WO2015158211A1 - 图像传感器和监控系统 - Google Patents

图像传感器和监控系统 Download PDF

Info

Publication number
WO2015158211A1
WO2015158211A1 PCT/CN2015/075875 CN2015075875W WO2015158211A1 WO 2015158211 A1 WO2015158211 A1 WO 2015158211A1 CN 2015075875 W CN2015075875 W CN 2015075875W WO 2015158211 A1 WO2015158211 A1 WO 2015158211A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
light
image sensor
filter
infrared light
Prior art date
Application number
PCT/CN2015/075875
Other languages
English (en)
French (fr)
Inventor
冯卫
陈增强
傅璟军
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP15780031.9A priority Critical patent/EP3133811A4/en
Priority to US15/300,550 priority patent/US20170148842A1/en
Publication of WO2015158211A1 publication Critical patent/WO2015158211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present invention relates to the field of image imaging technology, and in particular, to an image sensor and a monitoring system.
  • CMOS Complementary Metal Oxide Semiconductor
  • CMOS image sensors have the advantages of low cost and easy integration, they have been widely used in digital products such as digital cameras and digital video cameras.
  • the current CMOS image sensor mainly filters by adding an external cut filter, which not only increases the cost of the CMOS image sensor, but also reduces the reliability of the CMOS image sensor.
  • the infrared light affects the color cast color of the CMOS image sensor, and the color cast is relatively simple.
  • the user desires that when the incident light has both visible light and infrared light, the user wants the CMOS image sensor to generate the color cast or the degree of color cast desired by the user, the current CMOS image sensor cannot be realized, thereby causing the application of the image sensor.
  • the range is narrow and the user experience is poor.
  • the object of the present invention is to solve at least one of the above technical drawbacks to some extent.
  • a first object of the invention is to propose an image sensor.
  • the image sensor adjusts the optical characteristics of the color film to achieve the degree of color cast or color cast desired by the user, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • a second object of the invention is to propose a monitoring system.
  • a third object of the present invention is to propose another image sensor.
  • a fourth object of the invention is to propose another monitoring system.
  • a fifth object of the present invention is to propose another image sensor.
  • a sixth object of the present invention is to propose another monitoring system.
  • a seventh object of the present invention is to propose another image sensor.
  • An eighth object of the present invention is to propose another monitoring system.
  • an image sensor includes: a color film in which, for light in an infrared band, the color film allows only infrared light of a specific wavelength to pass, and the color film includes a plurality of a filter of n colors, wherein each filter corresponds to a color, and the filter of the plurality of n colors is used for Distinguishing visible light in incident light into light of n colors, wherein n is a positive integer; and a photosensitive chip located under the color film, the photosensitive chip comprising a signal processing circuit and the plurality of n colors a plurality of photosensitive cells corresponding to the filter, the plurality of photosensitive cells respectively for sensing the light intensity of the light transmitted through the plurality of n color filters and generating and transmitting the plurality of n colors
  • An electrical signal corresponding to the light of the filter, the signal processing circuit for processing the electrical signal for imaging, the gain ratio of the signal processing circuit to the electrical signal is A1:A2
  • the intensity ratio of the infrared light is M1:M2(A1/A2):...:Mi(A1/Ai):...:Mj(A1/Aj):...:Mn(A1/An), the M1, M2,
  • the values of ..., Mi, ..., Mj, ..., Mn are determined according to the color cast requirements required by the image sensor.
  • the image sensor according to the embodiment of the present invention adjusts the optical characteristics of the color film to achieve the degree of color cast or color cast desired by the user, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • a monitoring system of an embodiment of the second aspect of the present invention includes an electronic device having an image sensor according to an embodiment of the first aspect of the present invention; and a fill light, wherein the fill light is emitted The specific wavelength of infrared light.
  • the degree of color cast or color cast desired by the user can be realized, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • an image sensor includes: at least one filter for filtering infrared light other than infrared light of a specific wavelength, wherein the at least one filter Allowing visible light and infrared light of the specific wavelength to pass through; a color film located under the at least one filter, the color film comprising a plurality of filters of n colors, wherein each filter corresponds to one Color, the plurality of n color filters are used to distinguish visible light in incident light into n colors of light, wherein n is a positive integer; and a photosensitive chip under the color film, the photosensitive The chip includes a signal processing circuit and a plurality of photosensitive cells in one-to-one correspondence with the plurality of n-color filters, the plurality of photosensitive cells respectively for sensing light transmitted through the plurality of n-color filters Light intensity and generate an electrical signal corresponding to light transmitted through the plurality of n color filters, the signal processing circuit for processing the electrical signal for imaging, the signal processing circuit
  • the image sensor of the embodiment of the present invention by adjusting the optical characteristics of the color film and using the filter having specific optical characteristics, the degree of color cast or color cast desired by the user is realized, thereby greatly increasing the image sensor. Application range to enhance user experience.
  • a monitoring system of a fourth aspect of the present invention includes an electronic device having an image sensor according to an embodiment of the third aspect of the present invention; and a fill light, wherein the fill light is emitted The specific wavelength of infrared light.
  • the degree of color cast or color cast desired by the user can be realized, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • an image sensor includes: a color film in which, for light in an infrared band, the color film allows only infrared light of a specific wavelength to pass, and the color film includes a plurality of a filter of n colors, wherein each filter corresponds to a color, and the filter of the plurality of n colors is used to distinguish visible light in incident light into light of n colors, wherein n is a positive integer
  • a photosensitive chip located under the color film the photosensitive chip comprising a signal processing circuit and a plurality of photosensitive cells in one-to-one correspondence with the plurality of n-color filters, wherein the plurality of photosensitive cells are respectively used Inducing an intensity of light transmitted through the plurality of n-color filters and generating an electrical signal corresponding to light transmitted through the plurality of n-color filters, the signal processing circuit being used for Electrical signal processing for imaging, the gain ratio of the signal processing circuit to the electrical signal is M1
  • i and j are integers greater than or equal to 1 and less than or equal to n, and i ⁇ j, wherein the plurality of n-color filters of the color film have intensity of infrared light of the specific wavelength
  • the pass ratio is 1:(A1/A2):...:(A1/Ai):...:(A1/Aj):...:(A1/An).
  • the image sensor according to the embodiment of the present invention adjusts the optical characteristics of the color film to achieve the degree of color cast or color cast desired by the user, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • a monitoring system of a sixth aspect of the present invention includes an electronic device having an image sensor according to an embodiment of the fifth aspect of the present invention; and a fill light, wherein the fill light is emitted The specific wavelength of infrared light.
  • the degree of color cast or color cast desired by the user can be realized, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • an image sensor includes: at least one filter for filtering infrared light other than infrared light of a specific wavelength, wherein the at least one filter Allowing visible light and infrared light of the specific wavelength to pass through; a color film located under the at least one filter, the color film comprising a plurality of filters of n colors, wherein each filter corresponds to one Color, the plurality of n color filters are used to distinguish visible light in incident light into n colors of light, wherein n is a positive integer; and a photosensitive chip under the color film, the photosensitive The chip includes a signal processing circuit and a plurality of photosensitive cells in one-to-one correspondence with the plurality of n-color filters, wherein the plurality of photosensitive cells are respectively configured to sense the plurality of n colors a light intensity of the light of the colored filter and generating an electrical signal corresponding to light transmitted through the plurality of n color filters, the signal processing circuit for processing the electrical
  • the image sensor of the embodiment of the present invention by adjusting the optical characteristics of the color film and using the filter having specific optical characteristics, the degree of color cast or color cast desired by the user is realized, thereby greatly increasing the application range of the image sensor and improving user experience.
  • a monitoring system of an eighth aspect of the present invention includes an electronic device having an image sensor according to an embodiment of the seventh aspect of the present invention; and a fill light, wherein the fill light is emitted The specific wavelength of infrared light.
  • the degree of color cast or color cast desired by the user can be realized, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • FIG. 1 is a schematic structural view of an image sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an image sensor in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic view showing light sensing of red, green, and blue photosensitive cells in accordance with one embodiment of the present invention
  • 4(1) is a schematic view showing optical characteristics of a pre-adjustment red filter according to an embodiment of the present invention
  • 4(2) is a schematic view showing optical characteristics of a pre-adjustment green filter according to an embodiment of the present invention.
  • 4(3) is a schematic view showing optical characteristics of a pre-adjustment blue filter according to an embodiment of the present invention.
  • Figure 5 (1) is a schematic view showing optical characteristics of an adjusted red filter according to an embodiment of the present invention.
  • Figure 5 (2) is a schematic view showing the optical characteristics of the adjusted green filter according to an embodiment of the present invention.
  • Figure 5 (3) is a schematic view showing the optical characteristics of the adjusted blue filter according to an embodiment of the present invention.
  • 6(1) is a schematic structural diagram of an image sensor according to another embodiment of the present invention.
  • 6(2) is a schematic structural diagram of an image sensor according to still another embodiment of the present invention.
  • 6(3) is a schematic structural diagram of an image sensor according to still another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a monitoring system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an image sensor according to another embodiment of the present invention.
  • FIG. 9 is a schematic view showing optical characteristics of a filter 500 according to an embodiment of the present invention.
  • Figure 10 (1) is a schematic view showing optical characteristics of a red filter according to an embodiment of the present invention.
  • Figure 10 (2) is a schematic view showing optical characteristics of a green filter according to an embodiment of the present invention.
  • Figure 10 (3) is a schematic view showing optical characteristics of a blue filter according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an image sensor according to still another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a monitoring system according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an image sensor according to an embodiment of the present invention.
  • 14(1) is a schematic structural diagram of an image sensor according to another embodiment of the present invention.
  • FIG. 14 (2) is a schematic structural diagram of an image sensor according to still another embodiment of the present invention.
  • 14(3) is a schematic structural diagram of an image sensor according to still another embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a monitoring system according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of an image sensor according to another embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of an image sensor according to still another embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a monitoring system according to another embodiment of the present invention.
  • the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. Embodiments such that the first and second features may not be in direct contact.
  • FIG. 1 is a schematic structural view of an image sensor according to an embodiment of the present invention.
  • the image sensor of the embodiment of the present invention is a CMOS image sensor.
  • the image sensor 10 includes a color film 100 and a photosensitive chip 200.
  • the color film 100 allows part of visible light to pass through; for infrared light, the color film 100 only allows infrared light of a specific wavelength to pass, and the color film 100 can adjust the light intensity ratio of infrared light of a specific wavelength, And the color film 100 includes a plurality of filters of n colors, wherein each filter corresponds to one color, and a plurality of filters of n colors are used to distinguish visible light in incident light into light of n colors, Where n is a positive integer.
  • the color film 100 allows partial visible light transmission, which means that the color film 100 includes filters of a plurality of colors. For example, when the color film 100 includes red, green, and blue filters, the red filter only allows visible light. When the red light passes through, the green filter only allows the green light in the visible light to pass through, and the blue filter only allows the blue light in the visible light to pass through.
  • the photosensitive chip 200 is located under the color film 100.
  • the photosensitive chip 200 includes a signal processing circuit and a plurality of photosensitive cells corresponding to the plurality of n colors of the filter, and the plurality of photosensitive cells are respectively used to sense the plurality of photosensitive cells.
  • the gain ratio is A1:A2:...:Ai:...:Aj:...:An, where i and j are integers greater than or equal to 1 and less than or equal to n, and i ⁇ j, where a plurality of n colors of the color film
  • the ratio of the intensity of the filter to the infrared light of a specific wavelength is M1:M2(A1/A2):...:Mi(A1/Ai):...:Mj(A1/Aj):...:Mn(A1/An)
  • the values of M1, M2, ..., Mi, ..., Mj, ..., Mn are determined according to the color cast requirements required by the image sensor.
  • the color cast color requirement includes a color cast color category.
  • the color of the captured picture is reddish, greenish or bluish.
  • the color cast requirement also includes a degree of color cast.
  • the target color cast color category corresponds to a filter having a Mi value that is greater than the Mj value of the other filter.
  • the light is concentrated by the microlens to reach the color film 100 (Color Filter, which can be abbreviated as CF), the color film 100 has light transmission selectivity (that is, only a specific light is allowed to pass) and light attenuation (i.e., the intensity of light passing through is lowered).
  • the color film 100 includes a plurality of red, green, and blue filters for distinguishing visible light in incident light into three primary colors of red, green, and blue, and for infrared light bands, red, green, and blue filters only allow infrared rays of a specific wavelength.
  • Light for example, infrared light having a wavelength of 850 nm + -50 nm passes.
  • the plurality of photosensitive cells are respectively configured to sense the light intensity of the light transmitted through the plurality of n color filters and generate an electrical signal corresponding to the light passing through the plurality of n color filters, and the signal processing circuit is used for The electrical signal is processed for imaging.
  • the photosensitive unit may be a photodiode.
  • Figure 2 shows a schematic of an image sensor.
  • light represents incident light
  • Micro Lens is a microlens
  • Color Filter is a color film 100
  • Photo Diode is a photodiode for sensitization and converting an optical signal into an electrical signal.
  • the three kinds of filters of red, green and blue are arranged in a certain order to form an array, for example, odd-numbered lines (such as the first row, the third row, the fifth row) from left to right.
  • the colors are red, green, red, green, red, green..., and even-numbered lines (such as lines 2 and 4) are left to right.
  • the color of the filter is green, blue, green, blue, and green. ,blue....
  • the photosensitive chip 200 performs imaging based on light of three types of red, green, and blue filters that pass through the color film 100.
  • the signal processing circuit processes the corresponding electrical signal according to the order in which the filters are arranged, and restores the real color to form a picture. More specifically, the light passing through the red, green, and blue filters of the color film 100 passes through the photodiode, and the optical signal is converted into an electrical signal, and the electrical signal is processed by the signal processing circuit to generate an image.
  • Figure 3 is a schematic illustration of the sensitization of red, green and blue photosensitive cells. Among them, the red, green and blue photosensitive cells are in one-to-one correspondence with the three kinds of red, green and blue filters.
  • the gain ratio of the signal processing circuit to the electric signal corresponding to the light transmitted through the filters of the plurality of n colors is A1:A2:...:Ai:...:Aj:...:An is The ratio of the light intensity of the infrared light of a specific wavelength to the filter of a plurality of n colors of the color film is obtained.
  • the ratio of the light intensity of the filter of the plurality of n colors of the color film to the infrared light of the specific wavelength is M1:M2(A1/A2):...:Mi(A1/Ai): ...: Mj(A1/Aj):...:Mn(A1/An), wherein the values of M1, M2, ..., Mi, ..., Mj, ..., Mn are determined according to the color cast requirement required by the image sensor
  • the light intensity of the infrared light of the specific wavelength according to the plurality of n color filters of the color film corresponds to the light of the signal processing circuit for the filter that transmits the plurality of n colors.
  • the gain ratio of the electrical signal that is, the gain ratio of the signal processing circuit to the electrical signal, A1:A2:...:Ai:...:Aj:...:An is obtained by testing.
  • the red, green, and blue filters are still taken as an example.
  • the infrared light is filtered out, and only the visible light is left.
  • the red, green, and blue photosensitive cells sense the visible light intensity, and are converted into The electrical signal is processed by the signal processing circuit, and then the image with pure color is output.
  • the gain ratio of the signal generated by the signal processing circuit to the three visible lights of red, green and blue is A1:A2:A3.
  • the three kinds of visible light of red, green and blue are processed, so that the ratio of the three kinds of visible light of red, green and blue in the obtained image is 1:1:1, thereby obtaining an image consistent with the color of the real object.
  • the image sensor may be supplemented with a fill light according to a specific application environment of the image sensor, and the fill light emits infrared light of a specific wavelength.
  • the particular wavelength matches the wavelength of the infrared light emitted by the optional fill light.
  • the color film 100 allows only infrared light of a specific wavelength to pass, and infrared light of other wavelengths cannot pass through the color film 100.
  • the wavelength of the infrared light emitted by the fill light is ⁇ (eg, using a fill light of 850 nm + -50 nm).
  • eg, using a fill light of 850 nm + -50 nm.
  • the optical characteristic of the CF is that the optical characteristics of the visible light band remain unchanged, and in the infrared light band, the infrared light of the ⁇ (850 nm+-50 nm) infrared wavelength used by the nighttime fill lamp is passed.
  • the ratio of the light intensity of the plurality of red, green, and blue filters of the color film 100 to the infrared light of a specific wavelength ( ⁇ ) is M1: M2 (A1/A2) ): M3 (A1/A3).
  • Figure 4 (1) shows the optical characteristics of the red filter before adjustment
  • Figure 4 (2) shows the optical characteristics of the green filter before adjustment
  • Figure 4 (3) shows the blue filter before adjustment.
  • Schematic diagram of optical characteristics Figure 5 (1) shows the optical characteristics of the adjusted red filter
  • Figure 5 (2) shows the optical characteristics of the adjusted green filter
  • Figure 5 (3) shows the adjustment Schematic diagram of the optical properties of the blue filter.
  • the gain ratio of the electrical signal corresponding to the light transmitted through the red, green, and blue filters of the signal processing circuit is A1: A2: A3.
  • a complex spectral signal visible light + infrared light
  • the gain ratio of the electrical signal corresponding to the light transmitted through the red, green, and blue filters of the signal processing circuit is A1: A2: A3.
  • those skilled in the art know that three kinds of visible light of red, green and blue can be processed, so that the ratio of the three kinds of visible light of red, green and blue in the obtained image is 1:1:1. So that the true visible light color can be restored.
  • the ratio of the intensity of the plurality of red, green, and blue filters of the color film 100 to the infrared light of a specific wavelength ( ⁇ ) is M1:M2(A1/A2):M3(A1/A3)
  • the gain ratio of the electrical signal corresponding to the light passing through the red, green and blue filters is A1:A2:A3, so the infrared light passes through red, green and blue.
  • the color component ratio of red, green, and blue in the infrared of the obtained image is M1:M2:M3. Therefore, as long as the value of M1:M2:M3 is controlled in advance, the color cast color and the degree of color cast of the infrared light imaging can be controlled.
  • the sensor chip 200 is sensing complex spectral signals (visible light + infrared light), and for visible light, since the signal processing circuit is transmitting red, green, and blue
  • the gain ratio of the electrical signal generated by the light of the filter is A1:A2:A3, and it is known to those skilled in the art that the three visible lights of red, green and blue can be processed, so that the red and green colors in the obtained image are obtained.
  • the ratio of the three kinds of visible light of blue and blue is 1:1:1, so that the true visible light color can be restored.
  • the ratio of the intensity of the blue filter to the infrared light of a specific wavelength ( ⁇ ) is 1: (A1/A2): (A1/A3), when processed by the signal processing circuit, the signal processing circuit transmits red, green,
  • the gain ratio of the electric signals corresponding to the light of the three blue filters is A1:A2:A3, so after the infrared light is processed by the red, green, blue filter and the photosensitive chip 200, the image obtained in the infrared is red,
  • the color ratio of green and blue is 1:1:1, and the ratio is the gradation of brightness, so the incidence of infrared light does not affect the color restored by visible light.
