WO2015158098A1 - 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体 - Google Patents

氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体 Download PDF

Info

Publication number
WO2015158098A1
WO2015158098A1 PCT/CN2014/085894 CN2014085894W WO2015158098A1 WO 2015158098 A1 WO2015158098 A1 WO 2015158098A1 CN 2014085894 W CN2014085894 W CN 2014085894W WO 2015158098 A1 WO2015158098 A1 WO 2015158098A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
bioactive glass
glass ceramic
artificial bone
thread
Prior art date
Application number
PCT/CN2014/085894
Other languages
English (en)
French (fr)
Inventor
王玉元
王粤凡
Original Assignee
南宁越洋科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南宁越洋科技有限公司 filed Critical 南宁越洋科技有限公司
Priority to KR1020157036137A priority Critical patent/KR101942620B1/ko
Publication of WO2015158098A1 publication Critical patent/WO2015158098A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0022Self-screwing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/0075Implant heads specially designed for receiving an upper structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon

Definitions

  • the invention relates to a metal-free zirconia all-ceramic artificial dental implant, in particular to an artificial dental implant with a non-damaged surface of a zirconia ceramic and a bioactive glass ceramic artificial bone powder, belonging to the technical field of dental medical instruments.
  • Titanium implants have dominated dental implants for nearly 30 years. However, titanium implants are easy to penetrate metallic colors for thinner gums, affecting aesthetics, and affect CT and nuclear magnetic imaging inspections. Another problem that cannot be ignored is that, according to the Foreign Journal of Oral Medicine, titanium particles are found in the lymph nodes adjacent to the titanium implant, and there are potential allergens. In addition, titanium is easily oxidized. According to the National Natural Science Foundation of China Project 31200756 Shandong University Higher Education Science and Technology Program J12K54 and Nanjing Medical University, the results of experiments on titanium oxide nanoparticles (TiO 2 -Nps) showed that nano titanium oxide particles can cause bone cells. Decreased activity stimulates cellular oxidative stress and induces apoptosis.
  • TiO 2 -Nps induces the toxic mechanism of osteoblasts, providing a theoretical basis for safe application in the field of planting.
  • Guangdong Provincial Medical Research Fund Project B2011036 Guangdong Provincial Oral, Southern Medical University, and Nanjing Medical University Joint Research on the Effect of Titanium Particles on Bone Resorption Function of Osteoclasts, Titanium Particles Will Break Around Implants Increased bone cell absorption activity will inevitably lead to further absorption of bone around the implant, osteolysis around the implant, and the stability of the implant is further damaged. Therefore, some people with high expectations of aesthetics and those with high biocompatibility for implant materials will require dental implants with metal-free bioactive implants.
  • the best ceramic ceramic implants are zirconia ceramic implants. According to foreign researchers Depprich and Park et al., the results of electron microscopy of zirconia ceramic implants and pure titanium implants showed that the implants were One week, the collagen-rich bone matrix is tightly bound to the zirconia ceramic implant, while the pure titanium implant is only attached to the surface cavity; the implant-to-bone bond ratio (BIC) of the fourth-week zirconia ceramic implant is implanted.
  • the implant rotation torque (BTQ) is significantly higher than that of pure titanium implants.
  • zirconia and osteoblasts have good biocompatibility in vitro, but do not show biological activity, osteoinduction, bone conduction and structure combined with bone chemical bonds.
  • Zirconium oxide is poorly bioactive for planting materials and should incorporate CaOP 2 O 5 structure.
  • Chinese patent document CN201110326532.0 A surface treatment method for zirconia ceramic implants belongs to this type, has no CaOP 2 O 5 structure bonded by bone chemical bonds, and only prepares a porous structure on the surface to improve the binding strength activity to bone tissue. good.
  • the Achilles heel of ceramics is fragile and low reliability.
  • Dental implants made of zirconia ceramics often occur in the threaded parts of the anterior dental implants and implants.
  • the surface of the implant is treated with any acid blasting to cause surface micro-implementation. Holes and defective places can cause breaks. Titanium implants will break.
  • the titanium implants have weak links for the smaller diameter anterior implants and the inner joints of the inner joints. Some of them are broken within one year, and some are broken after many years.
  • the problem of fracture of titanium implants is as follows: the neck is thickened, and the small diameter can be made into a segment, that is, the abutment and the implant are combined into one. Therefore, zirconia ceramic implants can also be structurally modified with reference to titanium implants to prevent breakage.
  • the Chinese patent document CN200410029886.9 is coated with aluminum hydroxide on the outside of the nano-zirconia powder.
  • the flat-pressure sintering can obtain ceramics with high-strength fracture toughness of 15-17 MPa ⁇ m 1/2 because of the aluminum-containing, cell culture display, bone tissue.
  • the medium-high aluminum content can reduce osteoblasts, inhibit bone remodeling, and lead to bone softening. Also adding a small amount of aluminum to pure titanium can greatly increase the strength of titanium.
  • HA hydroxyapatite
  • the hydroxyapatite has a fracture toughness of only 0.7-1.3 MPa ⁇ m 1/2 due to poor strength. If directly hydrothermal synthesis is used to directly form HA On the zirconia ceramic body, it is easy to fall off and easily absorb, and its degradation rate is difficult to match the growth rate of the body tissue. If it is directly fused or sprayed on the zirconia ceramic body, the melting point of both is above 1650 °C, and the temperature is raised to 1200 °C. When hydroxyapatite burns off hydroxyl groups and becomes inactive oxidized apatite, fusion and plasma spraying are not feasible. 20 years ago, Huaxi Dental College has discontinued HA fusion implants, so it is clinically very Use less.
  • hydroxyapatite is also modified with ceramics, so that although the strength and toughness are improved, the biological activity and biocompatibility are reduced, and the process is complicated.
  • Patent document CN200710045510.0 “Nano-zirconia and The in-situ preparation method of the hydroxyapatite composite powder belongs to this category.
  • the invention adopts bioactive glass ceramics (BGC), and the bioactive glass ceramics also have good biocompatibility, can be chemically bonded with bone tissue, do not contain harmful components, and have more hydroxyapatite than hydroxyapatite. High mechanical strength, not easy to absorb.
  • the bioactive glass ceramics have a flexural strength of 180-200 MPa and a fracture toughness of 2 to 2.5 MPa ⁇ m 1/2 when bioactive glass ceramics are implanted.
  • the surface of the material can be seen for 10 days after implantation.
  • the implanted material for 60 days and the bone tissue have formed a strong bond.
  • the bonding strength with the bone after 8 weeks of implantation is required.
  • the binding strength of hydroxyapatite to bone is 20% higher than that of the same period. China's research on bioactive glass ceramics is very early.
  • BFGF basic fibroblast growth factor
  • Temperature rise; (2) 950 ° C ⁇ 1150 ° C is the phase change temperature sensitive zone, and slowly rises to this temperature for six hours.
