WO2015158063A1 - 有机发光二极管阵列基板及其制作方法和显示装置 - Google Patents

有机发光二极管阵列基板及其制作方法和显示装置 Download PDF

Info

Publication number
WO2015158063A1
WO2015158063A1 PCT/CN2014/083373 CN2014083373W WO2015158063A1 WO 2015158063 A1 WO2015158063 A1 WO 2015158063A1 CN 2014083373 W CN2014083373 W CN 2014083373W WO 2015158063 A1 WO2015158063 A1 WO 2015158063A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
organic light
slope
microcavity
Prior art date
Application number
PCT/CN2014/083373
Other languages
English (en)
French (fr)
Inventor
马文昱
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/435,960 priority Critical patent/US9799851B2/en
Publication of WO2015158063A1 publication Critical patent/WO2015158063A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • Organic light emitting diode array substrate manufacturing method thereof and display device
  • the present invention relates to the field of display technologies, and in particular, to an organic light emitting diode array substrate, a manufacturing method thereof, and a display device. Background technique
  • OLED Organic Light-Emitting Diode
  • OLED Organic Light-Emitting Diode
  • FP Fabry-Perot
  • microcavity top-emitting OLED devices have been studied, usually using a distributed Bragg reflector with a reflectance of 99.9% or a metal layer with a reflectivity greater than 95%, and reflectivity.
  • a thinner metal layer is used as the two electrodes of the light emitting diode, and each organic functional layer is sandwiched between the two electrodes to form a microcavity structure.
  • the microcavity structure can increase the proportion of light emitted from the luminescent layer into the air, that is, increase the external quantum efficiency of the device; in addition, the half-height width of the emission spectrum of the luminescent material is also reduced, and the color of the emitted light is more pure.
  • each color microcavity top emission OLED 2 is formed on the plane of the substrate 1.
  • the device made of dark luminescent materials has a relatively low level of efficiency, and its lifetime is far from the standard of application. Therefore, the application in the display device is limited, and the color gamut of the OLED display device cannot be further increased. The improvement in quality is limited. Summary of the invention
  • Embodiments of the present invention provide an organic light emitting diode array substrate, a manufacturing method thereof, and a display device to increase a color gamut of a display device and improve display quality.
  • An OLED array substrate provided by an embodiment of the invention includes a substrate and a plurality of microcavity organic light emitting diodes arranged on the substrate and arranged in an array, wherein:
  • the light emitting surface of the at least one microcavity organic light emitting diode has an angle with the plane of the substrate.
  • the light emitting surface of the at least one microcavity organic light emitting diode has an angle with the plane of the substrate, so that the light of the shorter wavelength of the spectrum emitted by the microcavity organic light emitting diode will be emitted from the direct viewing direction. .
  • the color of the element is deepened, so that the color gamut of the display device is increased, the display color is more beautiful, and the display quality is greatly improved.
  • the base surface of the microcavity organic light emitting diode corresponding to the at least one color of the substrate is a sloped surface.
  • the slope portion of the slope surface is parallel to the column direction, and the slope faces of the adjacent two microcavity organic light emitting diodes having the same color in the row direction are opposite to each other; or the slope portion of the slope surface is The slope directions of the adjacent two microcavity organic light emitting diodes having the same row direction and the same color in the column direction are opposite to each other.
  • the design can not only reduce the viewing angle range of the horizontal or vertical direction of the display device, but also further increase the viewing angle range in the direction while increasing the color gamut of the display device.
  • the slope angle of the slope surface is not more than 40 degrees.
  • the slope angle of the slope surface is not more than 40 degrees, that is, the inclination angle of the microcavity organic light emitting diode is not more than 40 degrees, the increase of the color gamut of the display device is obvious, and the display quality of the display device can be significantly improved.
  • the slope surface is a slope of a wedge-shaped protrusion of the substrate, or the slope surface is a slope of a wedge-shaped recess of the substrate.
  • the substrate comprises a substrate plate and a graphic layer on the substrate plate, the slope surface is formed on the graphic layer; or
  • the substrate includes a substrate plate, and the sloped surface is formed on the substrate plate.
  • the pattern layer is formed by an etching process to form a wedge-shaped protrusion or a wedge-shaped recess, which is simple in processing and low in cost, and can also form a slope surface by modifying the substrate sheet.
  • the slope angle of the slope surface is greater than 40 degrees, and the adjacent two slope surfaces form an inverted V-shaped and corresponding micro-cavity organic light-emitting diode of the same color.
  • the solution can not only increase the color gamut of the display device, but also utilize the occlusion function between the pixels to apply the array substrate to the display device having the dual view function, and the application flexibility of the array substrate is greatly increased.
  • the slope angle of the slope surface is 60 degrees. This solution allows the aperture ratio and resolution to be consistent with the prior art when viewing the display device in either direction.
  • the embodiment of the invention further provides a display device comprising the OLED array substrate according to any one of the preceding technical solutions.
  • the color gamut of the display device is larger, the display color is more beautiful, and the display quality is greatly improved.
  • the embodiment of the invention further provides a method for fabricating an organic light emitting diode array substrate, comprising:
  • a plurality of microcavity organic light emitting diodes arranged in an array are formed on the substrate, wherein the light emitting surface of the at least one microcavity organic light emitting diode has an angle with the plane of the substrate.
  • the organic light emitting diode array substrate produced by the method is applied to a display device, and the color gamut of the display device can be increased, the display color is more beautiful, and the display quality is greatly improved.
  • the forming a plurality of microcavity organic light emitting diodes arranged in an array on the substrate comprises:
  • the pattern layer Forming a pattern layer on the substrate plate, the pattern layer having a sloped surface corresponding to the position of the at least one microcavity organic light emitting diode;
