用扫频方式对所截取出的该段时域信号以不同频偏进行调制后,得到若干N个与频偏值一一对应的扫频时域信号,将由已知频域序列进行变换所得的已知时域信号与每个扫频时域信号进行滑动互相关后,比较N个互相关结果的最大相关峰值,其最大的那个互相关结果所对应的扫频时域信号被调制的频偏值即为整数倍频偏估计值;或将根据初始定时同步的结果截取主体时域信号长度的时域信号进行傅里叶变换,将所得的频域子载波在扫频范围内按不同移位值进行循环移位,截取有效子载波所对应的接收序列,对该接收序列和已知频域序列进行预定运算再进行反变换,基于若干组移位值的一一对应的若干组反变换结果进行选择,得到最优的移位值,利用位值和整数倍频偏估计值之间的对应关系,获得整数倍频偏估计值。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,信道估计的步骤,包含:任意在时域进行和/或在频域进行:当上一个时域主体信号译码结束后,利用所得到译码信息作为已知信息,在时域/频域再一次进行信道估计,并和之前的信道估计结果进行某种特定运算,得到新的信道估计结果,用于下一个时域主体信号的信令解析的信道估计。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,完成整数倍频偏估计后,对频偏进行补偿后进而对传输信令进行解析。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当频域子载波的生成过程中,采用基于不同的序列生成式产生和/或基于同一序列生成式产生进一步将该产生的序列进行循环移位时,将频域信令子载波与信道估计值以及所有可能的频域主体序列进行特定数学运算进行信令解析,其中,特定数学运算包含以下任意一种:结合信道估计的最大似然相关运算;或将信道估计值对频域信令子载波进行信道均衡后,再与所有可能的频域主体序列进行相关运算,选择最大相关值作为信令解析的译码结果。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当频域子载波的生成过程中采用对预生成子载波以频偏值进行相位调制或反傅里叶变换后在时域中进行循环移位。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,包含:将每个时域符号的时域主体信号进行傅里叶变换后提取出有效子载波;将每个有效子载波与该时域符号的已知频域信令集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算后反傅里叶变换,对应于每一个频域已知序列得到一个反傅里叶结果;以及每个时域符号基于以第一预定选定规则从一个或多个反傅里叶结果中所选出的反傅里叶选定结果,再将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,对反傅里叶选定结果进行取绝对值或取绝对值平方,再来以第一预定选定规则选出反傅里叶选定结果。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,第一预定选定规则包含以峰值最大进行选定和/或者以峰均比最大进行选定。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,还包括:滤噪处理步骤,包括:可将每个时域符号的反傅里叶结果进行滤噪处理,将大值保留,小值全部置零。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,所解析出的信令信息包含:不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当时域符号的已知频域序列集仅有1个已知序列,则第一预定选定规则为直接取其每个时域符号的唯一反傅里叶结果作为反傅里叶选定结果,再将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,预定数学运算包含:共轭相乘或除法运算。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息的步骤中,包含:将后一个时域符号进行循环移位,与前一个时域符号进行相乘或共轭相乘并累加得到累加值,找出对应于所有预定频偏值或循环位移值中累加值最大的移位值,由该移位值推算出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,该步骤包含:将每个时域符号的已知频域信令集扩展为已知频域信令扩展集;将每个时域符号的时域主体信号进行傅里叶变换后提取出有效子载波;将每个有效子 载波与已知频域信令扩展集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算得到运算值,再进行所有有效子载波上运算值的累加;以及以第二预定选定规则从多组累加值选取出一个累加值,利用其对应的已知频域信令扩展集的频域已知序列,推得频域调制频偏值即时域循环移位所传输信令,并推得所对应的原始未扩展前的已知频域信令集里的已知频域序列,解出由频域不同序列所传输的信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,第二预定选定规则包含以取绝对值最大值或者是取实部最大值进行选定。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,已知频域信令扩展集通过如下方式得到:将已知频域信令集里的每一个已知频域序列进行对应的按所有可能频偏值调制子载波相位,其所有可能的S个调制频偏值,则将生成S个调制频偏后的已知序列。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当该符号未扩展的已知频域信令集仅有一个已知序列,即仅依靠频域调制频偏s即时域循环移位值传输信令信息时,则已知频域信令扩展集包含共S个已知频域序列,利用调制频偏s其对应的已知频域信令扩展集的频域已知序列,即可推得调制频偏值,得到频域调制频偏即时域循环移位传输的信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,预定数学运算包含:共轭相乘或除法运算。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中, 该步骤包含:将每个时域符号的时域主体信号进行傅里叶变换后提取出有效子载波;将每个有效子载波与该时域符号的已知频域信令集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算后反傅里叶变换,对应于每一个频域已知序列得到一个反傅里叶结果;以及每个时域符号基于以第一预定选定规则从一个或多个反傅里叶结果中所选出的反傅里叶选定结果,再将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,还包括,对反傅里叶选定结果进行取绝对值或取绝对值平方,再来以第一预定选定规则选出反傅里叶选定结果。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,第一预定选定规则包含以峰值最大进行选定和/或者以峰均比最大进行选定。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,还包括,滤噪处理步骤,包括:可将每个时域符号的反傅里叶结果进行滤噪处理,将大值保留,小值全部置零。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,所解析出的信令信息包含:不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当时域符号的已知频域序列集仅有1个已知序列,则第一预定选定规则为 直接取其每个时域符号的唯一反傅里叶结果作为反傅里叶选定结果,再将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,预定数学运算包含:共轭相乘或除法运算。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息的步骤中,包含:将后一个时域符号进行循环移位,与前一个时域符号进行相乘或共轭相乘并累加得到累加值,找出对应于所有预定频偏值或循环位移值中累加值最大的移位值,由该移位值推算出信令信息。
<方法二>
另外,本发明的实施例中还提供了一种前导符号的接收方法,其特征在于,包括如下步骤:对接收信号进行处理;判断得到的处理后的信号中是否存在期望接收的前导符号;以及在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息,其中,接收的前导符号通过频域符号经处理得到,该频域符号的生成步骤包含:将所分别生成的固定序列和信令序列以预定排列规则进行排列后填充至有效子载波上。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,利用以下任意至少一种来判断处理后的信号中是否存在期望接收的前导符号:初始定时同步方式、整数倍频偏估计方式、精准定时同步方式、信道估计方式、解码结果分析方式以及小数倍频偏估计方式。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在判断得到的处理后的信号中是否存在期望接收的前导符号;以及在判断为是时确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤 中,包含以下任意至少一种步骤:初始定时同步、整数倍频偏估计、精准定时同步、信道估计、解码分析以及小数倍频偏估计。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,利用固定序列进行整数倍频偏估计或信道估计,包括以下步骤:根据所确定该前导符号的位置,截取包含全部或部分固定子载波的信号;将该包含全部或部分固定子载波的信号与频域固定子载波序列或该频域固定子载波序列对应的时域信号进行运算,以得到整数倍频偏估计或信道估计。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,利用前导符号中至少一个时域符号所包含的固定子载波序列进行精准定时同步。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含:利用前导符号的全部或部分时域波形和/或该前导符号的全部或部分时域波形经过傅里叶变换后得到的频域信号,以解出该前导符号所携带的信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当前导符号中时域主体信号或所对应的频域主体信号包含已知信号时,前导符号的接收方法还包括进行以下任意一种整数倍频偏估计的步骤:根据初始定时同步的结果,截取至少包含全部或部分时域主体信号的一段时域信号,采用扫频方式对所截取出的该段时域信号以不同频偏进行调制后,得到若干N个与频偏值一一对应的扫频时域信号,将由已知频域序列进行反变换所得的已知时域信号与每个扫频时域信号进行滑动互相关后,比较N个互相关结果的最大相关峰值,其最大的那个互相关结果所对应的扫频时域信号被调制的频偏值即为整数倍频偏估计值;或将根据初始定时同步的结果截取主体时域信号长度的时域信号进行傅里叶变换,将所得的频域子载波在扫频范围内按不同移位值 进行循环移位,截取有效子载波所对应的接收序列,对该接收序列和已知频域序列进行预定运算再进行反傅里叶变换,基于若干组移位值的一一对应的若干组反变换结果进行选择,得到最优的移位值,利用位值和整数倍频偏估计值之间的对应关系,获得整数倍频偏估计值。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,解出前导符号所携带的信令信息的步骤,包含:通过包含全部或者部分信令序列子载波的信号与信令序列子载波集合或该信令序列子载波集合对应的时域信号进行运算,以解出该前导符号中由信令序列子载波所携带的信令信息。
<方法三>
另外,本发明的实施例还提供了一种前导符号的接收方法,其特征在于,包括如下步骤:对接收信号进行处理;判断得到的处理后的信号中是否存在期望接收的前导符号;以及在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息,其中,接收的前导符号是基于对频域子载波进行反傅里叶变换得到,该频域子载波基于频域主体序列生成,在生成频域子载波的步骤中,包含:用于生成频域主体序列的预定序列生成规则;和/或对频域主体序列进行处理用于生成频域子载波的预定处理规则,预定序列生成规则包含以下任意一种或两种组合:基于不同的序列生成式产生;和/或基于同一序列生成式产生,进一步将该产生的序列进行循环移位,预定处理规则包含:对基于频域主体序列进行处理所得的预生成子载波按照频偏值进行相位调制。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在判断得到的处理后的信号中是否存在期望接收的前导符号以及在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含以下任意至少一种步骤:初始定时同步、整数倍频偏估计、精准定时同步、信道估计、解码分析以及小数倍频偏估计。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,利用以下任意至少一种来判断处理后的信号中是否存在期望接收的前导符号:初始定时同步方式、整数倍频偏估计方式、精准定时同步方式、信道估计方式以及解码结果分析方式。进行小数倍频偏估计。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当前导符号中至少一个时域符号中第一个包含已知信息时,利用该已知信号进行精准定时同步。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,信道估计的步骤,包含:任意在时域进行和/或在频域进行:当上一个时域主体信号译码结束后,利用所得到译码信息作为发送信息,在时域/频域再一次进行信道估计,并和之前的信道估计结果进行某种特定运算,得到新的信道估计结果,用于下一个时域主体信号的信令解析的信道估计。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当前导符号中时域主体信号或所对应的频域主体信号包含已知信号时,前导符号的接收方法还包括进行以下任意方式的整数倍频偏估计:采用扫频方式对所截取出的全部或部分时域信号以不同频偏进行调制后,得到若干个扫频时域信号,将由已知频域序列进行反变换所得的已知时域信号与每个扫频时域信号进行滑动相关后,将最大相关峰值的扫频时域信号所调制的频偏值即为整数倍频偏估计值;或将根据初始定时同步的位置结果截取主体时域信号进行傅里叶变换所得的频域子载波在扫频范围内按不同移位值进行循环移位,截取有效子载波所对应的接收序列,对该接收序列和已知频域序列进行预定运算再进行反变换,基于若干组移位值的反变换结果得到移位值和整数倍频偏估计值之间的对应关系,由此获得整数倍频偏估计值。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,完成整数倍频偏估计后,对频偏进行补偿后进而对传输信令进行解析。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当频域子载波的生成过程中,采用基于不同的序列生成式产生和/或基于同一序列生成式产生进一步将该产生的序列进行循环移位时,将频域信令子载波与信道估计值以及所有可能的频域主体序列进行特定数学运算进行信令解析,其中,特定数学运算包含以下任意一种:结合信道估计的最大似然相关运算;或将信道估计值对频域信令子载波进行信道均衡后,再与所有可能的频域主体序列进行相关运算,选择最大相关值作为信令解析的译码结果。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含:利用前导符号的全部或部分时域波形和/或该前导符号的全部或部分时域波形经过傅里叶变换后得到的频域信号,以解出该前导符号所携带的信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当频域子载波的生成过程中采用对预生成子载波以频偏值进行相位调制或反傅里叶变换后在时域中进行循环移位。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,包含:将每个时域符号的时域主体信号进行傅里叶变换后提取出有效子载波;将每个有效子载波与该时域符号的已知频域信令集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算后反傅里叶变换,对应于每一个频域已知序列得到一个反傅里叶结果;以及每个时域符号基于以第一预定选定规则从一个或多个反傅里叶结果中所选出的反傅里叶选定结果,再将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,还包括,对反傅里叶选定结果进行取绝对值或取绝对值平方,再来以第一预定选定规则选出反傅里叶选定结果。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,第一预定选定规则包含以峰值最大进行选定和/或者以峰均比最大进行选定。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,还包括,滤噪处理步骤,包括:可将每个时域符号的反傅里叶结果进行滤噪处理,将大值保留,小值全部置零。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,所解析出的信令信息包含:不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当时域符号的已知频域序列集仅有1个已知序列,则第一预定选定规则为直接取其每个时域符号的唯一反傅里叶结果作为反傅里叶选定结果,再将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,预定数学运算包含:共轭相乘或除法运算。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解 出信令信息的步骤中,包含:将后一个时域符号进行循环移位,与前一个时域符号进行相乘或共轭相乘并累加得到累加值,找出对应于所有预定频偏值或循环位移值中累加值最大的移位值,由该移位值推算出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,该步骤包含:将每个时域符号的已知频域信令集扩展为已知频域信令扩展集;将每个时域符号的时域主体信号进行傅里叶变换后提取出有效子载波;将每个有效子载波与已知频域信令扩展集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算得到运算值,再进行所有有效子载波上运算值的累加;以及以第二预定选定规则从多组累加值选取出一个累加值,利用其对应的已知频域信令扩展集的频域已知序列,推得频域调制频偏值即时域循环移位所传输信令,并推得所对应的原始未扩展前的已知频域信令集里的已知频域序列,解出由频域不同序列所传输的信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,第二预定选定规则包含以取绝对值最大值或者是取实部最大值进行选定。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,已知频域信令扩展集通过如下方式得到:将已知频域信令集里的每一个已知频域序列进行对应的按所有可能频偏值调制子载波相位,其所有可能的S个调制频偏值,则将生成S个调制频偏后的已知序列。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当该符号未扩展的已知频域信令集仅有一个已知序列,即仅依靠频域调 制频偏s即时域循环移位值传输信令信息时,则已知频域信令扩展集包含共S个已知频域序列,利用调制频偏s其对应的已知频域信令扩展集的频域已知序列,即可推得调制频偏值,得到频域调制频偏即时域循环移位传输的信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,预定数学运算包含:共轭相乘或除法运算。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,该步骤包含:将每个时域符号的时域主体信号进行傅里叶变换后提取出有效子载波;将每个有效子载波与该时域符号的已知频域信令集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算后反傅里叶变换,对应于每一个频域已知序列得到一个反傅里叶结果;以及每个时域符号基于以第一预定选定规则从一个或多个反傅里叶结果中所选出的反傅里叶选定结果,再将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,预定发送规则包含:发送的每个时域符号中时域主体信号对应的频域主体序列进行处理得到生成预生成子载波后,在频域中以预定频偏值S对每个有效子载波进行相位调制或反傅里叶变换后在时域中进行循环移位。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,还包括,对反傅里叶选定结果进行取绝对值或取绝对值平方,再来以第一预定选定规则选出反傅里叶选定结果。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,第一预定选定规则包含以峰值最大进行选定和/或者以峰均比最大进行选定。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,还包括,滤噪处理步骤,包括:可将每个时域符号的反傅里叶结果进行滤噪处理,将大值保留,小值全部置零。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,所解析出的信令信息包含:不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,当时域符号的已知频域序列集仅有1个已知序列,则第一预定选定规则为直接取其每个时域符号的唯一反傅里叶结果作为反傅里叶选定结果,再将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,预定数学运算包含:共轭相乘或除法运算。
可选地,在所提供的前导符号的接收方法中,进一步地具有这样的特征,其中,将多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息的步骤中,包含:将后一个时域符号进行循环移位,与前一个时域符号进行相乘或共轭相乘并累加得到累加值,找出对应于所有预定频偏值或循环位移值中累加值最大的移位值,由该移位值推算出信令信息。
<装置一>
另外,本发明的实施例中还提供了一种前导符号的接收装置,其特征在于,包括:接收处理单元,对接收信号进行处理;判断单元,判断得到的处理后的 信号中是否存在期望接收的前导符号;以及定位解析单元,在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息,其中,接收处理单元所接收的前导符号包含发送端根据预定生成规则以任意数量第一种三段结构和/或第二种三段结构自由组合生成的至少一个时域符号,第一种三段结构包含:时域主体信号、基于该时域主体信号全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的后缀,第二种三段结构包含:时域主体信号、基于该时域主体信号的全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的超前缀。
<装置二>
另外,本发明的实施例中还提供了一种前导符号的接收装置,其特征在于,包括:接收处理单元,对接收信号进行处理;判断单元,判断得到的处理后的信号中是否存在期望接收的前导符号;以及定位解析单元,在判断为是时确定该前导符号的位置并解出该前导符号所携带的信令信息,其中,接收处理单元所接收的前导符号通过频域符号经处理得到,该频域符号的生成步骤包含:将所分别生成的固定序列和信令序列以预定排列规则进行排列后填充至有效子载波上。
<装置三>
另外,本发明的实施例中还提供了一种前导符号的接收装置,其特征在于,包括:接收单元,对接收信号进行处理;判断单元,判断得到的处理后的信号中是否存在期望接收的前导符号;以及定位解析单元,在判断为是时确定该前导符号的位置并解出该前导符号所携带的信令信息,其中,接收单元所接收的前导符号是基于对频域子载波进行反傅里叶变换得到,该频域子载波基于频域主体序列生成,在生成频域子载波的步骤中,包含:用于生成频域主体序列的预定序列生成规则;和/或对频域主体序列进行处理用于生成频域子载波的预定 处理规则,预定序列生成规则包含以下任意一种或两种组合:基于不同的序列生成式产生;和/或基于同一序列生成式产生,进一步将该产生的序列进行循环移位,预定处理规则包含:对基于频域主体序列进行处理所得的预生成子载波按照频偏值进行相位调制。
前导符号可以但不限于包含一种或者两种三段结构的时域符号。
与现有技术相比,本发明技术方案具有以下有益效果:
根据本发明实施例提供的前导符号的接收方法及装置,当时域主体信号是OFDM符号时,基于时域主体信号的全部或一定长度的部分作为前缀,可实现相干检测,解决了非相干检测性能下降以及在复杂频率选择性衰落信道下DBPSK差分解码失效的问题,并且基于上述截取的所述循环前缀长度的时域主体信号的全部或部分生成调制信号,使得生成的前导符号具有良好的小数倍频偏估计性能和定时同步性能。
进一步地,可根据传输效率和鲁棒性的要求选择发送具有三段结构的时域符号做为前导符号;当前导符号包含至少一个三段结构的符号时,基于同一个OFDM符号主体,还可以通过利用从所述第一部分中选取所述第二部分的不同起点来传输信令,比如紧急广播,hook信息、发射机标志信息或者其他传输参数。通过设计两种不同的三段结构,来标识紧急广播;当传送二个三段结构的符号做为前导符号时,其两个OFDM符号主体不同,且采用的三段结构也恰好不同,在此基础上,通过两个三段结构的先后顺序排列来标识紧急广播。通过两个符号不同的三段结构,可以避免在某些特殊长度多径信道下出现的小偏估计失效的问题。
更进一步地,利用三段具有部分相同内容的结构(作为前导符号)保证了在接收端利用延迟滑动自相关可以得到明显的峰值。并且,在生成该前导符号过程中,设计时域主体信息的调制信号可以避免接收端受到连续波干扰或者单频干扰,或者出现与调制信号长度等长的多径信道,或者接收信号中保护间隔 长度和调制信号长度相同时出现误检测峰值。
附图说明
图1是本发明的实施例中第一种三段结构的时域符号的示意图;
图2是本发明的实施例中第二种三段结构的时域符号的示意图;
图3是本发明的实施例中基于第一种三段结构的时域符号的获取处理的示意图;
图4是本发明的实施例中基于第二种三段结构的时域符号的获取处理的示意图;
图5是本发明实施例中以第一种拼接方法拼接的第一种三段结构和第二种三段结构的结构示意图;
图6是本发明实施例中以第二种拼接方法拼接的第一种三段结构和第二种三段结构的结构示意图;
图7是本发明的实施例中基于第一种拼接方法的获取处理的示意图;
图8是本发明的实施例中基于第二种拼接方法的获取处理的示意图;
图9是本发明的实施例中频域结构一按照第一预定交错排列规则的排列示意图;
图10是本发明的实施例中频域结构一按照第二预定交错排列规则的排列示意图;
图11是本发明实施例中根据第三预定关联规则以第一移位值进行相对整体移位的示意图。
图12是本发明实施例中根据第三预定关联规则以第二移位值进行相对整体移位的示意图。
图13是本发明实施例中与一个时域符号对应的频域结构二的排列示意图。
图14是本发明的实施例中前导符号的接收方法中对应于三段结构CAB的待检测相关结果的逻辑示意图。
图15是本发明的实施例中前导符号的接收方法中对应于三段结构BCA的待检测相关结果的逻辑示意图。
图16是本发明的实施例中C-A-B-B-C-A拼接方法时获取初步定时同步待检测结果的逻辑运算框图;
图17是本发明的实施例中B-C-A-C-A-B拼接方法时获取初步定时同步待检测结果的逻辑运算框图;
图18是本发明的实施例中利用4个时域符号的4组累加相关值获取初步定时同步结果的逻辑运算框图;
图19是本发明的实施例中利用2个时域符号的2组累加相关值获取初步定时同步结果的逻辑运算框图;
图20是本发明的实施例中一个时域主体信号的反傅里叶结果在AWGN下的波形图;
图21就提供了实施例中一个时域主体信号的反傅里叶结果在0dB两径的信道下的波形图;
图22(a)是实施例中滤噪处理之前的前一个时域符号中时域主体信号的反傅里叶结果在0dB两径的信道下的波形图;
图22(b)分别是实施例中滤噪处理之前的后一个时域符号中时域主体信号的反傅里叶结果在0dB两径的信道下的波形图;
图23(a)是实施例中滤噪处理之后的前一个时域符号中时域主体信号的反傅里叶结果在0dB两径的信道下的波形图;
图23(b)分别是实施例中滤噪处理之后的后一个时域符号中时域主体信号的反傅里叶结果在0dB两径的信道下的波形图;以及
图24是本发明的解析信令的例二中一个时域主体信号的反傅里叶结果在AWGN下的波形图。
具体实施方式
{生成方法}
在本实施例中,提供了一种前导符号的生成方法,该前导符号的生成方法包括如下步骤:
基于时域主体信号生成具有下述三段结构的时域符号;以及
基于至少一个时域符号生成前导符号。
图1是本发明的实施例中第一种三段结构的时域符号的示意图。图2是本发明的实施例中第二种三段结构的时域符号的示意图。
所生成的前导符号包含:
具有第一种三段结构的时域符号;或
具有第二种三段结构的时域符号;或
不分先后排列的若干个具有所述第一种三段结构的时域符号和/或若干个具有第二种三段结构的时域符号的自由组合。
通过图1和图2对上述前导符号中所包含的时域符号所具有的时域结构进行以下说明。该时域结构包含三段结构,该三段结构存在两种情况,第一种三段结构和第二种三段结构。
如图1中所述,第一种三段结构为:时域主体信号(A部分)、根据从时域主体信号截取的部分时域主体信号所生成的前缀(C部分)、基于该部分时域主体信号的部分或全部所生成的调制信号(B部分)。
如图2中所述,第二种三段结构为:时域主体信号(A部分)、根据从时域主体信号截取的部分时域主体信号所生成的前缀(C部分)、根据该部分时域主体信号所生成的超前缀(B部分)。
具体来说,将一段时域主体信号(图中以A标示)作为第一部分,齐第一 部分的最末端按照预定获取规则取出一部分,按照第一预定处理规则进行处理并复制到该第一部分的前部来生成第三部分(图中以C标示)从而作为前缀,同时,从第一部分的后部按照预定获取规则取出一部分,按照第二预定处理规则进行处理并复制到该第一部分的后部或者处理并复制到前缀的前部来生成第二部分(图中以B标示)从而分别相应作为后缀或超前缀,从而,分别生成如图1所示的B作为后缀的第一种三段结构(CAB结构)和B作为超前缀的如图2所示的第二种三段结构(BCA结构)。
关于从第一部分中获取出第三部分、第二部分后进行处理具体规则来说,第一预定处理规则包括:直接拷贝;或者对所取出部分中的每个采样信号乘以一个相同固定系数或预定不同系数。第二预定处理规则包括:当第一预定处理规则为直接拷贝时进行调制处理;或者当第一预定处理规则为所取出部分中的每个采样信号乘以一个相同固定系数或预定不同系数时也乘以相应的系数后进行调制处理。也就是,当第三部分是直接拷贝作为前缀时,第二部分进行调制处理后再作为后缀或者超前缀,而当第三部分是乘以相应系数时,第二部分也需要进行乘以系数并进行调制处理,再作为后缀或者超前缀。
图3是本发明的实施例中基于第一种三段结构的时域符号的获取处理的示意图。
本实施例中C段为A段的直接拷贝,而B段为A段的调制信号段,如图3所示,比如A的长度为1024,截取C的长度为520,而B的长度为504,其中在对C和B进行一定的处理时,可以对信号的每个采样乘以一个固定的系数,或每个采样乘以一个不同的系数。