  • Ceramic toughening is a complicated process. Toughness of zirconia should be mentioned from 6 MPa ⁇ m 1/2 to 15 MPa ⁇ m 1/2 or more. The toughness of ceramics is more than doubled, which is not so easy.
  • the temperature is between 100 and 300 °C.
  • Y-TZP also has an unstable phase transition, which causes the strength to decrease. It can only be cooled by water, and the laboratory data may not be achieved in production. Therefore, the fracture toughness should be based on the actual measurement after the product comes out.
  • the front teeth are subjected to a force of 1.5 MPa, and the fracture toughness of the nipple (neck) at ⁇ 4 mm must be 12 MPa ⁇ m 1/2 , and only the fracture toughness is 15 MPa ⁇ m 1/2 or more.
  • the low reliability of zirconia ceramics should be considered.
  • the molar force is up to 6Mpa.
  • the molar is subjected to vertical pressure.
  • the force of the anterior incisor is 1.5Mpa, which is the lateral force of the iliac crest to the labial side.
  • the clinician's response measures are as follows: (1) The anterior alveolar bone is thin, and the implant with a larger diameter is implanted using the osteophyte technique; (2) the angle of the implant is too large, the directional bone is opened, and the angle of force is adjusted; (3) Take the adjustment of the jaws so that the implants have no close contact protection. (4) Disable some excellent foods to protect your teeth.
  • the object of the present invention is to provide a zirconia ceramic implant having a reasonable structure, which is not easy to be broken and has no metal, and the implant implanted in the alveolar bone is partially fused with active bioglass ceramic micron and nano powder, which is not easily broken. It has better biocompatibility than pure titanium implants, and is a biomaterial implant with more active and higher bone binding strength than hydroxyapatite coated implants.
  • a dental implant of zirconia ceramic fused bioactive glass ceramic artificial bone powder comprising an implant and a base, characterized in that: the dental implant is a anterior dental implant, which is ⁇ 4.0 ⁇ 4.5mm fine
  • the implant adopts a one-stage non-buried structure, the implant and the abutment are integrated, the upper part of the abutment is the abutment pole, the lower part is the foundation pile, and an enlarged base is arranged between the abutment pole and the foundation pile.
  • the diameter of the pile is ⁇ 4mm.
  • the pile piercing section is further provided with a bamboo-like enlarged pile section; the body part and the root of the implant are threaded, and the thread of the body is shallow trapezoid Thread, root snail
  • the pattern is a deep triangular thread; the implanted alveolar bone below the neck of the implant is fused with bioactive glass ceramic artificial bone powder.
  • a dental implant of zirconia ceramic fused bioactive glass ceramic artificial bone powder comprising an implant and a base
  • the dental implant is a posterior dental implant, which is a thick implant of ⁇ 5 ⁇ 6mm, adopting A one-stage non-buried structure, the implant and the abutment are integrated, the upper part of the abutment is a base rod, the lower part is a foundation pile, and an enlarged base is provided between the abutment pole and the foundation pile, and the diameter of the foundation pile Slightly smaller than the diameter of the implant and >4mm
  • the body and root of the implant are threaded, wherein the thread of the body is a shallow trapezoidal thread, the thread of the root is a deep triangular thread, and the thread on the root is also provided with a slotted slot
  • the implanted alveolar bone portion of the implant is fused with bioactive glass ceramic artificial bone powder.
  • the abutment of the abutment has a taper of 1.5 degrees, a length of 5 to 7 mm, and a length of the base of 3 to 4 mm.
  • the implanted zirconia ceramics were made of a 3 mol% yttria-stabilized tetragonal phase polycrystalline nano-zirconia (3Y-TZP) ceramic toughened by stress-induced phase transformation.
  • the bioactive glass ceramic artificial bone powder adopts micron and nanometer mixed bioactive glass ceramic artificial bone powder.
  • the preparation method of the zirconia ceramic dental implant of the present invention comprises the following steps:
  • 3Y-TZP nanopowder is used as the main raw material, and the organic carrier polyethylene and paraffin are added. After being mixed and fully ground, it is pressed into a block or bar by isostatic pressing at a pressure of 300 MPa. The organic vehicle was taken off by slow calcination.
  • blank manufacturing machining with computer numerical control equipment CAD / CAM to obtain the zirconia implant blank core.
  • phase transformation toughening sintering the implant blank core is placed in a numerical control sintering furnace for flat pressure sintering, heating at a rate of 1 ° C per minute, sintering in stages, wherein the temperature range of 950 ° C ⁇ 1150 ° C is a phase change sensitive zone It is necessary to control the temperature rise and decrease at a rate of 0.5 ° C per minute, and obtain a phase transformation toughened zirconia ceramic implant after sintering.
  • fused bioactive glass ceramic artificial bone powder in the implanted gingival bone part of the zirconia ceramic implant, a layer of organic viscous aqueous solution is sputtered by a rotating table and ultrasonic waves, and then a layer of 0.02-0.04 is sprayed with a micro-duster.
  • Mm's Yijiajia nano-apatite glass ceramic IPS e.max system combined with porcelain powder, sintered at 750 °C to the surface of zirconia ceramic implant to form a bonded porcelain layer.
  • a layer of bioactive glass ceramic micron powder and nano powder mixture is sprayed on the surface of the combined porcelain layer, and sintering and adhesion is performed at 650 ° C to 700 ° C to bond the bioactive glass ceramic artificial bone powder.
  • the porcelain layer is adhered to the zirconia ceramic implant.
  • the zirconia ceramic dental implant of the invention has the advantages that the design structure is reasonable and the fracture is not easy to occur, and the implant is more than the pure titanium and the pure zirconia because the bioactive glass ceramic artificial bone powder is fused in the implanted alveolar bone portion.
  • the implant is more biocompatible and binds more strongly than the hydroxyapatite coated implant.
  • Figure 1 is a schematic view showing the structure of an anterior dental implant of the present invention.
  • FIG. 2 is a schematic view showing the structure of a posterior dental implant of the present invention.
  • FIG. 3 is a schematic view showing the structure of a two-stage intra-bone implant dental implant according to the present invention.
  • FIG. 4 is a schematic view showing the structure of a two-stage internal implant dental implant according to the present invention.
  • Figure 5 is a schematic view of the straight insertion abutment of the two-stage implant.
  • Figure 6 is a schematic view of the angled insertion abutment of the two-stage implant.
  • Figure 1 1-implant, 1.1-implant neck, 1.2-implant body, 1.3-implant root, 2-abutment, 2.1-base pole, 2.2-base, 2.3-base pile, 2.4- foundation pile section, 3-fused bioactive glass ceramic artificial bone powder part.
  • Figure 2 1a-implant, 1.1a-implant neck, 1.2a-implant body, 1.3a-implant root, 1.4a-cutting trough, 2a-abutment, 2.1a-abutment , 2.2a-base plate, 2.3a-base pile, 3a-fused bioactive glass ceramic artificial bone powder part.
  • Figure 1 shows the anterior dental implant of the present invention, including the implant 1 and the abutment 2, and the anterior dental implant is a fine implant of ⁇ 4 to ⁇ 4.5 mm, using a non-buried structure, the implant 1 and the abutment 2 is a whole, the upper part of the base 2 is the abutment pole 2.1, the lower part is the foundation pile 2.3, and an enlarged base plate 2.2 is arranged between the abutment pole 2.1 and the foundation pile 2.3.
