WO2015156527A1 - 알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법 - Google Patents

알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법 Download PDF

Info

Publication number
WO2015156527A1
WO2015156527A1 PCT/KR2015/003070 KR2015003070W WO2015156527A1 WO 2015156527 A1 WO2015156527 A1 WO 2015156527A1 KR 2015003070 W KR2015003070 W KR 2015003070W WO 2015156527 A1 WO2015156527 A1 WO 2015156527A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
bending
preform
space
aluminum alloy
Prior art date
Application number
PCT/KR2015/003070
Other languages
English (en)
French (fr)
Inventor
전종포
천경우
Original Assignee
주식회사 티앤머티리얼스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티앤머티리얼스 filed Critical 주식회사 티앤머티리얼스
Publication of WO2015156527A1 publication Critical patent/WO2015156527A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices

Definitions

  • the present invention relates to an aluminum silicon carbide composite molding apparatus and a manufacturing method using the same, and more specifically, silicon carbide by installing a spacer to form a space in which a warping occurs in a mold for press-impregnating the plate-shaped silicon carbide
  • the present invention relates to a method for producing an aluminum-silicon carbide composite in which productivity is improved without the addition of other processes due to the formation of the warpage as the warpage is generated into the space of the spacer when the material is impregnated in the molten aluminum.
  • the heat dissipation problem is a very important point in a variety of electronic components, such as power IGBT (powered gate bipolar mode transistor), power control chip (power control chip), high-power LED for lighting.
  • a metal matrix composite MMC in which a molten metal is impregnated in a porous preform is used as a substrate.
  • the metal base composite material has the advantage of obtaining the thermal conductivity, the coefficient of thermal expansion, and the strength necessary for various product characteristics by controlling the relative share of the metal base through the proportion of the voids of the preform.
  • aluminum / silicon carbide composites which have thermal expansion coefficients similar to those of semiconductor devices, may be used in metal-based composite materials.
  • a preform is formed in the form of a plate of silicon carbide material, and the molded preform is placed in a mold.
  • the molding die in which the preform is located is pressurized after the molten aluminum alloy is put in the state of being installed inside the pressurized molten metal, and the aluminum alloy is impregnated into the voids of the preform by pressurized pressure. Finish the preparation of the composite.
  • the aluminum silicon carbide composite is mainly used as a base substrate on which semiconductor devices are mounted.
  • the aluminum silicon carbide composite is deformed due to high hardness due to impregnation of molten aluminum inside the porous silicon carbide and similar thermal expansion coefficient to that of the semiconductor device. This is minimized and can be used to improve the heat dissipation effect.
  • the method of manufacturing an aluminum silicon carbide composite having a warpage amount forms a warpage through post-working after the pressure impregnation, and the aluminum silicon carbide composite itself is very hard and is cut by a tool such as diamond. As it should be carried out, it is difficult to process the exact bending shape, there was a problem that is expensive.
  • another method of manufacturing an aluminum silicon carbide composite having a warping amount according to the prior art is to perform a bending process secondly after forming a thickly formed position where warpage is formed by press-impregnating an aluminum alloy layer in a plate-shaped silicon carbide.
  • the coefficient of thermal expansion became larger when used as a base plate.
  • a process of removing the aluminum alloy layer is performed.
  • the aluminum alloy layer is brought into contact with a high hardness aluminum press-impregnated silicon carbide composite.
  • the thickness of the aluminum alloy layer should be maintained according to the breakage of the device to be processed. Based on this, the thickness of the center portion is determined, and the coefficient of thermal expansion will increase as the aluminum alloy layer needs to be maintained at a thickness greater than necessary. There was a problem.
  • Another method for manufacturing an aluminum silicon carbide composite having a warping amount according to the prior art is to process the warpage by using a hot press method as a post-process in a state in which an aluminum silicon carbide composite is manufactured. While the physical properties of the aluminum alloy impregnated in the strength is lowered, there was a problem that the durability is poor.
  • the warpage should be generated only on the mounting surface fixed to minimize the high temperature deformation during the installation of the board, but when using the hot press method, the warpage occurs on the substrate surface on which various components are mounted on the opposite side to the installation surface. There is a problem in that the mounting is difficult, it is difficult to maintain the electrical connection between the mounted parts.
  • the number of processing can be reduced while minimizing the change in physical properties, and the inclination of the formed warp can be processed to a desired size, and the thermal expansion coefficient is increased by minimizing the thickness of the aluminum alloy layer.
  • a molding apparatus and a manufacturing method using the same which can be prevented.
  • the present invention has been invented to improve the above problems, the problem to be solved by the present invention, the preform molded into a silicon carbide material is accommodated in the inside of the molding die that is press-impregnated with molten aluminum alloy
  • An aluminum silicon carbide composite molding apparatus and a manufacturing method using the same may include a spacer having a space for generating warpage so as to have a space where warpage occurs in a forming direction, thereby reducing the number of times of processing as the warpage is formed during the pressing process. It is.
  • the aluminum silicon carbide composite molding apparatus is a molding apparatus for forming an aluminum silicon carbide composite by press-impregnating a molten aluminum alloy in a preform of a silicon carbide material
  • the preform is accommodated in a frame shape for impregnation, and the preform is accommodated therein, and the preform is pressurized while the molten aluminum alloy is impregnated by inflow.
  • the molten aluminum alloy is stored so as to be pressurized in the impregnated state
  • a pressurized melt having an impregnating space having a space shape, and disposed on an upper portion of the pressurized melt, and moving up and down to provide pressing force to the impregnating space to pressurize the molten aluminum alloy in the molding part. It characterized in that it comprises a pressing unit.
  • the molding part is provided in the form of a frame that is accommodated during the molding of the preform, the preform is accommodated therein is formed a molding space that is a space for pressing impregnation with the molten aluminum alloy, one side of the molding space It is in communication with the outside of the pressurized molten metal formed in the forming mold, the forming mold in which the molten metal inlet to the molten aluminum alloy flows into the molding space, the bending of the preform in the inside of the molding space It is installed on one side that is generated, the center is formed in the inner space of the forming mold and the spacer spaced through the space around the outer periphery formed in the forming frame, except the edge portion, the preliminary to one side of the molding space During molding, the pressure that is placed between the preform and the spacer and pressurized after impregnation is established.
  • the spacer When pressurized above a predetermined pressure, the spacer is protruded and deformed in the direction of the space in which the warpage occurs in the form of space in the center in a state where the edge portion of one side is supported, and the aluminum alloy is solidified by cooling at the deformed position to generate warpage.
  • the spacer is formed in the outer periphery cut to be separated in the form of one of the center portion of the rim position to reduce the bearing capacity for supporting the bending mold to increase the deformation of the bending mold do.
  • the spacer is formed on the outer circumference of the one side and the other side of the rim position to form a cutting groove separated in the Hangul consonant '' 'form connected in a straight form to reduce the support force for supporting the bending mold It is characterized in that it is possible to increase the deformation amount of the bending mold.
  • the amount of warpage by adjusting the thickness of the spacer and the thickness of the warpage mold to adjust the size of the warpage generating space which is a deformation amount and a deformation space of the warpage mold according to the pressurized pressure of the molten aluminum alloy.
  • the area of bending can be adjusted.
  • the pressing unit is disposed on the upper portion of the pressurized molten metal, the pressurizing provided to press the molten aluminum alloy and the molding unit provided therein while being inserted into the impregnating space of the pressurized molten metal when moved downward It is characterized in that it comprises a punch, and a pressure driving unit disposed on the pressure punch, and provided to provide a driving force connected to the pressure punch to drive up and down.
  • the method of manufacturing an aluminum silicon carbide composite according to an embodiment of the present invention includes the steps of preparing a preform of a silicon carbide material, and considering the size of the preform, a molten aluminum alloy is impregnated to form a mold.
  • the preform When the preform is impregnated with the molten aluminum alloy in the pre-molded to produce a molded part is formed at the same time the bending in which the center is protruded in one direction and the cross-sectional area is reduced in the rim direction, the preform is accommodated in the manufactured molded part While assembling the molded part so that the bending is desired by the user while being deformed during pressure impregnation in one direction, the molten aluminum alloy is introduced into the impregnation space while the assembled molded part is installed in the impregnation space of the pressure melt. The preform is melted while flowing into the molding part.
  • the mold may be manufactured in a frame shape in which the preform is accommodated, and the bending protruding upon press impregnation from one side of the preform to the inside of the mold may occur.
  • a flexible bending mold may be manufactured, and a spacer having a bending generating space having a shape of a space in which the bending mold is deformed may be manufactured so that the bending mold is generated at the center while supporting the edge toward one side of the bending mold. It is characterized by.
  • the bending mold and the spacer is the thickness of the bending is provided on one side of the preform, the thickness of the bending and the thickness of the spacer which is supported so that the thickness and the space in which the bending mold is deformable is formed
  • the area of the warp is characterized in that it can be produced according to the pressure adjusted after the impregnation of the molten aluminum alloy.
  • the spacer is provided with an incision cut in one side at the edge of the support frame of the bending mold at the time of manufacture to reduce the support force to the thickness of the warp, the inclination of the cross-sectional area is reduced in the direction of the border from the center of the warp It is characterized by being able to enlarge the shape and the area of the said bending.
  • the step of impregnating with the molten aluminum alloy by assembling the bending mold and the spacer manufactured in the step of manufacturing the molded part together with the preform in the mold in the step of assembling the molded part.
  • the pressure is applied in the pressing and deforming in one state, the bending mold is deformed to be pushed into the bending generating space of the spacer while the molten aluminum alloy is solidified, thereby forming the bending.
  • the molded part assembled with the preform is heated by a preheater and installed in the pressurized molten metal in the heated state to minimize the temperature difference when the molten aluminum alloy is added. Characterized in that can be introduced into the wealth.
  • the preform molded into the silicon carbide material is accommodated in the inside of the molding die that is press-impregnated with molten aluminum alloy It is possible to reduce the number of processing as the bending is formed in the pressing process by having a spacer having a bending generating space so as to have a space in which bending occurs in the forming direction.
  • the aluminum silicon carbide composite molding apparatus and a manufacturing method using the same of the present invention is to install a spacer having a bending generation space in the molding apparatus for pre-impregnating the molten aluminum alloy accommodated in the pre-molded and to form the bending simultaneously with the pressure impregnation Therefore, the thickness and the inclination of the warpage generated according to the pressurized pressure and the thickness of the warpage may be adjusted, thereby forming a warp suitable for heat dissipation, thereby improving molding efficiency.
  • the aluminum-silicon carbide composite molding apparatus of the present invention and a manufacturing method using the same are provided with various forms of cutouts in a spacer having a bending generation space for performing bending molding by pressure impregnation in various forms of bending during pressing according to each shape. Since the size of the generating space can be enlarged according to the shape of the cutout, the thickness of the bend can be adjusted by adjusting the shape of the cutout according to the degree of bending, thereby improving molding efficiency.
  • FIG. 1 is a use state diagram showing a state in which a molten aluminum alloy is impregnated during use of an aluminum silicon carbide composite molding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a use state diagram illustrating a state in which an aluminum silicon carbide composite is molded by pressure deformation during use of the aluminum silicon carbide composite molding apparatus of FIG. 1.
  • FIG. 3 is a block diagram showing a molding unit which is a main configuration of the aluminum silicon carbide composite molding apparatus of FIG.
  • Figure 4 is a block diagram showing the principle that the bending is formed by pressure impregnation in the aluminum silicon carbide composite molding apparatus of FIG.
  • FIG. 5 is a block diagram showing a cutout portion of a spacer, which is a main component of the aluminum silicon carbide composite molding apparatus of FIG. 1.
  • FIG. 6 is a block diagram illustrating a cutting groove which is another embodiment of a cutting portion of a spacer, which is a main configuration of the aluminum silicon carbide composite molding apparatus of FIG. 1.
  • FIG. 7 is a process chart showing a manufacturing method using an aluminum silicon carbide composite molding apparatus according to an embodiment of the present invention.
  • FIG. 8 is a front view illustrating a preform manufactured in a preform manufacturing step of the manufacturing method using the aluminum silicon carbide composite molding apparatus of FIG. 7.
