WO2015156347A1 - Actuator drive device - Google Patents

Actuator drive device Download PDF

Info

Publication number
WO2015156347A1
WO2015156347A1 PCT/JP2015/061076 JP2015061076W WO2015156347A1 WO 2015156347 A1 WO2015156347 A1 WO 2015156347A1 JP 2015061076 W JP2015061076 W JP 2015061076W WO 2015156347 A1 WO2015156347 A1 WO 2015156347A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
drive
switching
motor
Prior art date
Application number
PCT/JP2015/061076
Other languages
French (fr)
Japanese (ja)
Inventor
俊彰 佐藤
矢吹 俊生
田口 泰貴
敬之 畑山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201580018465.2A priority Critical patent/CN106165286B/en
Publication of WO2015156347A1 publication Critical patent/WO2015156347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to an apparatus for driving an actuator.
  • overvoltage protection means as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2007-166815) is provided.
  • the input transformer is a transformer with a load tap changer, and when a voltage exceeding a certain threshold is input to the inverter over a predetermined time, the tap of the transformer with a load tap changer is turned on. Switching to the low pressure side.
  • the transformer with a load tap changer as described above is suitable for a large-scale electric facility, but it is not easy to apply to an actuator driving device mounted on a general household appliance. Further, increasing the breakdown voltage of a semiconductor element or the like only for an instantaneous excessive voltage leads to an increase in cost.
  • an object of the present invention is to provide an actuator driving device that is low in cost and excellent in security.
  • An actuator driving device includes a DC voltage generating unit, a voltage detecting unit, a driving unit, a switching unit, a driving control unit, a switching control unit, a first diode or an insulating circuit, Is provided.
  • the DC voltage generator generates a DC voltage.
  • the voltage detection unit is electrically connected to a power supply or a DC voltage generation unit.
  • the voltage detection unit detects a voltage value supplied from a power supply or a DC voltage generation unit.
  • the drive unit is disposed between the DC voltage generation unit and the actuator.
  • the driving unit is supplied with a DC voltage from the DC voltage generating unit.
  • the drive unit outputs a drive signal for driving the actuator to the actuator.
  • the switching unit is disposed on a power supply line connecting the low potential side of the driving unit and the DC voltage generating unit.
  • the switching unit switches between conduction and interruption of the power supply line.
  • the drive control unit controls the operation of the drive unit by outputting a command to the drive unit.
  • the switching control unit is electrically connected to the switching unit.
  • the switching control unit controls the operation of the switching unit based on the voltage value detected by the voltage detection unit.
  • the switching control unit controls the operation of the switching unit so that the power line is turned on when the voltage value is less than the first threshold, and is cut off when the voltage value is equal to or greater than the first threshold.
  • the first diode or the insulation circuit is disposed between the drive unit and the drive control unit.
  • a 1st diode or an insulation circuit suppresses that an electric current flows into a drive control part from a DC voltage generation part via a drive part, when a switching part interrupts
  • the switching unit is disposed on the power line connecting the low potential side of the driving unit and the DC voltage generating unit, and the power line is turned on and off according to the voltage value.
  • the power supply line can be shut off to protect the drive unit when the power supply voltage is in an overvoltage state equal to or higher than the first threshold (overvoltage).
  • the switching unit is required to select a switching unit having a sufficient withstand voltage in case the power supply voltage becomes an overvoltage state.
  • the power supply voltage supplied to the power supply line connecting the low potential side of the drive unit and the DC voltage generation unit is the power supply supplied to the power supply line connecting the DC voltage generation unit and the high potential side of the drive unit.
  • the voltage value is lower than the voltage. Therefore, the switching unit connects the low potential side of the drive unit and the DC voltage generation unit rather than the case where the switching unit is arranged on the power supply line connecting the DC voltage generation unit and the high potential side of the drive unit. In the case of being arranged on the line, it becomes possible to set the withstand voltage of the switching unit lower, and the cost can be reduced accordingly.
  • the switching unit is arranged on the power supply line connecting the low potential side of the driving unit and the DC voltage generating unit, thereby cutting off the power supply line during overvoltage while suppressing cost. It is possible.
  • the first diode or the insulating circuit is disposed between the driving unit and the driving control unit, and the DC voltage generating unit is connected via the driving unit when the power line is shut off.
  • the actuator driving apparatus when the power line connecting the low potential side of the drive unit and the DC voltage generation unit is cut off in order to protect the drive unit during overvoltage, the potential in the drive unit becomes higher than the potential in the drive control unit. A potential difference different from the normal time is generated between the drive unit and the drive control unit. Therefore, unless a means for interrupting the current supplied from the DC voltage generator is provided, current flows from the DC voltage generator to the drive controller via the driver during overvoltage, and the drive unit and the drive controller are There is a risk of being destroyed.
  • the first diode or the insulating circuit is disposed between the driving unit and the driving control unit, and the DC voltage generating unit is switched to the driving control unit via the driving unit when the power line is shut off. Suppresses the flow of current. As a result, the drive unit and the drive control unit are protected during an overvoltage with a simple configuration.
  • the safety is improved while suppressing the cost.
  • the actuator driving device is the actuator driving device according to the first aspect, further comprising a power source for driving unit operation and a second diode.
  • the drive unit power supply supplies power to the drive unit.
  • the second diode is disposed between the driving unit and the driving unit operating power source. The second diode suppresses a current from flowing from the DC voltage generating unit to the driving unit operating power source via the driving unit when the switching unit cuts off the power supply line.
  • the potential in the drive unit becomes higher than the potential of the drive unit operation power supply.
  • a potential difference different from the normal time is generated between Therefore, if means for interrupting the current supplied from the DC voltage generator is not provided, the current flows from the DC voltage generator to the drive unit operating power source via the drive unit when overvoltage occurs, and the drive unit and the drive unit The operating power supply may be destroyed.
  • the second diode is disposed between the driving unit and the driving unit operating power source, and the driving unit operating power source is connected to the driving unit via the driving unit when the power line is interrupted. Suppresses the flow of current.
  • the driving unit and the driving unit operating power source are protected in the case of an overvoltage with a simple configuration. Therefore, security is further improved while suppressing costs.
  • the actuator driving device is the actuator driving device according to the first aspect, further comprising a power supply for driving unit operation.
  • the drive unit power supply supplies power to the drive unit.
  • the drive unit power supply is an insulated power supply.
  • the secondary side electrically connected to the driving unit is electrically separated from the primary side.
  • the drive unit power supply is an insulated power supply, and the secondary side electrically connected to the drive unit is electrically separated from the primary side.
  • the actuator driving device is the actuator driving device according to any one of the first to third aspects, and the drive control unit is electrically connected to the voltage detection unit.
  • the drive control unit When the voltage value is greater than or equal to the first threshold, the drive control unit outputs a command for causing the drive unit to stop outputting the drive signal before the switching unit cuts off the power supply line.
  • the actuator driving device when the voltage value is equal to or higher than the first threshold value, the output of the driving signal from the driving unit is stopped before the power supply line is shut off. As a result, it is possible to cut off the current flowing through the actuator and the drive unit before shutting off the power supply line during overvoltage. Therefore, in the event of an overvoltage, the current is further suppressed from flowing from the DC voltage generation unit to other parts via the drive unit, and the drive unit, the drive control unit, and / or the drive unit power supply is further protected. In addition, since no current flows through the actuator and the drive unit when the power supply line is cut off, voltage increase due to wiring and actuator inductance, generation of surge voltage, and the like are suppressed.
  • An actuator driving device is the actuator driving device according to the fourth aspect, wherein the switching control unit is configured to switch the switching unit after a predetermined time has elapsed after the output of the drive signal is stopped. The operation of the switching unit is controlled so as to cut off the power line.
  • the switching control unit controls the operation of the switching unit so that the power line is shut off after a predetermined time has elapsed after the output of the driving signal is stopped. To do. Thereby, it becomes possible to cut off the current flowing through the actuator and the drive unit before cutting off the power supply line in the case of overvoltage in a simple configuration. It is also possible to prepare for a quick restart of the actuator when the power supply voltage is stabilized before the predetermined time has elapsed.
  • An actuator driving device is the actuator driving device according to the fourth aspect, in which the drive control unit sets the driving unit when the voltage value is equal to or higher than a second threshold value that is lower than the first threshold value. Sends a command to stop driving signal output.
  • the drive control unit sends a command to the drive unit to stop the output of the drive signal when the voltage value is equal to or higher than the second threshold value which is lower than the first threshold value.
  • An actuator driving device is the actuator driving device according to any one of the first to sixth aspects, wherein the switching control unit has a voltage value of the first when the actuator is driven.
  • the operation of the switching unit is controlled when the state changes from a state less than one threshold to a state greater than or equal to the first threshold.
  • the switching control unit controls the operation of the switching unit so as to immediately shut off the power supply line if the voltage value is equal to or higher than a third threshold value higher than the first threshold value. If the voltage value is less than the third threshold value, the switching control unit controls the operation of the switching unit so that the power supply line is shut off when a state of the first threshold value and the third threshold value continues for a predetermined time.
  • the voltage value when the actuator is driven, the voltage value changes from the state below the first threshold to the state above the first threshold. If the voltage value is less than the third threshold value, the power line is immediately shut off. If the voltage value is less than the third threshold value, the power line is shut off when the state exceeding the first threshold value and less than the third threshold value continues for a predetermined time. Thereby, the power supply line shutoff timing can be made variable according to the steepness of the voltage value increase. As a result, when it is determined that the influence on the security is small based on the steepness of the voltage value increase, the power supply line is not shut off, and it is possible to prepare for a quick restart of the actuator.
  • the actuator driving device is the actuator driving device according to any one of the first to seventh aspects, and the driving unit includes a determination unit and an output unit.
  • the determination unit determines a drive signal to be output to the actuator based on a command output from the drive control unit.
  • the output unit includes a plurality of switching elements. The output unit generates a drive signal based on the determination by the determination unit and outputs it to the actuator.
  • the safety is improved when the driving unit includes a switching element that is easily affected by an overvoltage.
  • the actuator driving device is the actuator driving device according to any one of the first to eighth aspects, and the driving unit is integral with the actuator.
  • the safety is improved when the driving unit is integrated with the actuator.
  • An actuator driving device is the actuator driving device according to any one of the first to ninth aspects, and controls the plurality of devices included in the air conditioner in an integrated manner.
  • the unit is further provided.
  • the actuator is a motor that is at least one drive source of a plurality of devices included in the air conditioner.
  • the overall control unit includes a drive control unit and a switching control unit.
  • the safety of the air conditioner is improved.
  • the actuator driving apparatus it is possible to cut off the power supply line at the time of overvoltage while suppressing the cost.
  • the drive unit and the drive control unit are protected during overvoltage. Therefore, security is improved while suppressing costs.
  • the driving unit and the power source for driving unit operation are protected in the case of an overvoltage with a simple configuration. Therefore, security is further improved while suppressing costs.
  • the drive unit, the drive control unit, and / or the drive unit operating power supply is further protected during overvoltage.
  • the power supply line is shut off, voltage increase due to wiring and actuator inductance, generation of surge voltage, and the like are suppressed.
  • the current flowing through the actuator and the drive unit can be cut off before the power supply line is cut off in the case of an overvoltage with a simple configuration. It is also possible to prepare for a quick restart of the actuator.
  • the drive unit is protected. It is also possible to prepare for a quick restart of the actuator.
  • the actuator driving device when it is judged that the influence on the security is small based on the steepness of the voltage value rise, the power supply line is not shut off, and the actuator is prepared for a quick restart. Is possible.
  • the safety is improved when the driving unit includes a switching element that is easily affected by an overvoltage.
  • the safety is improved when the driving unit is integrated with the actuator.
  • the safety of the air conditioner is improved.
  • the schematic block diagram of the air conditioning machine carrying the motor drive device which concerns on one Embodiment of this invention The schematic block diagram of an indoor fan motor and a motor drive device.
  • the schematic block diagram of a motor drive circuit The schematic block diagram of a 2nd voltage detection part and an electric current detection part.
  • the flowchart which showed an example of the flow of control by a main body control microcomputer.
  • the timing chart which shows an example of the change of the state of a motor part and a switching part.
  • the timing chart which shows an example of the change of the state of a motor part and a switching part.
  • the schematic block diagram of the motor drive device which concerns on the modification H.
  • the schematic block diagram of the motor drive device which concerns on the modification I.
  • the schematic block diagram of the DC power supply device which concerns on the modification I.
  • the flowchart which showed an example of the flow of control by the main body control microcomputer which concerns on the modification K.
  • the flowchart which showed an example of the flow of control by the main body control microcomputer
  • the motor drive device 30 in this embodiment is mounted on the air conditioner 100.
  • the motor driving device 30 is a device that controls the driving of the indoor fan motor 23 (the motor unit 24) that is one of the actuators included in the air conditioner 100.
  • FIG. 1 is a schematic configuration diagram of an air conditioner 100 equipped with a motor drive device 30 according to an embodiment of the present invention.
  • the air conditioner 100 is a device that achieves air conditioning in a target space by performing a cooling operation or a heating operation. Specifically, the air conditioner 100 performs a vapor compression refrigeration cycle.
  • the air conditioner 100 has a control mode including an operation mode and an operation stop mode. The operation mode is selected when the air conditioner 100 is operated. The operation stop mode is selected when the operation of the air conditioner 100 is stopped.
  • the air conditioner 100 mainly includes an outdoor unit 10 and an indoor unit 20.
  • the outdoor unit 10 and the indoor unit 20 are connected by the refrigerant pipes P1 and P2, thereby forming a refrigerant circuit.
  • Outdoor unit 10 The outdoor unit 10 mainly includes a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an expansion valve 14, and an outdoor fan 15.
  • Compressor 11 is a mechanism that sucks low-pressure gas refrigerant, compresses it, and discharges it.
  • the compressor 11 includes, for example, a rotary type or scroll type positive compression element (not shown) accommodated in a casing (not shown), and a compressor motor 11a also accommodated in the casing as a drive source. It is a hermetic compressor driven.
  • the compressor 11 has a variable capacity.
  • the compressor motor 11a is a three-phase brushless DC motor, and includes a stator and a rotor.
  • the four-way switching valve 12 is a valve for switching the flow direction of the refrigerant when switching between the cooling operation and the heating operation.
  • the four-way switching valve 12 connects the discharge side of the compressor 11 and the gas side of the outdoor heat exchanger 13, and also connects the gas side of the indoor heat exchanger 21 (described later) and the suction side of the compressor 11. (Refer to the solid line of the four-way switching valve 12 in FIG. 1).
  • the four-way switching valve 12 connects the discharge side of the compressor 11 and the gas side of the indoor heat exchanger 21 and connects the gas side of the outdoor heat exchanger 13 and the suction side of the compressor 11. Connect (refer to the broken line of the four-way selector valve 12 in FIG. 1).
  • the outdoor heat exchanger 13 is a heat exchanger that functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation.
  • the outdoor heat exchanger 13 has a liquid side connected to the expansion valve 14 and a gas side connected to the four-way switching valve 12.
  • the expansion valve 14 depressurizes high-pressure refrigerant.
  • the expansion valve 14 is, for example, an electric valve whose opening degree is adjusted according to the operating situation.
  • the outdoor fan 15 is a blower such as a propeller fan, for example.
  • the outdoor fan 15 generates an air flow that flows into the outdoor unit 10 from the outside, passes through the outdoor heat exchanger 13, and flows out of the outdoor unit 10.
  • the outdoor fan 15 is rotationally driven using an outdoor fan motor 15a as a drive source.
  • the outdoor fan motor 15a is a three-phase brushless motor having a stator and a rotor, for example.
  • an outdoor unit controller (not shown) that controls various sensors and the operation of equipment in the outdoor unit 10.
  • the indoor unit 20 mainly includes an indoor heat exchanger 21, an indoor fan 22, and a motor driving device 30.
  • the indoor heat exchanger 21 is a heat exchanger that functions as a refrigerant evaporator during cooling operation and functions as a refrigerant condenser during heating operation.
  • the indoor heat exchanger 21 is connected to each refrigerant pipe P1, P2.
  • the indoor fan 22 is a blower such as a cross flow fan, for example.
  • the indoor fan 22 generates an air flow that flows into the indoor unit 20 from the outside, passes through the indoor heat exchanger 21, and then flows out of the indoor unit 20.
  • the indoor fan 22 is connected to the motor unit 24 of the indoor fan motor 23, and is rotationally driven using the motor unit 24 as a drive source. Details of the indoor fan motor 23 and the motor unit 24 will be described later.
  • the motor drive device 30 is a device that controls the drive of the motor unit 24.
  • the motor drive device 30 is composed of a plurality of electrical components. Details of the motor drive device 30 will be described later.
  • FIG. 2 is a schematic configuration diagram of the indoor fan motor 23 and the motor driving device 30.
  • FIG. 3 is a schematic configuration diagram of the motor drive circuit 35.
  • the indoor fan motor 23 includes a motor unit 24, an inverter unit 25, and an inverter control unit 26. That is, the indoor fan motor 23 is a so-called driver built-in motor in which the motor unit 24, the inverter unit 25, and the inverter control unit 26 are integrally configured.
  • the motor unit 24 (corresponding to “motor” and “actuator” described in claims) is a three-phase brushless DC motor, and includes a stator 241 and a rotor 242 (see FIG. 2).
  • the stator 241 includes U-phase, V-phase, and W-phase drive coils Lu, Lv, and Lw that are star-connected.
  • One ends of the drive coils Lu, Lv, and Lw are connected to drive coil terminals TU, TV, and TW of U-phase, V-phase, and W-phase wirings extending from the inverter unit 25, respectively.
  • the other ends of the drive coils Lu, Lv and Lw are connected to each other as a terminal TN.
  • These three-phase drive coils Lu, Lv, and Lw generate an induced voltage according to the rotational speed and the position of the rotor 242 as the rotor 242 rotates.
  • the rotor 242 includes a plurality of permanent magnets composed of N poles and S poles, and rotates about the rotation axis with respect to the stator 241.
  • the rotational torque of the rotor 242 is transmitted to the indoor fan 22 via an output shaft (not shown) that is on the same axis as the rotational shaft.
  • an output shaft (not shown) that is on the same axis as the rotational shaft.
  • SPM motor Surface Permanent Magnet Motor
  • IPM motor Interior Permanent Magnet Motor
  • the motor unit 24 is assumed to be a general SPM motor.
  • the inverter unit 25 (corresponding to the “output unit” in the claims) includes a plurality of insulated gate bipolar transistors (hereinafter simply referred to as “transistors”) Q3a, Q3b, Q4a, Q4b, Q5a and Q5b as switching elements. And a plurality of reflux diodes D3a, D3b, D4a, D4b, D5a, and D5b.
  • transistors insulated gate bipolar transistors
  • Transistors Q3a and Q3b, Q4a and Q4b, and Q5a and Q5b are connected to each other in series.
  • Each of the diodes D3a to D5b is connected in reverse parallel to each of the transistors Q3a to Q5b by connecting the collector terminal of the transistor and the cathode terminal of the diode and connecting the emitter terminal of the transistor and the anode terminal of the diode. It is connected.
  • the inverter unit 25 is supplied with a DC voltage Vdc from a DC voltage generator 31 (described later).
  • the inverter unit 25 is configured so that the transistors Q3a to Q5b are turned on or off at the timing determined by the inverter control unit 26, so that the drive voltages SU, SV, and SW having a desired duty (“drive” described in claims) Signal ").
  • the drive voltages SU, SV, and SW are output to the motor unit 24.
  • the drive voltage SU is output from the connection point NU between the transistors Q3a and Q3b.
  • Drive voltage SV is output from node NV between transistors Q4a and Q4b.
  • the drive voltage SW is output from the connection point NW between the transistors Q5a and Q5b. In this way, the inverter unit 25 supplies power to the motor unit 24.
  • the inverter control unit 26 (corresponding to “determining unit” described in the claims) includes, for example, a microcomputer including a RAM, a ROM, a CPU, and the like, and a switching element drive circuit.
  • the inverter control unit 26 determines the duty of the drive voltages SU, SV, and SW, and determines the on / off states of the transistors Q3a to Q5b of the inverter unit 25 based on the determined duty of the drive voltages SU, SV, and SW. Change.
  • the inverter control unit 26 functions as a motor drive unit 38 (described later) of the motor drive device 30 together with the inverter unit 25. Details of the inverter control unit 26 will be described in “(3-3-3) Motor driving unit 38” described later.
  • the motor drive device 30 is supplied with power from a commercial power supply 90 (corresponding to “power supply” described in claims).
  • the motor drive device 30 and the commercial power supply 90 are connected by a power cord via, for example, a household outlet.
  • the motor drive device 30 estimates the rotational position of the rotor based on the motor current Im that is a current flowing through the motor unit 24 and performs vector control (Field Oriented Control) on the motor unit 24.
  • the motor drive device 30 mainly includes a DC voltage generation unit 31, a voltage detection unit 34, a motor drive circuit 35, a level shifter 41, a switching unit 42, a main body control microcomputer 43, a first backflow prevention diode D6, And a second backflow prevention diode D7. Further, the motor drive device 30 includes an inverter control unit operation power source 91 (corresponding to “drive unit operation power source” described in the claims) that supplies power to the inverter control unit 26.
  • the DC voltage generation unit 31 (corresponding to “DC voltage generation unit” described in the claims) is connected in series with the commercial power supply 90 and converts the AC voltage Vac input from the commercial power supply 90 into the DC voltage Vdc. To the inverter unit 25.
  • the DC voltage generator 31 mainly includes a rectifier 32 and a smoothing capacitor 33.
  • the rectifying unit 32 rectifies the AC voltage Vac input from the commercial power supply 90 and supplies it to the smoothing capacitor 33.
  • the rectifying unit 32 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b are connected in series, and the diodes D2a and D2b are connected in series. The cathode terminals of the diodes D1a and D2a are connected to the plus side terminal of the smoothing capacitor 33 and function as the positive side output terminal of the rectifying unit 32.
  • the anode terminals of the diodes D1b and D2b are connected to the minus side terminal of the smoothing capacitor 33 and function as the negative side output terminal of the rectifying unit 32.
  • a connection point between the diodes D1a and D1b and a connection point between the diodes D2a and D2b are connected to the commercial power supply 90, respectively. That is, the connection point of the diodes D1a and D1b and the connection point of the diodes D2a and D2b each play a role of input to the rectifying unit 32.
  • the smoothing capacitor 33 has one end connected to the positive output terminal of the rectifying unit 32 and the other end connected to the negative output terminal of the rectifying unit 32.
  • the smoothing capacitor 33 smoothes the voltage rectified by the rectifying unit 32.
  • the voltage smoothed by the smoothing capacitor 33 is supplied to the inverter unit 25 connected to the subsequent stage (output side) of the smoothing capacitor 33.
  • the smoothing capacitor 33 is, for example, an electrolytic capacitor, but may be a film capacitor or the like.
  • the other end of the smoothing capacitor 33 is a reference potential (hereinafter abbreviated as GND).
  • the current supplied from the DC voltage generation unit 31 flows inside the indoor fan motor 23 (specifically, the motor unit 24 and the inverter unit 25). Therefore, the DC voltage generation unit 31 can be said to be a “power source” or a “current supply unit” for supplying current to the indoor fan motor 23.
  • (3-2) Voltage detector 34 The voltage detector 34 is connected in parallel to the smoothing capacitor 33 on the output side of the smoothing capacitor 33. That is, the voltage detection unit 34 is electrically connected to the DC voltage generation unit 31. The voltage detector 34 detects the voltage value of the DC voltage Vdc that is the voltage supplied from the DC voltage generator 31 (that is, the voltage across the smoothing capacitor 33).
  • the voltage detector 34 is configured substantially the same as a second voltage detector 36 described later, and includes, for example, two resistors connected in series with each other (not shown). The two resistors are connected in parallel to the smoothing capacitor 33 and divide the DC voltage Vdc.
  • the voltage value at the connection point of the two resistors is input to the main body control microcomputer 43 as a value obtained by multiplying the DC voltage Vdc by a predetermined voltage dividing ratio. That is, the voltage detection unit 34 can detect the value of the DC voltage Vdc by causing a current accompanying the DC voltage Vdc to flow inside the voltage detection unit 34.
  • the predetermined voltage dividing ratio is determined by the value of each resistor.
  • the motor drive circuit 35 is disposed between the DC voltage generation unit 31 and the motor unit 24.
  • the motor drive circuit 35 mainly includes a second voltage detection unit 36, a current detection unit 37, and a motor drive unit 38.
  • FIG. 4 is a schematic configuration diagram of the second voltage detector 36 and the current detector 37.
  • the second voltage detector 36 is connected in parallel to the smoothing capacitor 33 on the output side of the smoothing capacitor 33. That is, the second voltage detection unit 36 is electrically connected to the DC voltage generation unit 31.
  • the second voltage detector 36 detects the voltage value of the DC voltage Vdc that is the voltage supplied from the DC voltage generator 31 (that is, the voltage across the smoothing capacitor 33).
  • the second voltage detector 36 includes, for example, two resistors 36a and 36b connected in series with each other.
  • the resistors 36a and 36b are connected in parallel to the smoothing capacitor 33 and divide the DC voltage Vdc.
  • the voltage value at the connection point of the resistors 36a and 36b is input to the inverter control unit 26 as a value obtained by multiplying the DC voltage Vdc by a predetermined voltage dividing ratio. That is, the second voltage detection unit 36 can detect the value of the DC voltage Vdc because the current accompanying the DC voltage Vdc flows through the second voltage detection unit 36 (specifically, the resistors 36a and 36b). is there.
  • the predetermined voltage dividing ratio is determined by the values of the resistors 36a and 36b.
  • the current detection unit 37 is connected to the negative output terminal side of the smoothing capacitor 33 between the smoothing capacitor 33 and the inverter unit 25.
  • the current detection unit 37 detects the motor current Im flowing through the motor unit 24 after the indoor fan motor 23 (motor unit 24) is started.
  • the current detection unit 37 includes, for example, a shunt resistor 37a and an amplifier circuit 37b (see FIG. 4).
  • the shunt resistor 37a is disposed on the GND wiring L1 connected to the negative output terminal of the smoothing capacitor 33.
  • the amplifier circuit 37b is a circuit including an operational amplifier that amplifies the voltage across the shunt resistor 37a at a predetermined magnification.
  • the amplifier circuit 37 b has an input portion connected to both ends of the shunt resistor 37 a and an output portion connected to the inverter control unit 26.
  • the current detection unit 37 can detect the motor current Im by detecting the voltage across the shunt resistor 37a associated with the motor current Im.
  • the GND wiring L1 is a power supply line that connects the ground side (low potential side) of the motor drive unit 38 (inverter control unit 26 described later) and the DC voltage generation unit 31.
  • the motor drive unit 38 (corresponding to the “drive unit” described in the claims) is disposed between the DC voltage generation unit 31 and the motor unit 24.
  • the motor drive unit 38 generates drive voltages SU, SV, and SW that are three-phase AC voltages for driving the motor unit 24 and outputs them to the motor unit 24.
  • the motor drive unit 38 generates drive voltages SU, SV, and SW based on a rotor position sensorless system using predetermined parameters.
  • the rotor position sensorless system is a winding resistance, inductance component, induced voltage, number of poles, voltage value of DC voltage Vdc, motor current Im (detection result of current detection unit 37), a predetermined mathematical model, etc. Is used to estimate the position of the rotor 242, estimate the rotational speed, perform PI control on the rotational speed, and perform PI control on the motor current Im.
  • the motor drive unit 38 mainly includes the inverter unit 25 and the inverter control unit 26 described above.
  • the inverter unit 25 is connected to the output side of the smoothing capacitor 33.
  • the inverter unit 25 is supplied with a DC voltage Vdc.
  • the inverter control unit 26 is connected to an inverter control unit operating power supply 91 and is supplied with a power supply voltage V1.
  • the power supply voltage V1 is, for example, 15V, but can be appropriately changed according to the rated voltage of the inverter control unit 26.
  • the inverter control unit 26 is electrically connected to the main body control microcomputer 43.
  • the inverter control unit 26 determines the drive voltages SU, SV, and SW output from the inverter unit 25 based on the operation command (rotational speed command) sent from the main body control microcomputer 43.
  • the inverter control unit 26 activates the motor unit 24 by a DC excitation method or a forced drive method.
  • the direct current excitation method is a method in which the position of the rotor 242 is temporarily fixed at a predetermined position by performing direct current energization to the motor unit 24, and the driving of the motor unit 24 is started from the state where the rotor 242 is fixed. It is.
  • the forcible driving method forces the motor unit 24 by forcibly energizing the motor unit 24 with drive voltages SU, SV, and SW having a predetermined voltage value and frequency regardless of the position of the rotor 242. It is a method to start up automatically.
  • the inverter control unit 26 estimates the position of the rotor 242 after the motor unit 24 is started, and estimates the rotational speed of the motor unit 24 based on the estimated position of the rotor 242.
  • the rotation number of the motor unit 24 estimated by the inverter control unit 26 is sent to the main body control microcomputer 43 as a rotation number signal.
  • the inverter control unit 26 receives an operation command / operation stop command (rotational speed command) sent from the main body control microcomputer 43, and estimates the position of the rotor 242, the estimated rotational speed, and the voltage value of the DC voltage Vdc. And the duty of drive voltage SU, SV, and SW is determined using the current value of motor current Im, and the like.
  • the inverter control unit 26 changes the on / off states of the transistors Q3a to Q5b of the inverter unit 25 based on the determined duty of the drive voltages SU, SV, and SW. Specifically, the inverter control unit 26 uses the gate control voltage Gu via the switching element drive circuit so that the drive voltages SU, SV, and SW having the determined duty are output from the inverter unit 25 to the motor unit 24. , Gx, Gv, Gy, Gw and Gz are generated and supplied to the gate terminals of the transistors Q3a, Q3b, Q4a, Q4b, Q5a and Q5b, respectively.
  • Level shifter 41 The level shifter 41 is connected in parallel to the smoothing capacitor 33 and supplied with the voltage across the smoothing capacitor 33 (that is, the DC voltage Vdc). The output of the level shifter 41 is connected to the main body control microcomputer 43.
  • the level shifter 41 converts the DC voltage Vdc supplied from the DC voltage generator 31 into a predetermined power supply voltage V2. For example, the level shifter 41 converts a DC voltage Vdc of 280V into a power supply voltage V2 of 5V.
  • the level shifter 41 supplies the converted power supply voltage V2 to the main body control microcomputer 43. That is, the level shifter 41 functions as a power source for the main body control microcomputer 43.
  • the power supply voltage V2 can be changed as appropriate according to the rated voltage of the main body control microcomputer 43.
  • the power supply voltage V2 has the same GND as Vdc.
  • the switching unit 42 is an electrical component for switching between conduction and interruption of the GND wiring L1 (a power line connecting the inverter unit 25 and the DC voltage generation unit 31). In other words, the switching unit 42 plays a role of a switch that switches between conduction and interruption of the GND wiring L1.
  • the switching unit 42 is arranged on the GND wiring L ⁇ b> 1 between the DC voltage generation unit 31 and the inverter unit 25.
  • the switching unit 42 is composed of, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) which is a kind of semiconductor switch. Specifically, the switching unit 42 switches to an on state when the potential of the gate terminal is equal to or higher than a predetermined value with respect to the potential of the source terminal, and turns off when the potential is lower than the predetermined value with respect to the potential of the source terminal. It is configured to switch to a state.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the main body control microcomputer 43 (corresponding to “drive control unit”, “switching control unit”, “overall control unit” described in the claims) is a microcomputer composed of a RAM, a ROM, a CPU, and the like.
