WO2005039037A1 - Fan controller, refrigeration cycle system and method for estimating rotation speed of fan - Google Patents

Fan controller, refrigeration cycle system and method for estimating rotation speed of fan Download PDF

Info

Publication number
WO2005039037A1
WO2005039037A1 PCT/JP2004/013932 JP2004013932W WO2005039037A1 WO 2005039037 A1 WO2005039037 A1 WO 2005039037A1 JP 2004013932 W JP2004013932 W JP 2004013932W WO 2005039037 A1 WO2005039037 A1 WO 2005039037A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
switching elements
current detection
refrigeration cycle
motor
Prior art date
Application number
PCT/JP2004/013932
Other languages
French (fr)
Japanese (ja)
Inventor
Takahisa Endo
Naohito Kamiya
Takayuki Kambe
Original Assignee
Toshiba Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corporation filed Critical Toshiba Carrier Corporation
Publication of WO2005039037A1 publication Critical patent/WO2005039037A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/21Open loop start
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/9072Bridge circuit

Definitions

  • Fan control device refrigeration cycle device, and fan rotation speed estimation method
  • the present invention relates to startup control of a fan that may rotate due to an external factor, and relates to a control device for the fan, a refrigeration cycle device employing the control, and a method of estimating a fan speed during control.
  • An outdoor fan or the like of an air conditioner drives a fan motor and rotates by natural wind in a state.
  • a fan drive device using a brushless DC motor has a sensor for detecting the rotational position of a rotor such as a Hall element, and detects the rotational position of the rotor based on an output signal of the sensor when the fan is started. After controlling the energization to each switching element constituting the inverter in accordance with the rotational position, stopping the fan and positioning the motor, the start is started (for example, Japanese Patent Application Publication No. 2000-125584). ) OAt this time, when the rotation speed of the fan rotating by natural wind was high, the compressor was driven without controlling the start of the fan.
  • a motor drive device for a compressor detects a current flowing through the winding of each phase, calculates a rotation speed from the current value, and estimates a rotor position to adopt a vector control for driving.
  • a driving power supply for a three-phase switching element constituting a positive-side (hereinafter, also referred to as an upper phase) arm is used as a negative-side (hereinafter, referred to as an upper-phase) driving power supply.
  • a simplified power supply circuit that drives the switching element is provided by providing a capacitor that is charged by the current that flows when the switching element that constitutes the arm is turned on. Have been.
  • the present invention has been made to solve the above problems, and an object of the present invention is to reduce the demagnetization of the permanent magnet of the motor and the motor even if the startup control is performed while the fan is rotating by natural wind.
  • An object of the present invention is to provide a fan control device and a refrigeration cycle device that can prevent destruction of a switching element on the negative side of an inverter.
  • Another object of the present invention is to provide a refrigeration cycle apparatus capable of preventing the refrigeration cycle from being overloaded when the natural wind is weakened after the air conditioning operation is started in a state where the natural wind is strong. Is to provide.
  • Still another object of the present invention is to provide a method for estimating the number of revolutions of a fan, which can estimate the number of revolutions without a rotation position detecting element.
  • the invention according to claim 1 is a sensorless motor for driving a fan, an inverter connected to a switching element power S3-phase bridge to supply three-phase AC power to the motor, and current detection means for detecting a current flowing to the motor.
  • the protection level is set lower than the current detection value of the current detection means in this on state is determined to be arm short circuit.
  • the invention according to claim 3 provides a refrigeration cycle including a compressor, an outdoor heat exchanger, and an outdoor fan for promoting heat exchange thereof, a sensorless motor for driving the outdoor fan, and a three-phase bridge comprising a switching element.
  • the inverter connected to supply three-phase AC power to the motor, current detection means for detecting the current flowing to the motor, and the three-phase switching elements forming the negative arm of the inverter at startup are turned on.
  • the current detection value of the current detection means in the state exceeds the protection level set lower than the value determined as arm short-circuit, the start of the fan is stopped by returning the three-phase switching elements to the off state. Execute the fan start control to stop the fan and the wind fan stop control to operate the compressor while the fan is stopped.
  • the invention according to claim 7 provides a three-phase component in which a switching element forms a negative arm of a three-phase bridge-connected inverter so as to supply three-phase AC power to a sensorless motor that drives a fan. And turning on the switching elements of the three phases, detecting the current flowing to the motor when the switching elements for three phases are on, and estimating the fan rotation speed based on the detected current value. Steps and
  • FIG. 1 is a diagram showing a schematic configuration of a control unit of an air conditioner as a first embodiment for implementing a fan control device, a refrigeration cycle device, and a fan rotation speed estimation method according to the present invention. .
  • FIG. 2 is a cross-sectional view showing a configuration of a main part of the outdoor unit.
  • FIG.3 is a circuit diagram partially showing the detailed configuration of the outdoor fan inverter.
  • FIG. 4 is a diagram showing a relationship between a current flowing through a winding of the motor and time to explain the operation of the first embodiment.
  • FIG. 5 is a diagram showing the relationship between the number of rotations of the motor and the current flowing through the windings, for explaining the operation of the first embodiment.
  • FIG. 6 is a time chart showing two typical control examples according to the first embodiment.
  • FIG. 7 is a flowchart showing a specific processing procedure of the MCU when executing the operation of the first embodiment.
  • FIG. 8 is a flowchart showing a specific processing procedure of an MCU constituting a control unit according to a second embodiment of the present invention.
  • FIG. 9 is a flowchart showing a specific processing procedure of an MCU constituting a control unit according to a third embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of a control unit of an air conditioner as a first embodiment for implementing a fan control device, a refrigeration cycle device, and a method of estimating a fan rotation speed according to the present invention.
  • an inverter 2 is connected to an AC power supply 1.
  • the inverter 2 rectifies and smoothes the alternating current, converts the obtained direct current into alternating current with a variable voltage and variable frequency, and outputs the converted alternating current.
  • the compressor 3 constituting the refrigeration cycle is connected.
  • the refrigeration cycle includes a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, an expansion valve 6, an indoor heat exchanger 7, an outdoor fan 8, and an indoor fan 9.
  • the outdoor fan 8 includes a fan 8F and a motor 8M as described later, and includes an inverter 10 for controlling the motor 8M.
  • the inverter 10 has a current detection circuit 11 for detecting a winding current of the motor 8M.
  • a speed control circuit 12 is provided to control the speed of the indoor fan 9.
  • a control unit 13 that controls the inverters 2 and 10 described above and provides a speed command to the speed control circuit 12 is provided.
  • an abnormality display section 15 for performing the operation.
  • Control unit 13 Includes a microcomputer unit (hereinafter abbreviated as MCU), and executes arithmetic processing described later.
  • FIG. 2 is a cross-sectional view showing a configuration of a main part of the outdoor unit 17.
  • the outdoor heat exchange 5 When viewed from the front (below the drawing), the outdoor heat exchange 5 is bent at a substantially right angle on the left side and the rear side.
  • a compressor 3 is arranged on the right side, and an outdoor fan 8 that drives a fan 8F by a motor 8M is installed inside the outdoor heat exchanger 5, and sucks outside air from the directions of arrows A and B. It is configured to promote the heat exchange of the outdoor heat exchange 5 by discharging in the direction.
  • FIG. 3 is a circuit diagram partially showing the detailed configuration of the inverter 10 by blocks.
  • switching elements U, V, W, X, ⁇ , ⁇ composed of IGBTs are connected in a three-phase bridge. That is, a series connection circuit of the switching elements U and X, a series connection circuit of the switching elements V and ⁇ , and a series connection circuit of the switching elements W and ⁇ are connected in parallel, and one end thereof is connected to the positive electrode of the DC power supply 21. The other end is connected to the negative electrode of the DC power supply 21.
  • switching elements U, V, W constitute an upper phase arm
  • switching elements X, ⁇ , ⁇ constitute a lower phase arm
  • the interconnection point of the switching elements U and X, the interconnection point of the switching elements V and ⁇ , and the interconnection point of the switching elements W and ⁇ are outside the U, V, and W phases of the star-connected motor 8 ⁇ . Connected to the connecting conductor.
  • a drive circuit 22 is connected to each gate of the switching elements U, V, W.
  • a capacitor C is provided, one end of which is connected to the drive circuit 22 and the other end of which is connected to the sources (negative voltage side) of the switching elements U, V, W, respectively.
  • a negative pole is connected to the negative pole of the DC power supply 21 and a positive pole is connected to one end of the capacitor C via a diode D for preventing backflow. Being done.
  • the drive circuit 22 is also connected to each gate of the switching elements X, ⁇ , ⁇ .
  • a resistor R is connected between the sources of the switching elements X, ⁇ , and Z and the negative electrode of the DC power supply 21.
  • Operational amplifiers 23 are provided to amplify voltages generated on the switching elements X, ⁇ , and Z, respectively. These three resistors R and three operational amplifiers 23 constitute the above-described current detection circuit 11.
  • the control unit 13 includes an EEPROM 24 that stores a protection level Is, which is a control stop level, a repetition period Tv, and the like, which will be described later, and the switching elements U, V, W, X, and
  • the drive circuit 22 of (1) and (2) is provided with an MCU 25 for applying an on / off control signal to the inverter 2, the speed control circuit 12, and the abnormality display unit 15 shown in FIG.
  • the switching element in the lower phase of the inverter is turned on for a predetermined time T1.
  • T1 the winding current of each phase changes as shown by a solid line al in FIG. 4 or a dashed line a2 saturated in the middle.
  • the lower-phase switching element is turned on, one of the corresponding upper-phase switching elements is short-circuited and the change in the current value when the arm is short-circuited. Shown in b.
  • the rate of increase (slope) of the current value increases in the same manner because it is determined by the inductance of the motor winding, but the rotation speed is low and the induced voltage is small. In such a case, the increase of the current is stopped at an early stage, and the value is maintained. At higher speeds, the current continues to increase and eventually reaches a higher value. Therefore, after a certain period of time, the current fan speed can be used to estimate the rotational speed of the outdoor fan at that time.
  • the permanent magnet of the rotor may be demagnetized at time T1. Also, the switching element may be destroyed by the overcurrent. Therefore, if the current value at the level at which the permanent magnet of the rotor is demagnetized or the overcurrent value at which the switching element breaks down is lower than the lower value of the slip force, and the protection level Is is reached, at that point The switching element in the lower phase is returned to the off state to prevent demagnetization and element destruction.
  • the switching element of the lower phase is turned off at the time t.
  • the protection level Is is reached first.
  • the arm The switching elements X, Y, and Z are turned off in response to the short-circuit current lb.
  • the rotational speed of the outdoor fan capable of performing the air-conditioning operation varies depending on its characteristics and the configuration of the refrigeration cycle of the air conditioner. Generally, in FIG. 5, the natural speed of the fan capable of performing the air-conditioning operation without driving the fan is shown.
  • the motor current value at the above-described time T1 corresponding to the lower limit value R of the rotation speed due to the wind is lower than the current value leading to element destruction and the current value leading to demagnetization.
  • the switching element of the lower phase is turned on at every predetermined repetition cycle Tv to check whether the rotational speed of the outdoor fan has decreased. It is repeatedly determined whether or not it is. In this case, if the number of rotations of the outdoor fan due to natural winds decreases, the current value in the ON state of the lower-phase switching element becomes lower than the protection level Is even after time T1, so that the outdoor The startup of the fan is not stopped, the forced stop for the fan positioning is performed, and then the PWM drive is started.
  • the protection level Is when applied to an outdoor fan of an air conditioner, the protection level Is is a value corresponding to the natural rotation speed of a fan that can be air-conditioned without driving the fan. Is set. When applied to other fans, the protection level Is is set to the difference between the current value leading to element destruction and the current value leading to demagnetization, or a low value.
  • FIGS. 1 to 3 The embodiment shown in FIGS. 1 to 3 is configured according to the above principle, and its operation will be described below.
  • an infrared signal such as an operation mode, a set temperature, and an air volume
  • the infrared signal is received by the light receiving unit 14 and applied to the control unit 13.
  • the control unit 13 detects the rotation state of the outdoor fan 8 before executing the control according to the received signal, so that the lower-phase switching elements X, Y, Z for a predetermined time T1. Is turned on.
  • the MCU 25 checks whether or not the current detection value I exceeds a threshold lb for judging an arm short circuit. , Z are returned to the OFF state, and the abnormality display section 15 indicates that one or more of the upper-phase switching elements U, V, W is abnormal, and stops the air conditioning operation. If the current detection value I is equal to or less than the threshold lb for judging an arm short circuit, it is checked whether or not the current detection value I exceeds the protection level Is. If the current detection value I exceeds the protection level Is, the lower-phase switching elements X, ⁇ , Z is returned to the off state, and the operation of the refrigeration cycle is started.