B的数据范围不超过C的数据范围,即选择给调制信号段B的那部分A的范围不会超出截取作为前缀C的那部分A的范围。优选地,B的长度和C的长度之和为A的长度。
设NA为A的长度,设LenC为C的长度,LenB为调制信号段B的长度。设 A的采样点序号为0,1,…NA-1.设N1为选择复制给调制信号段第二部分B的起点对应的第一部分A的第一采样点序号,N2为选择复制给调制信号段第二部分B的终点对应的第一部分A的第二采样点序号。其中,第一采样点序号和第二采样点序号满足以下预定约束关系:
N2=N1+LenB-1             (公式1)
通常,对第二部分B段实施的调制为调制频偏,即乘以一个频移序列,调制M序列或其他序列等,本实施中以调制频偏为例,设P1_A(t)是A的时域表达式,则第一种C-A-B三段结构的时域表达式为
Figure PCTCN2015076815-appb-000001
                                                              (公式2)
其中,若时域主体信号为OFDM符号,频移序列的调制频偏值fSH可选取为时域OFDM主体符号对应的频域子载波间隔即1/NAT,其中T为采样周期,NA为时域OFDM主体符号的长度,在本例中,NA为1024,取fSH=1/1024T。且频移序列可任意选择初相,为了使相关峰值尖锐,fSH也可以选择为1/(LenBT)。
如图3所示,NA=1024;LenC=520,LenB=504,N1=520。此时CA段包含相同内容的自相关延迟为NA,CB段包含相同内容的自相关延迟为NA+LenB,而AB段包含相同内容的自相关延迟为LenB
另外的一个实施例,C段的长度和B段完全相同,即B段可看作为C段的完整调整频偏段。
具体地,将循环前缀C拼接在所述时域OFDM符号A的前部作为保护间 隔,并将所述调制信号段B拼接在所述OFDM符号的后部作为调制频偏序列以生成第一种三段结构的时域符号。举例来说,当NA=1024时,具体表达式可如下,
Figure PCTCN2015076815-appb-000002
                                                              (公式3)
图4是本发明的实施例中基于第二种三段结构的时域符号获取处理的示意图。
同理,第二种三段结构时域符号的时域表达式为,注意,为了使得接收端处理方法尽可能一致,因此在B-C-A的结构中,调制频偏值正好与C-A-B结构相反,且调制频偏序列可任意选择初相。
Figure PCTCN2015076815-appb-000003
                                                              (公式4)
如图4所示,NA=1024;LenC=520,LenB=504,N1=504,此时CA段包含相同内容的自相关延迟为NA,BC段包含相同内容的自相关延迟为LenB,而BA段包含相同内容的自相关延迟为NA+LenB
进一步地,当前导符号包含一个三段结构的符号时,无论是包含第一种三段结构,还是包含第二种三段结构,基于同一个OFDM符号主体,还可以通过下述方法来通过时域结构传输信令。
利用从所述第一部分中选取所述第二部分的不同起点来传输信令,比如紧 急广播,hook信息、发射机标志信息或者其他传输参数。
举例来说,对于第一种三段结构,例如,所述预定长度为1024,LenC为512,LenB为256。
其中,N1可取512+i*16 0≤i<16,则可表示16种不同的取法,传输4bit信令参数。不同的发射机可以通过取不同的N1来传输该发射机的对应的标识、同一个发射机也可以通过分时地改变N1来发送传输参数。
又比如,用1比特信令来传输紧急广播标识EAS_flag。
若EAS_flag=1,取N1=512-L,即把NA为1024的OFDM符号的对应序号为512-L~1023-2L的采样点并调制频偏序列后生成B,放到A的后部。
若EAS_flag=0,取N1=512+L,即把NA为1024的OFDM符号的对应序号为512+L~1023的采样点并调制频偏序列后生成B,放到A的后部。
L的取值为8。
具体地,NA=1024,LenC为520,LenB为504,N1=520时表示EAS_flag=0,而N1=504时表示EAS_flag=1;或者N1=504时表示EAS_flag=0,而N1=520时表示EAS_flag=1;
又比如,NA=2048,LenC为520,LenB为504,N1=1544时表示EAS_flag=0,而N1=1528时表示EAS_flag=1;或者N1=1528时表示EAS_flag=0,而N1=1544时表示EAS_flag=1;
除了用从所述第一部分中选取所述第二部分的不同起点来表示紧急广播之外,当前导符号仅包含一种三段结构时,还可以采用不同的三段结构来标识紧急广播。比如可以用发送第一种三段结构C-A-B表示EAS_flag=0,而用第二种三段结构B-C-A表示EAS_flag=1;或者,用发送第一种三段结构C-A-B表示EAS_flag=1,而用第二种三段结构B-C-A表示EAS_flag=0。
前导符号除了包含一种三段结构的时域符号的情况,也可以包含二个三 段结构的时域符号的拼接。当两个时域符号的三段结构相同时,直接将两个三段符号进行拼接;对于两种不同的三段结构,按不同的先后顺序有两种拼接方法。将两种不同的三段结构进行拼接有如下好处:当产生某种特殊延迟的多径所谓危险多径时,前径A段的后部可能正好被后径与A完全相同的C段抵消,造成定时同步性能下降,更严重的是小偏估计无法工作。此时,采用两种不同的三段结构进行拼接,即便在发生危险多径时,仍然可以正常估计小偏。
在本实施例中,前导符号包含不分先后排列的若干个具有所述第一种三段结构的时域符号和/或若干个具有第二种三段结构的时域符号的自由组合,以下本实施例中,以两个三段结构为例子进行说明,且两个三段结构分别采用第一种三段结构和第二种三段结构。
图5是实施例中第一种两个三段结构拼接方法的示意图。图6是实施例中第二种两个三段结构拼接方法的示意图。
分别如图5的时域符号中和图6所示时域符号中,其两个时域主体信号不同,且采用的三段结构也不同,通过两个时域符号的不同先后排序来分别形成如图5中的第一种拼接方法和如图6中的第二种拼接方法。
无论采用哪种拼接方法,这图5和图6中两个时域符号的时域主体信号(即A)可以不同,这样两个符号拼接后传输信令的容量是单个三段结构时域符号的两倍或接近两倍。不作限制的是,前导符号中所包含的至少一个时域符号的时域主体信号之间可不同也可相同。
单个三段结构时域符号的检测利用CB段,CA段和BA段的延迟自相关来获取峰值,在使用两个三段结构时域符号拼接时,为了使得2个三段结构时域符号的自相关值能够相加,获得更鲁棒的性能,则2个三段结构时域符号各自的参数N1(即N1为选择复制给调制信号段B的起点对应的A的采样点序号)需要满足某种关系,设第一个符号的N1为N1_1,第二个符号的N1为N1_2,需要满足N1_1+N1_2=2NA-(LenB+Lenc)。且如果对B段采用的调制是调制频偏 的话,频偏值要正好相反。
用序号1表示C-A-B结构的符号,用序号2表示B-C-A结构的符号。则设P1_A(t)是A1的时域表达式,P2_A(t)是A2的时域表达式,则具有第一种三段结构的时域符号的时域表达式为:
Figure PCTCN2015076815-appb-000004
                                                              (公式5)
则具有第二种三段结构的时域符号的时域表达式为:
Figure PCTCN2015076815-appb-000005
                                                              (公式6)
那么,如图5所示,按第一种拼接方法的拼接后的包含顺次连接的第一种三段结构和第二种三段结构的时域符号的时域表达式为:
Figure PCTCN2015076815-appb-000006
                                                              (公式7)
那么,如图6所示,按第二种拼接方法的拼接后的包含顺次连接的第二种三段结构和第一种三段结构的时域符号的时域表达式为:
Figure PCTCN2015076815-appb-000007
                                                              (公式8)
像上述情况中,当C-A-B结构和B-C-A结构级联时,可以解决危险延迟下小偏估计失效的问题。当危险延迟造成C段和A段抵消时,第一个结构的CB段和第二个结构的BC段仍然可以用来定时同步和估计小偏。
一个优选实施例是,2种三段结构的C段、A段和B段长度相同,NA=1024或2048;LenC=520,LenB=504,仅N1有区别,当NA=1024时N1_1=520,N1_2=504,而当NA=2048时N1_1=1544,N1_2=1528。如图7和图8所示,分别为第一种拼接结果和第二种拼接结果。
当NA=1024时取fSH=1/1024T,当NA=2048时取fSH=1/2048T,则第一种三段结构的时域表达式为
Figure PCTCN2015076815-appb-000008
                                                              (公式9)
或者
Figure PCTCN2015076815-appb-000009
                                                              (公式10)
第二种三段结构的时域表达式为
Figure PCTCN2015076815-appb-000010
                                                              (公式11)
或者
Figure PCTCN2015076815-appb-000011
                                                              (公式12)
图7是本发明的实施例中基于第一种拼接方法获取处理的示意图。图8是本发明的实施例中基于第二种拼接方法获取处理的示意图。
对于前导符号包含2个三段结构的时域符号拼接而成的情况,图7和图8中显示的为2个三段结构分别采用第一种三段结构(CAB)和第二种三段结构(BCA),同样可以依据每个三段结构的时域符号中,从所述第一部分(A部分)中选取所述第二部分(B部分,作为后缀或者超前缀)的不同起点来传输信令。只不过特别地,在由两种不同的三段结构完成拼接时,第一种三段结构时域符号的选取起点N1_1和第二种三段结构时域符号的选取起点N1_2满足某种约束关系:
N1_1+N1_2=2NA-(LenB+Lenc)       (公式13)
比如,如上文所说,用1比特信令来传输紧急广播标识EAS_flag。结合如下表1和具体的表达式来说。
表1预定时域主体信号长度下紧急广播标识和后缀或者超前缀的选取起点的对应表格
Figure PCTCN2015076815-appb-000012
Figure PCTCN2015076815-appb-000013
当EAS_flag=0时,C-A-B三段结构的时域表达式为
Figure PCTCN2015076815-appb-000014
                                                              (公式14)
Figure PCTCN2015076815-appb-000015
                                                              (公式15)
B-C-A三段结构的时域表达式为
Figure PCTCN2015076815-appb-000016
                                                              (公式16)
Figure PCTCN2015076815-appb-000017
                                                              (公式17)
当EAS_flag=1时,C-A-B三段结构的时域表达式为
Figure PCTCN2015076815-appb-000018
                                                              (公式18)
Figure PCTCN2015076815-appb-000019
                                                              (公式19)
B-C-A三段结构的时域表达式为
Figure PCTCN2015076815-appb-000020
                                                              (公式20)
Figure PCTCN2015076815-appb-000021
                                                              (公式21)
对于前导符号包含2个三段结构的时域符号拼接而成的情况,还可以通过两个时域符号的不同先后排序来标识紧急广播。
如上文中说到,在已有两种三段符号的基础上,可以将2个符号进行拼接,当基于第一种拼接方法时,表示系统在发送一般广播服务;当基于第二种拼接方法时,表示系统在发送应急广播服务。也可以基于第一种拼接方法时,表示系统在发送应急广播服务,而基于第二种拼接方法时,表示系统在发送一般广 播服务。
除了上文中介绍的前导符号(preamble)或bootstrap包含:具有第一种三段结构的时域符号;或具有第二种三段结构的时域符号;或具有第一种三段结构和第二种三段结构拼接而成的联合符号;还包括不分先后排列的若干个具有第一种三段结构的时域符号和/或若干个具有第二种三段结构的时域符号的自由组合。即前导符号或bootstrap可仅包含CAB或BCA,也可为若干个CAB或若干个BCA,也可为数量不限制的若干个CAB和若干个BCA的不分先后排列的任意自由组合。需要特别说明的是,本发明的前导符号或bootstrap不限于只包含C-A-B或者B-C-A的结构,也可还包含其他时域结构,比如传统CP结构等。
上文已经提到,当C-A-B结构和B-C-A结构级联时,可以解决危险延迟下小偏估计失效的问题。当危险延迟造成C段和A段抵消时,第一个结构的CB段和第二个结构的BC段仍然可以用来定时同步和估计小偏。因此,优选的实施例中,当前导符号中包含至少2个三段结构的时域符号时,通常至少包含一组C-A-B结构和B-C-A结构的级联。
具体来说,将前导符号所包含至少一个时域符号的数量设置为传送四个符号,下面给出几个较优选的四个时域符号结构,顺次排列为以下几种结构中任意一种:
(1)C-A-B,B-C-A,C-A-B,B-C-A;或
(2)C-A-B,B-C-A,B-C-A,B-C-A;或
(3)B-C-A,C-A-B,C-A-B,C-A-B;或
(4)C-A-B,B-C-A,C-A-B,C-A-B;或
(5)C-A-B,C-A-B,C-A-B,B-C-A;或
(6)C-A-B,C-A-B,C-A-B,C-A-B或
(7)C-A-B,C-A-B,B-C-A,B-C-A。
其中,例如(1)C-A-B,B-C-A,C-A-B,B-C-A这样四个时域符号的结构,把级联的效果发挥最大。例如(2)C-A-B,B-C-A,B-C-A,B-C-A这样四个时域符号的结构,将后续符号A部分的保护间隔拉长,而通常第一个符号为已知信号,故采用C-A-B。
并非限定为四个时域符号,下面我们给出第一个时域符号是C-A-B三段结构,而后面的三段结构全是顺次连接的B-C-A的具体实施例。假定前导符号或bootstrap中包含的第一种或者第二种三段结构总数为M个的时域符号。
则M个三段结构的时域符号拼接后的时域表达式为
                                                              (公式22)
Figure PCTCN2015076815-appb-000022
本发明还提供了一种频域符号的生成方法,以下分别由具有下述的频域结构一的频域OFDM符号和具有下述的频域结构二的频域OFDM符号对该频域符号的生成方法进行说明。
另外,结合上文的三段时域结构来看,存在着这样时、频域之间的对应关系,通常情况下,时域主体信号(A部分)是由频域OFDM符号经傅立叶反变换后形成时域OFDM符号而得到。然而,注意的是,本发明所提供的频域符号的的生成方法,不限于只使用在时域是采用上述如图1至图8中所示的三段结构的符号中,也可以适用于其他任意时域结构的符号。
设P1_X为对应的频域OFDM符号,P1_Xi作离散傅里叶反变换后得到时域OFDM符号:
Figure PCTCN2015076815-appb-000023
              (公式23)
其中,M为有效非零子载波的功率和。
在本发明中,阐述2种不同类型的P1_X的频域结构。
【频域结构一】
首先阐述第一种类型的P1_X的频域结构,定义为频域结构一。针对频域结构一来说,频域符号的生成方法,包括如下步骤:
在频域上分别生成固定序列和信令序列;以及
将所述固定序列和所述信令序列进行排列后填充至有效子载波,用于形成频域符号。
P1_X频域结构一即频域OFDM符号分别包括虚拟子载波、信令序列(称为SC)子载波和固定序列(称为FC)子载波三部分。
对信令序列子载波和固定序列子载波按照预定交错排列规则进行排列后,将虚拟子载波分布在其两侧。该预定交错排列规则包含以下两种规则中的任意一种:
第一预定交错排列规则:呈奇偶交错或者偶奇交错进行排列;以及
第二预定交错排列规则:把一部分信令序列放在奇数子载波,另一部分信令序列放在偶数子载波,且把一部分固定序列放在奇数子载波,另一部分固定序列放在偶数子载波。
第一预定交错排列规则是SC和FC奇偶交错或者偶奇交错排放,这样FC做为导频规则排放;第二预定交错排列规则则需要把部分SC序列放在奇数子载波,剩余SC序列放在偶数子载波;同时需要把部分FC序列放在奇数子载波,剩余FC序列放在偶数子载波,这样避免FC或者SC全部放在奇或者偶子载波上,在某些特殊多径下会全部衰落掉,且这样的排放会给信道估计提高忽略不计的复杂度,因此是更优的选择。
设固定序列的长度为L(即承载固定序列的有效子载波的个数为L)、信令序列的长度为P(即承载信令序列的有效子载波的个数为P),在本实施例 中,L=P。需要说明的是,当固定序列和信令序列的长度不一致时(例如P>L),可以通过补零序列子载波的方式来实现固定序列和信令序列按上述规则交错排列。
图9是本发明的实施例中信令序列子载波、固定序列子载波及虚拟子载波按照第一预定交错排列规则的排列示意图。
如图9所示,本优选的实施方式中,本步骤包括:在有效子载波两侧分别填充一定的零序列子载波以形成预定长度的频域OFDM符号。
与上述时域结构中的时域主体信号A的长度NA为1024所对应,进行傅里叶变换FFT在频域中所形成的长度为NFFT为1024。
以下沿用以NFFT预定长度为1024的例子,零序列子载波的长度的G=1024-L-P,两侧填充(1024-L-P)/2个零序列子载波。例如,L=P=353,则G=318,两侧各填充159个零序列子载波。
按第一预定交错排列规则生成的频域OFDM符号包含以下步骤:
第(11)固定序列生成步骤:固定序列由353个复数组成,其模恒定,所述固定序列子载波的第n个值表示为:
Figure PCTCN2015076815-appb-000024
                   (公式24)
其中,R为FC和SC的功率比值,SCi模恒定为1
Figure PCTCN2015076815-appb-000025
                 (公式25)
固定序列子载波的弧度值ωn通过下述的表2中的第一预定固定子载波弧度值表确定;
表2第一预定固定子载波弧度值表(第一预定交错排列规则)
5.43 2.56 0.71 0.06 2.72 0.77 1.49 6.06 4.82 2.10
5.62 4.96 4.93 4.84 4.67 5.86 5.74 3.54 2.50 3.75
0.86 1.44 3.83 4.08 5.83 1.47 0.77 1.29 0.16 1.38
4.38 2.52 3.42 3.46 4.39 0.61 4.02 1.26 2.93 3.84
3.81 6.21 3.80 0.69 5.80 4.28 1.73 3.34 3.08 5.85
1.39 0.25 1.28 5.14 5.54 2.38 6.20 3.05 4.37 5.41
2.23 0.49 5.12 6.26 3.00 2.60 3.89 5.47 4.83 4.17
3.36 2.63 3.94 5.13 3.71 5.89 0.94 1.38 1.88 0.13
0.27 4.90 4.89 5.50 3.02 1.94 2.93 6.12 5.47 6.04
1.14 5.52 2.01 1.08 2.79 0.74 2.30 0.85 0.58 2.25
5.25 0.23 6.01 2.66 2.48 2.79 4.06 1.09 2.48 2.39
5.39 0.61 6.25 2.62 5.36 3.10 1.56 0.91 0.08 2.52
5.53 3.62 2.90 5.64 3.18 2.36 2.08 6.00 2.69 1.35
5.39 3.54 2.01 4.88 3.08 0.76 2.13 3.26 2.28 1.32
5.00 3.74 1.82 5.78 2.28 2.44 4.57 1.48 2.48 1.52
2.70 5.61 3.06 1.07 4.54 4.10 0.09 2.11 0.10 3.18
3.42 2.10 3.50 4.65 2.18 1.77 4.72 5.71 1.48 2.50
4.89 4.04 6.12 4.28 1.08 2.90 0.24 4.02 1.29 3.61
4.36 6.00 2.45 5.49 1.02 0.85 5.58 2.43 0.83 0.65
1.95 0.79 5.45 1.94 0.31 0.12 3.25 3.75 2.35 0.73
0.20 6.05 2.98 4.70 0.69 5.97 0.92 2.65 4.17 5.71
1.54 2.84 0.98 1.47 6.18 4.52 4.44 0.44 1.62 6.09
5.86 2.74 3.27 3.28 0.55 5.46 0.24 5.12 3.09 4.66
4.78 0.39 1.63 1.20 5.26 0.92 5.98 0.78 1.79 0.75
4.45 1.41 2.56 2.55 1.79 2.54 5.88 1.52 5.04 1.53
5.53 5.93 5.36 5.17 0.99 2.07 3.57 3.67 2.61 1.72
2.83 0.86 3.16 0.55 5.99 2.06 1.90 0.60 0.05 4.01
6.15 0.10 0.26 2.89 3.12 3.14 0.11 0.11 3.97 5.15
4.38 2.08 1.27 1.17 0.42 3.47 3.86 2.17 5.07 5.33
2.63 3.20 3.39 3.21 4.58 4.66 2.69 4.67 2.35 2.44
0.46 4.26 3.63 2.62 3.35 0.84 3.89 4.17 1.77 1.47
2.03 0.88 1.93 0.80 3.94 4.70 6.12 4.27 0.31 4.85
0.27 0.51 2.70 1.69 2.18 1.95 0.02 1.91 3.13 2.27
5.39 5.45 5.45 1.39 2.85 1.41 0.36 4.34 2.44 1.60
5.70 2.60 3.41 1.84 5.79 0.69 2.59 1.14 5.28 3.72
5.55 4.92 2.64              
第(12)信令序列生成步骤:信令序列生成步骤含两种,即下述的第一信令序列生成方式、第二信令序列生成方式。在本实施例中,在频域上生成信令序列可以采用如下两种方式中的任一种,下面详细描述这两种生成信令序列的具体方式。
第一信令序列生成方式:
1.1确定信令序列的长度和个数;
1.2基于所述信令序列的长度和个数确定CAZAC序列生成公式中的root值;其中,信令序列的长度小于或者等于root值,且root值大于或者等于信令序列的个数的两倍。优选地,root值选取为信令序列的长度。
例如,确定序列长度L以及信令个数。比如,要传N个bit,则信令个数num为2N并选择CAZAC序列生成公式中exp(jπqn(n+1)/root)的root值。其中, 序列长度L小于或者等于root值,且root值要大于等于2*num。通常root值为质数。
1.3选择不同的q值产生CAZAC序列,其中q值的个数等于信令序列的个数,且任意两个q值之和不等于root值;且所产生的CAZAC序列需要经过循环移位,循环移位的位数由相应的root值和q值决定。
例如,选择num个不同的q0、q1、……、qnum-1产生CAZAC序列:
s(n)=exp(jπqn(n+1)/root),n=0,...root-1,              (公式26)
经过循环移位后的序列为:
sk(n)=[s(k),s(k+1),...,s(L-1),s(0),...,s(k-1)]             (公式27)
其中,k是循环移位的位数。
需要说明的是,在本实施例中,选出的qi(0≤i≤num-1)必须满足下述条件:任何2个qi、qj(0≤i,j≤num-1)满足qi+qj≠root.
在上述条件下,优先选择使得整体频域OFDM符号PAPR低的序列。且如果L大于等于2*num,优先选择root=L.这样序列的自相关值为零。
1.4根据所确定的信令序列的个数从所有的CAZAC序列中选取所述信令序列。需要说明的是,若L=root,则不需要截取,所得到的CAZAC序列即可作为信令序列。
例如,将num个序列中每一个序列截取长度为L的连续部分序列或者全部序列作为信令序列。
举例来说,信令序列长度L=353,数量num=128,则可选择root为最接近的质数353。q的取值范围为1~352,每个序列循环移位位数的取值范围为1~353。在所有可选的信令序列中,优选出如下128组,其q值和循环移位位分别如下表3的q值取值表和表4的循环移位位数表所示:
表3:q值取值表格
1 9 10 16 18 21 28 29 32 35 49 51 53 54 55
57 59 60 61 65 68 70 74 75 76 77 78 82 84 85
86 88 90 95 96 103 113 120 123 125 126 133 134 135 137
138 140 141 142 145 147 148 150 151 155 156 157 161 163 165
167 170 176 178 179 181 182 184 185 187 194 200 201 204 209
210 217 222 223 224 225 229 232 234 235 237 239 241 244 246
247 248 249 251 252 253 254 255 262 270 272 273 280 282 290
291 306 307 308 309 311 313 314 315 317 320 326 327 330 331
333 336 338 340 342 345 347 349              
表4:循环移位位数表格
105 244 172 249 280 251 293 234 178 11 63 217 83 111 282
57 85 134 190 190 99 180 38 191 22 254 186 308 178 251
277 261 44 271 265 298 328 282 155 284 303 113 315 299 166
342 133 115 225 13 26 326 148 195 145 185 121 58 162 118
151 182 230 39 249 305 309 144 188 181 265 140 212 137 10
298 122 281 181 267 178 187 177 352 4 353 269 38 342 288
277 88 124 120 162 204 174 294 166 157 56 334 110 183 131
171 166 321 96 37 261 155 34 149 156 267 332 93 348 300
245 101 186 117 329 352 215 55              
第二信令序列生成方式:
2.1确定信令序列的长度和个数;
2.2基于所述信令序列的长度和个数确定CAZAC序列生成公式中若干个root值;其中,信令序列的长度小于或者等于所选择的若干个root值中的最小值,且所选择的若干个root值之和大于或者等于信令序列的个数的两倍。优选地,root值选取为信令序列的长度。
例如,确定序列长度L以及信令个数。比如,要传N个bit,则信令个数 num为2N,并选择CAZAC序列生成公式中exp(jπqn(n+1)/root)的若干K个rootk(0≤k≤K-1)。其中,信令序列长度L小于或者等于所有rootk中的最小值,并且若干个rootk的和大于等于2*num,即
Figure PCTCN2015076815-appb-000026
通常rootk值为质数。
2.3针对每一个root值,选择不同的q值产生CAZAC序列,其中q值的个数小于或者等于相应的root值的1/2,且任意两个q值之和不等于相应的root值;且所产生的CAZAC序列需要经过循环移位,循环移位的位数由相应的root值和q值决定。
例如,针对每个rootk(0≤k≤K-1),选择numk个不同的q0、q1
Figure PCTCN2015076815-appb-000027
产生CAZAC序列exp(jπqn(n+1)/rootk),n=0,...rootk-1。其中,
Figure PCTCN2015076815-appb-000028
Figure PCTCN2015076815-appb-000029
在本第二信令序列生成方式中,针对每一个root值,选择不同的q值产生CAZAC序列,以及所产生的CAZAC序列需要经过循环移位的方式可以参照上述方式1的描述,在此不再赘述。
需要说明的是,在本实施例中,选出的qi(0≤i≤numk-1)必须满足下述条件:任意2个qi、qj(0≤i,j≤numk-1)满足qi+qj≠rootk
在上述条件下,优先选择使得整体频域OFDM符号PAPR低的序列。且可优先选择其中一个root=L。这样该root产生的序列的自相关值为零。
2.4根据所确定的信令序列的个数从得到的每一个CAZAC序列中选取所述信令序列。需要强调的是,若其中某个root=L,则根据选取为信令序列的长度的root值所产生的CAZAC序列确定所述信令序列。
例如,将num个序列中每一个序列循环截取长度为L的连续部分序列或者 全部序列作为信令序列。
举例来说,例如,L=353,num=128。按第一信令序列生成方式优先选择root为353。然后,选择q=1,2,…128。满足qi+qj≠353,(0≤i,j≤128-1)。最后,将每个序列按长度353进行循环截取。