  • the photosensitive chip 200 senses a single infrared light (wavelength ⁇ ) emitted by the fill light, since CF is infrared light that allows the wavelength ⁇ , the human eye cannot be used only when the fill light is only used at night. The object can be seen clearly, but the photosensitive chip 200 can still sense the infrared light with a wavelength of ⁇ , and the infrared light passes through the red, green, and blue filters of the light intensity ratio of 1: (A1/A2): (A1/A3).
  • the light intensity of the photosensitive unit corresponding to the red, green and blue filters is 1: (A1/A2): (A1/A3).
  • the signal processing circuit transmits red, green and blue.
  • the gain ratio of the electrical signals corresponding to the light of the three filters is A1:A2:A3, so that the ratio of the color components of red, green and blue in the generated image is 1:1:1, and the image at this time is normal black and white. image.
  • the visible spectrum of the human eye is in the visible spectrum of 380 nm to 780 nm, the spectrum of the infrared band is not noticeable, and the range of the perceptual spectrum of the image sensor is wider than that of the human eye.
  • the silicon-based material can also have a good infrared light of 940 nm. Sensitive. Then, when visible light and infrared light are present in the environment (such as in sunlight), there is a case where the color of the image captured by the CMOS image sensor is inconsistent with the color of the image obtained by the human eye observation.
  • M1:M2:M3 1:1:2
  • the intensity of the blue photosensitive unit is larger than the other two, and the image is larger.
  • the picture will be bluish, and the visible part will be superimposed.
  • the image output by the image sensor is also a bluish image. Among them, the larger the value of M3, the bluer the final color of the image.
  • the single color color cast type is exemplified.
  • any color color cast type may be selected according to the user's needs, as long as the ratio of each color corresponding to the M value is adjusted.
  • the photosensitive chip 200 senses a complex spectral signal (visible light+infrared light)
  • the intensity of the green and blue photosensitive cells is higher than that detected by the red photosensitive unit.
  • the image output by the image sensor is also a light blue image.
  • the photosensitive chip 200 senses a complex spectral signal (visible light+infrared light)
  • the intensity of the red and blue photosensitive cells is higher than that detected by the green photosensitive unit.
  • the light intensity is large. Due to the combination of red and blue, the image will be light purple after image processing, and the visible light portion will be superimposed.
  • the image output by the image sensor is also a light purple image.
  • the image sensor of the embodiment of the present invention can be applied to many fields. For example, if a retro style picture needs to be taken in an application, then the values of M1, M2, ..., Mi, ..., Mj, ..., Mn can be set. The color of the captured picture is light brown, so that the image sensor can directly capture the retro style picture, thereby avoiding the problem of image distortion caused by using image processing technology to process the image into a retro style. Improved user experience.
  • the signal processing circuit corresponding to the image sensor of the same model transmits multiple n colors.
  • the gain ratio of the electric signal corresponding to the light of the color filter is the same as A1:A2:...:Ai:...:Aj:...:An.
  • the gain ratio of the electrical signal can be adjusted by the signal processing circuit according to different scenarios to achieve real color reproduction.
  • the image sensor of the embodiment of the invention can realize the color cast or color cast degree desired by the user by adjusting the optical characteristics of the color film, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • the image sensor 10 further includes: a microlens 300.
  • the microlens 300 is positioned above the color film 100 for receiving and concentrating the incident light. Specifically, the light passes through the microlens 300, which converges the light.
  • the image sensor 10 may further include a filter 400.
  • the filter 400 is located above the microlens 300 for filtering out infrared light other than the specific wavelength of infrared light, so that the filtering effect is better, so that the effect of the captured image is better.
  • the filter 400 may also be placed directly on the color film 100.
  • the present invention also proposes a monitoring system.
  • FIG. 7 is a schematic structural diagram of a monitoring system according to an embodiment of the present invention.
  • the monitoring system includes an electronic device 1000 and a fill light 20.
  • the electronic device 1000 has an image sensor 10 that emits infrared light of a specific wavelength.
  • the monitoring system of the embodiment of the invention can realize the degree of color cast or color cast desired by the user, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • FIG. 8 is a schematic structural view of an image sensor according to another embodiment of the present invention.
  • the image sensor 30 includes at least one filter 500, a color film 600, and a photosensitive chip 700.
  • the filter 500 is used to filter out infrared light other than the specific wavelength of infrared light, and the filter 500 allows visible light and infrared light of a specific wavelength to pass through.
  • the color film 600 is located below the filter 500, and the color film 600 includes a plurality of filters of n colors, wherein each filter corresponds to one color, and a plurality of filters of n colors are used for incident light.
  • the visible light is divided into n colors of light, where n is a positive integer.
  • the photosensitive chip 700 is disposed under the color film 600.
  • the photosensitive chip 700 includes a signal processing circuit and a plurality of photosensitive cells corresponding to the plurality of filters of n colors, and the plurality of photosensitive cells are respectively used for sensing and transmitting a plurality of n kinds of photosensitive cells.
  • the intensity of the light of the color filter and the electrical signal corresponding to the light transmitted through the filter of the plurality of n colors, the signal processing circuit is for processing the electrical signal for imaging, and the signal processing circuit is for the electrical signal
  • the gain ratio is A1:A2:...:Ai:...:Aj:...:An, where i and j are integers greater than or equal to 1 and less than or equal to n, and i ⁇ j, wherein the plurality of n colors of the color film 600
  • the ratio of the intensity of the filter to the infrared light of a specific wavelength is M1:M2(A1/A2):...:Mi(A1/Ai):...:Mj(A1/Aj):...:Mn
  • the filter 500 is an IR filter (infrared filter), and the filter 500 is used to filter out infrared light other than the specific wavelength of infrared light. That is, the filter 500 allows visible light and infrared light of a specific wavelength to pass therethrough. For example, the filter 500 allows only visible light and infrared light having a wavelength of ⁇ (eg, 850 nm + -50 nm) to pass, and light in other wavelength bands is turned off. As shown in FIG. 9, it is a schematic diagram of the optical characteristics of the filter 500.
  • eg, 850 nm + -50 nm
  • the color cast color requirement includes a color cast color category.
  • the color of the captured picture is reddish, greenish or bluish.
  • the color cast requirement also includes a degree of color cast.
  • the target color cast color category corresponds to a filter having a Mi value that is greater than the Mj value of the other filter.
  • the color film 600 includes red, green, and blue filters as an example. It should be noted that the color film 600 includes red, green, and blue filters for illustrative purposes only.
  • the color film 600 may also include other color filters.
  • the color film 600 may include cyan and magenta (or The magenta and yellow filters, the color film 600 may include red, green, blue, and white filters.
  • the light is condensed and concentrated by the microlens to reach a color filter 600 (abbreviated as CF), and the color film 600 has light transmission selectivity (that is, only a specific light is allowed to pass) and light attenuation (ie, pass). The light intensity will drop).
  • the color film 600 includes a plurality of red, green, and blue filters for distinguishing visible light in incident light into light of three primary colors of red, green, and blue.
  • the photosensitive chip 700 performs imaging based on light of three types of red, green, and blue filters that pass through the color film 600.
  • the three filters of red, green, and blue are arranged in a certain order to form an array, and the signal processing circuit processes the corresponding electrical signals according to the order in which the filters are arranged, and restores the real color to form a picture.
  • the light of the red, green and blue filters of the color film 600 reaches the photosensitive unit of the bottom layer, and the optical signal is converted into an electrical signal, and the electrical signal is processed by the signal processing circuit to generate an image, wherein the light is generated.
  • the unit can be a photodiode.
  • the optical characteristics of the color film 600 are adjusted such that the ratio of the light intensity of the plurality of red, green, and blue filters of the color film 600 to the infrared light of a specific wavelength (eg, 850 nm + -50 nm) is M1:M2 (A1/ A2): M3 (A1/A3). Since the filter 500 can filter infrared light other than the specific wavelength of infrared light, the intensity of the infrared light of other wavelength ranges does not need to be specially adjusted.
  • 10(1), 10(2), and 10(3) are schematic views showing the optical characteristics of the red, green, and blue filters, respectively, wherein the dotted line in the figure indicates that the value can be an arbitrary value.
  • the intensity of all infrared light can be adjusted to M1: M2 (A1/A2): M3 (A1/A3), in fact, infrared in other wavelength ranges than infrared light of a specific wavelength.
  • Strong pass ratio can be adjusted at will.
  • the signal processing circuit has a gain ratio A1:A2:...:Ai:...:Aj:...:An for the electrical signal corresponding to the light passing through the filters of the plurality of n colors according to the color
  • the filter of a plurality of n colors of the film is obtained by comparing the light intensity of the infrared light of a specific wavelength.
  • the ratio of the light intensity of the filter of the plurality of n colors of the color film to the infrared light of the specific wavelength is M1:M2(A1/A2):...:Mi(A1/Ai): ...: Mj(A1/Aj):...:Mn(A1/An), wherein the values of M1, M2, ..., Mi, ..., Mj, ..., Mn are determined according to the color cast requirement required by the image sensor
  • the light intensity of the infrared light of the specific wavelength according to the plurality of n color filters of the color film corresponds to the light of the signal processing circuit for the filter that transmits the plurality of n colors.
  • the gain ratio of the electrical signal that is, the gain ratio of the signal processing circuit to the electrical signal, A1:A2:...:Ai:...:Aj:...:An is obtained by testing.
  • the red, green, and blue filters are still taken as an example.
  • the infrared light is filtered out, and only the visible light is left.
  • the red, green, and blue photosensitive cells sense the visible light intensity, and are converted into The electrical signal is processed by the signal processing circuit, and then the image with pure color is output.
  • the gain ratio of the signal generated by the signal processing circuit to the three visible lights of red, green and blue is A1:A2:A3.
  • the three kinds of visible light of red, green and blue can be processed, so that the ratio of the three kinds of visible light of red, green and blue in the finally obtained image is 1:1:1, thereby Get an image that matches the color of the real object.
  • the image sensor may be supplemented with a fill light according to a specific application environment of the image sensor, and the fill light emits infrared light of a specific wavelength.
  • the particular wavelength matches the wavelength of the infrared light emitted by the optional fill light. That is, the filter 500 and the selected fill light are used in combination. Specifically, for example, the infrared light emitted by the fill light has a wavelength of ⁇ , and at least one filter 500 allows infrared light of a wavelength ⁇ to pass while filtering infrared light of other wavelengths.
  • the photosensitive chip 700 is sensitive to complex spectral signals (visible light + infrared light), and for visible light, due to the signal processing circuit corresponding to the light transmitted through the three kinds of red, green and blue filters.
  • the gain ratio of the electrical signal is A1:A2:A3, and it is known to those skilled in the art that the three kinds of visible light of red, green and blue can be processed, so that the component ratios of three kinds of visible light of red, green and blue in the obtained image are obtained. It is 1:1:1, so you can restore the true visible color.
  • the ratio of the intensity of the plurality of red, green, and blue filters of the color film 600 to the infrared light of a specific wavelength ( ⁇ ) is M1:M2(A1/A2):M3(A1/A3)
  • the gain ratio of the electrical signal generated by the signal processing circuit to the light passing through the three filters of red, green and blue is A1:A2:A3, so the infrared light passes through red, green
  • the color component ratio of red, green, and blue in the infrared of the obtained image is M1:M2:M3. Therefore, as long as the value of M1:M2:M3 is controlled in advance, the color cast color and the degree of color cast of the infrared light imaging can be controlled.
  • the sensor chip 700 senses complex spectral signals (visible light + infrared light), and for visible light, since the signal processing circuit pairs transmit red, green, and blue
  • the gain ratio of the electrical signal corresponding to the light of the filter is A1:A2:A3, and it is known to those skilled in the art that the three visible lights of red, green and blue can be processed, so that the red, green, and The ratio of the three kinds of visible light in blue is 1:1:1, so that the true visible color can be restored.
  • the ratio of the intensity of the plurality of red, green, and blue filters of the color film 600 to the infrared light of a specific wavelength ( ⁇ ) is 1: (A1/A2): (A1/A3), the signal is passed.
  • the processing circuit since the gain ratio of the signal generated by the signal processing circuit to the light transmitted through the three filters of red, green and blue is A1:A2:A3, the infrared light passes through the red, green and blue filters.
  • the ratio of the color components of the red, green and blue in the infrared of the obtained image is 1:1:1, and the ratio is the gradation of the brightness, so the incidence of the infrared light does not affect the visible light reduction. s color. Moreover, because of the increased intensity of infrared light, the brightness of the image is brighter and the sharpness is better.
  • the photosensitive chip 700 senses a single infrared light (wavelength ⁇ ) emitted by the fill light, since the filter 500 allows infrared light of a wavelength ⁇ to be transmitted, when there is only a fill light at night, The human eye cannot see the object, but the photosensitive chip 700 can still sense the infrared light with a wavelength of ⁇ , and the infrared light passes through the intensity ratio of the red, green, and blue filters of 1: (A1/A2): (A1/A3). After that, the light intensity induced by the photosensitive cells corresponding to the red, green, and blue filters is 1: (A1/A2): (A1/A3).
  • the signal processing circuit When processed by the signal processing circuit, the signal processing circuit transmits red,
  • the gain ratio of the electrical signals generated by the light of the green and blue filters is A1:A2:A3, so that the ratio of the color components of red, green and blue in the generated image is 1:1:1.
  • the signal processing circuit transmits red
  • the gain ratio of the electrical signals generated by the light of the green and blue filters is A1:A2:A3, so that the ratio of the color components of red, green and blue in the generated image is 1:1:1.
  • the visible spectrum of the human eye is in the visible spectrum of 380 nm to 780 nm, the spectrum of the infrared band is not noticeable, and the range of the perceptual spectrum of the image sensor is wider than that of the human eye.
  • the silicon-based material can also have a good infrared light of 940 nm. Sensitive. Then, when visible light and infrared light are present in the environment (such as in sunlight), there is a case where the color of the image captured by the CMOS image sensor is inconsistent with the color of the image obtained by the human eye observation.
  • the single color color cast type is exemplified.
  • any color color cast type may be selected according to the user's needs, as long as the ratio of each color corresponding to the M value is adjusted.
  • the intensity of the green and blue photosensitive cells is higher than that detected by the red photosensitive unit.
  • the image output by the image sensor is also a light blue image.
  • the photosensitive chip 700 senses a complex spectral signal (visible light+infrared light)
  • the intensity of the red and blue photosensitive cells is higher than that detected by the green photosensitive unit.
  • the light intensity is large. Due to the combination of red and blue, the image will be light purple after image processing, and the visible light portion will be superimposed.
  • the image output by the image sensor is also a light purple image.
  • the image sensor of the embodiment of the present invention can be applied to many fields. For example, if a retro style picture needs to be taken in an application, then the values of M1, M2, ..., Mi, ..., Mj, ..., Mn can be set. Make the shot The color cast of the picture is light brown, so the image sensor can directly capture the retro style picture, thereby avoiding the problem of image distortion caused by using image processing technology to process the image into retro style, and improving the user. Experience.
  • the signal processing circuit corresponding to the image sensor of the same model is used for filtering through a plurality of n colors.
  • the light of the slice corresponds to the generated electrical signal with a gain ratio A1:A2:...:Ai:...:Aj:...:An is the same.
  • the gain ratio of the electrical signal can be adjusted by the signal processing circuit according to different scenarios to achieve real color reproduction.
  • the image sensor of the embodiment of the invention can realize the color cast or color cast degree desired by the user by adjusting the optical characteristics of the color film and using the filter having specific optical characteristics, thereby greatly increasing the application range of the image sensor and improving the user.
  • the image sensor of the embodiment of the invention can realize the color cast or color cast degree desired by the user by adjusting the optical characteristics of the color film and using the filter having specific optical characteristics, thereby greatly increasing the application range of the image sensor and improving the user.
  • the image sensor 30 further includes: a microlens 800 located between the filter or filter combination 500 and the color film 600, and the microlens 800 Receiving and concentrating incident light. Specifically, the light passes through the microlens 800, which converges the light.
  • the present invention also proposes a monitoring system.
  • Figure 12 is a block diagram showing the structure of a monitoring system in accordance with one embodiment of the present invention.
  • the monitoring system includes an electronic device 2000 and a fill light 40.
  • the electronic device 2000 has an image sensor 30 that emits infrared light of a specific wavelength.
  • the monitoring system of the embodiment of the invention can realize the degree of color cast or color cast desired by the user, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • FIG. 13 is a schematic structural view of an image sensor according to an embodiment of the present invention.
  • the image sensor of the embodiment of the present invention is a CMOS image sensor.
  • the image sensor 310 includes a color film 3100 and a photosensitive chip 3200.
  • the color film 3100 allows part of visible light to pass through; for infrared light, the color film 3100 only allows infrared light of a specific wavelength to pass, and the color film 3100 can adjust the light intensity ratio of infrared light of a specific wavelength, And the color film 3100 includes a plurality of filters of n colors, wherein each filter corresponds to one color, and a plurality of filters of n colors are used to distinguish visible light in incident light into light of n colors, Where n is a positive integer.
  • the color film 3100 allows part of visible light to pass through, which means that the color film 3100 includes filters of a plurality of colors.
  • the red filter only allows visible light.
  • the green filter only allows the green light in the visible light to pass through
  • the blue filter only allows the blue light in the visible light to pass through.
  • the photosensitive chip 3200 is located under the color film 3100.
  • the photosensitive chip 3200 includes a signal processing circuit and a plurality of photosensitive cells corresponding to the plurality of n colors of the filter, and the plurality of photosensitive cells are respectively used to sense the plurality of photosensitive cells.
  • the gain ratio is M1A1:M2A2:...:MiAi:...:MjAj:...:MnAn, where the values of M1, M2, ..., Mi, ..., Mj, ..., Mn are determined according to the color cast requirements required by the image sensor, Where i and j are integers greater than or equal to 1 and less than or equal to n, and i ⁇ j, wherein a filter of a plurality of n colors of the color film has a light intensity ratio of 1:100 for a specific wavelength of infrared light: (A1/ A2):...:(A1/Ai):...:(A1/Aj):...:(A1/An).
  • the color cast color requirement includes a color cast color category.
  • the color of the captured picture is reddish, greenish or bluish.
  • the color cast requirement also includes a degree of color cast.
  • the target color cast color category corresponds to a filter having a Mi value that is greater than the Mj value of the other filter.
  • the color film 3100 includes red, green, and blue filters as an example. It should be noted that the color film 3100 includes red, green, and blue filters for the convenience of description.
  • the color film 3100 may further include filters of other colors.
  • the color film 3100 may include cyan and magenta ( Or magenta) and yellow filter, as another example, color film 3100 can include red, green, blue, and white filters.
  • the light is condensed and concentrated by the microlens to reach a color film 3100 (abbreviated as CF), and the color film 3100 has light transmission selectivity (that is, only a specific light is allowed to pass) and light attenuation (ie, pass). The light intensity will drop).
  • the color film 3100 includes a plurality of red, green, and blue filters for distinguishing visible light in incident light into three primary colors of red, green, and blue, and for infrared light bands, red, green, and blue filters only allow infrared rays of a specific wavelength.
  • Light for example, infrared light having a wavelength of 850 nm + -50 nm passes.
  • the plurality of photosensitive cells are respectively configured to sense the light intensity of the light transmitted through the plurality of n color filters and generate an electrical signal corresponding to the light passing through the plurality of n color filters, and the signal processing circuit is used for The electrical signal is processed for imaging.
  • the photosensitive unit may be a photodiode.
  • the photosensitive chip 3200 performs imaging based on light of three kinds of red, green, and blue filters that pass through the color film 3100.
  • the signal processing circuit processes the corresponding electrical signal according to the order in which the filters are arranged, and restores the real color to form a picture. More specifically, the light passing through the red, green, and blue filters of the color film 3100 passes through the photodiode, and the optical signal is converted into an electrical signal, and the electrical signal is processed by the signal processing circuit to generate an image.
