WO2015157963A1 - 热光移相器 - Google Patents

热光移相器 Download PDF

Info

Publication number
WO2015157963A1
WO2015157963A1 PCT/CN2014/075584 CN2014075584W WO2015157963A1 WO 2015157963 A1 WO2015157963 A1 WO 2015157963A1 CN 2014075584 W CN2014075584 W CN 2014075584W WO 2015157963 A1 WO2015157963 A1 WO 2015157963A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermo
phase shifter
optical phase
layer
cladding
Prior art date
Application number
PCT/CN2014/075584
Other languages
English (en)
French (fr)
Inventor
赵飞
付红岩
涂鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480070239.4A priority Critical patent/CN105829956A/zh
Priority to PCT/CN2014/075584 priority patent/WO2015157963A1/zh
Publication of WO2015157963A1 publication Critical patent/WO2015157963A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure

Definitions

  • the present invention relates to the field of communications, and in particular, to a thermo-optical phase shifter. Background technique
  • thermo-optic waveguide switches Compared with traditional mechanical and micro-mechanical switches, thermo-optic waveguide switches have the advantages of simple process, low cost, fast response (switching time can reach ⁇ ⁇ magnitude), and switching loss, crosstalk, extinction ratio, and switch size. The performance advantages are obvious.
  • the thermo-optic switch made of silicon-on-insulator (SOI) material is compatible with microelectronic (CMOS) technology. Silicon micro-machining technology can be used to integrate the switch on a single-chip silicon substrate, which is easy to cascade to form a large-scale switch. Matrix, has broad application potential and development prospects.
  • thermo-optic waveguide switches are generally supported by input and output couplers and two modulation arms.
  • the input light is split into two paths by the input coupler, which are respectively transmitted in two optical waveguides, and hot light is applied in one or two optical paths.
  • the phase shifter is configured to change the phase difference between the two arms so that the output light having different phases is outputted through the output coupler, thereby controlling the split ratio of the light at the two ports, thereby realizing the function of the optical switch.
  • these existing thermo-optical phase shifters have a fast response time and a high power required to form an air isolation trench by etching a cladding around the optical waveguide. Since the thermal conductivity of the air is low, the outward diffusion can be reduced.
  • thermo-optical phase shifter The heat can greatly reduce the power consumption of the phase shifter, but the air isolation slot will affect the heat dissipation of the thermo-optical phase shifter.
  • the temperature of the heated waveguide cannot be quickly reduced, causing the response time of the switch to rise to several ms. Affects the performance of the thermo-optic waveguide switch.
  • thermo-optical phase shifter increase the temperature controller, and reduce the temperature of the waveguide core layer, thereby accelerating the response time of the switch.
  • the embodiment of the present invention provides a thermo-optical phase shifter, the thermo-optical phase shifter comprising a substrate; a cladding layer; a waveguide core layer located in the cladding layer; a temperature controller; and a heater for heating the waveguide core layer; the temperature controller is spaced apart from the heater, and the temperature control The device is disposed at a periphery of the waveguide core layer, and the temperature controller is configured to reduce the temperature of the waveguide core layer.
  • the material of the heater is a metal film, and the heater is located above or below the waveguide core layer.
  • the heater is made of a doped waveguide, and the heater is disposed in the cladding and located on one side or both sides of the waveguide core layer.
  • thermo-optical phase shifter comprising a substrate; a cladding layer disposed on the substrate; a waveguide core layer located in the cladding layer; And the thermo-optical phase shifter further includes a temperature controller, the temperature controller is disposed relative to the waveguide core layer, and the temperature controller is located at a periphery of the waveguide core layer, and the temperature controller is used for The temperature of the waveguide core layer is raised, and the temperature of the waveguide core layer is lowered.
  • the temperature controller is a semiconductor refrigerator.
  • thermo-optical phase shifter further comprises two first isolation trenches, the two first isolation trenches are disposed perpendicular to the substrate, and the two first isolation trenches separate the cladding layer into Three portions arranged side by side, respectively being a first cladding layer, and two second cladding layers located on opposite sides of the first cladding layer, the waveguide core layer being located in the first cladding layer, the temperature controller Provided above or below the first cladding layer.
  • the thermo-optical phase shifter further includes two first isolation trenches and at least one second isolation trench, and the two first isolation trenches divide the cladding layer into three parts arranged side by side, respectively being first a cladding layer, and two second cladding layers on opposite sides of the first cladding layer, the waveguide core layer is located in the first cladding layer, and the temperature controller is disposed above the first cladding layer
  • the at least one second isolation trench is formed between the first cladding layer and the substrate, and the at least one second isolation trench is in communication with the two first isolation trenches.
  • the second isolation trench is two
  • the thermo-optical phase shifter comprises a sacrificial layer
  • the sacrificial layer is formed on the substrate
  • the sacrificial layer is separated by the two second isolation trenches Three parts, and the divided three parts are respectively located below the first cladding layer and the two second cladding layers.
  • the thermo-optical phase shifter further includes a sacrificial layer, the sacrificial layer is formed on the substrate, and the sacrificial layer is divided into two parts by the second isolation trench, and The two partitioned portions are respectively located below the second cladding layer.
  • the material of the substrate is a glass material containing quartz or silicon, or a glass material doped with phosphorus, boron or germanium.
  • the material of the waveguide core layer is silicon, silicon nitride, polymer or semiconductor material.
  • the cladding layer is composed of a material having a refractive index smaller than that of the waveguide core layer.
  • the material of the cladding layer is silicon dioxide or polymer.
  • the sacrificial layer is composed of a material having a corrosion rate greater than the substrate.
  • the sacrificial layer is composed of a material having a thermal conductivity lower than that of the substrate.
  • thermo-optical phase shifter provided by the embodiment of the invention can quickly reduce the temperature of the waveguide core layer by increasing the temperature controller, and after the temperature of the waveguide core layer and the cladding layer is raised or when the temperature rises, the temperature of the waveguide core layer can be quickly reduced.