又例如,L=350,num=256。按第二信令序列生成方式选择root1为353、root2=359,然后针对root1=353,选出q=1,2,3,…128共128个序列,qi+qj≠353。然后针对root2=359,选出q=100,101,102,…227共128个序列,总共256个序列.。最后将每个序列按长度为353进行循环截取。
以下,由第(12)信令序列生成的步骤具体根据第二信令序列生成方式共生成512个信令序列,即Seq0,Seq1,…Seq511,每个信令序列Seq0~Seq511再分别取相反数,即-Seq0~-Seq511,接收端利用相关值的正负来区分是正序列还是反序列,即共传送10bit信令信息,512个信令序列又可以进一步分为4组,每组128个信令序列,每组128个信令序列生成子步骤如下:
第1子步骤:生成基准序列zci(n),其为长度为N的Zadoff-Chu序列zc(n):
Figure PCTCN2015076815-appb-000030
                 (公式28)
第2子步骤:通过拷贝两次zci(n)产生长度为2N的
Figure PCTCN2015076815-appb-000031
Figure PCTCN2015076815-appb-000032
         (公式29)
第3子步骤:从
Figure PCTCN2015076815-appb-000033
中某特定的起始位置ki截取长度为353的序列,产生SCi(n):
SCi(n)=zci *(ki-1+n),n=0~352           (公式30)
每组信令序列Seq0~Seq127的N值,ui和移位值ki分别由各个相应的下述表5至表8预定信令序列参数表确定。
第一组序列Seq0~Seq127的N值,ui和移位值ki如下表5所示。
表5:第一组信令序列参数
Figure PCTCN2015076815-appb-000034
第二组序列Seq128~Seq255的生成步骤和第一组序列相同,其N值,ui和移位值ki如下表6所示。
表6:第二组信令序列参数
Figure PCTCN2015076815-appb-000035
第三组序列Seq256~Seq383的生成步骤和第一组序列相同,其N值,ui和移位值ki如下表7所示。
表7:第三组信令序列参数
Figure PCTCN2015076815-appb-000036
Figure PCTCN2015076815-appb-000037
第四组序列Seq384~Seq511的生成步骤和第一组序列相同,其N值,ui和移位值ki下表8所示。
表8:第四组信令序列参数
Figure PCTCN2015076815-appb-000038
第(13)排列填充步骤,将由所述(11)步骤和所述(12)步骤所得到的固定序列和信令序列按奇偶交错排放,填充虚拟子载波后,按如下公式形成所述频域OFDM符号,
Figure PCTCN2015076815-appb-000039
             (公式31)
图10是本发明的实施例中信令序列子载波、固定序列子载波及虚拟子载波按照第二预定交错排列规则的排列示意图。
如图10所示,把图中位于虚线左侧的前半部分的信令序列放在奇数子载波,图中虚线右侧的另一半部分的信令序列放在偶数子载波,且位于虚线左侧的前半部分固定序列放在偶数子载波,把位于虚线右侧的后部分固定序列放在奇数子载波。即P1_X0,P1_X1,…,P1_X1023按第二预定交错排列规则产生,在前半段SC放奇载波,FC放偶载波,而后半段SC放偶载波,FC放奇载波,将前后半部分的信令序列、固定序列的奇偶位置相交换。这样的固定序列子载波
Figure PCTCN2015076815-appb-000040
信令序列子载波
Figure PCTCN2015076815-appb-000041
所处的奇偶位置可以互换,对传输性能无任何影响。
填充虚拟载波即零序列子载波时,左右两侧填充的零序列子载波长度也可以不同,但不宜相差过多。
下面继续给出按第二预定交错排列规则优化生成的频域符号的具体实施例。按第二预定交错排列规则生成的频域OFDM符号包含以下步骤:
第(21)固定序列生成步骤,该固定序列生成步骤与上述第(11)固定序列生成步骤中相同,仅固定序列子载波弧度值ωn的取值通过第二预定固定子载波弧度值表来确定;其中,第二预定固定子载波弧度值表通过如下表9所示:
表9固定子载波弧度值表(按第二预定交错排列规则)
0.63 2.34 5.57 6.06 0.55 5.68 2.20 1.58 2.23 4.29
1.80 3.89 4.08 2.41 5.06 0.10 4.49 4.15 4.99 6.18
0.86 4.31 3.08 0.73 1.67 5.03 4.26 1.73 5.58 2.74
5.06 1.23 1.67 1.31 2.19 5.90 2.13 3.63 3.90 0.73
4.13 5.90 5.00 1.78 6.10 2.45 2.00 3.61 1.72 5.90
4.07 0.39 4.72 2.73 4.67 3.56 4.13 3.07 3.74 4.87
1.54 4.28 1.88 2.96 3.07 4.13 1.97 5.69 4.45 2.07
6.05 4.88 3.39 2.55 5.83 1.86 1.65 4.23 0.46 3.24
1.39 0.19 0.66 4.13 4.83 2.26 2.19 3.06 5.66 0.66
5.19 5.04 4.62 3.64 0.66 3.52 1.18 4.18 5.93 5.51
1.05 2.18 5.87 1.27 0.92 0.66 5.75 0.16 5.04 0.54
5.68 0.13 4.76 0.56 1.57 1.59 4.50 3.18 0.82 3.84
4.39 5.53 2.25 3.20 4.04 6.03 4.41 0.32 1.39 5.06
4.67 3.20 4.63 0.88 6.00 3.99 0.31 3.72 4.17 3.37
4.77 0.30 4.85 2.65 0.88 3.13 1.77 6.05 0.46 1.93
4.25 1.47 6.12 1.18 3.19 3.00 2.88 5.43 1.01 2.96
2.16 1.17 4.77 6.07 5.32 3.55 1.64 4.35 5.10 3.87
2.79 4.57 0.51 3.27 2.42 1.52 1.40 0.19 0.35 4.96
6.04 4.90 5.47 5.55 1.40 1.91 4.62 4.22 2.11 4.14
2.33 2.75 2.68 2.06 4.86 0.34 0.47 3.13 2.97 0.05
5.75 1.51 6.22 2.48 5.10 5.20 2.18 2.31 4.29 3.09
3.93 5.47 3.22 1.84 4.67 1.35 3.04 0.60 0.62 5.09
6.04 5.39 2.71 2.47 1.86 2.69 1.75 4.94 5.98 1.08
5.99 3.84 3.67 5.53 1.59 5.60 1.22 5.35 4.44 2.72
5.97 5.08 2.32 0.13 4.52 2.18 1.36 5.72 4.76 2.98
5.30 1.71 4.31 2.05 1.68 4.61 3.86 2.52 5.36 2.39
3.29 1.47 6.05 0.48 5.57 1.29 4.88 5.97 0.53 0.88
5.43 2.12 3.97 2.61 2.51 0.50 6.00 5.86 5.35 1.15
5.38 4.42 5.05 0.96 2.41 4.84 0.79 4.99 0.51 1.32
5.09 1.33 2.83 2.27 4.36 0.53 5.89 4.98 5.33 2.12
2.35 0.59 1.94 1.65 4.44 2.99 4.37 0.01 1.64 0.08
5.34 4.09 2.14 3.31 3.69 1.38 5.95 3.31 2.44 4.81
4.03 4.80 0.39 3.28 4.57 0.30 4.66 2.21 4.22 2.20
3.98 4.78 3.97 6.17 5.59 2.78 5.92 3.61 1.41 0.88
5.24 5.47 2.38 2.42 3.22 5.38 5.02 5.10 3.06 2.43
1.51 4.52 4.85              
第(22)信令序列生成步骤,该信令序列生成步骤与上述第(12)信令序列生成步骤相同,
第(23)排列填充步骤,由第(21)步骤和第(22)步骤所得到的信令序列和固定序列按奇偶再偶奇交错排列后,左右两侧填充零载波后,按如下公式形成频域OFDM符号,
Figure PCTCN2015076815-appb-000042
    (公式32)
对于将2个三段结构的时域符号拼接而形成的联合符号,其两个时域主体信号的时域OFDM符号的结构的频域OFDM符号生成步骤,包含以上述任意信令序列生成步骤或固定序列生成步骤或任意第一预定交错排列规则或第二预定交错排列规则外,另外,该两个三段结构的时域符号所对应的频域OFDM符号结构还可以满足任意以下三个预定关联规则中的至少一个:
第一预定关联规则:两个时域OFDM符号各自采取相同的信令序列集。比如按上述单个符号传输10比特的话,这样总的传输容量为20比特。
第二预定关联规则:第二个时域OFDM符号的固定序列保持和第一个时域OFDM符号的固定序列相同。
第三预定关联规则:第二个时域OFDM符号中包含固定序列和信令序列的有效子载波位置是第一个时域OFDM符号中有效子载波位置的整体的左移或者右移,且移位值通常控制在0-5的范围内。
图11和图12分别是两个时域主体信号所对应的频域符号根据第三预定关 联规则以第一移位值和第二移位值的进行相对整体移位的示意图。图11中的第一移位值采用1、图12中的第二移位值采用2。
包含多个三段结构的联合式的时域符号中,以两个三段结构为例,第一个三段结构中的时域主体信号A1和第二个三段结构中的时域主体信号A2的频域符号的生成优选实施例如下:
联合前导符号中第一个时域符号的时域主体信号A1所对应的频域符号和上述介绍的按第二预定交错排列规则生成的普通前导符号中的频域符号完全相同,FC和SC序列及频域摆放位置及填充零载波完全相同。
联合前导符号中第二个时域符号的时域主体信号A2所对应的频域符号和前面介绍的按第二预定交错排列规则生成的普通前导符号的FC和SC序列相同,且A2所对应频域符号的有效子载波位置为A1所对应频域符号整体左移一位。即
Figure PCTCN2015076815-appb-000043
     (公式33)
【频域结构二】
以下对具有下述的频域结构二的频域OFDM符号对该频域符号的生成方法进行说明。阐述第二种类型的P1_X的频域结构,定义为频域结构二。针对频域结构二来说,频域符号的生成方法,包括如下步骤:
以预定序列生成规则生成频域主体序列;和/或
对频域主体序列以预定处理规则进行处理生成频域符号,
其中,预定序列生成规则包含以下任意一种或两种组合:
基于不同的序列生成式产生;和/或
基于同一序列生成式产生,进一步将该产生的序列进行循环移位,
预定处理规则包含:对基于频域主体序列进行处理所得的预生成子载波按照预定频偏值进行相位调制。
图13是本发明的实施例的前导符号中一个时域符号所对应的频域结构二的排列示意图。
如前述的前导符号包含至少一个时域符号,与该时域符号对应的频域子载波是基于频域主体序列得到。
通过图13对频域子载波的生成进行说明。频域子载波包含用于生成频域主体序列的预定序列生成规则和/或对频域主体序列进行处理用于生成频域子载波的预定处理规则。
针对预定序列生成规则来说,频域主体序列的生成过程较为灵活,该预定序列生成规则包含以下任意一种或两种组合:基于不同的序列生成式产生;和/或基于同一序列生成式产生,进一步将该产生的序列进行循环移位。本实施例中,采用恒包络零自相关序列(CAZAC序列)来实现,也就是说,上述不同的序列生成式通过赋予同一CAZAC序列不同根值得到,也可以是,上述同一序列生成式通过赋予CAZAC序列同一根值得到。
频域主体序列基于一个或者多个CAZAC序列生成,频域主体序列具有预定序列长度NZC。该预定序列长度NZC不大于时域主体信号具有的傅里叶变换长度NFFT
对频域主体序列进行处理填充步骤,总体来说包括:参照预定序列长度NZC将频域主体序列映射成正频率子载波和负频率子载波;参照傅里叶变换长度NFFT在正频率子载波和负频率子载波外边缘填充预定个数的虚拟子载波和直流子载波;以及将所得子载波进行循环左移,使得零子载波对应于反傅里叶变换的第一个位置。
在此,列举基于一个CAZAC序列生成的例子。
首先生成NZC长度的频域主体序列(Zadoff-Chu,序列,ZC),是CAZAC序列的一种,
设序列公式为:
Figure PCTCN2015076815-appb-000044
                                                              (公式34)
注意NZC可以等于或小于Nroot,即可由某一根值的完整的Zadoff-Chu序列完整或截短产生,然后可选择对这ZC序列调制一个同样长度的PN序列,得到ZC_M序列,将ZC_M序列分成两部分,左半部分长度为
Figure PCTCN2015076815-appb-000045
映射到负频率部分,右半部分长度为
Figure PCTCN2015076815-appb-000046
映射到正频率部分,NZC可选择某一自然数,不超过A段FFT长度;此外,在负频率的边缘,补上
Figure PCTCN2015076815-appb-000047
数目的零,而在正频率的边缘,补上
Figure PCTCN2015076815-appb-000048
数目的零,为虚拟子载波;因此,该特定序列是由
Figure PCTCN2015076815-appb-000049
个零,
Figure PCTCN2015076815-appb-000050
个PN调制的ZC序列,1个直流子载波,
Figure PCTCN2015076815-appb-000051
个PN调制的ZC序列和
Figure PCTCN2015076815-appb-000052
个零顺序组成;有效子载波数目为NZC+1。
具体地来说频域主体序列的生成过程,比如序列公式
Figure PCTCN2015076815-appb-000053
可选取若干个不同根值q,对于每个根值q生成的序列,又可再进行不同的循环移位而得到更多序列,通过这2种方式任意之一或之二来传输信令.
比如,取256个根值q,得到256个序列,即可传输8个比特,基于2^8=256,且移位值设定为1024,则256个中的每个序列又可以进行0-1023的移位,即每个序列通过1024种移位又实现了10比特的信令传输,基于2^10=1024,因而共 可传输8+10=18比特信令。
这些信令映射到比特字段,所传输的信令可包含用于指示物理帧的帧格式参数和/或用于指示紧急广播内容,其中,帧格式参数如:帧数目,帧长度,后续信令符号的带宽,数据区域的带宽,信令符号的FFT大小和保护间隔长度,信令符号的调制和编码参数等。
上述预定序列生成规则中的循环移位可放在对ZC序列进行PN序列调制之前进行,也可以放在PN序列调制之后进行,另外,用于对各个所述时域主体信号对应的所述频域主体序列进行所述PN调制的PN序列之间相同或不相同。
已知的,物理帧结构包含前导符号和数据区域,其中前导符号可包含:由物理层格式控制部分PFC和物理层内容控制部分PCC。
其中,若至少一个时域符号中第一个时域符号的时域主体信号相对应地采用预先已知的频域主体序列,则该频域主体序列和对应的频偏值不用于传输信令,而后续时域符号中的物理层格式控制部分PFC来传输信令。
最后一个时域OFDM符号所用的频域主体序列(ZC序列)与第一个OFDM符号所用的频域主体序列(ZC序列)的相位相差180度,这用来指示PFC的最后一个时域OFDM符号;PFC中的第一个时域OFDM符号所采用的ZC序列,一般为某长度无循环移位的根序列,而在该长度下,ZC序列有一个集合,因此本发明选用此集合中某一序列,这可以指示某一信息,例如版本号或者指示数据帧中传输的业务类型或模式;此外,利用第一个时域主体信号中对应的所述根值和/或用于进行PN调制的PN序列的初始相位传输信息,PN的初始相位也有一定的信令能力,例如指示版本号。
在此,列举基于多个CAZAC序列生成的例子。
每个CAZAC序列分别具有相应子序列长度LM,对每个CAZAC序列按照上述预定序列生成规则生成具有子序列长度LM的子序列,将多个子序列拼接为具有预定序列长度NZC的频域主体序列。
具体来说,在频域有效子载波的生成上,由M个CAZAC序列组成,设M 个CAZAC序列的长度分别为L1,L2,...LM,且满足
Figure PCTCN2015076815-appb-000054
每个CAZAC序列的生成方法和上述相同,仅增加一步骤,在生成M个CAZAC序列后,拼接成长度为NZC的序列,可选择经PN序列调制后形成ZC_M,再进行频域交织后,形成新的ZC_I,再填放在上述相同的子载波位置,左半部分长度为
Figure PCTCN2015076815-appb-000055
映射到负频率部分,右半部分长度为
Figure PCTCN2015076815-appb-000056
映射到正频率部分,NZC可选择某一自然数,不超过A段FFT长度;此外,在负频率的边缘,补上
Figure PCTCN2015076815-appb-000057
数目的零,而在正频率的边缘,补上
Figure PCTCN2015076815-appb-000058
数目的零,为虚拟子载波;因此,该特定序列是由
Figure PCTCN2015076815-appb-000059
个零,
Figure PCTCN2015076815-appb-000060
个PN调制的ZC序列,1个直流子载波,
Figure PCTCN2015076815-appb-000061
个PN调制的ZC序列和
Figure PCTCN2015076815-appb-000062
个零顺序组成,其中,调制PN这一步骤也可以放在频域交织之后进行。
子载波位置填充也可采取其他处理填充步骤,这里不做限定。
将经过上述处理填充所得子载波进行循环左移,进行前半后半频谱互换后,类似于Matlab中的fftshift,即把零子载波对应于离散反傅里叶变换的第一个位置,得到预定长度NFFT的频域OFDM符号的预生成子载波。
进一步地,在本实施的频域子载波生成过程中,除了较优选地采用上述预定序列生成规则,还可较优选地采用于对频域主体序列进行处理以生成频域子载波的预定处理规则。本发明不限定采用该预定处理规则和预定序列生成规则中任意一种或两个来形成频域子载波。
预定处理规则包含:对预生成子载波按照频偏值S进行相位调制,其中,该预生成子载波是通过上述对频域主体序列进行处理填充、循环左移等步骤得到的。在该预定处理规则中,同一时域主体信号A所对应的频域子载波利用同 一频偏值S对该频域子载波中每个有效子载波进行相位调制,不同时域主体信号A所对应的频域子载波利用的频偏值不同S。
针对预定处理规则具体来说,比如原OFDM符号的子载波表达式设为:
a0(k)  k=0,1,2,...NFFT-1,
                                                              (公式35)
则按某一频偏值比如s对每个子载波进行相位调制的表达式如下:
Figure PCTCN2015076815-appb-000063
                                                              (公式36)
其中,零载波相乘的操作实际无需进行,只需对有效子载波操作即可。频偏值s可选择的范围为[-(NFFT-1),+(NFFT-1)]的整数,该频偏值s基于时域主体信号具有的傅里叶变换长度NFFT确定,其不同的取值可以用于传输信令。
应注意的是,上述按频偏值S对每个预生成子载波进行相位调制的实现方法也可在时域上实现。等效于:将原始未调制相位的频域OFDM符号经IFFT变换得到时域ODFM符号,可将时域OFDM符号进行循环移位后生成时域主体信号A,通过不同的循环移位值来传输信令。在本发明中,在频域中按某一频偏值对每个有效子载波进行相位调制来进行描述,其显而易见的时域相等效操作方法也在本发明之内。
综上所述,本实施例在频域子载波的生成过程中,可以基于频域主体序列选择进行上述预定序列生成规则(1a)和预定序列生成规则(1b)以及预定处理规则(2)中的任意一个或者至少两个的自由组合。
举例来说,采用预定序列生成规则(1a)的前导符号的生成方法来传输信令。
比如上例所描述根值q取256种,每个根值q的循环移位值取0-1023,则可传送8+10=18比特信令。
再比如,举例来说,用预定序列生成规则(1a)和预定处理规则(2)的前导符号的生成方法来传输信令。
根值q取2种,时域OFDM符号长度为2048,取1024种移位值,以2为 间隔,比如0,2,4,6,....2046等,传输1+10=11比特信令。
再比如,举例来说,仅用预定处理规则(2)的前导符号的生成方法。
根值q固定,对频域子载波按不同频偏值S进行相位调制,比如上述NFFT为2048,
Figure PCTCN2015076815-appb-000064
k=0,1,2,...NFFT-1的s取值0,8,16,…2032等,等效于未经相位调制的频域OFDM符号进行IFFT后的时域OFDM符号,进行256种不同移位值的循环移位,以8为间隔,比如0,8,16,…2032等,传输8比特信令。这里,本发明不限定循环移位的左移还是右移,当s为正数时,对应时域循环左移,比如取值为8,对应于时域循环左移8;当s为负数时,对应时域循环右移,比如取值为-8,对应于时域循环右移8。
另外,在上述频域符号的生成方法中,并不限定频域调制频偏值即时域移位值传输信令的方法,即既包含用当前符号绝对移位值直接传输信令,也包含用前后符号的移位值之差来传输信令,这两种方法的信令解析都可以由其中一种显而易见地推出另外一种。同时也不限定信令和移位值的对应关系,发端可自由设定,接收端按既定规则反向推得即可。利用每个符号的移位值绝对值来传信令举例如下:比如共有4个符号,其中第一个符号不传输信令,而第二到第四个符号的要发送的信令值分别是S1,S2,S3。假设以4倍于信令的值来对应移位值,则第二个符号的移位值为4S1,第二个符号的移位值为4S2,第三个符号的移位值为4S3;利用前后符号的移位值差值来传信令举例如下:比如共有4个PFC符号,其中第一个符号不传输信令,而第二到第四个符号的要发送的信令值分别是S1,S2,S3。假设以4倍于信令的值来对应移位值,则第二个符号的移位值为4S1,第二个符号的移位值为4(S1+S2),第三个符号的移位值为4(S1+S2+S3)。
{接收方法}
本实施例中还提供了前导符号的接收方法,该前导符号的接收方法,适用于发送端以预定生成规则所生成的前导符号。
在预定生成规则中,所生成的前导符号包含如本实施例中上述从时域角度所 说明的例如与该第一种三段结构和/或该第二种三段结构涉及的所有的技术要素,和/或包含如本实施例中上述从频域角度所说明的例如与频域结构一和频域结构二涉及所有的技术要素,在此不进行重复赘述,因而简言之,所适用的预定生成规则不失一般性地包含上述从时域角度说明的前导符号的生成方法和从频域角度说明的频域符号的生成方法。
以下针对预定生成规则所生成的前导符号分别满足具有上述三段结构的时域符号、对应于具有上述频域结构一的频域符号、对应于具有上述频域结构二的频域符号,来分别进行前导符号的接收方法的说明。
【前导符号满足具有上述三段结构的时域符号】
本实施例提供了一种前导符号的接收方法,包含以下步骤:
步骤S11:对接收信号进行处理;
步骤S12:判断处理后的信号中是否存在期望接收的上述包含三段结构的前导符号;
步骤S13:在上述判断结果为是的情况下,确定该前导符号位置并解出该前导符号所携带的信令信息,
其中,接收的前导符号包含发送端根据预定生成规则以任意数量第一种三段结构和/或第二种三段结构自由组合生成的至少一个时域符号,
如上述的第一种三段结构包含:时域主体信号、基于该时域主体信号全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的后缀。
如上述的第二种三段结构包含:时域主体信号、基于该时域主体信号的全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的超前缀。
如步骤S11中所述,对接收到的所述物理帧信号进行处理以得到基带信号。通常接收端接收到的信号为模拟信号,因此需要先对其进行模数转换以得到数字信号,再进行滤波、下采样等处理后得到基带信号。需要说明的是,若接收端接收到的是中频信号,在对其经过模数转换处理后还需要进行频谱搬移,然 后再进行滤波、下采样等处理后得到基带信号。
如步骤S12所述,判断所述基带信号中是否存在期望接收的上述包含三段结构的前导符号。
具体来说,首先,接收端将判断接收到的基带信号中是否存在期望接收的前导符号,即接收到的信号是否符合接收标准,例如接收端需要接收DVB_T2标准的数据,则需要判断接收到的信号是否包含DVB_T2标准的前导符号,同理,这里需要判断接收到的信号是否包含C-A-B和/或B-C-A三段结构的时域符号。
在判断得到的所述处理后的信号中是否存在期望接收的所述前导符号及在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中即、上述步骤S12和步骤S13中,包含以下任意至少一种步骤:初始定时同步、整数倍频偏估计、精准定时同步、信道估计、解码分析以及小数倍频偏估计。
可利用以下任意一种方式或者任意至少两种方式自由组合进行可靠度判断,即来判断处理后的信号中是否存在期望接收的前导符号:初始定时同步方式、整数倍频偏估计方式、精准定时同步方式、信道估计方式、解码结果分析方式以及小数倍频偏估计方式。
该步骤S12包含S12-1初始定时同步方式,用于初步确定前导符号在物理帧中的位置,还包含S12-2基于初始定时同步方式的结果,判断所述基带信号中是否存在期望接收的上述包含三段结构的前导符号。初始定时同步方式可采取以下通过下述第(①)初始定时同步方式和第(②)初始定时同步方式中的任意一种或两种组合来完成初始定时同步。
[第(①)初始定时同步方式]
下面具体介绍第(①)初始定时同步方式。第(①)初始定时同步方式包含以下步骤:
利用第一预定三段时域结构和/或第二预定三段时域结构中任意两段间的处理关系对处理后的信号进行必要反处理后进行延迟滑动自相关来获取基础累加 相关值;
当包含至少两个三段结构的时域符号时,将基础累加相关值依据延迟滑动自相关的不同延迟长度进行分组,每一组按照至少两个时域符号特定的拼接关系再进行至少一个符号间延迟关系匹配和/或相位调整后进行数学运算,得到若干个某一延迟长度的最终累加相关值,则当仅有一个三段结构的时域符号时,该最终累加相关值即为基础累加相关值;以及
基于最终累加相关值中的至少一个进行延迟关系匹配和/或特定的预定数学运算后,将运算值用于初始定时同步。
特别地,进行一个或者两个或者多个符号间延迟关系匹配和/或相位调整包含,上述进行一个符号间延迟关系匹配和/或相位调整其实等同于没有任何操作,而进行两个或者多个符号间延迟关系匹配和/或相位调整才包括实际的操作。
其中,依照期望接收的三段结构中的第三部分C、第一部分A以及第二部分B两两之间的处理关系和/或调制关系,对基带信号进行必要的反处理和/或信号解调后进行延迟滑动自相关,得到三段结构中第三部分C和第一部分A之间、第一部分A和第二部分B、和第三部分C和第二部分B之间的三个累加相关值即Uca'(n),Ucb'(n),Uab'(n)中任意一个或任意至少两个。基于至少一个上述的累加相关值得到待检测相关值。
举例来说,假设三段结构为C-A-B结构,
基于第三部分C与第一部分A的延迟关系,将接收信号进行延迟滑动自相关,其延迟相关表达式Uca(n)及延迟相关累加值Uca'(n)如下:
Uca(n)=r(n)r*(n-NA)
Figure PCTCN2015076815-appb-000065
   (公式37-1;37-2)
可选择对Uca'(n)进行能量归一化。
Figure PCTCN2015076815-appb-000066
            (公式38)
基于第二部分B与第三部分C的处理关系及调制频偏值,将接收信号进行延迟滑动自相关并解调频偏,注意其延迟相关表达式Ucb(n)及延迟相关累加值Ucb'(n)如下:
Figure PCTCN2015076815-appb-000067
Figure PCTCN2015076815-appb-000068
      (公式39-1;39-2)
同样可选择对Ucb'(n)进行能量归一化。
基于第二部分B与第一部分A的处理关系及及调制频偏值,将接收信号进行延迟滑动相关,其延迟相关表达式Uab(n)及延迟相关累加值Uab'(n)如下:
Figure PCTCN2015076815-appb-000069
Figure PCTCN2015076815-appb-000070
        (公式40-1;40-2)
同样可选择对Uab'(n)进行能量归一化。
其中,corr_len可取1/fSHT,以避免连续波干扰或者取LenB以使得峰值尖锐。
利用延迟相关累加值Uca'(n)、Ucb'(n)、Uab'(n)进行需要的延迟匹配并进行数学运算,数学运算包含相乘或相加,比如Ucb'(n)·Uab'*(n),或者,
Uca'(n-NA+N1)·Ucb'(n)·Uab'*(n)来得到运算值即待检测相关值1。
图14是本发明的实施例中对应于三段结构CAB的待检测相关结果的逻辑示意图。其中图中的C,A,B分别表示C段,A段和B段信号的长度,且滑动 平均滤波器可以是功率归一化滤波器。其中A为NA,B为LenB,C为LenC
再举例来说,假设三段结构为B-C-A结构,
基于第三部分C与第一部分A的延迟关系,将接收信号进行延迟滑动自相关,其延迟相关表达式Uca(n)及延迟相关累加值Uca'(n)如下:
Uca(n)=r(n)r*(n-NA)
Figure PCTCN2015076815-appb-000071
           (公式41-1;41-2)
可选择对Uca'(n)进行能量归一化。
Figure PCTCN2015076815-appb-000072
         (公式42)
基于第二部分B段与第三部分的C段的处理关系及调制频偏值,将接收信号进行延迟滑动自相关并解调频偏,注意其延迟相关表达式Ucb(n)及延迟相关累加值Ucb'(n)如下:
Figure PCTCN2015076815-appb-000073
Figure PCTCN2015076815-appb-000074
         (公式43-1;43-2)
同样可选择对Ucb'(n)进行能量归一化。
基于第二部分B段与第一部分A段的处理关系及及调制频偏值,将接收信号进行延迟滑动相关,其延迟相关表达式Uab(n)及延迟相关累加值Uab'(n)如下:
Figure PCTCN2015076815-appb-000075
Figure PCTCN2015076815-appb-000076
        (公式44-1;44-2)
同样可选择对Uab'(n)进行能量归一化。
其中,corr_len可取1/fSHT,以避免连续波干扰或者取LenB以使得峰值尖锐。
利用延迟相关累加值Uca'(n)、Ucb'(n)、Uab'(n)进行需要的延迟匹配并进行数学运算,该数学运算包含相加或相乘,比如Ucb'*(n-NA)·Uab'(n),或者,
Uca'(n)·Ucb'*(n-NA)·Uab'(n)来得到运算值即待检测相关值2。
图15是本发明的实施例中对应于三段结构BCA的待检测相关结果的逻辑示意图。
图14和图15中的相同的部分只需要一套接收资源,图示为了清晰表述故分开。其中图中的C,A,B分别表示C段,A段和B段信号的长度,且滑动平均滤波器可以是功率归一化滤波器。其中A为NA,B为LenB,C为LenC
基于待检测相关结果1和/或待检测相关结果2形成初步定时同步的相关值。
进一步地,当发送前导符号同时包含以下两种情况(a)和(b)时,