  • the signal processing circuit has a gain ratio M1A1:M2A2:...:MiAi:...:MjAj:...:MnAn for the electric signal corresponding to the light transmitted through the filters of the plurality of n colors Obtaining a light intensity ratio of a plurality of n colors of a color film to a specific wavelength of infrared light, wherein values of M1, M2, ..., Mi, ..., Mj, ..., Mn are according to the image sensor The required color cast color requirements are determined.
  • the requirement is first to determine that the ratio of the intensity of the filter of the plurality of n colors of the color film to the infrared light of a specific wavelength is 1: (A1/A2):...:(A1/Ai):...:(A1/Aj) :...:(A1/An), and then, during the test, according to the light intensity of a plurality of n colors of the color film to the specific wavelength of the infrared light, the ratio of the signal processing circuit to the transmission of the plurality of n kinds
  • the gain ratio of the electric signal corresponding to the light of the color filter that is, the gain ratio of the signal processing circuit to the electric signal M1A1:M2A2:...:MiAi:...:MjAj:...:MnAn is obtained by testing.
  • the red, green, and blue filters are still taken as an example.
  • the infrared light is filtered out, and only the visible light is left.
  • the red, green, and blue photosensitive cells sense the visible light intensity, and are converted into The electrical signal is processed by the signal processing circuit, and then the image with pure color is output.
  • the gain ratio of the signal generated by the signal processing circuit to the three visible lights of red, green and blue is M1A1: M2A2: M3A3.
  • the image sensor may be supplemented with a fill light according to a specific application environment of the image sensor, and the fill light emits infrared light of a specific wavelength.
  • the particular wavelength matches the wavelength of the infrared light emitted by the optional fill light.
  • the color film 3100 allows only infrared light of a specific wavelength to pass, and infrared light of other wavelengths cannot pass through the color film 3100.
  • the wavelength of the infrared light emitted by the fill light is ⁇ (eg, using a fill light of 850 nm + -50 nm).
  • eg, using a fill light of 850 nm + -50 nm.
  • the optical characteristic of the CF is that the optical characteristics of the visible light band remain unchanged, and in the infrared light band, the infrared light of the ⁇ (850 nm+-50 nm) infrared wavelength used by the nighttime fill lamp is passed.
  • the ratio of the light intensity of the plurality of red, green, and blue filters of the color film 3100 to the infrared light of a specific wavelength ( ⁇ ) is 1: (A1/A2) :(A1/A3).
  • the gain ratio of the electrical signal corresponding to the light transmitted through the red, green, and blue filters of the signal processing circuit is M1A1: M2A2: M3A3.
  • a complex spectral signal visible light + infrared light
  • the gain ratio of the electrical signal corresponding to the light transmitted through the red, green, and blue filters of the signal processing circuit is M1A1: M2A2: M3A3.
  • the pass ratio of the plurality of red, green, and blue filters of the color film 3100 to the infrared light of a specific wavelength ( ⁇ ) is 1: (A1/A2): (A1/A3), the signal is passed.
  • the processing circuit since the gain ratio of the signal processing circuit to the electric signals corresponding to the light passing through the red, green and blue filters is M1A1:M2A2:M3A3, the infrared light passes through the red, green and blue filters.
  • the color component ratio of red, green, and blue in the infrared of the obtained image is M1:M2:M3. So, as long as the value of M1:M2:M3 is controlled in advance, It is possible to control the color cast of the infrared light image and the degree of color cast.
  • the sensor chip 3200 is sensing complex spectral signals (visible light + infrared light), and for visible light, since the signal processing circuit is transmitting red, green, and blue
  • the gain ratio of the electrical signal generated by the light of the filter is A1:A2:A3, and it is known to those skilled in the art that the three visible lights of red, green and blue can be processed, so that the red and green colors in the obtained image are obtained.
  • the ratio of the three kinds of visible light of blue and blue is 1:1:1, so that the true visible light color can be restored.
  • the pass ratio of the plurality of red, green, and blue filters of the color film 3100 to the infrared light of a specific wavelength ( ⁇ ) is 1: (A1/A2): (A1/A3), the signal is passed.
  • the processing circuit since the gain ratio of the signal processing circuit to the electric signals corresponding to the light passing through the red, green and blue filters is A1:A2:A3, the infrared light passes through the red, green and blue filters.
  • the ratio of the color components of the red, green and blue in the infrared of the obtained image is 1:1:1, and the ratio is the gradation of the brightness, so the incidence of the infrared light does not affect the reduction of the visible light. colour. Moreover, because of the increased intensity of infrared light, the brightness of the image is brighter and the sharpness is better.
  • the photosensitive chip 3200 senses a single infrared light (wavelength ⁇ ) emitted by the fill light, since the CF transmits infrared light having a wavelength of ⁇ , when the fill light is only available at night, the human eye cannot Seeing the object, but the sensor chip 3200 can still sense the infrared light with a wavelength of ⁇ .
  • the light intensity of the photosensitive unit corresponding to the red, green and blue filters is 1: (A1/A2): (A1/A3).
  • the signal processing circuit transmits red, green and blue.
  • the gain ratio of the electrical signals corresponding to the light of the three filters is A1:A2:A3, so that the ratio of the color components of red, green and blue in the generated image is 1:1:1, and the image at this time is normal black and white. image.
  • the visible spectrum of the human eye is in the visible spectrum of 380 nm to 780 nm, the spectrum of the infrared band is not noticeable, and the range of the perceptual spectrum of the image sensor is wider than that of the human eye.
  • the silicon-based material can also have a good infrared light of 940 nm. Sensitive. Then, when visible light and infrared light are present in the environment (such as in sunlight), there is a case where the color of the image captured by the CMOS image sensor is inconsistent with the color of the image obtained by the human eye observation.
  • M1:M2:M3 1:1:2
  • the intensity of the blue photosensitive unit is larger than the other two, and the image is larger.
  • the picture will be bluish, and the visible part will be superimposed.
  • the image output by the image sensor is also a bluish image. Among them, the larger the value of M3, the bluer the final color of the image.
  • the single color color cast type is exemplified.
  • any color color cast type may be selected according to the user's needs, as long as the ratio of each color corresponding to the M value is adjusted.
  • the intensity of the green and blue photosensitive cells is higher than that detected by the red photosensitive unit.
  • the image output by the image sensor is also a light blue image.
  • the photosensitive chip 3200 senses a complex spectral signal (visible light+infrared light)
  • the intensity of the red and blue photosensitive cells is higher than that detected by the green photosensitive unit.
  • the light intensity is large. Due to the combination of red and blue, the image will be light purple after image processing, and the visible light portion will be superimposed.
  • the image output by the image sensor is also a light purple image.
  • the image sensor of the embodiment of the invention can be applied in many fields, for example, in an application, it is required to shoot Retro-style pictures, then you can set the M1, M2, ..., Mi, ..., Mj, ..., Mn values, so that the color of the captured picture is light brown, then the image sensor can be directly
  • the retro-style picture is taken, thus avoiding the problem of image distortion caused by using image processing technology to process the image into a retro style, thereby improving the user experience.
  • the signal processing circuit corresponding to the image sensor of the same model is used for filtering through a plurality of n colors.
  • the gain ratio of the electric signal corresponding to the light of the slice is the same as M1A1:M2A2:...:MiAi:...:MjAj:...:MnAn.
  • the gain ratio of the electrical signal can be adjusted by the signal processing circuit according to different scenarios to achieve real color reproduction.
  • the image sensor of the embodiment of the invention can realize the color cast or color cast degree desired by the user by adjusting the optical characteristics of the color film, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • the image sensor 310 further includes: a microlens 3300.
  • the microlens 3300 is located above the color film 3100 for receiving and concentrating the incident light. Specifically, the light passes through the microlens 3300, which converges the light.
  • the image sensor 310 may further include a filter 3400.
  • the filter 3400 is located above the microlens 3300 for filtering out infrared light other than the specific wavelength of infrared light, so that the filtering effect is better, so that the effect of the captured image is better.
  • the filter 3400 may also be placed directly on the color film 3100.
  • the present invention also proposes a monitoring system.
  • FIG. 15 is a block diagram showing the structure of a monitoring system in accordance with one embodiment of the present invention.
  • the monitoring system includes an electronic device 31000 and a fill light 320.
  • the electronic device 31000 has an image sensor 310 that emits infrared light of a specific wavelength.
  • the monitoring system of the embodiment of the invention can realize the degree of color cast or color cast desired by the user, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • FIG. 16 is a schematic structural view of an image sensor according to another embodiment of the present invention.
  • the image sensor 630 includes at least one filter 6500, a color film 6600, and a photosensitive chip 6700.
  • the filter 6500 is used to filter out infrared light other than the specific wavelength of infrared light, and the filter 6500 allows visible light and infrared light of a specific wavelength to pass through.
  • the color film 6600 is located below the filter 6500, and the color film 6600 includes a plurality of filters of n colors, wherein each filter corresponds to one color, and a plurality of filters of n colors are used for incident light.
  • the visible light is divided into n colors of light, where n is a positive integer.
  • Photosensitive chip 6700 is located in color Under the color film 6600, the photosensitive chip 6700 includes a signal processing circuit and a plurality of photosensitive cells in one-to-one correspondence with a plurality of n-color filters, and the plurality of photosensitive cells are respectively used for sensing a filter through a plurality of n colors.
  • the filter 6500 is an IR filter (infrared filter), and the filter 6500 is used to filter out infrared light other than the specific wavelength of infrared light. That is, the filter 6500 allows visible light and infrared light of a specific wavelength to pass therethrough. For example, the filter 6500 allows only visible light and infrared light having a wavelength of ⁇ (eg, 850 nm + -50 nm) to pass, and light in other wavelength bands is turned off.
  • eg, 850 nm + -50 nm
  • the color cast color requirement includes a color cast color category.
  • the color of the captured picture is reddish, greenish or bluish.
  • the color cast requirement also includes a degree of color cast.
  • the target color cast color category corresponds to a filter having a Mi value that is greater than the Mj value of the other filter.
  • the light is condensed and concentrated by the microlens to reach a color film 6600 (color filter, abbreviated as CF), and the color film 6600 has light transmission selectivity (that is, only a specific light is allowed to pass) and light attenuation (ie, pass). The light intensity will drop).
  • the color film 6600 includes a plurality of red, green, and blue filters for distinguishing visible light in incident light into light of three primary colors of red, green, and blue.
  • the photosensitive chip 6700 performs imaging based on light of three types of red, green, and blue filters that pass through the color film 6600.
  • the three filters of red, green, and blue are arranged in a certain order to form an array, and the signal processing circuit processes the corresponding electrical signals according to the order in which the filters are arranged, and restores the real color to form a picture.
  • the light of the red, green and blue filters of the color film 6600 reaches the photosensitive unit of the bottom layer, and the optical signal is converted into an electrical signal, and the electrical signal is processed by the signal processing circuit to generate an image, wherein the light is generated.
  • the unit can be a photodiode.
  • the optical characteristics of the color film 6600 are adjusted such that a plurality of red and green colors of the color film 6600
  • the ratio of the intensity of the infrared light of the blue filter to the specific wavelength is 1: (A1/A2): (A1/A3). Since the filter 6500 can filter infrared light other than the specific wavelength of infrared light, the intensity of the infrared light of other wavelength ranges does not need to be specially adjusted.
  • the intensity of all infrared light can be adjusted to 1: (A1/A2): (A1/A3), in fact, other wavelength ranges of infrared light other than the specific wavelength of infrared light
  • the light intensity can be adjusted freely.
  • the signal processing circuit has a gain ratio M1A1:M2A2:...:MiAi:...:MjAj:...:MnAn for the electrical signal corresponding to the light passing through the filter of the plurality of n colors according to the color
  • the filter of a plurality of n colors of the film is obtained by comparing the light intensity of the infrared light of a specific wavelength, wherein the values of M1, M2, ..., Mi, ..., Mj, ..., Mn are required according to the image sensor.
  • the color cast color requirements are determined.
  • the ratio of the light intensity of the filter of the plurality of n colors of the color film to the infrared light of the specific wavelength is 1: (A1/A2):...:(A1/Ai):...: (A1/Aj):...:(A1/An), and then in the test process, according to the light intensity of the infrared light of a specific wavelength of the filter of a plurality of n colors of the color film, the signal processing circuit is determined to be transparent.
  • the gain ratio of the electric signal corresponding to the light of the filter of the plurality of n colors is obtained by the test.
  • the red, green, and blue filters are still taken as an example.
  • the infrared light is filtered out, and only the visible light is left.
  • the red, green, and blue photosensitive cells sense the visible light intensity, and are converted into The electrical signal is processed by the signal processing circuit, and then the image with pure color is output.
  • the gain ratio of the signal generated by the signal processing circuit to the three visible lights of red, green and blue is M1A1: M2A2: M3A3.
  • the image sensor may be supplemented with a fill light according to a specific application environment of the image sensor, and the fill light emits infrared light of a specific wavelength.
  • the particular wavelength matches the wavelength of the infrared light emitted by the optional fill light. That is, the filter 6500 and the selected fill light are used in combination. Specifically, for example, the infrared light emitted by the fill light has a wavelength of ⁇ , and at least one filter 6500 allows infrared light of a wavelength ⁇ to pass while filtering infrared light of other wavelengths.
  • the photosensitive chip 6700 is sensitive to complex spectral signals (visible light + infrared light), and for visible light, due to the signal processing circuit corresponding to the light transmitted through the three kinds of red, green and blue filters.
  • the gain ratio of the electrical signal is M1A1:M2A2:M3A3, and it is known to those skilled in the art that the three kinds of visible light of red, green and blue can be processed, so that the ratio of the three visible light components of red, green and blue in the obtained image is It is 1:1:1, so you can restore the true visible color.
  • the ratio of the intensity of the plurality of red, green, and blue filters of the color film 6600 to the infrared light of a specific wavelength ( ⁇ ) is 1: (A1/A2): (A1/A3), after the letter
  • the processing circuit since the gain ratio of the signal generated by the signal processing circuit to the light transmitted through the three filters of red, green and blue is M1A1:M2A2:M3A3, the infrared light passes through red, green and blue.
  • the color component ratio of red, green, and blue in the infrared of the obtained image is M1:M2:M3. Therefore, as long as the value of M1:M2:M3 is controlled in advance, the color cast color and the degree of color cast of the infrared light imaging can be controlled.
  • the sensor chip 6700 senses a complex spectral signal (visible light + infrared light), and for visible light, since the signal processing circuit pairs transmit red, green, and blue
  • the gain ratio of the electrical signal corresponding to the light of the filter is A1:A2:A3, and it is known to those skilled in the art that the three visible lights of red, green and blue can be processed, so that the red, green, and The ratio of the three kinds of visible light in blue is 1:1:1, so that the true visible color can be restored.
  • the intensity ratio of the plurality of red, green, and blue filters of the color film 6600 to the infrared light of a specific wavelength ( ⁇ ) is 1: (A1/A2): (A1/A3), the signal is passed.
  • the processing circuit since the gain ratio of the signal generated by the signal processing circuit to the light transmitted through the three filters of red, green and blue is A1:A2:A3, the infrared light passes through the red, green and blue filters.
  • the color component ratio of red, green and blue in the infrared image of the obtained image is 1:1:1, and the ratio is the gradation of the brightness, so the incidence of the infrared light does not affect the visible light reduction.
  • the photosensitive chip 6700 senses a single infrared light (wavelength ⁇ ) emitted by the fill light, since the filter 6500 is allowed to transmit infrared light of a wavelength ⁇ , when there is only a fill light at night, The human eye can't see the object, but the sensor chip 6700 can still sense the infrared light with a wavelength of ⁇ .
  • the infrared light passes through the intensity of the red, green, and blue filters with a ratio of 1: (A1/A2): (A1/A3).
  • the light intensity induced by the photosensitive cells corresponding to the red, green, and blue filters is 1: (A1/A2): (A1/A3).
  • the signal processing circuit transmits red
  • the gain ratio of the electrical signals generated by the light of the green and blue filters is A1:A2:A3, so that the ratio of the color components of red, green and blue in the generated image is 1:1:1.
  • the visible spectrum of the human eye is in the visible spectrum of 380 nm to 780 nm, the spectrum of the infrared band is not noticeable, and the range of the perceptual spectrum of the image sensor is wider than that of the human eye.
  • the silicon-based material can also have a good infrared light of 940 nm. Sensitive. Then, when visible light and infrared light are present in the environment (such as in sunlight), there is a case where the color of the image captured by the CMOS image sensor is inconsistent with the color of the image obtained by the human eye observation.
  • M1:M2:M3 1:1:2
  • the intensity of the blue photosensitive unit is larger than the other two, and the image is larger.
  • the picture will be bluish, and the visible part will be superimposed.
  • the image output by the image sensor is also a bluish image. Among them, the larger the value of M3, the bluer the final color of the image.
  • the single color color cast type is exemplified.
  • any color color cast type may be selected according to the user's needs, as long as the ratio of each color corresponding to the M value is adjusted.
  • the intensity of the green and blue photosensitive cells is higher than that detected by the red photosensitive unit.
  • the image output by the image sensor is also a light blue image.
  • the photosensitive chip 6700 senses a complex spectral signal (visible light+infrared light)
  • the intensity of the red and blue photosensitive cells is higher than that detected by the green photosensitive unit.
  • the light intensity is large. Due to the combination of red and blue, the image will be light purple after image processing, and the visible light portion will be superimposed.
  • the image output by the image sensor is also a light purple image.
  • the image sensor of the embodiment of the present invention can be applied to many fields. For example, if a retro style picture needs to be taken in an application, then the values of M1, M2, ..., Mi, ..., Mj, ..., Mn can be set. The color of the captured picture is light brown, so that the image sensor can directly capture the retro style picture, thereby avoiding the problem of image distortion caused by using image processing technology to process the image into a retro style. Improved user experience.
  • the signal processing circuit corresponding to the image sensor of the same model is used for filtering through a plurality of n colors.
  • the light of the slice corresponds to the gain ratio of the generated electrical signal M1A1:M2A2:...:MiAi:...:MjAj:...:MnAn is the same.
  • the gain ratio of the electrical signal can be adjusted by the signal processing circuit according to different scenarios to achieve real color reproduction.
  • the image sensor of the embodiment of the invention can realize the color cast or color cast degree desired by the user by adjusting the optical characteristics of the color film and using the filter having specific optical characteristics, thereby greatly increasing the application range of the image sensor and improving the user.
  • the image sensor of the embodiment of the invention can realize the color cast or color cast degree desired by the user by adjusting the optical characteristics of the color film and using the filter having specific optical characteristics, thereby greatly increasing the application range of the image sensor and improving the user.
  • the image sensor 630 further includes: a microlens 6800 located between the filter or filter combination 6500 and the color film 6600, and the microlens 6800 Receiving and concentrating incident light. Specifically, the light passes through a microlens 6800, which converges the light.
  • the present invention also proposes a monitoring system.
  • FIG. 18 is a block diagram showing the structure of a monitoring system in accordance with one embodiment of the present invention.
  • the monitoring system includes an electronic device 62000 and a fill light 640.
  • the electronic device 62000 has an image sensor 630 that emits infrared light of a specific wavelength.
  • the monitoring system of the embodiment of the invention can realize the degree of color cast or color cast desired by the user, thereby greatly increasing the application range of the image sensor and improving the user experience.
  • the image sensor design method of the embodiment of the invention can control the influence of the infrared light on the image color according to the needs of the actual application, thereby greatly increasing the application range of the image sensor.
  • the present invention also proposes an image sensor.
  • the image sensor is an image sensor formed by a design method of an image sensor of an embodiment of the present invention.
  • the image sensor of the embodiment of the invention can design the influence of the infrared light on the image color according to the needs of the actual application, thereby greatly increasing the application range of the image sensor.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)