  • FIG. 9 is a state diagram illustrating a state in which a molding unit in which a preform is accommodated is assembled in a molding unit assembly step of the manufacturing method using the aluminum silicon carbide composite molding apparatus of FIG. 7.
  • FIG. 10 is a state diagram showing the impregnation step of the manufacturing method using the aluminum silicon carbide composite molding apparatus of FIG.
  • FIG. 11 is a state diagram showing a pressure deformation step of the manufacturing method using the aluminum silicon carbide composite molding apparatus of FIG. 7.
  • FIG. 11 is a state diagram showing a pressure deformation step of the manufacturing method using the aluminum silicon carbide composite molding apparatus of FIG. 7.
  • FIG. 12 is a front view illustrating an aluminum silicon carbide composite having warpage completed at a completion stage of the manufacturing method using the aluminum silicon carbide composite molding apparatus of FIG. 7.
  • molding apparatus 110 molding part
  • FIG. 1 is a state diagram showing a state in which a molten aluminum alloy is impregnated during use of an aluminum silicon carbide composite molding apparatus according to an embodiment of the present invention
  • Figure 2 is a view of the aluminum silicon carbide composite molding apparatus of FIG. It is a use state diagram which shows the state in which an aluminum silicon carbide composite is shape
  • FIG. 3 is a block diagram which shows the shaping
  • FIG. 1 is a block diagram showing the principle that the bending is formed by pressure impregnation in the aluminum silicon carbide composite molding apparatus of Figure 1
  • Figure 5 shows that the incision portion of the spacer which is the main configuration of the aluminum silicon carbide composite molding apparatus of FIG.
  • Fig. 6 is a section of a spacer which is a main configuration of the aluminum silicon carbide composite molding apparatus of Fig. 1.
  • Portion is a block diagram showing another embodiment according to the cutting gap is provided.
  • the aluminum silicon carbide composite molding apparatus 100 includes a molded part 110 in which a preform 10 impregnated with an aluminum alloy is accommodated and molded. ), The pressure molten metal 120, and the pressure unit 130.
  • the preform 10 is made of a silicon carbide material which is a material having voids, and is manufactured in the form of a plate used for the base substrate, and belongs to a raw material made of an aluminum silicon carbide composite when pressurized and impregnated with an aluminum alloy.
  • the molding part 110 includes a molding die 111 in which the preform 10 is accommodated, a spacer 114, and a bending mold 118.
  • the molding die 111 has a molding space 112, which is a space in which the preform 10 is accommodated and press-impregnated with the molten aluminum alloy, and has an external pressurized melt 120 to one side of the molding space 112.
  • the melt hole 113 is formed in communication with the molten aluminum alloy is introduced into the molding space (112).
  • the molten aluminum alloy introduced into the molten metal 113 with the preform 10 stored therein is pressurized with the preform 10 impregnated therein.
  • Aluminum is impregnated into the pores of the preform 10 formed of a silicon carbide material to form an aluminum silicon carbide composite.
  • the spacer 114 is disposed inside the molding die 111, and is installed at one side where the bending of the preform 10 occurs inside the molding space 112 to form the bending generating space 115 penetrated to the center.
  • the warpage generating space 115 is provided in a shape penetrated by the spacer 114 and is provided in the form of a space where warpage occurs during pressure impregnation of the preform 10.
  • the bending mold 118 is disposed on one side of the molding space 112, and is located between the preform 10 and the spacer 114 to be pushed into the bending generating space 115 during pressure impregnation of the aluminum alloy. It is provided so that the warpage which protrudes to one side of the preform 10 may be produced.
  • the bending mold 118 is provided in the form of a thin sheet between the preform 10 and the spacer 114 to be melted into the air gap of the preform 10 below a predetermined pressure when the molten aluminum alloy is impregnated. The alloy is pressure impregnated. When the pressurized pressure exceeds the pressure at which the bending mold is deformed, the bending aluminum mold is hardened into the protruding space while the bending mold 118 protrudes into the bending generating space 115 of the spacer 114. .
  • the molten aluminum alloy is concentrated in the liquid pressure portion to the center portion of the weakest bearing capacity of the bending generating space 115 that is penetrated to the center of the spacer 114 in the liquid state, the bending mold 118 is bent in the center portion As the warpage is pushed into the generating space 115, a warpage having a slope in which the cross-sectional area is reduced from the center portion to the edge position is generated.
  • the bending mold 118 is provided in the form of a steel frame or a carbon frame for the purpose of forming the warp can be deformed at the time of warpage to give a warpage.
  • the pressure impregnated pressure can be adjusted the amount of bending in accordance with the deformation pressure of the bending mold 118.
  • the thickness of the spacer 114 the amount of warpage that protrudes may be adjusted as the size of the warpage generating space 115 may be adjusted. Then, the amount of deformation according to the pressing force can be adjusted by adjusting the material and the thickness of the bending mold 118.
  • the outer peripheral portion of the spacer 114 is in contact with the preform 10 by adjusting the pressing force impregnated, adjusting the thickness of the spacer 114, and adjusting the material and thickness of the bending mold 118.
  • the number of machining can be reduced, improving productivity.
  • the spacer 114 may be formed with a cutout 116 that is cut into the center portion to enlarge the amount of warpage and the warpage area of the protruding aluminum alloy.
  • the spacer 114 supports the bending mold 118 that is deformed by the pressure applied when impregnated with the molten aluminum alloy.
  • the spacer 114 is provided with the cutout 116, the bending force protrudes due to the decrease in the bearing force. And the bending area can be enlarged.
  • the cutout 116 may be provided in a variety of shapes in order to enlarge the amount of bending and the bending area desired by the user, in one embodiment of the cutout 116 is a straight form across the center of the spacer 114 Since the support force can be reduced, the bending amount and the bending area can be further increased than the spacer without the cutout 116.
  • the indentation groove 117 is further provided in the form of the Hangul consonant '' 'in the form of the date of the spacer can further reduce the bearing capacity according to the incision form the incision
  • the amount of warpage and the area of warpage can be further increased than 116.
  • the cutout 116 As described above, presenting the shape of the cutout 116 is for convenience of description. Therefore, it is apparent to those skilled in the art that the cutout 116 belongs to the present invention even if it is deformed into various shapes according to use.
  • the pressurized molten metal 120 forms an impregnation space 121 therein such that the molten aluminum alloy and the molding part 110 are accommodated and pressurized.
  • the impregnating space 121 of the pressurized molten metal 120 is a pressurizing part in a state in which the molten aluminum alloy is impregnated with the molten aluminum alloy in the state in which the molding part 110 in which the preform 10 is stored is impregnated. 130, the aluminum alloy may be pressed by pressing the forming die 111 in which the preform 10 is accommodated.
  • the pressing unit 130 includes a pressing punch 131 and a punch driving unit 132 for pressing the inside of the pressing molten metal 120.
  • the pressure punch 131 is disposed on the upper portion of the pressurized melt 120, and is provided to press the molten aluminum alloy and the molding unit 110 provided therein while being inserted into the pressurized melt 120 when moved downward. do.
  • the pressure punch 131 is inserted into the pressure melt 120 while being moved up and down to provide a pressing force.
  • the punch driver 132 is disposed above the pressing punch 131 and is connected to the pressing punch 131 to provide a driving force to be driven up and down.
  • the punch driver 132 generally belongs to the punch driver 132 that provides a pressing force to pressurized impregnation, and thus detailed description thereof will be omitted.
  • FIG. 7 is a process chart showing a manufacturing method using the aluminum silicon carbide composite molding apparatus according to an embodiment of the present invention
  • Figure 8 is a pre-molded manufacturing step of the manufacturing method using the aluminum silicon carbide composite molding apparatus of FIG. 9 is a front view illustrating a manufactured preform
  • FIG. 9 is a state diagram illustrating a state in which a molded part in which a preform is housed in a molding part assembly step of the manufacturing method using the aluminum silicon carbide composite molding apparatus of FIG. 7 is assembled.
  • 7 is a state diagram showing the impregnation step of the manufacturing method using the aluminum silicon carbide composite molding apparatus of Figure 7
  • the manufacturing method using the aluminum carbide carbide composite molding apparatus 100 is a preform manufacturing step (S110), a molding part manufacturing step (S120), a molding part Assembly step (S130), impregnation step (S140), pressure deformation step (S150), and complete step (S160).
  • the preform manufacturing step (S110) is a step of manufacturing the preform 10 of the silicon carbide material.
  • the preform 10 is manufactured in a shape according to the use in which the aluminum silicon carbide composite is used. For example, when using a base substrate on which a substrate is mounted, silicon carbide (SiC), silica sol, polyvinyl alcohol (PVA) and water are stirred in a kneader, and then dried in a dryer. The preform 10 is manufactured by going to a process.
  • SiC silicon carbide
  • PVA polyvinyl alcohol
  • Molding unit manufacturing step (S120) is a center in one direction when the pressure impregnated with the molten aluminum alloy in the preform 10 in the form of a mold in which the molten aluminum alloy is impregnated by pressing in consideration of the size of the preform (10).
  • a step of manufacturing the molded part 110 that protrudes and the bending of which the cross-sectional area is reduced in the rim direction is simultaneously molded.
  • the molding part 110 is formed by impregnating a molten aluminum alloy in a state in which the preform 10 is accommodated to form an aluminum silicon carbide composite by pressure, and is provided in a frame shape in which the preform 10 is accommodated. In addition, the molding part 110 is provided to shape a bending in which the center protrudes to one side surface of the preform 10 and the cross-sectional area is reduced in the rim direction.
  • step (S120) of manufacturing the molded part to manufacture a molding die 111 in the form of a frame in which the pre-formed body 10 is accommodated when pressing impregnated in the direction of one side of the pre-formed body 10 from the inside of the molding die 111 Produces a bending mold 118 that is deformed to generate a bending protruding in, and while supporting the rim to one side of the bending mold 118, the bending mold 118 is deformed so that the bending mold is formed in the center
  • the spacer 114 having the warpage generating space 115 may be manufactured.
  • the bending mold 118 and the spacer 114 have a thickness at which the bending mold 118 may be deformed and a thickness of the spacer 114 supported to form a space to be deformed on one side of the preform 10.
  • the shape according to the slope in which the cross-sectional area is reduced in the rim direction at the center of the warpage, and the area of the warpage may be adjusted according to the pressure applied after the impregnation of the molten aluminum alloy.
  • the spacer 114 is provided with an incision 116 in which one side is cut at a supported edge position of the bending mold 118 at the time of manufacture to reduce the bearing force, so that the thickness of the bending and the direction of the bending from the center of the bending
  • the shape and the area of warpage according to the inclination of which the cross-sectional area is reduced can be enlarged.
  • Molding unit assembling step (S130) is a step of assembling the molding unit 110 so as to be molded while the pre-formed body 10 in the manufactured molding unit 110 while deformed at the pressure impregnation in one direction to the desired bending. .
  • the bending mold 118 and the spacer 114 manufactured in the step S120 of manufacturing the molding part 110 are assembled together with the preform 10 in the mold. Assembly is performed such that the bending mold 118 and the spacer 114 are located on one side where the bending occurs in the molding space 112 formed inside the mold 111 to be separated.
  • the molten aluminum alloy is introduced into the impregnation space 121 in a state in which the assembled molding part 110 is installed in the impregnation space 121 of the pressurized molten metal 120, thereby forming the interior of the molding part 110.
  • the preform 10 is impregnated with the molten aluminum alloy as it is introduced into.
  • the molding part 110 may be preheated to flow into the molding part 110 of the alloy of molten aluminum.
  • the temperature difference is large during impregnation of the molten aluminum alloy, it is not introduced and is solidified by contact, so that the preform 10 is assembled, and then the preheating unit is pre-heated with a preheater. As the molten aluminum alloy is introduced, the impregnation efficiency can be improved.
  • the molten aluminum alloy is introduced into the impregnation space 121 by applying heat to melt the interior of the molding part 110. As the aluminum alloy is introduced, the preform 10 is impregnated.
  • the pressure deformation step S150 when the pressing is performed while the molding part 110 is impregnated, the molten aluminum alloy introduced into the molding part 110 is pressurized while the aluminum is pressurized into the voids of the preform 10.
  • the impregnation is exceeded, the predetermined pressure is deformed in the inside of the molding part 110 to one side, thereby depressurizing to generate warpage.
  • the bending mold 118 When pressing is performed in the step S150, the bending mold 118 may be deformed to be pushed into the bending generating space 115 of the spacer 114, thereby forming the bending while the molten aluminum alloy is solidified.
  • the bending mold 118 is provided in the form of a steel frame or a carbon frame for the purpose of forming the warp can be deformed at the time of warpage to give a warpage.
  • Completion step (S160) is a state in which the molten alloy is press-impregnated in the preform 10, and when the curvature protruded to one side is solidified by cooling in a state of being molded, the pressing force is removed to remove the pressure from the pressurized melt 120 Removing the mold 111 and the solidified aluminum alloy is a step of completing the aluminum carbon-silicon composite (1).
  • the pressing force is removed, and after the solidified aluminum alloy is removed, the molded part 110 is dismantled to complete the aluminum carbon silicon composite 1 having warpage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Braking Arrangements (AREA)