  • the current detection value I is equal to or smaller than the threshold lb for judging an arm short, it is checked whether the current detection value I is a sine wave or 0 for all three phases. Or, if it is not 0, the lower phase switching elements X, Y, and Z are returned to the off state to indicate the force with a short circuit in the winding of the motor or the abnormality in the current detection circuit 11 in the abnormality display section. Displayed at 15 stops the air conditioning operation.
  • the lower phase is reached at time T1.
  • the switching elements X, Y, and Z are returned to the off state, and then the upper-phase switching elements U, V, and W are turned on.
  • the switching element U, V, W of the upper phase is returned to the off state if it exceeds, and one or more of the switching elements X, ⁇ , Z of the lower phase are displayed on the abnormality display section 15.
  • the abnormality is displayed and the air conditioning operation is stopped. If the current detection value I is equal to or less than the threshold lb for judging the arm short circuit, the switching elements U, V, W Is returned to the off state, and the operation of the refrigeration cycle is started.
  • the four-way valve 4 is turned on or off in accordance with the operation mode, and a frequency command for controlling the capacity of the compressor 3 is applied to the inverter 2 in accordance with the air-conditioning load.
  • the refrigerant flows through the path of the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the expansion valve 6, the indoor heat exchanger 7, the four-way valve 4, and the compressor 3.
  • the switching elements U, V, W, X, ⁇ , and Z of the inverter 10 are turned on and off in a predetermined order, but the lower-phase switching elements X, Y, and Z are controlled.
  • the upper-phase switching elements U, V, W in series connection are turned off, and the capacitor C provided corresponding to the off-state switching elements U, V, W
  • the drive circuit 22 is charged up and supplies drive power for the drive circuit 22.
  • FIG. 6 is a time chart showing two typical control examples according to the present embodiment.
  • FIG. 6 (a) shows the current when the lower-phase switching elements X, ⁇ , and Z are turned on. The detected value I is lower than the protection level Is.
  • Figure 6 (b) shows that the current detection value I when the lower-phase switching elements X, ⁇ , and Z are turned on exceeds the protection level Is. The case is shown.
  • the lower-phase switching elements X, Y, and Z are turned on, and the current when the time T1 has elapsed is passed. If the detected value I is equal to or lower than the protection level Is, the lower-phase switching elements X, ⁇ , and Z are turned off at the time and the upper-phase switching elements U, V, and W are turned on, and the current is turned on. If the detected current value I is not equal to the threshold lb for judging the arm short circuit, the deceleration and stop control of the outdoor fan 8 is executed when the time T1 has elapsed, and the output is stopped when the outdoor fan 8 stops.
  • the drive control of the outdoor fan 8 is performed by controlling the barter 10 and supplying a PWM current to the motor 8M.
  • the lower-phase switching elements X, Y, and Z are turned on after the control unit 13 starts its operation, and the current is If the detected value I exceeds the protection level Is, the stop control of the outdoor fan 8 is executed at that time, and when the control unit 13 starts the operation and the repetition period Tv elapses. If the current detection value I is equal to or lower than the protection level Is, the driving control of the outdoor fan 8 is executed in the same manner as described with reference to FIG.
  • FIG. 7 is a flowchart showing a specific processing procedure of the MCU 25 when executing the above-described operation, and the processing will be described below.
  • step 31 the data lb, Is, and Tv stored in the EEPROM 24 are read, and in step 32, the lower-phase switching elements X, ⁇ , and Z are simultaneously turned on.
  • step 33 the current detection value I Read.
  • Step 34 it is determined whether the current detection value I exceeds a threshold lb for determining a short circuit. If the current detection value I is not larger than the threshold lb, the process proceeds to Step 35. If the current detection value I is larger than the threshold lb, the process proceeds to step 52.
  • the current I for three phases can be read simultaneously or one phase at a time.
  • step 35 it is determined whether or not the current detection values I for the three phases are all 0. If not, in step 36, it is determined whether or not the current detection waveforms for the three phases are all sinusoidal. If it is a sine wave, it is determined in step 37 whether or not the current detection value I is greater than the protection level Is. If not, the process proceeds to step 38.
  • step 35 When it is determined in step 35 that the currents of all three phases are 0, the process proceeds directly to step 38, and in step 36, if one or more of the three phases is not a sine wave. If it is determined, the process proceeds to step 54.
  • step 38 it is checked whether or not a predetermined time T1 has elapsed since the lower-phase switching elements X, ⁇ , and Z were turned on. Repeat the process. When it is determined in Step 38 that the predetermined time T1 has elapsed, the process proceeds to Step 39, where the lower-phase switching elements X, Y, and Z are returned to the off state. Switching elements U, V, and W are turned on, and current detection is performed in step 41. Read out value I. Further, in step 42, it is determined whether or not the current detection value I exceeds the threshold value lb for determining a short circuit. When the value I is larger than the threshold lb, the process proceeds to step 50.
  • step 43 it is checked whether or not a predetermined time T1 has elapsed since the upper-phase switching elements U, V, W were turned on, and if not, the processing of steps 41 to 43 is repeated.
  • the process proceeds to step 44, where the upper-phase switching elements U, V, W are returned to the off state, and then compressed in step 45.
  • the operation of the refrigeration cycle is started by operating the machine 3 and the like, and then, in step 46, the start control of the motor 8M is started, and the operation proceeds to a known air conditioning operation.
  • step 37 if it is determined in step 37 that the current detection value I is larger than the protection level Is, the lower-phase switching elements X, ⁇ , and Z are turned off in step 47 and the next step 48 is performed. Then, the operation of the refrigeration cycle is started by operating the compressor 3 and the like, and after the repetition cycle Tv has passed in step 49, the process returns to the first step 31 and the above process is repeated.
  • step 42 When it is determined in step 42 that the current detection value I exceeds the short-circuit determination threshold lb, the switching elements U, V, and W of the upper phase are turned off in step 50, Subsequently, in step 51, the abnormality display section 15 displays that one or more of the lower-phase switching elements X, ⁇ , and Z are abnormal, and then in step 56, all devices including the refrigeration cycle are stopped. Perform an abnormal process such as
  • step 34 When it is determined in step 34 that the current detection value I exceeds the short-circuit determination threshold lb, in step 52, the lower-phase switching elements X, ⁇ , and Z are turned off.
  • step 53 the abnormal display section 15 displays that one or more of the upper phase switching elements U, V, and W are abnormal, and then stops all devices including the refrigeration cycle in step 56. Perform an abnormal process such as
  • step 36 If it is determined in step 36 that the three phases are not sinusoidal, the switching elements X, ⁇ , and Z of the lower phase are turned off in step 54, and in step 55, the motor winding is turned off. Indicates that a short circuit has occurred or that the current detection circuit 11 is abnormal, and proceeds to the process of step 56.
  • the control described with reference to FIGS. 4 to 6 can be performed by the MCU 25 included in the control unit 13 executing the processing illustrated in the flowchart of FIG.
  • the lower-phase switching element is turned on for braking in a state where the outdoor fan is rotating at a high speed due to natural wind or for charging the capacitor.
  • the demagnetization of the permanent magnet of the motor and the destruction of the lower phase switching element due to the overcurrent can be prevented.
  • the start of the outdoor fan is stopped to prevent the demagnetization of the motor and the destruction of the switching element, and the compressor is operated while the driving of the outdoor fan is stopped.
  • the air conditioner is operated and the outdoor fan is driven when natural wind stops. This prevents overloading of the refrigeration cycle due to continued operation of the compressor with little ventilation to the outdoor heat exchanger. can do.
  • the compressor 3 can perform the power control operation, so that the compressor 3 rotates according to the rotation speed of the outdoor fan 8 due to natural wind. If the number is controlled, the air conditioning operation can be performed without driving the outdoor fan 8.
  • the air conditioning operation is performed without driving the outdoor fan 8, the electric power consumed by the motor 8M is not required, and an energy saving effect can be obtained.
  • the rotation speed of the outdoor fan 8 is estimated, and based on the estimation result, the rotation speed of the compressor 3 is limited, and the air-conditioning operation can be performed in a range where overload does not occur.
  • FIG. 8 is a flowchart showing a specific processing procedure of an MCU constituting a control unit as a second embodiment of an air conditioner controlled according to this principle.
  • the lower phase switching elements X, ⁇ , and Z are turned on in step 61, the timer T is started in step 62, and the current I is detected in step 63.
  • step 64 it is determined whether or not the current detection value I is smaller than the protection level Is. If smaller, the process proceeds to step 65, and if not, the process proceeds to step 70.
  • step 65 it is determined whether or not the time counted by the timer T is equal to or greater than a predetermined value T1. Is repeated. If it is T1 or more, in step 66, for example, the rotational speed r of the outdoor fan 8 is estimated based on the current detection value I at that time.
  • step 67 it is determined whether or not the estimated rotational speed r is lower than the minimum rotational speed rl at which sufficient heat exchange is performed by natural wind. , And normal air-conditioning operation is executed in step 69.
  • step 73 it is determined in step 73 whether the estimated rotation speed r is lower than r2 set in a larger range.
  • the start of the outdoor fan 8 is stopped, the power supply frequency corresponding to the upper limit of the rotation speed of the compressor 3 is set to 40 Hz, and the process proceeds to step 72. If the estimated rotation speed r is not lower than r2, In step 75, the start of the outdoor fan 8 is stopped, the power supply frequency is set to 40 Hz corresponding to the upper limit of the rotation speed of the compressor 3, and the process proceeds to step 72.
  • step 64 If the current detection value I is equal to or higher than the protection level Is in step 64, the start of the outdoor fan 8 is stopped in step 70, and the air conditioning operation is performed in step 71 without limiting the rotation speed of the compressor.
  • step 72 it is determined whether or not a predetermined time Tv has elapsed. At the stage when the predetermined time Tv has elapsed, the process returns to step 61 and the same process is repeated.
  • the number of rotations can be estimated without using the rotation position detecting element, and an energy saving effect can be obtained.
  • the rotation speed of the outdoor fan 8 is estimated, but this rotation speed estimation method can be used for the dehumidifying operation. That is, in the dehumidifying operation, etc., since the rotation speed of the compressor 3 is reduced, the amount of heat exchange in the outdoor heat exchange 5 can be small, so that even if the amount of ventilation to the outdoor heat exchanger 5 is small. good. Therefore, the heat exchange amount (required heat exchange amount) of the outdoor heat exchanger 5 required in the air-conditioning operation is calculated, and it is estimated whether or not it is necessary to drive the outdoor fan 8 according to the required heat exchange amount. It may be determined according to the rotation speed of the outdoor fan 8.
  • the required heat exchange amount in the air conditioner is determined based on the rotational speed of the compressor, the operation mode, and the like as a meter.
  • the rotation speed F of the outdoor fan 8 corresponding to the required heat exchange amount determined here (the rotation speed in a state where the outdoor fan 8 rotates freely by natural wind) is determined and compared with the rotation speed estimation value r.
  • FIG. 9 is a flowchart showing a specific processing procedure of an MCU constituting a control unit as a third embodiment of an air conditioner controlled according to this principle. In this case, the lower-stage switching elements X, ⁇ , and Z are turned on in step 81, the timer T is started in step 82, and the current I is detected in step 83.
  • step 84 it is determined whether or not the current detection value I is smaller than the protection level Is. If smaller, the process proceeds to step 85, and if not, the process proceeds to step 91.
  • step 85 it is determined whether or not the time counted by the timer T is equal to or greater than a predetermined value T1, and if not, the processing of steps 83-85 is repeated. If it is not less than T1, in step 86, the rotational speed r of the outdoor fan 8 is estimated.
  • step 87 the required fan rotation speed F of the air conditioner is determined, and then, in step 88, it is determined whether or not the estimated rotation speed r is lower than the required rotation speed F.
  • start control of the outdoor fan 8 is performed in step 89, and normal air conditioning operation is performed in step 90.
  • step 84 when it is determined in step 84 that the current detection value I is not smaller than the protection level Is, and in step 88, it is determined that the estimated rotation speed r is not lower than the required rotation speed F.
  • step 91 the start of the outdoor fan 8 is stopped in step 91, the air conditioning operation is performed in step 92, and it is determined whether or not a predetermined time Tv has elapsed in step 93. Return and repeat the same process.
  • the third embodiment it is possible to estimate the number of rotations without using a rotation position detecting element, and it is possible to obtain an energy saving effect.
  • the air conditioner has been described as an embodiment of the refrigeration cycle apparatus.
  • the hot water supply having an outdoor unit and a refrigeration cycle configured similarly to the air conditioner is described.
  • Instruments are also being marketed.
  • the present invention can be applied not only to air conditioners but also to other refrigeration cycle devices such as water heaters whose main parts are configured similarly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