  • the abutment rod has a taper of 1.5 degrees and a length of 5 to 7 mm for inserting and bonding the crown.
  • the diameter of the anterior implant should be at least mm4mm, so as to ensure that the base 2.3 of the abutment 2 has a solid diameter of ⁇ 4mm to prevent brittle fracture.
  • the piercing portion of the pile 2.3 is further provided with a bamboo-like enlarged base section 2.4, thereby shortening the length of the pile 2.3, increasing the diameter of the fulcrum, and moving the stress concentration point upward.
  • it can also replace the common implant platform to prevent bacteria from entering the implant from the pathological cuff.
  • the implant neck 1.1 is not threaded to prevent breakage.
  • the implant body 1.2 and the root 1.3 are threaded, wherein the thread of the body 1.2 is a shallow trapezoidal thread, so that the implant body 1.2 is not easily broken; the root 1.3 thread is a deep triangular thread, so that the implant root 1.3 is easy to implant. .
  • the osseointegration of the alveolar bone is formed more quickly, and the bioactive glass ceramic artificial bone powder is adhered to the part of the alveolar bone implanted below the neck of the implant.
  • FIG. 2 shows the posterior dental implant of the present invention.
  • the posterior dental implant is a thick implant having a diameter of ⁇ 5 to ⁇ 6 mm.
  • the non-buried structure is used in the same manner as the anterior dental implant, and the implant 1a and the abutment 2a are a whole.
  • the upper part of the base 2a is an abutment pole 2.1a
  • the lower part is a foundation pile 2.3a
  • an enlarged base plate 2.2a is provided between the abutment pole 2.1a and the foundation pile 2.3a.
  • the abutment 2.1a has the same taper and length as the anterior implant.
  • the posterior dental implant is thicker than the anterior implant and can withstand greater bite force and shear force.
  • the diameter of the base 2.3a is also relatively thick.
  • the base 2.3a is slightly smaller than the diameter of the implant and >4mm. controllable After the weight is loaded, the bones of the implant are absorbed, and it is not easy to break. Therefore, there is no need to provide a pile tray 2.4 like the anterior implant on the base 2.3a.
  • the body portion 1.2a and the root portion 1.3a of the posterior dental implant are also threaded, wherein the thread of the body portion 1.2a is a shallow trapezoidal thread, the thread of the root portion 1.3a is a deep triangular thread, and the thread of the root portion 1.3a is further provided.
  • the tail is slotted with 1.4a.
  • bioactive glass-ceramic artificial bone powder is also fused to the alveolar bone portion of the posterior dental implant neck below 1.1a.
  • the implanted zirconia ceramics are made of 3 mol% yttria-stabilized tetragonal phase polycrystalline nano-zirconia (3Y-TZP) ceramics, which are toughened by stress-induced transformation.
  • 3Y-TZP 3 mol% yttria-stabilized tetragonal phase polycrystalline nano-zirconia
  • a 3Y-TZP ceramic with a fracture toughness >12 MPa ⁇ m 1/2 is selected.
  • the implanted alveolar bone part of the implant is adhered with bioactive glass ceramic artificial bone powder micron and nanometer mixed bioactive glass ceramic artificial bone powder.
  • the present invention can also change its one-stage structure into a two-stage structure, and FIG. 3 and FIG. 4 show the intra-burial and intra-orbital structures when the invention is changed to the two-stage structure.
  • the diameter of the implant in the bone with the snail in the neck should reach ⁇ 5.5mm or more, and the diameter of the embedded implant in the snail of the neck should reach ⁇ 5mm or more, and the fracture toughness is preferably 15MPa ⁇ m. More than 1/2 of the zirconia ceramic rods are processed.
  • the size of the pile used for the two-stage implant should be suitable, and the form of insert bonding can be adopted, and the taper of the pile is in the range of 1.5 to 1.9 or 6 to 8 degrees.
  • the preparation method of the zirconia ceramic dental implant of the present invention comprises the following steps:
  • 3Y-TZP nano-powder is used as the main raw material, and the organic carrier polyethylene and paraffin are added. After mixing and grinding, to achieve uniform dispersion and elimination of agglomeration, high strength is obtained after isostatic pressing at 300 MPa. High-density block or bar, and then slowly pre-fired to remove the organic carrier for use.
  • blank manufacturing machining with computer numerical control equipment CAD / CAM to obtain the zirconia implant blank core.
  • phase transformation toughening sintering the implant blank core is placed in a numerical control sintering furnace for flat pressure sintering, heating at a rate of 1 ° C per minute, sintering in stages, wherein the temperature range of 950 ° C ⁇ 1150 ° C is a phase change sensitive zone
  • the specific sintering method is: heating from room temperature to 300 ° C at a rate of 1 ° C per minute and holding for 3 hours, and then heating to 900 ° C at a rate of 1 ° C per minute °C and keep warm for 3 hours, then heat up to 1150 ° C at a rate of 0.5 ° C per minute and keep warm for 3 hours, then heat up to 1520 ° C at a rate of 1 ° C per minute and keep warm for 3 hours, then at a uniform speed of 1 ° C per minute The temperature was lowered to 950 ° C and kept for 3 hours, and finally cooled
  • bioactive glass ceramic artificial bone powder in the implanted alveolar bone part of the zirconia ceramic implant, a layer of organic viscous aqueous solution is sputtered by a rotating table and ultrasonic waves, and then sprayed with a micro-duster.
  • Nano-apatite glass ceramic IPS e.max system combined with porcelain powder, spray thickness 0.02 ⁇ 0.04mm, sintered at 750 °C fused to the surface of zirconia ceramic implant to form a bonded porcelain layer. Then spray a layer of bioactive glass ceramic micro on the surface of the bonded porcelain layer in the same way.
  • the rice flour and the nano powder mixture are sintered and adhered at 650 ° C to 700 ° C, and the bioactive glass ceramic artificial bone powder can be adhered to the zirconia ceramic implant through the bonded porcelain layer.
  • the sintering process of the adhesive bonded porcelain layer and the bioactive glass ceramic artificial bone powder is heated and lowered at a rate of 2 ° C per minute.
  • the implant of the invention is mainly used for cosmetic planting and metal-free biomaterial planting.
  • planting it is first necessary to understand the patient's requirements for beauty, and to perform CBCT (cone beam CT) examination before surgery, to make a planting guide plate and carry out simulated planting for the patient to see.
  • CBCT cone beam CT
  • CBCT cone beam CT
  • VITA ENAMIC elastic zirconia ceramic all-ceramic crowns were replaced with ceramic-specific silicon-based coupling agent Z-prine TM plus for 15 seconds and then coated with Bis-GMA (bisphenol A) Glycidyl dimethacrylate) is sprayed with a filler-free photocurable resin, and then the crown is fixed by rubbing the excess resin with alcohol and curing it for 40 seconds.
  • the connection of the zirconia ceramic implant to the crown or abutment is achieved by taper tapping and inserting photocuring.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dental Prosthetics (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体及其制备方法,本种植体采用非埋入式结构,种植体和基台为一个整体,基台上部为基台杆,下部为基桩,基台杆和基桩之间设有一个膨大的基盘,种植体为前牙种植体时,基桩穿龈部还有竹节样膨大的基桩节,种植体体部和根部开有螺纹,其中体部的螺纹为浅梯形螺纹,根部的螺纹为深三角螺纹;种植体颈部以下植入牙槽骨部分熔附有生物活性玻璃陶瓷人工骨粉。本种植体设计结构合理,不易发生折断,比纯钛种植体生物相容性更好,比羟基磷灰石涂层种植体骨结合强度更高。