Abstract

본 발명은 알루미늄 탄소규소질 복합체 성형장치 및 이를 이용한 제조방법에 관한 것이다. 본 발명의 일 실시예에 따른 알루미늄 탄소규소질 복합체 성형장치 및 이를 이용한 제조방법은 탄화규소질 소재의 예비 성형체에 용융된 알루미늄 합금을 가압 함침하여 알루미늄 탄화규소질 복합체를 성형하는 성형 장치에 있어서, 상기 예비 성형체가 수납되어 가압 함침을 실시하는 틀 형태로 구비되어 있으며, 내부에 상기 예비 성형체가 수납되고, 상기 용융된 알루미늄 합금이 유입에 의해 함침된 상태에서 가압하게 되면, 상기 예비 성형체의 일측면이 변형되면서 중앙이 돌출되고 각 테두리 방향으로 단면적이 축소되는 휨이 성형되도록 구비된 성형부, 상기 성형부가 수납되도록 배치되어 있으며, 내부에 상부가 개방되어 상기 예비 성형체가 수납된 상기 성형부로 상기 용융된 알루미늄 합금이 유입되어 함침된 상태에서 가압되도록 수납되는 공간 형태의 함침공간을 가지는 가압 용탕, 및 상기 가압 용탕의 상부에 배치되어 있으며, 상하로 이동되면서 상기 성형부에 상기 용융된 알루미늄 합금이 함침된 상태에서 가압시키도록 상기 함침공간으로 가압력을 제공하는 가압부를 포함하는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치 및 이를 이용한 제조방법에 관한 것이다.