[PROBLEMS] A fan controller capable of preventing demagnetization of the permanent magnet of a motor and breakdown of a switching element on the negative side of an inverter even if starting control is performed while the fan is rotating with natural wind, and a refrigeration cycle system and a method for estimating the rotation speed of the fan. [MEANS FOR SOLVING PROBLEMS] A control means (13) is provided that turns on switching elements for three phases forming the negative side arm of an inverter at the time of starting, and, when the current level detected by a current level detecting means (11) under on state exceeds a protection level set lower than a level being judged as short circuit of the arm, resets the switching elements for three phases to off state thus interrupting the starting operation.

Description

明 細 書  Specification
ファン制御装置、冷凍サイクル装置及びファン回転数推定方法  Fan control device, refrigeration cycle device, and fan rotation speed estimation method
技術分野  Technical field
[0001] 本発明は、外的な要因によって回転することのあるファンの起動制御に係り、このフ アンの制御装置、その制御を採用した冷凍サイクル装置及び制御時のファン回転数 推定方法に関する。  The present invention relates to startup control of a fan that may rotate due to an external factor, and relates to a control device for the fan, a refrigeration cycle device employing the control, and a method of estimating a fan speed during control.
背景技術  Background art
[0002] 空気調和機の室外ファン等は、ファンモータを駆動して 、な 、状態で自然風によつ て回転する。従来、ブラシレス直流モータを用いたファン駆動装置は、ホール素子等 のロータの回転位置を検出するセンサを設け、ファンの起動時にはこのセンサの出 力信号に基づいてロータの回転位置を検出し、この回転位置に合わせてインバータ を構成する各スイッチング素子への通電を制御してファンをー且停止させてモータを 位置決めした後、起動を開始していた (例えば、日本特許出願公開 2000-125584号 公報参照。 ) oこの際、自然風で回転しているファンの回転数が高い場合には、ファン の起動制御をせずにそのまま圧縮機を駆動して 、た。  [0002] An outdoor fan or the like of an air conditioner drives a fan motor and rotates by natural wind in a state. Conventionally, a fan drive device using a brushless DC motor has a sensor for detecting the rotational position of a rotor such as a Hall element, and detects the rotational position of the rotor based on an output signal of the sensor when the fan is started. After controlling the energization to each switching element constituting the inverter in accordance with the rotational position, stopping the fan and positioning the motor, the start is started (for example, Japanese Patent Application Publication No. 2000-125584). ) OAt this time, when the rotation speed of the fan rotating by natural wind was high, the compressor was driven without controlling the start of the fan.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 近年、モータを駆動するに当たり、ロータの回転位置を検出するホール素子などの センサをなくし、部品点数を削減して部品故障による信頼性低下を抑制すると共に、 コストダウンを図る方式が採用されてきている。例えば、圧縮機用のモータ駆動装置 では、各相の卷線に流れる電流を検出し、その電流値から回転数を算出すると共に 、ロータの位置をも推定して駆動するベクトル制御を採用して 、る。  [0003] In recent years, when driving a motor, a method has been adopted in which a sensor such as a Hall element that detects the rotational position of a rotor is eliminated, the number of components is reduced, reliability is reduced by component failure, and cost is reduced. Have been. For example, a motor drive device for a compressor detects a current flowing through the winding of each phase, calculates a rotation speed from the current value, and estimates a rotor position to adopt a vector control for driving. RU
[0004] しかし、上述したファンモータの場合、圧縮機とは異なりファンそのものの負荷が軽 いため、運転の停止中も自然風によって勝手に回転してしまう。このようなモータにセ ンサレスのモータを採用しょうとすると、起動後においてはモータに流れる電流値か ら回転数を推定することができるが、起動前にはファンの回転状態が全く分力もない 状態力 起動制御を実行することになる。その場合、自然風が強ぐファンが高速で 回転しているときにモータの起動を開始すると、モータ卷線に生じている誘起電圧に より卷線及びインバータを構成するスイッチング素子に過大な電流が流れ、ロータの 永久磁石が減磁されたり、スイッチング素子が破壊されたりするというような問題があ つた。このため、ファンモータにはセンサレスのモータを採用することができず、回転 位置センサを設けざるを得な!/、状況にあった。 [0004] However, in the case of the above-described fan motor, unlike the compressor, the load on the fan itself is light, and thus the fan motor rotates by itself due to natural wind even when the operation is stopped. If an attempt is made to use a sensorless motor for such a motor, the number of revolutions can be estimated from the current flowing through the motor after startup, but before the startup, the fan has no rotation at all. Force start control will be executed. In that case, the fan with strong natural wind When the motor starts to be started while rotating, an excessive current flows through the winding and the switching element forming the inverter due to the induced voltage generated in the motor winding, and the permanent magnet of the rotor is demagnetized, There was a problem that the switching element was destroyed. For this reason, a sensorless motor cannot be used for the fan motor, and a rotational position sensor must be provided! / Was in the situation.
[0005] また、インバータにおいて、スイッチング素子として FETや IGBTが使用される場合 、正側(以下、上相とも称する)アームを構成する 3相分のスイッチング素子の駆動電 源として、負側(以下、下相とも称する)アームを構成するスイッチング素子をオン状 態にしたときに流れる電流によって充電されるコンデンサを設けることにより、スィッチ ング素子を駆動する電源回路を簡素化したものが一般的に使用されている。  [0005] When an FET or an IGBT is used as a switching element in an inverter, a driving power supply for a three-phase switching element constituting a positive-side (hereinafter, also referred to as an upper phase) arm is used as a negative-side (hereinafter, referred to as an upper-phase) driving power supply. In general, a simplified power supply circuit that drives the switching element is provided by providing a capacitor that is charged by the current that flows when the switching element that constitutes the arm is turned on. Have been.
[0006] このような回路を備えたインバータ装置では、起動時あるいは駆動制御に入る前に 下相のスイッチング素子をオン状態とし、上相のスイッチング素子の電源となるコンデ ンサをチャージアップする必要がある。ところが、このチャージアップ時に下相のスィ ツチング素子をオン状態に保持すると、ファンが高速で回転している場合、上述した と同様に、過電流によってロータの永久磁石が減磁されたりスイッチング素子が破壊 されたりするという問題があった。  [0006] In the inverter device having such a circuit, it is necessary to turn on the lower-phase switching element and charge up the capacitor serving as the power supply of the upper-phase switching element at the time of starting or before starting drive control. is there. However, if the lower-phase switching element is kept in the ON state during this charge-up, when the fan is rotating at high speed, the overcurrent demagnetizes the permanent magnet of the rotor or switches the switching element, as described above. There was a problem of being destroyed.
[0007] 本発明は上記の問題点を解決するためになされたもので、その目的は、自然風に よってファンが回転している状態で起動制御したとしても、モータの永久磁石の減磁 及びインバータの負側のスイッチング素子の破壊を未然に防止することのできるファ ン制御装置、冷凍サイクル装置を提供することにある。  [0007] The present invention has been made to solve the above problems, and an object of the present invention is to reduce the demagnetization of the permanent magnet of the motor and the motor even if the startup control is performed while the fan is rotating by natural wind. An object of the present invention is to provide a fan control device and a refrigeration cycle device that can prevent destruction of a switching element on the negative side of an inverter.
[0008] 本発明の他の目的は、自然風の強い状態で空調運転を開始した後に自然風が弱 まった場合に冷凍サイクルが過負荷状態になることを防止することのできる冷凍サイ クル装置を提供することにある。  [0008] Another object of the present invention is to provide a refrigeration cycle apparatus capable of preventing the refrigeration cycle from being overloaded when the natural wind is weakened after the air conditioning operation is started in a state where the natural wind is strong. Is to provide.
[0009] 本発明のさらに他の目的は、回転位置の検出素子なしで回転数を推定することの できるファン回転数推定方法を提供することにある。  [0009] Still another object of the present invention is to provide a method for estimating the number of revolutions of a fan, which can estimate the number of revolutions without a rotation position detecting element.
課題を解決するための手段  Means for solving the problem
[0010] 上記目的達成のため、本発明では、請求項 1、 3および 7を代表例とする発明を提 供する。 請求項 1に係る発明は、ファンを駆動するセンサレスのモータと、スイッチング素子 力 S3相ブリッジ接続され、モータに 3相交流電力を供給するインバータと、モータに流 れる電流を検出する電流検出手段と、起動時にインバータの負側アームを形成する 3相分のスイッチング素子をオン状態とし、このオン状態における電流検出手段の電 流検出値がアーム短絡と判定される値よりも低く設定された保護レベルを超えたとき 、 3相分のスイッチング素子をオフ状態に復帰させて起動を停止する制御手段とを備 えたファン制御装置である。 [0010] In order to achieve the above object, the present invention provides inventions represented by claims 1, 3, and 7. The invention according to claim 1 is a sensorless motor for driving a fan, an inverter connected to a switching element power S3-phase bridge to supply three-phase AC power to the motor, and current detection means for detecting a current flowing to the motor. When the switching elements for the three phases forming the negative side arm of the inverter are turned on at the time of startup, the protection level is set lower than the current detection value of the current detection means in this on state is determined to be arm short circuit. And a control means for returning the three-phase switching elements to an off state and stopping the activation when the number exceeds three.
[0011] 請求項 3に係る発明は、圧縮機、室外熱交換器及びその熱交換を促進する室外フ アンを含む冷凍サイクルと、室外ファンを駆動するセンサレスのモータと、スイッチング 素子が 3相ブリッジ接続され、モータに 3相交流電力を供給するインバータと、モータ に流れる電流を検出する電流検出手段と、起動時にインバータの負側アームを形成 する 3相分のスイッチング素子をオン状態とし、このオン状態における電流検出手段 の電流検出値がアーム短絡と判定される値よりも低く設定された保護レベルを超えた とき、 3相分のスイッチング素子をオフ状態に復帰させることにより、ファンの起動を停 止するファンの起動制御と、ファン停止中に圧縮機を運転する有風ファン停止制御と を実行し、ファンの起動を停止して力 所定の時間の経過後にファンの起動制御を 繰り返して実行する制御手段とを備えた冷凍サイクル装置である。  [0011] The invention according to claim 3 provides a refrigeration cycle including a compressor, an outdoor heat exchanger, and an outdoor fan for promoting heat exchange thereof, a sensorless motor for driving the outdoor fan, and a three-phase bridge comprising a switching element. The inverter connected to supply three-phase AC power to the motor, current detection means for detecting the current flowing to the motor, and the three-phase switching elements forming the negative arm of the inverter at startup are turned on. When the current detection value of the current detection means in the state exceeds the protection level set lower than the value determined as arm short-circuit, the start of the fan is stopped by returning the three-phase switching elements to the off state. Execute the fan start control to stop the fan and the wind fan stop control to operate the compressor while the fan is stopped. A refrigeration cycle apparatus and control means for repeatedly performing fan startup control after excessive.
[0012] 請求項 7に係る発明は、ファンを駆動するセンサレスのモータに 3相交流電力を供 給するようにスイッチング素子が 3相ブリッジ接続されたインバータの負側アームを形 成する 3相分のスイッチング素子をオン状態にするステップと、 3相分のスイッチング 素子のオン状態時にモータに流れる電流を検出するステップと、検出された電流値 に基づ!/、てファンの回転数を推定するステップと、  [0012] The invention according to claim 7 provides a three-phase component in which a switching element forms a negative arm of a three-phase bridge-connected inverter so as to supply three-phase AC power to a sensorless motor that drives a fan. And turning on the switching elements of the three phases, detecting the current flowing to the motor when the switching elements for three phases are on, and estimating the fan rotation speed based on the detected current value. Steps and
を順次実行するファン回転数推定方法である。  Are sequentially executed.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]は、本発明に係るファン制御装置、冷凍サイクル装置及びファン回転数推定方 法を実施する第 1の実施形態として、空気調和機の制御部の概略構成を示した図。  FIG. 1 is a diagram showing a schematic configuration of a control unit of an air conditioner as a first embodiment for implementing a fan control device, a refrigeration cycle device, and a fan rotation speed estimation method according to the present invention. .
[図 2]は、室外機の主要部の構成を示す横断面図。  FIG. 2 is a cross-sectional view showing a configuration of a main part of the outdoor unit.
[図 3]は、室外ファン用インバータの詳細な構成を、部分的にブロックで示した回路図 [図 4]は、第 1の実施形態の動作を説明するために、モータの卷線に流れる電流と時 間との関係を示した線図。 [Fig.3] is a circuit diagram partially showing the detailed configuration of the outdoor fan inverter. FIG. 4 is a diagram showing a relationship between a current flowing through a winding of the motor and time to explain the operation of the first embodiment.