Description

氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体 技术领域
本发明涉及一种无金属的氧化锆全瓷人工牙种植体,尤其是一种氧化锆陶瓷表面无损伤熔附有生物活性玻璃陶瓷人工骨粉的人工牙种植体,属于牙科医疗器械技术领域。
背景技术
近30年来,钛种植体已经统治了牙科种植领域,然而钛种植体对于较薄的牙龈易透金属色,影响美观,而且还会影响CT和核磁成像检查。另一个不可忽视的问题是,据国外口腔医学报导,在钛种植体邻近的淋巴节中发现有钛颗粒聚集,存在着潜在的致敏原。此外钛容易氧化,据国家自然科学基金项目31200756山东省高等学校科技计划项目J12K54和南京医科大合作对氧化钛纳米颗粒(TiO2-Nps)动物试验研究结果表明:纳米氧化钛颗粒会引起骨细胞活动下降,激发细胞氧化应激反应,同时可诱导细胞凋亡,TiO2-Nps引起成骨细胞的毒性反应机制,为种植领域的安全应用提供理论依据。另据广东省医学科研基金立项资助项目B2011036、广东省口腔、南方医科大口腔、南京医科大口腔联合研究“钛颗粒对破骨细胞骨吸收功能的影响”表明:钛颗粒会使种植体周围破骨细胞吸收活性增加,必然会引起种植体周围骨质进一步吸收,种植体周围骨溶解,种植体的稳定性受到进一步破坏。因此,一些对美学期望值很高的人和对种植体材料的生物相容性要求很高的人,会要求用无金属的生物活性材料种植体进行牙科种植。
陶瓷材料类种植体目前最好的是氧化锆陶瓷种植体,据国外研究人员Depprich和Park等人对氧化锆陶瓷种植体与纯钛种植体进行动物种植试验比较的电镜观察结果表明:植入第一周富含胶原的骨基质与氧化锆陶瓷种植体紧密结合,而纯钛种植体只有表面窝洞内附着;植入第四周氧化锆陶瓷种植体的种植体与骨结合率(BIC)和种植体旋出扭矩(BTQ)明显高于纯钛种植体。另据西安交通大学口腔医学院(710004)研究,氧化锆和成骨细胞体外培养具有良好的生物相容性,但未表现出生物活性,骨诱导,骨传导及与骨化学键结合的结构,单纯氧化锆用做种植材料生物活性欠佳,应引入CaOP2O5的结构。中国专利文献CN201110326532.0一种氧化锆陶瓷种植体的表面处理方法,属于这种类型,没有骨化学键结合的CaOP2O5结构,仅靠表面制备多孔结构来提高与骨组织的结合强度活性欠佳。
陶瓷致命弱点是脆性大和可靠性低,氧化锆陶瓷做的牙种植体,折断往往发生在直径较小的前牙种植体和种植体的螺纹部,种植体表面处理任何酸蚀喷砂造成表面微孔和有缺陷的地方,都会引发断裂。钛种植体一样会发生断裂,钛种植体对于直径较小的前牙种植体 和内衔接部中心螺钉固位处存在薄弱环节,有的在一年内折断,有的多年以后折断,目前各国都重视了钛种植体折断的问题,解决的办法有:把颈部加粗,小直径的可做成一段式,即基台和种植体合为一个整体。因此氧化锆陶瓷种植体也可以参考钛种植体从结构上进行改进以防止断裂的发生。中国专利文件CN200410029886.9用氢氧化铝包袱在纳米氧化锆粉体外面,平压烧结可以得到高强度断裂韧性达15~17MPa·m1/2的陶瓷,因为含铝,细胞培养显示,骨组织中高铝含量可降低成骨细胞,抑制骨的改建,导致骨质软化,同样在纯钛中加入少量铝也可以大大增加钛的强度,因含铝元素所以不能用于种植,另有国际标准化组织(ISO6474-2)氧化锆增韧高纯氧化铝外科植入髋关节的实验,然而其同样也不能套用于骨组织种植,因髋关节不需要骨组织长入和骨组织牢固结合。根据国家自然科学基金资助研究项目61204125由广州中国科学院先进技术研究所和中山大学口腔医学院合作研究的“牙种植体及周围骨组织应力分布的三维有限元比较”结果表明:螺纹对种植体影响不明显,直基台与非埋入式种植体骨界面应力最小,为最优组合。所以我们选择种植体和基台一体化的一段式种植体。以往部分医生受厂商的宣传误导,认为各种种植体螺纹均属于专利产品,口腔卫生欠佳继发种植体周围炎引起弹坑样骨吸收是非埋入式种植体引起,这些认识都是错误的,种植非埋入式种植体之后就要加强口腔卫生,如果后期卫生较差,埋入式也一样患种植体周围炎骨吸收。实际上二段式前牙较细种植体颈部中心连接孔与基台连接处所要求的加工精度最高,加工难度最大,也是种植体折断和种植体颈部弹坑样骨质吸收的好发部位。另有专利文献CN200910014273.0“氧化锆牙种植体”,文献公开了一种二段式种植和熔附羟基磷灰石(HA)涂层的技术方案,二段式种植体由中央螺钉连接固定,此结构无论是用氧化锆粉块还是用氧化锆陶瓷棒加工,材料硬度高,脆性大,特别是加工种植体内孔阴螺纹与基台螺丝阳螺纹配合时,精度要求高,又硬又脆很难加工,故临床上很少应用。在种植体表面熔附一层羟基磷灰石(HA)人工骨粉的,羟基磷灰石因强度差,断裂韧性只有0.7~1.3MPa·m1/2,如果直接用水热合成法直接生成HA附在氧化锆陶瓷体上,容易脱落且容易吸收,其降解速度与机体组织生长速度难匹配,如果直接熔附或喷涂在氧化锆陶瓷体上,二者熔点都在1650℃以上,升温到1200℃时羟基磷灰石就烧掉羟基,成无活性的氧化磷灰石,所以熔附和等离子喷涂是行不通的,20年前华西口腔医学院已停用HA熔附种植体,故临床上现很少使用。
另外也有用羟基磷灰石(HA)同陶瓷复合改性的,这样虽然提高强度和韧性,但生物活性和生物相容性有所降低,而且工艺复杂,专利文献CN200710045510.0“纳米氧化锆及羟基磷灰石复合粉体的原位制备方法”属于这一类。本发明采用的是生物活性玻璃陶瓷 (BGC),生物活性玻璃陶瓷也具有很好的生物相容性,能与骨组织化学键结合,不含对人体有害的成份,且比羟基磷灰石具有更高的机械强度,不容易吸收。根据卫生部十二五规划全国高等学校教材《口腔材料学》第229页介绍,生物活性玻璃陶瓷弯曲强度180~200MPa,断裂韧性2~2.5MPa·m1/2,当生物活性玻璃陶瓷植入骨内,有利于骨形成化学键结合,促进骨修复,植入10天材料表面可以看到新生骨,植入60天材料和骨组织已形成牢固结合,植入8周后与骨的结合强度要比同期羟基磷灰石与骨的结合强度高出20%。我国对生物活性玻璃陶瓷的研究开展很早,早在1986年9月18日四川省委组织召开的技术鉴定会,由华西医科大学院长王翰章主持,会上宣布由中国科学院光电技术研究所开发的生物活性玻璃陶瓷人工骨材料已达到国际先进水平。动物试验表明:生物活性玻璃陶瓷植入狗的颌骨内6个月的标本可见颗粒间有新骨形成和哈佛氏系统,并有新骨长入颗粒内。据国家自然科学基金资助项目50830101由北大口腔医学院对生物活性玻璃对人牙髓细胞血管生长因子的作用研究表明:生物活性玻璃陶瓷可促进人牙髓细胞的增殖及血管内皮生长因子(VEGF)和碱性成纤维细胞生长因子(BFGF)的基因表达和蛋白分泌。另据国家自然科学基金30900284,31100668和陕西省课题200K-03-01第四军医大学口腔医学院和吉林省科技厅白求恩专项基金2009175吉林大学口腔医学院等多单位研究“微米/纳米表面对种植体骨结合的影响”结果表明:微米/纳米表面高度模拟天然骨的结构,可明显提高骨种植体界面的愈合速度。此结论为临床工作提供了理论依据。