Description

알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법
본 발명은 알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법에 관한 것으로, 보다 상세하게는 판형의 탄화 규소질을 가압 함침 성형하는 성형틀에 휨이 발생되는 공간이 형성되도록 스페이서를 설치하여 탄화 규소질의 재료를 용융된 알루미늄에 함침한 상태에서 가압 시 스페이서의 공간으로 휨이 발생됨에 따라 휨의 성형에 따른 여타의 공정의 추가가 필요 없어 생산성이 향상되는 알루미늄 탄화규소질 복합체 제조방법에 관한 것이다.
일반적으로, 전력 IGBT(insulated gate bipolar mode transistor), 파워 컨트롤 칩(power control chip), 조명용 고출력 LED 등과 같은 다양한 전자부품에서 방열 문제가 매우 중요한 점으로 대두되고 있다. 이러한 방열문제를 해결하기 위하여 다공성 예비성형체에 용융금속이 함침되어 이루어지는 금속기지 복합재료(metal matrix composite, MMC)가 기판으로 사용되고 있다. 금속기지 복합재료는 예비성형체의 공극이 차지하는 비율 등을 통하여 금속기지의 상대적 점유율을 제어함으로써 다양한 제품 특성에 맞게 필요한 열전도율, 열팽창계수, 및 강도 등을 얻을 수 있다는 장점이 있다.
특히, 금속기지 복합재료 중에 열팽창계수가 반도체 소자와 비슷하여 방열 성능을 향상시킬 수 있는 알루미늄 탄화규소질 복합체(Aluminum/Silicon Carbide Composite)가 주로 사용된다.
이런, 알루미늄 탄화규소질 복합체의 제조방법은 먼저, 탄화규소질 소재의 판 형태로 예비 성형체를 성형하고, 성형된 예비 성형체를 성형틀 내부에 위치시킨다. 예비 성형체가 내부에 위치한 성형틀은 가압 용탕의 내부에 설치한 상태에서 용융된 알루미늄 합금을 투입한 후에 가압을 실시하고, 가압되는 압력에 의해 알루미늄 합금이 예비 성형체의 공극으로 함침되면서 알루미늄 탄화규소질 복합체의 제조를 마친다.
이런, 알루미늄 탄화규소질 복합체는 반도체 소자가 실장되는 베이스 기판의 용도로 주로 사용되는 것으로, 다공성 탄화규소질 내부에 용융된 알루미늄이 함침되어 경도가 높고, 실장되는 반도체 소자와 열팽창 계수가 비슷하여 변형이 최소화되면서 방열 효과를 향상시킬 수 있어 많이 사용되고 있다.
상술된 알루미늄 탄화규소질 복합체를 베이스 기판으로 사용 시 각종 반도체 소자가 실장된 상태에서 각 테두리 부분이 설치되는 장소에 고정되도록 설치된다.
이렇게, 알루미늄 탄화규소질 복합체 재질의 베이스 기판의 테두리 위치를 고정한 상태에서 지속적으로 반도체 소자에서 발생되는 열이 베이스 기판에 전달되면 고정되지 않은 중앙 위치에서 열변형이 발생되는 문제점이 있었다.
이런, 문제점을 해결하기 위해서 최근에는 알루미늄 탄화규소질 복합체의 제조 시에 중앙의 단면적이 크고 고정되는 테두리 부분으로 단면적이 축소되는 휨량을 가지도록 성형을 실시하였다. 휨이 성형된 베이스 기판을 설치하게 되면 테두리 부분에 고정되면서 단면적이 큰 중앙에 휨 부분으로 가압력이 작용함으로써, 테두리가 고정된 상태에서 열에 의해 변형되는 중앙 부분을 가압하고 있어 열에 의해 변형되는 변형량을 최소화함에 따라 수명을 증대시킬 수 있다.
상술한 바와 같은 종래 기술의 휨량을 가지는 알루미늄 탄화규소질 복합체의 제조방법은 가압 함침을 마친 후에 후작업을 통해서 휨을 성형하게 되는데, 알루미늄 탄화규소질 복합체 자체는 매우 경질이어서 다이아몬드 등의 공구에 의한 절삭을 실시하여야 함에 따라 정확한 휨 형상을 가공하기 어렵고, 비용도 많이 드는 문제점이 있었다.
또한, 종래 기술의 휨량을 가지는 알루미늄 탄화규소질 복합체의 다른 제조방법은 판형태의 탄화규소질에 알루미늄 합금층을 가압 함침 시 휨이 형성되는 위치를 두껍게 성형한 후에 휨 가공을 이차로 실시하는 것으로, 전체적인 알루미늄층이 두꺼워지면서 베이스판으로 사용 시에 열팽창 계수가 커지는 문제점이 있었다.
즉, 두껍게 형성된 알루미늄 합금층의 휨 성형을 위한 이차 가공 시에 알루미늄 합금층을 제거하는 가공을 실시하게 되는데, 알루미늄 합금층을 제거하는 과정 중에서 경도가 높은 알루미늄 가압 함침된 탄화규소질 복합체에 접촉하게 되면 가공되는 장치의 파손이 발생됨에 따라 일정한 알루미늄 합금층의 두께를 유지하여야 하고, 이를 기준으로 중앙부분의 휨의 두께가 결정됨으로써, 알루미늄 합금층을 필요 이상의 두께를 유지하여야 함에 따라 열팽창 계수가 높아지는 문제점이 있었다.
그리고, 종래 기술의 휨량을 가지는 알루미늄 탄화규소질 복합체의 또 다른 제조방법은 알루미늄 탄화규소질 복합체를 제조한 상태에서 후가공으로 고온의 프레스 공법을 이용하여 휨을 가공하게 되면 고온으로 가압 시에 공극의 내부에 함침되어 있는 알루미늄 합금의 물성이 변화되면서 강도가 저하되고, 내구성이 떨어지는 문제점이 있었다.
또한, 고온의 프레스 공법을 이용하여 알루미늄 탄화규소질 복합체를 기판으로 제조하는 경우에는 전체면이 가압되어 휨이 발생됨에 따라 사용자가 원하는 휨량을 제어하기 어려운 문제점이 있었다.
즉, 기판의 설치 시에 고온 변형을 최소화하기 위해서 고정되는 설치면에만 휨이 발생되어야 하나, 고온의 프레스 공법을 이용하게 되면 설치면과 반대편으로 각종 부품이 실장되는 기판면에도 휨이 발생되어 부품의 실장이 어렵고, 실장된 부품 사이에 전기적으로 연결된 상태를 유지하기 어려운 문제점이 있었다.
이에, 알루미늄 탄화규소질 복합체의 제조에 있어 물성 변화를 최소화하면서도 가공 횟수를 감소시키고, 성형되는 휨의 기울기를 사용자가 원하는 크기로 가공할 수 있으며, 알루미늄 합금층의 두께를 최소화하여 열팽창 계수가 높아지는 것을 방지할 수 있는 성형장치 및 이를 이용한 제조방법의 필요성이 대두되고 있다.
본 발명은 상기한 문제점을 개선하기 위해 발명된 것으로, 본 발명이 해결하고자 하는 과제는, 탄화규소질 소재로 성형된 예비 성형체가 수납되어 용융된 알루미늄 합금으로 가압 함침되는 성형틀의 내부에 휨이 형성되는 방향으로 휨이 발생되는 공간을 구비하도록 휨 발생공간을 가지는 스페이서를 구비하여 가압 과정에서 휨이 성형됨에 따라 가공 횟수를 축소시킬 수 있는 알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법을 제공하는 것이다.
본 발명의 기술적 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제는 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위하여, 본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 성형장치는 탄화규소질 소재의 예비 성형체에 용융된 알루미늄 합금을 가압 함침하여 알루미늄 탄화규소질 복합체를 성형하는 성형 장치에 있어서, 상기 예비 성형체가 수납되어 가압 함침을 실시하는 틀 형태로 구비되어 있으며, 내부에 상기 예비 성형체가 수납되고, 상기 용융된 알루미늄 합금이 유입에 의해 함침된 상태에서 가압하게 되면, 상기 예비 성형체의 일측면이 변형되면서 중앙이 돌출되고 각 테두리 방향으로 단면적이 축소되는 휨이 성형되도록 구비된 성형부, 상기 성형부가 수납되도록 배치되어 있으며, 내부에 상부가 개방되어 상기 예비 성형체가 수납된 상기 성형부로 상기 용융된 알루미늄 합금이 유입되어 함침된 상태에서 가압되도록 수납되는 공간 형태의 함침공간을 가지는 가압 용탕, 및 상기 가압 용탕의 상부에 배치되어 있으며, 상하로 이동되면서 상기 성형부에 상기 용융된 알루미늄 합금이 함침된 상태에서 가압시키도록 상기 함침공간으로 가압력을 제공하는 가압부를 포함하는 것을 특징으로 한다.
또한, 상기 성형부는, 상기 예비 성형체의 성형 시 수납되는 틀 형태로 구비되고, 내부에 상기 예비 성형체가 수납되어 상기 용융된 알루미늄 합금으로 가압 함침하는 공간인 성형공간을 형성되며, 상기 성형공간의 일측으로 외부의 상기 가압 용탕과 연통되어 상기 성형공간으로 상기 용융된 알루미늄 합금이 유입되는 용탕구가 형성된 성형틀, 상기 성형틀의 내부에 배치되어 있으며, 상기 성형공간의 안쪽에서 상기 예비 성형체의 휨이 발생되는 일측면에 설치되고, 중앙에는 바깥 둘레에 테두리 부분을 제외하고 관통된 공간 형태의 휨 발생공간이 형성된 스페이서, 및 상기 성형틀의 내부에 배치되어 있으며, 상기 성형공간의 일측면으로 상기 예비 성형체 성형 시에 상기 예비 성형체와 상기 스페이서 사이에 위치하여 함침 후 가압되는 압력이 기설정된 압력 이상으로 가압하게 되면 상기 스페이서로 일측면의 테두리 부분이 지지된 상태에서 중앙에 공간형태인 상기 휨 발생공간 방향으로 돌출 변형되고, 변형된 위치에 알루미늄 합금이 냉각에 의해 고화되면서 휨을 발생시키는 휨 성형틀을 포함할 수 있는 것을 특징으로 한다.
그리고, 상기 스페이서에는 바깥 둘레에 테두리 위치의 한쪽 중앙 부분으로 일자 형태로 분리되도록 절개한 절개부를 형성하여 상기 휨 성형틀을 지지하는 지지력을 줄여서 상기 휨 성형틀의 변형량을 증대시킬 수 있는 것을 특징으로 한다.
아울러, 상기 스페이서에는 바깥 둘레에 테두리 위치의 한쪽 중앙의 테두리 위치에 일측과 타측이 일자 형태로 연결되는 한글 자음 'ㄷ'자 형태로 분리되는 절개홈를 형성하여 상기 휨 성형틀을 지지하는 지지력을 줄여서 상기 휨 성형틀의 변형량을 증대시킬 수 있는 것을 특징으로 한다.
더불어, 상기 스페이서의 두께와 상기 휨 성형틀의 두께를 조절하여 상기 용융된 알루미늄 합금의 가압되는 압력에 따라 상기 휨 성형틀의 변형되는 변형량과 변형되는 공간인 상기 휨 발생공간의 크기를 조절하여 휨량과 휨의 면적을 조절할 수 있는 것을 특징으로 한다.
또한, 상기 가압부는, 상기 가압 용탕의 상부에 배치되어 있으며, 하부로 이동 시에 상기 가압 용탕의 상기 함침공간에 삽입되면서 내부에 구비된 상기 용융된 알루미늄 합금과 상기 성형부를 함께 가압하도록 구비된 가압 펀치, 및 상기 가압 펀치의 상부에 배치되어 있으며, 상기 가압 펀치와 연결되어 상하로 구동되는 구동력을 제공하도록 구비된 가압 구동부를 포함할 수 있는 것을 특징으로 한다.
그리고, 본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 제조방법은 탄화규소질 소재의 예비 성형체를 제조하는 단계, 상기 예비 성형체의 크기를 고려하여 용융된 알루미늄 합금이 함침되어 가압 성형되는 틀형태로 상기 예비 성형체에 상기 용융된 알루미늄 합금으로 가압 함침 시 한쪽 방향으로 중앙이 돌출되고 테두리 방향으로 단면적이 축소되는 휨이 동시에 성형되는 성형부를 제조하는 단계, 제조된 상기 성형부에 상기 예비 성형체를 수납하면서 한쪽 방향으로 가압 함침 시에 변형되면서 사용자가 원하는 상기 휨이 성형되도록 성형부를 조립하는 단계, 조립된 상기 성형부를 가압 용탕의 함침공간에 설치한 상태에서 융융된 알루미늄 합금을 함침공간에 투입하여 상기 성형부의 내부로 유입되면서 상기 예비 성형체가 상기 용융된 알루미늄 합금으로 함침하는 단계, 상기 성형부가 함침된 상태에서 가압을 실시하면 상기 성형부의 내부로 유입된 상기 용융된 알루미늄 합금이 가압되면서 상기 예비 성형체의 공극 내부로 알루미늄이 가압 함침하고, 기설정된 압력을 초과하게 되면 일측으로 상기 성형부의 내부에서 변형되면서 상기 휨을 발생시키도록 가압 변형하는 단계, 및 상기 예비 성형체에 상기 용융된 합금이 가압 함침되고, 일측면으로 돌출된 상기 휨이 성형된 상태에서 냉각에 의해 고형화되면 가압력을 제거하여 상기 가압 용탕에서 취출한 상태에서 상기 성형틀과 고형화된 상기 알루미늄 합금을 제거하여 알루미늄 탄소규소질 복합체를 완성하는 단계를 포함하는 것을 특징으로 한다.