[図 5]は、第 1の実施形態の動作を説明するために、モータの回転数と卷線に流れる 電流との関係を示した線図。  FIG. 5 is a diagram showing the relationship between the number of rotations of the motor and the current flowing through the windings, for explaining the operation of the first embodiment.
[図 6]は、第 1の実施形態による代表的な 2つの制御例を示したタイムチャート。  FIG. 6 is a time chart showing two typical control examples according to the first embodiment.
[図 7]は、第 1の実施形態の動作を実行する場合の MCUの具体的な処理手順を示 すフローチャート。  FIG. 7 is a flowchart showing a specific processing procedure of the MCU when executing the operation of the first embodiment.
[図 8]は、本発明の第 2の実施形態として、制御部を構成する MCUの具体的な処理 手順を示すフローチャート。  FIG. 8 is a flowchart showing a specific processing procedure of an MCU constituting a control unit according to a second embodiment of the present invention.
[図 9]は、本発明の第 3の実施形態として、制御部を構成する MCUの具体的な処理 手順を示すフローチャート。  FIG. 9 is a flowchart showing a specific processing procedure of an MCU constituting a control unit according to a third embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明を図面に示す好適な実施形態に基づいて詳細に説明する。  Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings.
図 1は、本発明に係るファン制御装置、冷凍サイクル装置及びファン回転数推定方 法を実施する第 1の実施形態として、空気調和機の制御部の概略構成を示した図で ある。同図において、交流電源 1にインバータ 2が接続されている。インバータ 2は、 交流を整流、平滑し、得られた直流を可変電圧可変周波数の交流に変換して出力 するもので、その構成及び動作については周知であるので詳しい説明を省略するが 、これに冷凍サイクルを構成する圧縮機 3が接続されて 、る。  FIG. 1 is a diagram showing a schematic configuration of a control unit of an air conditioner as a first embodiment for implementing a fan control device, a refrigeration cycle device, and a method of estimating a fan rotation speed according to the present invention. In the figure, an inverter 2 is connected to an AC power supply 1. The inverter 2 rectifies and smoothes the alternating current, converts the obtained direct current into alternating current with a variable voltage and variable frequency, and outputs the converted alternating current. The compressor 3 constituting the refrigeration cycle is connected.
[0015] 冷凍サイクルは、圧縮機 3、四方弁 4、室外熱交換器 5、膨張弁 6、室内熱交換器 7 、室外ファン 8及び室内ファン 9によって構成されている。室外ファン 8は、後述するよ うにファン 8Fとモータ 8Mとでなり、モータ 8Mを制御するためのインバータ 10を備え ている。インバータ 10は、モータ 8Mの卷線電流を検出する電流検出回路 11を付帯 している。また、室内ファン 9の速度を制御するために、速度制御回路 12が設けられ ている。さらに、上述したインバータ 2及び 10を制御し、速度制御回路 12に速度指令 を与える制御部 13を備え、この制御部 13にはリモコン装置 16からの信号を受信する 受光部 14と、異常を表示するための異常表示部 15とが接続されている。制御部 13 は、マイクロコンピュータユニット(以下、 MCUと略称する)を含み、後述する演算処 理を実行する。 [0015] The refrigeration cycle includes a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, an expansion valve 6, an indoor heat exchanger 7, an outdoor fan 8, and an indoor fan 9. The outdoor fan 8 includes a fan 8F and a motor 8M as described later, and includes an inverter 10 for controlling the motor 8M. The inverter 10 has a current detection circuit 11 for detecting a winding current of the motor 8M. In addition, a speed control circuit 12 is provided to control the speed of the indoor fan 9. Furthermore, a control unit 13 that controls the inverters 2 and 10 described above and provides a speed command to the speed control circuit 12 is provided. And an abnormality display section 15 for performing the operation. Control unit 13 Includes a microcomputer unit (hereinafter abbreviated as MCU), and executes arithmetic processing described later.
[0016] 図 2は、室外機 17の主要部の構成を示す横断面図であり、その正面(図面の下方) から見て、左側部と後背部に室外熱交 5が略直角に曲げて配置され、右側部に 圧縮機 3が配置されており、室外熱交換器 5の内側にファン 8Fをモータ 8Mが駆動す る室外ファン 8が装着され、 A及び B矢印方向から外気を吸い込み C矢印方向に吐 出することによって室外熱交 5の熱交換を促進するように構成されている。  FIG. 2 is a cross-sectional view showing a configuration of a main part of the outdoor unit 17. When viewed from the front (below the drawing), the outdoor heat exchange 5 is bent at a substantially right angle on the left side and the rear side. A compressor 3 is arranged on the right side, and an outdoor fan 8 that drives a fan 8F by a motor 8M is installed inside the outdoor heat exchanger 5, and sucks outside air from the directions of arrows A and B. It is configured to promote the heat exchange of the outdoor heat exchange 5 by discharging in the direction.
[0017] 図 3は、インバータ 10の詳細な構成を、部分的にブロックで示した回路図である。  FIG. 3 is a circuit diagram partially showing the detailed configuration of the inverter 10 by blocks.
同図において、例えば、 IGBTでなる 6個のスイッチング素子 U, V, W, X, Υ, Ζが 3 相ブリッジ接続されている。すなわち、スイッチング素子 U及び Xの直列接続回路と、 スイッチング素子 V及び Υの直列接続回路と、スイッチング素子 W及び Ζの直列接続 回路とが並列接続され、その一端が直流電源 21の正極に接続され、他端が直流電 源 21の負極に接続されている。  In the figure, for example, six switching elements U, V, W, X, Υ, で composed of IGBTs are connected in a three-phase bridge. That is, a series connection circuit of the switching elements U and X, a series connection circuit of the switching elements V and と, and a series connection circuit of the switching elements W and Ζ are connected in parallel, and one end thereof is connected to the positive electrode of the DC power supply 21. The other end is connected to the negative electrode of the DC power supply 21.
[0018] このうち、スイッチング素子 U, V, Wが上相アームを構成し、スイッチング素子 X, Υ , Ζが下相アームを構成している。また、スイッチング素子 U及び Xの相互接続点、ス イッチング素子 V及び Υの相互接続点、スイッチング素子 W及び Ζの相互接続点が、 星形接続されたモータ 8Μの U, V, W相の外部接続導線に接続されている。  [0018] Of these, switching elements U, V, W constitute an upper phase arm, and switching elements X, Υ, Ζ constitute a lower phase arm. Also, the interconnection point of the switching elements U and X, the interconnection point of the switching elements V and 、, and the interconnection point of the switching elements W and が are outside the U, V, and W phases of the star-connected motor 8Μ. Connected to the connecting conductor.
[0019] スイッチング素子 U, V, Wの各ゲートには、駆動回路 22が接続されている。そして 、各駆動回路 22の駆動電力を蓄えるために、一端が駆動回路 22に接続され、他端 がスイッチング素子 U, V, Wのソース (負電圧側)にそれぞれ接続されたコンデンサ Cが設けられ、これのコンデンサをチャージアップするために、その負極が直流電源 21の負極に接続され、その正極が、逆流防止用のダイオード Dを介して、コンデンサ Cの一端に接続された直流電源 Εが設けられて 、る。  A drive circuit 22 is connected to each gate of the switching elements U, V, W. In order to store the drive power of each drive circuit 22, a capacitor C is provided, one end of which is connected to the drive circuit 22 and the other end of which is connected to the sources (negative voltage side) of the switching elements U, V, W, respectively. In order to charge up the capacitor, a negative pole is connected to the negative pole of the DC power supply 21 and a positive pole is connected to one end of the capacitor C via a diode D for preventing backflow. Being done.
[0020] なお、スイッチング素子 X, Υ, Ζの各ゲートにもそれぞれ駆動回路 22が接続される The drive circuit 22 is also connected to each gate of the switching elements X, Υ, Ζ.
1S 説明及び図面の簡単ィ匕のためにそれらを省略して 、る。 1S For simplicity of explanation and drawings, they are omitted.
[0021] 一方、モータ 8Mの各相卷線に流れる電流を検出するために、スイッチング素子 X, Υ, Zのソースと直流電源 21の負極との間に抵抗 Rが接続され、この抵抗 Rのスィッチ ング素子 X, Υ, Z側に発生する電圧をそれぞれ増幅するオペアンプ 23が設けられ、 これら 3個の抵抗 Rと 3個のオペアンプ 23とで前述の電流検出回路 11が構成されて V、る。制御部 13は後述する制御停止レベルである保護レベル Isや繰返し周期 Tv等 を記憶させてある EEPROM24と、この EEPROM24の記憶データ及びオペアンプ 23の出力に基づいてスイッチング素子 U, V, W, X, Υ, Ζの各駆動回路 22にオン、 オフ制御信号を加えると共に、図 1に示すインバータ 2、速度制御回路 12及び異常 表示部 15に制御信号をカ卩える MCU25を備えて 、る。 On the other hand, in order to detect a current flowing through each phase winding of the motor 8M, a resistor R is connected between the sources of the switching elements X, Υ, and Z and the negative electrode of the DC power supply 21. Operational amplifiers 23 are provided to amplify voltages generated on the switching elements X, Υ, and Z, respectively. These three resistors R and three operational amplifiers 23 constitute the above-described current detection circuit 11. The control unit 13 includes an EEPROM 24 that stores a protection level Is, which is a control stop level, a repetition period Tv, and the like, which will be described later, and the switching elements U, V, W, X, and The drive circuit 22 of (1) and (2) is provided with an MCU 25 for applying an on / off control signal to the inverter 2, the speed control circuit 12, and the abnormality display unit 15 shown in FIG.
[0022] 上記のように構成された本実施形態について、図 4乃至図 6をも参照してその原理 を説明した後で、その動作を説明することとする。室外ファンが停止状態にあればモ ータの相卷線に電圧は誘起されな!、ので、インバータのスイッチング素子の電流は 0 である。しかし、自然風によって室外ファンが回転している場合にはモータの卷線に 電圧が誘起され、スイッチング素子をオン状態にすれば、モータの相卷線に正弦波 電流が流れる。 [0022] The principle of the present embodiment configured as described above will be described with reference to Figs. 4 to 6 and then the operation thereof will be described. If the outdoor fan is stopped, no voltage is induced in the motor windings, so the switching element current of the inverter is zero. However, when the outdoor fan is rotated by natural wind, a voltage is induced in the winding of the motor, and when the switching element is turned on, a sine wave current flows through the winding of the motor.
[0023] 本発明は、室外ファンの起動前にその回転している状態を検出するために、所定 時間 T1だけインバータの下相のスイッチング素子をオン状態にする。この際に、室外 ファンが回転していたとすると、各相の卷線電流は図 4の実線 al又はその途中から 飽和する破線 a2に示したように変化する。また、下相のスイッチング素子をオン状態 にした時に対応する上相のスイッチング素子の 、ずれか 1つが短絡して!/、る、 Vヽゎゅ る、アーム短絡時の電流値の変化を直線 bに示す。  In the present invention, in order to detect the rotating state of the outdoor fan before starting, the switching element in the lower phase of the inverter is turned on for a predetermined time T1. At this time, assuming that the outdoor fan is rotating, the winding current of each phase changes as shown by a solid line al in FIG. 4 or a dashed line a2 saturated in the middle. Also, when the lower-phase switching element is turned on, one of the corresponding upper-phase switching elements is short-circuited and the change in the current value when the arm is short-circuited. Shown in b.
[0024] 直線 bに示すようなアーム短絡時には、短絡と判定する閾値 lbを超える極めて大き い電流が流れる。そのため、閾値 lbを超えると即座にスイッチング素子の全てをオフ 状態にして異常停止させる。空気調和機の室外ファンにこの異常停止を適用した場 合にはそれ以後、圧縮機の運転を行わず、異常表示等を行う。なお、この際に流れ る電流は上相のスイッチング素子から下相のスイッチング素子に流れるので卷線に 流れる電流は略 0である。  [0024] When the arm is short-circuited as shown by the straight line b, an extremely large current exceeding the threshold lb for determining that the arm is short-circuited flows. For this reason, as soon as the threshold value lb is exceeded, all of the switching elements are turned off and abnormally stopped. If this abnormal stop is applied to the outdoor fan of the air conditioner, the compressor will not be operated thereafter and an error display will be performed. Since the current flowing at this time flows from the upper phase switching element to the lower phase switching element, the current flowing to the winding is substantially zero.
[0025] 一方、室外ファンの回転数が低い場合には、実線 alの途中力も飽和する破線 a2に 示したように T1時間を経過した時点の電流は A2しか流れな ヽが、実線 alに示した ように室外ファンの回転数が高い状態では時間の経過に従って直線的に増加し、 T1 時間を経過した時点の電流は A1の高い値に到達する。この時刻 T1の電流値は、図 5に示したように回転数に比例して大きくなる。最終的な電流値は、モータ卷線のイン ダクタンスと誘起電圧との関係で決まる。室外ファンが回転して卷線に電圧が誘起さ れておれば、電流値の増加率 (傾き)はモータ卷線のインダクタンスで決まるため同じ ように増加するが、回転数が低く誘起電圧が小さ 、場合には早 、段階で電流の増加 は停止し、その値を維持する。回転数が高ければ電流は増加し続け、最終的に高い 値に到達する。したがって、ある程度の時間をおけば、その時点の電流値によってそ の時点の室外ファンの回転数を推定することができる。 [0025] On the other hand, when the rotation speed of the outdoor fan is low, the current after the time T1 passes through only A2 as shown by the dashed line a2 where the intermediate force of the solid line al also saturates, as shown by the solid line al. As described above, when the number of rotations of the outdoor fan is high, the current increases linearly with the passage of time, and when the time T1 has elapsed, the current reaches a high value of A1. The current value at this time T1 is As shown in FIG. 5, it increases in proportion to the rotation speed. The final current value is determined by the relationship between the motor winding inductance and the induced voltage. If the outdoor fan rotates and a voltage is induced in the winding, the rate of increase (slope) of the current value increases in the same manner because it is determined by the inductance of the motor winding, but the rotation speed is low and the induced voltage is small. In such a case, the increase of the current is stopped at an early stage, and the value is maintained. At higher speeds, the current continues to increase and eventually reaches a higher value. Therefore, after a certain period of time, the current fan speed can be used to estimate the rotational speed of the outdoor fan at that time.