  • the main body control microcomputer 43 has a timer function and can measure time.
  • the main body control microcomputer 43 controls a plurality of devices included in the air conditioner 100 (specifically, the compressor 11, the four-way switching valve 12, the outdoor fan 15, the indoor fan 22, and the like). Function as.
  • the main body control microcomputer 43 is supplied with the power supply voltage V ⁇ b> 2 from the level shifter 41.
  • the main body control microcomputer 43 is connected to the inverter control unit 26, the switching unit 42, a remote controller (not shown), the outdoor unit control unit, and the like.
  • the main body control microcomputer 43 receives the detection result of the voltage detector 34.
  • the main body control microcomputer 43 outputs an activation instruction for the compressor motor 11a and the outdoor fan motor 15a when an instruction to start operation is given from the remote controller. Further, the main body control microcomputer 43 monitors a rotation speed signal indicating the rotation speed of the motor unit 24 and outputs an operation command including the rotation speed command to the inverter control unit 26. The main body control microcomputer 43 outputs an instruction to stop driving the compressor motor 11a and the outdoor fan motor 15a when an instruction to stop the operation is given from the remote controller. In addition, the main body control microcomputer 43 outputs an operation stop command for stopping the operation of the motor unit 24 to the inverter control unit 26. In other words, the main body control microcomputer 43 can be said to be a drive control unit that controls operations of the indoor fan motor 23 and the motor drive unit 38.
  • the main body control microcomputer 43 controls the operation of the switching unit 42 by supplying and shutting off the switching unit driving power Vsw to the switching unit 42. Specifically, the main body control microcomputer 43 supplies the switching unit driving power source Vsw to turn on the switching unit 42 in the operation mode in which the indoor fan motor 23 (motor unit) is driven. Thereby, in the operation mode, the GND wiring L1 is made conductive. In other words, the main body control microcomputer 43 can be said to be a switching control unit that controls the operation of the switching unit 42. It should be noted that the switching unit driving power supply Vsw is directly output from the main body control microcomputer 43 to the gate terminal of the switching unit 42, or a switching circuit driving power supply Vsw is provided from the driving circuit (not shown). Is output to the gate terminal of the switching unit 42 so that the switching unit 42 can be controlled.
  • the main body control microcomputer 43 is in the room when the switching unit 42 is in the on state (that is, when the GND wiring L1 is conductive).
  • the supply of the switching unit driving power source Vsw is cut off and the switching unit 42 is turned off.
  • the main body control microcomputer 43 stops the operation of the inverter unit 25 when the indoor fan motor 23 (motor unit) is in a driving state when the DC voltage Vdc is in an overvoltage state (that is, the driving voltages SU, SV). And an operation stop command to stop the output of the SW are output to the inverter control unit 26.
  • all the switching elements (transistors Q3a to Q5b) in the inverter unit 25 are turned off, and the voltage supplied to each switching element is suppressed as compared with the case where any of the transistors Q3a to Q5b is in the on state.
  • the “overvoltage state” is a state in which the DC voltage Vdc is equal to or greater than the third threshold value ⁇ Th3 or the DC voltage Vdc is equal to or greater than the first threshold value ⁇ Th1 and less than the third threshold value ⁇ Th3 for a predetermined time T1.
  • the main body control microcomputer 43 determines that the DC voltage Vdc changes from a state below the first threshold value ⁇ Th1 to a state above the first threshold value ⁇ Th1.
  • the supply of the switching unit driving power source Vsw is immediately cut off, and if the DC voltage Vdc is less than the third threshold value ⁇ Th3, the third threshold value ⁇ Th1 is exceeded.
  • the state less than the threshold value ⁇ Th3 continues for a predetermined time T1
  • the supply of the switching unit driving power source Vsw is cut off.
  • the DC voltage Vdc is equal to or greater than the third threshold value ⁇ Th3, the GND wiring L1 is immediately cut off.
  • the state of the first threshold value ⁇ Th1 or greater and less than the third threshold value ⁇ Th3 is maintained for a predetermined time.
  • the GND wiring L1 is cut off.
  • the timing at which the GND wiring L1 is cut off is variable in accordance with the steepness of the increase in the voltage value of the DC voltage Vdc.
  • the first threshold value ⁇ Th1, the third threshold value ⁇ Th3, and the predetermined time T1 for example, when the AC voltage Vac of the commercial power supply 90 is 200V and the DC voltage Vdc is 280V, the first threshold value ⁇ Th1 is 400V, The 3 threshold value ⁇ Th3 is set to 450V, and the predetermined time T1 is set to 1 sec. Note that the first threshold value ⁇ Th1, the third threshold value ⁇ Th3, and the predetermined time T1 are not limited to these values, and can be appropriately changed according to the installation environment of the motor driving device 30, the rated power, the withstand voltage of the inverter unit 25, and the like. is there.
  • the main body control microcomputer 43 stops the operation of the inverter unit 25 (that is, the drive voltage SU) when the indoor fan motor 23 (motor unit) is in a driving state when the DC voltage Vdc is close to an overvoltage. , Stop the output of SV and SW) to the inverter control unit 26.
  • a state close to an overvoltage indicates a time when the DC voltage Vdc is in a state equal to or higher than the second threshold value ⁇ Th2.
  • the second threshold value ⁇ Th2 is set to a value smaller than the first threshold value ⁇ Th1 and the third threshold value ⁇ Th3. That is, each threshold has a relationship of ⁇ Th2 ⁇ Th1 ⁇ Th3. That is, when the DC voltage Vdc is equal to or higher than the second threshold value ⁇ Th2 that is lower than the first threshold value ⁇ Th1, the main body control microcomputer 43 issues an operation stop command for stopping the output of the drive voltages SU, SV, and SW to the inverter control unit 26. Output.
  • the second threshold value ⁇ Th2 is set to 375V.
  • the second threshold value ⁇ Th2 can be appropriately changed according to the installation environment of the motor drive device 30, the rated power, the withstand voltage of the inverter unit 25, and the like.
  • the main body control microcomputer 43 cuts off the supply of the switching unit driving power source Vsw and turns off the switching unit 42.
  • the first backflow prevention diode D6 (corresponding to the “first diode” in the claims) is disposed between the motor drive circuit 35 and the main body control microcomputer 43. More specifically, the first backflow prevention diode D6 is arranged between the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43. The first backflow prevention diode D6 suppresses a current from flowing from the DC voltage generation unit 31 to the main body control microcomputer 43 via the motor drive unit 38 (inverter control unit 26) when the DC voltage Vdc is in an overvoltage state. It is arranged for this purpose.
  • the main body control microcomputer 43 connects the ground side (low potential side) of the inverter unit 25 and the DC voltage generation unit 31 when the DC voltage Vdc is in an overvoltage state.
  • the GND wiring L1 is cut off.
  • the potential in the motor drive unit 38 inverter control unit 26
  • the inverter control unit 26 becomes higher than the potential in the main body control microcomputer 43. Therefore, if no means for interrupting the current flowing from the DC voltage generator 31 to the main body control microcomputer 43 via the inverter control unit 26 is provided, the inverter control unit 26 and the main body control when the DC voltage Vdc is in an overvoltage state.
  • the microcomputer 43 may be destroyed.
  • the first backflow prevention diode D6 is disposed between the inverter control unit 26 and the main body control microcomputer 43.
  • Second backflow prevention diode D7 The second backflow prevention diode D7 (corresponding to the “second diode” in the claims) is arranged between the motor drive unit 38 (inverter control unit 26) and the inverter control unit operating power supply 91. .
  • the second backflow prevention diode D7 when the DC voltage Vdc is in an overvoltage state, a current flows from the DC voltage generating unit 31 to the inverter control unit operating power source 91 via the motor driving unit 38 (inverter control unit 26). It is arranged to suppress this.
  • the potential in the motor drive unit 38 (inverter control unit 26) is higher than the potential of the power supply 91 for operating the inverter control unit. Become. Therefore, if no means for interrupting the current flowing from the DC voltage generating unit 31 to the inverter control unit operating power supply 91 via the inverter control unit 26 is provided, the inverter control unit 26 when the DC voltage Vdc is in an overvoltage state. In addition, the inverter control unit operation power supply 91 may be destroyed. In order to suppress such a situation, in the motor drive device 30, the second backflow prevention diode D7 is disposed between the inverter control unit 26 and the inverter control unit operating power supply 91.
  • FIG. 5 is a flowchart showing an example of a control flow of the main body control microcomputer 43.
  • the main body control microcomputer 43 determines whether or not the DC voltage Vdc is less than the first threshold value ⁇ Th1 in step S101. If the determination is NO (that is, if the DC voltage Vdc is greater than or equal to the first threshold value ⁇ Th1), the determination is repeated in step S101. On the other hand, when the determination is YES (that is, when the DC voltage Vdc is less than the first threshold value ⁇ Th1), the process proceeds to step S102.
  • step S102 the main body control microcomputer 43 supplies the switching unit driving power source Vsw to the switching unit 42. As a result, the switching unit 42 is switched on, and the GND wiring L1 becomes conductive. Thereafter, the process proceeds to step S103.
  • step S103 the main body control microcomputer 43 determines whether or not the DC voltage Vdc is less than the second threshold value ⁇ Th2.
  • the determination is NO (that is, when the DC voltage Vdc is greater than or equal to the second threshold value ⁇ Th2)
  • the process returns to step S101.
  • the determination is YES (that is, when the DC voltage Vdc is less than the second threshold value ⁇ Th2)
  • the process proceeds to step S104.
  • step S104 the main body control microcomputer 43 outputs an operation command to the inverter control unit 26.
  • the inverter control unit 26 outputs the gate control voltages Gu to Gz to the gate terminals of the transistors Q3a to Q5b, respectively, and the motor unit 24 and the inverter unit 25 are driven. Thereafter, the process proceeds to step S105.
  • step S105 the main body control microcomputer 43 determines whether or not the DC voltage Vdc is less than the third threshold value ⁇ Th3.
  • the determination is NO (that is, when the DC voltage Vdc is greater than or equal to the third threshold value ⁇ Th3)
  • the process proceeds to step S106.
  • the determination is YES (that is, when the DC voltage Vdc is less than the third threshold value ⁇ Th3)
  • the process proceeds to step S107.
  • step S106 the main body control microcomputer 43 cuts off the supply of the switching unit driving power source Vsw to the switching unit 42. Thereby, the switching part 42 switches to an OFF state, and the GND wiring L1 is interrupted
  • the main body control microcomputer 43 outputs an operation stop command to the inverter control unit 26 (however, when the motor unit 24 and the inverter unit 25 have already stopped operating, the main body control microcomputer 43 outputs the operation stop command. Is not output). Thereby, the output of the gate control voltages Gu to Gz is stopped, and the motor unit 24 and the inverter unit 25 stop driving. Then, it returns to step S101.
  • step S107 the main body control microcomputer 43 determines whether or not the DC voltage Vdc is equal to or higher than the first threshold value ⁇ Th1.
  • the determination is NO (that is, when the DC voltage Vdc is less than the first threshold value ⁇ Th1)
  • the process proceeds to step S108.
  • the determination is YES (that is, when the DC voltage Vdc is greater than or equal to the first threshold value ⁇ Th1)
  • the process proceeds to step S110.
  • step S108 the main body control microcomputer 43 determines whether or not the DC voltage Vdc is greater than or equal to the second threshold value ⁇ Th2.
  • the determination is NO (that is, when the DC voltage Vdc is less than the second threshold value ⁇ Th2)
  • the process returns to step S104.
  • the determination is YES (that is, when the DC voltage Vdc is equal to or greater than the second threshold value ⁇ Th2)
  • the process proceeds to step S109.
  • step S109 the main body control microcomputer 43 outputs an operation stop command to the inverter control unit 26 (however, if the motor unit 24 and the inverter unit 25 have already stopped operating, the main body control microcomputer 43 operates Stop command is not output). As a result, the output of the gate control voltages Gu to Gz is stopped, and the motor unit 24 and the inverter unit 25 stop operating. Thereafter, the process returns to step S105.
  • step S110 the main body control microcomputer 43 outputs an operation stop command to the inverter control unit 26 (however, when the motor unit 24 and the inverter unit 25 have already stopped operating, the main body control microcomputer 43 operates Stop command is not output). As a result, the output of the gate control voltages Gu to Gz is stopped, and the motor unit 24 and the inverter unit 25 stop operating. Further, the main body control microcomputer 43 starts measuring time (however, if time measurement has already been started, counting is continued). Thereafter, the process proceeds to step S111. The main body control microcomputer 43 stops measuring time and resets the counter in step S106, step S108, or step S112.
  • step S111 the main body control microcomputer 43 determines whether or not the measurement time at which the counting is started in step S110 is equal to or longer than the predetermined time T1. If the determination is NO (that is, if the measurement time is less than the predetermined time T1), the process returns to step S105. On the other hand, when the determination is YES (that is, when the measurement time is equal to or longer than the predetermined time T1), the process proceeds to step S112.
  • step S112 the main body control microcomputer 43 cuts off the supply of the switching unit driving power source Vsw to the switching unit 42. Thereby, the switching part 42 switches to an OFF state, and the GND wiring L1 is interrupted
  • FIGS. 6 and 7 are timing charts showing an example of changes in the states of the motor unit 24 and the switching unit 42.
  • FIG. 6 and 7 are timing charts showing an example of changes in the states of the motor unit 24 and the switching unit 42.
  • period A the motor unit 24 is in a stopped state and the switching unit 42 is in an off state.
  • period B in response to the input of the operation start instruction, the air conditioner 100 transitions to the operation mode and enters the operation state. Further, in response to the DC voltage Vdc being less than the first threshold value ⁇ Th1 and less than the second threshold value ⁇ Th2, the switching unit 42 is turned on, the GND wiring L1 is conducted, and the motor unit 24 is driven. .
  • the motor unit 24 is stopped in response to the DC voltage Vdc becoming equal to or higher than the second threshold value ⁇ Th2. Note that, since the DC voltage Vdc is less than the first threshold value ⁇ Th1, the switching unit 42 remains on.
  • the motor unit 24 is driven in response to the DC voltage Vdc becoming less than the second threshold value ⁇ Th2. Note that, since the DC voltage Vdc is less than the first threshold value ⁇ Th1, the switching unit 42 remains on.
  • the motor unit 24 is stopped in response to the DC voltage Vdc being equal to or higher than the second threshold value ⁇ Th2. Further, in response to the DC voltage Vdc becoming equal to or greater than the third threshold value ⁇ Th3 (that is, equal to or greater than the first threshold value ⁇ Th1), the switching unit 42 is turned off and the GND wiring L1 is rendered non-conductive. In other words, in the period E, the main body control microcomputer 43 switches to disconnect the GND wiring L1 when the DC voltage Vdc is in an overvoltage state in which the DC voltage Vdc is equal to or greater than the third threshold value ⁇ Th3 (that is, equal to or greater than the first threshold value ⁇ Th1). Control is performed to switch the unit 42 to the OFF state.
  • the switching unit 42 in response to the DC voltage Vdc becoming less than the first threshold value ⁇ Th1, the switching unit 42 is turned on and the GND wiring L1 is conducted.
  • the main body control microcomputer 43 performs control to switch the switching unit 42 to the on state so as to make the GND wiring L1 conductive.
  • the motor unit 24 since the DC voltage Vdc is equal to or higher than the second threshold value ⁇ Th2, the motor unit 24 remains stopped.
  • the motor unit 24 is driven in response to the DC voltage Vdc becoming less than the second threshold value ⁇ Th2. Note that, since the DC voltage Vdc is less than the first threshold value ⁇ Th1, the switching unit 42 remains on.
  • the motor unit 24 is stopped in response to the DC voltage Vdc being equal to or higher than the first threshold value ⁇ Th1 (that is, equal to or higher than the second threshold value ⁇ Th2).
  • the switching unit 42 is turned off and the GND wiring L1 is turned off.
  • the main body control microcomputer 43 stops driving the motor unit 24 (that is, outputs the drive voltages SU, SV, and SW by the inverter control unit 26) when the DC voltage Vdc is equal to or higher than the first threshold value ⁇ Th1. It can be said that the operation of the switching unit 42 is controlled so that the GND wiring L1 is cut off after a predetermined time T1 has elapsed.
  • period I in response to the DC voltage Vdc becoming less than the first threshold value ⁇ Th1, the switching unit 42 is turned on and the GND wiring L1 becomes conductive. Further, in response to the direct current voltage Vdc becoming less than the second threshold value ⁇ Th2, the motor unit 24 is driven. Thereafter, in response to the input of the operation stop instruction, the air conditioner 100 transitions to the operation stop mode and enters the operation stop state. In addition, the motor unit 24 is stopped, the switching unit 42 is turned off, and the GND wiring L1 is turned off.
  • the switching unit 42 is disposed on the GND wiring L1 that connects the ground side (low potential side) of the motor driving unit 38 (inverter control unit 26) and the DC voltage generating unit 31 to the DC voltage Vdc. Control is performed so as to switch between conduction and interruption of the GND wiring L1 in accordance with the voltage value. Thereby, when the DC voltage Vdc is in an overvoltage state, the GND wiring L1 is cut off.
  • the first backflow prevention diode D6 is disposed between the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43, and when the GND wiring L1 is cut off, the inverter control unit 26 is used. It is suppressed that a current flows from the DC voltage generator 31 to the main body control microcomputer 43. Thus, the inverter control unit 26 and the main body control microcomputer 43 are protected when the DC voltage Vdc is in an overvoltage state.
  • the second backflow prevention diode D7 is disposed between the motor drive unit 38 (inverter control unit 26) and the inverter control unit operating power supply 91, and when the GND wiring L1 is cut off, the inverter It is suppressed that a current flows from the DC voltage generation unit 31 to the inverter control unit operating power source 91 via the control unit 26. As a result, when the DC voltage Vdc is in an overvoltage state, the inverter control unit 26 and the inverter control unit operating power supply 91 are protected.
  • the main body control microcomputer 43 causes the inverter control unit 26 to stop outputting the drive voltages SU, SV, and SW when the DC voltage Vdc is equal to or higher than the second threshold value ⁇ Th2 that is lower than the first threshold value ⁇ Th1.
  • a stop command is sent.
  • the DC voltage Vdc is close to an overvoltage
  • the current supplied to the indoor fan motor 23 can be cut off.
  • the motor drive unit 38 inverter control unit 26
  • the main body control microcomputer 43 determines that the DC voltage Vdc is changed when the DC voltage Vdc changes from a state less than the first threshold value ⁇ Th1 to a state equal to or higher than the first threshold value ⁇ Th1 when the motor unit 24 is driven. Is immediately greater than the third threshold value ⁇ Th3 higher than the first threshold value ⁇ Th1, the switching unit driving power supply Vsw is immediately cut off, and if the DC voltage Vdc is less than the third threshold value ⁇ Th3, the third threshold value ⁇ Th3 is greater than or equal to the first threshold value ⁇ Th1. When the state less than the predetermined time T1 continues, the supply of the switching unit driving power source Vsw is cut off.
  • the GND wiring L1 is immediately cut off.
  • the timing at which the GND wiring L1 is cut off is variable according to the steepness of the voltage value increase of the DC voltage Vdc.
  • the motor drive unit 38 includes the inverter unit 25 including a plurality of switching elements (transistors Q3a to Q5b) and the inverter control unit 26. Moreover, the motor part 24 is comprised integrally with the inverter part 25 and the inverter control part 26 (that is, the indoor fan motor 23 is an inverter built-in motor). In the said embodiment, in that case, security is improving.
  • the actuator whose drive is controlled is the motor unit 24 of the indoor fan motor 23 that is a drive source of the indoor fan 22 included in the air conditioner 100.
  • the main body control microcomputer 43 which controls the some apparatus contained in the air conditioner 100 centrally is provided.
  • the main body control microcomputer 43 controls the inverter control unit 26 and the switching unit 42 in an integrated manner. In the said embodiment, in that case, security is improving.
  • the indoor fan motor 23 was an inverter built-in motor with which the motor part 24, the inverter part 25, and the inverter control part 26 were comprised integrally.
  • the indoor fan motor 23 is not necessarily an inverter built-in motor. That is, the indoor fan motor 23 may be a motor that does not include either the inverter unit 25 or the inverter control unit 26, or may be a motor that includes only the motor unit 24 and does not include an inverter.
  • the indoor fan motor 23 (motor unit 24) is a general SPM motor, but is not necessarily limited thereto, and may be another type of motor.
  • the motor unit 24 may be an IPM motor.
  • the motor driving device 30 is used as a device for driving and controlling the motor unit 24 of the indoor fan motor 23 that is a driving source of the indoor fan 22 .
  • the drive target of the motor drive device 30 is not limited to the motor unit 24 of the indoor fan motor 23, and may be the compressor motor 11a or the outdoor fan motor 15a.
  • the motor driving device 30 may be used as a driving device for a compressor motor, a pump motor, an outdoor fan motor, or the like included in another heat pump device such as a water heater, instead of the air conditioner 100.
  • the DC voltage generation unit 31 is configured to be supplied with power from the commercial power supply 90 and generate the DC voltage Vdc.
  • the present invention is not limited to this, and the DC voltage generation unit 31 may be configured to be supplied with power from another appropriate power source that is not the commercial power source 90.
  • the commercial power supply 90 supplies the AC voltage Vac.
  • the commercial power supply 90 may supply the DC voltage Vdc instead of the AC voltage Vac.
  • the DC voltage generator 31 may be omitted, and the commercial power supply 90 may be configured to function as a “power supply” and a “DC voltage generator”.
  • the voltage detection unit 34 and the second voltage detection unit 36 are electrically connected to the DC voltage generation unit 31 and detect the voltage value of the DC voltage Vdc supplied from the DC voltage generation unit 31. It was. However, the present invention is not limited to this, and the voltage detector 34 or the second voltage detector 36 is electrically connected to the commercial power supply 90 so as to detect the voltage value of the AC voltage Vac supplied from the commercial power supply 90. It may be configured. In such a case, the inverter control unit 26 or the main body control microcomputer 43 estimates the voltage value of the DC voltage Vdc based on the voltage value of the AC voltage Vac output from the voltage detection unit 34 or the second voltage detection unit 36.
  • the second voltage detector 36 and the current detector 37 are arranged in the motor drive circuit 35.
  • the second voltage detector 36 or the current detector 37 is not necessarily arranged in the motor drive circuit 35, and may be arranged between the DC voltage generator 31 and the motor drive circuit 35.
  • the switching unit 42 is configured by a MOSFET.
  • the configuration of the switching unit 42 according to the present invention is not limited to the MOSFET.
  • the switching unit 42 may be another semiconductor switch such as an IGBT (Insulated Gate Bipolar Transistor) or a solid state relay, or an electromagnetic relay.
  • IGBT Insulated Gate Bipolar Transistor
  • solid state relay or an electromagnetic relay.
  • a drive circuit for operating the switching unit 42 is provided depending on the type of switch as the switching unit 42.
  • the switching unit 42 is controlled to be switched between the on and off states by the main body control microcomputer 43.
  • the switching unit 42 is not limited to this, and the switching of the on / off state may be controlled by another control unit.
  • the inverter control unit 26 of the motor driving unit 38 is supplied with the power supply voltage V1 from the inverter control unit operating power supply 91.
  • the motor drive device 30 may be configured as a motor drive device 30a shown in FIG.
  • the motor drive device 30a will be described. Note that a description of portions common to the motor drive device 30 is omitted.
  • FIG. 8 is a schematic configuration diagram of the motor drive device 30a.
  • the inverter control unit operating power supply 91 and the second backflow prevention diode D7 are omitted, and in addition to the level shifter 41, the second level shifter 41a (" Corresponding to “Driver Operation Power Supply”).
  • the second level shifter 41a is an insulated power source, and includes a primary side coil and a secondary side coil that is electrically separated from the primary side coil.
  • the second level shifter 41a outputs a DC voltage rectified and smoothed from the output of the secondary coil.
  • the second level shifter 41a is connected in parallel to the smoothing capacitor 33, and is supplied with the voltage across the smoothing capacitor 33 (that is, the DC voltage Vdc).
  • the output of the second level shifter 41a is connected to the inverter control unit 26.
  • the second level shifter 41a is connected to a switching element (not shown) in series with the primary side coil.
  • the DC voltage Vdc is supplied to the primary coil when the switching element is switched on, and the DC voltage Vdc is not supplied to the primary coil when the switching element is off.
  • the second level shifter 41a when the switching element is repeatedly turned on and off, an AC voltage is generated in the secondary coil, power is transmitted, and a rectified and smoothed DC voltage is output.
  • the second level shifter 41a converts the DC voltage Vdc supplied from the DC voltage generator 31 into the power supply voltage V1.
  • the second level shifter 41a converts the DC voltage Vdc of 280V into the power supply voltage V1 of 15V.
  • the second level shifter 41a supplies the converted power supply voltage V1 to the inverter control unit 26. That is, the second level shifter 41 a functions as a power source for the inverter control unit 26.
  • the power supply voltage V1 can be appropriately changed according to the rated voltage of the inverter control unit 26.
  • the potential in the motor drive unit 38 (inverter control unit 26) becomes higher than the potential of the second level shifter 41a. Therefore, if no means for interrupting the current flowing from the DC voltage generator 31 to the second level shifter 41a via the inverter controller 26 is provided, the inverter controller 26 and the second controller when the DC voltage Vdc is in an overvoltage state.
  • the level shifter 41a may be destroyed.
  • the second backflow prevention diode D7 is omitted, while the second level shifter 41a is an insulated power source.
  • the current is suppressed from flowing from the DC voltage generation unit 31 to the second level shifter 41a via the inverter control unit 26, and the inverter control unit 26 and the second level shifter 41a are Protected.
  • the first backflow prevention diode D6 is disposed between the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43.
  • the motor drive device 30 may be configured as a motor drive device 30b shown in FIG.
  • the motor drive device 30b will be described. Note that a description of portions common to the motor drive device 30 is omitted.
  • FIG. 9 is a schematic configuration diagram of the motor drive device 30b.
  • an insulation circuit 50 is provided between the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43 instead of the first backflow prevention diode D6. ing.
  • the main body control microcomputer 43 outputs an operation command to the inverter control unit 26 via the insulation circuit 50 (photocoupler 51).
  • a photocoupler 51 is disposed as an insulating element that insulates the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43.
  • the photocoupler 51 includes a light emitting diode 51a and a phototransistor 51b.
  • the light emitting diode 51a has an anode side connected to the main body control microcomputer 43 via a resistor 44 and a cathode side connected to the ground.
  • the phototransistor 51b has a collector terminal connected to the power supply Vcc via the resistor 50a and an emitter terminal connected to the inverter control unit 26.
  • the main body control microcomputer 43 When the main body control microcomputer 43 does not supply voltage to the light emitting diode 51a, the light emitting diode 51a does not emit light and the phototransistor 51b is non-conductive.
  • the main body control microcomputer 43 supplies a voltage to the light emitting diode 51a, the light emitting diode 51a emits light and the phototransistor 51b becomes conductive.
  • the main body control microcomputer 43 cuts off the GND wiring L1 that connects the ground side (low potential side) of the inverter 25 and the DC voltage generator 31 when the DC voltage Vdc is in an overvoltage state. To do.
  • the GND wiring L1 is cut off, the potential in the motor drive unit 38 (inverter control unit 26) becomes higher than the potential in the main body control microcomputer 43. Therefore, if no means for interrupting the current flowing from the DC voltage generator 31 to the main body control microcomputer 43 via the inverter control unit 26 is provided, the inverter control unit 26 and the main body control when the DC voltage Vdc is in an overvoltage state.
  • the microcomputer 43 may be destroyed. In order to suppress such a situation, in the motor drive device 30, the insulation circuit 50 is disposed between the main body control microcomputer 43 and the inverter control unit 26.
  • the photocoupler 51 is arranged as an insulation element in the insulation circuit 50.
  • the insulation element arranged in the insulation circuit 50 is not limited to the photocoupler, and the motor drive unit 38 (inverter control) As long as the part 26) and the main body control microcomputer 43 can be insulated, other insulating elements may be arranged.
  • the inverter control unit 26 of the motor driving unit 38 is supplied with the power supply voltage V1 from the power source 91 for operating the inverter control unit.
  • the motor drive device 30b may be configured as a motor drive device 30c shown in FIG.
  • the power supply 91 for operating the inverter control unit and the second backflow prevention diode D7 are omitted, and a second level shifter 41a is provided in addition to the level shifter 41. Even in such a configuration, the object of the present invention can be achieved.
  • the main body control microcomputer 43 controls a plurality of devices included in the air conditioner 100 (specifically, the compressor 11, the four-way switching valve 12, the outdoor fan 15, the indoor fan 22, and the like). It functioned as a general control unit to control.
  • the present invention is not limited to this, and a device control unit (not shown) that controls devices other than the indoor fan 22 is provided separately, and the device control unit performs control related to devices other than the indoor fan 22 performed by the main body control microcomputer 43. You may comprise so that it may be performed.
  • the main body control microcomputer 43 is in a state where the DC voltage Vdc is equal to or greater than the third threshold value ⁇ Th3 or the DC voltage Vdc is equal to or greater than the first threshold value ⁇ Th1 and less than the third threshold value ⁇ Th3 for a predetermined time T1. At that time, it is assumed that the DC voltage Vdc is in an overvoltage state, and the switching unit 42 is switched to the OFF state to control the GND wiring L1 to be non-conductive.
  • the main body control microcomputer 43 does not necessarily need to consider the third threshold value ⁇ Th3 when performing the control. That is, the main body control microcomputer 43 considers that the DC voltage Vdc is in an overvoltage state when the DC voltage Vdc is equal to or higher than the first threshold value ⁇ Th1, and cuts off the supply of the switching unit driving power source Vsw and switches the switching unit 42. Alternatively, the control may be performed in place of the above-described control so that the GND line L1 is turned off by switching to the off state.
  • FIG. 11 description of parts common to FIG. 5 is omitted.
  • FIG. 11 is a flowchart showing an example of the control flow of the main body control microcomputer 43. Steps S201 to S204 in FIG. 11 are common to steps S101 to S104 in FIG. Steps S206 and S207 are common to steps S108 and S109 in FIG. Step S208 is common to step S106 in FIG. In FIG. 11, steps S105, S110, S111 and S112 in FIG. 5 are omitted.
  • step S205 the main body control microcomputer 43 determines whether or not the DC voltage Vdc is equal to or higher than the first threshold value ⁇ Th1.
  • the determination is NO (that is, when the DC voltage Vdc is less than the first threshold value ⁇ Th1)
  • the process proceeds to step S206.
  • the determination is YES (that is, when the DC voltage Vdc is greater than or equal to the first threshold value ⁇ Th1)
  • the process proceeds to step S208.
  • the object of the present invention can also be achieved by the main body control microcomputer 43 performing control according to the flow shown in FIG.
  • the main body control microcomputer 43 does not necessarily need to consider the second threshold value ⁇ Th2 when performing the above control. That is, when the DC voltage Vdc is equal to or higher than the first threshold value ⁇ Th1, the main body control microcomputer 43 switches the switching unit 42 to the OFF state and sets the GND wiring L1 to be non-conductive, assuming that the DC voltage Vdc is in an overvoltage state.
  • an operation stop command may be output to the inverter control unit 26 to perform control to stop driving of the motor unit 24.
  • FIG. 12 the description of the same parts as in FIG. 11 is omitted.
  • FIG. 12 is a flowchart showing an example of a control flow of the main body control microcomputer 43. Steps S301 and S303 in FIG. 12 are common to step S201 in FIG. Further, step S304 in FIG. 12 is common to step S208 in FIG. In FIG. 12, the processes of steps S203, S206, and S207 in FIG. 11 are omitted.
  • step S301 if the determination is NO (that is, if the DC voltage Vdc is greater than or equal to the first threshold value ⁇ Th1), the process returns to step S301. On the other hand, if the determination is YES (that is, if the DC voltage Vdc is less than the first threshold value ⁇ Th1), the process proceeds to step S302.
  • step S302 the main body control microcomputer 43 supplies the switching unit driving power source Vsw to the switching unit 42 (if the supply of the switching unit driving power source Vsw has already been started, the supply is continued). As a result, the switching unit 42 is switched to the on state (or maintained in the on state), and the GND wiring L1 becomes conductive. Further, the main body control microcomputer 43 outputs an operation command to the inverter control unit 26. In response to this, the inverter control unit 26 outputs the gate control voltages Gu to Gz to the gate terminals of the transistors Q3a to Q5b, respectively, and the motor unit 24 and the inverter unit 25 are driven. Thereafter, the process proceeds to step S303.
  • step S303 if the determination is NO (that is, if the DC voltage Vdc is greater than or equal to the first threshold value ⁇ Th1), the process proceeds to step S304. On the other hand, when the determination is YES (that is, when the DC voltage Vdc is less than the first threshold value ⁇ Th1), the process returns to step S301.
  • step S304 the main body control microcomputer 43 cuts off the supply of the switching unit driving power source Vsw to the switching unit 42. Thereby, the switching part 42 switches to an OFF state, and the GND wiring L1 is interrupted
  • the main body control microcomputer 43 outputs an operation stop command to the inverter control unit 26. Thereby, the output of the gate control voltages Gu to Gz is stopped, and the motor unit 24 and the inverter unit 25 stop driving. Then, it returns to step S301.
  • the object of the present invention can also be achieved by the main body control microcomputer 43 performing control according to the flow shown in FIG.
  • the present invention can be used for an actuator driving device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