Abstract

一种图像传感器(10)、监控系统和图像传感器的设计方法,图像传感器(10)包括:彩色膜(100),对于红外波段的光,彩色膜(100)仅允许特定波长的红外光通过,彩色膜(100)包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,用于将入射光中的可见光区分为n种颜色的光;感光芯片(200),包含信号处理电路和多个感光单元,多个感光单元分别感应透过多个n种颜色的滤片的光的光强并生成与透过所述多个n种颜色的滤片的光对应的电信号,信号处理电路对电信号处理以进行成像,信号处理电路对电信号的增益比为A1:A2:…Ai…:Aj:…An,多个n种颜色的滤片对特定波长的红外光的光强通过比为M1:M2(A1/A2):…:Mi(A1/Ai):…:Mj(A1/Aj):…:Mn(A1/An)。所述图像传感器(10),通过调整彩色膜(100)的光学特性实现用户想要的颜色,增加了图像传感器(10)的应用范围。

Description

图像传感器和监控系统 技术领域
本发明涉及图像成像技术领域,特别涉及一种图像传感器和监控系统。
背景技术
作为一种典型的固体成像传感器,CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)图像传感器可以应用在多种领域。由于CMOS图像传感器具有成本低廉、便于集成的优点,因此目前已在数码相机、数码摄像机等数码产品中获得了广泛的应用。然而对于外界产生的偏色,目前的CMOS图像传感器主要通过增加外部截止滤片来进行过滤,这样不仅增加了CMOS图像传感器的成本,降低了CMOS图像传感器的可靠性。例如当CMOS图像传感器的应用环境中存在红外光时,红外光会对CMOS图像传感器的成像颜色偏色产生影响,并且该偏色比较单一。,因此当用户希望,当入射光同时具有可见光和红外光时,用户希望CMOS图像传感器产生用户想要的偏色或偏色程度时,目前的CMOS图像传感器也无法实现,从而导致图像传感器的应用范围较窄,用户体验差。
发明内容
本发明的目的旨在至少在一定程度上解决上述的技术缺陷之一。
为此,本发明的第一个目的在于提出一种图像传感器。该图像传感器,通过调整彩色膜的光学特性,实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
本发明的第二个目的在于提出一种监控系统。
本发明的第三个目的在于提出另一种图像传感器。
本发明的第四个目的在于提出另一种监控系统。
本发明的第五个目的在于提出另一种图像传感器。
本发明的第六个目的在于提出另一种监控系统。
本发明的第七个目的在于提出另一种图像传感器。
本发明的第八个目的在于提出另一种监控系统。
为达到上述目的,本发明第一方面实施例的图像传感器,包括:彩色膜,其中,对于红外波段的光,所述彩色膜仅允许特定波长的红外光通过,且所述彩色膜包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,所述多个n种颜色的滤片用于 将入射光中的可见光区分为n种颜色的光,其中n为正整数;以及位于所述彩色膜之下的感光芯片,所述感光芯片包含信号处理电路和与所述多个n种颜色的滤片一一对应的多个感光单元,所述多个感光单元分别用于感应透过所述多个n种颜色的滤片的光的光强并生成与透过所述多个n种颜色的滤片的光对应的电信号,所述信号处理电路用于对所述电信号处理以进行成像,所述信号处理电路对于所述电信号的增益比为A1:A2:…:Ai:…:Aj:…:An,其中,i和j为大于等于1小于等于n的整数,且i≠j,其中,所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比为M1:M2(A1/A2):…:Mi(A1/Ai):…:Mj(A1/Aj):…:Mn(A1/An),所述M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定。
根据本发明实施例的图像传感器,通过调整彩色膜的光学特性,实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
为达到上述的目的,本发明第二方面实施例的监控系统,包括电子设备,所述电子设备具有本发明第一方面实施例的图像传感器;以及补光灯,其中,所述补光灯发射所述特定波长的红外光。
根据本发明实施例的监控系统,可实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
为达到上述的目的,本发明第三方面实施例的图像传感器,包括:至少一个滤光片,用于滤除除特定波长的红外光之外的红外光,其中,所述至少一个滤光片允许可见光和所述特定波长的红外光透过;位于所述至少一个滤光片之下的彩色膜,所述彩色膜包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,所述多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数;以及位于所述彩色膜之下的感光芯片,所述感光芯片包含信号处理电路和与所述多个n种颜色的滤片一一对应的多个感光单元,所述多个感光单元分别用于感应透过所述多个n种颜色的滤片的光的光强并生成与透过所述多个n种颜色的滤片的光对应的电信号,所述信号处理电路用于对所述电信号处理以进行成像,所述信号处理电路对于所述电信号的增益比为A1:A2:…:Ai:…:Aj:…:An,其中,i和j为大于等于1小于等于n的整数,且i≠j,其中,所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比为M1:M2(A1/A2):…:Mi(A1/Ai):…:Mj(A1/Aj):…:Mn(A1/An),所述M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定。
根据本发明实施例的图像传感器,通过调整彩色膜的光学特性以及使用具有特定光学特性的滤光片,实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的 应用范围,提升用户体验。
为达到上述的目的,本发明第四方面实施例的监控系统,包括电子设备,所述电子设备具有本发明第三方面实施例的图像传感器;以及补光灯,其中,所述补光灯发射所述特定波长的红外光。
根据本发明实施例的监控系统,可实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
为达到上述目的,本发明第五方面实施例的图像传感器,包括:彩色膜,其中,对于红外波段的光,所述彩色膜仅允许特定波长的红外光通过,且所述彩色膜包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,所述多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数;以及位于所述彩色膜之下的感光芯片,所述感光芯片包含信号处理电路和与所述多个n种颜色的滤片一一对应的多个感光单元,所述多个感光单元分别用于感应透过所述多个n种颜色的滤片的光的光强并生成与透过所述多个n种颜色的滤片的光对应的电信号,所述信号处理电路用于对所述电信号处理以进行成像,所述信号处理电路对于所述电信号的增益比为M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn,所述M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定,其中,i和j为大于等于1小于等于n的整数,且i≠j,其中,所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比为1:(A1/A2):…:(A1/Ai):…:(A1/Aj):…:(A1/An)。
根据本发明实施例的图像传感器,通过调整彩色膜的光学特性,实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
为达到上述的目的,本发明第六方面实施例的监控系统,包括电子设备,所述电子设备具有本发明第五方面实施例的图像传感器;以及补光灯,其中,所述补光灯发射所述特定波长的红外光。
根据本发明实施例的监控系统,可实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
为达到上述的目的,本发明第七方面实施例的图像传感器,包括:至少一个滤光片,用于滤除除特定波长的红外光之外的红外光,其中,所述至少一个滤光片允许可见光和所述特定波长的红外光透过;位于所述至少一个滤光片之下的彩色膜,所述彩色膜包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,所述多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数;以及位于所述彩色膜之下的感光芯片,所述感光芯片包含信号处理电路和与所述多个n种颜色的滤片一一对应的多个感光单元,所述多个感光单元分别用于感应透过所述多个n种颜 色的滤片的光的光强并生成与透过所述多个n种颜色的滤片的光对应的电信号,所述信号处理电路用于对所述电信号处理以进行成像,所述信号处理电路对于所述电信号的增益比为M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn,所述M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定,其中,i和j为大于等于1小于等于n的整数,且i≠j,其中,所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比为1:(A1/A2):…:(A1/Ai):…:(A1/Aj):…:(A1/An)。
根据本发明实施例的图像传感器,通过调整彩色膜的光学特性以及使用具有特定光学特性的滤光片,实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
为达到上述的目的,本发明第八方面实施例的监控系统,包括电子设备,所述电子设备具有本发明第七方面实施例的图像传感器;以及补光灯,其中,所述补光灯发射所述特定波长的红外光。
根据本发明实施例的监控系统,可实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明一个实施例的图像传感器的结构示意图;
图2为根据本发明一个实施例的图像传感器的示意图;
图3为根据本发明一个实施例的红、绿和蓝感光单元进行感光的示意图;
图4(1)为根据本发明一个实施例的调整前红滤片的光学特性示意图;
图4(2)为根据本发明一个实施例的调整前绿滤片的光学特性示意图;
图4(3)为根据本发明一个实施例的调整前蓝滤片的光学特性示意图;
图5(1)为根据本发明一个实施例的调整后红滤片的光学特性示意图;
图5(2)为根据本发明一个实施例的调整后绿滤片的光学特性示意图;
图5(3)为根据本发明一个实施例的调整后蓝滤片的光学特性示意图;
图6(1)为根据本发明另一个实施例的图像传感器的结构示意图;
图6(2)为根据本发明又一个实施例的图像传感器的结构示意图;
图6(3)为根据本发明又一个实施例的图像传感器的结构示意图;
图7为根据本发明一个实施例的监控系统的结构示意图;
图8为根据本发明另一个实施例的图像传感器的结构示意图;
图9为根据本发明一个实施例的滤光片500的光学特性示意图;
图10(1)为根据本发明一个实施例的红滤片的光学特性示意图;
图10(2)为根据本发明一个实施例的绿滤片的光学特性示意图;
图10(3)为根据本发明一个实施例的蓝滤片的光学特性示意图;
图11为根据本发明又一个实施例的图像传感器的结构示意图;
图12为根据本发明另一个实施例的监控系统的结构示意图;
图13为根据本发明一个实施例的图像传感器的结构示意图;
图14(1)为根据本发明另一个实施例的图像传感器的结构示意图;
图14(2)为根据本发明又一个实施例的图像传感器的结构示意图;
图14(3)为根据本发明又一个实施例的图像传感器的结构示意图;
图15为根据本发明一个实施例的监控系统的结构示意图;
图16为根据本发明另一个实施例的图像传感器的结构示意图;
图17为根据本发明又一个实施例的图像传感器的结构示意图;
图18为根据本发明另一个实施例的监控系统的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
在本发明的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件 内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
下面参照附图来描述根据本发明实施例的图像传感器和监控系统。
图1为根据本发明一个实施例的图像传感器的结构示意图。本发明实施例的图像传感器为CMOS图像传感器。如图1所示,图像传感器10包括:彩色膜100、感光芯片200。
其中,对于可见光,彩色膜100允许部分可见光透过;对于红外波段的光,彩色膜100仅允许特定波长的红外光通过,且彩色膜100对特定波长的红外光的光强通过比可调节,且彩色膜100包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数。其中,对于可见光,彩色膜100允许部分可见光透过,是指彩色膜100包括多个颜色的滤片,如当彩色膜100包括红、绿和蓝滤片时,红滤片只允许可见光中的红光透过,绿滤片只允许可见光中的绿光透过,蓝滤片只允许可见光中的蓝光透过。
感光芯片200位于彩色膜100之下,感光芯片200包含信号处理电路和与多个n种颜色的滤片一一对应的多个感光单元,多个感光单元分别用于感应透过所述多个n种颜色的滤片的光的光强并生成与透过多个n种颜色的滤片的光对应的电信号,信号处理电路用于对电信号处理以进行成像,信号处理电路对于电信号的增益比为A1:A2:…:Ai:…:Aj:…:An,其中,i和j为大于等于1小于等于n的整数,且i≠j,其中,彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比为M1:M2(A1/A2):…:Mi(A1/Ai):…:Mj(A1/Aj):…:Mn(A1/An),其中,M1,M2,…,Mi,…,Mj,…,Mn的值根据图像传感器所需要的颜色偏色要求确定。
在本发明的一个实施例中,颜色偏色要求包括颜色偏色种类。例如,使所拍摄的图片的颜色偏红、偏绿或偏蓝等。
在本发明的一个实施例中,颜色偏色要求还包括颜色偏色程度。
在本发明的一个实施例中,目标颜色偏色种类对应滤片具有的Mi值大于其他滤片具有的Mj值。
下面为了方便,对本发明提出的图像传感器进行举例说明。具体地,以n=3,且彩色膜100包括红、绿和蓝滤片为例进行描述。此处需要说明的是,彩色膜100包括红、绿和蓝滤片只是为了方便说明而做的举例,彩色膜100还可以包括其它颜色的滤片,例如,彩色膜100可以包括青、洋红(或品红)和黄滤片,又如,彩色膜100可以包括红、绿、蓝和白滤片。
具体地,光线经过微透镜会聚加强后到达彩色膜100(Color Filter,可简写为 CF),彩色膜100具有透光选择性(即只允许特定的光线通过)及光强衰减性(即通过的光线强度会下降)。彩色膜100包括多个红、绿和蓝滤片用于将入射光中的可见光区分为红、绿、蓝三原色,且对于红外光波段,红、绿和蓝滤片均只允许特定波长的红外光(例如,波长为850nm+-50nm的红外光)通过。然后,多个感光单元分别用于感应透过多个n种颜色的滤片的光的光强并生成与透过多个n种颜色的滤片的光对应的电信号,信号处理电路用于对电信号处理以进行成像。其中,感光单元可以为光敏二极管。
图2所示为图像传感器的示意图。图2中,light表示入射光,Micro Lens为微透镜,Color Filter为彩色膜100,Photo Diode为光敏二极管,用于感光,并将光信号转化为电信号。其中,如图2所示,红、绿和蓝三种滤片按照一定次序的排列,构成阵列,例如,奇数行(如第1行、第3行、第5行)从左到右滤片的颜色依此为红、绿、红、绿、红、绿…,偶数行(如第2行、第4行)从左到右滤片的颜色依此为绿、蓝、绿、蓝、绿、蓝…。
更具体地,感光芯片200根据透过彩色膜100的红、绿、蓝三种滤片的光进行成像。信号处理电路依滤片排列的次序对对应的电信号进行处理,将真实颜色还原出来,构成图片。更具体地,透过彩色膜100的红、绿、蓝三种滤片的光经过光敏二极管,光信号将转化为电信号,电信号由信号处理电路进行处理后,可生成图像。图3所示为红、绿和蓝感光单元进行感光的示意图。其中,红、绿和蓝感光单元与红、绿和蓝三种滤片一一对应。
此外,在本发明的实施例中,信号处理电路对于与透过多个n种颜色的滤片的光对应的电信号的增益比A1:A2:…:Ai:…:Aj:…:An是根据彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比得到的。根据所要形成的图片的要求首先确定彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比为M1:M2(A1/A2):…:Mi(A1/Ai):…:Mj(A1/Aj):…:Mn(A1/An),其中,M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定,接着在测试过程中,根据彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比确定信号处理电路对于与透过多个n种颜色的滤片的光对应的电信号的增益比,即信号处理电路对于电信号的增益比A1:A2:…:Ai:…:Aj:…:An通过测试得到。
具体地,仍以红、绿和蓝滤片为例,在太阳光下,将红外光滤除,仅剩下可见光,此时红、绿、蓝三种感光单元感应到可见光光强,转变为电信号后会由信号处理电路进行处理,之后输出颜色纯正的图像,此时信号处理电路对红、绿、蓝三种可见光所对应产生的电信号的增益比为A1:A2:A3。当然,根据需要,本领域技术人员已知可 以对红、绿、蓝三种可见光进行处理,使得最后得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而得到与真实物体的颜色一致的图像。
在本发明的一个实施例中,根据图像传感器的具体应用环境可选用补光灯给图像传感器补光,该补光灯发射特定波长的红外光。
在本发明的实施例中,特定波长与选用的补光灯发射的红外光的波长匹配。具体地,在红外波段范围内,彩色膜100只允许特定波长的红外光透过,其它波长的红外光则不能透过彩色膜100。
在本发明的实施例中,例如,在夜晚,补光灯发射的红外光的波长为λ(例如使用850nm+-50nm的补光灯)。通过事先调整CF的光学特性,仅使波长为λ(850nm+-50nm)的红外光可以通过,而其它波段的红外光截止。其中,该CF的光学特性为:可见光波段光学特性保持不变,在红外光波段,使夜晚补光灯采用的λ(850nm+-50nm)红外波长的红外光通过。同时,对于波长为λ(850nm+-50nm)的红外光,彩色膜100的多个红、绿和蓝滤片对于特定波长(λ)的红外光的光强通过比为M1:M2(A1/A2):M3(A1/A3)。图4(1)所示为调整前红滤片的光学特性示意图,图4(2)所示为调整前绿滤片的光学特性示意图,图4(3)所示为调整前蓝滤片的光学特性示意图,图5(1)所示为调整后红滤片的光学特性示意图,图5(2)所示为调整后绿滤片的光学特性示意图,图5(3)所示为调整后蓝滤片的光学特性示意图。
具体地,感光芯片200在感知复杂的光谱信号时(可见光+红外光),对于可见光,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为A1:A2:A3,同时,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而可以将真实的可见光颜色还原出来。而对于红外光,因彩色膜100的多个红、绿和蓝滤片对于特定波长(λ)的红外光的光强通过比为M1:M2(A1/A2):M3(A1/A3),经过信号处理电路处理时,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为A1:A2:A3,因此红外光在经过红、绿、蓝滤片及感光芯片200的处理之后,得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3。所以,只要事先控制M1:M2:M3的值,就可以控制红外光成像的颜色偏色以及颜色偏色程度。
例如,当M1:M2:M3=1:1:1时,感光芯片200在感知复杂的光谱信号时(可见光+红外光),对于可见光,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为A1:A2:A3,同时,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而可以将真实的可见光颜色还原出来。而对于红外光,因彩色膜100的多个红、绿和 蓝滤片对于特定波长(λ)的红外光的光强通过比为1:(A1/A2):(A1/A3),经过信号处理电路处理时,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为A1:A2:A3,因此红外光在经过红、绿、蓝滤片及感光芯片200的处理之后,得到的图像中红外下红、绿、蓝的颜色分量比为1:1:1,此比值为亮度的灰度,因此红外光的入射不会影响可见光还原出来的颜色。而且还因为多了红外光的光强,图像的亮度更亮,清晰度也会更好。此外,感光芯片200在感知单一的由补光灯发射的红外光(波长为λ)时,因为CF是允许波长为λ的红外光透射的,因此在晚上仅有补光灯时,人眼无法看清物体,但是感光芯片200仍然可以感应波长为λ的红外光,红外光经过光强通过比为1:(A1/A2):(A1/A3)的红、绿、蓝滤片后,被红、绿、蓝滤片对应的感光单元感应到的光强为1:(A1/A2):(A1/A3),经过信号处理电路进行处理时,信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为A1:A2:A3,从而生成的图像中红、绿、蓝的颜色分量比为1:1:1,此时的图像为正常的黑白图像。
由于人眼的感光光谱范围为380nm~780nm的可见光谱,对红外波段光谱则无法觉察,而图像传感器的感知光谱的范围比人眼要宽,硅基材料对940nm的红外线还可以有较好的感光。那么当环境中同时存在可见光与红外光时(如在阳光下),存在CMOS图像传感器所拍摄出来的图像颜色与人眼观察所获得的图像颜色会不一致的情况。但在某些应用(如安防监控应用)中,一般会有如下要求:当人眼可以清晰观察时(如白天),CMOS图像传感器所拍摄的图像颜色要忠实于人眼;若人眼无法清晰地观察时(如晚上),CMOS图像传感器可提供真实的颜色或者是黑白图像。那么,M1:M2:M3=1:1:1就可以应用在这类应用中,特别是可以应用在安防监控上,在同时具有可见光和红外光的环境下,成像颜色不产生偏色,并且图像亮度及清晰度好,在夜晚也可拍摄出清晰的黑白图像,从而满足应用需求。
又例如,若M1:M2:M3=2:1:1,感光芯片200在感知复杂的光谱信号时(可见光+红外光),红色感光单元感应到的光强比其它两个要大,图像处理后画面会偏红,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=2:1:1,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏红。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏红的图像。其中,M1的值越大,最终得到的图像颜色就越红。
又例如,若M1:M2:M3=1:2:1,感光芯片200在感知复杂的光谱信号时(可见光+红外光),绿色感光单元感应到的光强比其它两个要大,图像处理后画面会偏绿,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:2:1, 即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏绿。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏绿的图像。其中,M2的值越大,最终得到的图像颜色就越绿。