(a)所述时域主体信号中包含已知信息;
(b)以及检测到所述时域符号具有所述C-A-B三段结构,
通过上述第(①)初始定时同步方式和下述第(②)初始定时同步方式中的任意一种或两种组合来完成初始定时同步。其中当基于两种完成时,则将第(①)初始定时同步方式所得的第一初步同步运算值和第(②)初始定时同步方式所得的第二初步同步运算值再进行加权运算,基于该加权运算值完成初始定时同步。
[第(②)初始定时同步方式]
下面具体介绍第(②)初始定时同步方式。
其中,当任一C-A-B和/或B-C-A的主体信号A包含已知信号比如固定子载波时,或者比如前导符号包含若干个C-A-B和/或B-C-A的三段结构的时域符号, 其中某个时域符号的主体信号A为已知信号时,也就是当所述前导符号中任意三段结构中时域主体信号包含已知信号时,第(②)初始定时同步方式可通过将时域主体信号A依照预定N个差分值进行差分运算,并将已知信息对应的时域信号也进行差分运算,再将两者进行互相关得到N组与该N个差分值一一对应的差分相关的结果,基于该N组差分相关的结果进行初始同步,得到处理值,用于初步确定前导符号的位置,其中N≥1。
下面描述第(②)初始定时同步方式中差分相关的具体过程,首先介绍单组差分相关的过程。
确定差分值,将接收基带数据进行按差分值的差分运算,将已知信息所对应的本地时域序列也进行按差分值的差分运算,然后再将这两个差分运算的结果进行互相关,得到对应于该差分值的差分相关结果。这单组的差分相关结果的运算过程为现有技术。设差分值为D,接收基带数据为rn,每一步具体公式描述如下;
首先,将接收基带数据进行按差分值的差分运算
Figure PCTCN2015076815-appb-000077
                   (公式45)
经过差分运算后,载波频偏带来的相位旋转变成了固定的载波相位ej2πD△f,这里△f表示载波频率偏差。
同时将本地时域序列(比如固定子载波按相应位置填充而其余位置0后做IFFT后得到对应的时域序列)也进行差分运算
Figure PCTCN2015076815-appb-000078
          (公式46)
然后将差分之后的接收数据和本地差分序列进行互相关,得到
Figure PCTCN2015076815-appb-000079
               (公式47)
在系统没有多径,也没有噪声的情况下,
Figure PCTCN2015076815-appb-000080
                   (公式48)
Figure PCTCN2015076815-appb-000081
可以很好地给出相关峰,且峰值不受载波偏差影响。帧同步/定时同步位置利用如下式得到
Figure PCTCN2015076815-appb-000082
                         (公式49)
从上述单组差分相关运算过程可知,差分相关算法可以对抗任意大载波频偏的影响,但是由于先将接收序列进行差分运算,使得信号噪声增强,而且在低信噪比下,噪声增强非常严重,造成信噪比显著恶化。
为了避免上述问题,因此不止单组差分相关运算,可实施多组差分相关,比如N的取值为64,实施64组差分相关,得到
Figure PCTCN2015076815-appb-000083
其中D(0),D(1),…,D(N-1)为选择的N个不同的差分值。
对N个结果进行特定数学运算,得到最终相关结果。
本实施例中,针对多组差分相关(64组)按照预定差分选定规则被选定出的过程,可基于传输系统的性能需求采用以下两种中任意一种:
(1)第一预定差分选定规则:差分值D(i)任意选择N个不同值且满足D(i)<L,其中L为已知信息相对应的本地时域序列的长度。
(2)第二预定差分选定规则:差分值D(i)选择N个为等差数列的不同值且满足D(i)<L,即D(i+1)-D(i)=K,K为满足
Figure PCTCN2015076815-appb-000084
的常整数,其中L为已知信息相对应的本地时域序列的长度。
对这N个结果(64个)进行预定处理运算,得到最终相关结果,这里的预定处理运算的优选实施例有两种,分别进行阐述。
第一种预定处理运算:
差分值D(i)可任意选择N个不同的值,满足D(i)<L。因为,所任意选择的差分值D(i),每组差分相关后的相位ej2πD(i)△fi=0,...,N-1各不相同,不能直接矢量相加,所以仅能够加权绝对值相加或平均。通过以下公式对N个不同的差分相关结果进行预定处理运算,得到最终差分结果。下式为绝对值相加得到最终差分结果的例子。
Figure PCTCN2015076815-appb-000085
          (公式50)
第二种预定处理运算:
差分值D(i)可任意选择N个不同的值,满足D(i)<L,且满足D(i)为等差数列,即D(i+1)-D(i)=K,K为满足
Figure PCTCN2015076815-appb-000086
的常整数。
按此规则选择的差分值,得到如
Figure PCTCN2015076815-appb-000087
的差分相关值后,再将相邻2组差分相关值进行共轭相乘,通过以下公式得到N-1组共轭相乘后的值。
Figure PCTCN2015076815-appb-000088
       (公式51)
因为,通过此共轭相乘将原本每组不同的相位ej2πD(i)△f变成了相同的ej2πK△f,所以,得到的N-1组RMi,m可进行加权矢量相加或平均得到最终差分结果,以得到较之第一种预定处理运算更好的性能。下式为矢量相加得到最终差分结果的例子。
Figure PCTCN2015076815-appb-000089
         (公式52)
需要说明的是,当差分值D(i)是采用上述第二预定差分选定规则情况下,不仅可匹配述第二种预定处理运算中获得共轭相乘值再进行加权矢量相加或平均以得到最终相关结果,还可匹配按照上述第一预定处理运算中直接对至少两个 差分相关结果通过加权绝对值相加或平均以得到最终相关结果。
基于运算Rdc,m得到初始定时同步的相关值。
无论是采用第(①)初始定时同步方式还是第(②)初始定时同步方式,假定接收信号中包含期望的前导符号,都可以利用初始定时同步的相关值的最大值位置的一定范围内的位置来初步确定前导符号在物理帧中的位置。利用此位置对应的值来进一步判定接收信号中是否包含期望的前导符号,或利用该位置再进行后续的整偏估计和/或解码等操作,来进一步接收信号中是否包含期望的前导符号。
在基于上述初始定时同步方式的结果,判断所述处理后信号即基带信号中是否存在期望接收的上述包含三段结构的前导符号。具体包括基于初始定时同步的结果进行检测,若检测的结果满足预设条件,则确定所述基带信号中存在期望接收的包含三段结构的前导符号。进一步地,这里的满足预设条件即可以指单一根据初始定时同步的结果本身满足预设条件确定,也可指仅根据初始定时同步的结果本身不足以确定,再根据后续的其他步骤比如整数倍频偏估计和/或解码结果确定。
假设根据初始定时同步结果直接判定时,可基于是否满足预设条件来判定,该预设条件包含初始定时同步结果进行特定运算,然后判断运算结果的最大值是否超过阈值门限来判定。
特别地,上述第(①)初始定时同步方式的具体实施中,可根据第一种三段结构和第二种三段结构的C部分、A部分以及B部分的两两之间的预定获取规则和/或预定处理规则,得到对应2种三段结构的两组延迟相关累加值,每组3个值,基于这2组中每组的三个延迟相关累加值中的至少一个生成两组待检测相关结果,从而,对此进行检测并判断前导符号中是否包含三段结构以及包含哪一种三段结构。
比如,若第一组待检测相关结果满足预设条件,则确定所述基带信号中存在期望接收的第一种三段结构的前导符号;若第二组待检测相关结果满足预设条件,则确定所述基带信号中存在期望接收的第二种三段结构的前导符号;若发生两组都满足的情况,则表明前导符号中同时包含两种三段结构。
当发送端用从所述第一部分中选取所述第二部分的不同起点来传输信令时,初始定时同步通过以下任意一种或任意两种相自由组合来解析紧急广播:第三部分与第二部分之间相同内容的不同延迟关系;以及第一部分与第二部分之间相同内容的不同延迟关系,以区别发送紧急广播和普通广播。
举例来说,接收端将实施多支路上述步骤S12中所包含的S12-1步骤:初始定时同步方式,用于初步确定前导符号在物理帧中的位置的步骤;再基于多个待检测相关结果判断出是否存在期望接收的前导符号以及所传输的时域信令。
例如,当前导符号利用不同的B从A截取的起点位置N1来传输Q比特信令时,定义上述的某个取值的N1的延迟滑动自相关为一个支路。每个支路包含上述3个延迟相关累加值。接收端同时进行2Q种不同N1取值的上述延迟滑动自相关支路,然后从2Q个U2'(n)·U3'*(n)或Uca'(n-NA+N1)·Ucb'(n)·Uab'*(n)的绝对值中,判断是否存在期望的前导符号。
如果任意一个绝对值都没有超过阈值门限,则表明基带信号中不存在期望接收的信号。比如用N1为504或520来传输1比特紧急警报或广播系统标识时,其中N1=520表示为正常前导符号,N1=504表示为紧急警报或广播系统,则进行2个支路的上述S21-1步骤。
比如,紧急警报广播标志为0的支路,即N1=520,采取:
接收信号延迟1024个采样点与接收信号进行滑动自相关;
接收信号延迟1528个采样点与解调频偏后的接收信号进行滑动自相关;
接收信号延迟504个采样点与解调频偏后的接收信号进行滑动自相关,及
比如,紧急警报广播标志为1的支路,即N1=504,采取:
接收信号延迟1024个采样点与解调频偏后的接收信号进行滑动自相关;
接收信号延迟1544个采样点与解调频偏后的接收信号进行滑动自相关;
接收信号延迟520个采样点与解调频偏后的接收信号进行滑动自相关。
若采用阈值门限的方法作为预设条件来判定、进行检测是否存在期望接收的前导符号的情况下,
若N1=520的支路待检测相关值最大值超过阈值门限,则表明基带信号为期望信号,且前导符号出现,EAS_flag=0;相反,若N1=504的待检测相关值最大值超过阈值门限,则表明EAS_flag=1;若2组都没有超过阈值门限,则表明该基带信号不是期望信号。
当前导符号仅包含第一种三段结构和第二种三段结构中的其中一种来标识非紧急广播,则利用另一种来标识紧急广播,通过以下来进行解析。
步骤S12-1可根据第一种三段结构和第二种三段结构的C段、A段以及B段的两两之间的预定获取规则和/或预定处理规则,得到对应两种三段结构的两个支路的上述S12-1步骤,每支路3个值,且步骤S12-2中包含对这两个支路中每支路的待检测相关值进行检测。其中若第一支路检测结果满足预设条件,则确定所述基带信号中存在期望接收的第一种三段结构,且表明EAS_flag=0;若第二支路检测结果满足预设条件,则确定所述基带信号中存在期望接收的第二种三段结构,且表明EAS_flag=1;若发生两个支路都满足的情况,需要另行判断,比如可以以两组的峰噪比的明显性来进行判断紧急广播。
进一步地,初步完成初始定时同步后,利用第(①)方式和/或第(②)方式的初步定时同步结果还可以进行小数倍频偏估计。
当第(①)初步定时同步方式时,取Uca'(n)中最大值的角度,可算出第2小 偏值,再将Ucb'(n)和Uab'(n)共轭相乘(对应C-A-B结构)或者Uab'(n)和Ucb'(n-NA)共轭相乘(对应B-C-A结构)后,也取最大值对应的角度,可算出第3小偏值。如上图14和图15中逻辑运算框图中的角度用于求小偏的示意部分,可基于第2小偏值,第3小偏值的任意之一和之二来进行小偏估计。
针对小数倍频偏估计的算法,具体举例来说,当采用第(②)初步定时同步方式时,
Figure PCTCN2015076815-appb-000090
取其最大值,对应的相位为ej2πK△f,可算出△f并转换成相应第1小偏值。
当发送前导符号包含第(①))初步定时同步方式和第(②)初步定时同步方式实施所需的特征时,基于第1、第2、第3小偏值的任意之一或者任意至少之二的组合来得到小偏估计值。
若已知发射端前导符号中包含C-A-B和B-C-A两种三段结构按某种拼接方式经过拼接后的包含至少一个时域符号的前导符号,判断所述基带信号中是否存在期望接收的联合符号时,其第(①)初始定时同步方式包括如下步骤:
步骤S2-1A:依照期望接收的前导符号中C-A-B结构及B-C-A结构的C段、A段以及B段两两之间的预定获取规则和/或预定处理规则,对基带信号进行必要相应地反处理以及信号解调后进行延迟滑动自相关,以得到基础延迟相关累加值(例如在C-A-B-B-C-A结构中U1,ca'(n)、U1,cb'(n)、U1,ab'(n)、U2,ca'(n)、U2,cb'(n)、U2,ab'(n)。)这六个值可实际仅由3个不同延迟长度的延迟滑动自相关器完成;其中U1,ca'(n)=U2,ca'(n)=UA,raw(n);U1,cb'(n)=U2,ab'(n)=UA+B,raw(n);U1,ab'(n)=U2,cb'(n)=UB,raw(n);所以,这六个值实际上也可认为是三个值,只是为了描述,定义为6个值。
步骤S2-1B:将步骤S2-1A的基础延迟相关累加值中依据上一步骤中延迟滑动自相关的不同延迟长度进行分组(分为三组),每一组按照两个时域符号特定的拼接关系再进行延迟关系匹配和/或相位调整后进行数学运算,得到对应 上一步骤中某一延迟长度的最终累加相关值,一共得到三个不同延迟长度的最终累加相关值;
步骤S2-1C:基于这三个最终累加相关值中的一个、两个或者三个再进行延迟匹配并进行数学运算得到待检测相关值即初始定时同步的相关值。
具体以C-A-B-B-C-A这种拼接方法为例,假定发射端发送的前导符号包含C-A-B-B-C-A这种拼接方法的前导符号,则按上文方法得到U1,ca'(n)、U1,cb'(n)、U1,ab'(n)、U2,ca'(n)、U2,cb'(n)、U2,ab'(n)后,将U1,ca'(n-(NA+2LenB+LenC))和U2,ca'(n)相加,因其都通过延迟长度为NA的滑动自相关器获得,得到UA(n)。
U1,cb'(n-(NA+2LenB))和U2,ab'(n)相加,因其都通过延迟长度为NA+LenB的滑动自相关器获得,得到UA+B(n)。
U1,ab'(n-(2LenB))和U2,cb'(n)相加,因其都通过延迟长度为LenB的滑动自相关器获得,得到UB(n)。
最后按如下运算abs(UB(n))+abs(UA+B(n))+abs(UA(n-LenC))得到待检测相关结果即初始定时同步的相关值。
通过图16给出了本实施中C-A-B-B-C-A拼接方法下获取初步定时同步待检测结果的逻辑运算框图。其中A为NA,B为LenB,C为LenC。同理,通过图17给出了本实施中B-C-A-C-A-B拼接方法下获取初步定时同步待检测结果的逻辑运算框图。其中A为NA,B为LenB,C为LenC。得到初始定时同步的相关值后,进行上述S12-2步骤和S12-3步骤。
另外,在步骤S2-1A中,当联合式前导符号的2个时域符号的FC序列采用相同时,还可得到前后2个符号的C+A段的组合拼接部分的延迟相关累加值;在步骤S2-1C中将也可将其用于数学计算中,再得到待检测相关结果,以进一步提升检测性能。
进一步地,若发送端利用第一种三段结构和第二种三段结构之间的不同先后排序、采用不同的拼接方法来标识紧急广播时,第(①)初始定时同步方式包括如下步骤:
在步骤S2-1B中,将步骤S2-1A的延迟相关累加值(实际是3个延迟滑动相关器的输出,这里为了表示,定义为6个),定义为
Figure PCTCN2015076815-appb-000091
以及
Figure PCTCN2015076815-appb-000092
(其中分别为第一个时域符号和第二个时域符号,延迟分别为NA+LenB,NA,以及LenB。将这些值具有相同延迟的按特定拼接关系的进行延迟关系匹配和/或相位调整后再进行相加或者平均,由于存在两种不同拼接方法的可能,因此这里也对应两种不同符号间的延迟关系匹配。具体来说,为
Figure PCTCN2015076815-appb-000093
以及
Figure PCTCN2015076815-appb-000094
比如假定C-A-B-B-C-A的拼接方法,
Figure PCTCN2015076815-appb-000095
Figure PCTCN2015076815-appb-000096
相加,因其都通过延迟长度为NA的滑动自相关器获得,得到UA(n)。
Figure PCTCN2015076815-appb-000097
Figure PCTCN2015076815-appb-000098
相加,因其都通过延迟长度为NA+LenB的滑动自相关器获得,得到UA+B(n)。
Figure PCTCN2015076815-appb-000099
Figure PCTCN2015076815-appb-000100
相加,因其都通过延迟长度为LenB的滑动自相关器获得,得到UB(n)。
最后按如下运算abs(UB(n-NA))+abs(UA+B(n))+abs(UA(n))得到第一个支路的待检测相关结果。
比如假定B-C-A-C-A-B的拼接方法,
Figure PCTCN2015076815-appb-000101
Figure PCTCN2015076815-appb-000102
相加,因其都通过延迟长度为NA的滑动自相关器获得,得到UA(n)。
Figure PCTCN2015076815-appb-000103
Figure PCTCN2015076815-appb-000104
相加,因其都通过延迟长度为NA+LenB的滑动自相关器获得,得到UA+B(n)。
Figure PCTCN2015076815-appb-000105
Figure PCTCN2015076815-appb-000106
相加,因其都通过延迟长度为LenB的滑动自相关器获得,得到UB(n)。
最后按如下运算abs(UB(n))+abs(UA+B(n))+abs(UA(n-LenC))得到第二个支路的待检测相关结果。
根据两种拼接方法(C-A-B-B-C-A拼接方法、B-C-A-C-A-B拼接方法)所对应的不同的符号间的延迟关系,最后得到2个支路的待检测相关结果,其中若第一支路检测结果满足预设条件,则确定所述基带信号中存在期望接收的按第一种拼接方式拼接的三段结构的联合式前导符号;若第二支路检测结果满足预设条件,则确定所述基带信号中存在期望接收的按第二种拼接方式拼接的三段结构的联合式前导符号;若发生两组都满足的情况,需要另行判断,比如可以以两个支路的峰噪比的明显性来进行判断。
另外,在步骤S2-1A中,当联合式前导符号的2个时域符号的FC序列采用相同时,还可得到前后2个时域符号的C+A段的组合拼接部分的延迟相关累加值;同样,由于存在两种不同拼接方法的可能,这里也可相应得到2个支路的不同的前后2个时域符号的C+A段的组合拼接部分的延迟相关累加值;在S2-1C中将也可将其2个支路的值分别用于2个支路的数学计算中,再得到2个支路的待检测相关结果,以进一步提升检测性能。
由于拼接后的联合式前导符号必然包含任意一种三段结构的符号,故接收机按联合式前导符号检测或者按某种单一的三段结构检测都可以出现满足预设条件的情况。当按联合式前导符号检测的检测结果明显优于按单一的某个三段结构的检测结果时,可判断为接收信号中存在包含多个具有三段结构的时域符号的前导符号。
进一步地,这里的满足预设条件即可以指单一根据待检测相关结果本身满足预设条件确定,也可指仅根据待检测相关结果本身不足以确定,再根据后续的其他步骤比如整数倍频偏估计和/或解码结果确定。
进一步地,初步完成初始定时同步后,利用第(①)初步定时同步方式和/或第(②)初步定时同步方式的初步定时同步结果还可以进行小数倍频偏估计。
和上述小偏估计描述有所区别的是,当第(①)初步定时同步方式时,取UA(n)中最大值的角度,可算出第2小偏值,再将UA+B(n)和UB(n-NA)共轭相乘(对应C-A-B-B-C-A级联方法)或者UA+B(n)和UB(n)共轭相乘(对应B-C-A-C-A-B级联方法)后,也取最大值对应的角度,可算出第3小偏值。如上逻辑运算框图16和图17中的角度用于求小偏的示意部分,可基于第2小偏值,第3小偏值的任意之一和之二来进行小偏估计。
其余描述和上述小偏估计描述相同。
关于第(①)初步定时同步方式,比如,以优选的具有4个三段结构的时域符号的联合式前导符号来说,其排列为C-A-B、B-C-A、C-A-B、B-C-A时,得到
Figure PCTCN2015076815-appb-000107
Figure PCTCN2015076815-appb-000108
实际上,这12个值是3个延迟滑动自相关器的输出,也可以认为是3个值,这里为了表述,定义为12个值,其中,
Figure PCTCN2015076815-appb-000109
Figure PCTCN2015076815-appb-000110
Figure PCTCN2015076815-appb-000111
则可将
Figure PCTCN2015076815-appb-000112
中的一个或多个进行符号间的延迟关系匹配和/或相位调整后再进行相加或者平均,得到最后的UA(n)。这是因为它们具有相同的相位值。延迟匹配举例如下:
Figure PCTCN2015076815-appb-000113
Figure PCTCN2015076815-appb-000114
Figure PCTCN2015076815-appb-000115
以及
Figure PCTCN2015076815-appb-000116
可将
Figure PCTCN2015076815-appb-000117
中的一个或多个进行符号间的延迟关系匹配和/或相位调整后再进行相加或者平均,得到最后的UA+B(n)。这是因为它们具有相同的相位值。延迟匹配举例如下:
Figure PCTCN2015076815-appb-000118
Figure PCTCN2015076815-appb-000119
Figure PCTCN2015076815-appb-000120
以及
Figure PCTCN2015076815-appb-000121
可将
Figure PCTCN2015076815-appb-000122
中的一个或多个进行符号间的延迟关系匹配和/或相位调整后再进行相加或者平均,得到最后的UB(n)。延迟匹配举例如下:
Figure PCTCN2015076815-appb-000123
Figure PCTCN2015076815-appb-000124
Figure PCTCN2015076815-appb-000125
以及
Figure PCTCN2015076815-appb-000126
最后,基于UA(n)和UA+B(n)和UB(n)的一个或多个再进行延迟匹配并进行特定的运算,这里的延迟匹配举例如下:
UA(n),UA+B(n),UB(n-NA)
基于运算结果完成初始定时同步,特定数字运算可以是绝对值相加。比如取最大值位置来完成初始定时同步。
需要说明的是,考虑到系统采样钟偏差的影响,在上述实施例中,可以将应有延迟数进行一定范围内的调整,例如将其中一些延迟相关器应有的延迟数加减一,形成本身和加减一后的三个延迟数,再依据所得调整后多个延迟数及应有延迟数进行多个延迟滑动自相关,例如依据这三个延迟数实施滑动延迟自相关,再选择相关结果最为明显的那个,同时可以估计出定时偏差。
图18就给出了本实施中利用4个时域符号的4组累加相关值获取初步定时同步结果的逻辑运算框图;以及图19就给出了本实施中利用2个时域符号的2组累加相关值获取初步定时同步结果的逻辑运算框图。
不失一般性地,若当前导符号中除具有C-A-B或者B-C-A的结构,还包含其他时域特性时,除利用上述C-A-B或者B-C-A的结构特点的定时同步方法,再叠加上针对其他时域结构特点实施的其他的定时同步方法,并不脱离本发明所描述的精神。
此外,针对多个具有三段结构的时域符号的小偏估计的方法原理和上述相同,这里不再赘述。
继续地,针对的第一个是CAB结构,后续全是顺次连接的BCA结构的K个具有三段结构的时域符号的第(①)初步定时同步方式进行说明。
其中,由于存在两种不同的三段结构CAB结构和BCA结构,那么,CAB结构中选取后缀或超前缀(B部分)的起点对应于时域主体信号A的第一采样点序号N1_1,和BCA结构中选取后缀或超前缀(B部分)的起点对应于时域主体信号A的第二采样点序号N1_2之间满足预定约束关系公式N1_1+N1_2=2NA-(LenB+Lenc),且N1_1+LenB=NA
具体地,NA为2048,设LenC为520,LenB=504,N1_1=1544, N1_2=1528,fSH=1/(2048T)为例。
举例来说,延迟滑动自相关获取累加相关值公式如下:
Uca(n)=r(n)r*(n-NA)
Figure PCTCN2015076815-appb-000127
         (公式53-1;53-2)
可选择对U1'(n)进行能量归一化得到U1s'(n)。
Figure PCTCN2015076815-appb-000128
           (公式54)
能量归一化也可采取其他方法,U1(n)中的取共轭操作*,也可由r(n)实现,而r(n-NA)不取共轭。
在每个C-A-B或B-C-A的结构中,可分别获取基于相同内容的CA,AB和CB三个累加相关值。
利用C段与A段相同的部分进行滑动延迟相关,注意上述能量归一化的步骤可以加上,这里不再赘述。每1个C-A-B或B-C-A的结构可得到三个相关值:Uca'(n),Ucb'(n),Ucb'(n)
U1(n)=r(n)r*(n-NA)
Figure PCTCN2015076815-appb-000129
           (公式55-1;55-2)
利用B段与C段相同仅调制频偏的部分进行滑动延迟相关:
当C-A-B结构时,
Figure PCTCN2015076815-appb-000130
Figure PCTCN2015076815-appb-000131
                                                         (公式56-1;56-2)
当B-C-A结构时,
Figure PCTCN2015076815-appb-000132
Figure PCTCN2015076815-appb-000133
                                                         (公式57-1;57-2)
利用B段与A段相同仅调制频偏的部分进行滑动延迟相关:
当C-A-B结构时,
Figure PCTCN2015076815-appb-000134
Figure PCTCN2015076815-appb-000135
                                                         (公式58-1;58-2)
当B-C-A结构时,
Figure PCTCN2015076815-appb-000136
Figure PCTCN2015076815-appb-000137
                                                         (公式59-1;59-2)
其中,corr_len可取1/fSHT,以避免连续波干扰,或者取LenB以使得峰值尖锐。
而当前导符号包含多个时域符号且时域符号均采用三段结构时,可得到CA,AB和CB三个累加相关值,即Uca'(n),Ucb'(n),Uab'(n),利用该Uca'(n),Ucb'(n),Uab'(n)中的任意一个或任意至少两个得到累加相关值,基于累加相关值进行一个符号或多个符号间的延迟关系匹配和/或数学运算,得到最终运算值,将该最终运算值用于初始同步。
比如,针对优选的K个具有三段结构的时域符号来说,其排列为C-A-B、B-C-A、B-C-A、B-C-A,…,B-C-A.时即第一个符号是C-A-B结构,而后续K-1个都是B-C-A结构,得到
Figure PCTCN2015076815-appb-000138
Figure PCTCN2015076815-appb-000139
实际上是三 个延迟滑动自相关器的输出,
其中,
Figure PCTCN2015076815-appb-000140
Figure PCTCN2015076815-appb-000141
Figure PCTCN2015076815-appb-000142
则可将
Figure PCTCN2015076815-appb-000143
中的一个或多个按照一个符号或多个符号之间的关系进行延迟关系匹配和/或相位调整后再进行相加或者平均,得到最后的UA(n)。这是因为它们具有相同的相位值。当仅取一个时,实际延迟关系匹配和/或相位调整等于没有操作。
延迟匹配和/或相位调整包含以下全部或部分,举例如下:
Figure PCTCN2015076815-appb-000144
Figure PCTCN2015076815-appb-000145
Figure PCTCN2015076815-appb-000146
以及
Figure PCTCN2015076815-appb-000147
其中,考虑到实施例中fSH=1/(2048T),NA为2048,设LenC为520,LenB=504,即(NA+LenB+LenC)=3072,故在
Figure PCTCN2015076815-appb-000148
要进行相位调整,乘以e
可将
Figure PCTCN2015076815-appb-000149
中的一个或多个按一个符号或多个符号间的关系进行延迟关系匹配和/或相位调整后再进行相加或者平均,得到最后的UA+B(n)。当仅取一个时,实际延迟关系匹配和/或相位调整等于没有操作。这是因为它们具有相同的相位值。延迟匹配包含以下全部或部分,举例如下:
Figure PCTCN2015076815-appb-000150
Figure PCTCN2015076815-appb-000151
Figure PCTCN2015076815-appb-000152
以及
Figure PCTCN2015076815-appb-000153
其中,考虑到实施例中fSH=1/(2048T),NA为2048,设LenC为520,LenB=504,即(NA+LenB+LenC)=3072,故在
Figure PCTCN2015076815-appb-000154
要进行相位调整,乘以e
可将
Figure PCTCN2015076815-appb-000155
中的一个或多个按照一个符号或多个符号间的关系进行延迟关系匹配和/或相位调整后再进行相加或者平均,得到最后的UB(n)。当仅取一个时,实际延迟关系匹配和/或相位调整等于没有操作。延迟匹配包含以下全部或部分,举例如下:
Figure PCTCN2015076815-appb-000156
Figure PCTCN2015076815-appb-000157
Figure PCTCN2015076815-appb-000158
以及
Figure PCTCN2015076815-appb-000159
其中,考虑到实施例中fSH=1/(2048T),NA为2048,设LenC为520,LenB=504,即(NA+LenB+LenC)=3072,故在
Figure PCTCN2015076815-appb-000160
要乘以e.
最后,基于UA(n)和UA+B(n)和UB(n)的一个或多个再进行延迟匹配并进行特定的运算,这里的延迟匹配包含以下全部或部分,举例如下:
UA(n),UA+B(n),UB(n-NA)
基于运算结果完成初始定时同步,特定数字运算可以是绝对值相加。比如取最大值位置来完成初始定时同步。
该步骤S12-2包含初始定时同步方式,用于初步确定前导符号在物理帧中 的位置。进一步地,初始同步后,还可以基于所述初始定时同步方式所得的结果进行所述整数倍频偏估计方式。
进一步地,当时域主体信号A对应上述频域结构一时,接收端还可以利用固定序列做整数倍频偏估计,即本发明的前导符号的接收方法还可以包括以下整数倍频偏估计步骤:
1)根据所确定该前导符号在物理帧中的位置,截取包含固定子载波的信号;
2)将该包含固定子载波的信号与频域固定子载波序列或该频域固定子载波序列对应的时域信号进行运算,以得到整数倍频偏估计。