In a motor drive device (30), a motor drive unit (38) outputs drive voltages (SU, SV, SW) to a motor portion (24). A switching unit (42) switches between the conduction and disconnection of a GND wire (L1) connecting the lower potential side of the motor drive unit (38) and a DC voltage generation unit (31). A body control microcomputer (43) controls the operation of the motor drive unit (38). The body control microcomputer (43) controls the operation of the switching unit (42) such that when a voltage value detected by a voltage detection unit (34) is less than a first threshold value (ΔTh1), the GND wire (L1) is made conductive and when the voltage value is greater than or equal to the first threshold value (ΔTh1), the GND wire (L1) is disconnected. A first reverse current prevention diode (D6) is disposed between the motor drive unit (38) and the body control microcomputer (43) and prevents current from flowing from the DC voltage generation unit (31) to the body control microcomputer (43) through the motor drive unit (38) when the GND wire (L1) is disconnected by the switching unit (42).

Description

アクチュエータ駆動装置Actuator drive
 本発明は、アクチュエータを駆動する装置に関する。 The present invention relates to an apparatus for driving an actuator.
 交流電圧を整流して直流電圧を得る機器においては、直流電圧は交流電圧に応じて変動する。特に、電源電圧の変動が起こりやすい地域で使用される機器は、電圧上昇時の対策如何によっては、機器の故障を招くおそれがある。それゆえ、特許文献1(特開2007-166815号公報)に開示されているような過電圧保護手段が設けられる。この過電圧保護手段は、入力変圧器を負荷時タップ切換器付き変圧器とし、ある閾値以上の電圧がインバータに所定時間を越えて入力されたときに、負荷時タップ切換器付き変圧器のタップを低圧側に切り換えている。 In a device that rectifies an AC voltage to obtain a DC voltage, the DC voltage varies according to the AC voltage. In particular, a device used in an area where the power supply voltage is likely to fluctuate may cause a device failure depending on a countermeasure against a voltage increase. Therefore, overvoltage protection means as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2007-166815) is provided. In this overvoltage protection means, the input transformer is a transformer with a load tap changer, and when a voltage exceeding a certain threshold is input to the inverter over a predetermined time, the tap of the transformer with a load tap changer is turned on. Switching to the low pressure side.
 しかしながら、上記のような負荷時タップ切換器付き変圧器は大規模な電気設備用としては適しているが、一般的な家電製品などに搭載されるアクチュエータ駆動装置に適用することは容易ではない。また、瞬間的な過大電圧のためだけに半導体素子などの耐圧を高くすることは高コスト化を招く。 However, the transformer with a load tap changer as described above is suitable for a large-scale electric facility, but it is not easy to apply to an actuator driving device mounted on a general household appliance. Further, increasing the breakdown voltage of a semiconductor element or the like only for an instantaneous excessive voltage leads to an increase in cost.
 そこで、本発明の課題は、低コストで保安性に優れたアクチュエータ駆動装置を提供することにある。 Therefore, an object of the present invention is to provide an actuator driving device that is low in cost and excellent in security.
 本発明の第1観点に係るアクチュエータ駆動装置は、直流電圧生成部と、電圧検出部と、駆動部と、切換部と、駆動制御部と、切換制御部と、第1ダイオード又は絶縁回路と、を備える。直流電圧生成部は、直流電圧を生成する。電圧検出部は、電源又は直流電圧生成部と電気的に接続される。電圧検出部は、電源又は直流電圧生成部から供給される電圧値を検出する。駆動部は、直流電圧生成部とアクチュエータとの間に配置される。駆動部は、直流電圧生成部から直流電圧を供給される。駆動部は、アクチュエータを駆動するための駆動信号をアクチュエータに出力する。切換部は、駆動部の低電位側と直流電圧生成部とを接続する電源ライン上に、配置される。切換部は、電源ラインの導通及び遮断を切り換える。駆動制御部は、駆動部に指令を出力することで駆動部の動作を制御する。切換制御部は、切換部と電気的に接続される。切換制御部は、電圧検出部が検出した電圧値に基づいて切換部の動作を制御する。切換制御部は、電圧値が第1閾値未満の場合に電源ラインを導通し、電圧値が第1閾値以上の場合に電源ラインを遮断するように、切換部の動作を制御する。第1ダイオード又は絶縁回路は、駆動部と駆動制御部との間に配置される。第1ダイオード又は絶縁回路は、切換部が電源ラインを遮断した時に、駆動部を介して直流電圧生成部から駆動制御部に電流が流れることを抑制する。 An actuator driving device according to a first aspect of the present invention includes a DC voltage generating unit, a voltage detecting unit, a driving unit, a switching unit, a driving control unit, a switching control unit, a first diode or an insulating circuit, Is provided. The DC voltage generator generates a DC voltage. The voltage detection unit is electrically connected to a power supply or a DC voltage generation unit. The voltage detection unit detects a voltage value supplied from a power supply or a DC voltage generation unit. The drive unit is disposed between the DC voltage generation unit and the actuator. The driving unit is supplied with a DC voltage from the DC voltage generating unit. The drive unit outputs a drive signal for driving the actuator to the actuator. The switching unit is disposed on a power supply line connecting the low potential side of the driving unit and the DC voltage generating unit. The switching unit switches between conduction and interruption of the power supply line. The drive control unit controls the operation of the drive unit by outputting a command to the drive unit. The switching control unit is electrically connected to the switching unit. The switching control unit controls the operation of the switching unit based on the voltage value detected by the voltage detection unit. The switching control unit controls the operation of the switching unit so that the power line is turned on when the voltage value is less than the first threshold, and is cut off when the voltage value is equal to or greater than the first threshold. The first diode or the insulation circuit is disposed between the drive unit and the drive control unit. A 1st diode or an insulation circuit suppresses that an electric current flows into a drive control part from a DC voltage generation part via a drive part, when a switching part interrupts | blocks a power supply line.
 本発明の第1観点に係るアクチュエータ駆動装置では、切換部が、駆動部の低電位側と直流電圧生成部とを接続する電源ライン上に配置され、電圧値に応じて電源ラインの導通及び遮断を切り換えるように制御されることで、電源電圧が第1閾値以上の過電圧状態となった時(過電圧時)に、駆動部を保護すべく電源ラインを遮断することができる。 In the actuator driving apparatus according to the first aspect of the present invention, the switching unit is disposed on the power line connecting the low potential side of the driving unit and the DC voltage generating unit, and the power line is turned on and off according to the voltage value. By controlling to switch the power supply line, the power supply line can be shut off to protect the drive unit when the power supply voltage is in an overvoltage state equal to or higher than the first threshold (overvoltage).
 ここで、切換部は、電源電圧が過電圧状態となった場合に備えて、十分な耐圧を有するものを選定することが要求される。一方で、駆動部の低電位側と直流電圧生成部とを接続する電源ラインに供給される電源電圧は、直流電圧生成部と駆動部の高電位側とを接続する電源ラインに供給される電源電圧よりも電圧値が低い。よって、切換部が直流電圧生成部と駆動部の高電位側とを接続する電源ライン上に配置される場合よりも、切換部が駆動部の低電位側と直流電圧生成部とを接続する電源ライン上に配置される場合のほうが、切換部の耐圧を低く設定することが可能となり、その分コストが抑えられる。第1観点に係るアクチュエータ駆動装置では、切換部が、駆動部の低電位側と直流電圧生成部とを接続する電源ライン上に配置されることにより、コストを抑えつつ過電圧時に電源ラインを遮断することが可能である。 Here, the switching unit is required to select a switching unit having a sufficient withstand voltage in case the power supply voltage becomes an overvoltage state. On the other hand, the power supply voltage supplied to the power supply line connecting the low potential side of the drive unit and the DC voltage generation unit is the power supply supplied to the power supply line connecting the DC voltage generation unit and the high potential side of the drive unit. The voltage value is lower than the voltage. Therefore, the switching unit connects the low potential side of the drive unit and the DC voltage generation unit rather than the case where the switching unit is arranged on the power supply line connecting the DC voltage generation unit and the high potential side of the drive unit. In the case of being arranged on the line, it becomes possible to set the withstand voltage of the switching unit lower, and the cost can be reduced accordingly. In the actuator driving device according to the first aspect, the switching unit is arranged on the power supply line connecting the low potential side of the driving unit and the DC voltage generating unit, thereby cutting off the power supply line during overvoltage while suppressing cost. It is possible.
 また、本発明の第1観点に係るアクチュエータ駆動装置では、第1ダイオード又は絶縁回路が、駆動部と駆動制御部との間に配置され、電源ラインの遮断時に駆動部を介して直流電圧生成部から駆動制御部に電流が流れることを抑制することで、過電圧時に駆動部及び駆動制御部が保護される。 In the actuator driving apparatus according to the first aspect of the present invention, the first diode or the insulating circuit is disposed between the driving unit and the driving control unit, and the DC voltage generating unit is connected via the driving unit when the power line is shut off. By suppressing the current from flowing to the drive control unit, the drive unit and the drive control unit are protected during overvoltage.
 ここで、過電圧時に、駆動部を保護すべく、駆動部の低電位側と直流電圧生成部とを接続する電源ラインを遮断すると、駆動部内の電位は駆動制御部内の電位よりも高くなるため、駆動部と駆動制御部との間に通常時とは異なる電位差が生じる。よって、直流電圧生成部から供給される電流を遮断する手段が設けられていなければ、過電圧時には駆動部を介して直流電圧生成部から駆動制御部に電流が流れて、駆動部及び駆動制御部が破壊されるおそれがある。第1観点に係るアクチュエータ駆動装置では、第1ダイオード又は絶縁回路が、駆動部と駆動制御部との間に配置され、電源ラインの遮断時に駆動部を介して直流電圧生成部から駆動制御部に電流が流れることを抑制する。これにより、簡単な構成にして、過電圧時に駆動部及び駆動制御部が保護される。 Here, when the power line connecting the low potential side of the drive unit and the DC voltage generation unit is cut off in order to protect the drive unit during overvoltage, the potential in the drive unit becomes higher than the potential in the drive control unit. A potential difference different from the normal time is generated between the drive unit and the drive control unit. Therefore, unless a means for interrupting the current supplied from the DC voltage generator is provided, current flows from the DC voltage generator to the drive controller via the driver during overvoltage, and the drive unit and the drive controller are There is a risk of being destroyed. In the actuator driving apparatus according to the first aspect, the first diode or the insulating circuit is disposed between the driving unit and the driving control unit, and the DC voltage generating unit is switched to the driving control unit via the driving unit when the power line is shut off. Suppresses the flow of current. As a result, the drive unit and the drive control unit are protected during an overvoltage with a simple configuration.
 よって、第1観点に係るアクチュエータ駆動装置では、コストを抑えつつ保安性が向上する。 Therefore, in the actuator driving device according to the first aspect, the safety is improved while suppressing the cost.
 本発明の第2観点に係るアクチュエータ駆動装置は、第1観点に係るアクチュエータ駆動装置であって、駆動部動作用電源と、第2ダイオードと、をさらに備える。駆動部動作用電源は、駆動部に動作用電源を供給する。第2ダイオードは、駆動部と駆動部動作用電源との間に配置される。第2ダイオードは、切換部が電源ラインを遮断した時に、駆動部を介して直流電圧生成部から駆動部動作用電源に電流が流れることを抑制する。 The actuator driving device according to the second aspect of the present invention is the actuator driving device according to the first aspect, further comprising a power source for driving unit operation and a second diode. The drive unit power supply supplies power to the drive unit. The second diode is disposed between the driving unit and the driving unit operating power source. The second diode suppresses a current from flowing from the DC voltage generating unit to the driving unit operating power source via the driving unit when the switching unit cuts off the power supply line.
 過電圧時に、駆動部の低電位側と直流電圧生成部とを接続する電源ラインを遮断すると、駆動部内の電位は駆動部動作用電源の電位よりも高くなるため、駆動部と駆動部動作用電源との間に通常時とは異なる電位差が生じる。よって、直流電圧生成部から供給される電流を遮断する手段が設けられていなければ、過電圧時には駆動部を介して直流電圧生成部から駆動部動作用電源に電流が流れて、駆動部及び駆動部動作用電源が破壊されるおそれがある。第2観点に係るアクチュエータ駆動装置では、第2ダイオードが、駆動部と駆動部動作用電源との間に配置され、電源ラインの遮断時に駆動部を介して直流電圧生成部から駆動部動作用電源に電流が流れることを抑制する。これにより、簡単な構成にして、過電圧時に駆動部及び駆動部動作用電源が保護される。よって、コストを抑えつつ保安性がさらに向上する。 When the power supply line connecting the low potential side of the drive unit and the DC voltage generation unit is interrupted during overvoltage, the potential in the drive unit becomes higher than the potential of the drive unit operation power supply. A potential difference different from the normal time is generated between Therefore, if means for interrupting the current supplied from the DC voltage generator is not provided, the current flows from the DC voltage generator to the drive unit operating power source via the drive unit when overvoltage occurs, and the drive unit and the drive unit The operating power supply may be destroyed. In the actuator driving apparatus according to the second aspect, the second diode is disposed between the driving unit and the driving unit operating power source, and the driving unit operating power source is connected to the driving unit via the driving unit when the power line is interrupted. Suppresses the flow of current. Thus, the driving unit and the driving unit operating power source are protected in the case of an overvoltage with a simple configuration. Therefore, security is further improved while suppressing costs.
 本発明の第3観点に係るアクチュエータ駆動装置は、第1観点に係るアクチュエータ駆動装置であって、駆動部動作用電源をさらに備える。駆動部動作用電源は、駆動部に動作用電源を供給する。駆動部動作用電源は、絶縁電源である。駆動部動作用電源は、駆動部に電気的に接続される二次側が、一次側と電気的に分離されている。 The actuator driving device according to the third aspect of the present invention is the actuator driving device according to the first aspect, further comprising a power supply for driving unit operation. The drive unit power supply supplies power to the drive unit. The drive unit power supply is an insulated power supply. In the power supply for driving unit operation, the secondary side electrically connected to the driving unit is electrically separated from the primary side.
 上述のように、過電圧時に、駆動部の低電位側と直流電圧生成部とを接続する電源ラインを遮断すると、駆動部内の電位は駆動部動作用電源の電位よりも高くなるため、駆動部と駆動部動作用電源との間に通常時とは異なる電位差が生じる。よって、直流電圧生成部から供給される電流を遮断する手段が設けられていなければ、過電圧時には駆動部を介して直流電圧生成部から駆動部動作用電源に電流が流れて、駆動部及び駆動部動作用電源が破壊されるおそれがある。第3観点に係るアクチュエータ駆動装置では、駆動部動作用電源が絶縁電源であって、駆動部に電気的に接続される二次側が一次側と電気的に分離されている。その結果、電源ラインの遮断時に、駆動部を介して直流電圧生成部から駆動部動作用電源に電流が流れることが抑制される。これにより、簡単な構成にして、過電圧時に駆動部及び駆動部動作用電源が保護される。よって、コストを抑えつつ保安性がさらに向上する。 As described above, when the power supply line connecting the low potential side of the driving unit and the DC voltage generating unit is cut off during overvoltage, the potential in the driving unit becomes higher than the potential of the driving unit operating power source. A potential difference different from that in the normal state is generated between the power source for driving unit operation. Therefore, if means for interrupting the current supplied from the DC voltage generator is not provided, the current flows from the DC voltage generator to the drive unit operating power source via the drive unit when overvoltage occurs, and the drive unit and the drive unit The operating power supply may be destroyed. In the actuator drive device according to the third aspect, the drive unit power supply is an insulated power supply, and the secondary side electrically connected to the drive unit is electrically separated from the primary side. As a result, when the power supply line is cut off, current is prevented from flowing from the DC voltage generating unit to the driving unit operating power source via the driving unit. Thus, the driving unit and the driving unit operating power source are protected in the case of an overvoltage with a simple configuration. Therefore, security is further improved while suppressing costs.
 本発明の第4観点に係るアクチュエータ駆動装置は、第1観点から第3観点のいずれかに係るアクチュエータ駆動装置であって、駆動制御部は、電圧検出部と電気的に接続される。駆動制御部は、電圧値が第1閾値以上の場合においては、切換部が電源ラインを遮断する前に、駆動部に駆動信号の出力を停止させる指令を出力する。 The actuator driving device according to the fourth aspect of the present invention is the actuator driving device according to any one of the first to third aspects, and the drive control unit is electrically connected to the voltage detection unit. When the voltage value is greater than or equal to the first threshold, the drive control unit outputs a command for causing the drive unit to stop outputting the drive signal before the switching unit cuts off the power supply line.
 本発明の第4観点に係るアクチュエータ駆動装置では、電圧値が第1閾値以上の場合には、電源ラインが遮断される前に、駆動部からの駆動信号の出力が停止される。これにより、過電圧時において、電源ラインを遮断する前に、アクチュエータ及び駆動部に流れる電流を遮断することが可能となる。よって、過電圧時に、駆動部を介して直流電圧生成部から他の部分に電流が流れることがさらに抑制され、駆動部、駆動制御部及び/又は駆動部動作用電源がさらに保護される。また、電源ラインの遮断時において、アクチュエータ及び駆動部に電流が流れていないため、配線やアクチュエータのインダクタンスによる電圧上昇やサージ電圧の発生などが抑制される。 In the actuator driving device according to the fourth aspect of the present invention, when the voltage value is equal to or higher than the first threshold value, the output of the driving signal from the driving unit is stopped before the power supply line is shut off. As a result, it is possible to cut off the current flowing through the actuator and the drive unit before shutting off the power supply line during overvoltage. Therefore, in the event of an overvoltage, the current is further suppressed from flowing from the DC voltage generation unit to other parts via the drive unit, and the drive unit, the drive control unit, and / or the drive unit power supply is further protected. In addition, since no current flows through the actuator and the drive unit when the power supply line is cut off, voltage increase due to wiring and actuator inductance, generation of surge voltage, and the like are suppressed.
 本発明の第5観点に係るアクチュエータ駆動装置は、第4観点に係るアクチュエータ駆動装置であって、切換制御部は、駆動信号の出力が停止された後、所定時間が経過してから切換部が電源ラインを遮断するように、切換部の動作を制御する。 An actuator driving device according to a fifth aspect of the present invention is the actuator driving device according to the fourth aspect, wherein the switching control unit is configured to switch the switching unit after a predetermined time has elapsed after the output of the drive signal is stopped. The operation of the switching unit is controlled so as to cut off the power line.
 本発明の第5観点に係るアクチュエータ駆動装置では、切換制御部が、駆動信号の出力が停止された後で所定時間が経過してから電源ラインが遮断されるように、切換部の動作を制御する。これにより、簡単な構成にして、過電圧時において、電源ラインを遮断する前にアクチュエータ及び駆動部に流れる電流を遮断することが可能となる。また、所定時間が経過する前に電源電圧が安定化した場合におけるアクチュエータの迅速な再起動に備えることが可能となる。 In the actuator driving device according to the fifth aspect of the present invention, the switching control unit controls the operation of the switching unit so that the power line is shut off after a predetermined time has elapsed after the output of the driving signal is stopped. To do. Thereby, it becomes possible to cut off the current flowing through the actuator and the drive unit before cutting off the power supply line in the case of overvoltage in a simple configuration. It is also possible to prepare for a quick restart of the actuator when the power supply voltage is stabilized before the predetermined time has elapsed.
 本発明の第6観点に係るアクチュエータ駆動装置は、第4観点に係るアクチュエータ駆動装置であって、駆動制御部は、電圧値が第1閾値よりも低い第2閾値以上の場合に、駆動部に駆動信号の出力を停止させる指令を送る。 An actuator driving device according to a sixth aspect of the present invention is the actuator driving device according to the fourth aspect, in which the drive control unit sets the driving unit when the voltage value is equal to or higher than a second threshold value that is lower than the first threshold value. Sends a command to stop driving signal output.
 本発明の第6観点に係るアクチュエータ駆動装置では、駆動制御部は、電圧値が第1閾値よりも低い第2閾値以上の場合に、駆動部に駆動信号の出力を停止させる指令を送る。これにより、電源電圧が第2閾値以上の状態(過電圧に近い状態)となった時に、アクチュエータ及び駆動部に流れる電流を遮断することが可能となる。その結果、駆動部が高電圧から保護される。また、電源電圧が第1閾値を超えることなく第2閾値を下回った場合におけるアクチュエータの迅速な再起動に備えることが可能となる。 In the actuator drive device according to the sixth aspect of the present invention, the drive control unit sends a command to the drive unit to stop the output of the drive signal when the voltage value is equal to or higher than the second threshold value which is lower than the first threshold value. As a result, when the power supply voltage is equal to or higher than the second threshold (a state close to an overvoltage), it is possible to cut off the current flowing through the actuator and the drive unit. As a result, the drive unit is protected from a high voltage. In addition, it is possible to prepare for a quick restart of the actuator when the power supply voltage falls below the second threshold without exceeding the first threshold.
 本発明の第7観点に係るアクチュエータ駆動装置は、第1観点から第6観点のいずれかに係るアクチュエータ駆動装置であって、切換制御部は、アクチュエータが駆動している際に、電圧値が第1閾値未満の状態から第1閾値以上の状態に変化した場合において、切換部の動作を制御する。切換制御部は、電圧値が第1閾値よりも高い第3閾値以上であれば、直ちに電源ラインを遮断するように、切換部の動作を制御する。切換制御部は、電圧値が第3閾値未満であれば、第1閾値以上第3閾値未満の状態が所定時間継続した時に電源ラインを遮断するように、切換部の動作を制御する。 An actuator driving device according to a seventh aspect of the present invention is the actuator driving device according to any one of the first to sixth aspects, wherein the switching control unit has a voltage value of the first when the actuator is driven. The operation of the switching unit is controlled when the state changes from a state less than one threshold to a state greater than or equal to the first threshold. The switching control unit controls the operation of the switching unit so as to immediately shut off the power supply line if the voltage value is equal to or higher than a third threshold value higher than the first threshold value. If the voltage value is less than the third threshold value, the switching control unit controls the operation of the switching unit so that the power supply line is shut off when a state of the first threshold value and the third threshold value continues for a predetermined time.
 本発明の第7観点に係るアクチュエータ駆動装置では、アクチュエータが駆動している際に、電圧値が第1閾値未満の状態から第1閾値以上の状態に変化した場合において、電圧値が第1閾値よりも高い第3閾値以上であれば直ちに電源ラインが遮断され、電圧値が第3閾値未満であれば第1閾値以上第3閾値未満の状態が所定時間継続した時に電源ラインが遮断される。これにより、電圧値上昇の急峻性に応じて、電源ライン遮断のタイミングを可変とできる。その結果、電圧値上昇の急峻性に基づき保安性への影響が少ないと判断される時には、電源ラインが遮断されず、アクチュエータの迅速な再起動に備えることが可能となる。 In the actuator driving device according to the seventh aspect of the present invention, when the actuator is driven, the voltage value changes from the state below the first threshold to the state above the first threshold. If the voltage value is less than the third threshold value, the power line is immediately shut off. If the voltage value is less than the third threshold value, the power line is shut off when the state exceeding the first threshold value and less than the third threshold value continues for a predetermined time. Thereby, the power supply line shutoff timing can be made variable according to the steepness of the voltage value increase. As a result, when it is determined that the influence on the security is small based on the steepness of the voltage value increase, the power supply line is not shut off, and it is possible to prepare for a quick restart of the actuator.
 本発明の第8観点に係るアクチュエータ駆動装置は、第1観点から第7観点のいずれかに係るアクチュエータ駆動装置であって、駆動部は、決定部と、出力部と、を含む。決定部は、駆動制御部から出力される指令に基づいてアクチュエータに出力する駆動信号を決定する。出力部は、複数のスイッチング素子を含む。出力部は、決定部による決定に基づいて駆動信号を生成してアクチュエータに出力する。 The actuator driving device according to the eighth aspect of the present invention is the actuator driving device according to any one of the first to seventh aspects, and the driving unit includes a determination unit and an output unit. The determination unit determines a drive signal to be output to the actuator based on a command output from the drive control unit. The output unit includes a plurality of switching elements. The output unit generates a drive signal based on the determination by the determination unit and outputs it to the actuator.
 本発明の第8観点に係るアクチュエータ駆動装置では、過電圧時に影響を受けやすいスイッチング素子が駆動部に含まれる場合において、保安性が向上する。 In the actuator driving apparatus according to the eighth aspect of the present invention, the safety is improved when the driving unit includes a switching element that is easily affected by an overvoltage.
 本発明の第9観点に係るアクチュエータ駆動装置は、第1観点から第8観点のいずれかに係るアクチュエータ駆動装置であって、駆動部は、アクチュエータと一体である。 The actuator driving device according to the ninth aspect of the present invention is the actuator driving device according to any one of the first to eighth aspects, and the driving unit is integral with the actuator.
 本発明の第9観点に係るアクチュエータ駆動装置では、駆動部がアクチュエータと一体である場合において、保安性が向上する。 In the actuator driving device according to the ninth aspect of the present invention, the safety is improved when the driving unit is integrated with the actuator.
 本発明の第10観点に係るアクチュエータ駆動装置は、第1観点から第9観点のいずれかに係るアクチュエータ駆動装置であって、空調機に含まれている複数の機器を統括的に制御する統括制御部をさらに備える。アクチュエータは、空調機に含まれている複数の機器の、少なくとも1つの駆動源であるモータである。統括制御部は、駆動制御部及び切換制御部を含む。 An actuator driving device according to a tenth aspect of the present invention is the actuator driving device according to any one of the first to ninth aspects, and controls the plurality of devices included in the air conditioner in an integrated manner. The unit is further provided. The actuator is a motor that is at least one drive source of a plurality of devices included in the air conditioner. The overall control unit includes a drive control unit and a switching control unit.
 本発明の第10観点に係るアクチュエータ駆動装置では、空調機の保安性が向上する。 In the actuator driving device according to the tenth aspect of the present invention, the safety of the air conditioner is improved.
 本発明の第1観点に係るアクチュエータ駆動装置では、コストを抑えつつ過電圧時に電源ラインを遮断することが可能である。また、簡単な構成にして、過電圧時に駆動部及び駆動制御部が保護される。よって、コストを抑えつつ保安性が向上する。 In the actuator driving apparatus according to the first aspect of the present invention, it is possible to cut off the power supply line at the time of overvoltage while suppressing the cost. In addition, with a simple configuration, the drive unit and the drive control unit are protected during overvoltage. Therefore, security is improved while suppressing costs.
 本発明の第2観点又は第3観点に係るアクチュエータ駆動装置では、簡単な構成にして、過電圧時に駆動部及び駆動部動作用電源が保護される。よって、コストを抑えつつ保安性がさらに向上する。 In the actuator driving apparatus according to the second or third aspect of the present invention, the driving unit and the power source for driving unit operation are protected in the case of an overvoltage with a simple configuration. Therefore, security is further improved while suppressing costs.
 本発明の第4観点に係るアクチュエータ駆動装置では、過電圧時に、駆動部、駆動制御部及び/又は駆動部動作用電源がさらに保護される。また、電源ラインの遮断時において、配線やアクチュエータのインダクタンスによる電圧上昇やサージ電圧の発生などが抑制される。 In the actuator drive device according to the fourth aspect of the present invention, the drive unit, the drive control unit, and / or the drive unit operating power supply is further protected during overvoltage. In addition, when the power supply line is shut off, voltage increase due to wiring and actuator inductance, generation of surge voltage, and the like are suppressed.
 本発明の第5観点に係るアクチュエータ駆動装置では、簡単な構成にして、過電圧時において、電源ラインを遮断する前に、アクチュエータ及び駆動部に流れる電流を遮断することが可能となる。また、アクチュエータの迅速な再起動に備えることが可能となる。 In the actuator driving apparatus according to the fifth aspect of the present invention, the current flowing through the actuator and the drive unit can be cut off before the power supply line is cut off in the case of an overvoltage with a simple configuration. It is also possible to prepare for a quick restart of the actuator.
 本発明の第6観点に係るアクチュエータ駆動装置では、駆動部が保護される。また、アクチュエータの迅速な再起動に備えることが可能となる。 In the actuator drive device according to the sixth aspect of the present invention, the drive unit is protected. It is also possible to prepare for a quick restart of the actuator.
 本発明の第7観点に係るアクチュエータ駆動装置では、電圧値上昇の急峻性に基づき保安性への影響が少ないと判断される時には、電源ラインが遮断されず、アクチュエータの迅速な再起動に備えることが可能となる。 In the actuator driving device according to the seventh aspect of the present invention, when it is judged that the influence on the security is small based on the steepness of the voltage value rise, the power supply line is not shut off, and the actuator is prepared for a quick restart. Is possible.
 本発明の第8観点に係るアクチュエータ駆動装置では、過電圧時に影響を受けやすいスイッチング素子が駆動部に含まれる場合において、保安性が向上する。 In the actuator driving apparatus according to the eighth aspect of the present invention, the safety is improved when the driving unit includes a switching element that is easily affected by an overvoltage.
 本発明の第9観点に係るアクチュエータ駆動装置では、駆動部がアクチュエータと一体である場合において、保安性が向上する。 In the actuator driving device according to the ninth aspect of the present invention, the safety is improved when the driving unit is integrated with the actuator.
 本発明の第10観点に係るアクチュエータ駆動装置では、空調機の保安性が向上する。 In the actuator driving device according to the tenth aspect of the present invention, the safety of the air conditioner is improved.
本発明の一実施形態に係るモータ駆動装置を搭載した空調機の概略構成図。The schematic block diagram of the air conditioning machine carrying the motor drive device which concerns on one Embodiment of this invention. 室内ファンモータ及びモータ駆動装置の概略構成図。The schematic block diagram of an indoor fan motor and a motor drive device. モータ駆動回路の概略構成図。The schematic block diagram of a motor drive circuit. 第2電圧検出部及び電流検出部の概略構成図。The schematic block diagram of a 2nd voltage detection part and an electric current detection part. 本体制御マイコンによる制御の流れの一例を示したフローチャート。The flowchart which showed an example of the flow of control by a main body control microcomputer. モータ部及び切換部の状態の変化の一例を示すタイミングチャート。The timing chart which shows an example of the change of the state of a motor part and a switching part. モータ部及び切換部の状態の変化の一例を示すタイミングチャート。The timing chart which shows an example of the change of the state of a motor part and a switching part. 変形例Hに係るモータ駆動装置の概略構成図。The schematic block diagram of the motor drive device which concerns on the modification H. 変形例Iに係るモータ駆動装置の概略構成図。The schematic block diagram of the motor drive device which concerns on the modification I. 変形例Iに係る直流電源装置の概略構成図。The schematic block diagram of the DC power supply device which concerns on the modification I. 変形例Kに係る本体制御マイコンによる制御の流れの一例を示したフローチャート。The flowchart which showed an example of the flow of control by the main body control microcomputer which concerns on the modification K. 変形例Kに係る本体制御マイコンによる制御の流れの一例を示したフローチャート。The flowchart which showed an example of the flow of control by the main body control microcomputer which concerns on the modification K.
 以下、図面を参照しながら、本発明の一実施形態に係るモータ駆動装置30について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではなく、発明の要旨を逸脱しない範囲で適宜変更が可能である。 Hereinafter, a motor drive device 30 according to an embodiment of the present invention will be described with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention, and can be modified as appropriate without departing from the scope of the invention.
 本実施形態におけるモータ駆動装置30は、空調機100に搭載されている。具体的には、モータ駆動装置30は、空調機100に含まれるアクチュエータのひとつである室内ファンモータ23(モータ部24)の駆動を制御する装置である。 The motor drive device 30 in this embodiment is mounted on the air conditioner 100. Specifically, the motor driving device 30 is a device that controls the driving of the indoor fan motor 23 (the motor unit 24) that is one of the actuators included in the air conditioner 100.
 (1)空調機100
 図1は、本発明の一実施形態に係るモータ駆動装置30を搭載した空調機100の概略構成図である。
(1) Air conditioner 100
FIG. 1 is a schematic configuration diagram of an air conditioner 100 equipped with a motor drive device 30 according to an embodiment of the present invention.
 空調機100は、冷房運転又は暖房運転を行って、対象空間の空気調和を実現する装置である。具体的には、空調機100は、蒸気圧縮式の冷凍サイクルを行う。空調機100は、運転モード及び運転停止モードを含む制御モードを有している。運転モードは、空調機100を運転させる場合に選択される。運転停止モードは、空調機100の運転を停止させる場合に選択される。 The air conditioner 100 is a device that achieves air conditioning in a target space by performing a cooling operation or a heating operation. Specifically, the air conditioner 100 performs a vapor compression refrigeration cycle. The air conditioner 100 has a control mode including an operation mode and an operation stop mode. The operation mode is selected when the air conditioner 100 is operated. The operation stop mode is selected when the operation of the air conditioner 100 is stopped.
 空調機100は、主として、室外ユニット10と、室内ユニット20とを有している。空調機100においては、室外ユニット10と室内ユニット20とが、冷媒配管P1、P2によって接続されることで、冷媒回路が構成されている。 The air conditioner 100 mainly includes an outdoor unit 10 and an indoor unit 20. In the air conditioner 100, the outdoor unit 10 and the indoor unit 20 are connected by the refrigerant pipes P1 and P2, thereby forming a refrigerant circuit.
 (1-1)室外ユニット10
 室外ユニット10は、主として、圧縮機11、四路切換弁12、室外熱交換器13、膨張弁14、及び室外ファン15を有している。
(1-1) Outdoor unit 10
The outdoor unit 10 mainly includes a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an expansion valve 14, and an outdoor fan 15.
 圧縮機11は、低圧のガス冷媒を吸入し、圧縮して吐出する機構である。圧縮機11は、例えば、ケーシング(図示省略)内に収容されたロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が、同じくケーシング内に収容された圧縮機モータ11aを駆動源として駆動される密閉式の圧縮機である。圧縮機11は、容量可変である。圧縮機モータ11aは、3相のブラシレスDCモータであって、ステータ及びロータ等を有している。 Compressor 11 is a mechanism that sucks low-pressure gas refrigerant, compresses it, and discharges it. The compressor 11 includes, for example, a rotary type or scroll type positive compression element (not shown) accommodated in a casing (not shown), and a compressor motor 11a also accommodated in the casing as a drive source. It is a hermetic compressor driven. The compressor 11 has a variable capacity. The compressor motor 11a is a three-phase brushless DC motor, and includes a stator and a rotor.