再例如,若M1:M2:M3=1:1:2,感光芯片200在感知复杂的光谱信号时(可见光+红外光),蓝色感光单元感应到的光强比其它两个要大,图像处理后画面会偏蓝,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏蓝。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏蓝的图像。其中,M3的值越大,最终得到的图像颜色就越蓝。
在以上实施例中,是对单一颜色偏色类型进行举例,然而在本发明的其他实施例中可以根据用户需要选择任意的颜色偏色类型,只要调整各个颜色对应M值的比例即可。
例如,若M1:M2:M3=1:1.5:2,感光芯片200在感知复杂的光谱信号时(可见光+红外光),绿、蓝色感光单元感应到的光强比红色感光单元感应到的光强要大,由于绿色和蓝色的组合,图像处理后画面会偏浅蓝,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1.5:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏浅蓝。而在感知单一的由补光灯发出的红外时,图像传感器输出的图像也为偏浅蓝的图像。
又例如,若M1:M2:M3=2:1:1.5,感光芯片200在感知复杂的光谱信号时(可见光+红外光),红、蓝色感光单元感应到的光强比绿色感光单元感应到的光强要大,由于红色和蓝色的组合,图像处理后画面会偏浅紫,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=2:1:1.5,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏浅紫。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏浅紫的图像。
需要说明的是,上述实施例仅是示意性描述,本领域技术人员可依据本发明的实施例,根据颜色的具体需求进行相应调整。
本发明实施例的图像传感器可以应用在许多领域,例如,在某个应用中需要拍摄复古风格的图片,那么就可以通过设定M1,M2,…,Mi,…,Mj,…,Mn的值,使所拍摄图片的颜色偏色为浅褐色来实现,那么通过该图像传感器可以直接拍摄出复古风格的图片,从而避免了使用图像处理技术将图像处理为复古风格所造成的图像失真等问题,提升了用户体验。
本发明实施例的图像传感器在加工成产品时,由于参数的不同可以有多种产品型号,一般来说,相同型号的图像传感器对应的所述信号处理电路对于透过多个n种颜 色的滤片的光对应的电信号的增益比A1:A2:…:Ai:…:Aj:…:An是相同的。另外,可以根据不同的场景,通过信号处理电路对电信号的增益比进行调节,以实现真实色彩的还原。
本发明实施例的图像传感器,通过调整彩色膜的光学特性,实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
在本发明的另一个实施例中,如图6(1)所示,图像传感器10还包括:微透镜300。微透镜300位于彩色膜100之上,微透镜300用于接收并汇聚所述入射光。具体地,光线经过微透镜300,微透镜300将光线会聚加强。
在本发明的一个实施例中,如图6(2)所示,图像传感器10还可以包括滤光片400。滤光片400位于微透镜300之上,用于滤除除特定波长的红外光之外的红外光,如此,可使得过滤效果更好,从而使得拍摄出来的图像的效果也更好。
在本发明的一个实施例中,如图6(3)所示,滤光片400也可以直接放置于彩色膜100之上。
为了实现上述实施例,本发明还提出一种监控系统。
图7为根据本发明一个实施例的监控系统的结构示意图。
如图7所示,监控系统包括电子设备1000和补光灯20。
其中,电子设备1000具有图像传感器10,补光灯20发射特定波长的红外光。
本发明实施例的监控系统,可实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
图8为根据本发明另一个实施例的图像传感器的结构示意图。
如图8所示,图像传感器30包括:至少一个滤光片500、彩色膜600和感光芯片700。
其中,滤光片500用于滤除除特定波长的红外光之外的红外光,滤光片500允许可见光和特定波长的红外光透过。彩色膜600位于滤光片500之下,彩色膜600包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数。感光芯片700位于彩色膜600之下,感光芯片700包含信号处理电路和与多个n种颜色的滤片一一对应的多个感光单元,多个感光单元分别用于感应透过多个n种颜色的滤片的光的光强并生成与透过多个n种颜色的滤片的光对应的电信号,信号处理电路用于对电信号处理以进行成像,信号处理电路对于的电信号的增益比为A1:A2:…:Ai:…:Aj:…:An,其中,i和j为大于等于1小于等于n的整数,且i≠j,其中,彩色膜600的多个n种颜色的滤片对特定波长的红外光的光强通过比为M1:M2(A1/A2):…:Mi(A1/Ai):…:Mj(A1/Aj):…:Mn (A1/An),M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定。
具体地,滤光片500,滤光片500为IR Filter(红外滤光片),滤光片500用于滤除除特定波长的红外光之外的红外光。即,滤光片500允许可见光和特定波长的红外光透过。例如,滤光片500仅允许可见光和波长为λ(如850nm+-50nm)的红外光通过,其它波段的光都截止。如图9所示,为滤光片500的光学特性示意图。
在本发明的一个实施例中,颜色偏色要求包括颜色偏色种类。例如,使所拍摄的图片的颜色偏红、偏绿或偏蓝等。
在本发明的一个实施例中,颜色偏色要求还包括颜色偏色程度。
在本发明的一个实施例中,目标颜色偏色种类对应滤片具有的Mi值大于其他滤片具有的Mj值。
下面为了方便,对本发明提出的图像传感器进行举例说明。具体地,以n=3,且彩色膜600包括红、绿和蓝滤片为例进行描述。此处需要说明的是,彩色膜600包括红、绿和蓝滤片只是为了方便说明而做的举例,彩色膜600还可以包括其它颜色的滤片,例如彩色膜600可以包括青、洋红(或品红)和黄滤片,彩色膜600可以包括红、绿、蓝和白滤片。
具体地,光线经过微透镜会聚加强后到达彩色膜600(Color Filter,可简写为CF),彩色膜600具有透光选择性(即只允许特定的光线通过)及光强衰减性(即通过的光线强度会下降)。彩色膜600包括多个红、绿和蓝滤片用于将入射光中的可见光区分为红、绿、蓝三原色的光。
进一步地,感光芯片700根据透过彩色膜600的红、绿、蓝三种滤片的光进行成像。具体地,红、绿和蓝三种滤片按照一定次序的排列,构成阵列,信号处理电路依滤片排列的次序对对应的电信号进行处理,将真实颜色还原出来,构成图片。更具体地,彩色膜600的红、绿、蓝三种滤片的光到达底层的感光单元,光信号将转化为电信号,电信号由信号处理电路进行处理后,可生成图像,其中,感光单元可以为光敏二极管。更具体地,调整彩色膜600的光学特性,使得彩色膜600的多个红、绿和蓝滤片对于特定波长(如850nm+-50nm)的红外光的光强通过比为M1:M2(A1/A2):M3(A1/A3)。由于滤光片500可以将除特定波长的红外光之外的红外光滤除,所以其它波长范围的红外光的光强通过比不需要做特殊调整。图10(1)、图10(2)和图10(3)所示分别为红、绿、蓝滤片的光学特性的示意图,其中,图中的虚线表示取值可以为任意值。当然,为了方便,可以将所有红外光的光强通过比都调为M1:M2(A1/A2):M3(A1/A3),实际上除特定波长的红外光之外的其它波长范围的红外光的光 强通过比可随意调。
在本发明的实施例中,信号处理电路对于与透过多个n种颜色的滤片的光对应的电信号的增益比A1:A2:…:Ai:…:Aj:…:An是根据彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比得到的。根据所要形成的图片的要求首先确定彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比为M1:M2(A1/A2):…:Mi(A1/Ai):…:Mj(A1/Aj):…:Mn(A1/An),其中,M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定,接着在测试过程中,根据彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比确定信号处理电路对于与透过多个n种颜色的滤片的光对应的电信号的增益比,即信号处理电路对于电信号的增益比A1:A2:…:Ai:…:Aj:…:An通过测试得到。
具体地,仍以红、绿和蓝滤片为例,在太阳光下,将红外光滤除,仅剩下可见光,此时红、绿、蓝三种感光单元感应到可见光光强,转变为电信号后会由信号处理电路进行处理,之后输出颜色纯正的图像,此时信号处理电路对红、绿、蓝三种可见光所对应产生的电信号的增益比为A1:A2:A3。当然,根据需要,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得最后得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而得到与真实物体的颜色一致的图像。
在本发明的一个实施例中,根据图像传感器的具体应用环境可选用补光灯给图像传感器补光,该补光灯发射特定波长的红外光。
在本发明的实施例中,特定波长与选用的补光灯发射的红外光的波长匹配。即滤光片500和所选用的补光灯是配合使用的。具体地,例如,补光灯发射的红外光波长为λ,至少一个滤光片500则允许波长为λ的红外光通过,而将其它波长的红外光滤除。
在本发明的实施例中,感光芯片700在感知复杂的光谱信号时(可见光+红外光),对于可见光,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为A1:A2:A3,同时,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而可以将真实的可见光颜色还原出来。而对于红外光,因彩色膜600的多个红、绿和蓝滤片对于特定波长(λ)的红外光的光强通过比为M1:M2(A1/A2):M3(A1/A3),经过信号处理电路处理时,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为A1:A2:A3,因此红外光在经过红、绿、蓝滤片及感光芯片700的处理之后,得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3。所以,只要事先控制M1:M2:M3的值,就可以控制红外光成像的颜色偏色以及颜色偏色程度。
例如,当M1:M2:M3=1:1:1时,感光芯片700在感知复杂的光谱信号时(可见光+红外光),对于可见光,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为A1:A2:A3,同时,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而可以将真实的可见光颜色还原出来。而对于红外光,因彩色膜600的多个红、绿和蓝滤片对于特定波长(λ)的红外光的光强通过比为1:(A1/A2):(A1/A3),经过信号处理电路处理时,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为A1:A2:A3,因此红外光在经过红、绿、蓝滤片及感光芯片700的处理之后,得到的图像中红外下红、绿、蓝的颜色分量比为1:1:1,此比值为亮度的灰度,因此红外光的入射不会影响可见光还原出来的颜色。而且还因为多了红外光的光强,图像的亮度更亮,清晰度也会更好。此外,感光芯片700在感知单一的由补光灯发射的红外光(波长为λ)时,因为滤光片500是允许波长为λ的红外光透射的,因此在晚上仅有补光灯时,人眼无法看清物体,但是感光芯片700仍然可以感应波长为λ的红外光,红外光经过光强通过比为1:(A1/A2):(A1/A3)的红、绿、蓝滤片后,被红、绿、蓝滤片对应的感光单元感应到的光强为1:(A1/A2):(A1/A3),经过信号处理电路进行处理时,信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为A1:A2:A3,从而生成的图像中红、绿、蓝的颜色分量比为1:1:1,此时的图像为正常的黑白图像。
由于人眼的感光光谱范围为380nm~780nm的可见光谱,对红外波段光谱则无法觉察,而图像传感器的感知光谱的范围比人眼要宽,硅基材料对940nm的红外线还可以有较好的感光。那么当环境中同时存在可见光与红外光时(如在阳光下),存在CMOS图像传感器所拍摄出来的图像颜色与人眼观察所获得的图像颜色会不一致的情况。但在某些应用(如安防监控应用)中,一般会有如下要求:当人眼可以清晰观察时(如白天),CMOS图像传感器所拍摄的图像颜色要忠实于人眼;若人眼无法清晰地观察时(如晚上),CMOS图像传感器可提供真实的颜色或者是黑白图像。那么,M1:M2:M3=1:1:1就可以应用在这类应用中,特别是可以应用在安防监控上,在同时具有可见光和红外光的环境下,成像颜色不产生偏色,并且图像亮度及清晰度好,在夜晚也可拍摄出清晰的黑白图像,从而满足应用需求。
又例如,若M1:M2:M3=2:1:1,感光芯片700在感知复杂的光谱信号时(可见光+红外光),红色感光单元感应到的光强比其它两个要大,图像处理后画面会偏红,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=2:1:1,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏红。而在感知单一的由补光 灯发出的红外光时,图像传感器输出的图像也为偏红的图像。其中,M1的值越大,最终得到的图像颜色就越红。
又例如,若M1:M2:M3=1:2:1,感光芯片700在感知复杂的光谱信号时(可见光+补光灯发射的红外光),绿色感光单元感应到的光强比其它两个要大,图像处理后画面会偏绿,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:2:1,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏绿。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏绿的图像。其中,M2的值越大,最终得到的图像颜色就越绿。
再例如,若M1:M2:M3=1:1:2,感光芯片700在感知复杂的光谱信号时(可见光+红外光),蓝色感光单元感应到的光强比其它两个要大,图像处理后画面会偏蓝,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏蓝。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏蓝的图像。其中,M3的值越大,最终得到的图像颜色就越蓝。
在以上实施例中,是对单一颜色偏色类型进行举例,然而在本发明的其他实施例中可以根据用户需要选择任意的颜色偏色类型,只要调整各个颜色对应M值的比例即可。
例如,若M1:M2:M3=1:1.5:2,感光芯片700在感知复杂的光谱信号时(可见光+红外光),绿、蓝色感光单元感应到的光强比红色感光单元感应到的光强要大,由于绿色和蓝色的组合,图像处理后画面会偏浅蓝,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1.5:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏浅蓝。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏浅蓝的图像。
又例如,若M1:M2:M3=2:1:1.5,感光芯片700在感知复杂的光谱信号时(可见光+红外光),红、蓝色感光单元感应到的光强比绿色感光单元感应到的光强要大,由于红色和蓝色的组合,图像处理后画面会偏浅紫,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1.5:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏浅紫。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏浅紫的图像。
需要说明的是,上述实施例仅是示意性描述,本领域技术人员可依据本发明的实施例,根据颜色的具体需求进行相应调整。
本发明实施例的图像传感器可以应用在许多领域,例如,在某个应用中需要拍摄复古风格的图片,那么就可以通过设定M1,M2,…,Mi,…,Mj,…,Mn的值,使所拍 摄图片的颜色偏色为浅褐色来实现,那么通过该图像传感器可以直接拍摄出复古风格的图片,从而避免了使用图像处理技术将图像处理为复古风格所造成的图像失真等问题,提升了用户体验。
本发明实施例的图像传感器在加工成产品时,由于参数的不同可以有多种产品型号,一般来说,相同型号的图像传感器对应的所述信号处理电路对于透过多个n种颜色的滤片的光对应产生的电信号的增益比A1:A2:…:Ai:…:Aj:…:An是相同的。另外,可以根据不同的场景,通过信号处理电路对电信号的增益比进行调节,以实现真实色彩的还原。
本发明实施例的图像传感器,通过调整彩色膜的光学特性以及使用具有特定光学特性的滤光片,实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
在本发明的另一个实施例中,如图11所示,图像传感器30还包括:微透镜800,微透镜800位于滤光片或滤光片组合500和彩色膜600之间,微透镜800用于接收并汇聚入射光。具体地,光线经过微透镜800,微透镜800将光线会聚加强。
为了实现上述实施例,本发明还提出一种监控系统。
图12为根据本发明一个实施例的监控系统的结构示意图。
如图12所示,监控系统包括电子设备2000和补光灯40。
其中,电子设备2000具有图像传感器30,补光灯40发射特定波长的红外光。
本发明实施例的监控系统,可实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
图13为根据本发明一个实施例的图像传感器的结构示意图。本发明实施例的图像传感器为CMOS图像传感器。如图13所示,图像传感器310包括:彩色膜3100、感光芯片3200。
其中,对于可见光,彩色膜3100允许部分可见光透过;对于红外波段的光,彩色膜3100仅允许特定波长的红外光通过,且彩色膜3100对特定波长的红外光的光强通过比可调节,且彩色膜3100包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数。其中,对于可见光,彩色膜3100允许部分可见光透过,是指彩色膜3100包括多个颜色的滤片,如当彩色膜3100包括红、绿和蓝滤片时,红滤片只允许可见光中的红光透过,绿滤片只允许可见光中的绿光透过,蓝滤片只允许可见光中的蓝光透过。
感光芯片3200位于彩色膜3100之下,感光芯片3200包含信号处理电路和与多个n种颜色的滤片一一对应的多个感光单元,多个感光单元分别用于感应透过所述多个n 种颜色的滤片的光的光强并生成与透过多个n种颜色的滤片的光对应的电信号,信号处理电路用于对电信号处理以进行成像,信号处理电路对于电信号的增益比为M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn,其中,M1,M2,…,Mi,…,Mj,…,Mn的值根据图像传感器所需要的颜色偏色要求确定,其中,i和j为大于等于1小于等于n的整数,且i≠j,其中,彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比为1:(A1/A2):…:(A1/Ai):…:(A1/Aj):…:(A1/An)。
在本发明的一个实施例中,颜色偏色要求包括颜色偏色种类。例如,使所拍摄的图片的颜色偏红、偏绿或偏蓝等。
在本发明的一个实施例中,颜色偏色要求还包括颜色偏色程度。
在本发明的一个实施例中,目标颜色偏色种类对应滤片具有的Mi值大于其他滤片具有的Mj值。
下面为了方便,对本发明提出的图像传感器进行举例说明。具体地,以n=3,且彩色膜3100包括红、绿和蓝滤片为例进行描述。此处需要说明的是,彩色膜3100包括红、绿和蓝滤片只是为了方便说明而做的举例,彩色膜3100还可以包括其它颜色的滤片,例如,彩色膜3100可以包括青、洋红(或品红)和黄滤片,又如,彩色膜3100可以包括红、绿、蓝和白滤片。
具体地,光线经过微透镜会聚加强后到达彩色膜3100(Color Filter,可简写为CF),彩色膜3100具有透光选择性(即只允许特定的光线通过)及光强衰减性(即通过的光线强度会下降)。彩色膜3100包括多个红、绿和蓝滤片用于将入射光中的可见光区分为红、绿、蓝三原色,且对于红外光波段,红、绿和蓝滤片均只允许特定波长的红外光(例如,波长为850nm+-50nm的红外光)通过。然后,多个感光单元分别用于感应透过多个n种颜色的滤片的光的光强并生成与透过多个n种颜色的滤片的光对应的电信号,信号处理电路用于对电信号处理以进行成像。其中,感光单元可以为光敏二极管。
更具体地,感光芯片3200根据透过彩色膜3100的红、绿、蓝三种滤片的光进行成像。信号处理电路依滤片排列的次序对对应的电信号进行处理,将真实颜色还原出来,构成图片。更具体地,透过彩色膜3100的红、绿、蓝三种滤片的光经过光敏二极管,光信号将转化为电信号,电信号由信号处理电路进行处理后,可生成图像。
此外,在本发明的实施例中,信号处理电路对于与透过多个n种颜色的滤片的光对应的电信号的增益比M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn是根据彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比得到的,其中,M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定。根据所要形成的图片 的要求首先确定彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比为1:(A1/A2):…:(A1/Ai):…:(A1/Aj):…:(A1/An),接着在测试过程中,根据彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比确定信号处理电路对于与透过多个n种颜色的滤片的光对应的电信号的增益比,即信号处理电路对于电信号的增益比M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn通过测试得到。
具体地,仍以红、绿和蓝滤片为例,在太阳光下,将红外光滤除,仅剩下可见光,此时红、绿、蓝三种感光单元感应到可见光光强,转变为电信号后会由信号处理电路进行处理,之后输出颜色纯正的图像,此时信号处理电路对红、绿、蓝三种可见光所对应产生的电信号的增益比为M1A1:M2A2:M3A3。当然,根据需要,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得最后得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而得到与真实物体的颜色一致的图像。
在本发明的一个实施例中,根据图像传感器的具体应用环境可选用补光灯给图像传感器补光,该补光灯发射特定波长的红外光。
在本发明的实施例中,特定波长与选用的补光灯发射的红外光的波长匹配。具体地,在红外波段范围内,彩色膜3100只允许特定波长的红外光透过,其它波长的红外光则不能透过彩色膜3100。
在本发明的实施例中,例如,在夜晚,补光灯发射的红外光的波长为λ(例如使用850nm+-50nm的补光灯)。通过事先调整CF的光学特性,仅使波长为λ(850nm+-50nm)的红外光可以通过,而其它波段的红外光截止。其中,该CF的光学特性为:可见光波段光学特性保持不变,在红外光波段,使夜晚补光灯采用的λ(850nm+-50nm)红外波长的红外光通过。同时,对于波长为λ(850nm+-50nm)的红外光,彩色膜3100的多个红、绿和蓝滤片对于特定波长(λ)的红外光的光强通过比为1:(A1/A2):(A1/A3)。