  • a microcavity organic light emitting diode is formed over the patterned layer.
  • the forming a graphic layer on the substrate board comprises:
  • the pattern material layer is etched to form a wedge-shaped protrusion or a wedge-shaped recess opposite the position of the at least one microcavity organic light-emitting diode.
  • the forming a plurality of microcavity organic light emitting diodes arranged in an array on the substrate comprises:
  • a microcavity organic light emitting diode is formed over the substrate plate, the substrate plate having a sloped surface corresponding to the position of the at least one microcavity organic light emitting diode.
  • FIG. 1 is a schematic cross-sectional structural view of a conventional OLED array substrate
  • FIG. 2 is a graph showing optical characteristics of a color shift of a blue light device according to a horizontal viewing angle in the prior art
  • FIG. 3 is an optical characteristic diagram showing changes in luminance of a blue light device according to a horizontal viewing angle in the prior art
  • FIG. 4 is a schematic cross-sectional view of an OLED array substrate according to a first embodiment of the present invention
  • FIG. 5 is a cross-sectional structural view of an OLED array substrate according to a second embodiment of the present invention
  • FIG. 7 is a cross-sectional structural view of an OLED array substrate according to a fourth embodiment of the present invention
  • FIG. 8 is a cross-sectional structural view of an OLED array substrate according to a fifth embodiment of the present invention
  • FIG. 9 is a schematic flow chart of a method for fabricating an OLED array substrate according to an embodiment of the present invention.
  • an embodiment of the present invention provides an organic light emitting diode (hereinafter OLED) array substrate, a manufacturing method thereof, and a display device.
  • OLED organic light emitting diode
  • the light emitting surface of the at least one microcavity OLED has an angle with the plane of the substrate, so that the light of the shorter wavelength of the spectrum emitted by the microcavity organic light emitting diode will exit from the direct viewing direction. This changes the color coordinate value of the variable pixel, so that the pixel color is deepened, so that the color gamut of the display device is increased, the display color is more beautiful, and the display quality is greatly improved.
  • an OLED array substrate provided by an embodiment of the present invention includes a substrate 1 and a plurality of microcavity OLEDs 2 arranged on the substrate 1 and arranged in an array, wherein:
  • the light emitting surface of at least one of the microcavity OLEDs 2 has an angle with the plane of the substrate 1.
  • the specific type of the microcavity OLED 2 is not limited, and may be, for example, a top emission type microcavity OLED (light emitting from the top electrode of the OLED) or a bottom emission type microcavity OLED (lighting out from the bottom electrode of the OLED).
  • the plurality of microcavity OLEDs include a red light device, a green light device, and a blue light device, corresponding to red pixels, green pixels, and blue pixels, respectively.
  • the microcavity OLED is disposed parallel to the plane of the substrate, and the light emitting surface of the microcavity OLED is also parallel to the plane of the substrate, and the viewing angle is at an angle to the direct viewing direction of the display device (ie, the direction perpendicular to the plane of the substrate).
  • the shorter wavelength light will be emitted from the direct view direction, so the color of the pixel will be deepened, and the color of the light is more pure.
  • the emitting surface of at least one of the cavity OLEDs has an angle with the substrate plane, the color of the pixels is deepened as viewed from the direct viewing direction, thereby increasing the color gamut of the display device.
  • the implementation manner of the angle between the light emitting surface of the microcavity OLED 2 and the plane of the substrate 1 is not limited, and a slope surface may be formed on the substrate.
  • a slope surface may be formed on the substrate.
  • the microcavity OLED is fabricated on the slope surface, an angle between the light emitting surface and the substrate plane is formed; It is also possible to form a microcavity OLED in which the light emitting surface is obliquely disposed on the substrate plane.
  • the substrate surface of the microcavity OLED 2 corresponding to the at least one color of the substrate 1 is a sloped surface 3.
  • FIG. 2 is an optical characteristic curve of brightness of a blue light device in a conventional microcavity OLED display device as a function of a horizontal viewing angle
  • FIG. 3 is an optical view of a color coordinate (ie, CIE coordinate) of a blue light device as a function of a horizontal viewing angle. Characteristic curve.
  • the brightness of the blue light device decreases compared with that of the direct view, but the X color coordinate value of the blue light device gradually increases, and the y color coordinate value gradually decreases, thus,
  • the blue pixel is viewed at a certain angle in the direct view direction, and the color of the blue pixel is deepened, tending to dark blue, and the color of the light is more pure.
  • the change of the color coordinates of the green light device and the red light device is the same.
  • the present invention utilizes this optical effect to change the spatial structure of the microcavity OLED such that the color coordinates of the pixels in the direct view direction are changed relative to the prior art, so that more vivid colors can be viewed.
  • the substrate surface of the microcavity OLED corresponding to one color is a slope surface.
  • one color for example, blue
  • the color of the color pixel is deepened.
  • the gamut is increased. It can be understood that when the substrate surface of the microcavity OLED corresponding to two colors (for example, blue and green) is a sloped surface, the display device is viewed in a direct view direction, and the colors of the two color pixels are deepened, and the color gamut is increased.
  • the display device When the base surface of the micro-cavity OLED corresponding to the red, green, and blue substrates is a sloped surface, the display device is viewed in a direct view direction, and the color of each color pixel is deepened, and the display color is more beautiful.
  • the light emitting surface of the at least one microcavity OLED 2 has an angle with the plane of the substrate 1. Therefore, in the spectrum emitted by the microcavity organic light emitting diode, the shorter wavelength light will be emitted from the direct viewing direction. . This changes the color coordinate value of the pixel, and the pixel color is deepened, so that the color gamut of the display device is increased, the display color is more beautiful, and the display quality is greatly improved.
  • the slope angle of the slope surface 3 is not more than 40 degrees, that is, the tilt angle of the microcavity OLED 2 is not more than At 40 degrees, at this time, the increase of the color gamut of the display device is obvious, and the display quality of the display device can be significantly improved.