  • the thermal crosstalk of the surrounding devices increases when the temperature of the waveguide core layer rises, and the response time of the thermo-optical phase shifter is accelerated, and the structure is simple and the performance is reliable.
  • thermo-optical phase shifter according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a thermo-optical phase shifter provided with a first isolation trench according to a first embodiment of the present invention
  • FIG. 3 is a thermo-optical phase shift provided with two second isolation trenches according to a first embodiment of the present invention
  • Schematic diagram of the device
  • thermo-optical phase shifter provided with a second isolation trench according to a first embodiment of the present invention
  • Figure 5 is a schematic view of a thermo-optical phase shifter according to a second embodiment of the present invention.
  • thermo-optical phase shifter provided with a first isolation trench according to a second embodiment of the present invention
  • FIG. 7 is a thermo-optical phase shifting provided with two second isolation trenches according to a second embodiment of the present invention
  • Schematic diagram of the device
  • Figure 8 is a schematic view of a thermo-optical phase shifter provided with a second isolation trench according to a second embodiment of the present invention.
  • thermo-optical phase shifter 9 is a schematic diagram of a thermo-optical phase shifter according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a thermo-optical phase shifter provided with a first isolation trench according to a third embodiment of the present invention
  • FIG. 11 is a thermo-optical phase shift provided with two second isolation trenches according to a third embodiment of the present invention
  • Schematic diagram of the device
  • FIG. 12 is a schematic diagram of a thermo-optical phase shifter provided with two second isolation trenches according to a third embodiment of the present invention. detailed description
  • thermo-optical phase shifter includes a substrate; a cladding layer disposed on the substrate; a waveguide core layer located in the cladding layer; a temperature controller; a heater for heating the waveguide core layer; the temperature controller is disposed relative to the waveguide core layer, and the temperature controller is disposed above or below the cladding layer, the temperature controller and the A heater interval is provided, and the temperature controller is for reducing the temperature of the waveguide core layer.
  • thermo-optical phase shifter provided by the embodiment of the present invention can rapidly reduce the waveguide core layer by increasing the temperature controller after the temperature of the waveguide core layer and the cladding layer is increased or when the temperature rise is required to be lowered.
  • the temperature thereby eliminating thermal crosstalk of the surrounding device as the temperature of the waveguide core layer increases, speeds up the response time of the thermo-optical phase shifter.
  • thermo-optical phase shifter 100 includes a substrate 1 disposed on the substrate 1. a cladding layer 2; a waveguide core layer 3 located in the cladding layer 2; a temperature controller 4; and a heater 5 for heating the waveguide core layer 3; the temperature controller 4 is spaced apart from the heater 5 Provided, and the temperature controller 4 is opposite to the periphery of the waveguide core layer 3, the temperature controller 4 is for reducing the temperature of the waveguide core layer 3.
  • the temperature controller 4 is a refrigeration device having only a cooling function, such as a conventional refrigerator. Of course, it can also be a device having a heating and cooling function, such as a semiconductor refrigerator.
  • the heater 5 is made of a metal thin film, and the heater 5 is located above or below the waveguide core layer 3.
  • the temperature controller 4 is disposed above the waveguide core layer 3.
  • the heater 5 is located above the cladding 2, and the heater 5 is spaced apart from the temperature controller 4.
  • the cladding 2 is disposed on the substrate 1.
  • the waveguide core layer 3 is housed in the cladding 2 and located at the center of the cladding 2.
  • the material of the substrate 1 is a glass material containing quartz or silicon, or a glass material doped with phosphorus, boron or germanium.
  • the cladding 2 is composed of a material having a refractive index lower than that of the waveguide core layer 3, such as silicon dioxide or a polymer. In this embodiment, the material of the cladding layer 2 is silicon dioxide.
  • the material of the waveguide core layer 3 is silicon, silicon nitride, polymer or semiconductor material.
  • the waveguide core layer 3 has a strip shape or a ridge shape.
  • the thermo-optical phase shifter provided by the embodiment of the present invention can rapidly reduce the temperature of the waveguide core layer by increasing the temperature controller after the temperature of the waveguide core layer and the cladding layer is increased or when the temperature rises. Thereby, the thermal crosstalk of the surrounding device is increased when the temperature of the waveguide core layer is increased, the response time of the thermo-optical phase shifter is accelerated, and the heater is a metal film, which simplifies the processing process and makes the structure simple and reliable.
  • thermo-optical phase shifter 100 further includes two first isolation trenches 6, the two first isolation trenches 6 are disposed perpendicular to the substrate 1, and the two An isolation trench 6 divides the cladding layer 2 into three portions arranged side by side; the three portions of the cladding layer 2 are respectively a first cladding layer 21 located at an intermediate portion, and two of the first cladding layers 21 second cladding 22 on both sides.
  • the waveguide core layer 3 is located in the first cladding layer 21, and the temperature controller 4 is disposed above or below the first cladding layer 21.
  • the temperature controller 4 is spaced apart from the heater 5 above the first cladding layer 21.
  • the two first isolation trenches 6 are respectively formed by etching the cladding layer 2, and the two first isolation trenches 6 are for reducing heat conduction of the waveguide core layer 3 in the horizontal direction outward.
  • thermo-optical phase shifter 100 further includes at least one second isolation trench (not shown) formed between the first cladding layer 21 and the substrate 1
  • the at least one second isolation trench is in communication with the two first isolation trenches 6, respectively.
  • thermo-optical phase shifter 100 when the second isolation trenches 7 are two, the thermo-optical phase shifter 100 includes a first sacrificial layer 8 formed on the substrate 1 by The two second isolation trenches 7 are separated into three parts, so that the separated three-part first sacrificial layer 8 is located below the first cladding layer 21 and the two second cladding layers 22, respectively. The first cladding layer 21 and the two second cladding layers 22 are supported.
  • the two second isolation trenches 7 are formed in the following manner: a first sacrificial layer 8 is disposed on the substrate 1, and the first sacrificial layer 8 is located on the substrate 1 and the cladding layer 2. between.