그리고, 상기 성형부를 제조하는 단계에서 상기 예비 성형체가 수납되는 틀형태로 성형틀를 제조할 수 있고, 상기 성형틀의 안쪽에서 상기 예비 성형체의 한쪽면 방향으로 가압 함침 시에 돌출되는 상기 휨이 발생되도록 변형되는 휨 성형틀을 제조할 수 있으며, 상기 휨 성형틀의 일측으로 테두리를 지지하면서 중앙에 상기 휨이 발생되도록 상기 휨 성형틀이 변형되는 공간형태인 휨 발생공간을 가지는 스페이서를 제조할 수 있는 것을 특징으로 한다.
아울러, 상기 휨 성형틀과 상기 스페이서는 상기 휨 성형틀이 변형될 수 있는 두께와 변형되는 공간이 형성되도록 지지되는 상기 스페이서의 두께를 상기 예비 성형체의 일측에 구비되는 상기 휨의 두께, 상기 휨의 중앙에서 테두리 방향으로 단면적이 축소되는 기울기에 따른 형상, 및 상기 휨의 면적을 고려하여 상기 용융된 알루미늄 합금의 함침후 가압되는 압력에 따라 조절하여 제조할 수 있는 것을 특징으로 한다.
더불어, 상기 스페이서는 제조 시에 상기 휨 성형틀의 지지되는 테두리 위치에 일측을 절개한 절개부을 구비하여 지지력을 줄일 수 있어 상기 휨의 두께, 상기 휨의 중앙에서 테두리 방향으로 단면적이 축소되는 기울기에 따른 형상, 및 상기 휨의 면적을 확대시킬 수 있는 것을 특징으로 한다.
또한, 상기 성형부를 제조하는 단계에서 제조된 상기 휨 성형틀과 상기 스페이서를 상기 성형부를 조립하는 단계에서 상기 성형틀의 내부에 상기 예비 성형체와 함께 조립하여 상기 용융된 알루미늄 합금으로 함침하는 단계에서 함침한 상태에서 상기 가압 변형하는 단계에서 가압을 실시하면 상기 휨 성형틀이 상기 스페이서의 상기 휨 발생공간으로 밀려 들어가도록 변형되면서 상기 용융된 알루미늄 합금이 고형화되면서 상기 휨을 성형할 수 있는 것을 특징으로 한다.
그리고, 상기 성형부를 조립하는 단계에서 상기 예비 성형체 조립된 상기 성형부를 예열기로 가열하여 가열된 상태에서 상기 함침하는 단계에서 상기 가압 용탕에 설치하여 상기 용융된 알루미늄 합금 투입 시 온도 차이를 최소화하여 상기 성형부로 유입할 수 있는 것을 특징으로 한다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법에 따르면, 탄화규소질 소재로 성형된 예비 성형체가 수납되어 용융된 알루미늄 합금으로 가압 함침되는 성형틀의 내부에 휨이 형성되는 방향으로 휨이 발생되는 공간을 구비하도록 휨 발생공간을 가지는 스페이서를 구비하여 가압 과정에서 휨이 성형됨에 따라 가공 횟수를 축소시킬 수 있다.
또한, 본 발명의 알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법은 예비 성형체가 수납되어 용융된 알루미늄 합금을 가압 함침시키는 성형장치에 휨 발생공간을 가지는 스페이서를 설치하여 가압 함침과 동시에 휨을 성형함에 있어, 가압되는 압력과 휨이 발생되는 두께에 따라 발생되는 휨의 두께와 기울기를 조절할 수 있음에 따라 방열되는 특성에 맞는 휨을 성형할 수 있어 성형 효율성을 향상시킬 수 있다.
그리고, 본 발명의 알루미늄 탄화규소질 복합체 성형 장치 및 이를 이용한 제조방법은 가압 함침에 의해 휨 성형을 실시하는 휨 발생공간이 형성된 스페이서에 절개부를 다양한 형태로 구비하여 각 형태에 따라 가압 시에 휨의 발생공간의 크기를 절개부의 형태에 따라 확대시킬 수 있음으로써, 휨의 정도에 따라 절개부의 형태를 조절하여 휨의 두께를 조절할 수 있어 성형 효율성을 향상시킬 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 성형장치의 사용 상태 중에 용융된 알루미늄 합금이 함침된 상태를 나타내는 사용 상태도이다.
도 2는 도 1의 알루미늄 탄화규소질 복합체 성형장치의 사용 상태 중에 가압 변형에 의해 알루미늄 탄화규소질 복합체가 성형되는 상태를 나타내는 사용 상태도이다.
도 3은 도 1의 알루미늄 탄화규소질 복합체 성형장치의 주요 구성인 성형부를 나타내는 구성도이다.
도 4는 도 1의 알루미늄 탄화규소질 복합체 성형장치에 가압 함침에 의해 휨이 성형되는 원리를 나타내는 구성도이다.
도 5는 도 1의 알루미늄 탄화규소질 복합체 성형장치의 주요 구성인 스페이서의 절개부가 구비된 것을 나타내는 구성도이다.
도 6은 도 1의 알루미늄 탄화규소질 복합체 성형장치의 주요 구성인 스페이서의 절개부의 다른 실시예인 절개홈이 구비된 것을 나타내는 구성도이다.
도 7은 본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법을 나타내는 공정도이다.
도 8은 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 예비 성형체 제조단계에서 제조된 예비 성형체를 나타내는 정면도이다.
도 9는 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 성형부 조립 단계에서 예비 성형체가 수납된 성형부가 조립된 상태를 나타내는 사용 상태도이다.
도 10은 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 함침 단계를 나타내는 사용 상태도이다.
도 11은 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 가압 변형 단계를 나타내는 사용 상태도이다.
도 12는 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 완성 단계에서 완성된 휨을 가지는 알루미늄 탄화규소질 복합체를 나타내는 정면도이다.
<도면의 주요 부분에 대한 부호의 설명>
100 : 성형장치 110 : 성형부
111 : 성형틀 112 : 성형공간
113 : 용탕구 114 : 스페이서
115 : 휨 발생공간 116 : 절개부
117 : 절개홈 118 : 휨 성형틀
120 : 가압 용탕 121 : 함침공간
130 : 가압부 131 : 가압펀치
132 : 펀치 구동부
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.
실시예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
이하, 본 발명의 실시예들에 의하여 알루미늄 탄화규소질 복합체 성형장치를 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 성형장치의 사용 상태 중에 용융된 알루미늄 합금이 함침된 상태를 나타내는 사용 상태도이고, 도 2는 도 1의 알루미늄 탄화규소질 복합체 성형장치의 사용 상태 중에 가압 변형에 의해 알루미늄 탄화규소질 복합체가 성형되는 상태를 나타내는 사용 상태도이며, 도 3은 도 1의 알루미늄 탄화규소질 복합체 성형장치의 주요 구성인 성형부를 나타내는 구성도이고, 도 4는 도 1의 알루미늄 탄화규소질 복합체 성형장치에 가압 함침에 의해 휨이 성형되는 원리를 나타내는 구성도이며, 도 5는 도 1의 알루미늄 탄화규소질 복합체 성형장치의 주요 구성인 스페이서의 절개부가 구비된 것을 나타내는 구성도이고, 도 6은 도 1의 알루미늄 탄화규소질 복합체 성형장치의 주요 구성인 스페이서의 절개부의 다른 실시예인 절개홈이 구비된 것을 나타내는 구성도이다.
도 1 내지 도 6을 참고하면, 본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 성형장치(100)는 알루미늄 합금으로 가압 함침되는 예비 성형체(10)가 수납되어 성형이 실시되는 성형부(110), 가압 용탕(120), 및 가압부(130)를 포함한다.
여기서, 예비 성형체(10)는 공극을 가지는 재료인 탄화규소질 소재로 베이스 기판에 사용되는 판 형태로 제조된 것으로, 알루미늄 합금의 가압 함침되면 알루미늄 탄화규소질 복합체로 제조되는 원료에 속합니다.
성형부(110)는 예비 성형체(10)가 수납되는 성형틀(111), 스페이서(114), 및 휨 성형틀(118)을 포함한다. 성형틀(111)은 내부에 예비 성형체(10)가 수납되어 용융된 알루미늄 합금으로 가압 함침하는 공간인 성형공간(112)을 형성되고, 성형공간(112)의 일측으로 외부의 가압 용탕(120)과 연통되어 성형공간(112)으로 용융된 알루미늄 합금이 유입되는 용탕구(113)가 형성된다. 성형틀(111)의 내부에 형성된 성형공간(112)에는 예비 성형체(10)가 수납된 상태로 용탕구(113)로 유입되는 용융된 알루미늄 합금이 예비 성형체(10)에 함침된 상태로 가압되어 탄화규소질 소재로 형성된 예비 성형체(10)의 공극으로 알루미늄이 함침되어 알루미늄 탄화규소질 복합체가 성형된다.
스페이서(114)는 성형틀(111)의 내부에 배치되어 있으며, 성형공간(112)의 안쪽에서 예비 성형체(10)의 휨이 발생되는 일측에 설치되어 중앙으로 관통된 휨 발생공간(115)을 가진다. 휨 발생공간(115)은 스페이서(114)에 관통된 형상으로 구비되어 예비 성형체(10)의 가압 함침 시에 휨이 발생되는 공간 형태로 구비된다.
휨 성형틀(118)은 성형공간(112)의 한쪽면에 배치되어 있으며, 예비 성형체(10)와 스페이서(114) 사이에 위치하여 알루미늄 합금의 가압 함침 시에 휨 발생공간(115)으로 밀려들어가면서 예비 성형체(10)의 한쪽으로 돌출된 휨을 발생시키도록 구비된다. 휨 성형틀(118)은 예비 성형체(10)와 스페이서(114) 사이에 얇은 박판 형태로 구비되어 용융된 알루미늄 합금을 함침되면 기 설정되는 압력 이하에서는 예비 성형체(10)의 공극 내부로 용융된 알루미늄 합금이 가압 함침된다. 가압되는 압력이 휨 성형틀이 변형되는 압력을 넘어서면 스페이서(114)의 휨 발생공간(115)으로 휨 성형틀(118)이 돌출되면서 돌출된 공간으로 용융된 알루미늄 합금이 경화되면서 휨이 발생된다.
이때, 용융된 알루미늄 합금은 액상으로 스페이서(114)의 중앙으로 관통된 공간 형태인 휨 발생공간(115)의 지지력이 제일 취약한 중앙 부분으로 가압력이 집중되어 중앙 부분에서 휨 성형틀(118)이 휨 발생공간(115)으로 밀려 들어가면서 휨이 발생됨에 따라 중앙 부분에서 테두리 위치로 단면적이 축소되는 기울기를 가지는 휨을 발생시킨다.
이런, 휨 성형틀(118)은 휨을 형성할 목적으로 철제틀 혹은 카본틀 형태로 구비되어 휨 발생 시에 변형되면서 휨을 부여할 수 있다.
이에, 가압 함침되는 압력을 조절하여 휨 성형틀(118)의 변형되는 압력에 따라 휨 량을 조절할 수 있다. 또한, 스페이서(114)의 두께를 조절하면 휨 발생공간(115)의 크기가 조절될 수 있음에 따라 돌출되는 휨량을 조절할 수 있다. 그리고, 휨 성형틀(118)의 소재와 두께를 조절하여 가압력에 따른 변형량을 조절할 수 있다.