为了把生物活性玻璃陶瓷粉熔附在氧化锆陶瓷的表面,我们采用低熔点且膨胀系数和氧化锆相近的结合瓷,其热膨胀系数10.2K,断裂韧性2.75MPa·m1/2。义获嘉伟瓦登特公司的纳米磷灰石玻璃陶瓷IPS e.max系统可以通过结合瓷层(wash)把生物活性玻璃陶瓷粉微米和纳米粉熔附在氧化锆的表面。另德国VITA公司的弹性瓷VITA ENAMLC,其弹性模量与天然牙本质相近,最好作牙冠,可减少对种植体的冲击力,减少弹坑样吸收。
当前用氧化锆制作齿科粉块及烧结全瓷牙冠流程的工厂化、商业化应用已相当普遍,唯独没有成功应用于种植体领域。虽然经增韧的氧化锆陶瓷断裂韧性在不断提高,由6MPa·m1/2提到12MPa·m1/2,试验室研究已超过15MPa·m1/2(Maski),甚至达到20MPa·m1/2,但因增韧陶瓷工艺复杂,实际应用中往往达不到这个水平。供应商把氧化钇稳定的氧化锆陶瓷(Y-TZP)粉再配一定的粘合剂聚乙烯醇,石腊等通过密炼,研磨后经注塑或等静压预烧(1000~1200℃)成块,供牙科用数控CAD/CAM机床加工外形,再烧结1520℃成产品。有一个著名的Garvie应力诱导相变增韧:氧化锆相变由立方相c-ZrO2转变成四方相t-ZrO2,再转变成单斜相m-ZrO2,在1170℃相变可逆并导致3~5%的体积变化,这就是马 氏体相变增韧,要保证相变的时间和温度,相变可以逆变,但温度过高超过1200℃时效果不佳。供应商为了满足临床牙冠美观透明的需要,把稳定剂氧化钇Y2O3用量加大,过量氧化钇的加入会导致陶瓷强度下降,就没有纳米氧化锆特有的应力诱导相变增韧,如专利文献US20070375001和CN102023624B等。
国外研究人员Tsukuma等用氧化铈CeO2为稳定剂的氧化锆陶瓷Ce-TZP,在常温烧结后再于1500℃和200Mpa压力下进行热等静压(HIP)烧2小时,断裂韧性可达到30MPa·m1/2,但热等静压设备太贵,技术要求也高,且Ce-TZP颜色欠佳。我们应当与实际结合,民用不能使用设备太贵和技术要求太高的产品,因此我们只能接受采用Y-TZP进行平压烧结,其烧结方法为:(1)以每分钟1度的速度缓慢升温;(2)950℃~1150℃为相变温度敏感区,到此温度时缓慢升温六小时。陶瓷增韧是一个复杂的过程,要把氧化锆的韧性从6MPa·m1/2提到15MPa·m1/2以上,陶瓷韧性提高一倍多,不是那么容易,温度在100~300℃时,Y-TZP还有不稳定相变出现,使强度下降,只能用水冷却加工,而且试验室数据在生产中不一定能达到,所以断裂韧性应该以产品出来后实测为准。以一段非埋入式为例,前牙受力1.5Mpa,穿龈部(颈部)直径在Φ4mm时断裂韧性须达到12MPa·m1/2,只有断裂韧性达到15MPa·m1/2或以上时,才能生产小直径Ф3.5mm的种植体,要考虑氧化锆陶瓷的低可靠性。临床以磨牙受力最大6Mpa,磨牙受的是垂直的压力,前切牙受力1.5Mpa是腭向唇侧的侧向力,成角力。临床医生的应对办法为:(1)前牙牙槽骨薄,使用骨劈开技术植入直径大一点的种植体;(2)种植体成角太大,定向骨劈开,调整受力角度;(3)采取调颌,让种植牙无紧密接触保护。(4)禁用某些过硬食品以保护牙齿。
发明内容
本发明的目的是提供一种结构合理,不易折断,无金属的氧化锆陶瓷种植体,且种植体植入牙槽骨的部分熔附有活性生物玻璃陶瓷微米和纳米粉,其具有不容易断裂,比纯钛种植体生物相容性更好的特点,还是一种比羟基磷灰石涂层种植体更有活性,骨结合强度更高的生物材料种植体。
本发明的具体技术方案为:
一种氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体,包括种植体和基台,其特征是:所述牙种植体为前牙种植体,为Ф4.0~Ф4.5mm的细种植体,采用一段式非埋入式结构,种植体和基台为一个整体,基台上部为基台杆,下部为基桩,基台杆和基桩之间设有一个膨大的基盘,基桩的直径≥4mm,为了防止基桩容易折断,基桩穿龈部还设有一个竹节样膨大的基桩节;种植体体部和根部开有螺纹,其中体部的螺纹为浅梯形螺纹,根部的螺 纹为深三角螺纹;种植体颈部以下植入牙槽骨部分熔附有生物活性玻璃陶瓷人工骨粉。
一种氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体,包括种植体和基台,其特征是:所述牙种植体为后牙种植体,为Ф5~Ф6mm的粗种植体,采用一段式非埋入式结构,种植体和基台为一个整体,基台上部为基台杆,下部为基桩,基台杆和基桩之间设有一个膨大的基盘,基桩的直径略小于种植体的直径且>4mm;种植体体部和根部开有螺纹,其中体部的螺纹为浅梯形螺纹,根部的螺纹为深三角螺纹,且根部的螺纹上还设有割尾开槽;种植体颈部以下植入牙槽骨部分熔附有生物活性玻璃陶瓷人工骨粉。
上述前牙种植体和后牙种植体中,所述基台的基台杆的锥度为1.5度,长度为5~7mm,基桩的长度为3~4mm。
上述前牙种植体和后牙种植体中,种植体的氧化锆陶瓷采用经应力诱导相变增韧的3mol%氧化钇稳定的四方相多晶纳米氧化锆(3Y-TZP)陶瓷。
上述前牙种植体和后牙种植体中,所述生物活性玻璃陶瓷人工骨粉采用微米和纳米级混合生物活性玻璃陶瓷人工骨粉。
本发明的氧化锆陶瓷牙种植体的制备方法包括以下步骤:
1)、备料:将3Y-TZP纳米粉料作为主要原料,加入有机载体聚乙烯、石腊,经密炼、充分研磨后,再经300MPa压力的等静压压成块料或棒料,再经缓慢预烧脱掉有机载体备用。
2)、毛坯制造:用计算机数控设备CAD/CAM进行机加工即得氧化锆种植体毛坯芯。
3)、相变增韧烧结:把种植体毛坯芯放入数控烧结炉中平压烧结,以每分钟1℃的速度升温,分阶段烧结,其中950℃~1150℃温度区为相变敏感区,要控制以每分钟0.5℃的速度升温和降温,烧结后得到经相变增韧的氧化锆陶瓷种植体。
4)、熔附生物活性玻璃陶瓷人工骨粉:在氧化锆陶瓷种植体的植入牙槽骨部分用转动台和超声波溅射一层有机粘性水溶液,再用微型喷粉器喷一层0.02~0.04mm的义获嘉纳米磷灰石玻璃陶瓷IPS e.max系统结合瓷粉,在750℃下烧结熔附至氧化锆陶瓷种植体表面,形成结合瓷层。然后再以同样的方法在结合瓷层表面喷一层生物活性玻璃陶瓷微米粉和纳米粉混合料,并在650℃~700℃下进行烧结粘附,即可将生物活性玻璃陶瓷人工骨粉经结合瓷层粘附在氧化锆陶瓷种植体上。
本发明的氧化锆陶瓷牙种植体的优点为:设计结构合理,不易发生折断,由于在其植入牙槽骨部分熔附有生物活性玻璃陶瓷人工骨粉,本种植体比纯钛和纯氧化锆种植体生物相容性更好,比羟基磷灰石涂层种植体骨结合强度更高。
附图说明
图1为本发明前牙种植体的结构示意图。
图2为本发明后牙种植体的结构示意图。
图3为本发明改为二段式骨内埋入式牙种植体的结构示意图。
图4为本发明改为二段式龈内埋入式牙种植体的结构示意图。
图5为二段式种植体的直插接基台示意图。