  • the two second isolation trenches 7 are formed by etching the first sacrificial layer 8 , and the two second isolation trenches 7 are in communication with the two first isolation trenches 6 , thereby the first sacrifice
  • the layer separation is set to the above three parts.
  • the two second isolation trenches 7 serve to reduce heat transfer between the substrate 1 and the waveguide core layer 3.
  • the first sacrificial layer 8 is composed of a material having a corrosion rate higher than that of the substrate 1, and the first sacrificial layer 8 is composed of a material having a thermal conductivity lower than that of the substrate 1, thereby facilitating the
  • the second isolation groove 7 is unique.
  • the thermo-optical phase shifter 100 further includes a second sacrificial layer 9, and the second sacrificial layer 9 is formed on the substrate 1, The second sacrificial layer 9 is divided into two parts by the second isolation trench 8, and the separated two portions are respectively located below the two second cladding layers 22.
  • the second isolation trench 7 is formed by: disposing a second sacrificial layer 9 on the substrate 1, and the second sacrificial layer 9 is located between the substrate 1 and the clad layer 2 .
  • the second isolation trench 7 is formed by etching the second sacrificial layer 9, and the second isolation trench 7 is in communication with the two first isolation trenches 6, thereby separating the second sacrificial layer 9 Into the above two parts.
  • the second isolation trench 7 serves to isolate the substrate 1 from the waveguide core layer 3, reducing heat conduction between the substrate 1 and the waveguide core layer 3.
  • the second sacrificial layer 9 is composed of a material having a higher etching rate than the substrate 1, and the second sacrificial layer 9 is composed of a material having a thermal conductivity lower than that of the substrate 1, thereby facilitating the Etching of the second isolation trench 7.
  • thermo-optical phase shifter 200 is different from the thermo-optical phase shifter 100 of the first embodiment of the present invention in that, in the second embodiment of the present invention,
  • the heater 10 is made of a doped waveguide, and the heater 10 is disposed in the cladding 2 and is located on one side or both sides of the waveguide core layer 3.
  • the heaters 10 are two.
  • the two heaters 10 are located on both sides of the waveguide core layer 3 in the first cladding layer 21, and the two heaters 10 are respectively symmetrically disposed with respect to the waveguide core layer 3, thereby reducing the two
  • the distance between the heaters 10 and the waveguide core layer 3 facilitates the temperature rise of the two heaters 10 to increase the operating efficiency of the thermo-optical phase shifter 200.
  • the temperature controller 4 is located above the cladding 2 with respect to the waveguide core layer 3.
  • thermo-optical phase shifter 200 includes two first isolation trenches 6, and the two first isolation trenches 6 divide the cladding layer 2 into three parts, which are respectively the first package.
  • the layer 21 and the two second cladding layers 22 on both sides of the first cladding layer 21, the two heaters 10 and the waveguide core layer are all located in the first cladding layer 21.
  • thermo-optical phase shifter 200 when the thermo-optical phase shifter 200 includes two of the second isolation trenches 7 , the two second isolation trenches 7 are formed between the substrate 1 and the cladding layer 2 . And communicating with the two first isolation slots 6. The two second isolation trenches 7 serve to reduce heat transfer between the substrate 1 and the waveguide core layer 3.
  • thermo-optical phase shifter 200 when the thermo-optical phase shifter 200 includes one of the second isolation slots 7, the Two isolation trenches 7 are formed between the substrate 1 and the cladding 2 and are in communication with the two first isolation trenches 6.
  • thermo-optical phase shifter 300 is different from the thermo-optical phase shifter 100 of the first embodiment of the present invention in that a third embodiment of the present invention is different from
  • the temperature controller 11 has a heating and cooling function for raising the temperature of the waveguide core layer 3 or lowering the temperature of the waveguide core layer 3, that is, the thermo-optical phase shifter 100 includes a substrate 1; a cladding layer 2 on the substrate 1; a waveguide core layer 3 located in the cladding layer 2; and the thermo-optical phase shifter 100 further includes a temperature controller 11, the temperature controller 11 opposite to The waveguide core layer 3 is disposed, and the temperature controller 11 is disposed at a periphery of the waveguide core layer 3 for raising the temperature of the waveguide core layer or lowering the temperature of the waveguide core layer 3.
  • the temperature controller 11 is disposed above the cladding 2.
  • the temperature controller 11 is a semiconductor refrigerator, and the material of the semiconductor refrigerator is bismuth telluride, lead telluride, silicon germanium or germanium alloy.
  • the operating principle of the temperature controller 11 is as follows:
  • the temperature controller 11 includes a P-type semiconductor (not shown) and an N-type semiconductor (not shown), and the P-type semiconductor and the N-type semiconductor pass through an electrode connected.
  • the heat generated by the current is transmitted from one end of the temperature controller 11 to the other end, thereby forming one end heating end cooling at both ends of the temperature controller 11. .
  • the direction of heating and cooling of the temperature controller 11 can be varied such that the temperature of the waveguide core layer 3 is raised or lowered.
  • the temperature controller 11 can also be a device that is integrated with the heater.
  • thermo-optical phase shifter 300 according to Embodiment 3 of the present invention further includes two first isolation trenches 6 for reducing the waveguide core layer 3 along a horizontal level. Heat conduction in the direction outward.
  • thermo-optical phase shifter 300 includes two of the second isolation slots 7 and one of the second isolation slots 7.
  • the second isolation trenches 7 are each used to reduce heat conduction between the substrate 1 and the waveguide core layer 3.
  • the temperature controller 11 is added, and the temperature controller 11 is a semiconductor refrigerator, which can realize one end heating and one end cooling, and after raising the temperature of the waveguide core layer 3, it can be timely The temperature of the waveguide core layer 3 is lowered, thereby achieving a reverse adjustment phase, eliminating the influence of surrounding devices on the thermo-optical phase shifter 300, and reducing components, thereby saving space.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种热光移相器(100,200,300),包括衬底(1)、设于衬底(1)上的包层(2)、位于包层(2)内的波导芯层(3)、温度控制器(4,11)、以及对波导芯层(3)加热的加热器(5,10)。温度控制器(4,11)与加热器(5,10)间隔设置,且温度控制器(4,11)设于波导芯层(3)的周缘,用于降低波导芯层(3)的温度。本热光移相器,通过增加温度控制器(4,11),在波导芯层(3)及包层(2)温度升高后或温度升高后需降低时,可以快速降低波导芯层(3)的温度,从而实现消除当波导芯层(3)温度升高时周围器件的热串扰,加快热光移相器(100,200,300)的响应时间,结构简单且性能可靠。