  • the root portion of the slope surface 3 is parallel to the column direction, and the slope faces 3 corresponding to the adjacent two cavity OLEDs 2 having the same color in the row direction are inclined in opposite directions.
  • the range of viewing angles in the horizontal direction can further increase the range of viewing angles in the horizontal direction.
  • the viewing angle of the prior art microcavity OLED display device ranges from -75 degrees to 75 degrees, and the slope angle of the slope surface of the embodiment of the present invention is 15 degrees, and after the array substrate of the embodiment of the present invention is used, the display device is The range of viewing angles is increased from -90 degrees to 90 degrees.
  • the "root" of the ramp face refers to the line obtained by the intersection of the ramp face and the plane of the substrate.
  • the root of the slope surface is parallel to the row direction, and the slopes of the adjacent two microcavity OLEDs having the same color in the column direction are opposite to each other. Similar to the principle of the embodiment shown in Fig. 4, the design not only does not reduce the viewing angle range in the vertical direction of the display device, but also further increases the viewing angle range in the vertical direction while increasing the color gamut of the display device.
  • the slope surface is a wedge-shaped concave slope of the substrate, or the slope surface is a wedge-shaped convex slope of the substrate.
  • the substrate 1 may have a multi-layered structure, and the substrate 1 includes a substrate plate 6 and a pattern layer 7 on the substrate plate 6, and a slope surface 3 is formed on the pattern layer 7.
  • a pattern layer 7 having a wedge-shaped recess 5 is formed by etching a pattern material layer deposited on the substrate board 6; for example, as shown in FIG. 7, deposited on the substrate board 6 by etching.
  • the layer of patterned material leaves only the patterned layer 7 of wedge-shaped projections 4 on the substrate sheet 6.
  • the wedge-shaped recess 5 or the wedge-shaped bump 4 is formed by an etching process, and the processing process is simple and the cost is low.
  • the material of the pattern layer ⁇ can be silicon dioxide, silicon nitride, etc., and the specific thickness can be determined by combining the slope angle of the slope 3, the size specifications of the light emitting device, and related experience.
  • the specific material of the substrate plate 6 is not limited, and may be, for example, a glass substrate, a resin substrate, or the like.
  • the substrate plate can be modified by using a microstructure technique, such that the substrate plate 6 has a wedge-shaped recess 5 corresponding to the position of the microcavity OLED 2, and the slope of the wedge-shaped recess 5 serves as a base surface for fabricating the light-emitting device; or as shown in FIG. It is shown that the substrate plate 6 has a wedge-shaped projection 4 at a position corresponding to the microcavity OLED 2, and the slope of the wedge-shaped projection 4 serves as a base surface on which the light-emitting device is fabricated.
  • the slope angle of the slope face 3 is greater than 40 degrees, and the adjacent two slope faces 3 constitute an inverted V shape and correspond to the cavity OLED 2 of the same color.
  • the solution can not only increase the color gamut of the display device, but also utilize the occlusion function between pixels to apply the array substrate to the display device having the visual function, and the application flexibility of the array substrate is greatly increased.
  • a strip structure of a high-precision metal mask (FMM) can evaporate the hair on the two slopes. The optical device and the evaporation process are simplified.
  • the slope angle of the slope surface 3 is specifically 60 degrees, that is, the wedge-shaped convex shape on the substrate 1 is an equilateral triangle.
  • This solution allows the dual view display device to be viewed in either direction with the aperture ratio and resolution consistent with the prior art.
  • the sides of the equilateral triangle have a side length of 20 ⁇ m, and the adjacent wedge-shaped protrusions have a pitch of 40 ⁇ m, and the viewing angle in any viewing direction ranges from 16 to 60 degrees.
  • the embodiment of the invention further provides a method for fabricating an OLED array substrate, which specifically includes:
  • a plurality of microcavity OLEDs arranged in an array are formed on the substrate, wherein the light emitting surface of the at least one microcavity OLED has an angle with the plane of the substrate.
  • the OLED array substrate produced by the method is applied to a display device, and the color gamut of the display device can be increased, the display color is more beautiful, and the display quality is greatly improved.
  • a method for fabricating an OLED array substrate according to an embodiment of the present invention includes:
  • Step 101 forming a pattern layer on the substrate board, wherein the pattern layer has a slope surface corresponding to the position of the at least one microcavity OLED;
  • Step 102 Form a microcavity OLED located above the graphic layer.
  • the microcavity OLED is formed by an evaporation process, and the slope surface serves as a base surface of the evaporation process.
  • the OLED array substrate produced by the method is applied to a display device, and the color gamut of the display device can be increased, the display color is more beautiful, and the display quality is greatly improved.
  • step 101 may specifically include:
  • the patterned material layer is etched to form a wedge-shaped protrusion or a wedge-shaped recess opposite the position of the at least one microcavity OLED.
  • the pattern layer having the wedge-shaped recess is formed by etching the pattern material layer deposited on the substrate board by leaving only the pattern layer composed of the wedge-shaped protrusions on the substrate board, or by etching the pattern material layer deposited on the substrate board.
  • the wedge-shaped protrusion or the wedge-shaped recess is formed by the etching process, and the processing process is simple and the cost is low.
  • forming a plurality of microcavity OLEDs arranged in an array on the substrate comprises: forming a microcavity OLED over the substrate plate, the substrate plate having a sloped surface corresponding to the position of the at least one microcavity OLED.
  • the solution utilizes a modified substrate plate on which the microcavity OLED is fabricated directly.
  • An embodiment of the present invention further provides a display device, including any of the foregoing technical solutions.
  • the color gamut of the display device is large, the display color is more beautiful, and the display quality is greatly improved.
  • the specific type of the display device is not limited, and may be, for example, an OLED display panel, an OLED display, an OLED television, or the like. It is within the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and the modifications