图6为二段式种植体的成角插接基台示意图。
图1中:1-种植体,1.1-种植体颈部,1.2-种植体体部,1.3-种植体根部,2-基台,2.1-基台杆,2.2-基盘,2.3-基桩,2.4-基桩节,3-熔附生物活性玻璃陶瓷人工骨粉部分。
图2中:1a-种植体,1.1a-种植体颈部,1.2a-种植体体部,1.3a-种植体根部,1.4a-割尾槽,2a-基台,2.1a-基台杆,2.2a-基盘,2.3a-基桩,3a-熔附生物活性玻璃陶瓷人工骨粉部分。
具体实施方式
下面结合附图对本发明做进一步的说明。
图1所示为本发明的前牙种植体,包括种植体1和基台2,前牙种植体为Ф4~Ф4.5mm的细种植体,采用非埋入式结构,种植体1和基台2为一个整体,基台2上部为基台杆2.1,下部为基桩2.3,基台杆2.1和基桩2.3之间设有一个膨大的基盘2.2。基台杆2.1锥度为1.5度,长度为5~7mm,用于插接和粘结牙冠。前牙种植体直径最小要达到Ф4mm,这样才能保证基台2的基桩2.3有≥4mm的实心直径,以防止脆断。另外为了增加基桩2.3的强度,基桩2.3的穿龈部还设有一个竹节样膨大的基桩节2.4,从而缩短基桩2.3的细部长度,使支点直径加大,应力集中点上移,此外也可以替代普通种植体平台起到阻挡细菌从病理袖口进入种植体的作用。种植体颈部1.1不设螺纹,以防折断。种植体体部1.2和根部1.3开有螺纹,其中体部1.2的螺纹为浅梯形螺纹,使种植体体部1.2不易发生折断;根部1.3的螺纹为深三角螺纹,使种植体根部1.3容易植入。为了增强种植体的生物相容性,更快和牙槽骨形成骨结合,种植体颈部以下植入牙槽骨部分粘附有生物活性玻璃陶瓷人工骨粉。
图2所示为本发明的后牙种植体,后牙种植体为直径Ф5~Ф6mm的粗种植体,和前牙种植体一样采用非埋入式结构,种植体1a和基台2a为一个整体,基台2a上部为基台杆2.1a,下部为基桩2.3a,基台杆2.1a和基桩2.3a之间设有一个膨大的基盘2.2a。基台杆2.1a的锥度和长度和前牙种植体一样。后牙种植体比前牙种植体粗,能承受更大的咬合力和剪切力,其基桩2.3a的直径也相应较粗,基桩2.3a略小于种植体的直径且>4mm,这样可控制 负重后种植体边缘骨吸收,不易发生折断,因此基桩2.3a上不需再设有如前牙种植体般的基桩盘2.4。后牙种植体的体部1.2a和根部1.3a也开有螺纹,其中体部1.2a的螺纹为浅梯形螺纹,根部1.3a的螺纹为深三角螺纹,且根部1.3a的螺纹上还设有割尾开槽1.4a。另外后牙种植体颈部1.1a以下植入牙槽骨部分也熔附有生物活性玻璃陶瓷人工骨粉。
上述前牙种植体和后牙种植体中,种植体的氧化锆陶瓷采用经应力诱导相变增韧的3mol%氧化钇稳定的四方相多晶纳米氧化锆(3Y-TZP)陶瓷,前牙种植体其穿龈部直径为Ф4mm时,要选用断裂韧性>12MPa·m1/2的3Y-TZP陶瓷。种植体颈部以下植入牙槽骨部分粘附有生物活性玻璃陶瓷人工骨粉微米和纳米级混合生物活性玻璃陶瓷人工骨粉。
为了照顾部分医生的种植习惯,本发明还可以将其一段式结构改变成二段式结构,图3和图4所示为本发明改为二段式结构时的骨内埋入式和龈内埋入式的种植体示意图,配合其使用的直插接基台或成角插接基台如图5和图6所示。其中颈部有螺蚊的骨内埋入式种植体直径要达到ф5.5mm以上,颈部无螺蚊的龈内埋入式种植体直径要达到ф5mm以上,且最好选用断裂韧性15MPa·m1/2以上的氧化锆陶瓷棒进行加工。配合二段式种植体使用的基桩大小要适合,可采用插入粘接的形式,基桩锥度为1.5~1.9°或6~8°的范围。
本发明的氧化锆陶瓷牙种植体的制备方法包括以下步骤:
1)、备料:将3Y-TZP纳米粉料作为主要原料,加入有机载体聚乙烯、石腊,经密炼、充分研磨,达到均匀分散消除团聚后,再经过等静压300MPa压力下获得高强度高密度的块料或棒料,再经缓慢预烧脱掉有机载体备用。
2)、毛坯制造:用计算机数控设备CAD/CAM进行机加工即得氧化锆种植体毛坯芯。
3)、相变增韧烧结:把种植体毛坯芯放入数控烧结炉中平压烧结,以每分钟1℃的速度升温,分阶段烧结,其中950℃~1150℃温度区为相变敏感区,要控制以每分钟0.5℃的速度升温和降温,具体烧结方法为:以每分钟1℃的速度从室温加热升温到300℃并保温3小时,然后以每分钟1℃的速度加热升温到900℃并保温3小时,再以每分钟0.5℃的速度加热升温到1150℃并保温3小时,再以每分钟1℃的速度升温到1520℃并保温3小时,再以每分钟1℃的均匀速度降温到950℃并保温3小时,最后以每分钟2℃的均匀速度降温到室温。烧结后得到经相变增韧的氧化锆陶瓷种植体。
4)、熔附生物活性玻璃陶瓷人工骨粉:在氧化锆陶瓷种植体的植入牙槽骨部分用转动台和超声波溅射一层有机粘性水溶液,再用微型喷粉器喷一层义获嘉纳米磷灰石玻璃陶瓷IPS e.max系统的结合瓷粉,喷涂厚度0.02~0.04mm,在750℃下烧结熔附至氧化锆陶瓷种植体表面,形成结合瓷层。然后再以同样的方法在结合瓷层表面喷一层生物活性玻璃陶瓷微 米粉和纳米粉混合料,并在650℃~700℃下进行烧结粘附,即可将生物活性玻璃陶瓷人工骨粉经结合瓷层粘附在氧化锆陶瓷种植体上。粘附结合瓷层和生物活性玻璃陶瓷人工骨粉的烧结过程均以每分钟2℃的速度进行升温和降温。
本发明种植体主要用于美容种植和无金属生物材料种植,种植时首先要了解患者对美容的要求,术前要做CBCT(锥束CT)检查,制作种植导板并进行模拟种植,让患者看到模似种植和修复的全过程,术前如有需消炎和邻牙问题先进行解决。以下为具体实施例。
以中切牙拨除三个月后即刻种植,以Ф4×25mm一段式种植体为例。
1)、对患者作CBCT检查,根据所获得的三维图像应用相应的软件进行模拟种植,并把结果以及医生意见和患者意见发送电子文件给工厂或修复科,由工厂或修复科制作种植导板、氧化锆陶瓷熔附生物陶瓷人工牙以及修复用的树脂牙,全部到位后进行手术,需要医生有较丰富的临床知识。
2)、用利多卡因进行局麻,戴入手术导板,在钻针引导下逐级备洞,如果牙槽骨不够宽,可以用骨凿挤压劈开增宽后再钻种植孔,有时候还需定向劈开,把种植体按正确方向旋入减少成角。使用35~45Ncm的力矩把种植体旋扭进种植孔,将颈部熔附有生物活性玻璃陶瓷的部位全部植入牙槽骨内,将基桩上竹节样膨大的基桩节留在牙龈内,使基桩节代替种植体平台,也能防止日后基桩发生折断,再对软组织作必要的诱导塑形即刻进行修复,然后即刻安装树脂牙冠,先调颌再受力,暂时与邻牙用马里兰桥固定。
3)、术中让患者观察,如有不满意的地方再进行植骨和软组织移植,直到让患者满意为止。
4)、交待术后注意项目,禁用某些过硬的食品。一周、一月、半年来复诊,6个月后换VITA ENAMIC弹性氧化锆陶瓷全瓷牙冠,用陶瓷专用硅类隅联剂Z-prineTM plus处理15秒再涂Bis-GMA(双酚A双甲基丙烯酸缩水甘油酯)流动无填料光固化树脂进行粘结,然后用酒精擦干净多余树脂再照光40秒固化即可固定牙冠。氧化锆陶瓷种植体与牙冠或基台的连接,均用锥形敲击插入式光固化粘结固位。