Description

热光移相器 技术领域
本发明涉及通信领域, 尤其涉及一种热光移相器。 背景技术
热光波导开关与传统的机械、微机械开关相比, 具有工艺简单、成本低廉、 响应速度快 (开关时间可以达到 μδ量级)的优点,且在开关损耗、 串扰、 消光比、 开关尺寸等性能方面优势明显。 采用绝缘衬底上的硅(SOI )材料制作的热光开 关与微电子 (CMOS)工艺兼容, 可以利用硅微加工技术能将开关集成在单片硅基 底上, 易于级联组成大规模的开关矩阵, 具有广阔的应用潜力和发展前景。
常见的热光波导开关一般由输入、 输出耦合器及两个调制臂支撑, 输入光 由输入耦合器分成两路, 在两条光波导里分别传输, 在其中一条或两条光路中 施加热光移相器, 用以改变两臂的相位差, 以使具有不同相位的输出光经输出 耦合器输出, 从而控制光在两个端口的分光比, 实现光开关的功能。 但是这些 现有的热光移相器响应时间快, 所需的功率高, 通过刻蚀光波导周围的包层形 成空气隔离槽, 由于空气的热导率很低, 能减小向外扩散的热量, 能大大降低 移相器所需的功耗, 但是空气隔离槽会影响热光移相器的散热性, 被加热的波 导温度无法迅速降低, 导致开关的响应时间上升到几个 ms, 严重影响了热光波 导开关的性能。
发明内容
本发明实施例所要解决的技术问题在于, 提供一种热光移相器, 增加温度 控制器, 降低波导芯层的温度, 从而加快开关的响应时间。
为了解决现有技术中波导芯层温度升高无法迅速降低的技术问题, 本发明 实施例提供了一种热光移相器, 所述热光移相器包括衬底; 设于所述衬底上的 包层; 位于所述包层内的波导芯层; 温度控制器; 以及对所述波导芯层加热的 加热器; 所述温度控制器与所述加热器间隔设置, 并且所述温度控制器设于所 述波导芯层的周缘, 所述温度控制器用于降低所述波导芯层的温度。
其中, 所述加热器的材质为金属薄膜, 且所述加热器位于所述波导芯层的 上方或下方。 其中, 所述加热器的材质为掺杂的波导, 且所述加热器设于所述包层内, 并位于所述波导芯层的一侧或两侧。
另外,本发明实施例还提供了一种热光移相器,所述热光移相器包括衬底; 设于所述衬底上的包层; 位于所述包层内的波导芯层; 以及, 所述热光移相器 还包括温度控制器, 所述温度控制器相对于所述波导芯层设置, 且所述温度控 制器位于所述波导芯层的周缘, 所述温度控制器用于升高所述波导芯层的温度, 以及用于降低所述波导芯层的温度。
其中, 所述温度控制器为半导体制冷器。
其中, 所述半导体制冷器的材质为碲化铋、 碲化铅、 硅锗或碲铋合金。 其中, 所述热光移相器还包括两个第一隔离槽, 所述两个第一隔离槽垂直 于所述衬底设置, 且所述两个第一隔离槽将所述包层分隔成并排设置的三部分, 分别为第一包层, 以及两个位于所述第一包层两侧的第二包层, 所述波导芯层 位于所述第一包层内, 所述温度控制器设于所述第一包层的上方或下方。
其中, 所述热光移相器还包括两个第一隔离槽及至少一个第二隔离槽, 所 述两个第一隔离槽将所述包层分隔成并排设置的三部分, 分别为第一包层, 以 及两个位于所述第一包层两侧的第二包层, 所述波导芯层位于所述第一包层内, 所述温度控制器设于所述第一包层的上方, 所述至少一个第二隔离槽形成于所 述第一包层与所述衬底之间, 所述至少一个第二隔离槽与所述两个第一隔离槽 连通。
其中, 所述第二隔离槽为两个, 所述热光移相器包括牺牲层, 所述牺牲层 形成于所述衬底上, 所述牺牲层由所述两个第二隔离槽分隔成三部分, 且所述 被分隔的三部分分别位于所述第一包层及所述两个第二包层的下方。
其中, 所述第二隔离槽为一个, 所述热光移相器还包括牺牲层, 所述牺牲 层形成于所述衬底上, 牺牲层由所述第二隔离槽分隔成两部分, 且所述被分隔 的两部分分别位于所述第二包层的下方。
其中, 所述衬底的材质为包含石英或硅的玻璃材料, 或掺杂磷、 硼或锗的 玻璃材料。
其中, 所述波导芯层的材质为硅、 氮化硅、 聚合物或半导体材料。
其中, 所述包层由折射率小于所述波导芯层的材料构成。
其中, 所述包层的材质为二氧化硅或聚合物。 其中, 所述牺牲层由腐蚀速率大于所述衬底的材料构成。
其中, 所述牺牲层由导热率小于所述衬底的材料构成。
本发明实施例提供的热光移相器, 通过增加温度控制器, 在波导芯层及包 层温度升高后或温度升高需要降温时, 可以快速降低波导芯层的温度, 从而实 现消除当波导芯层温度升高时周围器件的热串扰, 加快热光移相器的响应时间, 结构简单且性能可靠。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明第一实施例提供的热光移相器的示意图;
图 2是本发明第一实施例提供的设有第一隔离槽的热光移相器的示意图; 图 3 是本发明第一实施例提供的设有两个第二隔离槽的热光移相器的示意 图;
图 4是本发明第一实施例提供的设有一个第二隔离槽的热光移相器的示意 图;
图 5是本发明第二实施例提供的热光移相器的示意图;