[0026] ここで、モータの特性によっては、実線 alのケースのように卷線に流れる電流が大 きい場合、 T1時点ではロータの永久磁石が減磁する可能性がある。また、スィッチン グ素子も過電流によって破壊に至る可能性がある。そこで、ロータの永久磁石が減磁 するレベルの電流値又はスイッチング素子が破壊に至る過電流値の 、ずれ力低 ヽ 方の値よりも低!、保護レベル Isに達した場合は、その時点で下相のスイッチング素子 をオフ状態に復帰させて、減磁ゃ素子破壊を未然に防止する。  Here, depending on the characteristics of the motor, when the current flowing through the winding is large as in the case of the solid line al, the permanent magnet of the rotor may be demagnetized at time T1. Also, the switching element may be destroyed by the overcurrent. Therefore, if the current value at the level at which the permanent magnet of the rotor is demagnetized or the overcurrent value at which the switching element breaks down is lower than the lower value of the slip force, and the protection level Is is reached, at that point The switching element in the lower phase is returned to the off state to prevent demagnetization and element destruction.
[0027] すなわち、実線 alの場合、時刻 tにて下相のスイッチング素子をオフ状態にする。  That is, in the case of the solid line al, the switching element of the lower phase is turned off at the time t.
モータやインバータの仕様にもよる力 一般には素子破壊に至る電流値よりも減磁に 至る電流値の方が低いため、減磁電流値を基準にしてこれより低い保護レベル Isに 設定するのが一般的である。  Power depending on motor and inverter specifications In general, the current value leading to demagnetization is lower than the current value leading to element destruction, so it is best to set a lower protection level Is based on the demagnetization current value. General.
[0028] なお、図 4の実線 alの電流パターンでは保護レベル Isを超えた状態も参考的に示 して ヽるが、実際の制御にぉ 、ては保護レベル Isを超えた時刻 tで下相のスィッチン グ素子をオフ状態にするため、保護レベル Isより大きくならない。また、アーム短絡時 の電流増加の状態を示す直線 bのケースにぉ ヽては、保護レベル Isを超えて大きな 電流が流れるが、この場合は極めて短時間に大電流が流れるため、保護レベル Isを 設定しても応答できず、アーム短絡検出用の閾値 lbにて下相のスイッチング素子 X, Y, Zがオフ状態に復帰される。  [0028] In the current pattern indicated by the solid line al in FIG. 4, a state where the protection level is exceeded is also shown for reference. Since the phase switching element is turned off, the protection level does not exceed Is. In addition, in the case of the straight line b indicating the state of the current increase when the arm is short-circuited, a large current flows beyond the protection level Is. In this case, since the large current flows in a very short time, the protection level Is No response is made even if is set, and the switching elements X, Y, and Z in the lower phase are returned to the off state at the threshold lb for arm short circuit detection.
[0029] 例えば、アーム短絡時の電流 lbに到達する前に保護レベル Isに先に到達するが、 保護レベル Isに到達したことの判断はノイズ対策のために応答を遅くしてあるため、 アーム短絡時の電流 lbに応答してスイッチング素子 X, Y, Zがオフ状態にされる。  [0029] For example, before reaching the current lb at the time of arm short-circuit, the protection level Is is reached first. However, since the determination that the protection level Is is reached is made slower in response to noise countermeasures, the arm The switching elements X, Y, and Z are turned off in response to the short-circuit current lb.
[0030] 一方、室外ファンの運転開始時にこれが自然風により回転していると、その回転数 が大きい場合には、モータによってファンを駆動しなくとも室外熱交換器には十分な 通風がなされることから熱交換が可能であり、空調運転を継続することができる。 [0030] On the other hand, if the outdoor fan is rotating due to natural wind at the start of operation, the rotation speed Is large, sufficient ventilation is provided to the outdoor heat exchanger without driving the fan by the motor, so that heat exchange is possible and air conditioning operation can be continued.
[0031] この空調運転が可能な室外ファンの回転数は、その特性や空気調和機の冷凍サイ クルの構成によって異なる力 通常図 5において、ファンを駆動することなく空調運転 が可能なファンの自然風による回転数の下限値 Rが対応する、前述の時刻 T1のモ ータ電流値は、素子破壊に至る電流値や減磁に至る電流値よりも低 、値となる。  [0031] The rotational speed of the outdoor fan capable of performing the air-conditioning operation varies depending on its characteristics and the configuration of the refrigeration cycle of the air conditioner. Generally, in FIG. 5, the natural speed of the fan capable of performing the air-conditioning operation without driving the fan is shown. The motor current value at the above-described time T1 corresponding to the lower limit value R of the rotation speed due to the wind is lower than the current value leading to element destruction and the current value leading to demagnetization.
[0032] そこで、空調用の室外ファンを駆動するモータでは、保護レベル Isを、ファン駆動が 可能な回転数 Rに対応する値に設定すれば、素子破壊ゃ減磁がなぐかつ、室外フ アンの駆動を停止させたままで空調運転が可能となる。  [0032] Therefore, in a motor that drives an outdoor fan for air conditioning, if the protection level Is is set to a value corresponding to the rotational speed R at which the fan can be driven, element destruction, demagnetization is eliminated, and the outdoor fan is not driven. The air conditioning operation can be performed while the drive of the air conditioner is stopped.
[0033] ファンを駆動しな 、で空調運転を継続する場合、運転中に自然風が減少し、室外 熱交^^における放熱や吸熱が不十分となることが考えられる。このような事態が生 じると、室外熱交換器での熱交換が不足し、冷凍サイクルの高圧側の圧力が異常に 上昇し、機器が故障に至る可能性もある。  [0033] When the air-conditioning operation is continued without driving the fan, it is conceivable that the natural wind decreases during the operation, and the heat radiation and heat absorption in the outdoor heat exchange become insufficient. If such a situation occurs, the heat exchange in the outdoor heat exchanger will be insufficient, and the pressure on the high pressure side of the refrigeration cycle will rise abnormally, possibly leading to equipment failure.
[0034] そこで、起動時に上述の制御によってファンの駆動が不要と判断された場合も所定 の繰返し周期 Tvごとに下相のスイッチング素子をオン状態にして室外ファンの回転 数が低下していないか否かを繰返し判別する。ここで、自然風による室外ファンの回 転数が低下して!/、る場合には、下相のスイッチング素子のオン状態の電流値が時刻 T1以後においても保護レベル Is未満となるため、室外ファンの起動は停止されず、 続いてファン位置決めのための強制停止を行い、続いて、 PWM駆動を開始する。  [0034] Therefore, even when it is determined that driving of the fan is unnecessary by the above-described control at the time of start-up, the switching element of the lower phase is turned on at every predetermined repetition cycle Tv to check whether the rotational speed of the outdoor fan has decreased. It is repeatedly determined whether or not it is. In this case, if the number of rotations of the outdoor fan due to natural winds decreases, the current value in the ON state of the lower-phase switching element becomes lower than the protection level Is even after time T1, so that the outdoor The startup of the fan is not stopped, the forced stop for the fan positioning is performed, and then the PWM drive is started.
[0035] ここで、保護レベル Isについてまとめると、空気調和機の室外ファンに適用した場合 の保護レベル Isは、ファンを駆動しなくとも空調運転が可能なファンの自然回転数に 見合った値が設定される。それ以外のファンに適用される場合は、保護レベル Isは、 素子破壊に至る電流値と減磁に至る電流値の 、ずれか低 、値に設定される。  [0035] Here, to summarize the protection level Is, when applied to an outdoor fan of an air conditioner, the protection level Is is a value corresponding to the natural rotation speed of a fan that can be air-conditioned without driving the fan. Is set. When applied to other fans, the protection level Is is set to the difference between the current value leading to element destruction and the current value leading to demagnetization, or a low value.
[0036] 図 1乃至図 3に示した本実施形態は上記の原理に従って構成されたもので、以下 にその動作について説明する。リモコン装置 16から運転モード、設定温度、風量等 の赤外線信号が出力されると、この赤外線信号が受光部 14で受信されて制御部 13 に加えられる。制御部 13は、受信信号に応じた制御を実行する前に室外ファン 8の 回転状態を検出するため、予め定めた T1時間だけ下相のスイッチング素子 X, Y, Z をオン状態にする。 The embodiment shown in FIGS. 1 to 3 is configured according to the above principle, and its operation will be described below. When an infrared signal such as an operation mode, a set temperature, and an air volume is output from the remote control device 16, the infrared signal is received by the light receiving unit 14 and applied to the control unit 13. The control unit 13 detects the rotation state of the outdoor fan 8 before executing the control according to the received signal, so that the lower-phase switching elements X, Y, Z for a predetermined time T1. Is turned on.
[0037] 室外ファン 8の正規の駆動時には、図 2に示したように、矢印 A, Bの 2方向力 外気 を吸い込み矢印 C方向に吐出する力 運転開始時に自然風によって室外ファン 8自 体が回転している場合がある。下相のスイッチング素子 X, Y, Zをオン状態したとき、 屋外の自然風によって室外ファン 8が比較的高速で回転している場合には、モータ 8 Mは発電機として作用するため、図 4の実線 alに示したように時間に比例して増大 する電流 Iが流れる。回転数が低 、場合には実線 alの途中から飽和する破線 a2に 示したような電流が流れる。このとき、 3個のオペアンプ 23から 3相交流電圧が出力さ れ、 MCU25〖こカロ免られる。  When the outdoor fan 8 is normally driven, as shown in FIG. 2, the two-directional force of arrows A and B sucks outside air and discharges it in the direction of arrow C. At the start of operation, the outdoor fan 8 itself is driven by natural wind. It may be rotating. When the lower phase switching elements X, Y, and Z are turned on and the outdoor fan 8 is rotating at a relatively high speed due to natural wind outside, the motor 8M acts as a generator. As shown by the solid line al, a current I that increases in proportion to time flows. In the case where the rotation speed is low, a current as shown by a broken line a2 which saturates from the middle of the solid line al flows. At this time, a three-phase AC voltage is output from the three operational amplifiers 23, so that the MCU is free of 25 volts.
[0038] MCU25は、全てのオペアンプ 23の出力に基づいて、電流検出値 Iがアーム短絡 を判定する閾値 lbを超えたカゝ否かを調べ、超えておれば下相のスイッチング素子 X, Υ, Zをオフ状態に復帰させ、異常表示部 15に上相のスイッチング素子 U, V, Wの いずれか 1つ又は複数が異常であることを表示して空調動作を停止する。電流検出 値 Iがアーム短絡を判定する閾値 lb以下である場合には、電流検出値 Iが保護レベル Isを超えるカゝ否かを調べ、超えていた場合には下相のスイッチング素子 X, Υ, Zをォ フ状態に復帰させて冷凍サイクルの運転を開始する。また、電流検出値 Iがアーム短 絡を判定する閾値 lb以下である場合には、電流検出値 Iが 3相とも正弦波又は 0であ るか否かを調べ、正弦波でな!、場合又は 0でな 、場合には下相のスイッチング素子 X, Y, Zをオフ状態に復帰させてモータの卷線に短絡がある力、あるいは、電流検出 回路 11に異常があることを異常表示部 15に表示して空調動作を停止する。  [0038] Based on the outputs of all the operational amplifiers 23, the MCU 25 checks whether or not the current detection value I exceeds a threshold lb for judging an arm short circuit. , Z are returned to the OFF state, and the abnormality display section 15 indicates that one or more of the upper-phase switching elements U, V, W is abnormal, and stops the air conditioning operation. If the current detection value I is equal to or less than the threshold lb for judging an arm short circuit, it is checked whether or not the current detection value I exceeds the protection level Is. If the current detection value I exceeds the protection level Is, the lower-phase switching elements X, Υ , Z is returned to the off state, and the operation of the refrigeration cycle is started. If the current detection value I is equal to or smaller than the threshold lb for judging an arm short, it is checked whether the current detection value I is a sine wave or 0 for all three phases. Or, if it is not 0, the lower phase switching elements X, Y, and Z are returned to the off state to indicate the force with a short circuit in the winding of the motor or the abnormality in the current detection circuit 11 in the abnormality display section. Displayed at 15 stops the air conditioning operation.
[0039] そして、電流検出値 Iがアーム短絡を判定する閾値 lb以下で、保護レベル Is以下で 、かつ、 3相分がともに正弦波であった場合には T1時間を経過した時点で下相のス イッチング素子 X, Y, Zをオフ状態に復帰させ、今度は上相のスイッチング素子 U, V, Wをオン状態とし、そのときの電流検出値 Iがアーム短絡を判定する閾値 lbを超え たか否かを調べ、超えておれば上相のスイッチング素子 U, V, Wをオフ状態に復帰 させ、異常表示部 15に下相のスイッチング素子 X, Υ, Zのいずれか 1つ又は複数が 異常であることを表示して空調動作を停止する。電流検出値 Iがアーム短絡を判定す る閾値 lb以下である場合には、 T1時間を経過した時点でスイッチング素子 U, V, W をオフ状態に復帰させて冷凍サイクルの運転を開始する。 [0039] If the current detection value I is equal to or less than the threshold lb for judging an arm short circuit, equal to or less than the protection level Is, and all three phases are sinusoidal, the lower phase is reached at time T1. The switching elements X, Y, and Z are returned to the off state, and then the upper-phase switching elements U, V, and W are turned on. The switching element U, V, W of the upper phase is returned to the off state if it exceeds, and one or more of the switching elements X, Υ, Z of the lower phase are displayed on the abnormality display section 15. The abnormality is displayed and the air conditioning operation is stopped. If the current detection value I is equal to or less than the threshold lb for judging the arm short circuit, the switching elements U, V, W Is returned to the off state, and the operation of the refrigeration cycle is started.