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种有机发光二极管阵列基板及其制作方法和显示装置,有机发光二极管阵列基板包括:基板(1)和位于基板(1)上且阵列排布的多个微腔有机发光二极管(2),至少一个微腔有机发光二极管(2)的发光面与基板(1)平面具有夹角。使得较短波长的光线从直射方向上出射,改变了像素的色坐标值,使像素颜色加深,从而使显示装置的色域增大,显示色彩更加艳丽,显示品质得到提升。

Description

有机发光二极管阵列基板及其制作方法和显示装置 技术领域
本发明涉及显示技术领域, 特别是涉及一种有机发光二极管阵列 基板及其制作方法和显示装置。 背景技术
OLED ( Organic Light-Emitting Diode , 有机发光二极管, 简称 OLED ) 自 1987年 4艮道以来, 至今已经取得了迅猛的发展, 现在已成 为全彩色平板显示的一个新兴领域, 其材料和器件结构都得到了蓬勃 的发展。 上世纪 90年代起, 人们开始对 Fabry-Perot ( F-P ) 微腔顶发 射 OLED 器件进行研究, 通常采用反射率高达 99.9%的分布式布拉格 反射层或反射率大于 95%的金属层, 与反射率较前两者更小的薄金属 层作为发光二极管的两个电极, 各有机功能层夹在两个电极之间形成 微腔结构。 微腔结构可以提高发光层发出的光出射到空气中的比例, 即提高器件的外量子效率; 此外, 发光材料的发射光谱半高宽也得到 减小, 发出的光颜色更加纯正。
如图 1所示, 现有微腔顶发射 OLED显示装置的阵列基板的截面 结构中, 各颜色微腔顶发射 OLED 2形成于基板 1的平面之上。 目前, 深色发光材料制成的器件效率水平还比较低, 其寿命更是远远没有达 到应用的标准, 故在显示装置中应用受到限制, OLED显示装置的色域 无法取得进一步增大, 显示品质的提升受限。 发明内容
本发明实施例提供了一种有机发光二极管阵列基板及其制作方法 和显示装置, 以增大显示装置的色域, 提升显示品质。
本发明实施例提供的有机发光二极管阵列基板, 包括基板和位于 所述基板上且阵列排布的多个微腔有机发光二极管, 其中:
至少一个微腔有机发光二极管的发光面与基板平面具有夹角。
在本发明的实施例中, 至少一个微腔有机发光二极管的发光面与 基板平面具有夹角, 因此所述微腔有机发光二极管发射的光谱中, 较 短波长的光线将从直视方向上出射。 这改变了像素的色坐标值, 使像 素颜色加深, 从而使显示装置的色域增大, 显示色彩更加艳丽, 显示 品质大大提升。
优选的, 所述基板对应至少一种颜色的微腔有机发光二极管的基 底面为斜坡面。 该方案可增大显示装置的整体色域, 进一步提升显示 品质, 并且, 有机发光二极管的制作工艺简化, 工艺可控性好, 从而 提高产品品质和生产率。
优选的, 所述斜坡面的才艮部与列方向平行, 且行方向上颜色相同 的相邻两个微腔有机发光二极管所对应的斜坡面倾斜方向相反; 或者 所述斜坡面的才艮部与行方向平行, 且列方向上颜色相同的相邻两 个微腔有机发光二极管所对应的斜坡面倾斜方向相反。
相比于现有技术, 该设计在增大显示装置色域的同时, 不仅不会 减小显示装置水平或者垂直方向的视角范围, 还能够进一步增大在该 方向上的视角范围。
优选的, 所述斜坡面的坡度角不大于 40度。 当斜坡面的坡度角不 大于 40度, 即微腔有机发光二极管的倾斜角度不大于 40度时, 显示 装置色域的增大较为明显, 能够使显示装置的显示品质明显提升。
可选的, 所述斜坡面为所述基板的楔形凸起的坡面, 或者, 所述 斜坡面为所述基板的楔形凹陷的坡面。
较佳的, 所述基板包括衬底板和位于所述衬底板上的图形层, 所 述斜坡面形成于所述图形层; 或者
所述基板包括衬底板, 所述斜坡面形成于所述衬底板。
通过刻蚀工艺形成图形层, 从而形成楔形凸起或楔形凹陷, 加工 工艺简便, 成本较低, 此外, 也可以通过改良衬底板形成斜坡面。
可选的, 所述斜坡面的坡度角大于 40度, 相邻的两个斜坡面组成 倒 V形且对应相同颜色的微腔有机发光二极管。 该方案不仅可以增大 显示装置的色域, 而且可以利用像素间的遮挡作用, 将阵列基板应用 于具有双视功能的显示装置, 阵列基板的应用灵活性大大增加。
优选的, 所述斜坡面的坡度角为 60度。 该方案可以使 视显示装 置在任一方向观看时, 开口率和分辨率与现有技术保持一致。
本发明实施例还提供了一种显示装置, 包括前述任一技术方案所 述的有机发光二极管阵列基板, 显示装置的色域较大, 显示色彩更加 艳丽, 显示品质大大提升。 本发明实施例还提供了一种有机发光二极管阵列基板的制作方 法, 包括:
在基板上形成阵列排布的多个微腔有机发光二极管, 其中, 至少 一个微腔有机发光二极管的发光面与基板平面具有夹角。