图 6是本发明第二实施例提供的设有第一隔离槽的热光移相器的示意图; 图 7是本发明第二实施例提供的设有两个第二隔离槽的热光移相器的示意 图;
图 8是本发明第二实施例提供的设有一个第二隔离槽的热光移相器的示意 图;
图 9是本发明第三实施例提供的热光移相器的示意图;
图 10是本发明第三实施例提供的设有第一隔离槽的热光移相器的示意图; 图 11是本发明第三实施例提供的设有两个第二隔离槽的热光移相器的示意 图;
图 12是本发明第三实施例提供的设有两个第二隔离槽的热光移相器的示意 图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的热光移相器, 所述热光移相器包括衬底; 设于所述衬 底上的包层; 位于所述包层内的波导芯层; 温度控制器; 以及对所述波导芯层 加热的加热器; 所述温度控制器相对于所述波导芯层设置, 且所述温度控制器 设于所述包层的上方或下方, 所述温度控制器与所述加热器间隔设置, 所述温 度控制器用于降低所述波导芯层的温度。
本发明实施例提供的热光移相器, 通过增加所述温度控制器, 在所述波导 芯层及包层温度升高后或温度升高需降低时, 可以快速降低所述波导芯层的温 度, 从而消除当所述波导芯层温度升高时周围器件的热串扰, 加快所述热光移 相器的响应时间。
具体实施方式如下:
请参阅图 1 ,为本发明第一实施例的一种热光移相器 ,本发明第一实施例中 , 所述热光移相器 100包括衬底 1 ; 设于所述衬底 1上的包层 2; 位于所述包层 2 内的波导芯层 3 ; 温度控制器 4; 以及对所述波导芯层 3加热的加热器 5; 所述 温度控制器 4与所述加热器 5间隔设置, 并且所述温度控制器 4相对于设于所 述波导芯层 3的周缘, 所述温度控制器 4用于降低所述波导芯层 3的温度。 本 实施例中,所述温度控制器 4是仅具有制冷功能的制冷装置,如普通的制冷器。 当然还可以是具有加热及制冷功能的装置, 如半导体制冷器。 所述加热器 5 的 材质为金属薄膜, 且所述加热器 5位于所述波导芯层 3的上方或下方。
具体的, 所述温度控制器 4设于所述波导芯层 3的上方。 所述加热器 5位 于所述包层 2的上方, 且所述加热器 5与所述温度控制器 4间隔设置。 所述包 层 2设于所述衬底 1上。 所述波导芯层 3收容于所述包层 2内, 且位于所述包 层 2的中心处。 所述衬底 1 的材质为包含石英或硅的玻璃材料, 或掺杂磷、 硼 或锗的玻璃材料。 所述包层 2由折射率小于所述波导芯层 3的材料构成, 如二 氧化硅或聚合物。 本实施例中, 所述包层 2的材质为二氧化硅。 所述波导芯层 3 的材质为硅、 氮化硅、 聚合物或半导体材料。 所述波导芯层 3为条形或脊形。 本发明实施例提供的热光移相器, 通过增加所述温度控制器, 在所述波导 芯层及包层温度升高后或温度升高需降低时, 可以快速降低波导芯层的温度, 从而实现消除当所述波导芯层温度升高时周围器件的热串扰, 加快热光移相器 的响应时间, 且加热器为金属薄膜, 简化了加工工艺, 使得结构简单且性能可 靠。
进一步的, 请参阅图 2, 所述热光移相器 100还包括两个第一隔离槽 6, 所 述两个第一隔离槽 6垂直于所述衬底 1设置, 且所述两个第一隔离槽 6将所述 包层 2分隔成并排设置的三部份; 所述包层 2的三部份分别为位于中间部分的 第一包层 21 , 以及两个位于所述第一包层 21 两侧的第二包层 22。 所述波导芯 层 3位于所述第一包层 21 内, 所述温度控制器 4设于所述第一包层 21的上方 或下方。
具体的, 所述温度控制器 4与所述加热器 5间隔设于所述第一包层 21的上 方。 所述两个第一隔离槽 6分别通过刻蚀所述包层 2形成, 所述两个第一隔离 槽 6用于减少所述波导芯层 3沿水平方向上向外的热传导。
进一步的, 所述热光移相器 100还包括至少一个第二隔离槽(未图示), 所 述至少一个第二隔离槽形成于所述第一包层 21与所述衬底 1之间, 所述至少一 个第二隔离槽分别与所述两个第一隔离槽 6连通。
请参阅图 3 , 当所述第二隔离槽 7为两个, 所述热光移相器 100包括第一牺 牲层 8, 所述第一牺牲层 8形成于所述衬底 1上, 且由所述两个第二隔离槽 7分 隔为三部分, 进而使得所述被分隔的三部分第一牺牲层 8分别位于所述第一包 层 21及所述两个第二包层 22的下方, 对所述第一包层 21及所述两个第二包层 22起到支撑作用。
具体的, 所述两个第二隔离槽 7的形成方式为: 所述衬底 1上设置第一牺 牲层 8, 所述第一牺牲层 8位于所述衬底 1及所述包层 2之间。 所述两个第二隔 离槽 7通过刻蚀所述第一牺牲层 8形成, 且所述两个第二隔离槽 7与所述两个 第一隔离槽 6连通, 进而将所述第一牺牲层分隔设置成上述的三部分。 所述两 个第二隔离槽 7用于减少所述衬底 1与所述波导芯层 3之间的热传导。 本实施 例中, 所述第一牺牲层 8由腐蚀速率大于所述衬底 1 的材料构成, 并且所述第 一牺牲层 8 由导热率小于所述衬底 1 的材料构成, 从而便于所述第二隔离槽 7 的刻独。 请参阅图 4, 当所述第二隔离槽 7为一个, 所述热光移相器 100还包括第二 牺牲层 9, 所述第二牺牲层 9形成于所述衬底 1上, 所述第二牺牲层 9由所述第 二隔离槽 8分隔为两部分, 且所述被分隔的两部分分别位于所述两个第二包层 22的下方。