Claims (11)

  1. 一种氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体,包括种植体(1)和基台(2),其特征是:所述牙种植体为前牙种植体,为Ф4~Ф4.5mm的细种植体,采用非埋入式结构,种植体(1)和基台(2)为一个整体,基台(2)上部为基台杆(2.1),下部为基桩(2.3),基台杆(2.1)和基桩(2.3)之间设有一个膨大的基盘(2.2),基桩(2.3)的直径≥4mm,基桩(2.3)穿龈部还设有一个竹节样膨大的基桩节(2.4);种植体体部(1.2)和根部(1.3)开有螺纹,其中体部(1.2)的螺纹为浅梯形螺纹,根部(1.3)的螺纹为深三角螺纹;种植体颈部(1.1)以下植入牙槽骨部分熔附有生物活性玻璃陶瓷人工骨粉。
  2. 根据权利要求1所述的种植体,其特征是:所述基台(2)的基台杆(2.1)的锥度为1.5度,长度为5~7mm,基桩(2.3)的长度为3~4mm。
  3. 根据权利要求1所述的种植体,其特征是:种植体的氧化锆陶瓷采用经应力诱导相变增韧的3mol%氧化钇稳定的四方相多晶纳米氧化锆陶瓷。
  4. 根据权利要求1所述的种植体,其特征是:所述生物活性玻璃陶瓷人工骨粉采用微米和纳米级混合生物活性玻璃陶瓷人工骨粉。
  5. 一种氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体,包括种植体(1a)和基台(2a),其特征是:所述牙种植体为后牙种植体,为Ф5~Ф6mm的粗种植体,采用非埋入式结构,种植体(1a)和基台(2a)为一个整体,基台(2a)上部为基台杆(2.1a),下部为基桩(2.3a),基台杆(2.1a)和基桩(2.3a)之间设有一个膨大的基盘(2.2a),基桩(2.3a)的直径略小于种植体(1a)的直径且>4mm;种植体体部(1.2a)和根部(1.3a)开有螺纹,其中体部(1.2a)的螺纹为浅梯形螺纹,根部(1.3a)的螺纹为深三角螺纹,且根部(1.3a)的螺纹上还设有割尾开槽(1.4a);种植体颈部(1.1a)以下植入牙槽骨部分熔附有生物活性玻璃陶瓷人工骨粉。
  6. 根据权利要求5所述的种植体,其特征是:所述基台(2a)的基台杆(2.1a)的锥度为1.5度,长度为5~7mm,基桩(2.3a)的长度为3~4mm。
  7. 根据权利要求5所述的种植体,其特征是:种植体的氧化锆陶瓷采用经应力诱导相变增韧的3mol%氧化钇稳定的四方相多晶纳米氧化锆陶瓷。
  8. 根据权利要求5所述的种植体,其特征是:所述生物活性玻璃陶瓷人工骨粉采用微米和纳米级混合生物活性玻璃陶瓷人工骨粉。
  9. 一种权利要求1或权利要求5所述的种植体的制备方法,其特征是包括以下步骤:
    1)、备料:将3Y-TZP纳米粉料作为主要原料,加入有机载体聚乙烯、石腊,经密炼、充分研磨后,再经300MPa压力的等静压压成块料或棒料,再经缓慢预烧脱掉有机载体备用;
    2)、毛坯制造:用计算机数控设备CAD/CAM进行机加工即得氧化锆种植体毛坯芯;
    3)、相变增韧烧结:把种植体毛坯芯放入数控烧结炉中平压烧结,以每分钟1℃的速度升温,分阶段烧结,其中950℃~1150℃温度区为相变敏感区,要控制以每分钟0.5℃的速度升温和降温,烧结后得到经相变增韧的氧化锆陶瓷种植体;
    4)、熔附生物活性玻璃陶瓷人工骨粉:在氧化锆陶瓷种植体的植入牙槽骨部分用转动台和超声波溅射一层有机粘性水溶液,再用微型喷粉器喷一层0.02~0.04mm的义获嘉纳米磷灰石玻璃陶瓷IPS e.max系统结合瓷粉,在750℃下烧结熔附至氧化锆陶瓷种植体表面,形成结合瓷层,然后再以同样的方法在结合瓷层表面喷一层生物活性玻璃陶瓷微米粉和纳米粉,并在650℃~700℃下进行烧结粘附,即可将生物活性玻璃陶瓷人工骨粉经结合瓷层粘附在氧化锆陶瓷种植体上。
  10. 根据权利要求9所述的制备方法,其特征是:所述步骤3的具体烧结方法为:以每分钟1℃的速度从室温加热升温到300℃并保温3小时,然后以每分钟1℃的速度加热升温到900℃并保温3小时,再以每分钟0.5℃的速度加热升温到1150℃并保温3小时,再以每分钟1℃的速度升温到1520℃并保温3小时,再以每分钟1℃的均匀速度降温到950℃并保温3小时,最后以每分钟2℃的均匀速度降温到室温。
  11. 根据权利要求9所述的制备方法,其特征是:所述步骤4熔附结合瓷层和生物活性玻璃陶瓷人工骨粉的烧结过程均以每分钟2℃的速度进行升温和降温。
PCT/CN2014/085894 2014-04-18 2014-09-04 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体 WO2015158098A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157036137A KR101942620B1 (ko) 2014-04-18 2014-09-04 생체활성 유리 세라믹 인공 골분과 융합되는 지르코니아 세라믹 치과용 임플란트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410156673.6A CN103892930B (zh) 2014-04-18 2014-04-18 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体
CN201410156673.6 2014-04-18

Publications (1)

Publication Number Publication Date
WO2015158098A1 true WO2015158098A1 (zh) 2015-10-22

Family

ID=50984734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085894 WO2015158098A1 (zh) 2014-04-18 2014-09-04 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体

Country Status (3)