 四路切換弁12は、冷房運転と暖房運転との切換時に、冷媒の流れる方向を切り換えるための弁である。四路切換弁12は、冷房運転時には、圧縮機11の吐出側と室外熱交換器13のガス側とを接続するとともに室内熱交換器21(後述)のガス側と圧縮機11の吸入側とを接続する(図1の四路切換弁12の実線を参照)。一方、四路切換弁12は、暖房運転時には、圧縮機11の吐出側と室内熱交換器21のガス側とを接続するとともに室外熱交換器13のガス側と圧縮機11の吸入側とを接続する(図1の四路切換弁12の破線を参照)。 The four-way switching valve 12 is a valve for switching the flow direction of the refrigerant when switching between the cooling operation and the heating operation. During the cooling operation, the four-way switching valve 12 connects the discharge side of the compressor 11 and the gas side of the outdoor heat exchanger 13, and also connects the gas side of the indoor heat exchanger 21 (described later) and the suction side of the compressor 11. (Refer to the solid line of the four-way switching valve 12 in FIG. 1). On the other hand, during the heating operation, the four-way switching valve 12 connects the discharge side of the compressor 11 and the gas side of the indoor heat exchanger 21 and connects the gas side of the outdoor heat exchanger 13 and the suction side of the compressor 11. Connect (refer to the broken line of the four-way selector valve 12 in FIG. 1).
 室外熱交換器13は、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。室外熱交換器13は、その液側が膨張弁14に接続されており、ガス側が四路切換弁12に接続されている。 The outdoor heat exchanger 13 is a heat exchanger that functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation. The outdoor heat exchanger 13 has a liquid side connected to the expansion valve 14 and a gas side connected to the four-way switching valve 12.
 膨張弁14は、高圧の冷媒を減圧する。膨張弁14は、例えば、運転状況に応じて開度が調整される電動弁である。 The expansion valve 14 depressurizes high-pressure refrigerant. The expansion valve 14 is, for example, an electric valve whose opening degree is adjusted according to the operating situation.
 室外ファン15は、例えば、プロペラファンなどの送風機である。室外ファン15は、外部から室外ユニット10内に流入し室外熱交換器13を通過してから室外ユニット10外へ流出する空気流を生成する。室外ファン15は、室外ファンモータ15aを駆動源として回転駆動される。室外ファンモータ15aは、例えばステータ及びロータを有する3相のブラシレスモータである。 The outdoor fan 15 is a blower such as a propeller fan, for example. The outdoor fan 15 generates an air flow that flows into the outdoor unit 10 from the outside, passes through the outdoor heat exchanger 13, and flows out of the outdoor unit 10. The outdoor fan 15 is rotationally driven using an outdoor fan motor 15a as a drive source. The outdoor fan motor 15a is a three-phase brushless motor having a stator and a rotor, for example.
 その他、各種センサや、室外ユニット10内の機器の動作を制御する室外ユニット制御部(図示省略)等を有している。 In addition, it has an outdoor unit controller (not shown) that controls various sensors and the operation of equipment in the outdoor unit 10.
 (1-2)室内ユニット20
 室内ユニット20は、主として、室内熱交換器21、室内ファン22及びモータ駆動装置30を有している。
(1-2) Indoor unit 20
The indoor unit 20 mainly includes an indoor heat exchanger 21, an indoor fan 22, and a motor driving device 30.
 室内熱交換器21は、冷房運転時には、冷媒の蒸発器として機能し、暖房運転時には、冷媒の凝縮器として機能する熱交換器である。室内熱交換器21は、各冷媒配管P1、P2に接続されている。 The indoor heat exchanger 21 is a heat exchanger that functions as a refrigerant evaporator during cooling operation and functions as a refrigerant condenser during heating operation. The indoor heat exchanger 21 is connected to each refrigerant pipe P1, P2.
 室内ファン22は、例えば、クロスフローファンなどの送風機である。室内ファン22は、外部から室内ユニット20内に流入し室内熱交換器21を通過してから室内ユニット20外へ流出する空気流を生成する。室内ファン22は、室内ファンモータ23のモータ部24に接続されており、モータ部24を駆動源として回転駆動される。室内ファンモータ23及びモータ部24の詳細については、後述する。 The indoor fan 22 is a blower such as a cross flow fan, for example. The indoor fan 22 generates an air flow that flows into the indoor unit 20 from the outside, passes through the indoor heat exchanger 21, and then flows out of the indoor unit 20. The indoor fan 22 is connected to the motor unit 24 of the indoor fan motor 23, and is rotationally driven using the motor unit 24 as a drive source. Details of the indoor fan motor 23 and the motor unit 24 will be described later.
 モータ駆動装置30は、モータ部24の駆動を制御する装置である。モータ駆動装置30は、複数の電装品で構成されている。モータ駆動装置30の詳細については、後述する。 The motor drive device 30 is a device that controls the drive of the motor unit 24. The motor drive device 30 is composed of a plurality of electrical components. Details of the motor drive device 30 will be described later.
 (2)室内ファンモータ23の詳細
 図2は、室内ファンモータ23及びモータ駆動装置30の概略構成図である。図3は、モータ駆動回路35の概略構成図である。室内ファンモータ23は、モータ部24と、インバータ部25と、インバータ制御部26と、を含んでいる。すなわち、室内ファンモータ23は、モータ部24、インバータ部25及びインバータ制御部26が一体に構成された所謂ドライバ内蔵型モータである。
(2) Details of Indoor Fan Motor 23 FIG. 2 is a schematic configuration diagram of the indoor fan motor 23 and the motor driving device 30. FIG. 3 is a schematic configuration diagram of the motor drive circuit 35. The indoor fan motor 23 includes a motor unit 24, an inverter unit 25, and an inverter control unit 26. That is, the indoor fan motor 23 is a so-called driver built-in motor in which the motor unit 24, the inverter unit 25, and the inverter control unit 26 are integrally configured.
 (2-1)モータ部24
 モータ部24(請求の範囲記載の「モータ」、「アクチュエータ」に相当)は、3相のブラシレスDCモータであり、ステータ241とロータ242とを有している(図2参照)。
(2-1) Motor unit 24
The motor unit 24 (corresponding to “motor” and “actuator” described in claims) is a three-phase brushless DC motor, and includes a stator 241 and a rotor 242 (see FIG. 2).
 ステータ241は、スター結線されたU相、V相及びW相の駆動コイルLu、Lv及びLwを含む。各駆動コイルLu、Lv及びLwの一方端は、それぞれインバータ部25から延びるU相、V相及びW相の各配線の駆動コイル端子TU、TV及びTWに接続されている。各駆動コイルLu、Lv及びLwの他方端は、互いに端子TNとして接続されている。これら3相の駆動コイルLu、Lv及びLwは、ロータ242が回転することにより、その回転速度とロータ242の位置に応じた誘起電圧を発生させる。 The stator 241 includes U-phase, V-phase, and W-phase drive coils Lu, Lv, and Lw that are star-connected. One ends of the drive coils Lu, Lv, and Lw are connected to drive coil terminals TU, TV, and TW of U-phase, V-phase, and W-phase wirings extending from the inverter unit 25, respectively. The other ends of the drive coils Lu, Lv and Lw are connected to each other as a terminal TN. These three-phase drive coils Lu, Lv, and Lw generate an induced voltage according to the rotational speed and the position of the rotor 242 as the rotor 242 rotates.
 ロータ242は、N極及びS極からなる複数極の永久磁石を含み、ステータ241に対し回転軸を中心として回転する。ロータ242の回転トルクは、この回転軸と同一軸心上にある出力軸(図示省略)を介して室内ファン22に伝達される。ロータの構造に着目すると、モータの種類には、大きく分けて表面磁石型モータ(Surface Permanent Magnet Motor:以下、SPMモータと記載する)と埋め込み磁石型モータ(Interior Permanent Magnet Motor:以下、IPMモータと記載する)とがあるが、モータ部24は、一般的なSPMモータを想定している。 The rotor 242 includes a plurality of permanent magnets composed of N poles and S poles, and rotates about the rotation axis with respect to the stator 241. The rotational torque of the rotor 242 is transmitted to the indoor fan 22 via an output shaft (not shown) that is on the same axis as the rotational shaft. Focusing on the structure of the rotor, there are two types of motors: a surface magnet type motor (Surface Permanent Magnet Motor: hereinafter referred to as SPM motor) and an embedded magnet type motor (Interior Permanent Magnet Motor: hereinafter referred to as IPM motor). The motor unit 24 is assumed to be a general SPM motor.
 (2-2)インバータ部25
 インバータ部25(請求の範囲記載の「出力部」に相当)は、スイッチング素子としての複数の絶縁ゲート型バイポーラトランジスタ(以下、単に「トランジスタ」と称する)Q3a、Q3b、Q4a、Q4b、Q5a及びQ5bと、複数の還流用ダイオードD3a、D3b、D4a、D4b、D5a及びD5bと、を含んでいる。
(2-2) Inverter unit 25
The inverter unit 25 (corresponding to the “output unit” in the claims) includes a plurality of insulated gate bipolar transistors (hereinafter simply referred to as “transistors”) Q3a, Q3b, Q4a, Q4b, Q5a and Q5b as switching elements. And a plurality of reflux diodes D3a, D3b, D4a, D4b, D5a, and D5b.
 トランジスタQ3aとQ3b、Q4aとQ4b、Q5aとQ5bは、それぞれ互いに直列に接続されている。各ダイオードD3a~D5bは、トランジスタのコレクタ端子とダイオードのカソード端子とが接続されるとともにトランジスタのエミッタ端子とダイオードのアノード端子とが接続されることで、各トランジスタQ3a~Q5bに対して逆並列に接続されている。 Transistors Q3a and Q3b, Q4a and Q4b, and Q5a and Q5b are connected to each other in series. Each of the diodes D3a to D5b is connected in reverse parallel to each of the transistors Q3a to Q5b by connecting the collector terminal of the transistor and the cathode terminal of the diode and connecting the emitter terminal of the transistor and the anode terminal of the diode. It is connected.
 インバータ部25には、直流電圧生成部31(後述)から直流電圧Vdcを供給される。インバータ部25は、インバータ制御部26において決定されたタイミングで各トランジスタQ3a~Q5bがオン又はオフを切り換えられることで、所望のデューティを有する駆動電圧SU、SV及びSW(請求の範囲記載の「駆動信号」に相当)を生成する。駆動電圧SU、SV及びSWは、モータ部24に出力される。具体的に、駆動電圧SUは、トランジスタQ3aとQ3bの接続点NUから出力される。駆動電圧SVは、トランジスタQ4aとQ4bの接続点NVから出力される。駆動電圧SWは、トランジスタQ5aとQ5bの接続点NWから出力される。このようにして、インバータ部25は、モータ部24に電力を供給する。 The inverter unit 25 is supplied with a DC voltage Vdc from a DC voltage generator 31 (described later). The inverter unit 25 is configured so that the transistors Q3a to Q5b are turned on or off at the timing determined by the inverter control unit 26, so that the drive voltages SU, SV, and SW having a desired duty (“drive” described in claims) Signal "). The drive voltages SU, SV, and SW are output to the motor unit 24. Specifically, the drive voltage SU is output from the connection point NU between the transistors Q3a and Q3b. Drive voltage SV is output from node NV between transistors Q4a and Q4b. The drive voltage SW is output from the connection point NW between the transistors Q5a and Q5b. In this way, the inverter unit 25 supplies power to the motor unit 24.
 (2-3)インバータ制御部26
 インバータ制御部26(請求の範囲記載の「決定部」に相当)は、例えばRAM、ROM及びCPU等で構成されるマイクロコンピュータと、スイッチング素子の駆動回路と、を含んでいる。インバータ制御部26は、駆動電圧SU、SV及びSWのデューティを決定して、決定した駆動電圧SU、SV及びSWのデューティに基づき、インバータ部25の各トランジスタQ3a~Q5bのオン及びオフの状態を変化させる。なお、インバータ制御部26は、インバータ部25とともに、モータ駆動装置30のモータ駆動部38(後述)として機能している。インバータ制御部26の詳細については、後述の「(3-3-3)モータ駆動部38」において説明する。
(2-3) Inverter control unit 26
The inverter control unit 26 (corresponding to “determining unit” described in the claims) includes, for example, a microcomputer including a RAM, a ROM, a CPU, and the like, and a switching element drive circuit. The inverter control unit 26 determines the duty of the drive voltages SU, SV, and SW, and determines the on / off states of the transistors Q3a to Q5b of the inverter unit 25 based on the determined duty of the drive voltages SU, SV, and SW. Change. The inverter control unit 26 functions as a motor drive unit 38 (described later) of the motor drive device 30 together with the inverter unit 25. Details of the inverter control unit 26 will be described in “(3-3-3) Motor driving unit 38” described later.
 (3)モータ駆動装置30の詳細
 以下、図2及び図3を参照してモータ駆動装置30の詳細について説明する。
(3) Details of Motor Drive Device 30 Details of the motor drive device 30 will be described below with reference to FIGS. 2 and 3.
 モータ駆動装置30は、商用電源90(請求の範囲記載の「電源」に相当)から電力供給されている。なお、モータ駆動装置30と商用電源90とは、例えば家屋内のコンセントを介して電源コードによって接続される。モータ駆動装置30は、モータ部24に流れる電流であるモータ電流Imに基づいて、ロータの回転位置を推定するとともに、モータ部24をベクトル制御(Field Oriented Control)する。 The motor drive device 30 is supplied with power from a commercial power supply 90 (corresponding to “power supply” described in claims). The motor drive device 30 and the commercial power supply 90 are connected by a power cord via, for example, a household outlet. The motor drive device 30 estimates the rotational position of the rotor based on the motor current Im that is a current flowing through the motor unit 24 and performs vector control (Field Oriented Control) on the motor unit 24.
 モータ駆動装置30は、主として、直流電圧生成部31と、電圧検出部34と、モータ駆動回路35と、レベルシフタ41と、切換部42と、本体制御マイコン43と、第1逆流防止ダイオードD6と、第2逆流防止ダイオードD7と、を有している。また、モータ駆動装置30は、インバータ制御部26に電源を供給するインバータ制御部動作用電源91(請求の範囲記載の「駆動部動作用電源」に相当)を有している。 The motor drive device 30 mainly includes a DC voltage generation unit 31, a voltage detection unit 34, a motor drive circuit 35, a level shifter 41, a switching unit 42, a main body control microcomputer 43, a first backflow prevention diode D6, And a second backflow prevention diode D7. Further, the motor drive device 30 includes an inverter control unit operation power source 91 (corresponding to “drive unit operation power source” described in the claims) that supplies power to the inverter control unit 26.
 (3-1)直流電圧生成部31
 直流電圧生成部31(請求の範囲記載の「直流電圧生成部」に相当)は、商用電源90と直列に接続されており、商用電源90から入力される交流電圧Vacを直流電圧Vdcに変換して、インバータ部25に供給している。直流電圧生成部31は、主として、整流部32と平滑コンデンサ33とを有する。
(3-1) DC voltage generator 31
The DC voltage generation unit 31 (corresponding to “DC voltage generation unit” described in the claims) is connected in series with the commercial power supply 90 and converts the AC voltage Vac input from the commercial power supply 90 into the DC voltage Vdc. To the inverter unit 25. The DC voltage generator 31 mainly includes a rectifier 32 and a smoothing capacitor 33.
 整流部32は、商用電源90から入力される交流電圧Vacを整流し、これを平滑コンデンサ33に供給する。整流部32は、4つのダイオードD1a、D1b、D2a及びD2bによってブリッジ状に構成されている。具体的には、ダイオードD1aとD1bとが直列に接続され、ダイオードD2aとD2bとが直列に接続されている。ダイオードD1a及びD2aの各カソード端子は、平滑コンデンサ33のプラス側端子に接続されており、整流部32の正側出力端子として機能する。ダイオードD1b及びD2bの各アノード端子は、平滑コンデンサ33のマイナス側端子に接続されており、整流部32の負側出力端子として機能する。ダイオードD1a及びD1bの接続点及びダイオードD2a及びD2bの接続点は、それぞれ商用電源90に接続されている。すなわち、ダイオードD1a及びD1bの接続点と、ダイオードD2a及びD2bの接続点と、はそれぞれ整流部32の入力の役割を担っている。 The rectifying unit 32 rectifies the AC voltage Vac input from the commercial power supply 90 and supplies it to the smoothing capacitor 33. The rectifying unit 32 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b are connected in series, and the diodes D2a and D2b are connected in series. The cathode terminals of the diodes D1a and D2a are connected to the plus side terminal of the smoothing capacitor 33 and function as the positive side output terminal of the rectifying unit 32. The anode terminals of the diodes D1b and D2b are connected to the minus side terminal of the smoothing capacitor 33 and function as the negative side output terminal of the rectifying unit 32. A connection point between the diodes D1a and D1b and a connection point between the diodes D2a and D2b are connected to the commercial power supply 90, respectively. That is, the connection point of the diodes D1a and D1b and the connection point of the diodes D2a and D2b each play a role of input to the rectifying unit 32.
 平滑コンデンサ33は、一端が整流部32の正側出力端子に接続され、他端が整流部32の負側出力端子に接続されている。平滑コンデンサ33は、整流部32によって整流された電圧を平滑する。平滑コンデンサ33によって平滑された電圧は、平滑コンデンサ33の後段(出力側)に接続されたインバータ部25に供給される。平滑コンデンサ33は、例えば電解コンデンサであるが、フィルムコンデンサ等であってもよい。なお、平滑コンデンサ33の他端側が、基準電位(以下、GNDと略す)となる。 The smoothing capacitor 33 has one end connected to the positive output terminal of the rectifying unit 32 and the other end connected to the negative output terminal of the rectifying unit 32. The smoothing capacitor 33 smoothes the voltage rectified by the rectifying unit 32. The voltage smoothed by the smoothing capacitor 33 is supplied to the inverter unit 25 connected to the subsequent stage (output side) of the smoothing capacitor 33. The smoothing capacitor 33 is, for example, an electrolytic capacitor, but may be a film capacitor or the like. The other end of the smoothing capacitor 33 is a reference potential (hereinafter abbreviated as GND).
 なお、本実施形態においては、直流電圧生成部31から供給される電流が室内ファンモータ23の内部(具体的には、モータ部24及びインバータ部25)を流れる。よって、直流電圧生成部31は、室内ファンモータ23に電流を供給するための「電源」又は「電流供給部」ともいえる。 In the present embodiment, the current supplied from the DC voltage generation unit 31 flows inside the indoor fan motor 23 (specifically, the motor unit 24 and the inverter unit 25). Therefore, the DC voltage generation unit 31 can be said to be a “power source” or a “current supply unit” for supplying current to the indoor fan motor 23.
 (3-2)電圧検出部34
 電圧検出部34は、平滑コンデンサ33の出力側において、平滑コンデンサ33に並列に接続されている。すなわち、電圧検出部34は、直流電圧生成部31と電気的に接続されている。電圧検出部34は、直流電圧生成部31から供給される電圧(すなわち平滑コンデンサ33の両端電圧)である直流電圧Vdcの電圧値を検出する。
(3-2) Voltage detector 34
The voltage detector 34 is connected in parallel to the smoothing capacitor 33 on the output side of the smoothing capacitor 33. That is, the voltage detection unit 34 is electrically connected to the DC voltage generation unit 31. The voltage detector 34 detects the voltage value of the DC voltage Vdc that is the voltage supplied from the DC voltage generator 31 (that is, the voltage across the smoothing capacitor 33).
 電圧検出部34は、後述する第2電圧検出部36と略同一に構成され、例えば、互いに直列に接続された2つの抵抗を含んでいる(図示省略)。2つの抵抗は、平滑コンデンサ33に並列接続され、直流電圧Vdcを分圧する。2つの抵抗の接続点の電圧値は、直流電圧Vdcに所定の分圧比をかけた値として、本体制御マイコン43に入力される。すなわち、電圧検出部34は、直流電圧Vdcに伴う電流が電圧検出部34の内部を流れることで、直流電圧Vdcの値を検出可能である。なお、所定の分圧比は、各抵抗の値によって決定される。 The voltage detector 34 is configured substantially the same as a second voltage detector 36 described later, and includes, for example, two resistors connected in series with each other (not shown). The two resistors are connected in parallel to the smoothing capacitor 33 and divide the DC voltage Vdc. The voltage value at the connection point of the two resistors is input to the main body control microcomputer 43 as a value obtained by multiplying the DC voltage Vdc by a predetermined voltage dividing ratio. That is, the voltage detection unit 34 can detect the value of the DC voltage Vdc by causing a current accompanying the DC voltage Vdc to flow inside the voltage detection unit 34. The predetermined voltage dividing ratio is determined by the value of each resistor.
 (3-3)モータ駆動回路35
 モータ駆動回路35は、直流電圧生成部31とモータ部24との間において配置されている。モータ駆動回路35は、主として、第2電圧検出部36と、電流検出部37と、モータ駆動部38と、を含んでいる。
(3-3) Motor drive circuit 35
The motor drive circuit 35 is disposed between the DC voltage generation unit 31 and the motor unit 24. The motor drive circuit 35 mainly includes a second voltage detection unit 36, a current detection unit 37, and a motor drive unit 38.
 (3-3-1)第2電圧検出部36
 図4は、第2電圧検出部36及び電流検出部37の概略構成図である。第2電圧検出部36は、平滑コンデンサ33の出力側において、平滑コンデンサ33に並列に接続されている。すなわち、第2電圧検出部36は、直流電圧生成部31と電気的に接続されている。第2電圧検出部36は、直流電圧生成部31から供給される電圧(すなわち平滑コンデンサ33の両端電圧)である直流電圧Vdcの電圧値を検出する。
(3-3-1) Second voltage detector 36
FIG. 4 is a schematic configuration diagram of the second voltage detector 36 and the current detector 37. The second voltage detector 36 is connected in parallel to the smoothing capacitor 33 on the output side of the smoothing capacitor 33. That is, the second voltage detection unit 36 is electrically connected to the DC voltage generation unit 31. The second voltage detector 36 detects the voltage value of the DC voltage Vdc that is the voltage supplied from the DC voltage generator 31 (that is, the voltage across the smoothing capacitor 33).
 第2電圧検出部36は、例えば、互いに直列に接続された2つの抵抗36a及び36bを含んでいる。抵抗36a及び36bは、平滑コンデンサ33に並列接続され、直流電圧Vdcを分圧する。抵抗36a及び36bの接続点の電圧値は、直流電圧Vdcに所定の分圧比をかけた値として、インバータ制御部26に入力される。すなわち、第2電圧検出部36は、直流電圧Vdcに伴う電流が第2電圧検出部36の内部(具体的には、抵抗36a及び36b)を流れることで、直流電圧Vdcの値を検出可能である。なお、所定の分圧比は、抵抗36a及び36bの値によって決定される。 The second voltage detector 36 includes, for example, two resistors 36a and 36b connected in series with each other. The resistors 36a and 36b are connected in parallel to the smoothing capacitor 33 and divide the DC voltage Vdc. The voltage value at the connection point of the resistors 36a and 36b is input to the inverter control unit 26 as a value obtained by multiplying the DC voltage Vdc by a predetermined voltage dividing ratio. That is, the second voltage detection unit 36 can detect the value of the DC voltage Vdc because the current accompanying the DC voltage Vdc flows through the second voltage detection unit 36 (specifically, the resistors 36a and 36b). is there. The predetermined voltage dividing ratio is determined by the values of the resistors 36a and 36b.
 (3-3-2)電流検出部37
 電流検出部37は、平滑コンデンサ33とインバータ部25との間において、平滑コンデンサ33の負側出力端子側に接続されている。電流検出部37は、室内ファンモータ23(モータ部24)の起動後、モータ部24に流れるモータ電流Imを検出する。電流検出部37は、例えば、シャント抵抗37a及び増幅回路37bによって構成されている(図4参照)。
(3-3-2) Current detection unit 37
The current detection unit 37 is connected to the negative output terminal side of the smoothing capacitor 33 between the smoothing capacitor 33 and the inverter unit 25. The current detection unit 37 detects the motor current Im flowing through the motor unit 24 after the indoor fan motor 23 (motor unit 24) is started. The current detection unit 37 includes, for example, a shunt resistor 37a and an amplifier circuit 37b (see FIG. 4).
 シャント抵抗37aは、平滑コンデンサ33の負側出力端子に接続されているGND配線L1上に配置されている。増幅回路37bは、シャント抵抗37aの両端の電圧を所定の倍率で増幅させるオペアンプ等を含む回路である。増幅回路37bは、入力部がシャント抵抗37aの両端に接続されており、出力部がインバータ制御部26に接続されている。 The shunt resistor 37a is disposed on the GND wiring L1 connected to the negative output terminal of the smoothing capacitor 33. The amplifier circuit 37b is a circuit including an operational amplifier that amplifies the voltage across the shunt resistor 37a at a predetermined magnification. The amplifier circuit 37 b has an input portion connected to both ends of the shunt resistor 37 a and an output portion connected to the inverter control unit 26.
 モータ部24を流れる電流(モータ電流Im)は、GND配線L1上を流れる。電流検出部37は、このモータ電流Imに伴うシャント抵抗37aの両端電圧を検出することによって、モータ電流Imを検出することができる。なお、GND配線L1は、モータ駆動部38(後述のインバータ制御部26)のグランド側(低電位側)と直流電圧生成部31とを接続する電源ラインである。 The current (motor current Im) flowing through the motor unit 24 flows on the GND wiring L1. The current detection unit 37 can detect the motor current Im by detecting the voltage across the shunt resistor 37a associated with the motor current Im. The GND wiring L1 is a power supply line that connects the ground side (low potential side) of the motor drive unit 38 (inverter control unit 26 described later) and the DC voltage generation unit 31.
 (3-3-3)モータ駆動部38
 モータ駆動部38(請求の範囲記載の「駆動部」に相当)は、直流電圧生成部31とモータ部24との間に配置されている。モータ駆動部38は、モータ部24を駆動するための三相交流電圧である駆動電圧SU、SV及びSWを生成してモータ部24に出力する。モータ駆動部38は、所定のパラメータを用い、ロータ位置センサレス方式に基づいて駆動電圧SU、SV及びSWを生成する。ロータ位置センサレス方式とは、モータ部24の巻線抵抗、インダクタンス成分、誘起電圧、極数、直流電圧Vdcの電圧値、モータ電流Im(電流検出部37の検出結果)、及び所定の数式モデル等を用いて、ロータ242の位置の推定、回転数の推定、回転数に対するPI制御、及びモータ電流Imに対するPI制御等を行う方式である。
(3-3-3) Motor drive unit 38
The motor drive unit 38 (corresponding to the “drive unit” described in the claims) is disposed between the DC voltage generation unit 31 and the motor unit 24. The motor drive unit 38 generates drive voltages SU, SV, and SW that are three-phase AC voltages for driving the motor unit 24 and outputs them to the motor unit 24. The motor drive unit 38 generates drive voltages SU, SV, and SW based on a rotor position sensorless system using predetermined parameters. The rotor position sensorless system is a winding resistance, inductance component, induced voltage, number of poles, voltage value of DC voltage Vdc, motor current Im (detection result of current detection unit 37), a predetermined mathematical model, etc. Is used to estimate the position of the rotor 242, estimate the rotational speed, perform PI control on the rotational speed, and perform PI control on the motor current Im.
 モータ駆動部38は、図2及び図3に示すように、主として、上述のインバータ部25及びインバータ制御部26で構成される。 As shown in FIGS. 2 and 3, the motor drive unit 38 mainly includes the inverter unit 25 and the inverter control unit 26 described above.
 インバータ部25は、平滑コンデンサ33の出力側に接続されている。インバータ部25には、直流電圧Vdcが供給される。 The inverter unit 25 is connected to the output side of the smoothing capacitor 33. The inverter unit 25 is supplied with a DC voltage Vdc.
 インバータ制御部26は、インバータ制御部動作用電源91に接続され、電源電圧V1を供給されている。なお、電源電圧V1は、例えば15Vであるが、インバータ制御部26の定格電圧に応じて適宜変更が可能である。 The inverter control unit 26 is connected to an inverter control unit operating power supply 91 and is supplied with a power supply voltage V1. The power supply voltage V1 is, for example, 15V, but can be appropriately changed according to the rated voltage of the inverter control unit 26.
 インバータ制御部26は、本体制御マイコン43と電気的に接続されている。インバータ制御部26は、本体制御マイコン43から送られる運転指令(回転数指令)に基づいて、インバータ部25から出力される駆動電圧SU、SV及びSWを決定する。 The inverter control unit 26 is electrically connected to the main body control microcomputer 43. The inverter control unit 26 determines the drive voltages SU, SV, and SW output from the inverter unit 25 based on the operation command (rotational speed command) sent from the main body control microcomputer 43.
 インバータ制御部26は、モータ部24を、直流励磁方式又は強制駆動方式にて起動する。ここで、直流励磁方式とは、モータ部24に対して直流通電を行うことで、ロータ242の位置を所定位置に一旦固定させ、ロータ242が固定した状態からモータ部24の駆動を開始させる方式である。一方、強制駆動方式とは、ロータ242の位置に関係なく、所定の電圧値及び周波数を有する駆動電圧SU、SV及びSWをモータ部24に供給する強制通電を行うことで、モータ部24を強制的に起動させる方式である。 The inverter control unit 26 activates the motor unit 24 by a DC excitation method or a forced drive method. Here, the direct current excitation method is a method in which the position of the rotor 242 is temporarily fixed at a predetermined position by performing direct current energization to the motor unit 24, and the driving of the motor unit 24 is started from the state where the rotor 242 is fixed. It is. On the other hand, the forcible driving method forces the motor unit 24 by forcibly energizing the motor unit 24 with drive voltages SU, SV, and SW having a predetermined voltage value and frequency regardless of the position of the rotor 242. It is a method to start up automatically.
 インバータ制御部26は、モータ部24の起動後、ロータ242の位置を推定するとともに、推定したロータ242の位置に基づいてモータ部24の回転数を推定する。インバータ制御部26によって推定されたモータ部24の回転数は、回転数信号として本体制御マイコン43に送られる。 The inverter control unit 26 estimates the position of the rotor 242 after the motor unit 24 is started, and estimates the rotational speed of the motor unit 24 based on the estimated position of the rotor 242. The rotation number of the motor unit 24 estimated by the inverter control unit 26 is sent to the main body control microcomputer 43 as a rotation number signal.
 また、インバータ制御部26は、本体制御マイコン43から送られてくる運転指令・運転停止指令(回転数指令)を受けて、推定したロータ242の位置、推定した回転数、直流電圧Vdcの電圧値及びモータ電流Imの電流値等を用いて、駆動電圧SU、SV及びSWのデューティを決定する。 The inverter control unit 26 receives an operation command / operation stop command (rotational speed command) sent from the main body control microcomputer 43, and estimates the position of the rotor 242, the estimated rotational speed, and the voltage value of the DC voltage Vdc. And the duty of drive voltage SU, SV, and SW is determined using the current value of motor current Im, and the like.
 インバータ制御部26は、決定した駆動電圧SU、SV及びSWのデューティに基づき、インバータ部25の各トランジスタQ3a~Q5bのオン及びオフの状態を変化させる。具体的には、インバータ制御部26は、決定したデューティを有する駆動電圧SU、SV及びSWがインバータ部25からモータ部24に出力されるように、スイッチング素子の駆動回路を介してゲート制御電圧Gu、Gx、Gv、Gy、Gw及びGzを生成し、トランジスタQ3a、Q3b、Q4a、Q4b、Q5a及びQ5bのゲート端子にそれぞれ供給する。 The inverter control unit 26 changes the on / off states of the transistors Q3a to Q5b of the inverter unit 25 based on the determined duty of the drive voltages SU, SV, and SW. Specifically, the inverter control unit 26 uses the gate control voltage Gu via the switching element drive circuit so that the drive voltages SU, SV, and SW having the determined duty are output from the inverter unit 25 to the motor unit 24. , Gx, Gv, Gy, Gw and Gz are generated and supplied to the gate terminals of the transistors Q3a, Q3b, Q4a, Q4b, Q5a and Q5b, respectively.
 (3―4)レベルシフタ41
 レベルシフタ41は、平滑コンデンサ33に対して並列に接続されており、平滑コンデンサ33の両端電圧(すなわち直流電圧Vdc)が供給される。レベルシフタ41の出力は、本体制御マイコン43に接続されている。
(3-4) Level shifter 41
The level shifter 41 is connected in parallel to the smoothing capacitor 33 and supplied with the voltage across the smoothing capacitor 33 (that is, the DC voltage Vdc). The output of the level shifter 41 is connected to the main body control microcomputer 43.
 具体的に、レベルシフタ41は、直流電圧生成部31から供給された直流電圧Vdcを、所定の電源電圧V2に変換する。レベルシフタ41は、例えば、280Vの直流電圧Vdcを、5Vの電源電圧V2に変換する。レベルシフタ41は、変換後の電源電圧V2を本体制御マイコン43に供給する。すなわち、レベルシフタ41は、本体制御マイコン43の電源として機能する。なお、電源電圧V2は、本体制御マイコン43の定格電圧に応じて適宜変更が可能である。電源電圧V2は、Vdcと共通のGNDを持っている。 Specifically, the level shifter 41 converts the DC voltage Vdc supplied from the DC voltage generator 31 into a predetermined power supply voltage V2. For example, the level shifter 41 converts a DC voltage Vdc of 280V into a power supply voltage V2 of 5V. The level shifter 41 supplies the converted power supply voltage V2 to the main body control microcomputer 43. That is, the level shifter 41 functions as a power source for the main body control microcomputer 43. The power supply voltage V2 can be changed as appropriate according to the rated voltage of the main body control microcomputer 43. The power supply voltage V2 has the same GND as Vdc.
 (3-5)切換部42
 切換部42は、GND配線L1(インバータ部25と直流電圧生成部31との間を接続する電源ライン)の導通及び遮断を切換えるための電気部品である。換言すると、切換部42は、GND配線L1の導通及び遮断を切換えるスイッチの役割を担っている。切換部42は、直流電圧生成部31とインバータ部25との間において、GND配線L1上に配置されている。
(3-5) Switching unit 42
The switching unit 42 is an electrical component for switching between conduction and interruption of the GND wiring L1 (a power line connecting the inverter unit 25 and the DC voltage generation unit 31). In other words, the switching unit 42 plays a role of a switch that switches between conduction and interruption of the GND wiring L1. The switching unit 42 is arranged on the GND wiring L <b> 1 between the DC voltage generation unit 31 and the inverter unit 25.
 切換部42は、例えば、半導体スイッチの一種であるMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)で構成されている。具体的に、切換部42は、ゲート端子の電位を、ソース端子の電位に対して所定値以上とされるとオン状態に切り換わり、ソース端子の電位に対して所定値未満とされるとオフ状態に切り換わるように構成されている。 The switching unit 42 is composed of, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) which is a kind of semiconductor switch. Specifically, the switching unit 42 switches to an on state when the potential of the gate terminal is equal to or higher than a predetermined value with respect to the potential of the source terminal, and turns off when the potential is lower than the predetermined value with respect to the potential of the source terminal. It is configured to switch to a state.
 なお、切換部42が、具体的にどのタイミングでオンからオフ又はオフからオンへと切換えられるのかについては、「(5)モータ部24及び切換部42の動作」において説明する。 Note that the specific timing at which the switching unit 42 is switched from on to off or from off to on will be described in “(5) Operation of the motor unit 24 and the switching unit 42”.
 (3-6)本体制御マイコン43
 本体制御マイコン43(請求の範囲記載の「駆動制御部」、「切換制御部」、「統括制御部」に相当)は、RAM、ROM及びCPU等で構成されるマイクロコンピュータである。本体制御マイコン43は、タイマー機能を有しており、時間を計測可能である。本体制御マイコン43は、空調機100に含まれる複数の機器(具体的には、圧縮機11、四路切換弁12、室外ファン15及び室内ファン22等)を、統括的に制御する統括制御部として機能する。本体制御マイコン43は、レベルシフタ41から電源電圧V2を供給される。本体制御マイコン43は、インバータ制御部26、切換部42、リモートコントローラ(図示省略)及び室外ユニット制御部等と接続されている。本体制御マイコン43は、電圧検出部34の検出結果を入力される。
(3-6) Main unit control microcomputer 43
The main body control microcomputer 43 (corresponding to “drive control unit”, “switching control unit”, “overall control unit” described in the claims) is a microcomputer composed of a RAM, a ROM, a CPU, and the like. The main body control microcomputer 43 has a timer function and can measure time. The main body control microcomputer 43 controls a plurality of devices included in the air conditioner 100 (specifically, the compressor 11, the four-way switching valve 12, the outdoor fan 15, the indoor fan 22, and the like). Function as. The main body control microcomputer 43 is supplied with the power supply voltage V <b> 2 from the level shifter 41. The main body control microcomputer 43 is connected to the inverter control unit 26, the switching unit 42, a remote controller (not shown), the outdoor unit control unit, and the like. The main body control microcomputer 43 receives the detection result of the voltage detector 34.
 本体制御マイコン43は、リモートコントローラから運転開始の指示がなされた場合には、圧縮機モータ11aや室外ファンモータ15aの起動指示を出力する。また、本体制御マイコン43は、モータ部24の回転数を示す回転数信号を監視し、回転数指令を含む運転指令をインバータ制御部26に出力する。また、本体制御マイコン43は、リモートコントローラから運転停止の指示がなされた場合には、圧縮機モータ11aや室外ファンモータ15aの駆動を停止する指示を出力する。また、本体制御マイコン43は、モータ部24の運転を停止させる旨の運転停止指令をインバータ制御部26に出力する。換言すると、本体制御マイコン43は、室内ファンモータ23及びモータ駆動部38の動作を制御する駆動制御部ともいえる。 The main body control microcomputer 43 outputs an activation instruction for the compressor motor 11a and the outdoor fan motor 15a when an instruction to start operation is given from the remote controller. Further, the main body control microcomputer 43 monitors a rotation speed signal indicating the rotation speed of the motor unit 24 and outputs an operation command including the rotation speed command to the inverter control unit 26. The main body control microcomputer 43 outputs an instruction to stop driving the compressor motor 11a and the outdoor fan motor 15a when an instruction to stop the operation is given from the remote controller. In addition, the main body control microcomputer 43 outputs an operation stop command for stopping the operation of the motor unit 24 to the inverter control unit 26. In other words, the main body control microcomputer 43 can be said to be a drive control unit that controls operations of the indoor fan motor 23 and the motor drive unit 38.