接下来对基于初始定时同步结果的整数倍频偏估计方式进行说明,在进行整数倍频偏估计的步骤中,包括以下两种具体方式中任意一种或两种组合:.
第一整数倍频偏估计方式包含:根据初始定时同步的结果,截取至少包含全部或部分时域主体信号的一段时域信号,采用扫频方式对所截取出的该段时域信号以不同频偏进行调制后,得到若干N个与频偏值一一对应的扫频时域信号,将由已知频域序列进行傅里叶反变换所得的已知时域信号与每个扫频时域信号进行滑动互相关后,比较N个互相关结果的最大相关峰值,其最大的那个互相关结果所对应的扫频时域信号被调制的频偏值即为整数倍频偏估计值;和/或
第二整数倍频偏估计方式包含:
将根据初始定时同步的结果截取主体时域信号长度的时域信号进行傅里叶变换,将所得的频域子载波在扫频范围内按不同移位值进行循环移位,截取有效子载波所对应的接收序列,对该接收序列和已知频域序列进行预定运算再进行反变换,基于若干组移位值的一一对应的若干组反变换结果进行选择,得到最优的移位值,利用移位值和整数倍频偏估计值之间的对应关系,获得整数倍频偏估计值。
下面举例具体描述整偏估计方式,比如时域主体信号A对应具有上述频域结构一,即频域OFDM符号分别包括虚拟子载波、信令序列(称为SC)子载 波和固定序列(称为FC)子载波三部分,则下文所提到的已知频域序列即为固定子载波;又如时域主体信号A对应具有上述频域结构二,即前导符号的第一个时域符号为已知信息,则下文所提到的已知频域序列即为第一个时域符号的已知信息。
第一整数倍频偏估计方式,根据初始定时同步检测出的前导符号出现的位置,截取接收到的前导符号的时域波形的全部或者一部分,采用扫频的方式,即以固定的频率变化步径,比如对应整数倍频偏间隔,将该部分时域波形调制上不同的频偏后,得到若干个时域信号
Figure PCTCN2015076815-appb-000161
           (公式60)
其中,T为采样周期,fs为采样频率。而已知频域序列按预定子载波填充方式后进行傅立叶反变换对应的时域信号为A2,将A2作为已知信号与每个A1y进行滑动相关,选取出现最大相关峰值的那个A1y,则对其所调制的频偏值y即为整数倍频偏估计值。
其中,扫频范围对应系统所需要对抗的频偏范围,比如需要对抗正负500K的频偏,而系统采样率为9.14M,前导符号主体为2K长度,则扫频范围为
Figure PCTCN2015076815-appb-000162
即[-114,114]。
第二整数倍频偏估计方式:根据初始定时同步检测出的前导符号出现的位置,截取主体时域信号A,并进行FFT,将FFT后的频域子载波进行扫频范围的不同移位值的循环移位,而后截取有效子载波所对应得接收序列,用接收序列和已知频域序列进行某种运算(通常为共轭相乘,或者相除),将其结果进行IFFT,对IFFT的结果进行特定运算,比如取最大径能量,或者取若干大径能量累加。那么若干个移位值,经过若干次IFFT后,每次都得到一个运算结果,则会得到若干组的运算结果。基于这若干组结果判断出哪个移位值对应了整数倍频偏估计,由此得到整数倍频偏估计值。
通常的判断方法是基于若干组的结果,选择能量最大的那组对应的移位值,作为整数倍频偏估计值。
当时域主体信号A对应上述频域结构一时,还可以采用下述的整偏估计方法。
截取前导符号中对应的某个符号的时域主体信号A进行傅立叶变换后得到频域OFDM符号,将变换得到的频域OFDM符号进行上述扫频范围的循环移位,且按FC在子载波上的位置及前后2个固定序列子载波的间隔进行隔点差分相乘,且与已知固定序列子载波的隔点差分相乘值进行相关运算,得到一系列相关值,选取最大相关值对应的循环移位,即可相应得到可以得到整数倍频偏估计值。
进一步地,当判断所述基带信号中存在期望接收的包含C-A-B和B-C-A级联三段结构的前导符号时,若前后2个时域符号的频域有效子载波位置的位移值为偶数,还可将2个时域符号的时域主体信号A进行傅立叶变换后得到的2个频域OFDM符号,将变换得到的2个频域OFDM符号同时进行上述扫频范围的相同循环移位,移位后的每个符号接收值与该符号已知固定序列子载波值共轭相乘,且将2个频域OFDM符号同一子载波位置的相乘值再进行共轭相乘后,将2个频域OFDM符号共同位置的所有有效FC子载波的共轭相乘值进行累加,
Figure PCTCN2015076815-appb-000163
  j∈扫频范围           (公式61)
Ri,1,j为第一个符号频域上经移位j后对应FC位置上的接收值,Ri,2,j为第二个符号频域上经移位j后对应FC位置上的接收值,
Figure PCTCN2015076815-appb-000164
Figure PCTCN2015076815-appb-000165
分别为第一个符号和第二个符号的某个子载波上的FC已知值,M为已知FC总个数,这样得到一系列对应于各循环移位值的累加值,选取最大累加值对应的循环移位,即可相应得到可以得到整数倍频偏估计值。
整数倍频偏估计的具体算法有很多种,不再赘述。
进一步地,完成上述整数倍频偏估计后,对频偏进行补偿后进而对传输信令进行解析。
进一步可选择地,完成整数倍频偏估计后,利用前导符号中的已知信息进行精准定时同步方式。
比如在对应具有频域结构一时,用1个或多个频域符号所包含的固定子载波序列FC来进行精准定时同步方式;
比如在对应具有频域结构二时,当至少一个时域主体信号中的第一个时域主体信号不传输信令为已知信息时,利用该已知信号进行精准定时同步方式。
以下对步骤S12-3中在上述判断结果为是的情况下,确定该前导符号在物理帧中的位置并解出该前导符号所携带的信令信息的步骤进行详细说明,该步骤包含以下:
确定该前导符号的位置包括:基于满足预设条件的检测的结果来确定该前导符号在物理帧中的位置;
若存在期望接收的前导符号,根据待检测相关值峰值大的那部分值或者最大值确定前导符号出现的位置。
在对传输信令进行解析的步骤中还包含信道估计方式,
比如具有频域结构一情况下,利用接收到的包含固定序列子载波的信号和已知频域固定序列子载波和/或其进行傅立叶反变换对应的时域信号完成信道估计,同样可以选择在时域进行和/或在频域进行,在此不再赘述。
该信道估计方式包括:当上一个时域主体信号译码结束后,利用所得到译码信息作为发送信息,在时域/频域再一次进行信道估计,并和之前的信道估计结果进行某种特定运算,得到新的信道估计结果,用于下一个时域主体信号的信令解析的信道估计。
进一步地,当解出前导符号中的帧格式参数和/或紧急广播内容后,可根据参数内容和已确定前导符号的位置来得到后续信令符号的位置或者数据符号 的位置并基于此进行后续解析信令符号或数据符号。
继续对步骤S12-3中解出该前导符号所携带的信令信息的步骤进行说明,该解析信令信号的步骤包括:利用前导符号的全部或部分时域波形和/或该前导符号的全部或部分时域波形经过傅里叶变换后得到的频域信号,以解出该前导符号所携带的信令信息。
下面再针对频域结构一来解释信令解析过程。
通过包含信令序列子载波的信号与信令序列子载波集合或该信令序列子载波集合对应的时域信号进行运算,以解出该前导符号中由信令序列子载波所携带的信令信息。其中信令序列子载波集合基于已知的信令序列集合产生。
其中,包含信令序列子载波的信号包括:接收到的前导符号的全部或者部分时域波形,或者从前导符号中截取1个或多个主体OFDM符号经傅里叶变换后得到的1个或多个频域OFDM符号。信令序列子载波集合是由信令序列集合中各个信令序列填充至有效子载波上而形成的集合。
具体地,截取1个或多个对应ODFM符号主体的NA长度的时域信号进行傅立叶变换后得到的1个或多个频域OFDM符号;然后,去除零载波,根据信令子载波位置取出接收到的1个或多个频域信令子载波。将其与上述信道估计值以及已知的信令序列子载波集进行特定的数学运算,完成频域解码功能。
例如,设i=0:M-1,M为信令子载波个数,j=0:2P-1,P为频域所传信令比特数,即对应信令子载波集共有2P个元素,且每个元素对应长度为M的序列,Hi为每个信令子载波对应的信道估计值,SC_reci为接收到的频域信令子载波值,
Figure PCTCN2015076815-appb-000166
为信令序列子载波集中第j个元素中的第i个取值。则
Figure PCTCN2015076815-appb-000167
取max(corrj)所对应的j,即得到频域传输的信令信息。
在其他实施例中,上述过程也可以在时域上进行,利用已知信令序列子载波集经在适当位置补零后生成的相应长度的频域符号经傅里叶反变换后所对应的时域信令波形集直接与获取多径准确位置的时域接收信号进行同步相关,取相关值绝对值最大的那个,也可以解出频域传输的信令信息,这里不再赘述。
下面再针对频域结构二来解释信令解析过程。
比如,按前导符号中每个接收符号对应的A段位置的长度NFFT的时域接收数据进行相应长度的FFT运算后,去除零载波,根据有效子载波位置取出接收到的频域子载波,利用其来进行信令解析。
若发送序列经过PN调制,则接收端可先将接收的频域子载波先进行解调PN操作,再进行ZC序列信令解析。也可直接用未解调PN的接收的频域子载波直接进行信令解析。这二者的区别仅在于已知序列集合采取的方法不同,下文将会阐述。
进一步地,在解析信令信息步骤中,利用发送端所发送的频域主体序列的所有可能的不同根值和/或不同频域移位值而产生的已知信令序列集合以及所有可能的频域调制频偏值来解析信令。这里的已知序列集合,包含以下含义:
所有可能的根植和/或所有可能的频域循环移位产生的CAZAC序列,如果在发送端调制了PN,则已知序列集合既可指调制PN后的序列集合,也可指调制PN前的序列集合。如果接收端在频域进行了解调PN操作,则已知序列集采用调制PN前的序列集合,如果接收端在频域不采用解调PN,则已知序列集采用调制PN后的序列集合。若要用到已知序列集合对应的时域波形,则一定采用CAZAC序列调制PN后的序列集合。
进一步地,若发送端生成CAZAC序列后,还进行了交织操作,则已知序列集合既可指CAZAC序列/和或调制PN后经频域交织后的序列集合,也可指经频域交织前的序列集合。如果接收端在频域进行了解交织操作,则已知序列集采用频域交织前的序列集合,如果接收端在频域不采用解交织操作,则已知 序列集采用频域交织后的序列集合。若要用到已知序列集合对应的时域波形,则一定采用CAZAC序列和/或调制PN且进行了解交织的序列集合,即各个最后映射到子载波上的序列组成的集合。
分别从以下发送端的生成方法所采用的两种发送情况来对信令解析的具体过程做如下说明。
<第一发送情况>当频域子载波的生成过程中,采用基于不同的序列生成式产生和/或基于同一序列生成式产生进一步将该产生的序列进行循环移位时。
将频域信令子载波与信道估计值以及所有可能的频域主体序列进行特定数学运算进行信令解析,其中,特定数学运算包含以下任意一种:
(1)结合信道估计的最大似然相关运算;或
(2)将信道估计值对频域信令子载波进行信道均衡后,再与所有可能的频域主体序列进行相关运算,选择最大相关值作为信令解析的译码结果。
下面具体描述第一发送情况下信令解析的过程。
例如,设i=0:M-1,M为信令子载波个数,j=0:2P-1,P为频域所传信令比特数,即对应信令子载波集共有2P个元素.且每个元素对应长度为M的序列.Hi为每个信令子载波对应的信道估计值,SC_reci为接收到的频域信令子载波值,
Figure PCTCN2015076815-appb-000168
为信令子载波集中第j个元素中的第i个取值。
Figure PCTCN2015076815-appb-000169
           (公式62)
取max(corrj)所对应的j,即得到频域传输信令。
如果发送端调制了PN,SC_reci未经过PN解调,则
Figure PCTCN2015076815-appb-000170
对应采用调制PN后的序列集合;若SC_reci经过PN解调,则
Figure PCTCN2015076815-appb-000171
对应采用调制PN前的序列集合。
对于发送端包含频域交织的操作,可简单推得,这里不再专门阐述。
可选地,频域传输信令的解码过程也可以在时域上进行,利用已知信令子载波集经IFFT变换后所对应的时域信令波形集直接与获取多径准确位置的时域 接收信号进行同步相关,取相关值绝对值最大的那个,也可以解出频域传输信令,这里不再赘述。
若每个符号的信令子载波由不止一个ZC序列调制PN且进行频域交织组成,则接收端得到频域有效子载波后,进行相应频域解交织操作,解调PN操作,再进行ZC序列信令解析。若调制PN在频域交织之前,则先进行频域解交织,再进行解调PN。若调制PN在频域交织之后,则先解调PN,再进行频域解交织,或者先进行频域解交织,再进行解调PN。但此时解调的PN序列为原始PN进行解交织后的PN序列。
<第二发送情况>当所述频域子载波的生成过程中采用对预生成子载波以频偏值进行相位调制时。
总体来说,需满足的预定发送规则包含,发送的每个时域符号中时域主体信号对应的频域主体序列进行处理得到生成预生成子载波后,在频域中以预定频偏值S对每个有效子载波进行相位调制或反傅里叶变换后在时域中进行循环移位。以下我们把前导符号中包含的传输基本参数的符号称为PFC符号。
具体地说,在利用频域信号解出该前导符号所携带的信令信息步骤中,若发端频域序列生成按上述频偏值S对每个有效子载波进行相位调制所得,则可实施的解析接收算法有以下3种解析信令的例子,分别为<解析信令的例一>、<解析信令的例二>以及<解析信令的例三>。
<解析信令的例一>
针对解析信令的例一说明,将前导符号中按上述规则生成的每个时域符号所对应的时域主体信号A进行FFT运算,得到频域信号,将频域信号取出有效子载波的值,将每个子载波与该符号已知频域信令集的每一频域已知序列对应的子载波进行预定数学运算后,进行IFFT运算,每一个频域已知序列对应一个IFFT结果,每个符号基于一个或多个IFFT的结果,选出每个符号最为可靠的一个IFFT结果,并可进行预定处理,再利用多个符号之间的处理结果,进一步 进行符号间的某种运算解出所传输信令信息(包含不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令)。
这里的已知频域信令集包含:每个时域符号对应的时域主体信号A在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。如发送端有调制PN操作,这里指调制PN后的所有可能的频域序列。
当该符号已知频域信令集仅有一个已知序列,即仅依靠频域调制频偏即时域循环移位值所传信令时,解析信令的例一中的接收方法中解析方法可简化如下:
将每个时域符号所对应的时域主体信号A进行FFT运算,得到频域信号,将频域信号取出有效子载波的值,将每个有效子载波与该符号对应的唯一已知频域序列对应的有效子载波进行某种运算(共轭相乘/除法运算)后,进行IFFT运算,基于该IFFT结果,可选择地进行预定处理,再利用多个符号之间的处理IFFT结果,进一步进行时域符号之间的预定处理操作解出所传输信令(频域调制频偏即时域循环移位值所传信令)。
具体而言,对某个时域符号,其时域主体信号A已知发送频域预生成子载波未经相位调制前的表达式为Ak,经相位调制后表达式为
Figure PCTCN2015076815-appb-000172
                       (公式63)
其中,Hk为信道频域响应,经信道后,接收到的频域数据表达式为
Figure PCTCN2015076815-appb-000173
         (公式64)
那么进行本实施中所采用的预定数学运算(共轭相乘/除法运算),
Figure PCTCN2015076815-appb-000174
或Ek=Rk·(A(i)k)*,                (公式65)
其中,A(t)k表示该时域符号已知频域序列集的第t个已知序列,t=1,...T,设 一共有T个序列。
若已知频域序列集仅有一个已知序列,即T=1,则A(1)k=Ak。比如,采用
Figure PCTCN2015076815-appb-000175
相除的预定数学运算方法,当已知频域序列集仅有一个已知序列时,则推导出
Figure PCTCN2015076815-appb-000176
              (公式66)
其物理意义为每个子载波的信道估计值与调制相位值的乘积;而另外一种预定数学运算的公式
Figure PCTCN2015076815-appb-000177
       (公式67)
同样包含每个子载波的信道估计值与调制相位值的乘积。
再将E(t)k,k=0,1,....NFFT-1进行IFFT运算,则每一个时域符号将得到t个IFFT运算的结果,可选择地将结果进行取绝对值或取绝对值平方的操作,然后按照第一预定选定规则选取t=1,...T的T个结果中最为可靠的那个作为该时域符号的运算结果,其所对应的t值即可解出由频域不同序列所传送的信令。第一预定选定规则所述的最为可靠的判断方法可是峰值最大或者是峰均比最大等。
若每个时域符号的已知频域序列集仅有1个已知序列,则选取T个结果中最为可靠的那个作为该符号的运算结果这一步骤可以省略,直接取其每个符号的唯一IFFT结果作为IFFT选定结果即可。
图20是本发明的解析信令的例一中一个时域主体信号的反傅里叶结果在AWGN下的波形图。图20中所示,离散反傅立叶变换的最大值出现的序号为1049,值为1.024。
那么假设前导符号中的PFC部分一共有Q个符号,则将得到Q个符号的下述波形C(q),q=1,...Q。注意C(q)可以是从T个结果选取后的某个原始IFFT的结果,也可以是求取绝对值或者绝对值平方后的结果。
考虑到噪声和多径的影响,以及各种原因下的干扰径影响,比如在0dB两径时,呈现出2个峰值,其最大峰值不好判断,图21就提供了解析信令的例一中一个时域主体信号的反傅里叶结果在0dB两径的信道下的波形图。
因此,如下图21所示,可进一步地将每个时域符号的反傅里叶运算结果进行滤噪处理,即把大值保留,而小值全部置零,此步骤为可选。得到所有PFC符号所对应的处理结果,这里命名为C'(q),q=1,...Q。
下面就给出在0dB两径信道下前后2个符号的处理前后的C'(q-1)和C'(q)的示意图。图22(a)、图22(b)分别是实施例中滤噪处理之前的前一个时域符号、后一个时域符号中时域主体信号的反傅里叶结果在0dB两径的信道下的波形图;图23(a)、图23(b)分别是实施例中滤噪处理之后的前一个时域符号、后一个时域符号中时域主体信号的反傅里叶结果在0dB两径的信道下的波形图。
再将后一个符号的C'(q)进行循环移位,与前一个符号的C'(q-1)进行相乘或共轭相乘并累加,找出所有移位值中累加值最大的那个,由其对应的移位值便可推算出所传输信令,该传输信令由前导符号中时域符号对应的时域主体信号A的频域序列生成预生成子载波后,按S值对每个有效子载波进行相位调制,即等效于IFFT后对时域OFDM符号进行循环移位的方式来实现。
多个时域符号之间进行预定处理操作的具体描述如下,将C'(q)循环移位V得到C”(q,V),可选择左移或者右移,本例中选择右移,V∈[0,NFFT-1],然后进行例如下公式的共轭相乘并累加运算,
Figure PCTCN2015076815-appb-000178
                 (公式68)
特别说明的是,上述多个时域符号之间进行预定处理操作只是个实例,并不限定一定是共轭相乘,其相乘累加操作也可不必做NFFT个点,只做几个大值点 即可。
最后选取绝对值最大的那个Accum(V),其对应的V值即可推知频域调制频偏即时域循环移位值所传输信令,这里对推算的方法不做限定。
<解析信令的例二>
在解析信令的例二中,该解析信令的流程包含于与解析信令的例一相对应同样的前导符号的接收方法中,在解析信令的例二中省略前导符号的接收方法的整体概述。
在步骤S1-2的确定前导符号在物理帧中位置并解析出该前导符号携带的信令信息中,该信令的解析步骤包含以下具体步骤:
将每个时域符号的时域主体信号进行傅里叶变换后提取出有效子载波;
将每个有效子载波与该时域符号的已知频域信令集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算后反傅里叶变换,对应于每一个频域已知序列得到一个反傅里叶结果;以及
每个时域符号基于以第一预定选定规则从一个或多个反傅里叶结果中所选出的反傅里叶选定结果,用于直接解出信令信息和/或利用多个时域符号之间进行预定处理操作,基于所得的符号间处理结果解出信令信息。
本解析信令的例二中,将每个时域符号所对应的时域主体信号A进行FFT运算,得到频域信号,将频域信号取出有效子载波的值,将每个有效子载波与该符号已知频域信令集的每一频域已知序列对应的有效子载波以及信道估计值进行预定数学运算(共轭相乘/除法运算)后,进行IFFT运算,每一个频域已知序列对应一个IFFT结果,每个符号基于一个或多个IFFT的结果,按照预定选定规则选出每个符号最为可靠的一个IFFT选定结果,并可选择地进行预定处理,可基于IFFT选定结果用于直接得到信令传输值,也可进一步地,利用多个符号之间的处理结果,再进行时域符号之间预定处理操作(例如延迟相关)解出所 传输信令(包含不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令)。
已知频域信令集指每个时域符号对应的时域主体信号A在频域子载波调制相位前填充至子载波的频域序列的所有可能序列,如发送端有调制PN操作,这里指调制PN后的所有可能的频域序列。
当该符号已知频域信令集仅有一个已知序列,即仅依靠频域调制频偏即时域循环移位值所传信令时,解析信令的例二可简化如下:
将每个时域符号所对应的时域主体信号A进行FFT运算,得到频域信号,将频域信号取出有效子载波的值,将每个有效子载波与该时域符号对应的唯一已知频域序列对应的子载波以及信道估计值进行预定数学运算(共轭相乘/除法运算)后,进行IFFT运算,基于IFFT的结果,并可选择地进行预定处理,可用于直接得到信令传输值,也可再利用多个符号之间的处理结果,进一步进行符号间的延迟相关解出所传输信令(频域调制频偏即时域循环移位值所传信令)。
具体来说对某个时域符号,其主体时域信号A已知发送频域预生成子载波未经相位调制前的表达式为Ak,经相位调制后表达式为
Figure PCTCN2015076815-appb-000179
                   (公式69)
其中,Hk为信道频域响应,经信道后,接收到的频域数据表达式为
Figure PCTCN2015076815-appb-000180
           (公式70)
那么,进行预定数学运算(除法运算/共轭相乘)
Figure PCTCN2015076815-appb-000181
或Ek=Rk·(A(t)k·Hest,k)*,           (公式71)
其中A(t)k表示已知频域序列集的第t个已知序列。t=1,...T,一共有T个序列。 若已知频域序列集仅有一个已知序列,即T=1,则A(1)k=Ak,其中Hest为信道估计值。
比如,预定数学运算采用
Figure PCTCN2015076815-appb-000182
的方法,当已知频域序列集仅有一个已知序列时,且当Hest=H时,
Figure PCTCN2015076815-appb-000183
             (公式72)
其物理意义为每个子载波的调制相位值。而预定数学运算采用另一种运算公式
Figure PCTCN2015076815-appb-000184
        (公式73)
同样包含每个子载波的调制相位值。
再将E(t)k,k=0,1,....NFFT-1进行IFFT运算,则每一个时域符号将得到t个IFFT运算的结果,可选择地将结果进行取绝对值或取绝对值平方的操作,然后按照预定选定规则选取t=1,...T的T个结果中最为可靠的那个作为该时域符号的运算结果,其所对应的t值即可解出由频域不同序列所传送的信令。预定选定规则中最为可靠的判断方法可以是峰值最大或者是峰均比最大等。
若每个时域符号的已知频域序列集仅有1个已知序列,则选取T个结果中峰均比最大的那个作为该符号的运算结果这一步骤可以省略,直接取其每个符号的唯一IFFT结果即可。
图24是本发明的解析信令的例二中一个时域主体信号的反傅里叶结果在AWGN下的波形图。图中所示,离散反傅立叶变换的最大值出现的序号为633,值为0.9996。
那么假设前导符号中的时域部分一共有Q个时域符号,则将得到Q个时域符号的下述波形C(q),q=1,...Q。注意C(q)可以是从T个结果选取后的某个原始 IFFT的结果,也可以是求取绝对值或者绝对值平方后的结果。
这时,由于频域上的操作包含去除信道的影响,故可以直接利用C(q)中绝对值最大的峰值所在的位置来推出时域循环移位值,由此推出频域调制频偏即时域循环移位值所传输信令,比如上图中最大峰值所对应位置为633。(这里对推算方法不做限定。)
但考虑到噪声和多径的影响,以及各种原因下的干扰径影响,还可以进一步地,可将每个符号的运算结果进行滤噪处理,即把大值保留,而小值全部置零,此步骤为可选。得到所有时域符号所对应的处理结果,这里命名为C'(q),q=1,...Q。
再将后一个符号的C'(q)进行循环移位,与前一个符号的C'(q-1)进行相乘或共轭相乘并累加,找出所有移位值中,累加值最大的那个,由其对应的移位值便可推算出所传输信令。该传输信令满足上述发送端的预定发送规则中由时域符号对应的时域主体信号A的频域序列生成预生成子载波后,按S值对每个有效子载波进行相位调制,即等效于IFFT后对时域OFDM符号进行循环移位的方式来实现。
具体描述如下,将C'(q)循环移位V得到C”(q,V),可选择左移或者右移,本例中选择右移,V∈[0,NFFT-1],
然后进行例如下式共轭相乘累加运算,
Figure PCTCN2015076815-appb-000185
                 (公式74)
特别说明的是,上述只是个实例,并不限定一定是共轭相乘,其相乘累加操作也可不必做NFFT个点,只做几个大值点即可。
最后选取绝对值最大的那个Accum(V),其对应的V值即对应所传输信令。
注意,上文介绍中用到的信道估计值Hest,,前导符号第一个时域符号通常已知,由已知序列进行时域/频域估计方法可得,比如在频域上接收频域信号处以已知频域序列既得。而后续符号的信道估计,当上一个符号译码结束后,假定译码正确,利用上一个的译码信息作为发送信息,在时域/频域再一次进行信道估计,并和先前的信道估计结果进行某种特定运算,得到新的信道估计结果,用于下一个符号的信令解析的信道估计.
特别说明的是,解析信令的例一和解析信令的例二提到的IFFT运算,基于IFFT运算和FFT运算有特定的数学关系,如果用FFT来等效实现,也不脱离本发明的内容。
本解析信令的例一和解析信令的例二都采用了相干解调,且时域消除噪声,在多径信道和低信噪比下都具有非常鲁棒的性能。相比于背景技术中利用前后符号频域直接差分的方法,本发明避免了放大噪声。且进一步利用前后符号的运算结构的相对位移,解决了在信道估计不太准确或者各种原因出现干扰径时的误判问题。
<解析信令的例三>
在本发明的解析信令的例三中,前导符号的接收方法中解析信令的流程包含于上述与解析信令的例一相对应同样的前导符号的接收方法中,在解析信令的例三中省略前导符号的接收方法的整体概述。
解析信令的例三中,在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,包含以下具体步骤:
将每个时域符号的已知频域信令集扩展为已知频域信令扩展集;
将每个时域符号的时域主体信号进行傅里叶变换后提取出有效子载波;
将每个有效子载波与已知频域信令扩展集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算得到运算值,再进行所有有效子载波 上运算值的累加;以及
以第二预定选定规则从多组累加值选取出一个累加值,利用其对应的已知频域信令扩展集的频域已知序列,推得频域调制频偏值即时域循环移位所传输信令,并推得所对应的原始未扩展前的已知频域信令集里的已知频域序列,解出由频域不同序列所传输的信令信息。
具体地,首先将每个时域符号的已知频域信令集扩展为已知频域信令扩展集。然后将前导符号中每个时域符号所对应的时域主体信号A进行FFT运算,得到频域信号,将频域信号取出有效子载波的值,将每个有效子载波与已知频域信令扩展集的每一频域已知序列对应的子载波以及信道估计值进行预定数学运算(共轭相乘/除法运算)后,再进行所有子载波上的运算值的累加得到累加值。最后基于该多组累加值,按照第二预定选取规则选取出最为可靠的那个,利用其对应的已知频域信令扩展集的频域已知序列,即可推得调制频偏值,从而得到频域调制频偏即时域循环移位所传输信令,同时推得所对应的原始未扩展前的已知频域信令集里的已知频域序列,解出由频域不同序列所传输的信令。
当该符号未扩展的已知频域信令集仅有一个已知序列,即仅依靠频域调制频偏即时域循环移位值所传信令时,解析信令的例三简化如下:
首先将每个符号的唯一已知频域序列扩展为已知频域信令扩展集。然后将每个时域符号所对应的时域主体信号A进行FFT运算,得到频域信号,将频域信号取出有效子载波的值,将每个有效子载波与已知频域信令扩展集的每一频域已知序列对应的子载波以及信道估计值进行预定数字运算(共轭相乘/除法运算)后,再进行所有子载波上的运算值的累加得到累加值。最后基于该多组累加值,选取出最为可靠的那个,利用其对应的已知频域信令扩展集的频域已知序列,即可推得调制频偏值,从而得到频域调制频偏即时域循环移位所传输信令。
这里的已知频域信令集指每个时域符号对应的时域主体信号A在频域子 载波调制相位前填充至子载波的频域序列的所有可能序列,如发送端有调制PN操作,这里指调制PN后的所有可能的频域序列。
已知频域信令扩展集通过如下方式得到:将已知频域信令集里的每一个已知频域序列进行对应的按所有可能频偏值调制子载波相位,其所有可能的S个调制频偏值,则将生成S个调制频偏后的已知序列。举例来说,若原始已知频域信令集里有T个已知频域序列L1,L2…,LT,则每个已知频域序列Lt将按S种调制频偏值分别得到Lt,1,Lt,2,…,Lt,S等。举例来说:
Figure PCTCN2015076815-appb-000186
其中,k对应于子载波序号,其中零载波放在序号0。通过调制频偏值个数S与已知频域序列个数T的相乘,这样T个已知频域序列将扩展为T·S个已知频域序列,构成已知频域信令扩展集。
当该符号未扩展的已知频域信令集仅有一个已知序列,即仅依靠频域调制频偏即时域循环移位值所传信令时,即T=1,则扩展集包含共S个已知频域序列。
具体来说,例如,设K=0:Nzc-1,Nzc为有效子载波个数,Hest,k为第k个有效子载波对应的信道估计值,Rk为接收到的第k个有效子载波的值,Lk,t,s为已知频域序列扩展集中第t,s个序列的第k个取值。
Figure PCTCN2015076815-appb-000187
         (公式75)
Figure PCTCN2015076815-appb-000188
        (公式76)
其中,||表示取绝对值操作。
取max(corrt,s)或所对应的t和s,利用s其对应的已知频域信令扩展集的频域已知序列,即可推得调制频偏值,从而得到频域调制频偏即时域循环移位所传输的信令;同时利用t推得所对应的原始未扩展前的已知频域信令集里的已知频域序列,解出由频域不同序列所传输的信令。
当该符号未扩展的已知频域信令集仅有一个已知序列,即仅依靠频域调制频偏即时域循环移位值所传信令时,即T=1,则扩展集包含共S个已知频域序列。利用s其对应的已知频域信令扩展集的频域已知序列,即可推得调制频偏值,从而得到频域调制频偏即时域循环移位所传输的信令。
注意,上文介绍中用到的信道估计值Hest,第一个时域符号中的PFC部分通常已知,由已知序列进行时域/频域估计方法可得,比如在频域上接收频域信号处以已知频域序列既得,而后续符号的信道估计,当上一个符号译码结束后,假定译码正确,利用上一个的译码信息作为发送信息,在时域/频域再一次进行信道估计,并和先前的信道估计结果进行某种特定运算,得到新的信道估计结果,用于下一个符号的信令解析的信道估计。
本实施中还提供了上述发明内容中所述的前导符号的接收装置,该前导符号的前导符号的接收装置与上述实施例中前导符号的接收方法所分别相对应,那么装置中所具有的结构和技术要素可由接收方法相应转换形成,在此省略说明不再赘述。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (99)