具体的, 所述第二隔离槽 7的形成方式为: 在所述衬底 1上设置第二牺牲 层 9, 所述第二牺牲层 9位于所述衬底 1及所述包层 2之间。 所述第二隔离槽 7 通过刻蚀所述第二牺牲层 9形成,且所述第二隔离槽 7与所述两个第一隔离槽 6 连通, 进而将所述第二牺牲层 9 分隔设置成上述的两部分。 所述第二隔离槽 7 用于将所述衬底 1与所述波导芯层 3隔离, 降低所述衬底 1与所述波导芯层 3 之间的热传导。 本实施例中, 所述第二牺牲层 9由腐蚀速率大于所述衬底 1 的 材料构成, 并且所述第二牺牲层 9由导热率小于所述衬底 1 的材料构成, 从而 便于所述第二隔离槽 7的刻蚀。
请参阅图 5 , 为本发明第二实施例提供的热光移相器 200, 本发明的第二实 施例中, 与本发明的第一实施例的热光移相器 100不同之处在于, 所述加热器 10的材质为掺杂的波导, 且所述加热器 10设于所述包层 2内, 并位于所述波导 芯层 3的一侧或两侧。
具体的, 所述加热器 10为两个。 所述两个加热器 10位于所述第一包层 21 内所述波导芯层 3的两侧, 且所述两个加热器 10分别相对所述波导芯层 3对称 设置, 从而减少所述两个加热器 10与所述波导芯层 3的距离, 便于所述两个加 热器 10升高所述波导芯层 3的温度, 提高热光移相器 200的工作效率。 所述温 度控制器 4相对所述波导芯层 3位于所述包层 2上方。
请参阅图 6, 所述热光移相器 200包括两个所述第一隔离槽 6, 所述两个第 一隔离槽 6将所述包层 2分隔成三个部分, 分别为第一包层 21 , 以及两个位于 所述第一包层 21两侧的第二包层 22, 所述两个加热器 10及所述波导芯层均位 于所述第一包层 21内。
请参阅图 7, 为所述热光移相器 200包括两个所述第二隔离槽 7时, 所述两 个第二隔离槽 7形成于所述衬底 1及所述包层 2之间, 且与两个第一隔离槽 6 连通。 所述两个第二隔离槽 7用于减少所述衬底 1与所述波导芯层 3之间的热 传导。
请参阅图 8, 为所述热光移相器 200包括一个所述第二隔离槽 7时, 所述第 二隔离槽 7形成于所述衬底 1及所述包层 2之间, 且与所述两个第一隔离槽 6 连通。
请参阅图 9, 为本发明第三实施例提供的热光移相器 300, 本发明的第三实 施例中, 与本发明第一实施例的热光移相器 100 不同之处在于, 所述温度控制 器 11具有加热及制冷功能, 用于升高所述波导芯层 3的温度, 或降低所述波导 芯层 3的温度,即所述热光移相器 100包括衬底 1 ;设于所述衬底 1上的包层 2; 位于所述包层 2内的波导芯层 3 ; 以及, 所述热光移相器 100还包括温度控制器 11 ,所述温度控制器 11相对所述波导芯层 3设置,且所述温度控制器 11设于所 述波导芯层 3 的周缘, 用于升高所述波导芯层的温度, 或降低所述波导芯层 3 的温度。
具体的, 所述温度控制器 11设于所述包层 2的上方。 所述温度控制器 11 为半导体制冷器, 所述半导体制冷器的材质为碲化铋、 碲化铅、 硅锗或碲铋合 金。 所述温度控制器 11的工作原理如下: 所述温度控制器 11 包括 P型半导体 (未图示)和 N型半导体(未图示), 且所述 P型半导体及所述 N型半导体通 过电极连接在一起。 当有电流从所述温度控制器 11流过时, 所述电流产生的热 量会从所述温度控制器 11 的一端传到另一端, 从而在所述温度控制器 11 的两 端形成一端加热一端制冷。 通过控制所述电流的方向和大小, 可以改变所述温 度控制器 11的加热和制冷的方向,从而使得所述波导芯层 3的温度升高或降低。 当然, 在其他实施例中, 所述温度控制器 11也可为与加热器一体集成的器件。
请参阅图 10, 本发明实施例三提供的热光移相器 300还包括两个所述第一 隔离槽 6,所述两个第一隔离槽 6用于减少所述波导芯层 3沿水平方向上向外的 热传导。
请一并参阅图 11及图 12 ,分别为本发明实施例三提供的热光移相器 300包 括两个所述第二隔离槽 7及包括一个所述第二隔离槽 7的情况。 所述第二隔离 槽 7均用于减少所述衬底 1与所述波导芯层 3之间的热传导。
本发明实施例三通过增加所述温度控制器 11 ,且所述温度控制器 11为半导 体制冷器, 可实现一端加热一端制冷, 在升高所述波导芯层 3 的温度后, 又能 及时将所述波导芯层 3 的温度降低下来, 从而实现反向调节相位, 消除周围器 件对所述热光移相器 300的影响, 且减少了部件, 从而节省了空间。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。