 また、本体制御マイコン43は、切換部42に対する切換部駆動用電源Vswの供給及び遮断を行うことで、切換部42の動作を制御している。具体的に、本体制御マイコン43は、室内ファンモータ23(モータ部)が駆動している運転モード時には、切換部駆動用電源Vswの供給を行って切換部42をオン状態とする。これにより、運転モード時においては、GND配線L1が導通するようになっている。換言すると、本体制御マイコン43は、切換部42の動作を制御する切換制御部ともいえる。なお、本体制御マイコン43から切換部42のゲート端子に切換部駆動用電源Vswを直接出力するか、あるいは切換部42の駆動回路(図示せず)を設け当該駆動回路から切換部駆動用電源Vswを切換部42のゲート端子に出力させることで、切換部42の制御が可能である。 The main body control microcomputer 43 controls the operation of the switching unit 42 by supplying and shutting off the switching unit driving power Vsw to the switching unit 42. Specifically, the main body control microcomputer 43 supplies the switching unit driving power source Vsw to turn on the switching unit 42 in the operation mode in which the indoor fan motor 23 (motor unit) is driven. Thereby, in the operation mode, the GND wiring L1 is made conductive. In other words, the main body control microcomputer 43 can be said to be a switching control unit that controls the operation of the switching unit 42. It should be noted that the switching unit driving power supply Vsw is directly output from the main body control microcomputer 43 to the gate terminal of the switching unit 42, or a switching circuit driving power supply Vsw is provided from the driving circuit (not shown). Is output to the gate terminal of the switching unit 42 so that the switching unit 42 can be controlled.
 また、本体制御マイコン43は、直流電圧Vdcが所定値を上回る過電圧状態となった場合において、切換部42がオン状態にある時(すなわち、GND配線L1が導通している時)には、室内ファンモータ23及びモータ駆動部38を保護すべく、切換部駆動用電源Vswの供給を遮断して切換部42をオフ状態とする。これにより、直流電圧Vdcが過電圧状態にある時には、GND配線L1が遮断されるようになっている。 Further, when the DC voltage Vdc is in an overvoltage state in which the DC voltage Vdc exceeds a predetermined value, the main body control microcomputer 43 is in the room when the switching unit 42 is in the on state (that is, when the GND wiring L1 is conductive). In order to protect the fan motor 23 and the motor drive unit 38, the supply of the switching unit driving power source Vsw is cut off and the switching unit 42 is turned off. Thereby, when the DC voltage Vdc is in an overvoltage state, the GND wiring L1 is cut off.
 また、本体制御マイコン43は、直流電圧Vdcが過電圧状態となった場合において、室内ファンモータ23(モータ部)が駆動状態にある時には、インバータ部25の動作を停止させる(すなわち駆動電圧SU、SV及びSWの出力を停止させる)旨の運転停止指令をインバータ制御部26に出力する。これにより、インバータ部25における全てのスイッチング素子(トランジスタQ3a~Q5b)がオフ状態となり、トランジスタQ3a~Q5bのいずれかがオン状態にある場合よりも各スイッチング素子に供給される電圧が抑制される。よって、運転モード時において、直流電圧Vdcが過電圧状態となって、インバータ部25に含まれるスイッチング素子(トランジスタQ3a~Q5b)の耐圧を上回る電圧値となっても、インバータ部25を破壊されることが抑制される。 Further, the main body control microcomputer 43 stops the operation of the inverter unit 25 when the indoor fan motor 23 (motor unit) is in a driving state when the DC voltage Vdc is in an overvoltage state (that is, the driving voltages SU, SV). And an operation stop command to stop the output of the SW are output to the inverter control unit 26. Thereby, all the switching elements (transistors Q3a to Q5b) in the inverter unit 25 are turned off, and the voltage supplied to each switching element is suppressed as compared with the case where any of the transistors Q3a to Q5b is in the on state. Therefore, in the operation mode, even if the DC voltage Vdc becomes an overvoltage state and the voltage value exceeds the withstand voltage of the switching elements (transistors Q3a to Q5b) included in the inverter unit 25, the inverter unit 25 is destroyed. Is suppressed.
 ここで、「過電圧状態」とは、直流電圧Vdcが第3閾値ΔTh3以上の状態、又は、直流電圧Vdcが第1閾値ΔTh1以上第3閾値ΔTh3未満の状態が所定時間T1継続している状態を指す。すなわち、本体制御マイコン43は、室内ファンモータ23(モータ部)が駆動している際に、直流電圧Vdcが第1閾値ΔTh1未満の状態から第1閾値ΔTh1以上の状態に変化した場合において、直流電圧Vdcが第1閾値ΔTh1よりも高い第3閾値ΔTh3以上であれば直ちに切換部駆動用電源Vswの供給を遮断し、直流電圧Vdcが第3閾値ΔTh3未満であれば第1閾値ΔTh1以上第3閾値ΔTh3未満の状態が所定時間T1継続した時に切換部駆動用電源Vswの供給を遮断する。これにより、直流電圧Vdcが第3閾値ΔTh3以上であれば直ちにGND配線L1が遮断され、直流電圧Vdcが第3閾値ΔTh3未満であれば第1閾値ΔTh1以上第3閾値ΔTh3未満の状態が所定時間T1継続した時にGND配線L1が遮断される。このように、直流電圧Vdcの電圧値上昇の急峻性に応じて、GND配線L1を遮断するタイミングが可変とされている。その結果、モータ駆動装置30では、保安性への影響が少ないと判断される時には、GND配線L1が遮断されず、室内ファンモータ23(モータ部)の迅速な再起動に備えられるようになっている。 Here, the “overvoltage state” is a state in which the DC voltage Vdc is equal to or greater than the third threshold value ΔTh3 or the DC voltage Vdc is equal to or greater than the first threshold value ΔTh1 and less than the third threshold value ΔTh3 for a predetermined time T1. Point to. That is, when the indoor fan motor 23 (motor unit) is driven, the main body control microcomputer 43 determines that the DC voltage Vdc changes from a state below the first threshold value ΔTh1 to a state above the first threshold value ΔTh1. If the voltage Vdc is not less than the third threshold value ΔTh3 higher than the first threshold value ΔTh1, the supply of the switching unit driving power source Vsw is immediately cut off, and if the DC voltage Vdc is less than the third threshold value ΔTh3, the third threshold value ΔTh1 is exceeded. When the state less than the threshold value ΔTh3 continues for a predetermined time T1, the supply of the switching unit driving power source Vsw is cut off. As a result, if the DC voltage Vdc is equal to or greater than the third threshold value ΔTh3, the GND wiring L1 is immediately cut off. If the DC voltage Vdc is less than the third threshold value ΔTh3, the state of the first threshold value ΔTh1 or greater and less than the third threshold value ΔTh3 is maintained for a predetermined time. When T1 continues, the GND wiring L1 is cut off. As described above, the timing at which the GND wiring L1 is cut off is variable in accordance with the steepness of the increase in the voltage value of the DC voltage Vdc. As a result, in the motor drive device 30, when it is determined that the influence on the safety is small, the GND wiring L1 is not cut off, and the indoor fan motor 23 (motor unit) is prepared for quick restart. Yes.
 第1閾値ΔTh1、第3閾値ΔTh3及び所定時間T1の具体例を挙げると、例えば商用電源90の交流電圧Vacが200V、直流電圧Vdcが280Vである場合には、第1閾値ΔTh1は400V、第3閾値ΔTh3は450V、所定時間T1は1secに設定される。なお、第1閾値ΔTh1、第3閾値ΔTh3及び所定時間T1は、当該値には限定されず、モータ駆動装置30の設置環境、定格電力及びインバータ部25の耐圧等に応じて適宜変更が可能である。 As specific examples of the first threshold value ΔTh1, the third threshold value ΔTh3, and the predetermined time T1, for example, when the AC voltage Vac of the commercial power supply 90 is 200V and the DC voltage Vdc is 280V, the first threshold value ΔTh1 is 400V, The 3 threshold value ΔTh3 is set to 450V, and the predetermined time T1 is set to 1 sec. Note that the first threshold value ΔTh1, the third threshold value ΔTh3, and the predetermined time T1 are not limited to these values, and can be appropriately changed according to the installation environment of the motor driving device 30, the rated power, the withstand voltage of the inverter unit 25, and the like. is there.
 また、本体制御マイコン43は、直流電圧Vdcが過電圧に近い状態となった場合において、室内ファンモータ23(モータ部)が駆動状態にある時には、インバータ部25の動作を停止させる(すなわち駆動電圧SU、SV及びSWの出力を停止させる)旨の運転停止指令をインバータ制御部26に出力する。 Further, the main body control microcomputer 43 stops the operation of the inverter unit 25 (that is, the drive voltage SU) when the indoor fan motor 23 (motor unit) is in a driving state when the DC voltage Vdc is close to an overvoltage. , Stop the output of SV and SW) to the inverter control unit 26.
 ここで、「過電圧に近い状態」とは、直流電圧Vdcが第2閾値ΔTh2以上の状態にある時を指す。第2閾値ΔTh2は、第1閾値ΔTh1及び第3閾値ΔTh3よりも小さい値に設定される。つまり、各閾値は、ΔTh2<ΔTh1<ΔTh3という関係にある。すなわち、本体制御マイコン43は、直流電圧Vdcが第1閾値ΔTh1よりも低い第2閾値ΔTh2以上の場合には、インバータ制御部26に駆動電圧SU、SV及びSWの出力を停止させる運転停止指令を出力している。これにより、インバータ部25における全てのスイッチング素子(トランジスタQ3a~Q5b)がオフ状態となり、トランジスタQ3a~Q5bのいずれかがオン状態にある場合よりも各スイッチング素子に供給される電圧が抑制される。よって、運転モード時において、直流電圧Vdcが過電圧に近い状態となって、インバータ部25に含まれるスイッチング素子(トランジスタQ3a~Q5b)の耐圧を上回る電圧値となっても、インバータ部25を破壊されることが抑制される。また、直流電圧Vdcが第1閾値ΔTh1を超えることなく第2閾値ΔTh2を下回った場合における室内ファンモータ23(モータ部)の迅速な再起動に備えることが可能となっている。 Here, “a state close to an overvoltage” indicates a time when the DC voltage Vdc is in a state equal to or higher than the second threshold value ΔTh2. The second threshold value ΔTh2 is set to a value smaller than the first threshold value ΔTh1 and the third threshold value ΔTh3. That is, each threshold has a relationship of ΔTh2 <ΔTh1 <ΔTh3. That is, when the DC voltage Vdc is equal to or higher than the second threshold value ΔTh2 that is lower than the first threshold value ΔTh1, the main body control microcomputer 43 issues an operation stop command for stopping the output of the drive voltages SU, SV, and SW to the inverter control unit 26. Output. Thereby, all the switching elements (transistors Q3a to Q5b) in the inverter unit 25 are turned off, and the voltage supplied to each switching element is suppressed as compared with the case where any of the transistors Q3a to Q5b is in the on state. Therefore, even when the DC voltage Vdc is close to an overvoltage in the operation mode and the voltage value exceeds the withstand voltage of the switching elements (transistors Q3a to Q5b) included in the inverter unit 25, the inverter unit 25 is destroyed. Is suppressed. Further, it is possible to prepare for quick restart of the indoor fan motor 23 (motor unit) when the DC voltage Vdc falls below the second threshold value ΔTh2 without exceeding the first threshold value ΔTh1.
 第2閾値ΔTh2は、例えば、商用電源90の交流電圧Vacが200V、直流電圧Vdcが280Vである場合には、ΔTh2は375Vに設定される。なお、第2閾値ΔTh2は、モータ駆動装置30の設置環境、定格電力及びインバータ部25の耐圧等に応じて適宜変更が可能である。 For example, when the AC voltage Vac of the commercial power supply 90 is 200V and the DC voltage Vdc is 280V, the second threshold value ΔTh2 is set to 375V. Note that the second threshold value ΔTh2 can be appropriately changed according to the installation environment of the motor drive device 30, the rated power, the withstand voltage of the inverter unit 25, and the like.
 また、本体制御マイコン43は、室内ファンモータ23(モータ部)が駆動していない運転停止モード時には、切換部駆動用電源Vswの供給を遮断して切換部42をオフ状態とする。 In the operation stop mode in which the indoor fan motor 23 (motor unit) is not driven, the main body control microcomputer 43 cuts off the supply of the switching unit driving power source Vsw and turns off the switching unit 42.
 (3-7)第1逆流防止ダイオードD6
 第1逆流防止ダイオードD6(請求の範囲記載の「第1ダイオード」に相当)は、モータ駆動回路35と、本体制御マイコン43と、の間に配置されている。より具体的には、第1逆流防止ダイオードD6は、モータ駆動部38(インバータ制御部26)と、本体制御マイコン43と、の間に配置されている。第1逆流防止ダイオードD6は、直流電圧Vdcが過電圧状態となった時に、モータ駆動部38(インバータ制御部26)を介して直流電圧生成部31から本体制御マイコン43に電流が流れることを抑制するために配設されている。
(3-7) First backflow prevention diode D6
The first backflow prevention diode D6 (corresponding to the “first diode” in the claims) is disposed between the motor drive circuit 35 and the main body control microcomputer 43. More specifically, the first backflow prevention diode D6 is arranged between the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43. The first backflow prevention diode D6 suppresses a current from flowing from the DC voltage generation unit 31 to the main body control microcomputer 43 via the motor drive unit 38 (inverter control unit 26) when the DC voltage Vdc is in an overvoltage state. It is arranged for this purpose.
 上述のように、モータ駆動装置30においては、本体制御マイコン43は、直流電圧Vdcが過電圧状態となった時に、インバータ部25のグランド側(低電位側)と直流電圧生成部31とを接続するGND配線L1を遮断する。一方で、GND配線L1が遮断されると、モータ駆動部38(インバータ制御部26)内の電位が本体制御マイコン43内の電位よりも高くなる。よって、インバータ制御部26を介して直流電圧生成部31から本体制御マイコン43に流れる電流を遮断する手段が設けられていなければ、直流電圧Vdcが過電圧状態となった時にインバータ制御部26及び本体制御マイコン43が破壊されるおそれがある。係る事態となることを抑制するために、モータ駆動装置30では、第1逆流防止ダイオードD6が、インバータ制御部26と本体制御マイコン43との間に配置されている。 As described above, in the motor drive device 30, the main body control microcomputer 43 connects the ground side (low potential side) of the inverter unit 25 and the DC voltage generation unit 31 when the DC voltage Vdc is in an overvoltage state. The GND wiring L1 is cut off. On the other hand, when the GND wiring L1 is cut off, the potential in the motor drive unit 38 (inverter control unit 26) becomes higher than the potential in the main body control microcomputer 43. Therefore, if no means for interrupting the current flowing from the DC voltage generator 31 to the main body control microcomputer 43 via the inverter control unit 26 is provided, the inverter control unit 26 and the main body control when the DC voltage Vdc is in an overvoltage state. The microcomputer 43 may be destroyed. In order to suppress such a situation, in the motor drive device 30, the first backflow prevention diode D6 is disposed between the inverter control unit 26 and the main body control microcomputer 43.
 (3-8)第2逆流防止ダイオードD7
 第2逆流防止ダイオードD7(請求の範囲記載の「第2ダイオード」に相当)は、モータ駆動部38(インバータ制御部26)と、インバータ制御部動作用電源91と、の間に配置されている。第2逆流防止ダイオードD7は、直流電圧Vdcが過電圧状態となった時に、モータ駆動部38(インバータ制御部26)を介して直流電圧生成部31からインバータ制御部動作用電源91に電流が流れることを抑制するために配設されている。
(3-8) Second backflow prevention diode D7
The second backflow prevention diode D7 (corresponding to the “second diode” in the claims) is arranged between the motor drive unit 38 (inverter control unit 26) and the inverter control unit operating power supply 91. . In the second backflow prevention diode D7, when the DC voltage Vdc is in an overvoltage state, a current flows from the DC voltage generating unit 31 to the inverter control unit operating power source 91 via the motor driving unit 38 (inverter control unit 26). It is arranged to suppress this.
 上述のように、直流電圧Vdcが過電圧状態となった時にGND配線L1が遮断されると、モータ駆動部38(インバータ制御部26)内の電位がインバータ制御部動作用電源91の電位よりも高くなる。よって、インバータ制御部26を介して直流電圧生成部31からインバータ制御部動作用電源91に流れる電流を遮断する手段が設けられていなければ、直流電圧Vdcが過電圧状態となった時にインバータ制御部26及びインバータ制御部動作用電源91が破壊されるおそれがある。係る事態となることを抑制するために、モータ駆動装置30では、第2逆流防止ダイオードD7が、インバータ制御部26とインバータ制御部動作用電源91との間に配置されている。 As described above, when the GND wiring L1 is cut off when the DC voltage Vdc is in an overvoltage state, the potential in the motor drive unit 38 (inverter control unit 26) is higher than the potential of the power supply 91 for operating the inverter control unit. Become. Therefore, if no means for interrupting the current flowing from the DC voltage generating unit 31 to the inverter control unit operating power supply 91 via the inverter control unit 26 is provided, the inverter control unit 26 when the DC voltage Vdc is in an overvoltage state. In addition, the inverter control unit operation power supply 91 may be destroyed. In order to suppress such a situation, in the motor drive device 30, the second backflow prevention diode D7 is disposed between the inverter control unit 26 and the inverter control unit operating power supply 91.
 (4)本体制御マイコン43の制御の流れ
 以下、図5を参照して、本体制御マイコン43による切換部42及びインバータ制御部26(室内ファンモータ23)に関する制御の流れの一例について説明する。図5は、本体制御マイコン43の制御の流れの一例を示したフローチャートである。
(4) Flow of control of main body control microcomputer 43 Hereinafter, an example of a flow of control related to the switching unit 42 and the inverter control unit 26 (indoor fan motor 23) by the main body control microcomputer 43 will be described with reference to FIG. FIG. 5 is a flowchart showing an example of a control flow of the main body control microcomputer 43.
 本体制御マイコン43は、リモートコントローラを介して運転指示が入力されると、ステップS101において、直流電圧Vdcが第1閾値ΔTh1未満か否かを判定する。当該判定がNOの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1以上の場合)、ステップS101において当該判定を繰り返す。一方、当該判定がYESの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1未満の場合)、ステップS102へ進む。 When the operation instruction is input via the remote controller, the main body control microcomputer 43 determines whether or not the DC voltage Vdc is less than the first threshold value ΔTh1 in step S101. If the determination is NO (that is, if the DC voltage Vdc is greater than or equal to the first threshold value ΔTh1), the determination is repeated in step S101. On the other hand, when the determination is YES (that is, when the DC voltage Vdc is less than the first threshold value ΔTh1), the process proceeds to step S102.
 ステップS102において、本体制御マイコン43は、切換部駆動用電源Vswを切換部42に供給する。これにより、切換部42がオン状態に切り換わり、GND配線L1が導通する。その後、ステップS103へ進む。 In step S102, the main body control microcomputer 43 supplies the switching unit driving power source Vsw to the switching unit 42. As a result, the switching unit 42 is switched on, and the GND wiring L1 becomes conductive. Thereafter, the process proceeds to step S103.
 ステップS103において、本体制御マイコン43は、直流電圧Vdcが第2閾値ΔTh2未満か否かを判定する。当該判定がNOの場合(すなわち、直流電圧Vdcが第2閾値ΔTh2以上の場合)、ステップS101に戻る。一方、当該判定がYESの場合(すなわち、直流電圧Vdcが第2閾値ΔTh2未満の場合)、ステップS104へ進む。 In step S103, the main body control microcomputer 43 determines whether or not the DC voltage Vdc is less than the second threshold value ΔTh2. When the determination is NO (that is, when the DC voltage Vdc is greater than or equal to the second threshold value ΔTh2), the process returns to step S101. On the other hand, when the determination is YES (that is, when the DC voltage Vdc is less than the second threshold value ΔTh2), the process proceeds to step S104.
 ステップS104において、本体制御マイコン43は、運転指令をインバータ制御部26に出力する。これを受けて、インバータ制御部26からゲート制御電圧Gu~GzがトランジスタQ3a~Q5bのゲート端子にそれぞれ出力されて、モータ部24及びインバータ部25が駆動する。その後、ステップS105へ進む。 In step S104, the main body control microcomputer 43 outputs an operation command to the inverter control unit 26. In response to this, the inverter control unit 26 outputs the gate control voltages Gu to Gz to the gate terminals of the transistors Q3a to Q5b, respectively, and the motor unit 24 and the inverter unit 25 are driven. Thereafter, the process proceeds to step S105.
 ステップS105において、本体制御マイコン43は、直流電圧Vdcが第3閾値ΔTh3未満か否かを判定する。当該判定がNOの場合(すなわち、直流電圧Vdcが第3閾値ΔTh3以上の場合)、ステップS106へ進む。一方、当該判定がYESの場合(すなわち、直流電圧Vdcが第3閾値ΔTh3未満の場合)、ステップS107へ進む。 In step S105, the main body control microcomputer 43 determines whether or not the DC voltage Vdc is less than the third threshold value ΔTh3. When the determination is NO (that is, when the DC voltage Vdc is greater than or equal to the third threshold value ΔTh3), the process proceeds to step S106. On the other hand, when the determination is YES (that is, when the DC voltage Vdc is less than the third threshold value ΔTh3), the process proceeds to step S107.
 ステップS106において、本体制御マイコン43は、切換部42への切換部駆動用電源Vswの供給を遮断する。これにより、切換部42がオフ状態に切り換わり、GND配線L1が遮断される。また、本体制御マイコン43は、運転停止指令をインバータ制御部26に出力する(但し、すでにモータ部24及びインバータ部25が動作を停止している場合には、本体制御マイコン43は、運転停止指令を出力しない)。これにより、ゲート制御電圧Gu~Gzの出力が停止され、モータ部24及びインバータ部25が駆動を停止する。その後、ステップS101に戻る。 In step S106, the main body control microcomputer 43 cuts off the supply of the switching unit driving power source Vsw to the switching unit 42. Thereby, the switching part 42 switches to an OFF state, and the GND wiring L1 is interrupted | blocked. The main body control microcomputer 43 outputs an operation stop command to the inverter control unit 26 (however, when the motor unit 24 and the inverter unit 25 have already stopped operating, the main body control microcomputer 43 outputs the operation stop command. Is not output). Thereby, the output of the gate control voltages Gu to Gz is stopped, and the motor unit 24 and the inverter unit 25 stop driving. Then, it returns to step S101.
 ステップS107において、本体制御マイコン43は、直流電圧Vdcが第1閾値ΔTh1以上か否かを判定する。当該判定がNOの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1未満の場合)、ステップS108へ進む。一方、当該判定がYESの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1以上の場合)、ステップS110へ進む。 In step S107, the main body control microcomputer 43 determines whether or not the DC voltage Vdc is equal to or higher than the first threshold value ΔTh1. When the determination is NO (that is, when the DC voltage Vdc is less than the first threshold value ΔTh1), the process proceeds to step S108. On the other hand, when the determination is YES (that is, when the DC voltage Vdc is greater than or equal to the first threshold value ΔTh1), the process proceeds to step S110.
 ステップS108において、本体制御マイコン43は、直流電圧Vdcが第2閾値ΔTh2以上か否かを判定する。当該判定がNOの場合(すなわち、直流電圧Vdcが第2閾値ΔTh2未満の場合)、ステップS104に戻る。一方、当該判定がYESの場合(すなわち、直流電圧Vdcが第2閾値ΔTh2以上の場合)、ステップS109へ進む。 In step S108, the main body control microcomputer 43 determines whether or not the DC voltage Vdc is greater than or equal to the second threshold value ΔTh2. When the determination is NO (that is, when the DC voltage Vdc is less than the second threshold value ΔTh2), the process returns to step S104. On the other hand, when the determination is YES (that is, when the DC voltage Vdc is equal to or greater than the second threshold value ΔTh2), the process proceeds to step S109.
 ステップS109において、本体制御マイコン43は、運転停止指令をインバータ制御部26に出力する(但し、すでにモータ部24及びインバータ部25が動作を停止している場合には、本体制御マイコン43は、運転停止指令を出力しない)。これにより、ゲート制御電圧Gu~Gzの出力が停止され、モータ部24及びインバータ部25が動作を停止する。その後、ステップS105に戻る。 In step S109, the main body control microcomputer 43 outputs an operation stop command to the inverter control unit 26 (however, if the motor unit 24 and the inverter unit 25 have already stopped operating, the main body control microcomputer 43 operates Stop command is not output). As a result, the output of the gate control voltages Gu to Gz is stopped, and the motor unit 24 and the inverter unit 25 stop operating. Thereafter, the process returns to step S105.
 ステップS110において、本体制御マイコン43は、運転停止指令をインバータ制御部26に出力する(但し、すでにモータ部24及びインバータ部25が動作を停止している場合には、本体制御マイコン43は、運転停止指令を出力しない)。これにより、ゲート制御電圧Gu~Gzの出力が停止され、モータ部24及びインバータ部25が動作を停止する。また、本体制御マイコン43は、時間の計測を開始する(但し、すでに時間の計測を開始している場合には、カウントを継続する)。その後、ステップS111へ進む。なお、本体制御マイコン43は、ステップS106、ステップS108又はステップS112において、時間の計測を停止するとともにカウンタをリセットする。 In step S110, the main body control microcomputer 43 outputs an operation stop command to the inverter control unit 26 (however, when the motor unit 24 and the inverter unit 25 have already stopped operating, the main body control microcomputer 43 operates Stop command is not output). As a result, the output of the gate control voltages Gu to Gz is stopped, and the motor unit 24 and the inverter unit 25 stop operating. Further, the main body control microcomputer 43 starts measuring time (however, if time measurement has already been started, counting is continued). Thereafter, the process proceeds to step S111. The main body control microcomputer 43 stops measuring time and resets the counter in step S106, step S108, or step S112.
 ステップS111において、本体制御マイコン43は、ステップS110においてカウントを開始した計測時間が所定時間T1以上となったか否かを判定する。当該判定がNOの場合(すなわち、計測時間が所定時間T1未満の場合)、ステップS105に戻る。一方、当該判定がYESの場合(すなわち、計測時間が所定時間T1以上の場合)、ステップS112へ進む。 In step S111, the main body control microcomputer 43 determines whether or not the measurement time at which the counting is started in step S110 is equal to or longer than the predetermined time T1. If the determination is NO (that is, if the measurement time is less than the predetermined time T1), the process returns to step S105. On the other hand, when the determination is YES (that is, when the measurement time is equal to or longer than the predetermined time T1), the process proceeds to step S112.
 ステップS112において、本体制御マイコン43は、切換部42への切換部駆動用電源Vswの供給を遮断する。これにより、切換部42がオフ状態に切り換わり、GND配線L1が遮断される。その後、ステップS101に戻る。 In step S112, the main body control microcomputer 43 cuts off the supply of the switching unit driving power source Vsw to the switching unit 42. Thereby, the switching part 42 switches to an OFF state, and the GND wiring L1 is interrupted | blocked. Then, it returns to step S101.
 (5)モータ部24及び切換部42の動作
 以下、図6及び図7を参照して、切換部42のオン・オフ状態及びモータ部24の発停が切換えられるタイミングについて説明する。図6及び図7は、モータ部24及び切換部42の状態の変化の一例を示すタイミングチャートである。
(5) Operation of the Motor Unit 24 and the Switching Unit 42 Hereinafter, the timing at which the on / off state of the switching unit 42 and the start / stop of the motor unit 24 are switched will be described with reference to FIGS. 6 and 7. 6 and 7 are timing charts showing an example of changes in the states of the motor unit 24 and the switching unit 42. FIG.
 期間Aにおいては、モータ部24は停止状態にあるとともに、切換部42はオフ状態にある。 In period A, the motor unit 24 is in a stopped state and the switching unit 42 is in an off state.
 期間Bにおいては、運転開始指示が入力されたことに応じて、空調機100が運転モードに遷移して運転状態となる。また、直流電圧Vdcが第1閾値ΔTh1未満であって第2閾値ΔTh2未満であることに応じて、切換部42がオン状態になりGND配線L1が導通するとともに、モータ部24が駆動状態となる。 In period B, in response to the input of the operation start instruction, the air conditioner 100 transitions to the operation mode and enters the operation state. Further, in response to the DC voltage Vdc being less than the first threshold value ΔTh1 and less than the second threshold value ΔTh2, the switching unit 42 is turned on, the GND wiring L1 is conducted, and the motor unit 24 is driven. .
 期間Cにおいては、直流電圧Vdcが第2閾値ΔTh2以上となったことに応じて、モータ部24が停止状態となる。なお、直流電圧Vdcが第1閾値ΔTh1未満であるため、切換部42はオン状態のままである。 In the period C, the motor unit 24 is stopped in response to the DC voltage Vdc becoming equal to or higher than the second threshold value ΔTh2. Note that, since the DC voltage Vdc is less than the first threshold value ΔTh1, the switching unit 42 remains on.
 期間Dにおいては、直流電圧Vdcが第2閾値ΔTh2未満となったことに応じて、モータ部24が駆動状態となる。なお、直流電圧Vdcが第1閾値ΔTh1未満であるため、切換部42はオン状態のままである。 In the period D, the motor unit 24 is driven in response to the DC voltage Vdc becoming less than the second threshold value ΔTh2. Note that, since the DC voltage Vdc is less than the first threshold value ΔTh1, the switching unit 42 remains on.
 期間Eにおいては、直流電圧Vdcが第2閾値ΔTh2以上となったことに応じて、モータ部24が停止状態となる。また、直流電圧Vdcが第3閾値ΔTh3以上(つまり、第1閾値ΔTh1以上)となったことに応じて、切換部42がオフ状態となりGND配線L1が非導通となる。換言すると、期間Eでは、本体制御マイコン43が、直流電圧Vdcが第3閾値ΔTh3以上(つまり、第1閾値ΔTh1以上)である過電圧状態となった場合において、GND配線L1を遮断させるべく、切換部42をオフ状態に切換える制御を行っている。 In the period E, the motor unit 24 is stopped in response to the DC voltage Vdc being equal to or higher than the second threshold value ΔTh2. Further, in response to the DC voltage Vdc becoming equal to or greater than the third threshold value ΔTh3 (that is, equal to or greater than the first threshold value ΔTh1), the switching unit 42 is turned off and the GND wiring L1 is rendered non-conductive. In other words, in the period E, the main body control microcomputer 43 switches to disconnect the GND wiring L1 when the DC voltage Vdc is in an overvoltage state in which the DC voltage Vdc is equal to or greater than the third threshold value ΔTh3 (that is, equal to or greater than the first threshold value ΔTh1). Control is performed to switch the unit 42 to the OFF state.
 期間Fにおいては、直流電圧Vdcが第1閾値ΔTh1未満となったことに応じて、切換部42がオン状態になりGND配線L1が導通する。換言すると、期間Fでは、本体制御マイコン43が、直流電圧Vdcが第1閾値ΔTh1未満となった場合において、GND配線L1を導通させるべく、切換部42をオン状態に切換える制御を行っている。なお、期間Fにおいては、直流電圧Vdcが第2閾値ΔTh2以上であるため、モータ部24は停止状態のままである。 In the period F, in response to the DC voltage Vdc becoming less than the first threshold value ΔTh1, the switching unit 42 is turned on and the GND wiring L1 is conducted. In other words, in the period F, when the DC voltage Vdc becomes less than the first threshold value ΔTh1, the main body control microcomputer 43 performs control to switch the switching unit 42 to the on state so as to make the GND wiring L1 conductive. In the period F, since the DC voltage Vdc is equal to or higher than the second threshold value ΔTh2, the motor unit 24 remains stopped.
 期間Gにおいては、直流電圧Vdcが第2閾値ΔTh2未満となったことに応じて、モータ部24が駆動状態となる。なお、直流電圧Vdcが第1閾値ΔTh1未満であるため、切換部42はオン状態のままである。 In the period G, the motor unit 24 is driven in response to the DC voltage Vdc becoming less than the second threshold value ΔTh2. Note that, since the DC voltage Vdc is less than the first threshold value ΔTh1, the switching unit 42 remains on.
 期間Hにおいては、直流電圧Vdcが第1閾値ΔTh1以上(すなわち第2閾値ΔTh2以上)となったことに応じて、モータ部24が停止状態となる。また、その後、直流電圧Vdcが第1閾値ΔTh1以上第3閾値ΔTh3未満である状態が所定時間T1継続したことに応じて、切換部42がオフ状態となりGND配線L1が非導通となる。 During the period H, the motor unit 24 is stopped in response to the DC voltage Vdc being equal to or higher than the first threshold value ΔTh1 (that is, equal to or higher than the second threshold value ΔTh2). After that, when the state in which the DC voltage Vdc is equal to or greater than the first threshold value ΔTh1 and less than the third threshold value ΔTh3 continues for a predetermined time T1, the switching unit 42 is turned off and the GND wiring L1 is turned off.
 すなわち、期間Hでは、直流電圧Vdcが第1閾値ΔTh1以上となった場合において、GND配線L1が遮断される前に、本体制御マイコン43からインバータ制御部26に運転停止指令が出力されてモータ部24が停止される。換言すると、期間Hでは、本体制御マイコン43は、直流電圧Vdcが第1閾値ΔTh1以上の場合において、GND配線L1が遮断されるよりも前に、インバータ制御部26に運転停止指令を出力している、といえる。また、期間Hでは、本体制御マイコン43は、直流電圧Vdcが第1閾値ΔTh1以上となった場合において、モータ部24の駆動が停止(すなわちインバータ制御部26による駆動電圧SU、SV及びSWの出力が停止)された後、所定時間T1が経過してからGND配線L1を遮断するように、切換部42の動作を制御している、ともいえる。 That is, in the period H, when the DC voltage Vdc is equal to or higher than the first threshold value ΔTh1, before the GND wiring L1 is cut off, an operation stop command is output from the main body control microcomputer 43 to the inverter control unit 26 and the motor unit. 24 is stopped. In other words, in the period H, the main body control microcomputer 43 outputs an operation stop command to the inverter control unit 26 before the GND wiring L1 is cut off when the DC voltage Vdc is equal to or higher than the first threshold value ΔTh1. It can be said that. In the period H, the main body control microcomputer 43 stops driving the motor unit 24 (that is, outputs the drive voltages SU, SV, and SW by the inverter control unit 26) when the DC voltage Vdc is equal to or higher than the first threshold value ΔTh1. It can be said that the operation of the switching unit 42 is controlled so that the GND wiring L1 is cut off after a predetermined time T1 has elapsed.
 期間Iにおいては、直流電圧Vdcが第1閾値ΔTh1未満となったことに応じて、切換部42がオン状態になりGND配線L1が導通する。また、直流電圧Vdcが第2閾値ΔTh2未満となったことに応じて、モータ部24が駆動状態となる。その後、運転停止指示が入力されたことに応じて、空調機100が運転停止モードに遷移して運転停止状態となる。また、モータ部24が停止状態となるとともに、切換部42がオフ状態となりGND配線L1が非導通となる。 In period I, in response to the DC voltage Vdc becoming less than the first threshold value ΔTh1, the switching unit 42 is turned on and the GND wiring L1 becomes conductive. Further, in response to the direct current voltage Vdc becoming less than the second threshold value ΔTh2, the motor unit 24 is driven. Thereafter, in response to the input of the operation stop instruction, the air conditioner 100 transitions to the operation stop mode and enters the operation stop state. In addition, the motor unit 24 is stopped, the switching unit 42 is turned off, and the GND wiring L1 is turned off.
 (6)特徴
 (6-1)
 上記実施形態では、切換部42が、モータ駆動部38(インバータ制御部26)のグランド側(低電位側)と直流電圧生成部31とを接続するGND配線L1上に配置され、直流電圧Vdcの電圧値に応じてGND配線L1の導通及び遮断を切り換えるように制御されている。これにより、直流電圧Vdcが過電圧状態となった時には、GND配線L1が遮断される。
(6) Features (6-1)
In the above embodiment, the switching unit 42 is disposed on the GND wiring L1 that connects the ground side (low potential side) of the motor driving unit 38 (inverter control unit 26) and the DC voltage generating unit 31 to the DC voltage Vdc. Control is performed so as to switch between conduction and interruption of the GND wiring L1 in accordance with the voltage value. Thereby, when the DC voltage Vdc is in an overvoltage state, the GND wiring L1 is cut off.
 また、第1逆流防止ダイオードD6が、モータ駆動部38(インバータ制御部26)と本体制御マイコン43との間に配置されており、GND配線L1が遮断された時に、インバータ制御部26を介して直流電圧生成部31から本体制御マイコン43に電流が流れることが抑制されている。これにより、直流電圧Vdcが過電圧状態となった時にインバータ制御部26及び本体制御マイコン43が保護されるようになっている。 The first backflow prevention diode D6 is disposed between the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43, and when the GND wiring L1 is cut off, the inverter control unit 26 is used. It is suppressed that a current flows from the DC voltage generator 31 to the main body control microcomputer 43. Thus, the inverter control unit 26 and the main body control microcomputer 43 are protected when the DC voltage Vdc is in an overvoltage state.
 (6-2)
 上記実施形態では、第2逆流防止ダイオードD7が、モータ駆動部38(インバータ制御部26)とインバータ制御部動作用電源91との間に配置されており、GND配線L1が遮断された時に、インバータ制御部26を介して直流電圧生成部31からインバータ制御部動作用電源91に電流が流れることが抑制されている。これにより、直流電圧Vdcが過電圧状態となった時にインバータ制御部26及びインバータ制御部動作用電源91が保護されるようになっている。
(6-2)
In the above embodiment, the second backflow prevention diode D7 is disposed between the motor drive unit 38 (inverter control unit 26) and the inverter control unit operating power supply 91, and when the GND wiring L1 is cut off, the inverter It is suppressed that a current flows from the DC voltage generation unit 31 to the inverter control unit operating power source 91 via the control unit 26. As a result, when the DC voltage Vdc is in an overvoltage state, the inverter control unit 26 and the inverter control unit operating power supply 91 are protected.
 (6-3)
 上記実施形態では、直流電圧Vdcが第1閾値ΔTh1以上の場合において、GND配線L1が遮断される(切換部42がオフ状態となる)よりも前に、本体制御マイコン43からインバータ制御部26に運転停止指令が出力されて、インバータ部25からの駆動電圧SU、SV及びSWの出力が停止される。これにより、直流電圧Vdcが過電圧状態となった場合において、GND配線L1が遮断されるよりも前に、室内ファンモータ23(モータ部24及びインバータ部25)に流れる電流を遮断できるようになっている。
(6-3)
In the above embodiment, when the DC voltage Vdc is greater than or equal to the first threshold value ΔTh1, before the GND wiring L1 is cut off (the switching unit 42 is turned off), the main body control microcomputer 43 switches to the inverter control unit 26. An operation stop command is output, and output of the drive voltages SU, SV, and SW from the inverter unit 25 is stopped. As a result, when the DC voltage Vdc is in an overvoltage state, the current flowing through the indoor fan motor 23 (the motor unit 24 and the inverter unit 25) can be interrupted before the GND wiring L1 is interrupted. Yes.
 (6-4)
 上記実施形態では、本体制御マイコン43は、直流電圧Vdcが第1閾値ΔTh1よりも低い第2閾値ΔTh2以上の場合には、インバータ制御部26に駆動電圧SU、SV及びSWの出力を停止させる運転停止指令を送っている。これにより、直流電圧Vdcが過電圧に近い状態となった時に、室内ファンモータ23(モータ部24及びインバータ部25)に供給していた電流を遮断することが可能となっている。その結果、モータ駆動部38(インバータ制御部26)が高電圧から保護されている。また、直流電圧Vdcが第1閾値ΔTh1を超えることなく第2閾値ΔTh2を下回った場合における室内ファンモータ23の迅速な再起動に備えることが可能となっている。
(6-4)