[0040] 冷凍サイクルの運転は、各種提案されて公知であるので概略動作についてのみ説 明する。運転モードに応じて四方弁 4を励磁又は非励磁状態にすると共に、空調負 荷に応じて圧縮機 3を能力制御する周波数指令をインバータ 2に加える。これにより、 冷房モードにおいて実線の矢印で示したように、圧縮機 3→四方弁 4→室外熱交換 器 5→膨張弁 6→室内熱交換器 7→四方弁 4→圧縮機 3の経路で冷媒が循環され、 暖房モードにおいて破線の矢印で示したように、圧縮機 3→四方弁 4→室内熱交換 器 7→膨張弁 6→室外熱交換器 5→四方弁 4→圧縮機 3の経路で冷媒が循環される  Since the operation of the refrigeration cycle has been proposed and known, only the general operation will be described. The four-way valve 4 is turned on or off in accordance with the operation mode, and a frequency command for controlling the capacity of the compressor 3 is applied to the inverter 2 in accordance with the air-conditioning load. As a result, in the cooling mode, as indicated by the solid arrow, the refrigerant flows through the path of the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the expansion valve 6, the indoor heat exchanger 7, the four-way valve 4, and the compressor 3. In the heating mode, as shown by the dashed arrow, in the path of compressor 3 → four-way valve 4 → indoor heat exchanger 7 → expansion valve 6 → outdoor heat exchanger 5 → four-way valve 4 → compressor 3 Refrigerant is circulated
[0041] そして、リモコン装置 16で設定された風量になるように速度制御回路 12に速度指 令を与えると共に、空調能力に応じた熱交換が行われるように室外ファン 8を制御す るインバータ 10に指令を与え、さらに、室内熱交^^ 7での冷媒の状態が適切にな るように膨張弁 6の開度を制御する。 Then, a speed command is given to the speed control circuit 12 so that the air volume is set by the remote control device 16, and the inverter 10 that controls the outdoor fan 8 so that heat exchange according to the air conditioning capacity is performed. Then, the opening degree of the expansion valve 6 is controlled so that the state of the refrigerant in the indoor heat exchange 7 becomes appropriate.
[0042] このとき、インバータ 10のスイッチング素子 U, V, W, X, Υ, Zは予め定められた順 序にてオン、オフ制御されるが、下相のスイッチング素子 X, Y, Zがオン状態にされ たとき、直列接続関係にある上相のスイッチング素子 U, V, Wはオフ状態にされ、こ のオフ状態のスイッチング素子 U, V, Wに対応して設けられたコンデンサ Cがチヤ一 ジアップされ、駆動回路 22の駆動電力を供給する。  At this time, the switching elements U, V, W, X, Υ, and Z of the inverter 10 are turned on and off in a predetermined order, but the lower-phase switching elements X, Y, and Z are controlled. When turned on, the upper-phase switching elements U, V, W in series connection are turned off, and the capacitor C provided corresponding to the off-state switching elements U, V, W The drive circuit 22 is charged up and supplies drive power for the drive circuit 22.
[0043] 図 6は、本実施形態による代表的な 2つの制御例を示したタイムチャートであり、図 6 (a)は下相のスイッチング素子 X, Υ, Zをオン状態にした場合の電流検出値 Iが保 護レベル Isより低い場合であり、図 6 (b)は下相のスイッチング素子 X, Υ, Zをオン状 態にした場合の電流検出値 Iが保護レベル Isを超えて 、た場合を示して 、る。  FIG. 6 is a time chart showing two typical control examples according to the present embodiment. FIG. 6 (a) shows the current when the lower-phase switching elements X, Υ, and Z are turned on. The detected value I is lower than the protection level Is.Figure 6 (b) shows that the current detection value I when the lower-phase switching elements X, Υ, and Z are turned on exceeds the protection level Is. The case is shown.
[0044] すなわち、図 6 (a)に示すように、制御部 13がその動作を開始してから下相のスイツ チング素子 X, Y, Zをオン状態にし、 T1時間を経過した時点の電流検出値 Iが保護 レベル Is以下である場合には、その時点で下相のスイッチング素子 X, Υ, Zをオフ状 態にすると共に上相のスイッチング素子 U, V, Wをオン状態にして電流検出し、電 流検出値 Iがアーム短絡を判定する閾値 lbになっていなければ、 T1時間を経過した 時点で室外ファン 8の減速、停止制御を実行し、室外ファン 8が停止した時点でイン バータ 10を制御して PWM電流をモータ 8Mに与えて室外ファン 8の駆動制御を実 行する。 That is, as shown in FIG. 6 (a), after the control unit 13 starts its operation, the lower-phase switching elements X, Y, and Z are turned on, and the current when the time T1 has elapsed is passed. If the detected value I is equal to or lower than the protection level Is, the lower-phase switching elements X, Υ, and Z are turned off at the time and the upper-phase switching elements U, V, and W are turned on, and the current is turned on. If the detected current value I is not equal to the threshold lb for judging the arm short circuit, the deceleration and stop control of the outdoor fan 8 is executed when the time T1 has elapsed, and the output is stopped when the outdoor fan 8 stops. The drive control of the outdoor fan 8 is performed by controlling the barter 10 and supplying a PWM current to the motor 8M.
[0045] 一方、図 6 (b)に示すように、制御部 13がその動作を開始してから下相のスィッチン グ素子 X, Y, Zをオン状態にし、 t時間を経過した時点で電流検出値 Iが保護レベル I sを超えていた場合には、その時点で室外ファン 8の停止制御を実行し、制御部 13が その動作を開始してカゝら繰返し周期 Tvを経過したときに、電流検出値 Iが保護レベル Is以下である場合には、図 6 (a)で説明したと同様にして室外ファン 8の駆動制御を 実行する。  On the other hand, as shown in FIG. 6 (b), the lower-phase switching elements X, Y, and Z are turned on after the control unit 13 starts its operation, and the current is If the detected value I exceeds the protection level Is, the stop control of the outdoor fan 8 is executed at that time, and when the control unit 13 starts the operation and the repetition period Tv elapses. If the current detection value I is equal to or lower than the protection level Is, the driving control of the outdoor fan 8 is executed in the same manner as described with reference to FIG.
[0046] 図 7は、上述した動作を実行する場合の MCU25の具体的な処理手順を示すフロ 一チャートであり、以下にその処理を説明する。先ず、ステップ 31で EEPROM24〖こ 記憶されていたデータ、 lb, Is, Tvを読み込み、ステップ 32で下相のスイッチング素 子 X, Υ, Zを同時にオン状態とし、ステップ 33にて電流検出値 Iを読み込む。  FIG. 7 is a flowchart showing a specific processing procedure of the MCU 25 when executing the above-described operation, and the processing will be described below. First, in step 31, the data lb, Is, and Tv stored in the EEPROM 24 are read, and in step 32, the lower-phase switching elements X, Υ, and Z are simultaneously turned on. In step 33, the current detection value I Read.
[0047] 次に、ステップ 34にて電流検出値 Iが短絡を判定する閾値 lbを超える力否かを判定 し、電流検出値 Iが閾値 lbより大きくない場合にはステップ 35の処理に進み、電流検 出値 Iが閾値 lbより大きい場合にはステップ 52の処理に進む。 3相分の電流 Iの読み 込みは同時であつても、順次に 1相ずつ読み込んでも良 、。  Next, in Step 34, it is determined whether the current detection value I exceeds a threshold lb for determining a short circuit. If the current detection value I is not larger than the threshold lb, the process proceeds to Step 35. If the current detection value I is larger than the threshold lb, the process proceeds to step 52. The current I for three phases can be read simultaneously or one phase at a time.
[0048] ステップ 35においては、 3相分の電流検出値 Iが全て 0か否かを判定し、ゼロでない 場合にはステップ 36で 3相分の電流検出波形が全て正弦波である力否かを判定し、 正弦波であった場合にはステップ 37にて電流検出値 Iが保護レベル Isより大きいか 否かを判定し、大きくない場合にはステップ 38の処理に進む。  [0048] In step 35, it is determined whether or not the current detection values I for the three phases are all 0. If not, in step 36, it is determined whether or not the current detection waveforms for the three phases are all sinusoidal. If it is a sine wave, it is determined in step 37 whether or not the current detection value I is greater than the protection level Is. If not, the process proceeds to step 38.
[0049] なお、ステップ 35にて三相共に電流が 0であると判定されたときには直接ステップ 3 8の処理に進み、ステップ 36にて 3相分のいずれか 1つ又は複数が正弦波でないと 判定された場合にはステップ 54の処理に進む。  [0049] When it is determined in step 35 that the currents of all three phases are 0, the process proceeds directly to step 38, and in step 36, if one or more of the three phases is not a sine wave. If it is determined, the process proceeds to step 54.
[0050] ステップ 38においては、下相のスイッチング素子 X, Υ, Zをオン状態にしてから所 定時間 T1を経過したか否かを調べ、経過して!/、なければステップ 33— 38の処理を 繰り返す。ステップ 38にて所定時間 T1を経過したと判定された段階でステップ 39の 処理に進み、ここで下相のスイッチング素子 X, Y, Zをオフ状態に復帰させ、続いて ステップ 40で上相のスイッチング素子 U, V, Wをオン状態とし、ステップ 41で電流検 出値 Iを読み込む。さらに、ステップ 42で電流検出値 Iが短絡を判定する閾値 lbを超 えるカゝ否かを判定し、電流検出値 Iが閾値 lbより大きくない場合にはステップ 43の処 理に進み、電流検出値 Iが閾値 lbより大きい場合にはステップ 50の処理に進む。 In step 38, it is checked whether or not a predetermined time T1 has elapsed since the lower-phase switching elements X, Υ, and Z were turned on. Repeat the process. When it is determined in Step 38 that the predetermined time T1 has elapsed, the process proceeds to Step 39, where the lower-phase switching elements X, Y, and Z are returned to the off state. Switching elements U, V, and W are turned on, and current detection is performed in step 41. Read out value I. Further, in step 42, it is determined whether or not the current detection value I exceeds the threshold value lb for determining a short circuit. When the value I is larger than the threshold lb, the process proceeds to step 50.
[0051] ステップ 43では、上相のスイッチング素子 U, V, Wをオン状態にしてから所定時間 T1を経過したか否かを調べ、経過していなければステップ 41一 43の処理を繰り返 す。ステップ 43にて所定時間 T1を経過したと判定された段階でステップ 44の処理に 進み、ここで上相のスイッチング素子 U, V, Wをオフ状態に復帰させ、続いてステツ プ 45にて圧縮機 3等を動作させることによって冷凍サイクルの運転を開始し、続いて ステップ 46でモータ 8Mの起動制御を開始して周知の空調動作に移る。  In step 43, it is checked whether or not a predetermined time T1 has elapsed since the upper-phase switching elements U, V, W were turned on, and if not, the processing of steps 41 to 43 is repeated. . When it is determined in step 43 that the predetermined time T1 has elapsed, the process proceeds to step 44, where the upper-phase switching elements U, V, W are returned to the off state, and then compressed in step 45. The operation of the refrigeration cycle is started by operating the machine 3 and the like, and then, in step 46, the start control of the motor 8M is started, and the operation proceeds to a known air conditioning operation.
[0052] 一方、ステップ 37にて電流検出値 Iが保護レベル Isより大きいと判定された場合に は、ステップ 47で下相のスイッチング素子 X, Υ, Zをオフ状態にし、次のステップ 48 にて圧縮機 3等を動作させることによって冷凍サイクルの運転を開始し、ステップ 49 で繰返し周期 Tvを経過した段階で最初のステップ 31の処理に戻って上記の処理を 繰り返す。  On the other hand, if it is determined in step 37 that the current detection value I is larger than the protection level Is, the lower-phase switching elements X, Υ, and Z are turned off in step 47 and the next step 48 is performed. Then, the operation of the refrigeration cycle is started by operating the compressor 3 and the like, and after the repetition cycle Tv has passed in step 49, the process returns to the first step 31 and the above process is repeated.
[0053] また、ステップ 42で電流検出値 Iが短絡を判定する閾値 lbを超えていると判定され た場合には、ステップ 50にて上相のスイッチング素子 U, V, Wをオフ状態にし、続い てステップ 51で下相のスイッチング素子 X, Υ, Zのいずれか 1つ又は複数が異常で あることを異常表示部 15に表示させた後、ステップ 56で冷凍サイクルを含む全ての 機器を停止する等の異常処理を実行する。  When it is determined in step 42 that the current detection value I exceeds the short-circuit determination threshold lb, the switching elements U, V, and W of the upper phase are turned off in step 50, Subsequently, in step 51, the abnormality display section 15 displays that one or more of the lower-phase switching elements X, Υ, and Z are abnormal, and then in step 56, all devices including the refrigeration cycle are stopped. Perform an abnormal process such as
[0054] また、ステップ 34で電流検出値 Iが短絡を判定する閾値 lbを超えると判定された場 合には、ステップ 52にて下相のスイッチング素子 X, Υ, Zをオフ状態にし、続いてス テツプ 53で上相のスイッチング素子 U, V, Wのいずれ力 1つ又は複数が異常である ことを異常表示部 15に表示させた後、ステップ 56で冷凍サイクルを含む全ての機器 を停止する等の異常処理を実行する。  When it is determined in step 34 that the current detection value I exceeds the short-circuit determination threshold lb, in step 52, the lower-phase switching elements X, Υ, and Z are turned off. In step 53, the abnormal display section 15 displays that one or more of the upper phase switching elements U, V, and W are abnormal, and then stops all devices including the refrigeration cycle in step 56. Perform an abnormal process such as
[0055] また、ステップ 36で三相共に正弦波でな 、と判定された場合には、ステップ 54にて 下相のスイッチング素子 X, Υ, Zをオフ状態にして、ステップ 55でモータ卷線が短絡 異常を起こしているか、あるいは、電流検出回路 11が異常であることの表示を行って ステップ 56の処理に進む。 [0056] このように、制御部 13を構成する MCU25が図 7のフローチャートに示した処理を 実行することによって、図 4ないし図 6を用いて説明した制御を実行することができる。 If it is determined in step 36 that the three phases are not sinusoidal, the switching elements X, Υ, and Z of the lower phase are turned off in step 54, and in step 55, the motor winding is turned off. Indicates that a short circuit has occurred or that the current detection circuit 11 is abnormal, and proceeds to the process of step 56. As described above, the control described with reference to FIGS. 4 to 6 can be performed by the MCU 25 included in the control unit 13 executing the processing illustrated in the flowchart of FIG.