具体地,感光芯片3200在感知复杂的光谱信号时(可见光+红外光),对于可见光,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为M1A1:M2A2:M3A3,同时,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而可以将真实的可见光颜色还原出来。而对于红外光,因彩色膜3100的多个红、绿和蓝滤片对于特定波长(λ)的红外光的光强通过比为1:(A1/A2):(A1/A3),经过信号处理电路处理时,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为M1A1:M2A2:M3A3,因此红外光在经过红、绿、蓝滤片及感光芯片200的处理之后,得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3。所以,只要事先控制M1:M2:M3的值, 就可以控制红外光成像的颜色偏色以及颜色偏色程度。
例如,当M1:M2:M3=1:1:1时,感光芯片3200在感知复杂的光谱信号时(可见光+红外光),对于可见光,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为A1:A2:A3,同时,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而可以将真实的可见光颜色还原出来。而对于红外光,因彩色膜3100的多个红、绿和蓝滤片对于特定波长(λ)的红外光的光强通过比为1:(A1/A2):(A1/A3),经过信号处理电路处理时,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为A1:A2:A3,因此红外光在经过红、绿、蓝滤片及感光芯片3200的处理之后,得到的图像中红外下红、绿、蓝的颜色分量比为1:1:1,此比值为亮度的灰度,因此红外光的入射不会影响可见光还原出来的颜色。而且还因为多了红外光的光强,图像的亮度更亮,清晰度也会更好。此外,感光芯片3200在感知单一的由补光灯发射的红外光(波长为λ)时,因为CF是允许波长为λ的红外光透射的,因此在晚上仅有补光灯时,人眼无法看清物体,但是感光芯片3200仍然可以感应波长为λ的红外光,红外光经过光强通过比为1:(A1/A2):(A1/A3)的红、绿、蓝滤片后,被红、绿、蓝滤片对应的感光单元感应到的光强为1:(A1/A2):(A1/A3),经过信号处理电路进行处理时,信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为A1:A2:A3,从而生成的图像中红、绿、蓝的颜色分量比为1:1:1,此时的图像为正常的黑白图像。
由于人眼的感光光谱范围为380nm~780nm的可见光谱,对红外波段光谱则无法觉察,而图像传感器的感知光谱的范围比人眼要宽,硅基材料对940nm的红外线还可以有较好的感光。那么当环境中同时存在可见光与红外光时(如在阳光下),存在CMOS图像传感器所拍摄出来的图像颜色与人眼观察所获得的图像颜色会不一致的情况。但在某些应用(如安防监控应用)中,一般会有如下要求:当人眼可以清晰观察时(如白天),CMOS图像传感器所拍摄的图像颜色要忠实于人眼;若人眼无法清晰地观察时(如晚上),CMOS图像传感器可提供真实的颜色或者是黑白图像。那么,M1:M2:M3=1:1:1就可以应用在这类应用中,特别是可以应用在安防监控上,在同时具有可见光和红外光的环境下,成像颜色不产生偏色,并且图像亮度及清晰度好,在夜晚也可拍摄出清晰的黑白图像,从而满足应用需求。
又例如,若M1:M2:M3=2:1:1,感光芯片3200在感知复杂的光谱信号时(可见光+红外光),红色感光单元感应到的光强比其它两个要大,图像处理后画面会偏红,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=2:1:1, 即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏红。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏红的图像。其中,M1的值越大,最终得到的图像颜色就越红。
又例如,若M1:M2:M3=1:2:1,感光芯片3200在感知复杂的光谱信号时(可见光+红外光),绿色感光单元感应到的光强比其它两个要大,图像处理后画面会偏绿,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:2:1,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏绿。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏绿的图像。其中,M2的值越大,最终得到的图像颜色就越绿。
再例如,若M1:M2:M3=1:1:2,感光芯片3200在感知复杂的光谱信号时(可见光+红外光),蓝色感光单元感应到的光强比其它两个要大,图像处理后画面会偏蓝,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏蓝。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏蓝的图像。其中,M3的值越大,最终得到的图像颜色就越蓝。
在以上实施例中,是对单一颜色偏色类型进行举例,然而在本发明的其他实施例中可以根据用户需要选择任意的颜色偏色类型,只要调整各个颜色对应M值的比例即可。
例如,若M1:M2:M3=1:1.5:2,感光芯片3200在感知复杂的光谱信号时(可见光+红外光),绿、蓝色感光单元感应到的光强比红色感光单元感应到的光强要大,由于绿色和蓝色的组合,图像处理后画面会偏浅蓝,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1.5:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏浅蓝。而在感知单一的由补光灯发出的红外时,图像传感器输出的图像也为偏浅蓝的图像。
又例如,若M1:M2:M3=2:1:1.5,感光芯片3200在感知复杂的光谱信号时(可见光+红外光),红、蓝色感光单元感应到的光强比绿色感光单元感应到的光强要大,由于红色和蓝色的组合,图像处理后画面会偏浅紫,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=2:1:1.5,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏浅紫。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏浅紫的图像。
需要说明的是,上述实施例仅是示意性描述,本领域技术人员可依据本发明的实施例,根据颜色的具体需求进行相应调整。
本发明实施例的图像传感器可以应用在许多领域,例如,在某个应用中需要拍摄 复古风格的图片,那么就可以通过设定M1,M2,…,Mi,…,Mj,…,Mn的值,使所拍摄图片的颜色偏色为浅褐色来实现,那么通过该图像传感器可以直接拍摄出复古风格的图片,从而避免了使用图像处理技术将图像处理为复古风格所造成的图像失真等问题,提升了用户体验。
本发明实施例的图像传感器在加工成产品时,由于参数的不同可以有多种产品型号,一般来说,相同型号的图像传感器对应的所述信号处理电路对于透过多个n种颜色的滤片的光对应的电信号的增益比M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn是相同的。另外,可以根据不同的场景,通过信号处理电路对电信号的增益比进行调节,以实现真实色彩的还原。
本发明实施例的图像传感器,通过调整彩色膜的光学特性,实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
在本发明的另一个实施例中,如图14(1)所示,图像传感器310还包括:微透镜3300。微透镜3300位于彩色膜3100之上,微透镜3300用于接收并汇聚所述入射光。具体地,光线经过微透镜3300,微透镜3300将光线会聚加强。
在本发明的一个实施例中,如图14(2)所示,图像传感器310还可以包括滤光片3400。滤光片3400位于微透镜3300之上,用于滤除除特定波长的红外光之外的红外光,如此,可使得过滤效果更好,从而使得拍摄出来的图像的效果也更好。
在本发明的一个实施例中,如图14(3)所示,滤光片3400也可以直接放置于彩色膜3100之上。
为了实现上述实施例,本发明还提出一种监控系统。
图15为根据本发明一个实施例的监控系统的结构示意图。
如图15所示,监控系统包括电子设备31000和补光灯320。
其中,电子设备31000具有图像传感器310,补光灯320发射特定波长的红外光。
本发明实施例的监控系统,可实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
图16为根据本发明另一个实施例的图像传感器的结构示意图。
如图16所示,图像传感器630包括:至少一个滤光片6500、彩色膜6600和感光芯片6700。
其中,滤光片6500用于滤除除特定波长的红外光之外的红外光,滤光片6500允许可见光和特定波长的红外光透过。彩色膜6600位于滤光片6500之下,彩色膜6600包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数。感光芯片6700位于彩 色膜6600之下,感光芯片6700包含信号处理电路和与多个n种颜色的滤片一一对应的多个感光单元,多个感光单元分别用于感应透过多个n种颜色的滤片的光的光强并生成与透过多个n种颜色的滤片的光对应的电信号,信号处理电路用于对电信号处理以进行成像,信号处理电路对于的电信号的增益比为M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn,其中,M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定,其中,i和j为大于等于1小于等于n的整数,且i≠j,其中,彩色膜6600的多个n种颜色的滤片对特定波长的红外光的光强通过比为1:(A1/A2):…:(A1/Ai):…:(A1/Aj):…:(A1/An)。
具体地,滤光片6500,滤光片6500为IR Filter(红外滤光片),滤光片6500用于滤除除特定波长的红外光之外的红外光。即,滤光片6500允许可见光和特定波长的红外光透过。例如,滤光片6500仅允许可见光和波长为λ(如850nm+-50nm)的红外光通过,其它波段的光都截止。
在本发明的一个实施例中,颜色偏色要求包括颜色偏色种类。例如,使所拍摄的图片的颜色偏红、偏绿或偏蓝等。
在本发明的一个实施例中,颜色偏色要求还包括颜色偏色程度。
在本发明的一个实施例中,目标颜色偏色种类对应滤片具有的Mi值大于其他滤片具有的Mj值。
下面为了方便,对本发明提出的图像传感器进行举例说明。具体地,以n=3,且彩色膜6600包括红、绿和蓝滤片为例进行描述。此处需要说明的是,彩色膜6600包括红、绿和蓝滤片只是为了方便说明而做的举例,彩色膜6600还可以包括其它颜色的滤片,例如彩色膜6600可以包括青、洋红(或品红)和黄滤片,彩色膜6600可以包括红、绿、蓝和白滤片。
具体地,光线经过微透镜会聚加强后到达彩色膜6600(Color Filter,可简写为CF),彩色膜6600具有透光选择性(即只允许特定的光线通过)及光强衰减性(即通过的光线强度会下降)。彩色膜6600包括多个红、绿和蓝滤片用于将入射光中的可见光区分为红、绿、蓝三原色的光。
进一步地,感光芯片6700根据透过彩色膜6600的红、绿、蓝三种滤片的光进行成像。具体地,红、绿和蓝三种滤片按照一定次序的排列,构成阵列,信号处理电路依滤片排列的次序对对应的电信号进行处理,将真实颜色还原出来,构成图片。更具体地,彩色膜6600的红、绿、蓝三种滤片的光到达底层的感光单元,光信号将转化为电信号,电信号由信号处理电路进行处理后,可生成图像,其中,感光单元可以为光敏二极管。更具体地,调整彩色膜6600的光学特性,使得彩色膜6600的多个红、绿 和蓝滤片对于特定波长(如850nm+-50nm)的红外光的光强通过比为1:(A1/A2):(A1/A3)。由于滤光片6500可以将除特定波长的红外光之外的红外光滤除,所以其它波长范围的红外光的光强通过比不需要做特殊调整。当然,为了方便,可以将所有红外光的光强通过比都调为1:(A1/A2):(A1/A3),实际上除特定波长的红外光之外的其它波长范围的红外光的光强通过比可随意调。
在本发明的实施例中,信号处理电路对于与透过多个n种颜色的滤片的光对应的电信号的增益比M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn是根据彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比得到的,其中,M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定。根据所要形成的图片的要求首先确定彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比为1:(A1/A2):…:(A1/Ai):…:(A1/Aj):…:(A1/An),接着在测试过程中,根据彩色膜的多个n种颜色的滤片对特定波长的红外光的光强通过比确定信号处理电路对于与透过多个n种颜色的滤片的光对应的电信号的增益比,即信号处理电路对于电信号的增益比M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn通过测试得到。
具体地,仍以红、绿和蓝滤片为例,在太阳光下,将红外光滤除,仅剩下可见光,此时红、绿、蓝三种感光单元感应到可见光光强,转变为电信号后会由信号处理电路进行处理,之后输出颜色纯正的图像,此时信号处理电路对红、绿、蓝三种可见光所对应产生的电信号的增益比为M1A1:M2A2:M3A3。当然,根据需要,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得最后得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而得到与真实物体的颜色一致的图像。
在本发明的一个实施例中,根据图像传感器的具体应用环境可选用补光灯给图像传感器补光,该补光灯发射特定波长的红外光。
在本发明的实施例中,特定波长与选用的补光灯发射的红外光的波长匹配。即滤光片6500和所选用的补光灯是配合使用的。具体地,例如,补光灯发射的红外光波长为λ,至少一个滤光片6500则允许波长为λ的红外光通过,而将其它波长的红外光滤除。
在本发明的实施例中,感光芯片6700在感知复杂的光谱信号时(可见光+红外光),对于可见光,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为M1A1:M2A2:M3A3,同时,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而可以将真实的可见光颜色还原出来。而对于红外光,因彩色膜6600的多个红、绿和蓝滤片对于特定波长(λ)的红外光的光强通过比为1:(A1/A2):(A1/A3),经过信 号处理电路处理时,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为M1A1:M2A2:M3A3,因此红外光在经过红、绿、蓝滤片及感光芯片6700的处理之后,得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3。所以,只要事先控制M1:M2:M3的值,就可以控制红外光成像的颜色偏色以及颜色偏色程度。
例如,当M1:M2:M3=1:1:1时,感光芯片6700在感知复杂的光谱信号时(可见光+红外光),对于可见光,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应的电信号的增益比为A1:A2:A3,同时,本领域技术人员已知可以对红、绿、蓝三种可见光进行处理,使得得到的图像中的红、绿、蓝三种可见光的分量比为1:1:1,从而可以将真实的可见光颜色还原出来。而对于红外光,因彩色膜6600的多个红、绿和蓝滤片对于特定波长(λ)的红外光的光强通过比为1:(A1/A2):(A1/A3),经过信号处理电路处理时,由于信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为A1:A2:A3,因此红外光在经过红、绿、蓝滤片及感光芯片6700的处理之后,得到的图像中红外下红、绿、蓝的颜色分量比为1:1:1,此比值为亮度的灰度,因此红外光的入射不会影响可见光还原出来的颜色。而且还因为多了红外光的光强,图像的亮度更亮,清晰度也会更好。此外,感光芯片6700在感知单一的由补光灯发射的红外光(波长为λ)时,因为滤光片6500是允许波长为λ的红外光透射的,因此在晚上仅有补光灯时,人眼无法看清物体,但是感光芯片6700仍然可以感应波长为λ的红外光,红外光经过光强通过比为1:(A1/A2):(A1/A3)的红、绿、蓝滤片后,被红、绿、蓝滤片对应的感光单元感应到的光强为1:(A1/A2):(A1/A3),经过信号处理电路进行处理时,信号处理电路对透过红、绿、蓝三种滤片的光所对应产生的电信号的增益比为A1:A2:A3,从而生成的图像中红、绿、蓝的颜色分量比为1:1:1,此时的图像为正常的黑白图像。
由于人眼的感光光谱范围为380nm~780nm的可见光谱,对红外波段光谱则无法觉察,而图像传感器的感知光谱的范围比人眼要宽,硅基材料对940nm的红外线还可以有较好的感光。那么当环境中同时存在可见光与红外光时(如在阳光下),存在CMOS图像传感器所拍摄出来的图像颜色与人眼观察所获得的图像颜色会不一致的情况。但在某些应用(如安防监控应用)中,一般会有如下要求:当人眼可以清晰观察时(如白天),CMOS图像传感器所拍摄的图像颜色要忠实于人眼;若人眼无法清晰地观察时(如晚上),CMOS图像传感器可提供真实的颜色或者是黑白图像。那么,M1:M2:M3=1:1:1就可以应用在这类应用中,特别是可以应用在安防监控上,在同时具有可见光和红外光的环境下,成像颜色不产生偏色,并且图像亮度及清晰度好,在夜晚也可拍摄出清晰的黑白图像,从而满足应用需求。
又例如,若M1:M2:M3=2:1:1,感光芯片6700在感知复杂的光谱信号时(可见光+红外光),红色感光单元感应到的光强比其它两个要大,图像处理后画面会偏红,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=2:1:1,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏红。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏红的图像。其中,M1的值越大,最终得到的图像颜色就越红。
又例如,若M1:M2:M3=1:2:1,感光芯片6700在感知复杂的光谱信号时(可见光+补光灯发射的红外光),绿色感光单元感应到的光强比其它两个要大,图像处理后画面会偏绿,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:2:1,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏绿。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏绿的图像。其中,M2的值越大,最终得到的图像颜色就越绿。
再例如,若M1:M2:M3=1:1:2,感光芯片6700在感知复杂的光谱信号时(可见光+红外光),蓝色感光单元感应到的光强比其它两个要大,图像处理后画面会偏蓝,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏蓝。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏蓝的图像。其中,M3的值越大,最终得到的图像颜色就越蓝。
在以上实施例中,是对单一颜色偏色类型进行举例,然而在本发明的其他实施例中可以根据用户需要选择任意的颜色偏色类型,只要调整各个颜色对应M值的比例即可。
例如,若M1:M2:M3=1:1.5:2,感光芯片6700在感知复杂的光谱信号时(可见光+红外光),绿、蓝色感光单元感应到的光强比红色感光单元感应到的光强要大,由于绿色和蓝色的组合,图像处理后画面会偏浅蓝,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1.5:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏浅蓝。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏浅蓝的图像。
又例如,若M1:M2:M3=2:1:1.5,感光芯片6700在感知复杂的光谱信号时(可见光+红外光),红、蓝色感光单元感应到的光强比绿色感光单元感应到的光强要大,由于红色和蓝色的组合,图像处理后画面会偏浅紫,叠加上可见光部分,则最终得到的图像中红外下红、绿、蓝的颜色分量比为M1:M2:M3=1:1.5:2,即最终得到的图像颜色与人眼观测的颜色存在偏差,为整体偏浅紫。而在感知单一的由补光灯发出的红外光时,图像传感器输出的图像也为偏浅紫的图像。
需要说明的是,上述实施例仅是示意性描述,本领域技术人员可依据本发明的实施例,根据颜色的具体需求进行相应调整。
本发明实施例的图像传感器可以应用在许多领域,例如,在某个应用中需要拍摄复古风格的图片,那么就可以通过设定M1,M2,…,Mi,…,Mj,…,Mn的值,使所拍摄图片的颜色偏色为浅褐色来实现,那么通过该图像传感器可以直接拍摄出复古风格的图片,从而避免了使用图像处理技术将图像处理为复古风格所造成的图像失真等问题,提升了用户体验。
本发明实施例的图像传感器在加工成产品时,由于参数的不同可以有多种产品型号,一般来说,相同型号的图像传感器对应的所述信号处理电路对于透过多个n种颜色的滤片的光对应产生的电信号的增益比M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn是相同的。另外,可以根据不同的场景,通过信号处理电路对电信号的增益比进行调节,以实现真实色彩的还原。
本发明实施例的图像传感器,通过调整彩色膜的光学特性以及使用具有特定光学特性的滤光片,实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
在本发明的另一个实施例中,如图17所示,图像传感器630还包括:微透镜6800,微透镜6800位于滤光片或滤光片组合6500和彩色膜6600之间,微透镜6800用于接收并汇聚入射光。具体地,光线经过微透镜6800,微透镜6800将光线会聚加强。
为了实现上述实施例,本发明还提出一种监控系统。
图18为根据本发明一个实施例的监控系统的结构示意图。
如图18所示,监控系统包括电子设备62000和补光灯640。
其中,电子设备62000具有图像传感器630,补光灯640发射特定波长的红外光。
本发明实施例的监控系统,可实现用户想要的偏色或偏色程度,从而大大增加了图像传感器的应用范围,提升用户体验。
需要说明的是,上述实施例仅是示意性描述,本领域技术人员可依据本发明的实施例,根据颜色的具体需求进行相应调整。
本发明实施例的图像传感器的设计方法,可以根据实际应用的需要控制红外光对成像颜色的影响,从而大大增加了图像传感器的应用范围。
为了实现上述实施例,本发明还提出一种图像传感器。该图像传感器为通过本发明实施例的图像传感器的设计方法所形成的图像传感器。
本发明实施例的图像传感器,可以根据实际应用的需要设计红外光对成像颜色的影响,从而大大增加了图像传感器的应用范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (32)