In the above embodiment, the main body control microcomputer 43 causes the inverter control unit 26 to stop outputting the drive voltages SU, SV, and SW when the DC voltage Vdc is equal to or higher than the second threshold value ΔTh2 that is lower than the first threshold value ΔTh1. A stop command is sent. As a result, when the DC voltage Vdc is close to an overvoltage, the current supplied to the indoor fan motor 23 (the motor unit 24 and the inverter unit 25) can be cut off. As a result, the motor drive unit 38 (inverter control unit 26) is protected from a high voltage. Further, it is possible to prepare for a quick restart of the indoor fan motor 23 when the DC voltage Vdc falls below the second threshold value ΔTh2 without exceeding the first threshold value ΔTh1.
 (6-5)
 上記実施形態では、本体制御マイコン43は、モータ部24が駆動している際に、直流電圧Vdcが第1閾値ΔTh1未満の状態から第1閾値ΔTh1以上の状態に変化した場合において、直流電圧Vdcが第1閾値ΔTh1よりも高い第3閾値ΔTh3以上であれば直ちに切換部駆動用電源Vswの供給を遮断し、直流電圧Vdcが第3閾値ΔTh3未満であれば第1閾値ΔTh1以上第3閾値ΔTh3未満の状態が所定時間T1継続した時に切換部駆動用電源Vswの供給を遮断する。これにより、直流電圧Vdcが第3閾値ΔTh3以上であれば直ちにGND配線L1が遮断され、直流電圧Vdcが第3閾値ΔTh3未満であれば第1閾値ΔTh1以上第3閾値ΔTh3未満の状態が所定時間T1継続した時にGND配線L1が遮断される。すなわち、直流電圧Vdcの電圧値上昇の急峻性に応じて、GND配線L1を遮断するタイミングが可変とされている。その結果、保安性への影響が少ないと判断される時には、GND配線L1が遮断されず、モータ部24の迅速な再起動に備えられるようになっている。
(6-5)
In the above embodiment, the main body control microcomputer 43 determines that the DC voltage Vdc is changed when the DC voltage Vdc changes from a state less than the first threshold value ΔTh1 to a state equal to or higher than the first threshold value ΔTh1 when the motor unit 24 is driven. Is immediately greater than the third threshold value ΔTh3 higher than the first threshold value ΔTh1, the switching unit driving power supply Vsw is immediately cut off, and if the DC voltage Vdc is less than the third threshold value ΔTh3, the third threshold value ΔTh3 is greater than or equal to the first threshold value ΔTh1. When the state less than the predetermined time T1 continues, the supply of the switching unit driving power source Vsw is cut off. As a result, if the DC voltage Vdc is equal to or greater than the third threshold value ΔTh3, the GND wiring L1 is immediately cut off. When T1 continues, the GND wiring L1 is cut off. That is, the timing at which the GND wiring L1 is cut off is variable according to the steepness of the voltage value increase of the DC voltage Vdc. As a result, when it is determined that there is little influence on security, the GND wiring L1 is not shut off, and the motor unit 24 is prepared for quick restart.
 (6-6)
 上記実施形態では、モータ駆動部38は、複数のスイッチング素子(トランジスタQ3a~Q5b)を含むインバータ部25と、インバータ制御部26と、を含んでいる。また、モータ部24は、インバータ部25及びインバータ制御部26と一体に構成されている(すなわち、室内ファンモータ23は、インバータ内蔵モータである)。上記実施形態では、係る場合において、保安性が向上している。
(6-6)
In the above embodiment, the motor drive unit 38 includes the inverter unit 25 including a plurality of switching elements (transistors Q3a to Q5b) and the inverter control unit 26. Moreover, the motor part 24 is comprised integrally with the inverter part 25 and the inverter control part 26 (that is, the indoor fan motor 23 is an inverter built-in motor). In the said embodiment, in that case, security is improving.
 (6-7)
 上記実施形態では、駆動を制御されるアクチュエータは、空調機100に含まれる室内ファン22の駆動源である室内ファンモータ23のモータ部24である。また、空調機100に含まれている複数の機器を統括的に制御する本体制御マイコン43を備えている。また、本体制御マイコン43は、インバータ制御部26及び切換部42を統括的に制御している。上記実施形態では、係る場合において、保安性が向上している。
(6-7)
In the above embodiment, the actuator whose drive is controlled is the motor unit 24 of the indoor fan motor 23 that is a drive source of the indoor fan 22 included in the air conditioner 100. Moreover, the main body control microcomputer 43 which controls the some apparatus contained in the air conditioner 100 centrally is provided. The main body control microcomputer 43 controls the inverter control unit 26 and the switching unit 42 in an integrated manner. In the said embodiment, in that case, security is improving.
 (7)変形例
 (7-1)変形例A
 上記実施形態では、室内ファンモータ23は、モータ部24と、インバータ部25及びインバータ制御部26と、が一体に構成されたインバータ内蔵モータであった。しかし、室内ファンモータ23は、必ずしもインバータ内蔵モータである必要はない。すなわち、室内ファンモータ23は、インバータ部25及びインバータ制御部26のいずれかを含まないモータであってもよく、モータ部24のみを含むインバータ非内蔵のモータであってもよい。
(7) Modification (7-1) Modification A
In the said embodiment, the indoor fan motor 23 was an inverter built-in motor with which the motor part 24, the inverter part 25, and the inverter control part 26 were comprised integrally. However, the indoor fan motor 23 is not necessarily an inverter built-in motor. That is, the indoor fan motor 23 may be a motor that does not include either the inverter unit 25 or the inverter control unit 26, or may be a motor that includes only the motor unit 24 and does not include an inverter.
 また、上記実施形態では、室内ファンモータ23(モータ部24)は、一般的なSPMモータであったが、必ずしもこれに限定されず、他の種類のモータであってもよい。例えば、モータ部24は、IPMモータであってもよい。 In the above embodiment, the indoor fan motor 23 (motor unit 24) is a general SPM motor, but is not necessarily limited thereto, and may be another type of motor. For example, the motor unit 24 may be an IPM motor.
 (7-2)変形例B
 上記実施形態では、モータ駆動装置30が、室内ファン22の駆動源である室内ファンモータ23のモータ部24を駆動制御するための装置として用いられる場合について説明した。しかし、モータ駆動装置30の駆動対象は、室内ファンモータ23のモータ部24に限定されず、圧縮機モータ11aや室外ファンモータ15aであってもよい。また、モータ駆動装置30は、空調機100ではなく、給湯器などの他のヒートポンプ装置に含まれる圧縮機モータやポンプ用モータ、室外ファンモータ等の駆動装置として用いられてもよい。
(7-2) Modification B
In the above embodiment, the case where the motor driving device 30 is used as a device for driving and controlling the motor unit 24 of the indoor fan motor 23 that is a driving source of the indoor fan 22 has been described. However, the drive target of the motor drive device 30 is not limited to the motor unit 24 of the indoor fan motor 23, and may be the compressor motor 11a or the outdoor fan motor 15a. The motor driving device 30 may be used as a driving device for a compressor motor, a pump motor, an outdoor fan motor, or the like included in another heat pump device such as a water heater, instead of the air conditioner 100.
 (7-3)変形例C
 上記実施形態では、モータ駆動装置30が、ロータ位置センサレス方式にてモータ部24の駆動を制御する場合について説明した。しかし、これに限定されず、例えばロータ242の位置を検出する位置検出センサ(例えば、ホール素子)が搭載されているモータ部24に対し、当該センサの検出結果に基づく制御を行うタイプの装置であってもよい。
(7-3) Modification C
In the above embodiment, the case where the motor driving device 30 controls the driving of the motor unit 24 by the rotor position sensorless method has been described. However, the present invention is not limited to this. For example, a device that performs control based on the detection result of the motor unit 24 on which a position detection sensor (for example, a hall element) that detects the position of the rotor 242 is mounted. There may be.
 (7-4)変形例D
 上記実施形態では、直流電圧生成部31は、商用電源90から電力を供給されて直流電圧Vdcを生成するように構成されていた。しかし、これに限定されず、直流電圧生成部31は、商用電源90ではない他の適当な電源から電力を供給されるように構成されてもよい。
(7-4) Modification D
In the above-described embodiment, the DC voltage generation unit 31 is configured to be supplied with power from the commercial power supply 90 and generate the DC voltage Vdc. However, the present invention is not limited to this, and the DC voltage generation unit 31 may be configured to be supplied with power from another appropriate power source that is not the commercial power source 90.
 また、上記実施形態では、商用電源90は、交流電圧Vacを供給していたが、交流電圧Vacに代えて直流電圧Vdcを供給するものであってもよい。係る場合には、直流電圧生成部31を省略して、商用電源90が「電源」及び「直流電圧生成部」として機能するように構成することも可能である。 In the above embodiment, the commercial power supply 90 supplies the AC voltage Vac. However, the commercial power supply 90 may supply the DC voltage Vdc instead of the AC voltage Vac. In such a case, the DC voltage generator 31 may be omitted, and the commercial power supply 90 may be configured to function as a “power supply” and a “DC voltage generator”.
 (7-5)変形例E
 上記実施形態では、電圧検出部34及び第2電圧検出部36は、直流電圧生成部31と電気的に接続されて、直流電圧生成部31から供給される直流電圧Vdcの電圧値を検出していた。しかし、これに限定されず、電圧検出部34又は第2電圧検出部36は、商用電源90と電気的に接続されて、商用電源90から供給される交流電圧Vacの電圧値を検出するように構成されてもよい。係る場合、インバータ制御部26又は本体制御マイコン43は、電圧検出部34又は第2電圧検出部36から出力される交流電圧Vacの電圧値に基づいて、直流電圧Vdcの電圧値を推定する。
(7-5) Modification E
In the above embodiment, the voltage detection unit 34 and the second voltage detection unit 36 are electrically connected to the DC voltage generation unit 31 and detect the voltage value of the DC voltage Vdc supplied from the DC voltage generation unit 31. It was. However, the present invention is not limited to this, and the voltage detector 34 or the second voltage detector 36 is electrically connected to the commercial power supply 90 so as to detect the voltage value of the AC voltage Vac supplied from the commercial power supply 90. It may be configured. In such a case, the inverter control unit 26 or the main body control microcomputer 43 estimates the voltage value of the DC voltage Vdc based on the voltage value of the AC voltage Vac output from the voltage detection unit 34 or the second voltage detection unit 36.
 また、上記実施形態では、第2電圧検出部36及び電流検出部37は、モータ駆動回路35内に配置されていた。しかし、第2電圧検出部36又は電流検出部37は、必ずしもモータ駆動回路35内に配置される必要はなく、直流電圧生成部31とモータ駆動回路35の間に配置されてもよい。 In the above embodiment, the second voltage detector 36 and the current detector 37 are arranged in the motor drive circuit 35. However, the second voltage detector 36 or the current detector 37 is not necessarily arranged in the motor drive circuit 35, and may be arranged between the DC voltage generator 31 and the motor drive circuit 35.
 (7-6)変形例F
 上記実施形態では、切換部42が、MOSFETによって構成されている場合について説明した。しかし、本発明に係る切換部42の構成は、MOSFETに限定されない。例えば、切換部42は、IGBT(Insulated Gate Bipolar Transistor)やソリッドステートリレー等の他の半導体スイッチ、又は電磁リレーであってもよい。係る場合、切換部42としてのスイッチの種類によっては、切換部42を動作させるための駆動回路が設けられる。
(7-6) Modification F
In the above-described embodiment, the case where the switching unit 42 is configured by a MOSFET has been described. However, the configuration of the switching unit 42 according to the present invention is not limited to the MOSFET. For example, the switching unit 42 may be another semiconductor switch such as an IGBT (Insulated Gate Bipolar Transistor) or a solid state relay, or an electromagnetic relay. In such a case, a drive circuit for operating the switching unit 42 is provided depending on the type of switch as the switching unit 42.
 (7-7)変形例G
 上記実施形態では、切換部42は、本体制御マイコン43によって、オン・オフ状態の切換えを制御されていた。しかし、これに限定されず、切換部42は、他の制御部によってオン・オフ状態の切換えを制御されてもよい。
(7-7) Modification G
In the above embodiment, the switching unit 42 is controlled to be switched between the on and off states by the main body control microcomputer 43. However, the switching unit 42 is not limited to this, and the switching of the on / off state may be controlled by another control unit.
 (7-8)変形例H
 上記実施形態では、モータ駆動部38のインバータ制御部26は、インバータ制御部動作用電源91から電源電圧V1を供給されていた。しかし、これに限定されず、モータ駆動装置30は、図8に示すモータ駆動装置30aのように構成されてもよい。以下、モータ駆動装置30aについて説明する。なお、モータ駆動装置30と共通する部分については、説明を省略する。
(7-8) Modification H
In the above embodiment, the inverter control unit 26 of the motor driving unit 38 is supplied with the power supply voltage V1 from the inverter control unit operating power supply 91. However, the present invention is not limited to this, and the motor drive device 30 may be configured as a motor drive device 30a shown in FIG. Hereinafter, the motor drive device 30a will be described. Note that a description of portions common to the motor drive device 30 is omitted.
 図8は、モータ駆動装置30aの概略構成図である。モータ駆動装置30aにおいては、モータ駆動装置30と異なり、インバータ制御部動作用電源91及び第2逆流防止ダイオードD7が省略されるとともに、レベルシフタ41に加えて第2レベルシフタ41a(請求の範囲記載の「駆動部動作用電源」に相当)が配設されている。 FIG. 8 is a schematic configuration diagram of the motor drive device 30a. In the motor drive device 30a, unlike the motor drive device 30, the inverter control unit operating power supply 91 and the second backflow prevention diode D7 are omitted, and in addition to the level shifter 41, the second level shifter 41a (" Corresponding to “Driver Operation Power Supply”).
 第2レベルシフタ41aは、絶縁電源であり、一次側コイルと、一次側コイルと電気的に分離された2次側コイルと、を含む。第2レベルシフタ41aは、2次側コイルの出力から整流・平滑した直流電圧を出力する。第2レベルシフタ41aは、平滑コンデンサ33に対して並列に接続されており、平滑コンデンサ33の両端電圧(すなわち直流電圧Vdc)が供給される。第2レベルシフタ41aの出力は、インバータ制御部26に接続されている。 The second level shifter 41a is an insulated power source, and includes a primary side coil and a secondary side coil that is electrically separated from the primary side coil. The second level shifter 41a outputs a DC voltage rectified and smoothed from the output of the secondary coil. The second level shifter 41a is connected in parallel to the smoothing capacitor 33, and is supplied with the voltage across the smoothing capacitor 33 (that is, the DC voltage Vdc). The output of the second level shifter 41a is connected to the inverter control unit 26.
 第2レベルシフタ41aは、例えば、一次側コイルと直列にスイッチング素子(図示省略)を接続されている。当該スイッチング素子がオン状態にスイッチングされている場合には一次側コイルに直流電圧Vdcが供給され、スイッチング素子がオフ状態の場合には一次側コイルに直流電圧Vdcが供給されないように構成されている。第2レベルシフタ41aでは、スイッチング素子のオン・オフが繰り返されることによって、二次側コイルに交流電圧が発生し、電力が伝達され、整流・平滑された直流電圧を出力する。 For example, the second level shifter 41a is connected to a switching element (not shown) in series with the primary side coil. The DC voltage Vdc is supplied to the primary coil when the switching element is switched on, and the DC voltage Vdc is not supplied to the primary coil when the switching element is off. . In the second level shifter 41a, when the switching element is repeatedly turned on and off, an AC voltage is generated in the secondary coil, power is transmitted, and a rectified and smoothed DC voltage is output.
 第2レベルシフタ41aは、直流電圧生成部31から供給された直流電圧Vdcを、電源電圧V1に変換する。例えば、第2レベルシフタ41aは、280Vの直流電圧Vdcを、15Vの電源電圧V1に変換する。第2レベルシフタ41aは、変換後の電源電圧V1をインバータ制御部26に供給する。すなわち、第2レベルシフタ41aは、インバータ制御部26の電源として機能する。なお、電源電圧V1は、インバータ制御部26の定格電圧に応じて適宜変更が可能である。 The second level shifter 41a converts the DC voltage Vdc supplied from the DC voltage generator 31 into the power supply voltage V1. For example, the second level shifter 41a converts the DC voltage Vdc of 280V into the power supply voltage V1 of 15V. The second level shifter 41a supplies the converted power supply voltage V1 to the inverter control unit 26. That is, the second level shifter 41 a functions as a power source for the inverter control unit 26. The power supply voltage V1 can be appropriately changed according to the rated voltage of the inverter control unit 26.
 上述のように、直流電圧Vdcが過電圧状態となった時にGND配線L1が遮断されると、モータ駆動部38(インバータ制御部26)内の電位が第2レベルシフタ41aの電位よりも高くなる。よって、インバータ制御部26を介して直流電圧生成部31から第2レベルシフタ41aに流れる電流を遮断する手段が設けられていなければ、直流電圧Vdcが過電圧状態となった時にインバータ制御部26及び第2レベルシフタ41aが破壊されるおそれがある。 As described above, when the GND wiring L1 is cut off when the DC voltage Vdc is in an overvoltage state, the potential in the motor drive unit 38 (inverter control unit 26) becomes higher than the potential of the second level shifter 41a. Therefore, if no means for interrupting the current flowing from the DC voltage generator 31 to the second level shifter 41a via the inverter controller 26 is provided, the inverter controller 26 and the second controller when the DC voltage Vdc is in an overvoltage state. The level shifter 41a may be destroyed.
 モータ駆動装置30aにおいては、第2逆流防止ダイオードD7が省略されている一方で、第2レベルシフタ41aが絶縁電源である。これにより、GND配線L1が遮断された時に、インバータ制御部26を介して直流電圧生成部31から第2レベルシフタ41aに電流が流れることが抑制されており、インバータ制御部26及び第2レベルシフタ41aが保護されるようになっている。 In the motor drive device 30a, the second backflow prevention diode D7 is omitted, while the second level shifter 41a is an insulated power source. Thereby, when the GND wiring L1 is interrupted, the current is suppressed from flowing from the DC voltage generation unit 31 to the second level shifter 41a via the inverter control unit 26, and the inverter control unit 26 and the second level shifter 41a are Protected.
 (7-9)変形例I
 上記実施形態では、モータ駆動部38(インバータ制御部26)と本体制御マイコン43との間において、第1逆流防止ダイオードD6が配置されていた。しかし、これに限定されず、モータ駆動装置30は、図9に示すモータ駆動装置30bのように構成されてもよい。以下、モータ駆動装置30bについて説明する。なお、モータ駆動装置30と共通する部分については、説明を省略する。
(7-9) Modification I
In the embodiment described above, the first backflow prevention diode D6 is disposed between the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43. However, the present invention is not limited to this, and the motor drive device 30 may be configured as a motor drive device 30b shown in FIG. Hereinafter, the motor drive device 30b will be described. Note that a description of portions common to the motor drive device 30 is omitted.
 図9は、モータ駆動装置30bの概略構成図である。モータ駆動装置30bにおいては、モータ駆動装置30と異なり、モータ駆動部38(インバータ制御部26)と本体制御マイコン43との間において、第1逆流防止ダイオードD6に代えて絶縁回路50が配設されている。本体制御マイコン43は、絶縁回路50(フォトカプラ51)を介してインバータ制御部26に運転指令を出力する。 FIG. 9 is a schematic configuration diagram of the motor drive device 30b. In the motor drive device 30b, unlike the motor drive device 30, an insulation circuit 50 is provided between the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43 instead of the first backflow prevention diode D6. ing. The main body control microcomputer 43 outputs an operation command to the inverter control unit 26 via the insulation circuit 50 (photocoupler 51).
 絶縁回路50においては、モータ駆動部38(インバータ制御部26)と本体制御マイコン43を絶縁する絶縁素子としてフォトカプラ51が配置されている。フォトカプラ51は、発光ダイオード51aと、フォトトランジスタ51bとを有している。発光ダイオード51aは、アノード側が抵抗44を介して本体制御マイコン43に接続され、カソード側がグランドに接続されている。フォトトランジスタ51bは、コレクタ端子が抵抗50aを介して電源Vccに接続され、エミッタ端子がインバータ制御部26に接続されている。 In the insulating circuit 50, a photocoupler 51 is disposed as an insulating element that insulates the motor drive unit 38 (inverter control unit 26) and the main body control microcomputer 43. The photocoupler 51 includes a light emitting diode 51a and a phototransistor 51b. The light emitting diode 51a has an anode side connected to the main body control microcomputer 43 via a resistor 44 and a cathode side connected to the ground. The phototransistor 51b has a collector terminal connected to the power supply Vcc via the resistor 50a and an emitter terminal connected to the inverter control unit 26.
 本体制御マイコン43が発光ダイオード51aに電圧を供給しない場合、発光ダイオード51aが発光せずフォトトランジスタ51bは非導通である。本体制御マイコン43が発光ダイオード51aに電圧を供給した場合、発光ダイオード51aが発光してフォトトランジスタ51bが導通する。 When the main body control microcomputer 43 does not supply voltage to the light emitting diode 51a, the light emitting diode 51a does not emit light and the phototransistor 51b is non-conductive. When the main body control microcomputer 43 supplies a voltage to the light emitting diode 51a, the light emitting diode 51a emits light and the phototransistor 51b becomes conductive.
 モータ駆動装置30bにおいては、本体制御マイコン43は、直流電圧Vdcが過電圧状態となった時に、インバータ部25のグランド側(低電位側)と直流電圧生成部31とを接続するGND配線L1を遮断する。一方で、GND配線L1が遮断されると、モータ駆動部38(インバータ制御部26)内の電位が本体制御マイコン43内の電位よりも高くなる。よって、インバータ制御部26を介して直流電圧生成部31から本体制御マイコン43に流れる電流を遮断する手段が設けられていなければ、直流電圧Vdcが過電圧状態となった時にインバータ制御部26及び本体制御マイコン43が破壊されるおそれがある。係る事態となることを抑制するために、モータ駆動装置30では、絶縁回路50が、本体制御マイコン43とインバータ制御部26との間に配置されている。 In the motor drive device 30b, the main body control microcomputer 43 cuts off the GND wiring L1 that connects the ground side (low potential side) of the inverter 25 and the DC voltage generator 31 when the DC voltage Vdc is in an overvoltage state. To do. On the other hand, when the GND wiring L1 is cut off, the potential in the motor drive unit 38 (inverter control unit 26) becomes higher than the potential in the main body control microcomputer 43. Therefore, if no means for interrupting the current flowing from the DC voltage generator 31 to the main body control microcomputer 43 via the inverter control unit 26 is provided, the inverter control unit 26 and the main body control when the DC voltage Vdc is in an overvoltage state. The microcomputer 43 may be destroyed. In order to suppress such a situation, in the motor drive device 30, the insulation circuit 50 is disposed between the main body control microcomputer 43 and the inverter control unit 26.
 これにより、直流電圧Vdcが過電圧状態となった場合においてGND配線L1が遮断された時に、インバータ制御部26を介して直流電圧生成部31から本体制御マイコン43に電流が流れることが抑制されており、インバータ制御部26及び本体制御マイコン43が保護されるようになっている。 As a result, when the GND wiring L1 is cut off when the DC voltage Vdc is in an overvoltage state, current is prevented from flowing from the DC voltage generating unit 31 to the main body control microcomputer 43 via the inverter control unit 26. The inverter control unit 26 and the main body control microcomputer 43 are protected.
 なお、モータ駆動装置30bにおいて絶縁回路50には、絶縁素子としてフォトカプラ51が配置されていたが、絶縁回路50に配置される絶縁素子はフォトカプラに限定されず、モータ駆動部38(インバータ制御部26)と本体制御マイコン43を絶縁できるものである限り、他の絶縁素子が配置されてもよい。 In the motor drive device 30b, the photocoupler 51 is arranged as an insulation element in the insulation circuit 50. However, the insulation element arranged in the insulation circuit 50 is not limited to the photocoupler, and the motor drive unit 38 (inverter control) As long as the part 26) and the main body control microcomputer 43 can be insulated, other insulating elements may be arranged.
 また、モータ駆動装置30bにおいては、モータ駆動部38のインバータ制御部26は、インバータ制御部動作用電源91から電源電圧V1を供給されていた。しかし、これに限定されず、モータ駆動装置30bは、図10に示すモータ駆動装置30cのように構成されてもよい。 In the motor driving device 30b, the inverter control unit 26 of the motor driving unit 38 is supplied with the power supply voltage V1 from the power source 91 for operating the inverter control unit. However, the present invention is not limited to this, and the motor drive device 30b may be configured as a motor drive device 30c shown in FIG.
 モータ駆動装置30cにおいては、モータ駆動装置30aと同様に、インバータ制御部動作用電源91及び第2逆流防止ダイオードD7を省略して、レベルシフタ41に加えて第2レベルシフタ41aが配設されている。係る構成においても本発明の目的を達成することが可能である。 In the motor drive device 30c, similarly to the motor drive device 30a, the power supply 91 for operating the inverter control unit and the second backflow prevention diode D7 are omitted, and a second level shifter 41a is provided in addition to the level shifter 41. Even in such a configuration, the object of the present invention can be achieved.
 (7-10)変形例J
 上記実施形態では、本体制御マイコン43は、空調機100に含まれる複数の機器(具体的には、圧縮機11、四路切換弁12、室外ファン15及び室内ファン22等)を、統括的に制御する統括制御部として機能していた。しかし、これに限定されず、室内ファン22以外の機器を制御する機器制御部(図示省略)を別に設けて、本体制御マイコン43が行っている室内ファン22以外の機器に関する制御については機器制御部に行わせるように構成してもよい。
(7-10) Modification J
In the above-described embodiment, the main body control microcomputer 43 controls a plurality of devices included in the air conditioner 100 (specifically, the compressor 11, the four-way switching valve 12, the outdoor fan 15, the indoor fan 22, and the like). It functioned as a general control unit to control. However, the present invention is not limited to this, and a device control unit (not shown) that controls devices other than the indoor fan 22 is provided separately, and the device control unit performs control related to devices other than the indoor fan 22 performed by the main body control microcomputer 43. You may comprise so that it may be performed.
 (7-11)変形例K
 上記実施形態では、本体制御マイコン43は、直流電圧Vdcが第3閾値ΔTh3以上の状態、又は、直流電圧Vdcが第1閾値ΔTh1以上第3閾値ΔTh3未満の状態が所定時間T1継続している状態となった時に、直流電圧Vdcが過電圧状態となったとみなして切換部42をオフ状態に切り換えてGND配線L1を非導通とする制御を行っていた。
(7-11) Modification K
In the above embodiment, the main body control microcomputer 43 is in a state where the DC voltage Vdc is equal to or greater than the third threshold value ΔTh3 or the DC voltage Vdc is equal to or greater than the first threshold value ΔTh1 and less than the third threshold value ΔTh3 for a predetermined time T1. At that time, it is assumed that the DC voltage Vdc is in an overvoltage state, and the switching unit 42 is switched to the OFF state to control the GND wiring L1 to be non-conductive.
 しかし、本体制御マイコン43は、当該制御を行うにあたり第3閾値ΔTh3については必ずしも考慮しなくてもよい。すなわち、本体制御マイコン43は、直流電圧Vdcが第1閾値ΔTh1以上の状態となった時に、直流電圧Vdcが過電圧状態となったとみなして切換部駆動用電源Vswの供給を遮断して切換部42をオフ状態に切り換えてGND配線L1を非導通とする制御を上記制御に代えて行ってもよい。以下、図11を参照して、係る場合における本体制御マイコン43による切換部42及びインバータ制御部26(室内ファンモータ23)に関する制御の流れの一例について説明する。なお、図11において図5と共通する部分については、説明を省略する。 However, the main body control microcomputer 43 does not necessarily need to consider the third threshold value ΔTh3 when performing the control. That is, the main body control microcomputer 43 considers that the DC voltage Vdc is in an overvoltage state when the DC voltage Vdc is equal to or higher than the first threshold value ΔTh1, and cuts off the supply of the switching unit driving power source Vsw and switches the switching unit 42. Alternatively, the control may be performed in place of the above-described control so that the GND line L1 is turned off by switching to the off state. Hereinafter, an example of a flow of control related to the switching unit 42 and the inverter control unit 26 (indoor fan motor 23) by the main body control microcomputer 43 in such a case will be described with reference to FIG. Note that in FIG. 11, description of parts common to FIG. 5 is omitted.
 図11は、本体制御マイコン43の制御の流れの一例を示したフローチャートである。図11におけるステップS201~ステップS204は、図5におけるステップS101~ステップS104と共通である。また、ステップS206及びS207は、図5におけるステップS108及びS109と共通である。また、ステップS208は、図5におけるステップS106と共通である。図11においては、図5におけるステップS105、S110、S111及びS112の処理が省略されている。 FIG. 11 is a flowchart showing an example of the control flow of the main body control microcomputer 43. Steps S201 to S204 in FIG. 11 are common to steps S101 to S104 in FIG. Steps S206 and S207 are common to steps S108 and S109 in FIG. Step S208 is common to step S106 in FIG. In FIG. 11, steps S105, S110, S111 and S112 in FIG. 5 are omitted.
 ステップS205において、本体制御マイコン43は、直流電圧Vdcが第1閾値ΔTh1以上か否かを判定する。当該判定がNOの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1未満の場合)、ステップS206へ進む。一方、当該判定がYESの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1以上の場合)、ステップS208へ進む。 In step S205, the main body control microcomputer 43 determines whether or not the DC voltage Vdc is equal to or higher than the first threshold value ΔTh1. When the determination is NO (that is, when the DC voltage Vdc is less than the first threshold value ΔTh1), the process proceeds to step S206. On the other hand, when the determination is YES (that is, when the DC voltage Vdc is greater than or equal to the first threshold value ΔTh1), the process proceeds to step S208.
 本体制御マイコン43が図11に示すような流れで制御を行うことによっても、本発明の目的を達成することが可能である。 The object of the present invention can also be achieved by the main body control microcomputer 43 performing control according to the flow shown in FIG.
 また、本体制御マイコン43は、上記制御を行うにあたり第2閾値ΔTh2についても必ずしも考慮しなくともよい。すなわち、本体制御マイコン43は、直流電圧Vdcが第1閾値ΔTh1以上の状態となった時に、直流電圧Vdcが過電圧状態となったとして切換部42をオフ状態に切り換えてGND配線L1を非導通とするとともに、運転停止指令をインバータ制御部26に出力してモータ部24の駆動を停止させる制御を行うようにしてもよい。以下、図12を参照して、係る場合における本体制御マイコン43による切換部42及びインバータ制御部26(室内ファンモータ23)に関する制御の流れの一例について説明する。なお、図12において図11と共通する部分については、説明を省略する。 Further, the main body control microcomputer 43 does not necessarily need to consider the second threshold value ΔTh2 when performing the above control. That is, when the DC voltage Vdc is equal to or higher than the first threshold value ΔTh1, the main body control microcomputer 43 switches the switching unit 42 to the OFF state and sets the GND wiring L1 to be non-conductive, assuming that the DC voltage Vdc is in an overvoltage state. In addition, an operation stop command may be output to the inverter control unit 26 to perform control to stop driving of the motor unit 24. Hereinafter, an example of a flow of control related to the switching unit 42 and the inverter control unit 26 (indoor fan motor 23) by the main body control microcomputer 43 in such a case will be described with reference to FIG. In FIG. 12, the description of the same parts as in FIG. 11 is omitted.
 図12は、本体制御マイコン43の制御の流れの一例を示したフローチャートである。図12におけるステップS301及びS303は、図11におけるステップS201と共通である。また、図12におけるステップS304は、図11におけるステップS208と共通である。図12においては、図11におけるステップS203、S206及びS207の処理が省略されている。 FIG. 12 is a flowchart showing an example of a control flow of the main body control microcomputer 43. Steps S301 and S303 in FIG. 12 are common to step S201 in FIG. Further, step S304 in FIG. 12 is common to step S208 in FIG. In FIG. 12, the processes of steps S203, S206, and S207 in FIG. 11 are omitted.
 ステップS301において、判定がNOの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1以上の場合)、ステップS301に戻る。一方、判定がYESの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1未満の場合)、ステップS302へ進む。 In step S301, if the determination is NO (that is, if the DC voltage Vdc is greater than or equal to the first threshold value ΔTh1), the process returns to step S301. On the other hand, if the determination is YES (that is, if the DC voltage Vdc is less than the first threshold value ΔTh1), the process proceeds to step S302.
 ステップS302において、本体制御マイコン43は、切換部駆動用電源Vswを切換部42に供給する(すでに切換部駆動用電源Vswの供給を開始している場合には供給を継続する)。これにより、切換部42がオン状態に切り換わり(又はオン状態を維持し)、GND配線L1が導通する。また、本体制御マイコン43は、運転指令をインバータ制御部26に出力する。これを受けて、インバータ制御部26からゲート制御電圧Gu~GzがトランジスタQ3a~Q5bのゲート端子にそれぞれ出力されて、モータ部24及びインバータ部25が駆動する。その後、ステップS303へ進む。 In step S302, the main body control microcomputer 43 supplies the switching unit driving power source Vsw to the switching unit 42 (if the supply of the switching unit driving power source Vsw has already been started, the supply is continued). As a result, the switching unit 42 is switched to the on state (or maintained in the on state), and the GND wiring L1 becomes conductive. Further, the main body control microcomputer 43 outputs an operation command to the inverter control unit 26. In response to this, the inverter control unit 26 outputs the gate control voltages Gu to Gz to the gate terminals of the transistors Q3a to Q5b, respectively, and the motor unit 24 and the inverter unit 25 are driven. Thereafter, the process proceeds to step S303.
 ステップS303において、判定がNOの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1以上の場合)、ステップS304へ進む。一方、判定がYESの場合(すなわち、直流電圧Vdcが第1閾値ΔTh1未満の場合)、ステップS301に戻る。 In step S303, if the determination is NO (that is, if the DC voltage Vdc is greater than or equal to the first threshold value ΔTh1), the process proceeds to step S304. On the other hand, when the determination is YES (that is, when the DC voltage Vdc is less than the first threshold value ΔTh1), the process returns to step S301.
 ステップS304において、本体制御マイコン43は、切換部42への切換部駆動用電源Vswの供給を遮断する。これにより、切換部42がオフ状態に切り換わり、GND配線L1が遮断される。また、本体制御マイコン43は、運転停止指令をインバータ制御部26に出力する。これにより、ゲート制御電圧Gu~Gzの出力が停止され、モータ部24及びインバータ部25が駆動を停止する。その後、ステップS301に戻る。 In step S304, the main body control microcomputer 43 cuts off the supply of the switching unit driving power source Vsw to the switching unit 42. Thereby, the switching part 42 switches to an OFF state, and the GND wiring L1 is interrupted | blocked. The main body control microcomputer 43 outputs an operation stop command to the inverter control unit 26. Thereby, the output of the gate control voltages Gu to Gz is stopped, and the motor unit 24 and the inverter unit 25 stop driving. Then, it returns to step S301.
 本体制御マイコン43が図12に示すような流れで制御を行うことによっても、本発明の目的を達成することが可能である。 The object of the present invention can also be achieved by the main body control microcomputer 43 performing control according to the flow shown in FIG.
 本発明は、アクチュエータ駆動装置に利用可能である。 The present invention can be used for an actuator driving device.
10  室外ユニット
20  室内ユニット
22  室内ファン
23  室内ファンモータ
24  モータ部(モータ、アクチュエータ)
25  インバータ部(出力部)
26  インバータ制御部(決定部)
30、30a、30b、30c  モータ駆動装置(アクチュエータ駆動装置)
31  直流電圧生成部
32  整流部
33  平滑コンデンサ
34  電圧検出部
35  モータ駆動回路
36  第2電圧検出部
37  電流検出部
38  モータ駆動部(駆動部)
41  レベルシフタ
41a  第2レベルシフタ(駆動部動作用電源)
42  切換部
43  本体制御マイコン(駆動制御部、切換制御部、統括制御部)
50  絶縁回路
51  フォトカプラ
90  商用電源(電源、直流電圧生成部)
91  インバータ制御部動作用電源(駆動部動作用電源)
100  空調機
241  ステータ
242  ロータ
D6  第1逆流防止ダイオード(第1ダイオード)
D7  第2逆流防止ダイオード(第2ダイオード)
L1  GND配線(電源ライン)
Q3a、Q3b、Q4a、Q4b、Q5a、Q5b  トランジスタ(スイッチング素子)
SU、SV、SW  駆動電圧(駆動信号)
T1  所定時間
ΔTh1  第1閾値
ΔTh2  第2閾値
ΔTh3  第3閾値
Vsw  切換部駆動用電源
DESCRIPTION OF SYMBOLS 10 Outdoor unit 20 Indoor unit 22 Indoor fan 23 Indoor fan motor 24 Motor part (motor, actuator)
25 Inverter section (output section)
26 Inverter control unit (decision unit)
30, 30a, 30b, 30c Motor drive device (actuator drive device)
31 DC voltage generator 32 Rectifier 33 Smoothing capacitor 34 Voltage detector 35 Motor drive circuit 36 Second voltage detector 37 Current detector 38 Motor drive (drive)
41 Level shifter 41a Second level shifter (power supply for driving unit operation)
42 switching unit 43 main body control microcomputer (drive control unit, switching control unit, general control unit)
50 Insulation circuit 51 Photocoupler 90 Commercial power supply (power supply, DC voltage generator)
91 Power supply for inverter control unit operation (Power supply for drive unit operation)
100 Air Conditioner 241 Stator 242 Rotor D6 First Backflow Prevention Diode (First Diode)
D7 Second backflow prevention diode (second diode)
L1 GND wiring (power supply line)
Q3a, Q3b, Q4a, Q4b, Q5a, Q5b Transistor (switching element)
SU, SV, SW Drive voltage (drive signal)
T1 Predetermined time ΔTh1 First threshold value ΔTh2 Second threshold value ΔTh3 Third threshold value Vsw Switching unit driving power source
特開2007-166815号公報JP 2007-166815 A