[0057] 力べして、第 1の実施形態によれば、自然風により室外ファンが高速回転している状 態で制動するため又はコンデンサ充電のために、下相のスイッチング素子をオン状 態にした場合の、過電流によるモータの永久磁石の減磁及び下相スイッチング素子 の破壊を未然に防止することができる。  [0057] By force, according to the first embodiment, the lower-phase switching element is turned on for braking in a state where the outdoor fan is rotating at a high speed due to natural wind or for charging the capacitor. In this case, the demagnetization of the permanent magnet of the motor and the destruction of the lower phase switching element due to the overcurrent can be prevented.
[0058] また、自然風が強い状態では、室外ファンの起動を停止してモータの減磁ゃスイツ チング素子の破壊を防止すると共に、室外ファンの駆動を停止したまま圧縮機を運 転して空調運転を実施し、自然風が収まったときには室外ファンを駆動するので、室 外熱交換器への通風の少ない状態での圧縮機の運転を継続したことによる冷凍サイ クルの過負荷状態を防止することができる。  Further, in a state where the natural wind is strong, the start of the outdoor fan is stopped to prevent the demagnetization of the motor and the destruction of the switching element, and the compressor is operated while the driving of the outdoor fan is stopped. The air conditioner is operated and the outdoor fan is driven when natural wind stops.This prevents overloading of the refrigeration cycle due to continued operation of the compressor with little ventilation to the outdoor heat exchanger. can do.
[0059] ところで、本発明の原理として説明したように、自然風による室外ファン 8の回転数 力 Sある程度以上であれば、室外熱交翻 5において十分な熱交換が可能である。ま た、圧縮機 3をインバータ 2によって可変速駆動するものにおいては、圧縮機 3の能 力制御運転が可能であることから、自然風による室外ファン 8の回転数に応じて圧縮 機 3の回転数を制御すれば、室外ファン 8を駆動しな 、ままでの空調運転が可能とな る。  By the way, as described as the principle of the present invention, sufficient heat exchange is possible in the outdoor heat exchange 5 if the rotational speed S of the outdoor fan 8 due to natural wind is at least a certain level. In the case where the compressor 3 is driven at a variable speed by the inverter 2, the compressor 3 can perform the power control operation, so that the compressor 3 rotates according to the rotation speed of the outdoor fan 8 due to natural wind. If the number is controlled, the air conditioning operation can be performed without driving the outdoor fan 8.
[0060] このように、室外ファン 8を駆動しな!、で空調運転を行うとすれば、モータ 8Mで消 費される電力が不要となり省エネルギー効果も得られる。この場合には室外ファン 8 の回転数を推定し、その推定結果によって圧縮機 3の回転数を制限して過負荷に至 らな 、範囲で空調運転をすることができる。  As described above, if the air conditioning operation is performed without driving the outdoor fan 8, the electric power consumed by the motor 8M is not required, and an energy saving effect can be obtained. In this case, the rotation speed of the outdoor fan 8 is estimated, and based on the estimation result, the rotation speed of the compressor 3 is limited, and the air-conditioning operation can be performed in a range where overload does not occur.
[0061] 図 8は、この原理に従って制御する空気調和機の第 2の実施形態として、制御部を 構成する MCUの具体的な処理手順を示すフローチャートである。この場合、ステツ プ 61で下相のスイッチング素子 X, Υ, Zをオン状態とし、ステップ 62でタイマ Tをスタ ートさせ、ステップ 63にて電流 Iを検出する。そして、ステップ 64にて電流検出値 Iが 保護レベル Isより小さいか否かを判定し、小さい場合にはステップ 65の処理に進み、 小さくない場合にはステップ 70の処理に進む。ステップ 65においてはタイマ Tの計時 時間が所定値 T1以上カゝ否かを判定し、所定値 T1以上でなければステップ 63— 65 の処理を繰り返す。 T1以上である場合には、ステップ 66にて、例えば、その時点の 電流検出値 Iに基づ!、て室外ファン 8の回転数 rを推定する。 FIG. 8 is a flowchart showing a specific processing procedure of an MCU constituting a control unit as a second embodiment of an air conditioner controlled according to this principle. In this case, the lower phase switching elements X, Υ, and Z are turned on in step 61, the timer T is started in step 62, and the current I is detected in step 63. Then, in step 64, it is determined whether or not the current detection value I is smaller than the protection level Is. If smaller, the process proceeds to step 65, and if not, the process proceeds to step 70. In step 65, it is determined whether or not the time counted by the timer T is equal to or greater than a predetermined value T1. Is repeated. If it is T1 or more, in step 66, for example, the rotational speed r of the outdoor fan 8 is estimated based on the current detection value I at that time.
[0062] 次に、ステップ 67において推定回転数 r力 自然風によって十分な熱交換が行わ れる最低回転数 rlより低いか否かを判定し、低い場合にはステップ 68で室外ファン 8 の起動制御を行 、、ステップ 69にて通常の空調運転を実行する。  [0062] Next, in step 67, it is determined whether or not the estimated rotational speed r is lower than the minimum rotational speed rl at which sufficient heat exchange is performed by natural wind. , And normal air-conditioning operation is executed in step 69.
[0063] 一方、ステップ 67にて推定回転数 rが rl以上であれば、ステップ 73で推定回転数 r 力 り大きな範囲に定めた r2よりも低いか否かを判定し、低い場合にはステップ 74で 室外ファン 8の起動を停止し、圧縮機 3の回転数の上限に対応する電源周波数 40H zに設定してステップ 72の処理に移り、推定回転数 rが r2よりも低くない場合にはステ ップ 75で室外ファン 8の起動を停止し、圧縮機 3の回転数の上限に対応する電源周 波数 40Hzに設定してステップ 72の処理に移る。  On the other hand, if the estimated rotation speed r is equal to or more than rl in step 67, it is determined in step 73 whether the estimated rotation speed r is lower than r2 set in a larger range. At 74, the start of the outdoor fan 8 is stopped, the power supply frequency corresponding to the upper limit of the rotation speed of the compressor 3 is set to 40 Hz, and the process proceeds to step 72.If the estimated rotation speed r is not lower than r2, In step 75, the start of the outdoor fan 8 is stopped, the power supply frequency is set to 40 Hz corresponding to the upper limit of the rotation speed of the compressor 3, and the process proceeds to step 72.
[0064] なお、ステップ 64で電流検出値 Iが保護レベル Is以上であれば、ステップ 70で室外 ファン 8の起動を停止し、ステップ 71で圧縮機の回転数制限なしで空調運転を実施 し、ステップ 72では所定時間 Tvを経過したか否かを判定し、経過した段階でステツ プ 61の処理に戻って、同様な処理を繰返す。  If the current detection value I is equal to or higher than the protection level Is in step 64, the start of the outdoor fan 8 is stopped in step 70, and the air conditioning operation is performed in step 71 without limiting the rotation speed of the compressor. At step 72, it is determined whether or not a predetermined time Tv has elapsed. At the stage when the predetermined time Tv has elapsed, the process returns to step 61 and the same process is repeated.
[0065] この第 2の実施形態によれば、回転位置の検出素子なしで回転数を推定することが でき、また、省エネルギー効果も得られる。  [0065] According to the second embodiment, the number of rotations can be estimated without using the rotation position detecting element, and an energy saving effect can be obtained.
[0066] 上述した第 2の実施形態では室外ファン 8の回転数を推定したが、この回転数推定 方法を除湿運転に活用することもできる。すなわち、除湿運転等では圧縮機 3の回転 数を低くした運転であるため、室外熱交翻 5の熱交換量も小さくて済むことから、室 外熱交換器 5への通風量は少なくても良い。従って、空調運転において要求される 室外熱交換器 5の熱交換量 (要求熱交換量)を算定し、この要求熱交換量に応じて 室外ファン 8を駆動する必要がある力否かを推定された室外ファン 8の回転数に対応 させて決定しても良い。  [0066] In the above-described second embodiment, the rotation speed of the outdoor fan 8 is estimated, but this rotation speed estimation method can be used for the dehumidifying operation. That is, in the dehumidifying operation, etc., since the rotation speed of the compressor 3 is reduced, the amount of heat exchange in the outdoor heat exchange 5 can be small, so that even if the amount of ventilation to the outdoor heat exchanger 5 is small. good. Therefore, the heat exchange amount (required heat exchange amount) of the outdoor heat exchanger 5 required in the air-conditioning operation is calculated, and it is estimated whether or not it is necessary to drive the outdoor fan 8 according to the required heat exchange amount. It may be determined according to the rotation speed of the outdoor fan 8.
[0067] 通常、空気調和機における要求熱交換量は、圧縮機の回転数や運転モード等を ノ メータとして決められる。ここで決定された要求熱交換量に対応した室外ファン 8 の回転数 F (自然風によって勝手に回転して 、る状態の回転数)を決定し、これを回 転数推定値 rと比較して室外ファン 8を起動するか否かを決定する。 [0068] 図 9は、この原理に従って制御する空気調和機の第 3の実施形態として、制御部を 構成する MCUの具体的な処理手順を示すフローチャートである。この場合、ステツ プ 81で下相のスイッチング素子 X, Υ, Zをオン状態とし、ステップ 82でタイマ Tをスタ ートさせ、ステップ 83にて電流 Iを検出する。そして、ステップ 84にて電流検出値 Iが 保護レベル Isより小さいか否かを判定し、小さい場合にはステップ 85の処理に進み、 小さくない場合にはステップ 91の処理に進む。ステップ 85においては、タイマ Tの計 時時間が所定値 T1以上カゝ否かを判定し、所定値 T1以上でなければステップ 83— 8 5の処理を繰り返す。 T1以上である場合には、ステップ 86にて室外ファン 8の回転数 rを推定する。 [0067] Usually, the required heat exchange amount in the air conditioner is determined based on the rotational speed of the compressor, the operation mode, and the like as a meter. The rotation speed F of the outdoor fan 8 corresponding to the required heat exchange amount determined here (the rotation speed in a state where the outdoor fan 8 rotates freely by natural wind) is determined and compared with the rotation speed estimation value r. To start the outdoor fan 8. FIG. 9 is a flowchart showing a specific processing procedure of an MCU constituting a control unit as a third embodiment of an air conditioner controlled according to this principle. In this case, the lower-stage switching elements X, Υ, and Z are turned on in step 81, the timer T is started in step 82, and the current I is detected in step 83. Then, in step 84, it is determined whether or not the current detection value I is smaller than the protection level Is. If smaller, the process proceeds to step 85, and if not, the process proceeds to step 91. In step 85, it is determined whether or not the time counted by the timer T is equal to or greater than a predetermined value T1, and if not, the processing of steps 83-85 is repeated. If it is not less than T1, in step 86, the rotational speed r of the outdoor fan 8 is estimated.
[0069] 次に、ステップ 87において空気調和機の要求ファン回転数 Fを決定し、続いて、ス テツプ 88にて、推定回転数 rが要求回転数 Fより低いか否かを判定し、低い場合には ステップ 89で室外ファン 8の起動制御を行い、ステップ 90にて通常の空調運転を実 行する。  Next, in step 87, the required fan rotation speed F of the air conditioner is determined, and then, in step 88, it is determined whether or not the estimated rotation speed r is lower than the required rotation speed F. In this case, start control of the outdoor fan 8 is performed in step 89, and normal air conditioning operation is performed in step 90.
[0070] 一方、ステップ 84にて電流検出値 Iが保護レベル Isより小さくないと判定された場合 、及び、ステップステップ 88にて、推定回転数 rが要求回転数 Fより低くないと判定さ れた場合、ステップ 91で室外ファン 8の起動を停止し、ステップ 92で空調運転を実施 し、ステップ 93では所定時間 Tvを経過したか否かを判定し、経過した段階でステツ プ 81の処理に戻って、同様な処理を繰り返えす。  On the other hand, when it is determined in step 84 that the current detection value I is not smaller than the protection level Is, and in step 88, it is determined that the estimated rotation speed r is not lower than the required rotation speed F. In step 91, the start of the outdoor fan 8 is stopped in step 91, the air conditioning operation is performed in step 92, and it is determined whether or not a predetermined time Tv has elapsed in step 93. Return and repeat the same process.
[0071] この第 3の実施形態によれば、回転位置の検出素子なしで回転数を推定することが でき、また、省エネルギー効果も得られる。  According to the third embodiment, it is possible to estimate the number of rotations without using a rotation position detecting element, and it is possible to obtain an energy saving effect.
[0072] なお、上記の各実施形態にお!、ては、冷凍サイクル装置の実施形態として空気調 和機について説明したが、空気調和機と同様に構成された室外機及び冷凍サイクル を有する給湯器も市販されつつある。本発明は、空気調和機に限らず主要部がこれ と同様に構成された給湯器等、他の冷凍サイクル装置にも適用することができる。 産業上の利用可能性  In each of the above embodiments, the air conditioner has been described as an embodiment of the refrigeration cycle apparatus. However, the hot water supply having an outdoor unit and a refrigeration cycle configured similarly to the air conditioner is described. Instruments are also being marketed. The present invention can be applied not only to air conditioners but also to other refrigeration cycle devices such as water heaters whose main parts are configured similarly. Industrial applicability
[0073] 本発明は上記のように構成したことにより、自然風によってファンが回転している状 態で起動制御したとしても、モータの永久磁石の減磁及びインバータの負側のスイツ チング素子の破壊を未然に防止することができる。また、起動前にファンの回転数を 推定することができる。 [0073] With the above-described configuration of the present invention, even if the startup is controlled in a state where the fan is rotated by natural wind, the demagnetization of the permanent magnet of the motor and the switching element on the negative side of the inverter are controlled. Destruction can be prevented beforehand. Also, before starting the fan, Can be estimated.