Claims

1.一种热光移相器, 其特征在于, 所述热光移相器包括衬底;
设于所述衬底上的包层; 位于所述包层内的波导芯层; 温度控制器; 以及 对所述波导芯层加热的加热器; 所述温度控制器与所述加热器间隔设置, 并且 所述温度控制器设于所述波导芯层的周缘, 所述温度控制器用于降低所述波导 芯层的温度。
2. 如权利要求 1所述的热光移相器, 其特征在于, 所述加热器的材质为金 属薄膜, 且所述加热器位于所述波导芯层的上方或下方。
3. 如权利要求 1所述的热光移相器, 其特征在于, 所述加热器的材质为掺 杂的波导,且所述加热器设于所述包层内,并位于所述波导芯层的一侧或两侧。
4.一种热光移相器, 其特征在于, 所述热光移相器包括衬底;
设于所述衬底上的包层; 位于所述包层内的波导芯层; 以及,
所述热光移相器还包括温度控制器, 所述温度控制器相对于所述波导芯层 设置, 且所述温度控制器位于所述波导芯层的周缘, 所述温度控制器用于升高 所述波导芯层的温度, 以及用于降低所述波导芯层的温度。
5. 如权利要求 4所述的热光移相器, 其特征在于, 所述温度控制器为半导 体制冷器。
6如权利要求 5 所述的热光移相器, 其特征在于, 所述半导体制冷器的材 质为碲化铋、 碲化铅、 硅锗或碲铋合金。
7. 如权利要求 1至 6任意一项所述的热光移相器, 其特征在于, 所述热光 移相器还包括两个第一隔离槽, 所述两个第一隔离槽垂直于所述衬底设置, 且 所述两个第一隔离槽将所述包层分隔成并排设置的三部分, 分别为第一包层, 以及两个位于所述第一包层两侧的第二包层, 所述波导芯层位于所述第一包层 内, 所述温度控制器设于所述第一包层的上方或下方。
8. 如权利要求 1至 6所述的热光移相器, 其特征在于, 所述热光移相器还 包括两个第一隔离槽及至少一个第二隔离槽, 所述两个第一隔离槽将所述包层 分隔成并排设置的三部分, 分别为第一包层, 以及两个位于所述第一包层两侧 的第二包层, 所述波导芯层位于所述第一包层内, 所述温度控制器设于所述第 一包层的上方, 所述至少一个第二隔离槽形成于所述第一包层与所述衬底之间, 所述至少一个第二隔离槽与所述两个第一隔离槽连通。
9. 如权利要求 8所述的热光移相器,其特征在于,所述第二隔离槽为两个, 所述热光移相器包括牺牲层, 所述牺牲层形成于所述衬底上, 所述牺牲层由所 述两个第二隔离槽分隔成三部分, 且所述被分隔的三部分分别位于所述第一包 层及所述两个第二包层的下方。
10.如权利要求 8所述的热光移相器,其特征在于,所述第二隔离槽为一个, 所述热光移相器还包括牺牲层, 所述牺牲层形成于所述衬底上, 所述牺牲层由 所述第二隔离槽分隔成两部分, 且所述被分隔的两部分分别位于所述第二包层 的下方。
11. 如权利要求 1至 10任意一项所述的热光移相器, 其特征在于, 所述衬 底的材质为包含石英或硅的玻璃材料, 或掺杂磷、 硼或锗的玻璃材料。
12. 如权利要求 1至 10任意一项所述的热光移相器, 其特征在于, 所述波 导芯层的材质为硅、 氮化硅、 聚合物或半导体材料。
13. 如权利要求 1至 10任意一项所述的热光移相器, 其特征在于, 所述包 层由折射率小于所述波导芯层的材料构成。
14. 如权利要求 1至 10任意一项所述的热光移相器, 其特征在于, 所述包 层的材质为二氧化硅或聚合物。
15. 如权利要求 9或 10所述的热光移相器, 其特征在于, 所述牺牲层由腐 蚀速率大于所述衬底的材料构成。
16. 如权利要求 9或 10所述的热光移相器, 其特征在于, 所述牺牲层由导 热率小于所述衬底的材料构成。
PCT/CN2014/075584 2014-04-17 2014-04-17 热光移相器 WO2015157963A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480070239.4A CN105829956A (zh) 2014-04-17 2014-04-17 热光移相器
PCT/CN2014/075584 WO2015157963A1 (zh) 2014-04-17 2014-04-17 热光移相器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075584 WO2015157963A1 (zh) 2014-04-17 2014-04-17 热光移相器

Publications (1)

Publication Number Publication Date
WO2015157963A1 true WO2015157963A1 (zh) 2015-10-22

Family

ID=54323394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075584 WO2015157963A1 (zh) 2014-04-17 2014-04-17 热光移相器

Country Status (2)