Claims (10)

  1.  直流電圧を生成する直流電圧生成部(31、90)と、
     電源(31、90)又は前記直流電圧生成部と電気的に接続され、前記電源又は前記直流電圧生成部から供給される電圧値を検出する電圧検出部(34)と、
     前記直流電圧生成部とアクチュエータ(24)との間に配置されて前記直流電圧生成部から前記直流電圧を供給され、前記アクチュエータを駆動するための駆動信号(SU、SV、SW)を前記アクチュエータに出力する駆動部(38)と、
     前記駆動部の低電位側と前記直流電圧生成部とを接続する電源ライン(L1)上に配置され、前記電源ラインの導通及び遮断を切り換える切換部(42)と、
     前記駆動部に指令を出力することで前記駆動部の動作を制御する駆動制御部(43)と、
     前記電圧検出部が検出した前記電圧値に基づいて前記切換部の動作を制御する切換制御部(43)と、
     前記駆動部と前記駆動制御部との間に配置される第1ダイオード(D6)又は絶縁回路(50)と、
    を備え、
     前記切換制御部は、前記電圧値が第1閾値(ΔTh1)未満の場合に前記電源ラインを導通し、前記電圧値が前記第1閾値以上の場合に前記電源ラインを遮断するように、前記切換部の動作を制御し、
     前記第1ダイオード又は前記絶縁回路は、前記切換部が前記電源ラインを遮断した時に、前記駆動部を介して前記直流電圧生成部から前記駆動制御部に電流が流れることを抑制する、
    アクチュエータ駆動装置(30、30a、30b、30c)。
    A DC voltage generator (31, 90) for generating a DC voltage;
    A voltage detector (34) that is electrically connected to a power source (31, 90) or the DC voltage generator and detects a voltage value supplied from the power source or the DC voltage generator;
    A drive signal (SU, SV, SW) for driving the actuator is provided between the DC voltage generator and the actuator (24) and supplied with the DC voltage from the DC voltage generator. An output drive unit (38);
    A switching unit (42) disposed on a power supply line (L1) connecting the low potential side of the drive unit and the DC voltage generation unit, and switching between conduction and interruption of the power supply line;
    A drive control unit (43) for controlling the operation of the drive unit by outputting a command to the drive unit;
    A switching control unit (43) for controlling the operation of the switching unit based on the voltage value detected by the voltage detection unit;
    A first diode (D6) or an insulating circuit (50) disposed between the driving unit and the driving control unit;
    With
    The switching control unit conducts the power supply line when the voltage value is less than a first threshold (ΔTh1), and shuts off the power supply line when the voltage value is greater than or equal to the first threshold. Control the operation of the
    The first diode or the insulation circuit suppresses a current from flowing from the DC voltage generation unit to the drive control unit via the drive unit when the switching unit cuts off the power supply line.
    Actuator drive (30, 30a, 30b, 30c).
  2.  前記駆動部に動作用電源を供給する駆動部動作用電源(91)と、
     前記駆動部と前記駆動部動作用電源との間に配置される第2ダイオード(D7)と、
    をさらに備え、
     前記第2ダイオードは、前記切換部が前記電源ラインを遮断した時に、前記駆動部を介して前記直流電圧生成部から前記駆動部動作用電源に電流が流れることを抑制する、
    請求項1に記載のアクチュエータ駆動装置(30、30b)。
    A driving unit operating power source (91) for supplying an operating power source to the driving unit;
    A second diode (D7) disposed between the driving unit and the driving unit power supply;
    Further comprising
    The second diode suppresses a current from flowing from the DC voltage generation unit to the driving unit operating power source through the driving unit when the switching unit cuts off the power supply line.
    The actuator driving device (30, 30b) according to claim 1.
  3.  前記駆動部に動作用電源を供給する駆動部動作用電源(41a)をさらに備え、
     前記駆動部動作用電源は、
      絶縁電源であり、
      前記駆動部に電気的に接続される二次側が、一次側と電気的に分離されている、
    請求項1に記載のアクチュエータ駆動装置(30a、30c)。
    A drive unit power supply (41a) for supplying the drive unit with power for operation;
    The drive unit power supply is
    Isolated power supply,
    The secondary side electrically connected to the drive unit is electrically separated from the primary side,
    The actuator driving device (30a, 30c) according to claim 1.
  4.  前記駆動制御部は、前記電圧値が前記第1閾値以上の場合においては、前記切換部が前記電源ラインを遮断する前に、前記駆動部に前記駆動信号の出力を停止させる指令を出力する、
    請求項1から3のいずれか1項に記載のアクチュエータ駆動装置(30、30a、30b、30c)。
    The drive control unit outputs a command to stop the drive unit from outputting the drive signal before the switching unit cuts off the power supply line when the voltage value is equal to or greater than the first threshold value.
    The actuator drive device (30, 30a, 30b, 30c) according to any one of claims 1 to 3.
  5.  前記切換制御部は、前記駆動信号の出力が停止された後、所定時間(T1)が経過してから前記切換部が前記電源ラインを遮断するように、前記切換部の動作を制御する、
    請求項4に記載のアクチュエータ駆動装置(30、30a、30b、30c)。
    The switching control unit controls the operation of the switching unit so that the switching unit shuts off the power line after a predetermined time (T1) has elapsed after the output of the drive signal is stopped.
    The actuator drive device (30, 30a, 30b, 30c) according to claim 4.
  6.  前記駆動制御部は、前記電圧値が前記第1閾値よりも低い第2閾値(ΔTh2)以上の場合に、前記駆動部に前記駆動信号の出力を停止させる指令を送る、
    請求項4に記載のアクチュエータ駆動装置(30、30a、30b、30c)。
    The drive control unit sends a command to the drive unit to stop the output of the drive signal when the voltage value is equal to or greater than a second threshold value (ΔTh2) lower than the first threshold value;
    The actuator drive device (30, 30a, 30b, 30c) according to claim 4.
  7.  前記切換制御部は、前記アクチュエータが駆動している際に、前記電圧値が前記第1閾値未満の状態から前記第1閾値以上の状態に変化した場合において、前記電圧値が前記第1閾値よりも高い第3閾値(ΔTh3)以上であれば直ちに前記電源ラインを遮断するように前記切換部の動作を制御し、前記電圧値が前記第3閾値未満であれば前記第1閾値以上前記第3閾値未満の状態が所定時間(T1)継続した時に前記電源ラインを遮断するように前記切換部の動作を制御する、
    請求項1から6のいずれか1項に記載のアクチュエータ駆動装置(30、30a、30b、30c)。
    When the actuator is driving, the switching control unit is configured such that when the voltage value changes from a state less than the first threshold value to a state equal to or higher than the first threshold value, the voltage value is less than the first threshold value. If the voltage value is less than the third threshold, the operation of the switching unit is controlled so that the power supply line is immediately shut off if the voltage is less than the third threshold (ΔTh3). Controlling the operation of the switching unit to shut off the power supply line when the state below the threshold continues for a predetermined time (T1);
    The actuator drive device (30, 30a, 30b, 30c) according to any one of claims 1 to 6.
  8.  前記駆動部は、
      前記駆動制御部から出力される指令に基づいて前記アクチュエータに出力する前記駆動信号を決定する決定部(26)と、
      複数のスイッチング素子(Q3a、Q3b、Q4a、Q4b、Q5a、Q5b)を含み、前記決定部による決定に基づいて前記駆動信号を生成して前記アクチュエータに出力する出力部(25)と、
    を含む、
    請求項1から7のいずれか1項に記載のアクチュエータ駆動装置(30、30a、30b、30c)。
    The drive unit is
    A determination unit (26) for determining the drive signal to be output to the actuator based on a command output from the drive control unit;
    An output unit (25) that includes a plurality of switching elements (Q3a, Q3b, Q4a, Q4b, Q5a, Q5b), generates the drive signal based on the determination by the determination unit, and outputs the drive signal to the actuator;
    including,
    The actuator drive device (30, 30a, 30b, 30c) according to any one of claims 1 to 7.
  9.  前記駆動部は、前記アクチュエータと一体である、
    請求項1から8のいずれか1項に記載のアクチュエータ駆動装置(30、30a、30b、30c)。
    The drive unit is integral with the actuator;
    The actuator drive device (30, 30a, 30b, 30c) according to any one of claims 1 to 8.
  10.  前記アクチュエータは、空調機(100)に含まれている複数の機器の、少なくとも1つの駆動源であるモータ(24)であって、
     前記空調機に含まれている複数の前記機器を統括的に制御する統括制御部(43)をさらに備え、
     前記統括制御部は、前記駆動制御部及び前記切換制御部を含む、
    請求項1から9のいずれか1項に記載のアクチュエータ駆動装置(30、30a、30b、30c)。
    The actuator is a motor (24) that is at least one drive source of a plurality of devices included in the air conditioner (100),
    An overall control unit (43) for overall control of the plurality of devices included in the air conditioner;
    The overall control unit includes the drive control unit and the switching control unit,
    The actuator drive device (30, 30a, 30b, 30c) according to any one of claims 1 to 9.
PCT/JP2015/061076 2014-04-10 2015-04-09 Actuator drive device WO2015156347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580018465.2A CN106165286B (en) 2014-04-10 2015-04-09 Actuator drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014081477A JP5895964B2 (en) 2014-04-10 2014-04-10 Actuator drive
JP2014-081477 2014-04-10