通过该方法所制作的有机发光二极管阵列基板应用于显示装置 中, 能够使显示装置的色域增大, 显示色彩更加艳丽, 显示品质大大 提升。
优选的, 所述在基板上形成阵列排布的多个微腔有机发光二极管, 具体包括:
在衬底板上形成图形层, 所述图形层对应至少一个微腔有机发光 二极管的位置具有斜坡面;
形成位于所述图形层之上的微腔有机发光二极管。
具体的, 所述在衬底板上形成图形层, 具体包括:
在衬底板上形成图形材料层;
刻蚀所述图形材料层, 形成与至少一个微腔有机发光二极管位置 相对的楔形凸起或楔形凹陷。
可选的, 所述在基板上形成阵列排布的多个微腔有机发光二极管, 具体包括:
在衬底板之上形成微腔有机发光二极管, 所述衬底板对应至少一 个微腔有机发光二极管的位置具有斜坡面。 附图说明
图 1为现有 OLED阵列基板的截面结构示意图;
图 2 为现有技术中蓝光器件的色坐标随水平视角变化的光学特性 曲线图;
图 3 为现有技术中蓝光器件的亮度随水平视角变化的光学特性曲 线图;
图 4为本发明第一实施例 OLED阵列基板的截面结构示意图; 图 5为本发明第二实施例 OLED阵列基板的截面结构示意图; 图 6为本发明第三实施例 OLED阵列基板的截面结构示意图; 图 7为本发明第四实施例 OLED阵列基板的截面结构示意图; 图 8为本发明第五实施例 OLED阵列基板的截面结构示意图; 图 9为本发明实施例 OLED阵列基板的制作方法流程示意图。 附图标记:
1-基板; 2-微腔 OLED; 3-斜坡面; 4-楔形凸起; 5-楔形凹陷; 6-衬底板; 7-图形层。 具体实施方式
为了增大显示装置的色域, 提升显示品质, 本发明实施例提供了 一种有机发光二极管(以下 OLED )阵列基板及其制作方法和显示装置。 在本发明的实施例中, 至少一个微腔 OLED 的发光面与基板平面具有 夹角, 因此所述微腔有机发光二极管发射的光谱中, 较短波长的光线 将从直视方向上出射。 这改了变像素的色坐标值, 使像素颜色加深, 从而使显示装置的色域增大, 显示色彩更加艳丽, 显示品质大大提升。
为使本发明的目的、 技术方案和优点更加清楚, 以下举实施例对 本发明作进一步详细说明。
如图 4所示, 本发明实施例提供的 OLED阵列基板, 包括基板 1 和位于基板 1上且阵列排布的多个微腔 OLED 2 , 其中:
至少一个微腔 OLED 2的发光面与基板 1平面具有夹角。
微腔 OLED 2 的具体类型不限, 例如可以为顶发射型微腔 OLED (从 OLED的顶部电极出光),也可以为底发射型微腔 OLED(从 OLED 的底部电极出光) 。 多个微腔 OLED 包括红光器件、 绿光器件和蓝光 器件, 分别对应红像素、 绿像素和蓝像素。
在现有技术中, 微腔 OLED相对基板平面平行设置, 微腔 OLED 的发光面也与基板平面平行, 当视角与显示装置的直视方向 (即, 垂 直于基板平面的方向) 呈一定夹角时, 所述微腔有机发光二极管发射 的光谱中, 较短波长的光线将从直视方向上出射, 因此像素的颜色会 加深, 光的颜色更加纯正。 基于该原理, 当至少一个敖腔 OLED 的发 光面与基板平面具有夹角时, 从直视方向上观看, 这些像素的颜色会 加深, 从而使得显示装置的色域有所提高。
使微腔 OLED 2的发光面与基板 1平面具有夹角的实现方式不限, 可以在基板上形成斜坡面, 微腔 OLED制作于斜坡面时, 其发光面与 基板平面之间具有夹角; 也可以在基板平面上形成发光面倾斜设置的 微腔 OLED。 优选的,基板 1对应至少一种颜色的微腔 OLED 2的基底面为斜坡 面 3。该方案可增大显示装置的整体色域,进一步提升显示品质,并且, OLED的制作工艺简化, 工艺可控性好, 从而提高产品品质和生产率。
以蓝光器件为例, 图 2为现有微腔 OLED显示装置中蓝光器件的 亮度随水平视角变化的光学特性曲线图, 图 3为蓝光器件的色坐标(即 CIE坐标)随水平视角变化的光学特性曲线图。 从图中可以看出, 随着 水平视角的增大, 蓝光器件的亮度比直视观看时有所下降, 但蓝光器 件的 X色坐标值逐渐增加, y色坐标值逐渐减小, 因此, 与直视方向呈 一定夹角观看蓝像素, 蓝像素的颜色会加深, 趋向于深蓝色, 光的颜 色更加纯正。 绿光器件和红光器件色坐标的变化与此同理。 本发明正 是利用这种光学效应, 改变微腔 OLED 的空间结构, 使得直视方向观 看像素时像素的色坐标相对现有技术改变, 从而可以观看到更加艳丽 的色彩。
在本发明的一实施例中, 基板对应一种颜色 (例如蓝色) 的微腔 OLED的基底面为斜坡面, 此时, 在直视方向观看显示装置时, 该颜色 像素的颜色会加深, 色域增大。 可以理解, 当基板对应两种颜色 (例 如蓝色和绿色) 的微腔 OLED 的基底面为斜坡面时, 在直视方向观看 显示装置, 这两种颜色像素的颜色会加深, 色域增大; 当基板对应红 色、 绿色和蓝色的微腔 OLED 的基底面为斜坡面时, 在直视方向观看 显示装置, 各颜色像素的颜色均会加深, 显示色彩更加艳丽。