  1. 一种前导符号的接收方法,其特征在于,包括以下步骤:
    对接收信号进行处理;
    判断得到的所述处理后的信号中是否存在期望接收的所述前导符号;以及
    在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息,
    其中,接收的所述前导符号包含发送端根据预定生成规则以任意数量第一种三段结构和/或第二种三段结构自由组合生成的至少一个时域符号,
    所述第一种所述三段结构包含:时域主体信号、基于该时域主体信号全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的后缀,
    所述第二种所述三段结构包含:时域主体信号、基于该时域主体信号的全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的超前缀。
  2. 如权利要求1所述的前导符号的接收方法,其特征在于:
    其中,在判断得到的所述处理后的信号中是否存在期望接收的所述前导符号及在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含以下任意至少一种步骤:初始定时同步、整数倍频偏估计、精准定时同步、信道估计、解码分析以及小数倍频偏估计。
  3. 如权利要求1所述的前导符号的接收方法,其特征在于:
    其中,利用以下任意至少一种来判断所述处理后的信号中是否存在期望接收的所述前导符号:
    初始定时同步方式、整数倍频偏估计方式、精准定时同步方式、信道估计方式、解码结果分析方式以及小数倍频偏估计方式。
  4. 如权利要求2所述的前导符号的接收方法,其特征在于:
    通过初始定时同步方式初步确定前导符号的位置,基于该初始定时同步的结果,判断所述处理后的信号中是否存在期望接收的包含所述三段结构的前导符号。
  5. 如权利要4所述的前导符号的接收方法,其特征在于:
    通过以下任意初始定时同步方式来初步确定前导符号的位置,
    第一初始定时同步方式,包含:
    利用第一预定三段时域结构和/或第二预定三段时域结构中任意两段间的处理关系对处理后的信号进行必要反处理后进行延迟滑动自相关来获取基础累加相关值;
    当包含至少两个三段结构的时域符号时,将基础累加相关值依据所述延迟滑动自相关的不同延迟长度进行分组,每一组按照至少两个时域符号特定的拼接关系再进行至少一个符号间延迟关系匹配和/或相位调整后进行数学运算,得到若干个某一延迟长度的最终累加相关值,则当仅有一个三段结构的时域符号时,该最终累加相关值即为基础累加相关值;以及
    基于最终累加相关值中的至少一个进行延迟关系匹配和/或特定的预定数学运算后,将运算值用于初始定时同步,
    第二初始定时同步方式,包含:
    当所述前导符号中任意三段结构中时域主体信号包含已知信号时,将时域主体信号依照预定N个差分值进行差分运算,并将已知信息对应的时域信号也进行差分运算,再将两者进行互相关得到N组与该N个差分值一一对应的差分相关的结果,基于该N组差分相关的结果进行初始同步,得到处理值,用于初步确定前导符号的位置,其中N≥1,
    其中,当基于第一初始定时同步方式和第二初始定时同步方式完成时,则将分别所得的所述处理值再进行加权运算,基于该加权运算值完成初始定时同步。
  6. 如权利要求5所述的前导符号的接收方法,其特征在于:
    在所述第一初始定时同步方式中,包含:
    其中,当包含两个三段结构的时域符号时,将所述基础累加相关值依据所述延迟滑动自相关的不同延迟长度进行分组,每一组按照两个时域符号特定的拼接关系再进行一个符号间延迟关系匹配和/或相位调整后进行数学运算,得到若干个某一延迟长度的所述最终累加相关值。
  7. 如权利要求6所述的前导符号的接收方法,其特征在于:
    其中,在所述第一初始定时同步方式中,还包括对每一个延迟滑动自相关过程中实施的应有延迟数进行一定范围内的调整,形成调整后的多个延迟数,再依据所得调整后多个延迟数及应有延迟数进行多个延迟滑动自相关,选择最明显的那个相关结果作为基础累加相关值。
  8. 如权利要求5所述的前导符号的接收方法,其特征在于:
    其中,所述N个差分值依据以下任意至少一种预定差分选定规则选出,用以进行初始同步:
    第一预定差分选定规则包含:在与已知信息相对应的本地时域序列的长度范围内,选择任意若干个不同差分值;
    第二预定差分选定规则包含:在与已知信息相对应的本地时域序列的长度范围内,选择满足等差数列的若干个不同值。
  9. 如权利要求8所述的前导符号的接收方法,其特征在于:
    其中,当通过所述第一预定差分选定规则选定出N个差分值时,则将一一对应的获得的N组差分相关的结果进行加权绝对值相加或平均;或
    当通过所述第一预定差分选定规则或所述第二预定差分选定规则选定出时,
    则将基于选定出的N组差分相关的结果进行加权矢量相加或平均。
  10. 如权利要求5所述的前导符号的接收方法,其特征在于:
    其中,利用所述第一初始定时同步方式和/或所述第二初始定时同步方式的结果进行小数倍频偏估计,
    当利用所述第一初始定时同步方式的结果时,该结果包含用依据所述第一种三段结构和/或所述第二种三段结构中所述时域主体信号和所述前缀对应的的处理关系进行预定处理运算得到的所述最终累加相关值,由该累加相关值计算出第二小数倍频偏值;
    所述第一初始定时同步方式的结果还包含依据所述第一种三段结构和/或所述第二种三段结构中所述时域主体信号和所述后缀/所述超前缀对应的的处理关系以及所述前缀和所述后缀/所述超前缀对应的的处理关系,进行预定处理运算得到的两个所述最终累加相关值,依据该两个累加相关值计算出第三小数倍频偏值,
    可基于得到的第二小数倍频偏值和第三小数倍频偏值的任意至少之一来进行小数倍频偏估计,
    当利用所述第一初始定时同步方式和所述第二初始定时同步方式的结果时,基于所述第一小数倍频偏值、所述第二小数倍频偏值以及所述第三小数倍频偏值中的任意之一或者任意至少之二的组合来得到小数倍频偏值。
  11. 如权利要求2所述的前导符号的接收方法,其特征在于:
    其中,基于所述初始定时同步方式的结果,若检测出该结果满足预设条件,则判断为确定所述处理后的信号中存在期望接收的包含所述三段结构的前导符号,
    所述预设条件包含:
    基于初始定时同步结果进行特定运算,然后判断运算结果的最大值是否超过预定阈值门限,或进一步结合整数倍频偏估计结果和/或解码结果来确定。
  12. 如权利要求2所述的前导符号的接收方法,其特征在于:
    前导符号的接收方法还包括:利用初始定时同步方式的结果进行小数倍频偏估计。
  13. 如权利要求1所述的前导符号的接收方法,其特征在于:
    其中,在确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含:
    利用前导符号的全部或部分时域波形和/或该前导符号的全部或部分时域波形经过傅里叶变换后得到的频域信号,以解出该前导符号所携带的信令信息。
  14. 如权利要求1所述的前导符号的接收方法,其特征在于:
    其中,在所述预定生成规则中,所生成的所述前导符号包含:
    不分先后排列的若干个具有第一种所述三段结构的时域符号和/或若干个具有第二种所述三段结构的时域符号的自由组合,
    第一种所述三段结构包含:时域主体信号、基于该时域主体信号的后部生成的前缀、以及基于该时域主体信号的后部生成的后缀,
    第二种所述三段结构包含:时域主体信号、基于该时域主体信号的后部生成的前缀、以及基于该时域主体信号的后部生成的超前缀。
  15. 如权利要求14所述的前导符号的接收方法,其特征在于:
    当发送端通过以不同起点从所述时域主体信号中截取部分信号以生成所述后缀或所述超前缀时来实现传输不同的信令信息时,基于以下来解析信令:
    所述前缀与所述后缀或所述超前缀、和/或所述时域主体信号与所述后缀或所述超前缀两两之间所具有的相同内容的不同延迟关系。
  16. 如权利要求15所述的前导符号的接收方法,其特征在于:
    其中,所解析的信令包含紧急广播。
  17. 如权利要1所述的前导符号的接收方法,其特征在于:
    其中,所述前导符号通过频域符号经处理得到,该频域符号的生成步骤包含:
    将所分别生成的固定序列和信令序列以预定排列规则进行排列后填充至有效子载波上。
  18. 如权利要17所述的前导符号的接收方法,其特征在于:
    其中,解出所述前导符号所携带的信令信息的步骤,包含:
    通过包含全部或者部分信令序列子载波的信号与信令序列子载波集合或该全部或者部分信令序列子载波集合对应的时域信号进行运算,以解出该前导符号中由信令序列子载波所携带的信令信息。
  19. 如权利要17所述的前导符号的接收方法,其特征在于:
    其中,利用至少一个时域符号所包含的固定子载波序列进行精准定时同步。
  20. 如权利要2所述的前导符号的接收方法,其特征在于:
    其中,当所述前导符号中所述时域主体信号或所对应的频域主体信号包含已知信号时,所述前导符号的接收方法还包括进行以下任意方式的整数倍频偏估计:
    根据初始定时同步的结果,截取至少包含全部或部分所述时域主体信号的一段时域信号,采用扫频方式对所截取出的该段时域信号以不同频偏进行调制后,得到若干N个与频偏值一一对应的扫频时域信号,将由已知频域序列进行傅里叶反变换所得的已知时域信号与每个扫频时域信号进行滑动互相关后,比较N个互相关结果的最大相关峰值,其最大的那个互相关结果所对应的扫频时域信号被调制的频偏值即为整数倍频偏估计值;或
    将根据初始定时同步的结果截取主体时域信号长度的时域信号进行傅里叶变换,将所得的频域子载波在扫频范围内按不同移位值进行循环移位,截取有效子载波所对应的接收序列,对该接收序列和已知频域序列进行预定运算再进行反变换,基于若干组移位值的一一对应的若干组反变换结果进行选择,得到最优的移位值,利用位值和整数倍频偏估计值之间的对应关系,获得整数倍频偏估计值。
  21. 如权利要2所述的前导符号的接收方法,其特征在于:
    其中,所述信道估计的步骤,包含:
    任意在时域进行和/或在频域进行:当上一个时域主体信号译码结束后,利用所得到译码信息作为已知信息,在时域/频域再一次进行信道估计,并和之前的信道估计结果进行某种特定运算,得到新的信道估计结果,用于下一个时域主体信 号的信令解析的信道估计。
  22. 如权利要求1所述的前导符号的接收方法,其特征在于:
    其中,接收的所述前导符号是基于对频域子载波进行处理得到,该频域子载波基于频域主体序列生成,
    在生成所述频域子载波的步骤中,包含:用于生成所述频域主体序列的预定序列生成规则;和/或对所述频域主体序列进行处理用于生成所述频域子载波的预定处理规则,
    所述预定序列生成规则包含以下任意一种或两种组合:
    基于不同的序列生成式产生;和/或
    基于同一序列生成式产生,进一步将该产生的序列进行循环移位,
    所述预定处理规则包含:对基于所述频域主体序列进行处理所得的预生成子载波按照频偏值进行相位调制。
  23. 如权利要22所述的前导符号的接收方法,其特征在于:
    在所述前导符号所包含的至少一个时域符号中第一个包含已知信息情况下,利用该已知信号进行精准定时同步。
  24. 如权利要22所述的前导符号的接收方法,其特征在于:
    在解析信令信息步骤中,利用发送端所发送的频域主体序列的所有可能的不同根值和/或不同频域移位值而产生的已知信令序列集合以及所有可能的频域调制频偏值来解析信令。
  25. 如权利要22所述的前导符号的接收方法,其特征在于:
    其中,当所述前导符号中所述时域主体信号或所对应的频域主体信号包含已知信号时,所述前导符号的接收方法还包括进行以下任意方式的整数倍频偏估计:
    根据初始定时同步的结果,截取至少包含全部或部分所述时域主体信号的一段时域信号,采用扫频方式对所截取出的该段时域信号以不同频偏进行调制后,得到若干N个与频偏值一一对应的扫频时域信号,将由已知频域序列进行变换 所得的已知时域信号与每个扫频时域信号进行滑动互相关后,比较N个互相关结果的最大相关峰值,其最大的那个互相关结果所对应的扫频时域信号被调制的频偏值即为整数倍频偏估计值;或
    将根据初始定时同步的结果截取主体时域信号长度的时域信号进行傅里叶变换,将所得的频域子载波在扫频范围内按不同移位值进行循环移位,截取有效子载波所对应的接收序列,对该接收序列和已知频域序列进行预定运算再进行反变换,基于若干组移位值的一一对应的若干组反变换结果进行选择,得到最优的移位值,利用位值和整数倍频偏估计值之间的对应关系,获得整数倍频偏估计值。
  26. 如权利要22所述的前导符号的接收方法,其特征在于:
    其中,所述信道估计的步骤,包含:
    任意在时域进行和/或在频域进行:当上一个时域主体信号译码结束后,利用所得到译码信息作为已知信息,在时域/频域再一次进行信道估计,并和之前的信道估计结果进行某种特定运算,得到新的信道估计结果,用于下一个时域主体信号的信令解析的信道估计。
  27. 如权利要求25所述的前导符号的接收方法,其特征在于,
    完成所述整数倍频偏估计后,对频偏进行补偿后进而对传输信令进行解析。
  28. 如权利要求22所述的前导符号的接收方法,其特征在于,
    当所述频域子载波的生成过程中,采用基于不同的序列生成式产生和/或基于同一序列生成式产生进一步将该产生的序列进行循环移位时,
    将所述频域信令子载波与信道估计值以及所有可能的所述频域主体序列进行特定数学运算进行信令解析,
    其中,所述特定数学运算包含以下任意一种:
    结合信道估计的最大似然相关运算;或
    将所述信道估计值对所述频域信令子载波进行信道均衡后,再与所有可能 的所述频域主体序列进行相关运算,选择最大相关值作为信令解析的译码结果。
  29. 如权利要求22所述的前导符号的接收方法,其特征在于,
    其中,当所述频域子载波的生成过程中采用对预生成子载波以所述频偏值进行相位调制或反傅里叶变换后在时域中进行循环移位。
  30. 如权利要29所述的前导符号的接收方法,其特征在于:
    其中,在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,包含:
    将每个所述时域符号的所述时域主体信号进行傅里叶变换后提取出有效子载波;
    将每个所述有效子载波与该时域符号的已知频域信令集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算后反傅里叶变换,对应于每一个所述频域已知序列得到一个反傅里叶结果;以及
    每个所述时域符号基于以第一预定选定规则从一个或多个所述反傅里叶结果中所选出的反傅里叶选定结果,再将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息。
  31. 如权利要30所述的前导符号的接收方法,其特征在于:
    对所述反傅里叶选定结果进行取绝对值或取绝对值平方,再来以所述第一预定选定规则选出反傅里叶选定结果。
  32. 如权利要31所述的前导符号的接收方法,其特征在于:
    其中,所述第一预定选定规则包含以峰值最大进行选定和/或者以峰均比最大进行选定。
  33. 如权利要30所述的前导符号的接收方法,其特征在于,还包括:
    滤噪处理步骤,包括:
    可将每个时域符号的反傅里叶结果进行滤噪处理,将大值保留,小值全部置 零。
  34. 如权利要30所述的前导符号的接收方法,其特征在于:
    其中,所解析出的信令信息包含:不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令。
  35. 如权利要30所述的前导符号的接收方法,其特征在于:
    其中,所述已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
  36. 如权利要30所述的前导符号的接收方法,其特征在于:
    其中,当时域符号的已知频域序列集仅有1个已知序列,则所述第一预定选定规则为直接取其每个所述时域符号的唯一所述反傅里叶结果作为所述反傅里叶选定结果,再将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息。
  37. 如权利要30所述的前导符号的接收方法,其特征在于:
    其中,所述预定数学运算包含:共轭相乘或除法运算。
  38. 如权利要30所述的前导符号的接收方法,其特征在于:
    其中,将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息的步骤中,包含:
    将后一个时域符号进行循环移位,与前一个时域符号进行相乘或共轭相乘并累加得到累加值,找出对应于所有预定频偏值或循环位移值中累加值最大的移位值,由该移位值推算出所述信令信息。
  39. 如权利要求29所述的前导符号的接收方法,其特征在于,包括:
    在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,该步骤包含:
    将每个时域符号的已知频域信令集扩展为已知频域信令扩展集;
    将每个所述时域符号的所述时域主体信号进行傅里叶变换后提取出有效子载波;
    将每个所述有效子载波与所述已知频域信令扩展集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算得到运算值,再进行所有有效子载波上所述运算值的累加;以及
    以第二预定选定规则从多组累加值选取出一个累加值,利用其对应的已知频域信令扩展集的频域已知序列,推得频域调制频偏值即时域循环移位所传输信令,并推得所对应的原始未扩展前的已知频域信令集里的已知频域序列,解出由频域不同序列所传输的信令信息。
  40. 如权利要求39所述的前导符号的接收方法,其特征在于,
    其中,所述第二预定选定规则包含以取绝对值最大值或者是取实部最大值进行选定。
  41. 如权利要求39所述的前导符号的接收方法,其特征在于,
    其中,所述已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
  42. 如权利要求39所述的前导符号的接收方法,其特征在于,
    其中,已知频域信令扩展集通过如下方式得到:
    将已知频域信令集里的每一个已知频域序列进行对应的按所有可能频偏值调制子载波相位,其所有可能的S个调制频偏值,则将生成S个调制频偏后的已知序列。
  43. 如权利要求42所述的前导符号的接收方法,其特征在于,
    其中,当该符号未扩展的已知频域信令集仅有一个已知序列,即仅依靠频域调制频偏s即时域循环移位值传输信令信息时,则已知频域信令扩展集包含共S个已知频域序列,利用调制频偏s其对应的已知频域信令扩展集的频域已知序列,即可推得调制频偏值,得到频域调制频偏即时域循环移位传输的信令信息。
  44. 如权利要求39所述的前导符号的接收方法,其特征在于,
    其中,所述预定数学运算包含:共轭相乘或除法运算。
  45. 如权利要求29所述的前导符号的接收方法,其特征在于,
    在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,该步骤包含:
    将每个所述时域符号的所述时域主体信号进行傅里叶变换后提取出有效子载波;
    将每个所述有效子载波与该时域符号的已知频域信令集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算后反傅里叶变换,对应于每一个所述频域已知序列得到一个反傅里叶结果;以及
    每个所述时域符号基于以第一预定选定规则从一个或多个所述反傅里叶结果中所选出的反傅里叶选定结果,再将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息。
  46. 如权利要求45所述的前导符号的接收方法,其特征在于,还包括,
    对所述反傅里叶选定结果进行取绝对值或取绝对值平方,再来以所述第一预定选定规则选出反傅里叶选定结果。
  47. 如权利要求45所述的前导符号的接收方法,其特征在于,
    其中,所述第一预定选定规则包含以峰值最大进行选定和/或者以峰均比最大进行选定。
  48. 如权利要求45所述的前导符号的接收方法,其特征在于,还包括,
    滤噪处理步骤,包括:
    可将每个时域符号的反傅里叶结果进行滤噪处理,将大值保留,小值全部置零。
  49. 如权利要求45所述的前导符号的接收方法,其特征在于,
    其中,所解析出的信令信息包含:不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令。
  50. 如权利要求45所述的前导符号的接收方法,其特征在于,
    其中,所述已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
  51. 如权利要求45所述的前导符号的接收方法,其特征在于,
    其中,当时域符号的已知频域序列集仅有1个已知序列,则所述第一预定选定规则为直接取其每个所述时域符号的唯一所述反傅里叶结果作为所述反傅里叶选定结果,再将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息。
  52. 如权利要求45所述的前导符号的接收方法,其特征在于,
    其中,所述预定数学运算包含:共轭相乘或除法运算。
  53. 如权利要求45所述的前导符号的接收方法,其特征在于,
    其中,将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息的步骤中,包含:
    将后一个时域符号进行循环移位,与前一个时域符号进行相乘或共轭相乘并累加得到累加值,找出对应于所有预定频偏值或循环位移值中累加值最大的移位值,由该移位值推算出所述信令信息。
  54. 一种前导符号的接收方法,其特征在于,包括如下步骤:
    对接收信号进行处理;
    判断得到的所述处理后的信号中是否存在期望接收的所述前导符号;以及
    在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息,
    其中,接收的所述前导符号通过频域符号经处理得到,该频域符号的生成步骤包含:将所分别生成的固定序列和信令序列以预定排列规则进行排列后填充 至有效子载波上。
  55. 如权利要求54所述的前导符号的接收方法,其特征在于:
    其中,利用以下任意至少一种来判断所述处理后的信号中是否存在期望接收的所述前导符号:
    初始定时同步方式、整数倍频偏估计方式、精准定时同步方式、信道估计方式、解码结果分析方式以及小数倍频偏估计方式。
  56. 如权利要求54所述的前导符号的接收方法,其特征在于:
    其中,在判断得到的所述处理后的信号中是否存在期望接收的所述前导符号;以及在判断为是时确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含以下任意至少一种步骤:
    初始定时同步、整数倍频偏估计、精准定时同步、信道估计、解码分析以及小数倍频偏估计。
  57. 如权利要求54所述的前导符号的接收方法,其特征在于:
    其中,利用所述固定序列进行整数倍频偏估计或信道估计,包括以下步骤:
    根据所确定该前导符号的位置,截取包含全部或部分固定子载波的信号;
    将该包含全部或部分固定子载波的信号与频域固定子载波序列或该频域固定子载波序列对应的时域信号进行运算,以得到整数倍频偏估计或信道估计。
  58. 如权利要求54所述的前导符号的接收方法,其特征在于:
    其中,利用所述前导符号中至少一个时域符号所包含的固定子载波序列进行精准定时同步。
  59. 如权利要求54所述的前导符号的接收方法,其特征在于:
    其中,在确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含:
    利用前导符号的全部或部分时域波形和/或该前导符号的全部或部分时域波 形经过傅里叶变换后得到的频域信号,以解出该前导符号所携带的信令信息。
  60. 如权利要求54所述的前导符号的接收方法,其特征在于,还包括:
    其中,当所述前导符号中所述时域主体信号或所对应的频域主体信号包含已知信号时,所述前导符号的接收方法还包括进行以下任意一种整数倍频偏估计的步骤:
    根据初始定时同步的结果,截取至少包含全部或部分所述时域主体信号的一段时域信号,采用扫频方式对所截取出的该段时域信号以不同频偏进行调制后,得到若干N个与频偏值一一对应的扫频时域信号,将由已知频域序列进行反变换所得的已知时域信号与每个扫频时域信号进行滑动互相关后,比较N个互相关结果的最大相关峰值,其最大的那个互相关结果所对应的扫频时域信号被调制的频偏值即为整数倍频偏估计值;或
    将根据初始定时同步的结果截取主体时域信号长度的时域信号进行傅里叶变换,将所得的频域子载波在扫频范围内按不同移位值进行循环移位,截取有效子载波所对应的接收序列,对该接收序列和已知频域序列进行预定运算再进行反傅里叶变换,基于若干组移位值的一一对应的若干组反变换结果进行选择,得到最优的移位值,利用位值和整数倍频偏估计值之间的对应关系,获得整数倍频偏估计值。
  61. 如权利要求54所述的前导符号的接收方法,其特征在于:
    其中,解出所述前导符号所携带的信令信息的步骤,包含:
    通过包含全部或者部分信令序列子载波的信号与信令序列子载波集合或该信令序列子载波集合对应的时域信号进行运算,以解出该前导符号中由信令序列子载波所携带的信令信息。
  62. 一种前导符号的接收方法,其特征在于,包括如下步骤:
    对接收信号进行处理;
    判断得到的所述处理后的信号中是否存在期望接收的所述前导符号;以及
    在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息,
    其中,接收的所述前导符号是基于对频域子载波进行反傅里叶变换得到,该频域子载波基于频域主体序列生成,
    在生成所述频域子载波的步骤中,包含:用于生成所述频域主体序列的预定序列生成规则;和/或对所述频域主体序列进行处理用于生成所述频域子载波的预定处理规则,
    所述预定序列生成规则包含以下任意一种或两种组合:
    基于不同的序列生成式产生;和/或
    基于同一序列生成式产生,进一步将该产生的序列进行循环移位,
    所述预定处理规则包含:对基于所述频域主体序列进行处理所得的预生成子载波按照频偏值进行相位调制。
  63. 如权利要求62所述的前导符号的接收方法,其特征在于:
    其中,在判断得到的所述处理后的信号中是否存在期望接收的所述前导符号以及在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含以下任意至少一种步骤:
    初始定时同步、整数倍频偏估计、精准定时同步、信道估计、解码分析以及小数倍频偏估计。
  64. 如权利要求62所述的前导符号的接收方法,其特征在于:
    其中,利用以下任意至少一种来判断所述处理后的信号中是否存在期望接收的所述前导符号:
    初始定时同步方式、整数倍频偏估计方式、精准定时同步方式、信道估计方式以及解码结果分析方式。进行小数倍频偏估计。
  65. 如权利要求63所述的前导符号的接收方法,其特征在于:
    其中,当所述前导符号中至少一个时域符号中第一个包含已知信息时,利用 该已知信号进行精准定时同步。
  66. 如权利要求63所述的前导符号的接收方法,其特征在于:
    其中,所述信道估计的步骤,包含:
    任意在时域进行和/或在频域进行:当上一个时域主体信号译码结束后,利用所得到译码信息作为发送信息,在时域/频域再一次进行信道估计,并和之前的信道估计结果进行某种特定运算,得到新的信道估计结果,用于下一个时域主体信号的信令解析的信道估计。
  67. 如权利要求63所述的前导符号的接收方法,其特征在于:
    其中,当所述前导符号中时域主体信号或所对应的频域主体信号包含已知信号时,所述前导符号的接收方法还包括进行以下任意方式的整数倍频偏估计:
    采用扫频方式对所截取出的全部或部分时域信号以不同频偏进行调制后,得到若干个扫频时域信号,将由已知频域序列进行反变换所得的已知时域信号与每个扫频时域信号进行滑动相关后,将最大相关峰值的扫频时域信号所调制的频偏值即为整数倍频偏估计值;或
    将根据初始定时同步的位置结果截取主体时域信号进行傅里叶变换所得的频域子载波在扫频范围内按不同移位值进行循环移位,截取有效子载波所对应的接收序列,对该接收序列和已知频域序列进行预定运算再进行反变换,基于若干组移位值的反变换结果得到移位值和整数倍频偏估计值之间的对应关系,由此获得整数倍频偏估计值。
  68. 如权利要求62所述的前导符号的接收方法,其特征在于,
    完成所述整数倍频偏估计后,对频偏进行补偿后进而对传输信令进行解析。
  69. 如权利要求62所述的前导符号的接收方法,其特征在于,
    当所述频域子载波的生成过程中,采用基于不同的序列生成式产生和/或基于同一序列生成式产生进一步将该产生的序列进行循环移位时,
    将所述频域信令子载波与信道估计值以及所有可能的所述频域主体序列进行特定数学运算进行信令解析,
    其中,所述特定数学运算包含以下任意一种:
    结合信道估计的最大似然相关运算;或
    将所述信道估计值对所述频域信令子载波进行信道均衡后,再与所有可能的所述频域主体序列进行相关运算,选择最大相关值作为信令解析的译码结果。
  70. 如权利要求62所述的前导符号的接收方法,其特征在于:
    其中,在确定该前导符号的位置并解出该前导符号所携带的信令信息的步骤中,包含:
    利用前导符号的全部或部分时域波形和/或该前导符号的全部或部分时域波形经过傅里叶变换后得到的频域信号,以解出该前导符号所携带的信令信息。
  71. 如权利要求62所述的前导符号的接收方法,其特征在于,
    其中,当所述频域子载波的生成过程中采用对预生成子载波以所述频偏值进行相位调制或反傅里叶变换后在时域中进行循环移位。
  72. 如权利要求71所述的前导符号的接收方法,其特征在于:
    在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,包含:
    将每个所述时域符号的所述时域主体信号进行傅里叶变换后提取出有效子载波;
    将每个所述有效子载波与该时域符号的已知频域信令集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算后反傅里叶变换,对应于每一个所述频域已知序列得到一个反傅里叶结果;以及
    每个所述时域符号基于以第一预定选定规则从一个或多个所述反傅里叶结果中所选出的反傅里叶选定结果,再将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息。
  73. 如权利要求72所述的前导符号的接收方法,其特征在于,还包括,
    对所述反傅里叶选定结果进行取绝对值或取绝对值平方,再来以所述第一预定选定规则选出反傅里叶选定结果。
  74. 如权利要求72所述的前导符号的接收方法,其特征在于,
    其中,所述第一预定选定规则包含以峰值最大进行选定和/或者以峰均比最大进行选定。
  75. 如权利要求72所述的前导符号的接收方法,其特征在于,还包括,
    滤噪处理步骤,包括:
    可将每个时域符号的反傅里叶结果进行滤噪处理,将大值保留,小值全部置零。
  76. 如权利要求72所述的前导符号的接收方法,其特征在于,
    其中,所解析出的信令信息包含:不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令。
  77. 如权利要求72所述的前导符号的接收方法,其特征在于,
    其中,所述已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
  78. 如权利要求72所述的前导符号的接收方法,其特征在于,
    其中,当时域符号的已知频域序列集仅有1个已知序列,则所述第一预定选定规则为直接取其每个所述时域符号的唯一所述反傅里叶结果作为所述反傅里叶选定结果,再将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息。
  79. 如权利要求72所述的前导符号的接收方法,其特征在于,
    其中,所述预定数学运算包含:共轭相乘或除法运算。
  80. 如权利要求72所述的前导符号的接收方法,其特征在于,
    其中,将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理 结果解出所述信令信息的步骤中,包含:
    将后一个时域符号进行循环移位,与前一个时域符号进行相乘或共轭相乘并累加得到累加值,找出对应于所有预定频偏值或循环位移值中累加值最大的移位值,由该移位值推算出所述信令信息。
  81. 如权利要求71所述的前导符号的接收方法,其特征在于,包括:
    在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,该步骤包含:
    将每个时域符号的已知频域信令集扩展为已知频域信令扩展集;
    将每个所述时域符号的所述时域主体信号进行傅里叶变换后提取出有效子载波;
    将每个所述有效子载波与所述已知频域信令扩展集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算得到运算值,再进行所有有效子载波上所述运算值的累加;以及
    以第二预定选定规则从多组累加值选取出一个累加值,利用其对应的已知频域信令扩展集的频域已知序列,推得频域调制频偏值即时域循环移位所传输信令,并推得所对应的原始未扩展前的已知频域信令集里的已知频域序列,解出由频域不同序列所传输的信令信息。
  82. 如权利要求81所述的前导符号的接收方法,其特征在于,
    其中,所述第二预定选定规则包含以取绝对值最大值或者是取实部最大值进行选定。
  83. 如权利要求81所述的前导符号的接收方法,其特征在于,
    其中,所述已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
  84. 如权利要求81所述的前导符号的接收方法,其特征在于,
    其中,已知频域信令扩展集通过如下方式得到:
    将已知频域信令集里的每一个已知频域序列进行对应的按所有可能频偏值调制子载波相位,其所有可能的S个调制频偏值,则将生成S个调制频偏后的已知序列。
  85. 如权利要求81所述的前导符号的接收方法,其特征在于,
    其中,当该符号未扩展的已知频域信令集仅有一个已知序列,即仅依靠频域调制频偏s即时域循环移位值传输信令信息时,则已知频域信令扩展集包含共S个已知频域序列,利用调制频偏s其对应的已知频域信令扩展集的频域已知序列,即可推得调制频偏值,得到频域调制频偏即时域循环移位传输的信令信息。
  86. 如权利要求81所述的前导符号的接收方法,其特征在于,
    其中,所述预定数学运算包含:共轭相乘或除法运算。
  87. 如权利要求71所述的前导符号的接收方法,其特征在于,包括:
    在确定前导符号的位置并解析出该前导符号携带的信令信息的步骤中,该步骤包含:
    将每个所述时域符号的所述时域主体信号进行傅里叶变换后提取出有效子载波;
    将每个所述有效子载波与该时域符号的已知频域信令集中每一频域已知序列对应的已知子载波以及信道估计值进行预定数学运算后反傅里叶变换,对应于每一个所述频域已知序列得到一个反傅里叶结果;以及
    每个所述时域符号基于以第一预定选定规则从一个或多个所述反傅里叶结果中所选出的反傅里叶选定结果,再将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息。
  88. 如权利要求87所述的前导符号的接收方法,其特征在于,
    其中,所述预定发送规则包含:发送的每个时域符号中时域主体信号对应的频域主体序列进行处理得到生成预生成子载波后,在频域中以预定频偏值S对 每个有效子载波进行相位调制或反傅里叶变换后在时域中进行循环移位。
  89. 如权利要求87所述的前导符号的接收方法,其特征在于,还包括,
    对所述反傅里叶选定结果进行取绝对值或取绝对值平方,再来以所述第一预定选定规则选出反傅里叶选定结果。
  90. 如权利要求87所述的前导符号的接收方法,其特征在于,
    其中,所述第一预定选定规则包含以峰值最大进行选定和/或者以峰均比最大进行选定。
  91. 如权利要求87所述的前导符号的接收方法,其特征在于,还包括,
    滤噪处理步骤,包括:
    可将每个时域符号的反傅里叶结果进行滤噪处理,将大值保留,小值全部置零。
  92. 如权利要求87所述的前导符号的接收方法,其特征在于,
    其中,所解析出的信令信息包含:不同频域序列传送信令和/或频域调制频偏即时域循环移位值所传信令。
  93. 如权利要求87所述的前导符号的接收方法,其特征在于,
    其中,所述已知频域信令集指每个时域符号对应的主体时域信号在频域子载波调制相位前填充至子载波的频域序列的所有可能序列。
  94. 如权利要求87所述的前导符号的接收方法,其特征在于,
    其中,当时域符号的已知频域序列集仅有1个已知序列,则所述第一预定选定规则为直接取其每个所述时域符号的唯一所述反傅里叶结果作为所述反傅里叶选定结果,再将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息。
  95. 如权利要求87所述的前导符号的接收方法,其特征在于,
    其中,所述预定数学运算包含:共轭相乘或除法运算。
  96. 如权利要求87所述的前导符号的接收方法,其特征在于,
    其中,将多个所述时域符号之间进行预定处理操作,基于所得的符号间处理结果解出所述信令信息的步骤中,包含:
    将后一个时域符号进行循环移位,与前一个时域符号进行相乘或共轭相乘并累加得到累加值,找出对应于所有预定频偏值或循环位移值中累加值最大的移位值,由该移位值推算出所述信令信息。
  97. 一种前导符号的接收装置,其特征在于,包括:
    接收处理单元,对接收信号进行处理;
    判断单元,判断得到的所述处理后的信号中是否存在期望接收的所述前导符号;以及
    定位解析单元,在判断为是时,确定该前导符号的位置并解出该前导符号所携带的信令信息,
    其中,所述接收处理单元所接收的所述前导符号包含发送端根据预定生成规则以任意数量第一种三段结构和/或第二种三段结构自由组合生成的至少一个时域符号,
    所述第一种所述三段结构包含:时域主体信号、基于该时域主体信号全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的后缀,
    所述第二种所述三段结构包含:时域主体信号、基于该时域主体信号的全部或部分生成的前缀、以及基于该部分时域主体信号的全部或部分生成的超前缀。
  98. 一种前导符号的接收装置,其特征在于,包括:
    接收处理单元,对接收信号进行处理;
    判断单元,判断得到的所述处理后的信号中是否存在期望接收的所述前导符号;以及
    定位解析单元,在判断为是时确定该前导符号的位置并解出该前导符号所携 带的信令信息,
    其中,所述接收处理单元所接收的所述前导符号通过频域符号经处理得到,该频域符号的生成步骤包含:将所分别生成的固定序列和信令序列以预定排列规则进行排列后填充至有效子载波上。
  99. 一种前导符号的接收装置,其特征在于,包括:
    接收单元,对接收信号进行处理;
    判断单元,判断得到的所述处理后的信号中是否存在期望接收的所述前导符号;以及
    定位解析单元,在判断为是时确定该前导符号的位置并解出该前导符号所携带的信令信息,
    其中,所述接收单元所接收的所述前导符号是基于对频域子载波进行反傅里叶变换得到,该频域子载波基于频域主体序列生成,
    在生成所述频域子载波的步骤中,包含:用于生成所述频域主体序列的预定序列生成规则;和/或对所述频域主体序列进行处理用于生成所述频域子载波的预定处理规则,
    所述预定序列生成规则包含以下任意一种或两种组合:
    基于不同的序列生成式产生;和/或
    基于同一序列生成式产生,进一步将该产生的序列进行循环移位,
    所述预定处理规则包含:对基于所述频域主体序列进行处理所得的预生成子载波按照频偏值进行相位调制。
PCT/CN2015/076815 2014-04-16 2015-04-16 前导符号的接收方法及装置 WO2015158296A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2945857A CA2945857C (en) 2014-04-16 2015-04-16 Preamble symbol receiving method and device
KR1020207014009A KR102223654B1 (ko) 2014-04-16 2015-04-16 프리앰블 심볼의 수신방법 및 장치
KR1020197018441A KR102114352B1 (ko) 2014-04-16 2015-04-16 프리앰블 심볼의 수신방법 및 장치
KR1020167032058A KR102033742B1 (ko) 2014-04-16 2015-04-16 프리앰블 심볼의 수신방법 및 장치
US15/304,851 US11071072B2 (en) 2014-04-16 2015-04-16 Preamble symbol receiving method and device
US17/351,197 US11799706B2 (en) 2014-04-16 2021-06-17 Preamble symbol receiving method and device