Publications (1)

Publication Number Publication Date
WO2015156347A1 true WO2015156347A1 (en) 2015-10-15

Family

ID=54287919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061076 WO2015156347A1 (en) 2014-04-10 2015-04-09 Actuator drive device

Country Status (3)

Country Link
JP (1) JP5895964B2 (en)
CN (1) CN106165286B (en)
WO (1) WO2015156347A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019005268A (en) * 2017-06-26 2019-01-17 株式会社サンセイアールアンドディ Game machine
WO2020213037A1 (en) * 2019-04-15 2020-10-22 株式会社東芝 Power conversion device, power conversion system, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149521A (en) * 2018-08-09 2019-01-04 珠海格力电器股份有限公司 Overvoltage protection device, motor and overvoltage protection method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233992A (en) * 1985-04-09 1986-10-18 シャープ株式会社 High frequency heater
JPH03261301A (en) * 1990-03-08 1991-11-21 Mitsubishi Electric Corp Inverter unit
JPH07245963A (en) * 1994-03-07 1995-09-19 Toshiba Corp Magnetron driver circuit
JPH11150958A (en) * 1997-11-20 1999-06-02 Toshiba Corp Inverter device
JP2007166815A (en) * 2005-12-15 2007-06-28 Toshiba Mitsubishi-Electric Industrial System Corp Inverter device and method of protecting overvoltage thereof
JP2007255800A (en) * 2006-03-23 2007-10-04 Daikin Ind Ltd Control device for air conditioner
JP2009124932A (en) * 2007-11-16 2009-06-04 Taida Electronic Ind Co Ltd Motor device and motor speed control system
JP2012115143A (en) * 2012-02-29 2012-06-14 Mitsubishi Electric Corp Power conversion apparatus
JP2013162718A (en) * 2012-02-08 2013-08-19 Daikin Ind Ltd Power-supply control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233992A (en) * 1985-04-09 1986-10-18 シャープ株式会社 High frequency heater
JPH03261301A (en) * 1990-03-08 1991-11-21 Mitsubishi Electric Corp Inverter unit
JPH07245963A (en) * 1994-03-07 1995-09-19 Toshiba Corp Magnetron driver circuit
JPH11150958A (en) * 1997-11-20 1999-06-02 Toshiba Corp Inverter device
JP2007166815A (en) * 2005-12-15 2007-06-28 Toshiba Mitsubishi-Electric Industrial System Corp Inverter device and method of protecting overvoltage thereof
JP2007255800A (en) * 2006-03-23 2007-10-04 Daikin Ind Ltd Control device for air conditioner
JP2009124932A (en) * 2007-11-16 2009-06-04 Taida Electronic Ind Co Ltd Motor device and motor speed control system
JP2013162718A (en) * 2012-02-08 2013-08-19 Daikin Ind Ltd Power-supply control device
JP2012115143A (en) * 2012-02-29 2012-06-14 Mitsubishi Electric Corp Power conversion apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019005268A (en) * 2017-06-26 2019-01-17 株式会社サンセイアールアンドディ Game machine
WO2020213037A1 (en) * 2019-04-15 2020-10-22 株式会社東芝 Power conversion device, power conversion system, and program
JPWO2020213037A1 (en) * 2019-04-15 2021-10-21 株式会社東芝 Power converters, power conversion systems, and programs
JP7146074B2 (en) 2019-04-15 2022-10-03 株式会社東芝 POWER CONVERTER, POWER CONVERSION SYSTEM, AND PROGRAM

Also Published As

Publication number Publication date
CN106165286B (en) 2018-03-30
CN106165286A (en) 2016-11-23
JP2015204643A (en) 2015-11-16
JP5895964B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5505528B1 (en) Power consumption reduction device
DK179369B1 (en) Controls and operation of variable frequency drives
JP5590179B2 (en) Power consumption reduction device
JP5850073B2 (en) Power converter
JP5895964B2 (en) Actuator drive
JP6235381B2 (en) Compressor
JP2012135157A (en) Motor drive system
JPWO2020148825A1 (en) Motor control device and air conditioner
JP5850069B2 (en) Power consumption reduction device
KR20100033803A (en) Air conditioner and controling method thereof
JP6182462B2 (en) Power converter
JP6462821B2 (en) Motor drive device
JP5703152B2 (en) Inverter device
JP5648700B2 (en) Power consumption reduction device
WO2005039037A1 (en) Fan controller, refrigeration cycle system and method for estimating rotation speed of fan
JP6093606B2 (en) Motor drive device
WO2018164000A1 (en) Motor driving device
US11374524B2 (en) Power source control circuit
KR102110536B1 (en) Compressor driving device and air conditioner including the same
WO2013038612A1 (en) Inverter device, electrically-operated compressor and vehicle
JP2017184371A (en) Motor drive device
JP2015216745A (en) Overvoltage protection circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016/13965

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201607634

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 15776281

Country of ref document: EP

Kind code of ref document: A1