在本发明的实施例中, 至少一个微腔 OLED 2 的发光面与基板 1 平面具有夹角, 因此所述微腔有机发光二极管发射的光谱中, 较短波 长的光线将从直视方向上出射。 这改变了像素的色坐标值, 使像素颜 色加深, 从而使显示装置的色域增大, 显示色彩更加艳丽, 显示品质 大大提升。
从图 2中可以看出, 水平视角小于 40度时, 蓝光器件色坐标的变 化较为明显, 因此, 优选的, 斜坡面 3的坡度角不大于 40度, 即微腔 OLED 2的倾斜角度不大于 40度, 此时, 显示装置色域的增大较为明 显, 能够使显示装置的显示品质明显提升。
如图 4所示, 斜坡面 3 的根部与列方向平行, 且行方向上颜色相 同的相邻两个敖腔 OLED 2所对应的斜坡面 3倾斜方向相反。相比于现 有技术, 该设计在增大显示装置色域的同时, 不仅不会减小显示装置 水平方向的视角范围, 还能够进一步增大水平方向的视角范围。 例如, 现有技术微腔 OLED显示装置的视角范围为 -75度至 75度, 本发明实 施例斜坡面的坡度角 Θ为 15度, 则采用本发明实施例结构的阵列基板 后, 显示装置的视角范围增大为 -90度至 90度。
在本发明的上下文中, 斜坡面的 "根部" 指的是斜坡面与基板平 面相交所获得的直线。
在本发明的另一优选实施例中, 斜坡面的根部与行方向平行, 且 列方向上颜色相同的相邻两个微腔 OLED所对应的斜坡面倾斜方向相 反。 与图 4 所示实施例的原理类似, 该设计在增大显示装置色域的同 时, 不仅不会减小显示装置垂直方向的视角范围, 还能够进一步增大 在垂直方向上的视角范围。
可选的, 斜坡面为基板的楔形凹陷的坡面, 或者, 斜坡面为基板 的楔形凸起的坡面。
如图 6和图 7所示, 基板 1可以采用多层结构, 基板 1 包括衬底 板 6和位于衬底板 6上的图形层 7, 斜坡面 3形成于图形层 7。 例如, 如图 6所示, 通过刻蚀沉积于衬底板 6上的图形材料层, 形成具有楔 形凹陷 5的图形层 7; 再例如, 如图 7所示, 通过刻蚀沉积于衬底板 6 上的图形材料层, 使衬底板 6上仅留下楔形凸起 4组成的图形层 7。 通 过刻蚀工艺形成楔形凹陷 5或楔形凸起 4 , 加工工艺简便, 成本较低。 图形层 Ί 的材质可以为二氧化硅、 氮化硅等等, 其具体厚度可结合斜 坡面 3的坡度角、 发光器件的尺寸规格以及相关经验来确定。
衬底板 6的具体材质不限, 例如可以为玻璃基板、 树脂基板等等。 如图 4所示, 可以利用微结构技术改良衬底板, 使衬底板 6对应微腔 OLED 2的位置具有楔形凹陷 5 , 楔形凹陷 5的坡面作为制作发光器件 的基底面; 或者如图 5所示,使衬底板 6对应微腔 OLED 2的位置具有 楔形凸起 4 , 楔形凸起 4的坡面作为制作发光器件的基底面。
如图 8所示, 在该实施例中, 斜坡面 3的坡度角大于 40度, 相邻 的两个斜坡面 3组成倒 V形且对应相同颜色的敖腔 OLED 2。
该方案不仅可以增大显示装置的色域, 而且可以利用像素间的遮 挡作用, 将阵列基板应用于具有 视功能的显示装置, 阵列基板的应 用灵活性大大增加。 在进行 OLED 蒸镀时, 高精度金属掩模板 (Fine Metal Mask, 简称 FMM ) 的一个条形结构可以蒸镀两个斜坡面上的发 光器件, 蒸镀工艺比较简化。
如图 8所示, 斜坡面 3的坡度角具体为 60度, 即基板 1上楔形凸 起的截面形状为等边三角形。 该方案可以使双视显示装置在任一方向 观看时, 开口率和分辨率与现有技术保持一致。 该实施例中, 等边三 角形的边长为 20微米, 相邻楔形凸起间距 40微米, 则在任一观看方 向的视角范围为 16度至 60度。
本发明实施例还提供了一种 OLED 阵列基板的制作方法, 具体包 括:
在基板上形成阵列排布的多个微腔 OLED, 其中, 至少一个微腔 OLED的发光面与基板平面具有夹角。
通过该方法所制作的 OLED 阵列基板应用于显示装置中, 能够使 显示装置的色域增大, 显示色彩更加艳丽, 显示品质大大提升。
如图 9所示, 本发明一实施例的 OLED阵列基板的制作方法, 包 括:
步骤 101、在衬底板上形成图形层,图形层对应至少一个微腔 OLED 的位置具有斜坡面;
步骤 102、 形成位于图形层之上的微腔 OLED。
微腔 OLED通过蒸镀工艺制作形成, 斜坡面作为蒸镀工艺的基底 面。 通过该方法所制作的 OLED 阵列基板应用于显示装置中, 能够使 显示装置的色域增大, 显示色彩更加艳丽, 显示品质大大提升。
具体的, 步骤 101可具体包括:
在衬底板上形成图形材料层;
刻蚀图形材料层, 形成与至少一个微腔 OLED位置相对的楔形凸 起或楔形凹陷。
通过刻蚀沉积于衬底板上的图形材料层, 使衬底板上仅留下楔形 凸起组成的图形层, 或者通过刻蚀沉积于衬底板上的图形材料层, 形 成具有楔形凹陷的图形层。 通过刻蚀工艺形成楔形凸起或楔形凹陷, 加工工艺简便, 成本较低。
在一个可选的实施例中, 在基板上形成阵列排布的多个微腔 OLED, 具体包括: 在衬底板之上形成微腔 OLED, 衬底板对应至少一 个微腔 OLED 的位置具有斜坡面。 该方案利用改良的衬底板, 微腔 OLED直接制作于衬底板之上。 本发明实施例还提供了一种显示装置, 包括前述任一技术方案的
OLED阵列基板, 显示装置的色域较大, 显示色彩更加艳丽, 显示品质 大大提升。 显示装置的具体类型不限, 例如可以为 OLED显示面板、 OLED显示器、 OLED电视等等。 脱离本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于 本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1. 一种有机发光二极管阵列基板, 其特征在于, 包括基板和位于 所述基板上且阵列排布的多个微腔有机发光二极管, 其中:
至少一个微腔有机发光二极管的发光面与基板平面具有夹角。
2. 如权利要求 1所述的有机发光二极管阵列基板, 其特征在于, 所述基板对应至少一种颜色的微腔有机发光二极管的基底面为斜坡 面。
3. 如权利要求 2所述的有机发光二极管阵列基板, 其特征在于, 所述斜坡面的根部与列方向平行, 且行方向上颜色相同的相邻两个微 腔有机发光二极管所对应的斜坡面倾斜方向相反; 或者
所述斜坡面的才艮部与行方向平行, 且列方向上颜色相同的相邻两 个微腔有机发光二极管所对应的斜坡面倾斜方向相反。
4. 如权利要求 2所述的有机发光二极管阵列基板, 其特征在于, 所述斜坡面的坡度角不大于 40度。
5. 如权利要求 2〜4任一项所述的有机发光二极管阵列基板, 其特 征在于, 所述斜坡面为所述基板的楔形凸起的坡面, 或者, 所述斜坡 面为所述基板的楔形凹陷的坡面。
6. 如权利要求 5所述的有机发光二极管阵列基板, 其特征在于, 所述基板包括衬底板和位于所述衬底板上的图形层, 所述斜坡面 形成于所述图形层; 或者
所述基板包括衬底板, 所述斜坡面形成于所述衬底板。
7. 如权利要求 2所述的有机发光二极管阵列基板, 其特征在于, 所述斜坡面的坡度角大于 40度,相邻的两个斜坡面组成倒 V形且对应 相同颜色的微腔有机发光二极管。
8. 如权利要求 7所述的有机发光二极管阵列基板, 其特征在于, 所述斜坡面的坡度角为 60度。
9. 一种显示装置, 其特征在于, 包括如权利要求 1〜8任一项所述 的有机发光二极管阵列基板。
10. 一种有机发光二极管阵列基板的制作方法,其特征在于,包括: 在基板上形成阵列排布的多个微腔有机发光二极管, 其中, 至少 一个微腔有机发光二极管的发光面与基板平面具有夹角。
11. 如权利要求 10所述的制作方法, 其特征在于, 所述在基板上 形成阵列排布的多个微腔有机发光二极管的步骤包括:
在衬底板上形成图形层, 所述图形层对应至少一个微腔有机发光 二极管的位置具有斜坡面;
形成位于所述图形层之上的微腔有机发光二极管。
12. 如权利要求 11所述的制作方法, 其特征在于, 所述在衬底板 上形成图形层的步骤包括:
在衬底板上形成图形材料层;
刻蚀所述图形材料层, 形成与所述至少一个微腔有机发光二极管 位置相对的楔形凸起或楔形凹陷。
13. 如权利要求 10所述的制作方法, 其特征在于, 所述在基板上 形成阵列排布的多个微腔有机发光二极管的步骤包括:
在衬底板之上形成微腔有机发光二极管,所述衬底板对应至少一个 微腔有机发光二极管的位置具有斜坡面。
PCT/CN2014/083373 2014-04-15 2014-07-31 有机发光二极管阵列基板及其制作方法和显示装置 WO2015158063A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/435,960 US9799851B2 (en) 2014-04-15 2014-07-31 Organic light emitting diode array substrate having angled micro-cavity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410150514.5 2014-04-15
CN201410150514.5A CN103996692B (zh) 2014-04-15 2014-04-15 有机发光二极管阵列基板及其制作方法和显示装置