Applications Claiming Priority (38)

Application Number Priority Date Filing Date Title
CN201410153040.X 2014-04-16
CN201410153040.XA CN105007145B (zh) 2014-04-16 2014-04-16 前导符号的生成方法及频域ofdm符号的生成方法
CN201410168180.4A CN105007146B (zh) 2014-04-24 2014-04-24 物理帧中前导符号的生成方法
CN201410168180.4 2014-04-24
CN201410175323.4 2014-04-28
CN201410175323 2014-04-28
CN201410177035.2A CN105024952B (zh) 2014-04-29 2014-04-29 频域ofdm符号的生成方法及前导符号的生成方法
CN201410177035.2 2014-04-29
CN201410182962.3 2014-04-30
CN201410182962 2014-04-30
CN201410184919.0A CN105024791B (zh) 2014-04-28 2014-05-04 物理帧中前导符号的生成方法
CN201410184919.0 2014-05-04
CN201410185112.9A CN105024963A (zh) 2014-04-30 2014-05-05 频域ofdm符号的生成方法及前导符号的生成方法
CN201410185112.9 2014-05-05
CN201410229558.7 2014-05-28
CN201410229558.7A CN105323048B (zh) 2014-05-28 2014-05-28 物理帧中前导符号的生成方法
CN201410259080.2A CN105282076B (zh) 2014-06-12 2014-06-12 前导符号的生成方法及频域ofdm符号的生成方法
CN201410259080.2 2014-06-12
CN201410274626.1 2014-06-19
CN201410274626.1A CN105282078B (zh) 2014-06-19 2014-06-19 对频域ofdm符号的预处理方法及前导符号的生成方法
CN201410326504.2A CN105245479B (zh) 2014-07-10 2014-07-10 物理帧中前导符号的接收处理方法
CN201410326504.2 2014-07-10
CN201410753506.XA CN105743624B (zh) 2014-12-10 2014-12-10 前导符号的生成方法及接收方法
CN201410753506.X 2014-12-10
CN201510039510.4A CN105991495B (zh) 2015-01-26 2015-01-26 物理层中的定时同步方法
CN201510039510.4 2015-01-26
CN201510052202.5 2015-01-30
CN201510061935.5 2015-01-30
CN201510061935.5A CN105991266B (zh) 2015-01-30 2015-01-30 前导符号的生成方法、接收方法、生成装置及接收装置
CN201510052202.5 2015-01-30
CN201510064118.5A CN105991498B (zh) 2015-01-30 2015-02-06 前导符号的生成方法及接收方法
CN201510064118.5 2015-02-06
CN201510076216.0 2015-02-12
CN201510076155.8A CN105991501B (zh) 2015-02-12 2015-02-12 前导符号的接收方法及装置
CN201510076151.X 2015-02-12
CN201510076151.XA CN105991500B (zh) 2015-02-12 2015-02-12 前导符号的接收方法及装置
CN201510076216.0A CN105991502B (zh) 2015-02-12 2015-02-12 前导符号的接收方法及装置
CN201510076155.8 2015-02-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/304,851 A-371-Of-International US11071072B2 (en) 2014-04-16 2015-04-16 Preamble symbol receiving method and device
US17/351,197 Division US11799706B2 (en) 2014-04-16 2021-06-17 Preamble symbol receiving method and device