Claims

請求の範囲 The scope of the claims
[1] ファンを駆動するセンサレスのモータと、  [1] A sensorless motor that drives the fan,
スイッチング素子が 3相ブリッジ接続され、前記モータに 3相交流電力を供給するィ ンバータと、  An inverter in which a switching element is connected in a three-phase bridge and supplies three-phase AC power to the motor;
前記モータに流れる電流を検出する電流検出手段と、  Current detection means for detecting a current flowing through the motor,
起動時に前記インバータの負側アームを形成する 3相分のスイッチング素子をオン 状態とし、このオン状態における前記電流検出手段の電流検出値がアーム短絡と判 定される値よりも低く設定された保護レベルを超えたとき、前記 3相分のスイッチング 素子をオフ状態に復帰させて起動を停止する制御手段と、  At the time of startup, the switching elements for the three phases forming the negative arm of the inverter are turned on, and the current detection value of the current detection means in this on state is set lower than a value determined to be short-circuited to the arm. Control means for returning the three-phase switching elements to an off state and stopping the start when the level is exceeded,
を備えたファン制御装置。  Fan control device with
[2] 請求項 1に記載のファン制御装置にお 、て、 [2] In the fan control device according to claim 1,
前記インバータの正側アームを形成する 3相分のスイッチング素子を駆動する駆動 回路の電源として、負側アームのオン時に充電されるコンデンサを備えたファン制御 装置。  A fan control device including a capacitor that is charged when the negative arm is turned on, as a power supply for a drive circuit that drives three-phase switching elements forming the positive arm of the inverter.
[3] 圧縮機、室外熱交換器及びその熱交換を促進する室外ファンを含む冷凍サイクル と、  [3] a refrigeration cycle including a compressor, an outdoor heat exchanger and an outdoor fan for promoting the heat exchange;
前記室外ファンを駆動するセンサレスのモータと、  A sensorless motor that drives the outdoor fan,
スイッチング素子が 3相ブリッジ接続され、前記モータに 3相交流電力を供給するィ ンバータと、  An inverter in which a switching element is connected in a three-phase bridge and supplies three-phase AC power to the motor;
前記モータに流れる電流を検出する電流検出手段と、  Current detection means for detecting a current flowing through the motor,
起動時に前記インバータの負側アームを形成する 3相分のスイッチング素子をオン 状態とし、このオン状態における前記電流検出手段の電流検出値がアーム短絡と判 定される値よりも低く設定された保護レベルを超えたとき、前記 3相分のスイッチング 素子をオフ状態に復帰させることにより、前記ファンの起動を停止するファンの起動 制御と、ファン停止中に前記圧縮機を運転する有風ファン停止制御とを実行し、前記 ファンの起動を停止して力 所定の時間の経過後に前記ファンの起動制御を繰り返 して実行する制御手段と、  At the time of startup, the switching elements for the three phases forming the negative arm of the inverter are turned on, and the current detection value of the current detection means in this on state is set lower than a value determined to be short-circuited to the arm. When the level is exceeded, the switching elements for the three phases are returned to the off state, thereby starting the fan to stop the start of the fan, and controlling the wind fan to operate the compressor while the fan is stopped. Control means for stopping the activation of the fan and repeatedly executing the activation control of the fan after a predetermined time has elapsed; and
を備えた冷凍サイクル装置。 Refrigeration cycle device equipped with.
[4] 圧縮機、室外熱交換器及びその熱交換を促進する室外ファンを含む冷凍サイクル と、 [4] a refrigeration cycle including a compressor, an outdoor heat exchanger and an outdoor fan for promoting the heat exchange,
前記室外ファンを駆動するセンサレスのモータと、  A sensorless motor that drives the outdoor fan,
スイッチング素子が 3相ブリッジ接続され、前記モータに 3相交流電力を供給するィ ンバータと、  An inverter in which a switching element is connected in a three-phase bridge and supplies three-phase AC power to the motor;
前記モータに流れる電流を検出する電流検出手段と、  Current detection means for detecting a current flowing through the motor,
起動時に前記インバータの負側アームを形成する 3相分のスイッチング素子をオン 状態とし、このオン状態における前記電流検出手段の電流検出値に基づいて前記フ アンの回転数を推定し、推定された回転数が所定値以上であれば、前記 3相分のス イッチング素子をオフ状態に復帰させることにより、前記ファンの起動を停止するファ ンの起動制御と、ファン停止中に前記圧縮機の運転を開始する有風ファン停止制御 とを実行し、前記ファンの起動を停止してカゝら所定の時間の経過後に前記ファンの起 動制御を繰り返して実行する制御手段と、  At the time of startup, the three-phase switching elements forming the negative arm of the inverter are turned on, and the fan rotation speed is estimated based on the current detection value of the current detection means in this on state. If the number of rotations is equal to or higher than a predetermined value, the switching elements for the three phases are returned to the off state to control the start of the fan for stopping the start of the fan, and to operate the compressor while the fan is stopped. Control means for executing a wind fan stop control to start the fan, stopping the start of the fan, and repeatedly executing the start control of the fan after a predetermined time has elapsed.
を備えた冷凍サイクル装置。  Refrigeration cycle device equipped with.
[5] 請求項 3記載の冷凍サイクル装置において、 [5] The refrigeration cycle apparatus according to claim 3,
前記制御手段は、起動時に前記インバータの負側アームを形成する 3相分のスイツ チング素子をオン状態とし、このオン状態における前記電流検出手段の電流検出値 がアーム短絡と判定される値以上であるとき、前記圧縮機を停止状態に保持する冷 凍サイクル装置。  The control means turns on the three-phase switching elements forming the negative arm of the inverter at the time of start-up, and when the current detection value of the current detection means in this ON state is equal to or more than a value determined to be arm short-circuited. A refrigeration cycle device that keeps the compressor stopped at one time.
[6] 請求項 4記載の冷凍サイクル装置において、 [6] The refrigeration cycle apparatus according to claim 4,
前記制御手段は、起動時に前記インバータの負側アームを形成する 3相分のスイツ チング素子をオン状態とし、このオン状態における前記電流検出手段の電流検出値 がアーム短絡と判定される値以上であるとき、前記圧縮機を停止状態に保持する冷 凍サイクル装置。  The control means turns on the three-phase switching elements forming the negative arm of the inverter at the time of start-up, and when the current detection value of the current detection means in this ON state is equal to or more than a value determined to be arm short-circuited. A refrigeration cycle device that keeps the compressor stopped at one time.
[7] 請求項 3記載の冷凍サイクル装置において、 [7] The refrigeration cycle apparatus according to claim 3,
前記制御手段は、負側アームを形成する 3相分のスイッチング素子をオン状態にし た場合の前記電流検出手段の電流検出値を監視し、 3相分の全ての電流波形が正 弦波でな!、場合又は 3相分の全ての電流検出値が略 0でな 、場合、前記モータの卷 線異常として圧縮機を起動しないか又はその運転を停止する冷凍サイクル装置。 The control means monitors the current detection values of the current detection means when the three-phase switching elements forming the negative arm are turned on, and all the current waveforms of the three phases are sine waves. !, Or if the current detection values for all three phases are not approximately 0, A refrigeration cycle device that does not start the compressor or stops its operation as a line abnormality.
[8] 請求項 4記載の冷凍サイクル装置において、  [8] The refrigeration cycle apparatus according to claim 4,
前記制御手段は、負側アームを形成する 3相分のスイッチング素子をオン状態にし た場合の前記電流検出手段の電流検出値を監視し、 3相分の全ての電流波形が正 弦波でな!、場合又は 3相分の全ての電流検出値が略 0でな 、場合、前記モータの卷 線異常として圧縮機を起動しないか又はその運転を停止する冷凍サイクル装置。  The control means monitors the current detection values of the current detection means when the three-phase switching elements forming the negative arm are turned on, and all the current waveforms of the three phases are sine waves. In the case of!, Or in the case where the detected current values of all three phases are not substantially 0, the refrigeration cycle apparatus does not start the compressor or stops its operation as winding abnormality of the motor.
[9] 請求項 5記載の冷凍サイクル装置において、  [9] The refrigeration cycle apparatus according to claim 5,
前記制御手段は、負側アームを形成する 3相分のスイッチング素子をオン状態にし た場合の前記電流検出手段の電流検出値を監視し、 3相分の全ての電流波形が正 弦波でな!、場合又は 3相分の全ての電流検出値が略 0でな 、場合、前記モータの卷 線異常として圧縮機を起動しないか又はその運転を停止する冷凍サイクル装置。  The control means monitors the current detection values of the current detection means when the three-phase switching elements forming the negative arm are turned on, and all the current waveforms of the three phases are sine waves. In the case of!, Or in the case where the detected current values of all three phases are not substantially 0, the refrigeration cycle apparatus does not start the compressor or stops its operation as winding abnormality of the motor.
[10] ファンを駆動するセンサレスのモータに 3相交流電力を供給するようにスイッチング 素子が 3相ブリッジ接続されたインバータの負側アームを形成する 3相分のスィッチン グ素子をオン状態にするステップと、  [10] Step of turning on the three-phase switching elements forming the negative arm of the inverter in which the switching elements are connected in a three-phase bridge so as to supply three-phase AC power to the sensorless motor that drives the fan When,
前記 3相分のスイッチング素子のオン状態時に前記モータに流れる電流を検出す るステップと、  Detecting a current flowing through the motor when the switching elements for the three phases are on;
検出された電流値に基づいて前記ファンの回転数を推定するステップと、 を順次実行するファン回転数推定方法。  Estimating the rotational speed of the fan based on the detected current value.
PCT/JP2004/013932 2003-10-17 2004-09-24 Fan controller, refrigeration cycle system and method for estimating rotation speed of fan WO2005039037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-357900 2003-10-17
JP2003357900A JP4436651B2 (en) 2003-10-17 2003-10-17 Refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
WO2005039037A1 true WO2005039037A1 (en) 2005-04-28

Family

ID=34463264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013932 WO2005039037A1 (en) 2003-10-17 2004-09-24 Fan controller, refrigeration cycle system and method for estimating rotation speed of fan

Country Status (4)

Country Link
JP (1) JP4436651B2 (en)
KR (1) KR100803444B1 (en)
CN (1) CN100508358C (en)
WO (1) WO2005039037A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381070B2 (en) * 2008-12-15 2014-01-08 ダイキン工業株式会社 Multiphase motor driving method, multiphase motor driving system, and heat pump device
JP5424250B2 (en) * 2009-11-12 2014-02-26 シャープ株式会社 Motor control device
JP5532065B2 (en) * 2012-02-29 2014-06-25 株式会社デンソー Electric motor drive
JP6012211B2 (en) * 2012-03-19 2016-10-25 日立アプライアンス株式会社 Motor drive device and air conditioner equipped with the same
KR102436704B1 (en) * 2015-03-23 2022-08-25 엘지전자 주식회사 Fan motor driving device and air conditioner including the same
CN105375824A (en) * 2015-11-11 2016-03-02 苏州展宇电子有限公司 Instantaneous stop/start control method for smoke ventilator
US20230145142A1 (en) * 2020-06-16 2023-05-11 Mitsubishi Electric Corporation Motor driver and heat pump
DE102021117090A1 (en) 2021-07-02 2023-01-05 Fronius International Gmbh Method for operating a photovoltaic inverter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989352A (en) * 1995-09-28 1997-04-04 Toshiba Corp Driver for outdoor blower
JPH10323078A (en) * 1997-05-14 1998-12-04 Matsushita Seiko Co Ltd Brushless motor operation controller
JPH11187690A (en) * 1997-12-18 1999-07-09 Toshiba Corp Inverter device and brushless fan motor
JP2000125584A (en) * 1998-10-14 2000-04-28 Toshiba Kyaria Kk Brushless motor drive for outdoor fan of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376383B1 (en) * 2000-12-15 2003-03-17 주식회사 터보테크 Operating Method of Sensorless Brushless Direct Current Motor and Apparatus thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989352A (en) * 1995-09-28 1997-04-04 Toshiba Corp Driver for outdoor blower
JPH10323078A (en) * 1997-05-14 1998-12-04 Matsushita Seiko Co Ltd Brushless motor operation controller
JPH11187690A (en) * 1997-12-18 1999-07-09 Toshiba Corp Inverter device and brushless fan motor
JP2000125584A (en) * 1998-10-14 2000-04-28 Toshiba Kyaria Kk Brushless motor drive for outdoor fan of air conditioner

Also Published As

Publication number Publication date
JP4436651B2 (en) 2010-03-24
JP2005124330A (en) 2005-05-12
KR100803444B1 (en) 2008-02-13
CN100508358C (en) 2009-07-01
CN1868111A (en) 2006-11-22
KR20060063995A (en) 2006-06-12

Similar Documents

Publication Publication Date Title
JP4259173B2 (en) Electric compressor drive device
US8234879B2 (en) Method for controlling motor of air conditioner and motor controller of the same
AU2015234134B2 (en) Power conversion device
US20070101735A1 (en) Heat pump apparatus using expander
JP5505528B1 (en) Power consumption reduction device
JP3442203B2 (en) Outdoor blower drive
WO2005067131A1 (en) Driving method and driver of brushless dc motor
CN111615785B (en) Electric compressor
JP2012135157A (en) Motor drive system
JP4436651B2 (en) Refrigeration cycle equipment
JP2012159270A (en) Control device, and heat pump device
JP2014011869A (en) Motor drive and heat pump device
JPH11103585A (en) Inverter protector
JP2924445B2 (en) Drive unit of compressor for air conditioner
JP2009136052A (en) Motor control device and air conditioner with the same
JP2005207362A (en) Driving device for electric compressor
JP4208228B2 (en) Brushless motor drive unit for air conditioner fan
JP3101380B2 (en) Air conditioner power supply
JP6775548B2 (en) Motor control device and air conditioner
WO2002004874A1 (en) Air conditioning system
WO2018142738A1 (en) Air conditioner
JP5618899B2 (en) Motor control device and air conditioner
JP2006223014A (en) Motor drive device
JP3754151B2 (en) Air conditioner
JP7153697B2 (en) Motor controller and air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030224.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067007761

Country of ref document: KR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 1020067007761

Country of ref document: KR

122 Ep: pct application non-entry in european phase