따라서, 가압 함침되는 가압력의 조절, 스페이서(114)의 두께 조절, 및 휨 성형틀(118)의 소재와 두께의 조절에 의해 스페이서(114)는 바깥 둘레 부분이 예비 성형체(10)에 맞닿아 있어 베이스 기판 설치 시에 고정되는 테두리 방향으로 알루미늄 합금층의 두께를 최소화하고, 사용자가 원하는 휨량의 두께, 기울기, 형상을 조절할 수 있음에 따라 가공 효율성을 향상시키고, 가압 함침과 동시에 휨이 성형됨에 따라 가공 횟수를 줄일 수 있어 생산성을 향상시킬 수 있다.
또한, 스페이서(114)에는 돌출되는 알루미늄 합금의 휨량과 휨 면적을 확대시키기 위해서 중앙 부분으로 절개되는 절개부(116)가 형성될 수 있다. 스페이서(114)는 용융된 알루미늄 합금으로 함침 시에 가압되는 압력으로 변형되는 휨 성형틀(118)을 지지하고 있는 것으로, 스페이서(114)에 절개부(116)가 구비되면 지지력이 줄어들어 돌출되는 휨량과 휨 면적을 확대시킬 수 있다. 즉, 휨 성형틀(118)을 지지하면서 중앙에 휨 발생공간(115)을 가지는 스페이서(114)를 절개하게 되면 지지력이 약화되어 휨 성형틀(118)의 변형 공간이 넓어짐에 따라 휨 성형틀(118)의 변형으로 인해 발생되는 휨량과 휨 면적을 넓힐 수 있다.
이런, 절개부(116)는 사용자가 원하는 휨량과 휨 면적을 확대시키기 위해서 다양한 형상으로 구비될 수 있는 것으로, 절개부(116)의 일 실시예로 스페이서(114)의 중앙 한쪽에 가로지른 일자 형태로 구비되어 지지력을 줄일 수 있어 절개부(116)가 없는 스페이서보다 휨량과 휨 면적을 더 증대시킬 수 있다.
또한, 절개부(116)의 다른 실시예로, 스페이서의 일자 형태에서 한글 자음 'ㄷ'자 형태로 절개홈(117)이 더 구비되어 절개 형태에 따라 지지력을 더 줄일 수 있어 일자 형태의 절개부(116)보다 휨량과 휨 면적을 더 증대시킬 수 있다.
상술한 바와 같이, 절개부(116)의 형상을 제시하는 것은 설명의 편의를 위한 것이다. 따라서, 절개부(116)는 사용에 따라 다양한 형상으로 변형되어도 본 발명에 속하는 것은 당업자에게 자명하다.
가압 용탕(120)은 용융된 알루미늄 합금과 성형부(110)가 수납되어 함침된 상태에서 가압되도록 내부에 함침공간(121)을 형성한다. 가압 용탕(120)의 함침공간(121)은 예비 성형체(10)가 수납된 성형부(110)가 수납된 상태에서 용융된 알루미늄 합금을 투입하여 성형부(110)를 함침한 상태에서 가압부(130)로 알루미늄 합금을 예비 성형체(10)가 수납된 성형틀(111)을 가압하여 알루미늄 탄화규소질 복합체를 성형시킬 수 있다.
가압부(130)는 가압 용탕(120)의 내부를 가압하는 가압 펀치(131), 및 펀치 구동부(132)를 포함한다. 가압 펀치(131)는 가압 용탕(120)의 상부에 배치되어 있으며, 하부로 이동 시에 가압 용탕(120)에 삽입되면서 내부에 구비된 용융된 알루미늄 합금과 성형부(110)를 함께 가압하도록 구비된다. 가압 펀치(131)는 상하로 이동되면서 가압 용탕(120)에 삽입되어 가압력을 제공하도록 구비된다.
펀치 구동부(132)는 가압 펀치(131)의 상부에 배치되어 있으며, 가압 펀치(131)와 연결되어 상하로 구동되는 구동력을 제공하도록 구비된다. 펀치 구동부(132)는 통상적으로 가압 함침에 가압력을 제공하는 펀치 구동부(132)에 속하는 것으로, 상세한 설명을 생략하도록 한다.
또한, 본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법을 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.
도 7은 본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법을 나타내는 공정도이고, 도 8은 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 예비 성형체 제조단계에서 제조된 예비 성형체를 나타내는 정면도이며, 도 9는 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 성형부 조립 단계에서 예비 성형체가 수납된 성형부가 조립된 상태를 나타내는 사용 상태도이고, 도 10은 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 함침 단계를 나타내는 사용 상태도이며, 도 11은 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 가압 변형 단계를 나타내는 사용 상태도이고, 도 12는 도 7의 알루미늄 탄화규소질 복합체 성형장치를 이용한 제조방법 중 완성 단계에서 완성된 휨을 가지는 알루미늄 탄화규소질 복합체를 나타내는 정면도이다.
도 7 내지 도 12를 참고하면, 본 발명의 일 실시예에 따른 알루미늄 탄화규소질 복합체 성형장치(100)를 이용한 제조방법은 예비 성형체 제조단계(S110), 성형부 제조단계(S120), 성형부 조립단계(S130), 함침 단계(S140), 가압 변형 단계(S150), 및 완성 단계(S160)를 포함한다.
먼저, 예비 성형체 제조단계(S110)는 탄화규소질 소재의 예비 성형체(10)를 제조하는 단계이다.
예비 성형체(10)는 알루미늄 탄화규소질 복합체가 사용되는 용도에 따른 형상으로 제작한다. 예를 들어, 기판이 실장되는 베이스 기판을 사용할 경우에는 탄화규소(silicon carbide ; SiC)와 실리카 졸 (silica sol), 폴리비닐알콜(Polyvinyl Alcohol ; PVA) 그리고 물 넣고 반죽기에 교반한 후에 건조기에서 건조하는 공정을 진행하여 예비 성형체(10)를 제조한다.
성형부 제조단계(S120)는 예비 성형체(10)의 크기를 고려하여 용융된 알루미늄 합금이 함침되어 가압 성형되는 틀형태로 예비 성형체(10)에 용융된 알루미늄 합금으로 가압 함침 시 한쪽 방향으로 중앙이 돌출되고 테두리 방향으로 단면적이 축소되는 휨이 동시에 성형되는 성형부(110)를 제조하는 단계이다.
성형부(110)는 예비 성형체(10)가 수납된 상태에서 용융된 알루미늄 합금이 함침되어 가압에 의해 알루미늄 탄화규소질 복합체를 성형하는 것으로, 예비 성형체(10)가 수납되는 틀 형태로 구비된다. 또한, 성형부(110)는 예비 성형체(10)의 일측면으로 중앙이 돌출되고 테두리 방향으로 단면적이 축소되는 휨을 성형하도록 구비된다.
성형부를 제조하는 단계(S120)에서 예비 성형체(10)가 수납되는 틀형태로 성형틀(111)을 제조하고, 성형틀(111)의 안쪽에서 예비 성형체(10)의 한쪽면 방향으로 가압 함침 시에 돌출되는 휨이 발생되도록 변형되는 휨 성형틀(118)을 제조하며, 휨 성형틀(118)의 일측으로 테두리를 지지하면서 중앙에 휨이 발생되도록 휨 성형틀(118)이 변형되는 공간형태인 휨 발생공간(115)을 가지는 스페이서(114)를 제조할 수 있다.
예비 성형체(10)의 가압 함침하는 틀형태의 성형틀(111)의 내부에 예비 성형체(10)의 휨이 발생되는 일측면으로 용융된 알루미늄 합금이 함침된 상태에서 가압하면 변형되는 휨 성형틀(118)로 제조하고, 휨 성형틀(118)의 일측으로 변형 시에 변형되는 공간인 휨 발생공간(115)을 중앙에 관통형태로 형성된 스페이서(114)를 제조할 수 있다.
여기서, 휨 성형틀(118)과 스페이서(114)는 휨 성형틀(118)이 변형될 수 있는 두께와 변형되는 공간이 형성되도록 지지되는 스페이서(114)의 두께를 예비 성형체(10)의 일측에 구비되는 휨의 두께, 휨의 중앙에서 테두리 방향으로 단면적이 축소되는 기울기에 따른 형상, 및 휨의 면적을 고려하여 용융된 알루미늄 합금의 함침후 가압되는 압력에 따라 조절하여 제조할 수 있다.
또한, 스페이서(114)는 제조 시에 휨 성형틀(118)의 지지되는 테두리 위치에 일측을 절개한 절개부(116)을 구비하여 지지력을 줄일 수 있어 휨의 두께, 휨의 중앙에서 테두리 방향으로 단면적이 축소되는 기울기에 따른 형상, 및 휨의 면적을 확대시킬 수 있다.
성형부 조립단계(S130)는 제조된 성형부(110)에 예비 성형체(10)를 수납하면서 한쪽 방향으로 가압 함침 시에 변형되면서 사용자가 원하는 휨이 성형되도록 성형부(110)를 조립하는 단계이다.
성형부(110)를 제조하는 단계(S120)에서 제조된 휨 성형틀(118)과 스페이서(114)를 성형틀의 내부에 예비 성형체(10)와 함께 조립한다. 분리되는 성형틀(111)의 내부에 형성된 성형공간(112)에서 휨이 발생되는 일측 면으로 휨 성형틀(118)과 스페이서(114)가 위치하도록 조립을 실시한다.
함침 단계(S140)는 조립된 성형부(110)를 가압 용탕(120)의 함침공간(121)에 설치한 상태에서 융융된 알루미늄 합금을 함침공간(121)에 투입하여 성형부(110)의 내부로 유입되면서 예비 성형체(10)가 용융된 알루미늄 합금으로 함침하는 단계이다.
여기서, 성형부(110)에 예비 성형체(10)가 수납된 상태에서 조립을 마치면 용융된 알루미늄의 합금의 성형부(110)의 내부로 유입되기 위해서 성형부(110)를 예열할 수도 있다.
즉, 용융되는 알루미늄 합금의 함침 시에 온도차이가 많으면 유입되지 않고 접촉에 의해 고화됨에 따라 예비 성형체(10)가 수납된 성형부(110)를 조립한 후에 예열기로 예열을 실시하여 고화되지 않은 상태로 용융된 알루미늄 합금이 유입됨에 따라 함침 효율성이 향상될 수 있다.
예열기로 예열된 성형부(110)를 가압 용탕(120)의 함침공간(121)에 설치한 후에 열을 가하여 용융된 알루미늄 합금을 함침공간(121)에 투입하면 성형부(110)의 내부로 용융된 알루미늄 합금이 유입되면서 예비 성형체(10)가 함침된다.
가압 변형 단계(S150)는 성형부(110)가 함침된 상태에서 가압을 실시하면 성형부(110)의 내부로 유입된 용융된 알루미늄 합금이 가압되면서 예비 성형체(10)의 공극 내부로 알루미늄이 가압 함침하고, 기설정된 압력을 초과하게 되면 일측으로 성형부(110)의 내부에서 변형되면서 휨을 발생시키도록 가압 변형하는 단계이다.
가압 변형하는 단계(S150)에서 가압을 실시하면 휨 성형틀(118)이 스페이서(114)의 휨 발생공간(115)으로 밀려 들어가도록 변형되면서 용융된 알루미늄 합금이 고형화되면서 휨을 성형할 수 있다.
이런, 휨 성형틀(118)은 휨을 형성할 목적으로 철제틀 혹은 카본틀 형태로 구비되어 휨 발생 시에 변형되면서 휨을 부여할 수 있다.
완성 단계(S160)는 예비 성형체(10)에 용융된 합금이 가압 함침되고, 일측면으로 돌출된 휨이 성형된 상태에서 냉각에 의해 고형화되면 가압력을 제거하여 가압 용탕(120)에서 취출한 상태에서 성형틀(111)과 고형화된 알루미늄 합금을 제거하여 알루미늄 탄소규소질 복합체(1)를 완성하는 단계이다.
즉, 예비 성형체(10)에 가압 함침을 마친 후에 가압력을 제거하고, 고화된 알루미늄 합금을 제거한 후에 성형부(110)를 해체하여 휨을 가지는 알루미늄 탄소규소질 복합체(1)를 완성한다.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (12)