Publications (1)

Publication Number Publication Date
WO2015158296A1 true WO2015158296A1 (zh) 2015-10-22

Family

ID=54323503

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2015/076815 WO2015158296A1 (zh) 2014-04-16 2015-04-16 前导符号的接收方法及装置
PCT/CN2015/076808 WO2015158292A1 (zh) 2014-04-05 2015-04-16 前导符号的生成、接收方法和频域符号的生成方法及装置
PCT/CN2015/076812 WO2015158293A1 (zh) 2014-04-16 2015-04-16 前导符号的生成、接收方法和频域符号的生成方法及装置
PCT/CN2015/076813 WO2015158294A1 (zh) 2014-04-16 2015-04-16 前导符号的生成、接收方法和频域符号的生成方法及装置
PCT/CN2015/076814 WO2015158295A1 (zh) 2014-04-05 2015-04-16 前导符号的接收方法及装置

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/CN2015/076808 WO2015158292A1 (zh) 2014-04-05 2015-04-16 前导符号的生成、接收方法和频域符号的生成方法及装置
PCT/CN2015/076812 WO2015158293A1 (zh) 2014-04-16 2015-04-16 前导符号的生成、接收方法和频域符号的生成方法及装置
PCT/CN2015/076813 WO2015158294A1 (zh) 2014-04-16 2015-04-16 前导符号的生成、接收方法和频域符号的生成方法及装置
PCT/CN2015/076814 WO2015158295A1 (zh) 2014-04-05 2015-04-16 前导符号的接收方法及装置

Country Status (2)

Country Link
US (1) US11071072B2 (zh)
WO (5) WO2015158296A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711594A (zh) * 2020-07-20 2020-09-25 浙江大华技术股份有限公司 一种单频干扰处理方法及装置
CN114039822A (zh) * 2021-11-11 2022-02-11 成都中科微信息技术研究院有限公司 一种短包突发通信系统的信道估计方法及系统
CN114070686A (zh) * 2021-11-11 2022-02-18 成都中科微信息技术研究院有限公司 一种基于5g随机接入前导长序列的抗大频偏解决方法
WO2023123835A1 (zh) * 2021-12-29 2023-07-06 煤炭科学技术研究院有限公司 Prach信号处理方法和装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2945856C (en) * 2014-04-16 2023-10-24 Shanghai National Engineering Research Center Of Digital Television Co., Ltd. Preamble symbol generation and receiving method, and frequency-domain symbol generation method and device
GB2540593A (en) 2015-07-22 2017-01-25 Sony Corp Receiver and method of receiving
CN106658697B (zh) * 2015-11-04 2020-11-17 中兴通讯股份有限公司 同步信号发送、检测方法、基站及终端
KR101811221B1 (ko) * 2016-02-17 2017-12-21 주식회사 이노와이어리스 신호 분석기의 wcdma 신호 타이밍 오프셋 처리 방법
US11239972B2 (en) * 2016-11-17 2022-02-01 Qualcomm Incorporated Large cell support for narrowband random access
FR3060245B1 (fr) * 2016-12-12 2019-05-17 Uwinloc Procede et dispositif pour la detection d’une impulsion d’un signal
KR20190035391A (ko) 2017-09-26 2019-04-03 삼성전자주식회사 프리앰블 심볼의 생성 장치와 방법, 및 프리앰블 심볼의 검출 장치와 방법
CN109963324B (zh) 2017-12-22 2023-06-02 华为技术有限公司 无线唤醒包发送与接收方法与装置
WO2020124485A1 (zh) * 2018-12-20 2020-06-25 北京小米移动软件有限公司 数据传输方法及装置
CN112911698B (zh) * 2021-01-13 2023-04-11 北京中科晶上科技股份有限公司 通信系统中的定时同步方法及装置
CN113595955B (zh) * 2021-08-16 2024-01-26 重庆御芯微信息技术有限公司 一种弹性前导序列结构和时域频域同步方法
CN114844793B (zh) * 2022-05-16 2023-09-26 重庆邮电大学 一种提高物联网帧结构前导检测成功率的系统及方法
CN116055927B (zh) * 2023-04-03 2023-06-02 深圳市紫光同创电子有限公司 数据二倍过采样方法、系统、设备及存储介质
CN117411757B (zh) * 2023-12-13 2024-02-23 成都国恒空间技术工程股份有限公司 一种ofdm系统帧头捕获方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431803A (zh) * 2007-11-09 2009-05-13 大唐移动通信设备有限公司 Tdd系统随机接入方法及装置
US20100054233A1 (en) * 2008-08-29 2010-03-04 Kyung Won Park Method for synchronization in wireless communication system
CN101960810A (zh) * 2008-03-07 2011-01-26 诺基亚公司 用于接收具有定时和频率偏移的ofdm符号的系统和方法
CN102075480A (zh) * 2009-11-20 2011-05-25 清华大学 数字信息传输的帧同步序列生成方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938095B1 (ko) * 2003-11-19 2010-01-21 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신시스템에서 프리앰블 시퀀스 생성 장치 및 방법
DE102004038834B4 (de) * 2004-08-10 2006-11-02 Siemens Ag Verfahren zum Erzeugen von Präambel- und Signalisierungsstrukturen in einem MIMO-OFDM-Übertragungssystem
KR100594156B1 (ko) * 2004-09-10 2006-06-28 삼성전자주식회사 다중 입력 다중 출력 방식을 사용하는 직교 주파수 분할다중 통신시스템에서 프리앰블 시퀀스 송/수신 방법
CN101116301B (zh) * 2004-12-23 2018-01-05 韩国电子通信研究院 用于发送和接收数据以提供高速数据通信的设备及方法
KR100899749B1 (ko) * 2005-01-13 2009-05-27 삼성전자주식회사 다중 입력 다중 출력 방식을 사용하는 직교 주파수 분할 다중 통신시스템에서 프리앰블 시퀀스 송수신 방법
WO2010101328A1 (en) * 2009-03-03 2010-09-10 Lg Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
CN101599938B (zh) * 2009-04-28 2011-09-21 中国科学院国家授时中心 一种正交频分复用超宽带系统接收机时域联合同步方法
CN101888360A (zh) * 2009-05-15 2010-11-17 中兴通讯股份有限公司 一种随机接入信号的发射方法和装置及相关系统
EP3010160A1 (en) * 2010-04-01 2016-04-20 LG Electronics Inc. Compressed ip-plp stream with ofdm
KR101791987B1 (ko) * 2010-12-07 2017-11-20 한국전자통신연구원 무선 통신 시스템에서 프리앰블 전송 방법 및 장치
CN102664850B (zh) * 2012-04-13 2014-10-22 豪威科技(上海)有限公司 无线局域网多载波模式的低复杂度信道降噪方法及其装置
CN103532899B (zh) * 2013-07-31 2016-07-06 上海数字电视国家工程研究中心有限公司 时域ofdm同步符号生成及解调方法、数据帧传输方法
KR102337651B1 (ko) * 2014-02-13 2021-12-10 삼성전자주식회사 송신 장치, 수신 장치 및 그 제어 방법
CA2945856C (en) * 2014-04-16 2023-10-24 Shanghai National Engineering Research Center Of Digital Television Co., Ltd. Preamble symbol generation and receiving method, and frequency-domain symbol generation method and device
WO2015188861A1 (en) * 2014-06-11 2015-12-17 Telefonaktiebolaget L M Ericsson (Publ) Processing of random access preamble sequences

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431803A (zh) * 2007-11-09 2009-05-13 大唐移动通信设备有限公司 Tdd系统随机接入方法及装置
CN101960810A (zh) * 2008-03-07 2011-01-26 诺基亚公司 用于接收具有定时和频率偏移的ofdm符号的系统和方法
US20100054233A1 (en) * 2008-08-29 2010-03-04 Kyung Won Park Method for synchronization in wireless communication system
CN102075480A (zh) * 2009-11-20 2011-05-25 清华大学 数字信息传输的帧同步序列生成方法及系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711594A (zh) * 2020-07-20 2020-09-25 浙江大华技术股份有限公司 一种单频干扰处理方法及装置
CN111711594B (zh) * 2020-07-20 2023-06-13 浙江大华技术股份有限公司 一种单频干扰处理方法及装置
CN114039822A (zh) * 2021-11-11 2022-02-11 成都中科微信息技术研究院有限公司 一种短包突发通信系统的信道估计方法及系统
CN114070686A (zh) * 2021-11-11 2022-02-18 成都中科微信息技术研究院有限公司 一种基于5g随机接入前导长序列的抗大频偏解决方法
CN114070686B (zh) * 2021-11-11 2023-10-03 成都中科微信息技术研究院有限公司 一种基于5g随机接入前导长序列的抗大频偏解决方法
CN114039822B (zh) * 2021-11-11 2023-10-03 成都中科微信息技术研究院有限公司 一种短包突发通信系统的信道估计方法及系统
WO2023123835A1 (zh) * 2021-12-29 2023-07-06 煤炭科学技术研究院有限公司 Prach信号处理方法和装置

Also Published As

Publication number Publication date
WO2015158293A1 (zh) 2015-10-22
US20170245231A1 (en) 2017-08-24
WO2015158294A1 (zh) 2015-10-22
US11071072B2 (en) 2021-07-20
WO2015158292A1 (zh) 2015-10-22
WO2015158295A1 (zh) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2015158296A1 (zh) 前导符号的接收方法及装置
US10778484B2 (en) Preamble symbol transmitting method and device, and preamble symbol receiving method and device
CN107154908B (zh) 前导符号的生成方法
CN109617846B (zh) 发射机、接收机、前导符号的生成方法及接收方法
CN107222444B (zh) 物理帧中前导符号的接收处理方法
US7310393B2 (en) Method and apparatus for synchronization of the OFDM systems
CN110190938A (zh) 物理帧中前导符号的生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2945857

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15304851

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167032058

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14/03/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15779726

Country of ref document: EP

Kind code of ref document: A1