Country Link
CN (1) CN105829956A (zh)
WO (1) WO2015157963A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062118A1 (zh) * 2017-09-28 2019-04-04 北京万集科技股份有限公司 一种波导移相器及其制备方法
CN110058433A (zh) * 2018-01-19 2019-07-26 罗伯特·博世有限公司 用于电光移相器的温度反馈
WO2022125565A1 (en) * 2020-12-07 2022-06-16 Ours Technology, Llc Heat dissipation in an optical device
US11460555B2 (en) 2020-12-07 2022-10-04 Ours Technology, Llc Heat dissipation in an optical device
CN116529644A (zh) * 2020-11-23 2023-08-01 我们科技有限责任公司 用于lidar传感器的散热
CN116710835A (zh) * 2020-12-07 2023-09-05 我们科技有限责任公司 光学设备中的散热
CN117434752A (zh) * 2022-01-13 2024-01-23 杭州芯傲光电有限公司 基于应力光学效应的光移相器结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093334A (en) * 1997-10-07 2000-07-25 Hitachi Cable, Ltd. Glass wave guide element and method of manufacturing the same
JP2004279993A (ja) * 2003-03-19 2004-10-07 Nec Corp 熱光学位相シフタ
CN1659469A (zh) * 2002-06-28 2005-08-24 日本电气株式会社 热光移相器及其制造方法
CN101529312A (zh) * 2006-10-20 2009-09-09 日本电气株式会社 热光移相器及其制造方法
CN101916958A (zh) * 2010-08-25 2010-12-15 核工业理化工程研究院 一种固体激光器倍频晶体的恒温控制装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166988A (en) * 1991-10-31 1992-11-24 The United States Of America As Represented By The Secretary Of The Navy Thermal phase modulator and method of modulation of light beams by optical means
US6856734B1 (en) * 1998-08-14 2005-02-15 Triquint Technology Holding Co. Waveguide structure using polymer material and method
US20010046363A1 (en) * 2000-03-03 2001-11-29 Purchase Ken G. Variable optical attenuators and optical shutters using a coupling layer in proximity to an optical waveguide (II)
US7002697B2 (en) * 2001-08-02 2006-02-21 Aegis Semiconductor, Inc. Tunable optical instruments
US8150218B2 (en) * 2007-03-09 2012-04-03 Nec Corporation Thermo-optical phase shifter
KR100910979B1 (ko) * 2007-07-27 2009-08-05 (주)켐옵틱스 폴리머 광 도파로형 파장가변 레이저 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093334A (en) * 1997-10-07 2000-07-25 Hitachi Cable, Ltd. Glass wave guide element and method of manufacturing the same
CN1659469A (zh) * 2002-06-28 2005-08-24 日本电气株式会社 热光移相器及其制造方法
JP2004279993A (ja) * 2003-03-19 2004-10-07 Nec Corp 熱光学位相シフタ
CN101529312A (zh) * 2006-10-20 2009-09-09 日本电气株式会社 热光移相器及其制造方法
CN101916958A (zh) * 2010-08-25 2010-12-15 核工业理化工程研究院 一种固体激光器倍频晶体的恒温控制装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062118A1 (zh) * 2017-09-28 2019-04-04 北京万集科技股份有限公司 一种波导移相器及其制备方法
CN110058433A (zh) * 2018-01-19 2019-07-26 罗伯特·博世有限公司 用于电光移相器的温度反馈
CN116529644A (zh) * 2020-11-23 2023-08-01 我们科技有限责任公司 用于lidar传感器的散热
WO2022125565A1 (en) * 2020-12-07 2022-06-16 Ours Technology, Llc Heat dissipation in an optical device
US11460555B2 (en) 2020-12-07 2022-10-04 Ours Technology, Llc Heat dissipation in an optical device
KR20230101909A (ko) * 2020-12-07 2023-07-06 아워스 테크놀로지, 엘엘씨. 광학 장치의 방열
CN116710835A (zh) * 2020-12-07 2023-09-05 我们科技有限责任公司 光学设备中的散热
US11953628B2 (en) 2020-12-07 2024-04-09 Aurora Operations, Inc. Heat dissipation in an optical device
KR102660577B1 (ko) * 2020-12-07 2024-04-24 오로라 오퍼레이션스, 인크. 광학 장치의 방열
CN116710835B (zh) * 2020-12-07 2024-05-14 欧若拉运营公司 光学设备中的散热
JP7487909B2 (ja) 2020-12-07 2024-05-21 オーロラ・オペレイションズ・インコーポレイティッド 光学装置の放熱
CN117434752A (zh) * 2022-01-13 2024-01-23 杭州芯傲光电有限公司 基于应力光学效应的光移相器结构

Also Published As

Publication number Publication date
CN105829956A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2015157963A1 (zh) 热光移相器
JP5552052B2 (ja) シリコン・オン・インシュレータ・ナノフォトニック・デバイスのためのシリサイド熱ヒータ
US20090016674A1 (en) Silicon structure and method of manufacturing the same
US20190013452A1 (en) Methods and apparatus providing thermal isolation of photonic devices
JP2010517113A (ja) 熱光学導波路装置
US7630596B2 (en) Silicon structure and method of manufacturing the same
WO2016157687A1 (ja) 電気光学装置
US20160170238A1 (en) Apparatus and Method for Differential Thermal Optical Switch Control
JP2018506745A (ja) 改善されたスイッチング効率を有する光スイッチ
Beggs et al. Ultrashort photonic crystal optical switch actuated by a microheater
US10481466B2 (en) Optical switch
JP2017161591A (ja) 屈折率制御素子、光位相シフタ、光スイッチ、及び屈折率制御素子の製造方法
JPH08328049A (ja) ヒーター埋込された平面導波路形光スイッチの製造方法
TWI276855B (en) Reducing the temperature sensitivity of optical waveguide interference filters
JP2001021930A (ja) 熱光学スイッチ、その製作方法及びそれを用いた光線路変更方法
US20210116726A1 (en) Dual-slab-layer low-loss silicon optical modulator
JP2006259104A (ja) 光回路及び導波路型光可変減衰器
JP5282910B2 (ja) 光位相シフタ
CN108538785B (zh) 基于浮栅充放电的状态非易失光开关及其制备方法
KR20150128319A (ko) 열광학 도파로 소자
KR102253397B1 (ko) 광 스위치의 제조방법 및 그의 구조
Konoike et al. Ultra-compact silicon photonics switch with ultra-dense thermo-optic MZI matrix and multi-layer wiring
JP2002099006A (ja) 集積熱−光シリカスイッチ
CN113176674A (zh) 一种低功耗热光器件及其制作方法
Zhong et al. All-Optical Spatial Mode-Selective Switch Based on Graphene-Embedded Vertical Directional Couplers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889235

Country of ref document: EP

Kind code of ref document: A1