  1. 탄화규소질 소재의 예비 성형체에 용융된 알루미늄 합금을 가압 함침하여 알루미늄 탄화규소질 복합체를 성형하는 성형 장치에 있어서,
    상기 예비 성형체가 수납되어 가압 함침을 실시하는 틀 형태로 구비되어 있으며, 내부에 상기 예비 성형체가 수납되고, 상기 용융된 알루미늄 합금이 유입에 의해 함침된 상태에서 가압하게 되면, 상기 예비 성형체의 일측면이 변형되면서 중앙이 돌출되고 각 테두리 방향으로 단면적이 축소되는 휨이 성형되도록 구비된 성형부,
    상기 성형부가 수납되도록 배치되어 있으며, 내부에 상부가 개방되어 상기 예비 성형체가 수납된 상기 성형부로 상기 용융된 알루미늄 합금이 유입되어 함침된 상태에서 가압되도록 수납되는 공간 형태의 함침공간을 가지는 가압 용탕, 및
    상기 가압 용탕의 상부에 배치되어 있으며, 상하로 이동되면서 상기 성형부에 상기 용융된 알루미늄 합금이 함침된 상태에서 가압시키도록 상기 함침공간으로 가압력을 제공하는 가압부를 포함하는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치.
  2. 제 1 항에 있어서,
    상기 성형부는,
    상기 예비 성형체의 성형 시 수납되는 틀 형태로 구비되고, 내부에 상기 예비 성형체가 수납되어 상기 용융된 알루미늄 합금으로 가압 함침하는 공간인 성형공간을 형성되며, 상기 성형공간의 일측으로 외부의 상기 가압 용탕과 연통되어 상기 성형공간으로 상기 용융된 알루미늄 합금이 유입되는 용탕구가 형성된 성형틀,
    상기 성형틀의 내부에 배치되어 있으며, 상기 성형공간의 안쪽에서 상기 예비 성형체의 휨이 발생되는 일측면에 설치되고, 중앙에는 바깥 둘레에 테두리 부분을 제외하고 관통된 공간 형태의 휨 발생공간이 형성된 스페이서, 및
    상기 성형틀의 내부에 배치되어 있으며, 상기 성형공간의 일측면으로 상기 예비 성형체 성형 시에 상기 예비 성형체와 상기 스페이서 사이에 위치하여 함침 후 가압되는 압력이 기설정된 압력 이상으로 가압하게 되면 상기 스페이서로 일측면의 테두리 부분이 지지된 상태에서 중앙에 공간형태인 상기 휨 발생공간 방향으로 돌출 변형되고, 변형된 위치에 알루미늄 합금이 냉각에 의해 고화되면서 휨을 발생시키는 휨 성형틀을 포함하는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치.
  3. 제 2 항에 있어서,
    상기 스페이서에는 바깥 둘레에 테두리 위치의 한쪽 중앙 부분으로 일자 형태로 분리되도록 절개한 절개부를 형성하여 상기 휨 성형틀을 지지하는 지지력을 줄여서 상기 휨 성형틀의 변형량을 증대시킬 수 있는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치.
  4. 제 2 항에 있어서,
    상기 스페이서에는 바깥 둘레에 테두리 위치의 한쪽 중앙의 테두리 위치에 일측과 타측이 일자 형태로 연결되는 한글 자음 'ㄷ'자 형태로 분리되는 절개홈를 형성하여 상기 휨 성형틀을 지지하는 지지력을 줄여서 상기 휨 성형틀의 변형량을 증대시킬 수 있는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치.
  5. 제 2 항에 있어서,
    상기 스페이서의 두께와 상기 휨 성형틀의 두께를 조절하여 상기 용융된 알루미늄 합금의 가압되는 압력에 따라 상기 휨 성형틀의 변형되는 변형량과 변형되는 공간인 상기 휨 발생공간의 크기를 조절하여 휨량과 휨의 면적을 조절할 수 있는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치.
  6. 제 1 항에 있어서,
    상기 가압부는,
    상기 가압 용탕의 상부에 배치되어 있으며, 하부로 이동 시에 상기 가압 용탕의 상기 함침공간에 삽입되면서 내부에 구비된 상기 용융된 알루미늄 합금과 상기 성형부를 함께 가압하도록 구비된 가압 펀치, 및
    상기 가압 펀치의 상부에 배치되어 있으며, 상기 가압 펀치와 연결되어 상하로 구동되는 구동력을 제공하도록 구비된 가압 구동부를 포함하는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치.
  7. 탄화규소질 소재의 예비 성형체를 제조하는 단계,
    상기 예비 성형체의 크기를 고려하여 용융된 알루미늄 합금이 함침되어 가압 성형되는 틀형태로 상기 예비 성형체에 상기 용융된 알루미늄 합금으로 가압 함침 시 한쪽 방향으로 중앙이 돌출되고 테두리 방향으로 단면적이 축소되는 휨이 동시에 성형되는 성형부를 제조하는 단계,
    제조된 상기 성형부에 상기 예비 성형체를 수납하면서 한쪽 방향으로 가압 함침 시에 변형되면서 사용자가 원하는 상기 휨이 성형되도록 성형부를 조립하는 단계,
    조립된 상기 성형부를 가압 용탕의 함침공간에 설치한 상태에서 융융된 알루미늄 합금을 함침공간에 투입하여 상기 성형부의 내부로 유입되면서 상기 예비 성형체가 상기 용융된 알루미늄 합금으로 함침하는 단계,
    상기 성형부가 함침된 상태에서 가압을 실시하면 상기 성형부의 내부로 유입된 상기 용융된 알루미늄 합금이 가압되면서 상기 예비 성형체의 공극 내부로 알루미늄이 가압 함침하고, 기설정된 압력을 초과하게 되면 일측으로 상기 성형부의 내부에서 변형되면서 상기 휨을 발생시키도록 가압 변형하는 단계, 및
    상기 예비 성형체에 상기 용융된 합금이 가압 함침되고, 일측면으로 돌출된 상기 휨이 성형된 상태에서 냉각에 의해 고형화되면 가압력을 제거하여 상기 가압 용탕에서 취출한 상태에서 상기 성형틀과 고형화된 상기 알루미늄 합금을 제거하여 알루미늄 탄소규소질 복합체를 완성하는 단계를 포함하는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치를 이용한 제조방법.
  8. 제 7 항에 있어서,
    상기 성형부를 제조하는 단계에서 상기 예비 성형체가 수납되는 틀형태로 성형틀를 제조하고, 상기 성형틀의 안쪽에서 상기 예비 성형체의 한쪽면 방향으로 가압 함침 시에 돌출되는 상기 휨이 발생되도록 변형되는 휨 성형틀을 제조하며, 상기 휨 성형틀의 일측으로 테두리를 지지하면서 중앙에 상기 휨이 발생되도록 상기 휨 성형틀이 변형되는 공간형태인 휨 발생공간을 가지는 스페이서를 제조하는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치를 이용한 제조방법.
  9. 제 8 항에 있어서,
    상기 휨 성형틀과 상기 스페이서는 상기 휨 성형틀이 변형될 수 있는 두께와 변형되는 공간이 형성되도록 지지되는 상기 스페이서의 두께를 상기 예비 성형체의 일측에 구비되는 상기 휨의 두께, 상기 휨의 중앙에서 테두리 방향으로 단면적이 축소되는 기울기에 따른 형상, 및 상기 휨의 면적을 고려하여 상기 용융된 알루미늄 합금의 함침후 가압되는 압력에 따라 조절하여 제조하는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치를 이용한 제조방법.
  10. 제 8 항에 있어서,
    상기 스페이서는 제조 시에 상기 휨 성형틀의 지지되는 테두리 위치에 일측을 절개한 절개부을 구비하여 지지력을 줄일 수 있어 상기 휨의 두께, 상기 휨의 중앙에서 테두리 방향으로 단면적이 축소되는 기울기에 따른 형상, 및 상기 휨의 면적을 확대시키는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치를 이용한 제조방법.
  11. 제 8 항에 있어서,
    상기 성형부를 제조하는 단계에서 제조된 상기 휨 성형틀과 상기 스페이서를 상기 성형부를 조립하는 단계에서 상기 성형틀의 내부에 상기 예비 성형체와 함께 조립하여 상기 용융된 알루미늄 합금으로 함침하는 단계에서 함침한 상태에서 상기 가압 변형하는 단계에서 가압을 실시하면 상기 휨 성형틀이 상기 스페이서의 상기 휨 발생공간으로 밀려 들어가도록 변형되면서 상기 용융된 알루미늄 합금이 고형화되면서 상기 휨을 성형하는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치를 이용한 제조방법.
  12. 제 7 항에 있어서,
    상기 성형부를 조립하는 단계에서 상기 예비 성형체 조립된 상기 성형부를 예열기로 가열하여 가열된 상태에서 상기 함침하는 단계에서 상기 가압 용탕에 설치하여 상기 용융된 알루미늄 합금 투입 시 온도 차이를 최소화하여 상기 성형부로 유입할 수 있는 것을 특징으로 하는 알루미늄 탄소규소질 복합체 성형장치를 이용한 제조방법.
PCT/KR2015/003070 2014-04-07 2015-03-27 알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법 WO2015156527A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140041507A KR101512765B1 (ko) 2014-04-07 2014-04-07 알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법
KR10-2014-0041507 2014-04-07