Publications (1)

Publication Number Publication Date
WO2015158063A1 true WO2015158063A1 (zh) 2015-10-22

Family

ID=51310799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083373 WO2015158063A1 (zh) 2014-04-15 2014-07-31 有机发光二极管阵列基板及其制作方法和显示装置

Country Status (3)

Country Link
US (1) US9799851B2 (zh)
CN (1) CN103996692B (zh)
WO (1) WO2015158063A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298834B (zh) * 2015-05-12 2019-12-27 上海和辉光电有限公司 一种amoled面板
KR102603595B1 (ko) * 2016-08-31 2023-11-20 엘지디스플레이 주식회사 마이크로 캐비티 구조를 갖는 디스플레이 장치 및 그의 제조 방법
JP6480570B2 (ja) * 2016-10-24 2019-03-13 新電元工業株式会社 電子デバイスの配置構造、及び、電子回路装置
CN108461526B (zh) * 2018-03-22 2021-08-27 上海天马有机发光显示技术有限公司 有机发光显示面板及其制备方法、有机发光显示装置
CN117199214B (zh) * 2023-11-06 2024-02-27 Tcl华星光电技术有限公司 显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084876A (ja) * 2004-09-16 2006-03-30 Dainippon Printing Co Ltd 視野角制御シートおよび表示装置
CN102246329A (zh) * 2008-12-09 2011-11-16 科隆大学 带有光学共振器的有机发光二极管及制造方法
CN103268884A (zh) * 2012-12-07 2013-08-28 上海天马微电子有限公司 一种有源矩阵有机发光二极管面板及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814416A (en) * 1996-04-10 1998-09-29 Lucent Technologies, Inc. Wavelength compensation for resonant cavity electroluminescent devices
KR100677551B1 (ko) * 2005-01-05 2007-02-02 삼성전자주식회사 Led 패키지, 조명계 및 이를 채용한 프로젝션 시스템
KR20090089151A (ko) * 2008-02-18 2009-08-21 삼성전자주식회사 유기 발광 표시 장치 및 그 제조 방법
US20120099046A1 (en) 2009-07-06 2012-04-26 Nobuhiro Kasai Illumination device, display device, and television receiver
JP5449274B2 (ja) * 2011-03-25 2014-03-19 シャープ株式会社 照明装置、および表示装置
CN103187406A (zh) 2011-12-27 2013-07-03 展晶科技(深圳)有限公司 发光二极管封装结构及封装方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084876A (ja) * 2004-09-16 2006-03-30 Dainippon Printing Co Ltd 視野角制御シートおよび表示装置
CN102246329A (zh) * 2008-12-09 2011-11-16 科隆大学 带有光学共振器的有机发光二极管及制造方法
CN103268884A (zh) * 2012-12-07 2013-08-28 上海天马微电子有限公司 一种有源矩阵有机发光二极管面板及其制造方法

Also Published As

Publication number Publication date
US9799851B2 (en) 2017-10-24
US20170033316A1 (en) 2017-02-02
CN103996692B (zh) 2016-01-06
CN103996692A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
TWI711176B (zh) 有機發光顯示裝置及其製造方法
US8222804B2 (en) Tiled OLED device with edge light extraction
WO2016188248A1 (zh) 显示基板及其制作方法、显示装置
KR102302261B1 (ko) 유기발광다이오드 디스플레이 패널 및 이를 포함하는 유기발광다이오드 디스플레이 장치
US11063244B2 (en) Electroluminescent display device
WO2015158063A1 (zh) 有机发光二极管阵列基板及其制作方法和显示装置
US20160372711A1 (en) Organic light-emitting device, method for manufacturing the same, and display device
WO2017028497A1 (zh) 显示背板及其制作方法、显示装置
CN108807493B (zh) 有机发光显示器件及其制造方法、以及有机发光显示装置
WO2016074378A1 (zh) 顶发射白光oled器件及其制备方法、显示装置
TWI624093B (zh) 白光發光裝置、包含其之白光發光面板、製造白光發光面板之方法、及包含白光發光裝置之顯示設備
WO2018018895A1 (zh) Oled阵列基板及其制作方法、oled显示面板
KR20230002018A (ko) 표시 장치, 표시 패널 및 이의 제조 방법
WO2017173683A1 (zh) 电致光致混合发光显示器件及其制作方法
US8759817B2 (en) Organic light-emitting device array and display
JP4406572B2 (ja) 発光素子及びその表示装置
KR102131964B1 (ko) 유기 발광 표시 장치
CN109301081B (zh) 用于oled蒸镀的荫罩及其制作方法、oled面板的制作方法
US11315982B2 (en) Light emitting diode with a patterned scattering layer and fabrication method thereof, display substrate and display panel
CN110993822B (zh) 一种显示面板、其制作方法及显示装置
KR102103516B1 (ko) 광 추출 구조체 및 유기 발광 조명 장치
TWI568053B (zh) 有機發光二極體顯示裝置
JP2015232982A (ja) 表示装置
WO2020220492A1 (zh) 像素电极结构及像素电极结构制作方法
KR20200038404A (ko) 유기 전계 발광 소자 및 이를 포함하는 디스플레이 패널

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14435960

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22.12.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14889678

Country of ref document: EP

Kind code of ref document: A1