Country Link
KR (1) KR101942620B1 (zh)
CN (1) CN103892930B (zh)
WO (1) WO2015158098A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107693141A (zh) * 2017-10-20 2018-02-16 广州市健齿生物科技有限公司 一种膨胀固定的组合式种植体
CN108742902A (zh) * 2018-06-20 2018-11-06 广州市健齿生物科技有限公司 一种提高牙龈组织生物封闭性的种植基台及制造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103892930B (zh) * 2014-04-18 2017-04-05 南宁越洋科技有限公司 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体
CN105662617A (zh) * 2014-11-21 2016-06-15 厦门依柯利斯医疗科技有限公司 一种种植牙
ITUB20155412A1 (it) * 2015-11-10 2017-05-10 Torino Politecnico Superficie di titanio modificata, impianto medicale dotato di una o piu di tali superfici e procedimento di realizzazione di una tale superficie.
CN105250040B (zh) * 2015-11-25 2017-10-03 南宁越洋科技有限公司 缓冲型生物活性玻璃陶瓷种植牙
ES2903424T3 (es) * 2016-11-10 2022-04-01 Nantoh Co Ltd Superficie de adherencia de tejido biológico, implante, método de formación de superficie de adhesión de tejido biológico y método de fabricación del implante
CN106904962B (zh) * 2017-02-28 2020-05-22 华南理工大学 一种生物活性氧化锆牙科陶瓷材料的制备方法
KR200489041Y1 (ko) * 2017-04-04 2019-04-23 에프엔이치과기공소 주식회사 치과용 임플란트
KR102152378B1 (ko) * 2019-03-29 2020-09-07 서울대학교 산학협력단 하이드록시아파타이트 솔을 이용한 딥코팅에 의한 하이드록시아파타이트 코팅된 지르코니아 임플란트의 제조방법
KR102178123B1 (ko) * 2020-02-20 2020-11-12 (주)한국치과임플란트연구소(Kdi) 나노 표면 처리방법
CN112294496B (zh) * 2020-10-30 2023-03-28 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金肩关节假体系统及制备方法
CN112759422B (zh) * 2021-02-01 2022-12-27 云南省第一人民医院 一种制备具有高结合力界面的牙科氧化锆-饰面瓷的方法
CN113171306A (zh) * 2021-04-26 2021-07-27 北京大学口腔医学院 一种用于牙髓治疗的生物活性材料、其制备方法及其用途
CN113827355A (zh) * 2021-09-26 2021-12-24 上海交通大学医学院附属第九人民医院 一种新型的种植体修复个性化牙龈愈合帽
US11872105B1 (en) 2022-12-01 2024-01-16 Robert Parker Dental implant device for regeneration of dental pulp and dentin
US11931224B1 (en) 2022-12-19 2024-03-19 Robert Parker Tooth pod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626345A (zh) * 2012-04-12 2012-08-08 王玉元 人工牙纯钛螺旋种植体表面熔附生物活性材料的方法
WO2013180237A1 (ja) * 2012-05-30 2013-12-05 京セラメディカル株式会社 歯科インプラント
CN103892930A (zh) * 2014-04-18 2014-07-02 南宁越洋科技有限公司 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200392305Y1 (ko) * 2005-05-27 2005-08-19 주식회사 오스템 일체형 임플란트
JP5087768B2 (ja) * 2006-10-20 2012-12-05 国立大学法人 鹿児島大学 生体適合性高強度セラミック複合材料とその製造方法
KR100989451B1 (ko) * 2008-05-28 2010-10-26 한국기계연구원 표면 거칠기가 향상된 생체활성 코팅층 및 이의 제조방법
KR20110002490U (ko) * 2009-09-04 2011-03-10 임석주 일체형 임플란트
CN101972174B (zh) * 2010-04-13 2013-12-04 上海池工陶瓷技术有限公司 一种ZrO2-HA复合的口腔种植修复体及制作方法
US20110262882A1 (en) * 2010-04-26 2011-10-27 William Nordquist Natural Tooth Replacement (NTR): An Alternative to Tooth Root Canal (RCT) Therapy and Immediate Root-Form Implant Placement Into Extraction Socket
KR101155702B1 (ko) * 2010-05-14 2012-06-12 김노국 일체형 임플란트
KR100997553B1 (ko) * 2010-05-14 2010-11-30 김노국 일체형 임플란트
CN202179601U (zh) * 2011-06-08 2012-04-04 王玉元 普及型人工牙
CN103371873A (zh) * 2012-04-16 2013-10-30 陈俊龙 可修复式单件植牙体
KR20140003243A (ko) * 2012-06-29 2014-01-09 덴토즈 주식회사 치과용 임플란트
US10342642B2 (en) * 2012-09-26 2019-07-09 Straumann Holding Ag Dental implant or abutment comprising a ceramic body covered with a monomolecular phosphate layer
CN202859348U (zh) * 2012-11-08 2013-04-10 重庆润泽医药有限公司 一种可调磨基桩牙种植体
KR20140133224A (ko) * 2013-05-10 2014-11-19 김노국 지르코니아 일체형 임플란트
CN103550005B (zh) * 2013-11-18 2016-08-31 大连三生科技发展有限公司 一段式人工牙种植体及其种植方法
CN203873903U (zh) * 2014-04-18 2014-10-15 南宁越洋科技有限公司 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626345A (zh) * 2012-04-12 2012-08-08 王玉元 人工牙纯钛螺旋种植体表面熔附生物活性材料的方法
WO2013180237A1 (ja) * 2012-05-30 2013-12-05 京セラメディカル株式会社 歯科インプラント
CN103892930A (zh) * 2014-04-18 2014-07-02 南宁越洋科技有限公司 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107693141A (zh) * 2017-10-20 2018-02-16 广州市健齿生物科技有限公司 一种膨胀固定的组合式种植体
CN107693141B (zh) * 2017-10-20 2023-09-19 广东健齿生物科技有限公司 一种膨胀固定的组合式种植体
CN108742902A (zh) * 2018-06-20 2018-11-06 广州市健齿生物科技有限公司 一种提高牙龈组织生物封闭性的种植基台及制造方法

Also Published As

Publication number Publication date
CN103892930A (zh) 2014-07-02
KR101942620B1 (ko) 2019-01-25
KR20160145473A (ko) 2016-12-20
CN103892930B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2015158098A1 (zh) 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体
Hu et al. Synthesis of nano zirconium oxide and its application in dentistry
Vagkopoulou Zirconia in dentistry: part 2. Evidence-based clinical breakthrough
Gautam et al. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications
US10350030B2 (en) Methods of designing and manufacturing customized dental prosthesis for periodontal or osseointegration and related systems
Manicone et al. An overview of zirconia ceramics: basic properties and clinical applications
Guess et al. Zirconia in fixed implant prosthodontics
Ban Reliability and properties of core materials for all-ceramic dental restorations
US20170172712A1 (en) Customized Dental Prosthesis For Periodontal or Osseointegration and Related Systems
Nakonieczny et al. Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications–A review
CN102178564A (zh) 一种口腔种植体基台及制作方法
KR100746738B1 (ko) 생체적합성 및 심미성이 뛰어난 임플란트 및 그 제조방법
Verma Novel innovations in dental implant biomaterials science: Zirconia and PEEK polymers
Ke et al. Enhancing the bioactivity of yttria-stabilized tetragonal zirconia ceramics via grain-boundary activation
US20230031165A1 (en) Methods of Designing and Manufacturing Customized Dental Prosthesis For Periodontal or Osseointegration and Related Systems
Pantea et al. Correlations between connector geometry and strength of zirconia-based fixed partial dentures
CN106073916A (zh) 可控式膨胀型生物活性玻璃陶瓷种植牙及其制备方法
CN203873903U (zh) 氧化锆陶瓷熔附生物活性玻璃陶瓷人工骨粉的牙种植体
CN112516381B (zh) 晶须补强氧化锆种植体
CN106237378A (zh) 一种种植用烤瓷牙的制备方法
Raghavan et al. Bioceramics: dental implant biomaterials
Cerroni Ceramics for dentistry: Commercial devices and their clinical analysis
CN101219894A (zh) 一种可切削氧化锆/磷酸镧全瓷口腔修复体材料的制备方法
Madeira et al. Functionally graded nanostructured biomaterials (FGNB)
CN112691232B (zh) 晶须补强氧化锆基台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036137

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/04/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14889604

Country of ref document: EP

Kind code of ref document: A1