Publications (1)

Publication Number Publication Date
WO2015156527A1 true WO2015156527A1 (ko) 2015-10-15

Family

ID=53053392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003070 WO2015156527A1 (ko) 2014-04-07 2015-03-27 알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법

Country Status (3)

Country Link
KR (1) KR101512765B1 (ko)
CN (1) CN104972096B (ko)
WO (1) WO2015156527A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737218B1 (ko) * 2015-09-21 2017-05-17 한국과학기술원 탄화규소 타일/알루미늄 하이브리드 복합재 및 이의 제조방법
KR101681532B1 (ko) * 2016-03-07 2016-12-01 주식회사 티앤머티리얼스 3차원 구조의 알루미늄 탄화규소 복합체 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265253A (ja) * 1999-03-16 2000-09-26 Mitsubishi Materials Corp 金属基複合材およびその製造方法
JP2000281468A (ja) * 1998-11-12 2000-10-10 Denki Kagaku Kogyo Kk 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
JP2003008177A (ja) * 2001-06-18 2003-01-10 Denki Kagaku Kogyo Kk 一体型セラミックス回路基板製造方法
JP2003297988A (ja) * 2002-04-05 2003-10-17 Denki Kagaku Kogyo Kk 構造物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2724873Y (zh) * 2004-04-27 2005-09-14 亚仕德国际贸易股份有限公司 铝挤型模具
CN202411386U (zh) * 2012-01-13 2012-09-05 湖南航天诚远精密机械有限公司 一种真空压力渗铝通道兼隔离装置
CN103521738B (zh) * 2013-10-17 2016-04-06 湖南航天工业总公司 碳化硅igbt基板骨架真空液压压力快捷渗铝装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281468A (ja) * 1998-11-12 2000-10-10 Denki Kagaku Kogyo Kk 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
JP2000265253A (ja) * 1999-03-16 2000-09-26 Mitsubishi Materials Corp 金属基複合材およびその製造方法
JP2003008177A (ja) * 2001-06-18 2003-01-10 Denki Kagaku Kogyo Kk 一体型セラミックス回路基板製造方法
JP2003297988A (ja) * 2002-04-05 2003-10-17 Denki Kagaku Kogyo Kk 構造物

Also Published As

Publication number Publication date
KR101512765B1 (ko) 2015-04-16
CN104972096A (zh) 2015-10-14
CN104972096B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
US10252930B2 (en) Bent glass plate for optical use and fabrication method thereof
CN104860514B (zh) 一种用于弯曲玻璃热弯的生产工艺
KR20150082253A (ko) 디스플레이용 커버 유리의 제조 방법 및 디스플레이용 커버 유리의 제조 장치
FI79515C (fi) Foerfarande och anordning foer formning av glasskivor.
TW201504167A (zh) 具曲面形狀之玻璃板之製造方法、具曲面形狀之玻璃板及具曲面形狀之玻璃板之製造裝置
WO2014073336A1 (ja) ディスプレイ用カバーガラスの製造方法及びディスプレイ用カバーガラスの製造装置
WO2015156527A1 (ko) 알루미늄 탄화규소질 복합체 성형장치 및 이를 이용한 제조방법
CN101224944A (zh) 一种显示屏的玻璃面板的制造方法及设备
TW555703B (en) Apparatus and method for forming silica glass elements
CN110625015B (zh) 一种提高铝合金热冲压件成形质量的分区冷却方法
WO2018016824A1 (ko) 자재 성형 장치
WO2018128331A1 (ko) 유리 성형 장치
JP6677530B2 (ja) ガラス成形型および曲面ガラスの製造方法
CN112356427A (zh) 一种音膜成型装置及成型方法
CN214102195U (zh) 一种电动工具的充电座壳体散热装置
WO2015064789A1 (ko) 대면적 평판 글래스 패턴 성형 장치
CN220887334U (zh) 曲面玻璃成型结构以及曲面玻璃加工流水线设备
CN218340725U (zh) 一种组合式的igbt铜基板预弯模具
CN112238646B (zh) 一种热压和冷压组合一体式机构
CA2438201A1 (en) Conformally heated male mold
WO2019151554A1 (ko) 글래스 성형용 유리질 탄소 금형, 글래스 성형용 유리질 탄소 금형 제조를 위한 마스터 코어 금형 및 글래스 성형용 유리질 탄소 금형 제조방법
CN218399186U (zh) 一种注塑成型设备的隔热上模结构
CN109774106B (zh) 一种拱形模具
CN113213735B (zh) 玻璃加工装置及其模具
CN214266332U (zh) 一种可防变形的多色硅胶模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776380

Country of ref document: EP

Kind code of ref document: A1