  1. 一种图像传感器,其特征在于,包括:
    彩色膜,对于红外波段的光,所述彩色膜仅允许特定波长的红外光通过,且所述彩色膜包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,所述多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数;以及
    位于所述彩色膜之下的感光芯片,所述感光芯片包含信号处理电路和与所述多个n种颜色的滤片一一对应的多个感光单元,所述多个感光单元分别用于感应透过所述多个n种颜色的滤片的光的光强并生成与透过所述多个n种颜色的滤片的光对应的电信号,所述信号处理电路用于对所述电信号处理以进行成像,其中,所述信号处理电路对于所述电信号的增益比为A1:A2:…:Ai:…:Aj:…:An,其中,i和j为大于等于1小于等于n的整数,且i≠j,
    其中,所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比为M1:M2(A1/A2):…:Mi(A1/Ai):…:Mj(A1/Aj):…:Mn(A1/An),所述M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定。
  2. 如权利要求1所述的图像传感器,其特征在于,还包括:
    位于所述彩色膜之上的微透镜,所述微透镜用于接收并汇聚所述入射光。
  3. 如权利要求1或2所述的图像传感器,其特征在于,所述颜色偏色要求包括颜色偏色种类。
  4. 如权利要求3所述的图像传感器,其特征在于,所述颜色偏色要求还包括颜色偏色程度。
  5. 如权利要求3或4所述的图像传感器,其特征在于,目标颜色偏色种类对应滤片具有的Mi值大于其他滤片具有的Mj值。
  6. 如权利要求1-5任一项所述的图像传感器,其特征在于,所述信号处理电路对于所述电信号的增益比A1:A2:…:Ai:…:Aj:…:An是根据所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比得到的。
  7. 如权利要求2所述的图像传感器,其特征在于,还包括:
    位于所述微透镜之上的滤光片,用于滤除除所述特定波长的红外光之外的红外光。
  8. 如权利要求1-6任一项所述的图像传感器,其特征在于,还包括:
    位于所述彩色膜之上的滤光片,用于滤除除所述特定波长的红外光之外的红外光。
  9. 一种监控系统,其特征在于,包括:
    电子设备,所述电子设备具有如权利要求1-8任一项所述图像传感器;以及
    补光灯,所述补光灯发射所述特定波长的红外光。
  10. 一种图像传感器,其特征在于,包括:
    至少一个滤光片,用于滤除除特定波长的红外光之外的红外光,其中,所述至少一个滤光片允许可见光和所述特定波长的红外光透过;
    位于所述至少一个滤光片之下的彩色膜,所述彩色膜包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,所述多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数;以及
    位于所述彩色膜之下的感光芯片,所述感光芯片包含信号处理电路和与所述多个n种颜色的滤片一一对应的多个感光单元,所述多个感光单元分别用于感应透过所述多个n种颜色的滤片的光的光强并生成与透过所述多个n种颜色的滤片的光对应的电信号,所述信号处理电路用于对所述电信号处理以进行成像,所述信号处理电路对于所述电信号的增益比为A1:A2:…:Ai:…:Aj:…:An,其中,i和j为大于等于1且小于等于n的整数,且i≠j,
    其中,所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比为M1:M2(A1/A2):…:Mi(A1/Ai):…:Mj(A1/Aj):…:Mn(A1/An),所述M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定。
  11. 如权利要求10所述的图像传感器,其特征在于,还包括:
    位于所述滤光片和所述彩色膜之间的微透镜,用于接收并汇聚所述入射光。
  12. 如权利要求10或11所述的图像传感器,其特征在于,所述颜色偏色要求包括颜色偏色种类。
  13. 如权利要求12所述的图像传感器,其特征在于,所述颜色偏色要求还包括颜色偏色程度。
  14. 如权利要求12或13所述的图像传感器,其特征在于,目标颜色偏色种类对应滤片具有的Mi值大于其他滤片具有的Mj值。
  15. 如权利要求10-14任一项所述的图像传感器,其特征在于,所述信号处理电路对于所述电信号的增益比A1:A2:…:Ai:…:Aj:…:An是根据所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比得到的。
  16. 一种监控系统,其特征在于,包括:
    电子设备,所述电子设备具有如权利要求10-15任一项所述图像传感器;以及
    补光灯,所述补光灯发射所述特定波长的红外光。
  17. 一种图像传感器,其特征在于,包括:
    彩色膜,对于红外波段的光,所述彩色膜仅允许特定波长的红外光通过,且所述 彩色膜包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,所述多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数;以及
    位于所述彩色膜之下的感光芯片,所述感光芯片包含信号处理电路和与所述多个n种颜色的滤片一一对应的多个感光单元,所述多个感光单元分别用于感应透过所述多个n种颜色的滤片的光的光强并生成与透过所述多个n种颜色的滤片的光对应的电信号,所述信号处理电路用于对所述电信号处理以进行成像,其中,所述信号处理电路对于所述电信号的增益比为M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn,所述M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定,其中,i和j为大于等于1且小于等于n的整数,且i≠j,
    其中,所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比为1:(A1/A2):…:(A1/Ai):…:(A1/Aj):…:(A1/An)。
  18. 如权利要求17所述的图像传感器,其特征在于,还包括:
    位于所述彩色膜之上的微透镜,所述微透镜用于接收并汇聚所述入射光。
  19. 如权利要求17或18所述的图像传感器,其特征在于,所述颜色偏色要求包括颜色偏色种类。
  20. 如权利要求19所述的图像传感器,其特征在于,所述颜色偏色要求还包括颜色偏色程度。
  21. 如权利要求19或20所述的图像传感器,其特征在于,目标颜色偏色种类对应滤片具有的Mi值大于其他滤片具有的Mj值。
  22. 如权利要求17-21任一项所述的图像传感器,其特征在于,所述信号处理电路对于所述电信号的增益比M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn是根据所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比得到的。
  23. 如权利要求18所述的图像传感器,其特征在于,还包括:
    位于所述微透镜之上的滤光片,用于滤除除所述特定波长的红外光之外的红外光。
  24. 如权利要求17-22任一项所述的图像传感器,其特征在于,还包括:
    位于所述彩色膜之上的滤光片,用于滤除除所述特定波长的红外光之外的红外光。
  25. 一种监控系统,其特征在于,包括:
    电子设备,所述电子设备具有如权利要求17-24任一项所述图像传感器;以及
    补光灯,所述补光灯发射所述特定波长的红外光。
  26. 一种图像传感器,其特征在于,包括:
    至少一个滤光片,用于滤除除特定波长的红外光之外的红外光,其中,所述至少一个滤光片允许可见光和所述特定波长的红外光透过;
    位于所述至少一个滤光片之下的彩色膜,所述彩色膜包括多个n种颜色的滤片,其中,每个滤片对应于一种颜色,所述多个n种颜色的滤片用于将入射光中的可见光区分为n种颜色的光,其中n为正整数;以及
    位于所述彩色膜之下的感光芯片,所述感光芯片包含信号处理电路和与所述多个n种颜色的滤片一一对应的多个感光单元,所述多个感光单元分别用于感应透过所述多个n种颜色的滤片的光的光强并生成与透过所述多个n种颜色的滤片的光对应的电信号,所述信号处理电路用于对所述电信号处理以进行成像,所述信号处理电路对于所述电信号的增益比为M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn,所述M1,M2,…,Mi,…,Mj,…,Mn的值根据所述图像传感器所需要的颜色偏色要求确定,其中,i和j为大于等于1且小于等于n的整数,且i≠j,
    其中,所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比为1:(A1/A2):…:(A1/Ai):…:(A1/Aj):…:(A1/An)。
  27. 如权利要求26所述的图像传感器,其特征在于,还包括:
    位于所述滤光片和所述彩色膜之间的微透镜,用于接收并汇聚所述入射光。
  28. 如权利要求26或27所述的图像传感器,其特征在于,所述颜色偏色要求包括颜色偏色种类。
  29. 如权利要求28所述的图像传感器,其特征在于,所述颜色偏色要求还包括颜色偏色程度。
  30. 如权利要求28或29所述的图像传感器,其特征在于,目标颜色偏色种类对应滤片具有的Mi值大于其他滤片具有的Mj值。
  31. 如权利要求26-30任一项所述的图像传感器,其特征在于,所述信号处理电路对于所述电信号的增益比M1A1:M2A2:…:MiAi:…:MjAj:…:MnAn是根据所述彩色膜的所述多个n种颜色的滤片对所述特定波长的红外光的光强通过比得到的。
  32. 一种监控系统,其特征在于,包括:
    电子设备,所述电子设备具有如权利要求26-31任一项所述图像传感器;以及
    补光灯,所述补光灯发射所述特定波长的红外光。
PCT/CN2015/075875 2014-04-13 2015-04-03 图像传感器和监控系统 WO2015158211A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15780031.9A EP3133811A4 (en) 2014-04-13 2015-04-03 Image sensor and monitoring system
US15/300,550 US20170148842A1 (en) 2014-04-13 2015-04-03 Image sensor and monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410146621.0 2014-04-13
CN201410146621.0A CN104980667B (zh) 2014-04-13 2014-04-13 图像传感器和监控系统

Publications (1)

Publication Number Publication Date
WO2015158211A1 true WO2015158211A1 (zh) 2015-10-22

Family

ID=54276717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075875 WO2015158211A1 (zh) 2014-04-13 2015-04-03 图像传感器和监控系统

Country Status (5)

Country Link
US (1) US20170148842A1 (zh)
EP (1) EP3133811A4 (zh)
CN (1) CN104980667B (zh)
TW (1) TWI554109B (zh)
WO (1) WO2015158211A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9952156B2 (en) 2015-06-30 2018-04-24 The United States Of America As Represented By The Secretary Of The Navy Native fluorescence imaging direct push probe
US20170064220A1 (en) * 2015-08-25 2017-03-02 United States Government As Represented By The Secretary Of The Navy Hyperspectral/Multispectral Imaging Direct Push Probe
CN110868509B (zh) * 2018-08-28 2022-02-18 浙江大华技术股份有限公司 一种调整感光芯片板的方法和设备
WO2020043116A1 (en) 2018-08-28 2020-03-05 Zhejiang Dahua Technology Co., Ltd. Systems and methods for adjusting position of photosensitive chip of image acquisition device
CN109672828B (zh) * 2019-01-04 2021-09-07 深圳英飞拓科技股份有限公司 基于光路白平衡的低照度提升装置及低照度提升方法
CN111308239B (zh) * 2020-02-19 2022-04-05 上海迈内能源科技有限公司 一种用于gis状态在线监测的无线监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006066A (ja) * 2003-06-12 2005-01-06 Acutelogic Corp 固体撮像素子用カラーフィルタおよびこれを用いたカラー撮像装置
US20060071156A1 (en) * 2004-10-06 2006-04-06 Funai Electric Co., Ltd. Infrared imaging apparatus
CN1819663A (zh) * 2005-02-07 2006-08-16 三洋电机株式会社 色信号处理方法
CN102342110A (zh) * 2009-03-05 2012-02-01 松下电器产业株式会社 固体摄像装置、摄像模块及摄像系统
CN102447826A (zh) * 2010-10-12 2012-05-09 全视科技有限公司 可见及红外双重模式成像系统
CN102957917A (zh) * 2011-08-30 2013-03-06 比亚迪股份有限公司 一种像素阵列、摄像头及基于该阵列的色彩处理方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3922238B2 (ja) * 2003-10-22 2007-05-30 ソニー株式会社 光量制御装置およびカメラ装置
CN1971927B (zh) * 2005-07-21 2012-07-18 索尼株式会社 物理信息获取方法、物理信息获取装置和半导体器件
EP2432015A1 (en) * 2007-04-18 2012-03-21 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
JP2009253579A (ja) * 2008-04-04 2009-10-29 Panasonic Corp 撮像装置、画像処理装置及び画像処理方法並びに画像処理プログラム
JP5178458B2 (ja) * 2008-10-31 2013-04-10 キヤノン株式会社 固体撮像装置、撮像システム、および、固体撮像装置の駆動方法
US9183425B2 (en) * 2009-04-09 2015-11-10 Hand Held Products, Inc. Image sensor pixel array having output response curve including logarithmic pattern for image sensor based terminal
US8619143B2 (en) * 2010-03-19 2013-12-31 Pixim, Inc. Image sensor including color and infrared pixels
JP5834386B2 (ja) * 2010-08-20 2015-12-24 ソニー株式会社 光学センサ、レンズモジュール、およびカメラモジュール
TWI434404B (zh) * 2010-12-07 2014-04-11 Ind Tech Res Inst 彩色濾光片與影像感測器
JP2013041878A (ja) * 2011-08-11 2013-02-28 Sony Corp 撮像装置およびカメラモジュール
US9177983B2 (en) * 2012-01-23 2015-11-03 Omnivision Technologies, Inc. Image sensor with optical filters having alternating polarization for 3D imaging
FR2994282B1 (fr) * 2012-07-31 2014-09-05 Commissariat Energie Atomique Structure de filtrage optique dans le domaine visible et/ou infrarouge
CN102891968A (zh) * 2012-10-25 2013-01-23 中国兵器工业集团第二一四研究所苏州研发中心 基于crt驱动电路实现emccd高压驱动信号的系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006066A (ja) * 2003-06-12 2005-01-06 Acutelogic Corp 固体撮像素子用カラーフィルタおよびこれを用いたカラー撮像装置
US20060071156A1 (en) * 2004-10-06 2006-04-06 Funai Electric Co., Ltd. Infrared imaging apparatus
CN1819663A (zh) * 2005-02-07 2006-08-16 三洋电机株式会社 色信号处理方法
CN102342110A (zh) * 2009-03-05 2012-02-01 松下电器产业株式会社 固体摄像装置、摄像模块及摄像系统
CN102447826A (zh) * 2010-10-12 2012-05-09 全视科技有限公司 可见及红外双重模式成像系统
CN102957917A (zh) * 2011-08-30 2013-03-06 比亚迪股份有限公司 一种像素阵列、摄像头及基于该阵列的色彩处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3133811A4 *

Also Published As

Publication number Publication date
EP3133811A4 (en) 2017-11-22
TWI554109B (zh) 2016-10-11
EP3133811A1 (en) 2017-02-22
US20170148842A1 (en) 2017-05-25
CN104980667A (zh) 2015-10-14
CN104980667B (zh) 2018-11-09
TW201540069A (zh) 2015-10-16

Similar Documents

Publication Publication Date Title
WO2015158211A1 (zh) 图像传感器和监控系统
TWI249950B (en) Color imaging element and color signal processing circuit
WO2017193738A1 (zh) 图像传感器、成像方法和成像装置
JP6725613B2 (ja) 撮像装置および撮像処理方法
CN205647747U (zh) 图像传感器和图像传感器系统
US8035710B2 (en) Solid-state imaging device and signal processing method
CN205726019U (zh) 成像系统、成像设备和图像传感器
Lam et al. Automatic white balancing in digital photography
US10348990B2 (en) Light detecting device, solid-state image capturing apparatus, and method for manufacturing the same
WO2015158210A1 (zh) 图像传感器和监控系统
JP2010011415A (ja) 固体撮像装置及びカメラ
US9066072B2 (en) Systems and methods for calibrating image sensors
JP4874752B2 (ja) デジタルカメラ
CN102342110A (zh) 固体摄像装置、摄像模块及摄像系统
US20100007752A1 (en) Spectral improvement of digital camera color images
CN105323567B (zh) 色彩处理系统及装置
Skorka et al. Color correction for RGB sensors with dual-band filters for in-cabin imaging applications
WO2015008383A1 (ja) 撮像装置
JP4303922B2 (ja) 固体撮像素子および撮像装置
WO2007136061A1 (ja) 撮像装置
JP4342149B2 (ja) 固体撮像素子と撮像装置
CN108024035A (zh) 成像装置和方法
CN116136433A (zh) 环境光传感器及其数据处理方法
JP2021026210A (ja) 色分解光学系及び撮像装置
JP2010232933A (ja) 撮像装置および撮像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15300550

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015780031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015780031

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE