WO2013038612A1 - Inverter device, electrically-operated compressor and vehicle - Google Patents
Inverter device, electrically-operated compressor and vehicle Download PDFInfo
- Publication number
- WO2013038612A1 WO2013038612A1 PCT/JP2012/005555 JP2012005555W WO2013038612A1 WO 2013038612 A1 WO2013038612 A1 WO 2013038612A1 JP 2012005555 W JP2012005555 W JP 2012005555W WO 2013038612 A1 WO2013038612 A1 WO 2013038612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- phase
- period
- positioning
- energization
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
- H02P6/182—Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/20—Arrangements for starting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2203/00—Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
- H02P2203/03—Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation
Definitions
- the present invention relates to an inverter device that detects a phase current by a current sensor provided between a DC power source, an electric compressor, and a vehicle.
- Patent Document 1 Conventionally, an inverter device that detects a phase current using a current sensor provided between a DC power supply and the like has been proposed (see, for example, Patent Document 1).
- the conventional inverter device described in Patent Document 1 will be described with reference to FIGS.
- FIG. 10 shows a conventional inverter device and its peripheral electric circuit.
- the control circuit 12 of the conventional inverter device 21 detects the phase current for two phases based on the voltage from the shunt resistor 6.
- the phase current for the remaining one phase is calculated from the two current values (Kirchhoff's current law is applied at the neutral point of the stator winding 4).
- the induced voltage by the magnet rotor 5 constituting the sensorless DC brushless motor 11 (hereinafter referred to as “motor 11”) is calculated, and its position is detected. Then, based on this position detection, communication speed command signal (not shown), etc., the switching element 2 (IGBT, FET, transistor, etc.) constituting the inverter circuit 10 is controlled via the connection line 18. To do.
- the diode 3 constituting the inverter circuit 10 serves as a circulation route for the current flowing through the stator winding 4.
- upper arm switching elements are defined as U, V, W
- lower arm switching elements are defined as X, Y, Z, and correspond to the switching elements U, V, W, X, Y, Z.
- the diode is defined as 3U, 3V, 3W, 3X, 3Y, 3Z.
- FIG. 11 shows a waveform characteristic diagram in 50% modulation of three-phase modulation.
- a U-phase terminal voltage 41, a V-phase terminal voltage 42, a W-phase terminal voltage 43, and a neutral point voltage 29 are shown.
- the modulation increases in both directions of 0% and 100% centering on Duty 50% as the modulation increases.
- These terminal voltages are realized by duty (%) indicated on the vertical axis by PWM modulation.
- the neutral point voltage 29 is a value obtained by calculating the sum of the terminal voltages of each phase and dividing by 3.
- the phase voltage is a value obtained by subtracting the neutral point voltage from the terminal voltage, and is a sine wave.
- the ON periods (Duty) of the upper arm switching elements U, V, and W within one carrier (carrier cycle) in the phase of 270 to 330 degrees indicated by the broken line in FIG. 11 are displayed symmetrically from the center. ing.
- the ON period of the U-phase upper arm switching element U is represented by a thin solid line
- the ON period of the V-phase upper arm switching element V is represented by a solid solid line
- the ON period of the W-phase upper arm switching element W is represented by a thick solid line.
- phase current detection by the shunt resistor 6 it is possible to know the phase current flowing through the power supply line (shunt resistor 6) when the upper arm switching elements U, V, W are turned on and off.
- the upper arm switching element does not have an ON phase, it does not flow (non-energized, downward circulation).
- the current of that phase flows (energized).
- the remaining phase currents Flows (energized) and does not flow when all three phases are ON (non-energized, upper circulation).
- the detectable phase current can be known by confirming that the upper arm switching elements U, V, and W are ON.
- the ON time is required to be longer than the minimum predetermined time necessary for current detection (this predetermined time is defined as ⁇ ).
- energization refers to a state in which power is supplied from the battery 1 to the inverter circuit 10 (motor 11)
- non-energization refers to a state in which power is not supplied from the battery 1 to the inverter circuit 10 (motor 11).
- the lower circulation is a state in which all of the lower arm switching elements X, Y, and Z are turned on and current is circulated between the lower arm and the motor 11. It is defined as a state in which all of the arm switching elements U, V, W are turned on and current is circulating between the upper arm and the motor 11.
- the period during which current detection by the shunt resistor 6 can be performed is set as a detection period, and is indicated by a solid line arrow.
- the detection period of the U-phase current is indicated as U
- the detection period of the W-phase current is indicated as W.
- phase 270 degrees only U-phase current can be detected. Further, at the phase of 330 degrees, only the W-phase phase current can be detected. An example of a response to the fact that only the phase current for one phase can be detected is shown in FIG.
- FIG. 13A shows the case of the phase of 330 degrees in FIG. 12 as it is.
- a predetermined value ⁇ is added to the ON period (Duty) of the upper arm switching element U in FIG. 13A so that the phase current of the V phase can also be detected.
- FIG. 13C is a diagram in which the ON period (Duty) of the upper arm switching element U in FIG. 13A is reduced by a predetermined value ⁇ so that the U-phase phase current can also be detected.
- the addition or reduction of the PWM original ON period (Duty) so that the phase current can be detected is defined as energization correction. Further, the value to be added or reduced is defined as an energization correction amount.
- FIG. 14A shows a case where the magnet rotor 5 is positioned with the U phase and the V phase of the stator winding 4 as the S pole and the W phase as the N pole in the case of 4 poles.
- the N pole of the magnet rotor 5 is positioned on the S pole of the stator winding 4 and the S pole of the magnet rotor 5 is positioned on the N pole of the stator winding 4 so as to be opposed to each other.
- a current flows from the W phase to the U phase and the V phase of the stator winding 4.
- FIG. 15 shows the ON period of the upper arm switching elements U, V and W in one carrier (carrier cycle) in the above positioning.
- (Duty) is displayed in the same manner as in FIGS.
- FIG. 17 shows the W-phase current from positioning to operation.
- FIG. 15A shows a case where the energization period is set small in order to gradually increase the current at the initial stage of positioning shown in FIG.
- the period from the start of positioning until the current rises is defined as the initial positioning.
- this energization period is gradually increased. In this state, current detection by the shunt resistor 6 cannot be performed.
- the correspondence example for that is FIG. 15 (B) and FIG. 15 (C).
- FIG. 15B shows that the U-phase current can be detected by adding a predetermined value ⁇ or more to the second half (right side) of the carrier period in the ON period (Duty) of the upper arm switching element U in FIG. Further, a predetermined value ⁇ or more is added to the first half (left side) of the carrier period in the ON period (Duty) of the upper arm switching element W in FIG. 15A so that the phase current of the W phase can be detected. . Thereby, the phase current for two phases can be detected.
- FIG. 15C shows that the ON period (Duty) of the upper arm switching element U and the upper arm switching element W in FIG. 15A is reduced by a predetermined value ⁇ or more, and the U-phase phase current and the W-phase phase current are reduced. It can be detected. Thereby, the phase current for two phases can be detected.
- the current at the initial stage of positioning can be increased while detecting phase currents for two phases.
- the energization period shown in FIG. 15A is gradually increased.
- approximately 50 mS is executed.
- the carrier frequency is 10 kHz and the carrier cycle is 100 ⁇ S, the carrier cycle is 500 times.
- FIG. 16A shows a case where the energization period is set so that a predetermined constant current flows in the stationary positioning period shown in FIG.
- the period during which the current is constant after the current rising at the initial stage of positioning is defined as the stationary positioning period.
- the energization period is short, but this is because the magnet rotor 5 is stopped, no induced voltage is generated in the stator winding 4, and the energization period is used to flow the same current. This is because it may be short. In this state, the current detection by the shunt resistor 6 can detect only the W-phase current.
- FIG. 16 (B) and FIG. 16 (C) The correspondence example for that is FIG. 16 (B) and FIG. 16 (C). The method is basically the same as FIG. 13 during operation.
- FIG. 16B is a diagram in which a predetermined value ⁇ is added to the ON period (Duty) of the upper arm switching element U in FIG. 16A so that the V-phase current can also be detected.
- FIG. 16C shows a case where the ON period (Duty) of the upper arm switching element U in FIG. 16A is reduced by a predetermined value ⁇ so that the U-phase phase current can also be detected. Thereby, the phase current for two phases can be detected. Then, by executing both FIG. 16B and FIG. 16C, the addition or reduction of the predetermined value ⁇ to the ON period (Duty) of the upper arm switching element U is cancelled.
- 16B and 16C are executed, it is possible to flow a constant current in the stationary stationary phase while detecting phase currents for two phases. Then, approximately 100 ms is executed.
- the carrier frequency is 10 kHz and the carrier cycle is 100 ⁇ S, the carrier cycle is 1000 times.
- Fig. 17 shows the phase current of the W phase from positioning to operation. Positioning includes an initial stage in which the current gradually increases and a stationary period in which the current is constant.
- ⁇ Sine wave alternating current during operation flows following this steady-state current.
- the waveform in FIG. 11 is replaced with a sinusoidal alternating current (41 is a U-phase current, 42 is a V-phase current, and 43 is a W-phase current)
- the phase 330 degrees is a positioning steady-state current, that is, an operation start. Corresponds to current.
- the reason why the current in the stationary positioning period is continued is to start up stably. This is because once the positioning current is turned off, the position of the positioned magnet rotor 5 may move. When the magnet rotor 5 starts rotating, an induced voltage is generated in the stator winding 4 by the magnet rotor 5 and the phase of the current with respect to the phase of the induced voltage is appropriately controlled. The current value of becomes smaller.
- JP 2003-189670 A Japanese Patent Laid-Open No. 11-356088
- the conventional inverter device using the phase current detection method with only one current sensor is smaller in size because there are fewer components compared to other methods that directly detect the phase current using two or three current sensors. There is an advantage that reliability such as vibration resistance can be improved.
- phase currents for two phases cannot be detected, energization correction that increases or decreases the ON period of the upper arm switching element in some phases is necessary.
- a ripple current is generated as compared with the original PWM modulation current.
- This ripple current becomes an electromagnetic force, acts on the stator winding 4 of the motor 11, the mechanism, the housing, and the like, and generates noise (vibration).
- the addition and reduction of the ON period are canceled and the PWM modulation result does not change, but a ripple current is generated within the carrier period.
- the effect of energization correction is significant during positioning before operation.
- the magnet rotor 5 does not rotate, so there is no operating noise and noise due to ripple current is easily noticeable.
- the energization period is short (because the magnet rotor 5 is stopped and no induced voltage is generated in the stator winding 4 and the energization period may be short to allow the same current to flow). This is because the correction amount becomes relatively large (the minimum predetermined time ⁇ necessary for detecting the current to be added or reduced with respect to the original energization period of PWM modulation becomes relatively large).
- the energization period is shorter and the influence is greater than in the stationary period.
- the present invention solves such a conventional problem, and an object of the present invention is to provide an inverter device with low noise during positioning, an electric compressor with low noise, and a vehicle.
- an inverter device includes an upper arm switching element connected to the positive side of a DC power supply and a lower arm switching element connected to the negative side of the DC power supply.
- a circuit, a current sensor for detecting a current between the DC power source and the inverter circuit, and a drive current is output to the motor by energization of the PWM modulation to the inverter circuit, and the current sensor corrects the energization and outputs a phase by the current sensor.
- a control circuit for detecting current, and the control circuit performs phase current detection by correcting energization only during a part of the positioning period for positioning the magnet rotor before operation of the motor. Thus, it is possible to suppress noise during positioning that is greatly affected by the energization correction.
- the electric compressor of the present invention includes a compression mechanism section and a motor that drives the compression mechanism section, and the motor is driven by the inverter device of the present invention, and noise generated by the electric compressor is reduced. Since the electric compressor is used for a device in which noise is easily recognized, such as a room air conditioner and a car air conditioner, the effect of reducing noise is great.
- the vehicle of the present invention is equipped with the electric compressor of the present invention.
- the mounting space of the electric compressor is limited, and it is necessary to reduce the size, and vibration resistance against vibration caused by traveling is also necessary. Therefore, an electric compressor using an inverter device that detects current with a single current sensor such as a shunt resistor is useful. Moreover, since noise is easily recognized in the vehicle, the low noise effect by using the electric compressor of the present invention is great.
- the inverter device of the present invention can detect the phase current with a single current sensor while suppressing noise during positioning by energization correction, and can achieve both low noise and downsizing. Moreover, the electric compressor and vehicle of the present invention are low noise.
- the inverter apparatus which concerns on Embodiment 1 of this invention, and its surrounding electric circuit diagram
- A Positional relationship diagram of stator winding and magnet rotor at the time of positioning of the inverter device
- B Current explanatory diagram of stator winding at the time of positioning
- A) 1st explanatory drawing which shows electricity supply in the positioning initial stage of the inverter apparatus
- B) 2nd explanatory drawing which shows electricity supply in the initial stage of positioning
- C 3rd explanatory drawing which shows electricity supply in the initial stage of the positioning
- A) 1st explanatory drawing which shows the example of electricity supply in the positioning regular period of the inverter apparatus
- B 2nd explanatory drawing which shows the example of electricity supply in the same positioning stationary period
- C The example of electricity supply in the same positioning stationary period
- A Positional relationship diagram of stator winding and magnet rotor at the time of positioning of the inverter device
- B Current explanatory diagram of stator winding at the time of positioning
- A Explanatory diagram showing an example before energization correction at the initial stage of positioning of the inverter device
- B explanatory diagram showing an example of the energization correction
- C explanatory diagram showing another example of the energization correction
- A Explanatory diagram showing an example before energization correction in the stationary positioning period of the inverter device
- B explanatory diagram showing an example of the energization correction
- C explanatory diagram showing another example of the energization correction Illustration of phase current of W phase from positioning to operation of the inverter device
- an inverter circuit including an upper arm switching element connected to a plus side of a DC power source and a lower arm switching element connected to a minus side of the DC power source, and between the DC power source and the inverter circuit And a control circuit that outputs a drive current to the motor by energization of PWM modulation to the inverter circuit, corrects the energization, and detects a phase current by the current sensor,
- the control circuit detects the phase current by performing energization correction only during a part of the positioning period in which the magnet rotor is positioned before the motor is operated. Noise can be suppressed.
- control circuit of the first invention does not perform the energization correction when the phase current detected by the energization correction exceeds a predetermined value. Since it can be controlled to a predetermined current value, stable start-up can be performed.
- control circuit of the second aspect of the invention does not perform the energization correction in the stationary positioning period among the initial positioning period and the stationary stationary period as the positioning period. Noise during positioning can be suppressed.
- the energization correction start of the second invention is after the latter half of the initial stage of positioning.
- the energization correction amount is relatively large compared to the original energization period of PWM modulation. For this reason, the effect of current correction on noise is large.
- the current rising period in the initial stage of positioning is set to be shorter than the stationary period in order to gradually increase the current, and it is necessary to correct energization not only in one phase but also in two phases.
- the effect of current correction on noise is large. Therefore, noise during positioning can be greatly suppressed by starting energization correction after the latter half of the rising of the positioning current.
- the current sensor of the second invention is a shunt resistor, and the control circuit detects a phase current based on a voltage from the shunt resistor. It is easy to realize.
- the vehicle according to the seventh invention is equipped with the electric compressor according to the sixth invention, and for vehicles, there is a limitation in the mounting space of the electric compressor, and it is necessary to reduce the size. Therefore, an electric compressor using an inverter device that detects current using a single current sensor such as a shunt resistor is useful. Moreover, since noise is easily recognized in the vehicle, the low noise effect by using the electric compressor of the present invention is great.
- FIG. 1 shows an inverter device according to the present embodiment and a peripheral electric circuit.
- the control circuit 7 of the inverter device 22 in the present embodiment detects the phase current based on the voltage from the shunt resistor 6. If phase currents for two phases are detected, the phase currents for the remaining phases can be calculated from the two current values (Kirchhoff's current law is applied at the neutral point of the stator winding 4).
- the control circuit 7 calculates the induced voltage of the stator winding 4 by the magnet rotor 5 constituting the motor 11 based on the current values for these three phases, and detects the position of the magnet rotor 5. Do. Then, based on this position detection, rotation speed command signal (not shown), etc., the switching element 2 constituting the inverter circuit 10 is controlled, and the DC voltage from the battery 1 is switched by PWM modulation, so that a sine wave shape is obtained. Is output to the stator winding 4 of the motor 11.
- the diode 3 constituting the inverter circuit 10 serves as a circulation route for the current flowing through the stator winding 4.
- upper arm switching elements are defined as U, V, W
- lower arm switching elements are defined as X, Y, Z
- diodes corresponding to the switching elements U, V, W, X, Y, Z Is defined as 3U, 3V, 3W, 3X, 3Y, 3Z.
- the current sensor is not limited to the shunt resistor 6 and may be any sensor that can detect an instantaneous peak current, such as a current sensor using a Hall element. Further, it may be provided on the positive side of the power supply line. If the shunt resistor 6 is used, it is easy to reduce the size and improve the vibration resistance.
- the control circuit 7 is connected to the upper arm switching elements U, V, W, and the lower arm switching elements X, Y, Z by a connection line 18 via a drive circuit or the like, and controls each switching element.
- the switching element 2 is an IGBT or a power MOSFET
- the gate voltage is controlled.
- the switching element 2 is a power transistor
- the base current is controlled.
- FIG. 2 (A) shows a case where the magnet rotor 5 is positioned with the U and V phases of the stator winding 4 as the S pole and the W phase as the N pole in the case of 4 poles. Positioning is performed by stopping the north pole of the magnet rotor 5 on the south pole of the stator winding 4 and the south pole of the magnet rotor 5 facing each other on the north pole of the stator winding 4. Is done.
- control circuit 7 controls the switching element 2 so that current flows from the W phase to the U phase and the V phase of the stator winding 4 as shown in FIG.
- the period during which the current correction is performed and the phase current is detected is limited to a part of the period.
- FIG. 5 shows the W-phase current from the positioning to the operation.
- FIG. 3A shows a case where the energization period is set small in order to gradually increase the current in the initial positioning shown in FIG.
- the period from the start of positioning until the current rises is defined as the initial positioning.
- this energization period is gradually increased. In this state, current detection by the shunt resistor 6 cannot be performed.
- the correspondence example for that is FIG. 3 (B) and FIG. 3 (C).
- FIG. 3B shows that the U-phase current can be detected by adding a predetermined value ⁇ or more to the latter half (right side) of the carrier period in the ON period (Duty) of the upper arm switching element U in FIG.
- a predetermined value ⁇ or more is added to the first half (left side) of the carrier period in the ON period (Duty) of the upper arm switching element W in FIG. 3A so that the phase current of the W phase can be detected. .
- the phase current for two phases can be detected.
- FIG. 3C shows that the ON period (Duty) of the upper arm switching element U and the upper arm switching element W in FIG. 3A is reduced by a predetermined value ⁇ or more, and the U-phase phase current and the W-phase phase current are reduced. It can be detected.
- the current at the initial stage of positioning can be increased while detecting the phase current for two phases.
- the energization correction is stopped when the energization period gradually increases and the detected phase current exceeds a predetermined value.
- the initial positioning is performed for approximately 50 ms.
- the carrier frequency is 10 kHz and the carrier cycle is 100 ⁇ S, the carrier cycle is 500 times.
- FIG. 4A shows a case where the energization period is set so that a predetermined constant current flows in the stationary positioning period shown in FIG.
- a period in which the current is constant after the current rising at the initial stage of positioning is defined as a stationary positioning period. During this period, energization correction is not performed. That is, FIG. 4B and FIG. 4C are the same as FIG.
- the carrier cycle is 1000 times.
- the positioning current can be controlled while suppressing noise, so that reliable startup can be performed.
- FIG. 6A is an explanatory diagram showing an example of energization at the initial stage of positioning of the inverter device according to Embodiment 2 of the present invention
- FIG. 6B is an explanatory diagram showing an example of energization at the initial stage of positioning
- FIG. ) Is an explanatory diagram showing current correction of the inverter device
- FIG. 7 is an explanatory diagram of a W-phase phase current from positioning to operation of the inverter device.
- the same parts as those of the inverter device in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- FIG. 6A shows a case where the energization period is set to be small in order to gradually increase the current at the initial stage of positioning. In the initial stage of positioning, this energization period is gradually increased as shown in FIGS. 6 (B) and 6 (C).
- the initial positioning is configured by FIG. 6 (A), FIG. 6 (B), and FIG. 6 (C).
- FIGS. 6A and 6B are defined as the first half of the initial positioning
- FIG. 6C is defined as the second half of the initial positioning.
- the time until the current rises up is approximately 50 mS, but this is the time until the current value in the stationary phase is reached.
- the first 25 mS in the first half of positioning is the first half of the initial positioning
- the second half 25 mS is the second half of the initial positioning.
- FIG. 7 shows the phase current at this time. In the initial period of positioning, since the energization period is set to be shorter than that in the stationary period, the effect of the energization correction on the noise is even greater.
- the noise during positioning can be greatly suppressed by setting the initial first half of the positioning as a period during which no energization correction is performed. In the second half of the initial positioning, the period for performing energization correction is set. However, since the energization correction is stopped after the positioning current reaches the predetermined current, the positioning current can be controlled while suppressing noise, so that reliable start-up is performed. Can do.
- the U-phase and V-phase of the stator winding 4 are set to the S pole, and the W-phase is set to the N pole.
- the present invention is not limited to this, and the phase of the S pole and the N pole of the stator winding 4 is arbitrary, and the current flows only to the two poles, the six poles, and the two phases of the stator winding 4. (If the two phases are the W phase and the U phase, for example, it corresponds to a phase of 300 degrees).
- the energization correction for detecting the phase current is not limited to the above, but may be any detection such as detection for three phases, detection only in the first half of the carrier cycle.
- the first half of positioning and the second half of initial positioning are defined by time, but the same is true if they are defined by DUTY values.
- FIG. 8 is a cross-sectional view of the electric compressor according to Embodiment 3 of the present invention.
- symbol is attached
- the compression mechanism 28, the motor 11, and the like are installed in the metal casing 32 of the electric compressor 40 in the present embodiment, and the above-described implementation is provided on the right side surface of the electric compressor 40.
- the case 30 containing the inverter device 22 in the form is attached in close contact.
- the refrigerant is sucked from the suction port 33 and is compressed by driving the compression mechanism 28 (in this example, scroll) by the motor 11.
- the compressed refrigerant cools the motor 11 when passing through the motor 11 and is discharged from the discharge port 34.
- the inverter circuit 10 serving as a heat source is cooled by the low-pressure refrigerant via the low-pressure pipe 38.
- the terminal 39 connected to the stator winding 4 of the motor 11 is connected to the output part of the inverter circuit 10.
- the connection line 36 fixed to the inverter device 22 by the holding unit 35 includes a power line to the battery 1 and a signal line (not shown) to an air conditioner controller (not shown) that transmits a rotation speed signal.
- the electric compressor 40 is used for a room air conditioner, a car air conditioner, etc., the noise is easily recognized by the user. Therefore, the effect of the present invention that can reduce noise is great. Moreover, in the inverter apparatus integrated electric compressor as described above, the inverter apparatus 22 needs to be small and resistant to vibration. Therefore, it is suitable as an embodiment of the present invention in which current is detected by one current sensor such as the shunt resistor 6 and low noise is realized.
- the compression mechanism 28 of the electric compressor 40 is a scroll.
- the present invention is not limited to this.
- the compressed refrigerant showed about the high pressure type which cools the motor 11, a low pressure type may be sufficient.
- FIG. 9 is a schematic diagram of a vehicle in the fourth embodiment of the present invention.
- symbol is attached
- the vehicle 60 in the present embodiment includes an inverter device integrated electric compressor 61 in which the electric compressor 40 and the inverter device 22 in the third embodiment are integrated, an outdoor heat exchanger 63, and an outdoor fan 62. It is mounted in the engine room 68 (or motor room) in front of the vehicle 60.
- an indoor fan 65, an indoor heat exchanger 67, and an air conditioner controller 64 are arranged in the vehicle interior 69. Air outside the vehicle is sucked from the air inlet 66 and the air heat-exchanged by the indoor heat exchanger 67 is blown out into the vehicle interior.
- the vehicle air conditioner is required to be small and light from the viewpoint of securing traveling performance and mounting properties, and among them, the weight is heavy, and the interior of the engine room 68 and other spaces are small. It is important to reduce the size and weight of the electric compressor attached to the motor. In addition, when traveling by a motor (not shown), the quietness is high, and low noise is required for the electric compressor. It is also necessary to have vibration resistance against vibration during traveling.
- the inverter device 22 used in the inverter device-integrated electric compressor 61 in the present embodiment can achieve downsizing and vibration resistance due to the configuration of one current sensor such as the shunt resistor 6 shown in the above embodiments, Low noise can also be achieved. Therefore, the inverter device 22 in the above embodiment is very suitable for the vehicle 60.
- the DC power source is a battery.
- the present invention is not limited to this, and a DC power source rectified from a commercial AC power source may be used.
- the motor 11 is a sensorless DC brushless motor, it can be applied to a motor that requires positioning, such as a reluctance motor.
- the present invention is not limited to sinusoidal driving, and can be applied to a driving method that requires detection of phase current during positioning. It can also be applied to PWM two-phase modulation.
- the inverter device can detect a phase current with a single current sensor while suppressing noise during positioning by energization correction, and can perform stable start-up.
- the inverter device since it is small and can improve reliability such as vibration resistance, it can be applied to various consumer products and various industrial equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
[Problem] To provide an inverter device in which noise (vibration) during positional location of the magnetic rotor is reduced. [Solution] There are provided: an inverter circuit (10) comprising a switching element (2) connected with respectively the plus side and the minus side of a battery (1); a shunt resistance (6) that detects the current between the battery (1) and the aforementioned inverter circuit (10); and a control circuit (7) that outputs drive current to the inverter circuit (10), passing PWM-modulated current to a sensor-less DC brushless motor (11), performs correction of this current which is thus passed, and detects the phase current produced by the shunt resistance (6). The control circuit (7) can suppress noise during positional location, which has a large effect on correction of this current which is thus passed, since it performs correction of this current which is thus passed and phase current detection for only part of the positional location period in which positional location of the magnetic rotor (5) is performed, prior to operation of the sensor-less DC brushless motor (11).
Description
本発明は、直流電源との間に設けられた電流センサにより、相電流を検出するインバータ装置と、電動圧縮機及び車両に関するものである。
The present invention relates to an inverter device that detects a phase current by a current sensor provided between a DC power source, an electric compressor, and a vehicle.
従来より、直流電源との間に設けた電流センサにより相電流を検出するインバータ装置が提案されている(例えば、特許文献1参照)。前記特許文献1に記載された従来のインバータ装置について、図10~図17を用いて説明する。
Conventionally, an inverter device that detects a phase current using a current sensor provided between a DC power supply and the like has been proposed (see, for example, Patent Document 1). The conventional inverter device described in Patent Document 1 will be described with reference to FIGS.
最初に、モータが駆動され、回転子が回転している状態を“運転”と定義する。図10に従来のインバータ装置とその周辺の電気回路を示す。
First, the state where the motor is driven and the rotor is rotating is defined as “operation”. FIG. 10 shows a conventional inverter device and its peripheral electric circuit.
従来のインバータ装置21の制御回路12は、シャント抵抗6からの電圧により2相分の相電流を検出する。当該2個の電流値から残り1相分の相電流を演算する(固定子巻線4の中性点において、キルヒホッフの電流の法則を適用する)。
The control circuit 12 of the conventional inverter device 21 detects the phase current for two phases based on the voltage from the shunt resistor 6. The phase current for the remaining one phase is calculated from the two current values (Kirchhoff's current law is applied at the neutral point of the stator winding 4).
これらの電流値に基づき、センサレスDCブラシレスモータ11(以降「モータ11」と称す)を構成する磁石回転子5による誘起電圧を演算し、その位置検出を行う。そして、この位置検出、通信による回転数指令信号(図示せず)等に基づき、インバータ回路10を構成するスイッチング素子2(IGBT、FET、トランジスタ等が用いられる)を、接続線18を介して制御する。
Based on these current values, the induced voltage by the magnet rotor 5 constituting the sensorless DC brushless motor 11 (hereinafter referred to as “motor 11”) is calculated, and its position is detected. Then, based on this position detection, communication speed command signal (not shown), etc., the switching element 2 (IGBT, FET, transistor, etc.) constituting the inverter circuit 10 is controlled via the connection line 18. To do.
これにより、バッテリー1からの直流電圧がPWM変調でスイッチングされ、正弦波状の交流電流が、モータ11を構成する固定子巻線4へ出力される。インバータ回路10を構成するダイオード3は、固定子巻線4に流れる電流の循環ルートとなる。スイッチング素子2について、上アームスイッチング素子を、U、V、W、下アームスイッチング素子をX、Y、Zと定義し、また、各スイッチング素子U、V、W、X、Y、Zに対応するダイオードを、3U、3V、3W、3X、3Y、3Zと定義する。
Thereby, the DC voltage from the battery 1 is switched by PWM modulation, and a sinusoidal AC current is output to the stator winding 4 constituting the motor 11. The diode 3 constituting the inverter circuit 10 serves as a circulation route for the current flowing through the stator winding 4. For the switching element 2, upper arm switching elements are defined as U, V, W, and lower arm switching elements are defined as X, Y, Z, and correspond to the switching elements U, V, W, X, Y, Z. The diode is defined as 3U, 3V, 3W, 3X, 3Y, 3Z.
図11に、3相変調の50%変調における波形の特性図を示す。U相端子電圧41、V相端子電圧42、W相端子電圧43及び中性点電圧29を示している。3相変調においては、変調が上がるにつれDuty50%を中心に0%と100%の両方向に伸びる。これらの端子電圧は、PWM変調にて縦軸に示すDuty(%)で実現される。中性点電圧29は、各相の端子電圧の和を求め3で除した値である。また、相電圧は、端子電圧から中性点電圧を引いた値であり、正弦波になる。
FIG. 11 shows a waveform characteristic diagram in 50% modulation of three-phase modulation. A U-phase terminal voltage 41, a V-phase terminal voltage 42, a W-phase terminal voltage 43, and a neutral point voltage 29 are shown. In the three-phase modulation, the modulation increases in both directions of 0% and 100% centering on Duty 50% as the modulation increases. These terminal voltages are realized by duty (%) indicated on the vertical axis by PWM modulation. The neutral point voltage 29 is a value obtained by calculating the sum of the terminal voltages of each phase and dividing by 3. The phase voltage is a value obtained by subtracting the neutral point voltage from the terminal voltage, and is a sine wave.
図12に、図11に破線で示した位相270度~330度における1キャリア内(キャリア周期)での上アームスイッチング素子U、V、WのON期間(Duty)を中央から左右対称に表示している。U相の上アームスイッチング素子UのON期間を細実線で表わし、V相の上アームスイッチング素子VのON期間を中実線で表わし、W相の上アームスイッチング素子WのON期間を太実線で表わしている。
In FIG. 12, the ON periods (Duty) of the upper arm switching elements U, V, and W within one carrier (carrier cycle) in the phase of 270 to 330 degrees indicated by the broken line in FIG. 11 are displayed symmetrically from the center. ing. The ON period of the U-phase upper arm switching element U is represented by a thin solid line, the ON period of the V-phase upper arm switching element V is represented by a solid solid line, and the ON period of the W-phase upper arm switching element W is represented by a thick solid line. ing.
これは、一般的に、マイコンのタイマ機能により具現化される。同一相の上アームスイッチング素子がONならば下アームスイッチング素子はOFF、上アームスイッチング素子がOFFならば下アームスイッチング素子はONの関係にある。但し、上アームスイッチング素子と下アームスイッチング素子との短絡防止のためデッドタイム期間が設けられる。
This is generally realized by the timer function of the microcomputer. If the upper arm switching element of the same phase is ON, the lower arm switching element is OFF, and if the upper arm switching element is OFF, the lower arm switching element is ON. However, a dead time period is provided to prevent a short circuit between the upper arm switching element and the lower arm switching element.
シャント抵抗6による相電流検出の詳細は割愛するが、上アームスイッチング素子U、V、WのON、OFF状態で、電源ライン(シャント抵抗6)に流れる相電流を知ることができる。上アームスイッチング素子のONする相が無い時は流れず(非通電、下循環)、1相のみON時は、その相の電流が流れ(通電)、2相ON時は、残りの相の電流が流れ(通電)、3相全てON時は流れない(非通電、上循環)。
Although details of phase current detection by the shunt resistor 6 are omitted, it is possible to know the phase current flowing through the power supply line (shunt resistor 6) when the upper arm switching elements U, V, W are turned on and off. When the upper arm switching element does not have an ON phase, it does not flow (non-energized, downward circulation). When only one phase is ON, the current of that phase flows (energized). When two phases are ON, the remaining phase currents Flows (energized) and does not flow when all three phases are ON (non-energized, upper circulation).
従って、上アームスイッチング素子U、V、WのONを確認することで、検出可能な相電流を知る事ができる。但し、シャント抵抗6による電流検出において、上記ON時間が、電流検出するために必要な最低限の所定時間以上あることが条件になる(この所定時間をδと定義する)。
Therefore, the detectable phase current can be known by confirming that the upper arm switching elements U, V, and W are ON. However, in the current detection by the shunt resistor 6, the ON time is required to be longer than the minimum predetermined time necessary for current detection (this predetermined time is defined as δ).
ここで、通電とは、バッテリー1からインバータ回路10(モータ11)へ電力供給される状態のことであり、非通電とは、バッテリー1からインバータ回路10(モータ11)へ電力供給されない状態のことと定義する。また、非通電における、下循環とは、下アームスイッチング素子X、Y、Z全てがONとなり、下アームとモータ11間で電流が循環している状態のことであり、上循環とは、上アームスイッチング素子U、V、W全てがONとなり、上アームとモータ11間で電流が循環している状態のことと定義する。
Here, energization refers to a state in which power is supplied from the battery 1 to the inverter circuit 10 (motor 11), and non-energization refers to a state in which power is not supplied from the battery 1 to the inverter circuit 10 (motor 11). It is defined as Further, in the non-energized state, the lower circulation is a state in which all of the lower arm switching elements X, Y, and Z are turned on and current is circulated between the lower arm and the motor 11. It is defined as a state in which all of the arm switching elements U, V, W are turned on and current is circulating between the upper arm and the motor 11.
図12において、シャント抵抗6による電流検出が可能となる期間を検出期間として、実線矢印で表示し、実線矢印近傍に検出される電流がどの相の電流かを示す。この場合、U相の相電流の検出期間をU、W相の相電流の検出期間をWと表示している。
In FIG. 12, the period during which current detection by the shunt resistor 6 can be performed is set as a detection period, and is indicated by a solid line arrow. In this case, the detection period of the U-phase current is indicated as U, and the detection period of the W-phase current is indicated as W.
位相270度においては、U相の相電流しか検出できない。また、位相330度においては、W相の相電流しか検出できない。この1相分の相電流しか検出できないことへの対応の一例を、図13に示す。
At phase 270 degrees, only U-phase current can be detected. Further, at the phase of 330 degrees, only the W-phase phase current can be detected. An example of a response to the fact that only the phase current for one phase can be detected is shown in FIG.
図13(A)は、図12における位相330度の場合をそのまま示している。図13(B)は、図13(A)における上アームスイッチング素子UのON期間(Duty)に所定値δを追加し、V相の相電流も検出できるようにしたものである。また、図13(C)は、図13(A)における上アームスイッチング素子UのON期間(Duty)を所定値δだけ削減し、U相の相電流も検出できるようにしたものである。
FIG. 13A shows the case of the phase of 330 degrees in FIG. 12 as it is. In FIG. 13B, a predetermined value δ is added to the ON period (Duty) of the upper arm switching element U in FIG. 13A so that the phase current of the V phase can also be detected. FIG. 13C is a diagram in which the ON period (Duty) of the upper arm switching element U in FIG. 13A is reduced by a predetermined value δ so that the U-phase phase current can also be detected.
このように、PWM本来のON期間(Duty)に追加もしくは削減を行い、相電流を検出できるようにすることを通電補正と定義する。また、この追加もしくは削減される値を通電補正量と定義する。
In this way, the addition or reduction of the PWM original ON period (Duty) so that the phase current can be detected is defined as energization correction. Further, the value to be added or reduced is defined as an energization correction amount.
これらにより、2相分の相電流が検出できるようになる。図13(B)と図13(C)の双方を実行することで、上アームスイッチング素子UのON期間(Duty)の所定値δの追加または削減がキャンセルされる。即ち、図13(B)と図13(C)の双方を実行することで、図13(A)の2回実行と同等になる。
These make it possible to detect the phase current for two phases. By executing both FIG. 13B and FIG. 13C, the addition or reduction of the predetermined value δ of the ON period (Duty) of the upper arm switching element U is cancelled. In other words, executing both FIG. 13B and FIG. 13C is equivalent to executing twice in FIG.
次に、モータ11の運転前における磁石回転子5の位置決めについて以下説明する。
Next, the positioning of the magnet rotor 5 before the operation of the motor 11 will be described below.
磁石回転子5の回転を始動させるためには、通電前に磁石回転子5の位置決めをしておく必要がある(例えば、特許文献2参照)。これについて、一例を以下説明する。
In order to start rotation of the magnet rotor 5, it is necessary to position the magnet rotor 5 before energization (for example, refer to Patent Document 2). An example will be described below.
図14(A)は、4極の場合において、固定子巻線4のU相とV相をS極に、W相をN極にして、磁石回転子5を位置決めする場合を示している。固定子巻線4のS極には磁石回転子5のN極が、固定子巻線4のN極には磁石回転子5のS極が、それぞれ対向して停止することにより、位置決めされる。このとき、図14(B)に示す如く、固定子巻線4のW相からU相及びV相へ電流が流される。
FIG. 14A shows a case where the magnet rotor 5 is positioned with the U phase and the V phase of the stator winding 4 as the S pole and the W phase as the N pole in the case of 4 poles. The N pole of the magnet rotor 5 is positioned on the S pole of the stator winding 4 and the S pole of the magnet rotor 5 is positioned on the N pole of the stator winding 4 so as to be opposed to each other. . At this time, as shown in FIG. 14B, a current flows from the W phase to the U phase and the V phase of the stator winding 4.
図15((B)及び(C))、図16((B)及び(C))に、上記、位置決めにおける1キャリア内(キャリア周期)での上アームスイッチング素子U、V、WのON期間(Duty)を、図12、図13と同様に表示している。そして、位置決めから運転に渡るW相の相電流を図17に示す。
15 ((B) and (C)) and FIG. 16 ((B) and (C)), the ON period of the upper arm switching elements U, V and W in one carrier (carrier cycle) in the above positioning. (Duty) is displayed in the same manner as in FIGS. FIG. 17 shows the W-phase current from positioning to operation.
図15(A)は、図17に示す位置決め初期において、電流を徐々に増加させるため、通電期間を小さく設定した場合である。位置決めスタートから電流が立ち上がりきるまでの期間を位置決め初期と定義する。位置決め初期において、この通電期間は徐々に大きくされる。この状態では、シャント抵抗6による電流検出はできない。そのための対応例が、図15(B)、図15(C)である。
FIG. 15A shows a case where the energization period is set small in order to gradually increase the current at the initial stage of positioning shown in FIG. The period from the start of positioning until the current rises is defined as the initial positioning. In the initial stage of positioning, this energization period is gradually increased. In this state, current detection by the shunt resistor 6 cannot be performed. The correspondence example for that is FIG. 15 (B) and FIG. 15 (C).
図15(B)は、図15(A)における上アームスイッチング素子UのON期間(Duty)のキャリア周期後半(右側)に、所定値δ以上を追加しU相の相電流を検出できるように、また、図15(A)における上アームスイッチング素子WのON期間(Duty)のキャリア周期前半(左側)に、所定値δ以上を追加しW相の相電流を検出できるようにしたものである。これにより、2相分の相電流が検出できるようになる。
FIG. 15B shows that the U-phase current can be detected by adding a predetermined value δ or more to the second half (right side) of the carrier period in the ON period (Duty) of the upper arm switching element U in FIG. Further, a predetermined value δ or more is added to the first half (left side) of the carrier period in the ON period (Duty) of the upper arm switching element W in FIG. 15A so that the phase current of the W phase can be detected. . Thereby, the phase current for two phases can be detected.
図15(C)は、図15(A)における上アームスイッチング素子U、上アームスイッチング素子WのON期間(Duty)を所定値δ以上削減し、U相の相電流及びW相の相電流を検出できるようにしたものである。これにより、2相分の相電流が検出できるようになる。
FIG. 15C shows that the ON period (Duty) of the upper arm switching element U and the upper arm switching element W in FIG. 15A is reduced by a predetermined value δ or more, and the U-phase phase current and the W-phase phase current are reduced. It can be detected. Thereby, the phase current for two phases can be detected.
上記ON期間(Duty)の所定値δ以上削減は、図15(B)におけるON期間(Duty)の所定値δ以上追加を、キャンセルするようになされる。即ち、図15(B)と図15(C)の双方を実行することで、PWM変調結果は、図15(A)の2回実行と同等になる。
The above reduction of the ON period (Duty) by a predetermined value δ or more cancels the addition of the ON period (Duty) of the ON period (Duty) or more by a predetermined value δ. That is, by executing both FIG. 15B and FIG. 15C, the PWM modulation result becomes equivalent to the two executions of FIG.
図15(B)、図15(C)を実行することで、2相分の相電流を検出しつつ、位置決め初期の電流を増加させることができる。図15(A)に示す通電期間は徐々に大きくされる。そして、位置決め初期は、おおよそ50mS実行される。キャリア周波数10kHz、キャリア周期100μSの場合、キャリア周期500回分となる。
15B and 15C are executed, the current at the initial stage of positioning can be increased while detecting phase currents for two phases. The energization period shown in FIG. 15A is gradually increased. Then, at the initial stage of positioning, approximately 50 mS is executed. When the carrier frequency is 10 kHz and the carrier cycle is 100 μS, the carrier cycle is 500 times.
図16(A)は、図17に示す位置決め定常期において、所定の一定電流が流れるように、通電期間を設定した場合である。位置決め初期の電流立ち上り後において、一定電流となる期間を位置決め定常期と定義する。
FIG. 16A shows a case where the energization period is set so that a predetermined constant current flows in the stationary positioning period shown in FIG. The period during which the current is constant after the current rising at the initial stage of positioning is defined as the stationary positioning period.
図13(A)と比べ、通電期間が短いが、これは、磁石回転子5が停止しており、固定子巻線4には誘起電圧が発生せず、同じ電流を流すためには通電期間が短くてよいからである。この状態では、シャント抵抗6による電流検出は、W相の相電流しか検出できない。そのための対応例が、図16(B)、図16(C)である。その方法は、基本的に運転時における図13と同じである。
Compared with FIG. 13A, the energization period is short, but this is because the magnet rotor 5 is stopped, no induced voltage is generated in the stator winding 4, and the energization period is used to flow the same current. This is because it may be short. In this state, the current detection by the shunt resistor 6 can detect only the W-phase current. The correspondence example for that is FIG. 16 (B) and FIG. 16 (C). The method is basically the same as FIG. 13 during operation.
図16(B)は、図16(A)における上アームスイッチング素子UのON期間(Duty)に所定値δ追加し、V相の相電流も検出できるようにしたものである。また、図16(C)は、図16(A)における上アームスイッチング素子UのON期間(Duty)を所定値δ削減し、U相の相電流も検出できるようにしたものである。これにより、2相分の相電流が検出できるようになる。そして、図16(B)と図16(C)の双方を実行することで、上アームスイッチング素子UのON期間(Duty)への所定値δ追加または削減がキャンセルされる。
FIG. 16B is a diagram in which a predetermined value δ is added to the ON period (Duty) of the upper arm switching element U in FIG. 16A so that the V-phase current can also be detected. FIG. 16C shows a case where the ON period (Duty) of the upper arm switching element U in FIG. 16A is reduced by a predetermined value δ so that the U-phase phase current can also be detected. Thereby, the phase current for two phases can be detected. Then, by executing both FIG. 16B and FIG. 16C, the addition or reduction of the predetermined value δ to the ON period (Duty) of the upper arm switching element U is cancelled.
図16(B)、図16(C)を実行することで、2相分の相電流を検出しつつ、位置決め定常期の一定電流を流すことができる。そして、おおよそ100mS実行される。キャリア周波数10kHz、キャリア周期100μSの場合、キャリア周期1000回分となる。
16B and 16C are executed, it is possible to flow a constant current in the stationary stationary phase while detecting phase currents for two phases. Then, approximately 100 ms is executed. When the carrier frequency is 10 kHz and the carrier cycle is 100 μS, the carrier cycle is 1000 times.
図17に、位置決めから運転に渡るW相の相電流を示す。位置決めには、電流が徐々に増加する初期と、電流が一定となる定常期がある。
Fig. 17 shows the phase current of the W phase from positioning to operation. Positioning includes an initial stage in which the current gradually increases and a stationary period in which the current is constant.
この定常期の電流に連続して、運転時の正弦波交流電流が流れる。図11の波形を正弦波交流電流に置き換えてみると(41をU相の電流、42をV相の電流、43をW相の電流)、位相330度が位置決め定常期の電流即ち運転スタートの電流に相当する。
¡Sine wave alternating current during operation flows following this steady-state current. When the waveform in FIG. 11 is replaced with a sinusoidal alternating current (41 is a U-phase current, 42 is a V-phase current, and 43 is a W-phase current), the phase 330 degrees is a positioning steady-state current, that is, an operation start. Corresponds to current.
位置決め定常期の電流に連続させるのは、安定して起動させるためである。位置決め電流を一旦OFFにすると、位置決めされた磁石回転子5の位置が動きかねないからでもある。磁石回転子5が回転を始めると、磁石回転子5により固定子巻線4に誘起電圧が発生するため、また、誘起電圧の位相に対する電流の位相が適切に制御されるため、正弦波交流電流の電流値は小さくなってゆく。
The reason why the current in the stationary positioning period is continued is to start up stably. This is because once the positioning current is turned off, the position of the positioned magnet rotor 5 may move. When the magnet rotor 5 starts rotating, an induced voltage is generated in the stator winding 4 by the magnet rotor 5 and the phase of the current with respect to the phase of the induced voltage is appropriately controlled. The current value of becomes smaller.
電流センサが一つのみの相電流検出方法を用いた上記従来のインバータ装置では、電流センサを2個乃至3個用い相電流を直接検出する他の方式に比べ、構成部品が少ないため、小型化が図れるとともに、耐振などの信頼性を向上させることができるなどの利点がある。
The conventional inverter device using the phase current detection method with only one current sensor is smaller in size because there are fewer components compared to other methods that directly detect the phase current using two or three current sensors. There is an advantage that reliability such as vibration resistance can be improved.
然しながら、2相分の相電流を検出できない場合には、一部の相において上アームスイッチング素子のON期間を増加もしくは減少させる通電補正が必要である。この通電補正により、PWM変調本来の電流に比較し、リップル電流が発生することとなる。このリップル電流は、電磁力となり、モータ11の固定子巻線4、メカ、ハウジングなどに作用し、騒音(振動)を発生させることとなる。ON期間の追加、削減はキャンセルされPWM変調結果は変わらないが、キャリア周期内においてリップル電流が発生する。
However, when phase currents for two phases cannot be detected, energization correction that increases or decreases the ON period of the upper arm switching element in some phases is necessary. By this energization correction, a ripple current is generated as compared with the original PWM modulation current. This ripple current becomes an electromagnetic force, acts on the stator winding 4 of the motor 11, the mechanism, the housing, and the like, and generates noise (vibration). The addition and reduction of the ON period are canceled and the PWM modulation result does not change, but a ripple current is generated within the carrier period.
特に、運転前の位置決め時においては、通電補正による影響が大きい。一つには、磁石回転子5は、回転していないため作動音が無く、リップル電流に起因する騒音が目立ちやすいためである。
Especially, the effect of energization correction is significant during positioning before operation. For one thing, the magnet rotor 5 does not rotate, so there is no operating noise and noise due to ripple current is easily noticeable.
二つには、通電期間が短く(磁石回転子5が停止しており、固定子巻線4には誘起電圧が発生せず、同じ電流を流すために通電期間が短くてよいため)、通電補正量が相対的に大きくなる(PWM変調本来の通電期間に対し、追加もしくは削減される電流を検出するために必要な最低限の所定時間δが相対的に大きくなる)ためである。
Secondly, the energization period is short (because the magnet rotor 5 is stopped and no induced voltage is generated in the stator winding 4 and the energization period may be short to allow the same current to flow). This is because the correction amount becomes relatively large (the minimum predetermined time δ necessary for detecting the current to be added or reduced with respect to the original energization period of PWM modulation becomes relatively large).
位置決め初期は、定常期に比べ、更に通電期間が短く影響が大きい。
¡In the initial stage of positioning, the energization period is shorter and the influence is greater than in the stationary period.
三つには、通電補正しない場合、1相(従来例では、W相)のみが直流電源のプラス側に接続されるのに対し、通電補正する場合、他の相(従来例では、U相、V相)も直流電源のプラス側に接続される瞬間があり、3相間の電流比率が瞬間変化する。これにより、磁石回転子5の位置が瞬間変動し、騒音(振動)を発生させるためである。
Third, when energization correction is not performed, only one phase (W phase in the conventional example) is connected to the positive side of the DC power supply, whereas when energization correction is performed, the other phase (U phase in the conventional example) is connected. , V phase) is also connected to the positive side of the DC power source, and the current ratio between the three phases changes instantaneously. This is because the position of the magnet rotor 5 instantaneously fluctuates and noise (vibration) is generated.
空調装置に用いられる電動圧縮機を、インバータ装置で駆動する場合、車両用においては、搭載スペース、重量などの制約により、防音箱などの装置を用いる事は困難である。
When an electric compressor used for an air conditioner is driven by an inverter device, it is difficult to use a device such as a soundproof box for a vehicle due to restrictions such as mounting space and weight.
本発明は、このような従来の課題を解決するものであり、位置決め時の騒音が小さいインバータ装置及び低騒音の電動圧縮機及び車両を提供することを目的とする。
The present invention solves such a conventional problem, and an object of the present invention is to provide an inverter device with low noise during positioning, an electric compressor with low noise, and a vehicle.
上記従来の課題を解決するために、本発明のインバータ装置は、直流電源のプラス側に接続される上アームスイッチング素子と前記直流電源のマイナス側に接続される下アームスイッチング素子とを備えたインバータ回路と、前記直流電源と前記インバータ回路間の電流を検出する電流センサと、前記インバータ回路にPWM変調の通電により駆動電流をモータへ出力すると共に、前記通電に補正をして前記電流センサにより相電流を検出する制御回路とを備え、前記制御回路は、前記モータの運転前における磁石回転子の位置決めを行う位置決め期間のうち、一部の期間にのみ通電補正をして相電流検出を行うもので、通電補正の影響が大きい位置決め時の騒音を抑制することができる。
In order to solve the above-described conventional problems, an inverter device according to the present invention includes an upper arm switching element connected to the positive side of a DC power supply and a lower arm switching element connected to the negative side of the DC power supply. A circuit, a current sensor for detecting a current between the DC power source and the inverter circuit, and a drive current is output to the motor by energization of the PWM modulation to the inverter circuit, and the current sensor corrects the energization and outputs a phase by the current sensor. A control circuit for detecting current, and the control circuit performs phase current detection by correcting energization only during a part of the positioning period for positioning the magnet rotor before operation of the motor. Thus, it is possible to suppress noise during positioning that is greatly affected by the energization correction.
また、本発明の電動圧縮機は、圧縮機構部と、前記圧縮機構部を駆動するモータとを備え、前記モータを、本発明のインバータ装置で駆動するもので、電動圧縮機で発生する騒音が低減されるので、この電動圧縮機を、ルームエアコン、カーエアコンなど騒音が認識されやすい機器に用いることで、低騒音化による効果が大である。
The electric compressor of the present invention includes a compression mechanism section and a motor that drives the compression mechanism section, and the motor is driven by the inverter device of the present invention, and noise generated by the electric compressor is reduced. Since the electric compressor is used for a device in which noise is easily recognized, such as a room air conditioner and a car air conditioner, the effect of reducing noise is great.
また、本発明の車両は、本発明の電動圧縮機を搭載したもので、車両用においては、電動圧縮機の搭載スペースに制約があり小型化が必要で、走行による振動に対する耐振性も必要なため、シャント抵抗など1個の電流センサにより電流検出するインバータ装置を用いた電動圧縮機は有用である。また、車両内では、騒音が認識されやすいため、本発明の電動圧縮機を用いることによる低騒音効果は大きい。
Further, the vehicle of the present invention is equipped with the electric compressor of the present invention. For vehicles, the mounting space of the electric compressor is limited, and it is necessary to reduce the size, and vibration resistance against vibration caused by traveling is also necessary. Therefore, an electric compressor using an inverter device that detects current with a single current sensor such as a shunt resistor is useful. Moreover, since noise is easily recognized in the vehicle, the low noise effect by using the electric compressor of the present invention is great.
本発明のインバータ装置は、通電補正による位置決め時の騒音を抑制しつつ、単一の電流センサによる相電流の検出が可能であり、低騒音と小型化を両立できる。また、本発明の電動圧縮機及び車両は、低騒音である。
The inverter device of the present invention can detect the phase current with a single current sensor while suppressing noise during positioning by energization correction, and can achieve both low noise and downsizing. Moreover, the electric compressor and vehicle of the present invention are low noise.
1 バッテリー(直流電源)
2 スイッチング素子
3 ダイオード
4 固定子巻線
5 磁石回転子
6 シャント抵抗(電流センサ)
7 制御回路
10 インバータ回路
11 センサレスDCブラシレスモータ(モータ)
12 制御回路
22 インバータ装置
40 電動圧縮機
60 車両
61 インバータ装置一体型電動圧縮機 1 Battery (DC power supply)
2Switching element 3 Diode 4 Stator winding 5 Magnet rotor 6 Shunt resistance (current sensor)
7Control circuit 10 Inverter circuit 11 Sensorless DC brushless motor (motor)
DESCRIPTION OFSYMBOLS 12 Control circuit 22 Inverter apparatus 40 Electric compressor 60 Vehicle 61 Inverter apparatus integrated electric compressor
2 スイッチング素子
3 ダイオード
4 固定子巻線
5 磁石回転子
6 シャント抵抗(電流センサ)
7 制御回路
10 インバータ回路
11 センサレスDCブラシレスモータ(モータ)
12 制御回路
22 インバータ装置
40 電動圧縮機
60 車両
61 インバータ装置一体型電動圧縮機 1 Battery (DC power supply)
2
7
DESCRIPTION OF
第1の発明は、直流電源のプラス側に接続される上アームスイッチング素子と前記直流電源のマイナス側に接続される下アームスイッチング素子とを備えたインバータ回路と、前記直流電源と前記インバータ回路間の電流を検出する電流センサと、前記インバータ回路にPWM変調の通電により駆動電流をモータへ出力すると共に、前記通電に補正をして前記電流センサにより相電流を検出する制御回路とを備え、前記制御回路は、前記モータの運転前における磁石回転子の位置決めを行う位置決め期間のうち、一部の期間にのみ通電補正をして相電流検出を行うもので、通電補正の影響が大きい位置決め時の騒音を抑制することができる。
According to a first aspect of the present invention, there is provided an inverter circuit including an upper arm switching element connected to a plus side of a DC power source and a lower arm switching element connected to a minus side of the DC power source, and between the DC power source and the inverter circuit And a control circuit that outputs a drive current to the motor by energization of PWM modulation to the inverter circuit, corrects the energization, and detects a phase current by the current sensor, The control circuit detects the phase current by performing energization correction only during a part of the positioning period in which the magnet rotor is positioned before the motor is operated. Noise can be suppressed.
第2の発明は、特に、第1の発明の前記制御回路が、通電補正により検出された相電流が所定値以上となった場合、前記通電補正を行わないもので、定常期の位置決め電流を所定の電流値に制御できるので、安定した起動を行うことができる。
In the second invention, in particular, the control circuit of the first invention does not perform the energization correction when the phase current detected by the energization correction exceeds a predetermined value. Since it can be controlled to a predetermined current value, stable start-up can be performed.
第3の発明は、特に、第2の発明の前記制御回路が、前記位置決め期間である位置決め初期と位置決め定常期のうち、前記位置決め定常期では前記通電補正を行わないもので、通電補正の影響が大きい位置決め時の騒音を抑制することができる。
In the third aspect of the invention, in particular, the control circuit of the second aspect of the invention does not perform the energization correction in the stationary positioning period among the initial positioning period and the stationary stationary period as the positioning period. Noise during positioning can be suppressed.
第4の発明は、特に、第2の発明の通電補正開始を、位置決め初期の後半以降とするもので、位置決め時においては、通電補正量がPWM変調本来の通電期間に比較し相対的に大きいこと等により、通電補正の騒音への影響が大きい。中でも、位置決め初期の電流立ち上り期間は、電流を徐々に増加させるために定常期よりも通電期間が小さく設定されているため、また、1相だけでなく2相において通電補正が必要になるため、尚一層通電補正の騒音への影響が大きい。そのため、通電補正開始を、位置決め電流の立ち上がり後半以降とすることで位置決め時の騒音を大きく抑制することができる。
In the fourth invention, in particular, the energization correction start of the second invention is after the latter half of the initial stage of positioning. At the time of positioning, the energization correction amount is relatively large compared to the original energization period of PWM modulation. For this reason, the effect of current correction on noise is large. Among them, since the current rising period in the initial stage of positioning is set to be shorter than the stationary period in order to gradually increase the current, and it is necessary to correct energization not only in one phase but also in two phases. In addition, the effect of current correction on noise is large. Therefore, noise during positioning can be greatly suppressed by starting energization correction after the latter half of the rising of the positioning current.
第5の発明は、特に、第2の発明の前記電流センサがシャント抵抗であり、前記制御回路が前記シャント抵抗からの電圧により、相電流を検出するもので、小型化や耐震性の向上が実現しやすいものである。
In the fifth invention, in particular, the current sensor of the second invention is a shunt resistor, and the control circuit detects a phase current based on a voltage from the shunt resistor. It is easy to realize. *
第6の発明に係る電動圧縮機は、圧縮機構部と、前記圧縮機構部を駆動するモータとを備え、前記モータを、第1~第5の発明のインバータ装置で駆動するもので、電動圧縮機で発生する騒音が低減されるので、この電動圧縮機を、ルームエアコン、カーエアコンなど騒音が認識されやすい機器に用いることで、低騒音化による効果が大である。
An electric compressor according to a sixth aspect of the present invention comprises a compression mechanism section and a motor that drives the compression mechanism section, and the motor is driven by the inverter device of the first to fifth aspects of the invention. Since the noise generated in the machine is reduced, the use of this electric compressor in equipment that easily recognizes noise, such as room air conditioners and car air conditioners, has the effect of reducing noise.
第7の発明に係る車両は、第6の発明の電動圧縮機を搭載したもので、車両用においては、電動圧縮機の搭載スペースに制約があり小型化が必要で、走行による振動に対する耐振性も必要なため、シャント抵抗など1個の電流センサにより電流検出するインバータ装置を用いた電動圧縮機は有用である。また、車両内では、騒音が認識されやすいため、本発明の電動圧縮機を用いることによる低騒音効果は大きい。
The vehicle according to the seventh invention is equipped with the electric compressor according to the sixth invention, and for vehicles, there is a limitation in the mounting space of the electric compressor, and it is necessary to reduce the size. Therefore, an electric compressor using an inverter device that detects current using a single current sensor such as a shunt resistor is useful. Moreover, since noise is easily recognized in the vehicle, the low noise effect by using the electric compressor of the present invention is great.
以下、本発明の実施の形態について、図面を参照しながら説明する。尚、この実施の形態によって本発明が限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiment.
(実施の形態1)
本発明の実施の形態1に係るインバータ装置について図1~5を用いて説明する。図1は、本実施の形態に係るインバータ装置とその周辺の電気回路である。 (Embodiment 1)
An inverter device according toEmbodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 shows an inverter device according to the present embodiment and a peripheral electric circuit.
本発明の実施の形態1に係るインバータ装置について図1~5を用いて説明する。図1は、本実施の形態に係るインバータ装置とその周辺の電気回路である。 (Embodiment 1)
An inverter device according to
図1において、本実施の形態におけるインバータ装置22の制御回路7は、シャント抵抗6からの電圧により、相電流を検出する。2相分の相電流を検出すれば、残りの相の相電流は、当該2個の電流値から演算できる(固定子巻線4の中性点において、キルヒホッフの電流の法則を適用する)。
In FIG. 1, the control circuit 7 of the inverter device 22 in the present embodiment detects the phase current based on the voltage from the shunt resistor 6. If phase currents for two phases are detected, the phase currents for the remaining phases can be calculated from the two current values (Kirchhoff's current law is applied at the neutral point of the stator winding 4).
運転時においては、制御回路7が、これら3相分の電流値に基づき、モータ11を構成する磁石回転子5による固定子巻線4の誘起電圧を演算し、磁石回転子5の位置検出を行う。そして、この位置検出、回転数指令信号(図示せず)等に基づき、インバータ回路10を構成するスイッチング素子2を制御し、バッテリー1からの直流電圧を、PWM変調でスイッチングすることにより、正弦波状の交流電流を、モータ11の固定子巻線4へ出力する。
During operation, the control circuit 7 calculates the induced voltage of the stator winding 4 by the magnet rotor 5 constituting the motor 11 based on the current values for these three phases, and detects the position of the magnet rotor 5. Do. Then, based on this position detection, rotation speed command signal (not shown), etc., the switching element 2 constituting the inverter circuit 10 is controlled, and the DC voltage from the battery 1 is switched by PWM modulation, so that a sine wave shape is obtained. Is output to the stator winding 4 of the motor 11.
インバータ回路10を構成するダイオード3は、固定子巻線4に流れる電流の循環ルートとなる。スイッチング素子2について、上アームスイッチング素子をU、V、W、下アームスイッチング素子をX、Y、Zと定義し、また、各スイッチング素子U、V、W、X、Y、Zに対応するダイオードを、3U、3V、3W、3X、3Y、3Zと定義する。
The diode 3 constituting the inverter circuit 10 serves as a circulation route for the current flowing through the stator winding 4. For the switching element 2, upper arm switching elements are defined as U, V, W, and lower arm switching elements are defined as X, Y, Z, and diodes corresponding to the switching elements U, V, W, X, Y, Z Is defined as 3U, 3V, 3W, 3X, 3Y, 3Z.
電流センサとしては、シャント抵抗6に限らず、ホール素子を用いた電流センサなど瞬時ピーク電流が検出できるものであれば良い。また、電源ラインのプラス側に設けても良い。シャント抵抗6ならば、小型化や耐振性の向上が実現し易い。
The current sensor is not limited to the shunt resistor 6 and may be any sensor that can detect an instantaneous peak current, such as a current sensor using a Hall element. Further, it may be provided on the positive side of the power supply line. If the shunt resistor 6 is used, it is easy to reduce the size and improve the vibration resistance.
制御回路7は、上アームスイッチング素子U、V、W、下アームスイッチング素子X、Y、Zと、ドライブ回路などを介して接続線18により接続されており、各スイッチング素子を制御している。スイッチング素子2がIGBT、パワーMOSFETの場合は、ゲート電圧を、パワートランジスタの場合はベース電流をそれぞれ制御する。
The control circuit 7 is connected to the upper arm switching elements U, V, W, and the lower arm switching elements X, Y, Z by a connection line 18 via a drive circuit or the like, and controls each switching element. When the switching element 2 is an IGBT or a power MOSFET, the gate voltage is controlled. When the switching element 2 is a power transistor, the base current is controlled.
モータ11の運転前における磁石回転子5の位置決め時における通電について以下説明する。モータ11の磁石回転子5が回転している運転時の通電については、従来の技術と同様である。
The energization at the time of positioning of the magnet rotor 5 before the operation of the motor 11 will be described below. About the electricity supply at the time of the driving | operation which the magnet rotor 5 of the motor 11 is rotating, it is the same as that of the prior art.
図2(A)は、4極の場合において、固定子巻線4のU相とV相をS極に、W相をN極にして、磁石回転子5を位置決めする場合を示している。固定子巻線4のS極には、磁石回転子5のN極が、固定子巻線4のN極には、磁石回転子5のS極が、それぞれ対向して停止することにより、位置決めされる。
FIG. 2 (A) shows a case where the magnet rotor 5 is positioned with the U and V phases of the stator winding 4 as the S pole and the W phase as the N pole in the case of 4 poles. Positioning is performed by stopping the north pole of the magnet rotor 5 on the south pole of the stator winding 4 and the south pole of the magnet rotor 5 facing each other on the north pole of the stator winding 4. Is done.
このとき、制御回路7は、図2(B)に示す如く、固定子巻線4のW相からU相及びV相へ電流が流れるように、スイッチング素子2を制御する。但し、通電補正をして相電流検出を行う期間は一部の期間に制限する。
At this time, the control circuit 7 controls the switching element 2 so that current flows from the W phase to the U phase and the V phase of the stator winding 4 as shown in FIG. However, the period during which the current correction is performed and the phase current is detected is limited to a part of the period.
図3((B)及び(C))、図4((B)及び(C))に、上記位置決めにおける1キャリア内(キャリア周期)での上アームスイッチング素子U、V、WのON期間(Duty)を表示している。そして、位置決めから運転に渡るW相の相電流を図5に示す。
3 ((B) and (C)) and FIG. 4 ((B) and (C)), the ON period of the upper arm switching elements U, V, W within one carrier (carrier cycle) in the positioning ( Duty) is displayed. FIG. 5 shows the W-phase current from the positioning to the operation.
図3(A)は、図5に示す位置決め初期において、電流を徐々に増加させるため、通電期間を小さく設定した場合である。位置決めスタートから電流が立ち上がりきるまでの期間を位置決め初期と定義する。位置決め初期において、この通電期間は徐々に大きくされる。この状態では、シャント抵抗6による電流検出はできない。そのための対応例が、図3(B)、図3(C)である。
FIG. 3A shows a case where the energization period is set small in order to gradually increase the current in the initial positioning shown in FIG. The period from the start of positioning until the current rises is defined as the initial positioning. In the initial stage of positioning, this energization period is gradually increased. In this state, current detection by the shunt resistor 6 cannot be performed. The correspondence example for that is FIG. 3 (B) and FIG. 3 (C).
図3(B)は、図3(A)における上アームスイッチング素子UのON期間(Duty)のキャリア周期後半(右側)に、所定値δ以上を追加しU相の相電流を検出できるように、また、図3(A)における上アームスイッチング素子WのON期間(Duty)のキャリア周期前半(左側)に、所定値δ以上を追加しW相の相電流を検出できるようにしたものである。これにより、2相分の相電流が検出できるようになる。
FIG. 3B shows that the U-phase current can be detected by adding a predetermined value δ or more to the latter half (right side) of the carrier period in the ON period (Duty) of the upper arm switching element U in FIG. In addition, a predetermined value δ or more is added to the first half (left side) of the carrier period in the ON period (Duty) of the upper arm switching element W in FIG. 3A so that the phase current of the W phase can be detected. . Thereby, the phase current for two phases can be detected.
図3(C)は、図3(A)における上アームスイッチング素子U、上アームスイッチング素子WのON期間(Duty)を所定値δ以上削減し、U相の相電流及びW相の相電流を検出できるようにしたものである。
FIG. 3C shows that the ON period (Duty) of the upper arm switching element U and the upper arm switching element W in FIG. 3A is reduced by a predetermined value δ or more, and the U-phase phase current and the W-phase phase current are reduced. It can be detected.
これにより、2相分の相電流が検出できるようになる。上記ON期間(Duty)の所定値δ以上削減は、図3(B)におけるON期間(Duty)の所定値δ以上追加を、キャンセルするようになされる。即ち、図3(B)と図3(C)の双方を実行することで、PWM変調結果は、図3(A)の2回実行と同等になる。
This makes it possible to detect the phase current for two phases. The reduction of the ON period (Duty) by a predetermined value δ or more cancels the addition of the ON period (Duty) by a predetermined value δ or more in FIG. That is, by executing both FIG. 3 (B) and FIG. 3 (C), the PWM modulation result becomes equivalent to the two executions of FIG. 3 (A).
図3(B)、図3(C)を実行することで、2相分の相電流を検出しつつ、位置決め初期の電流を増加させることができる。図3(A)に示す通電期間は徐々に大きくされる。
3B and 3C are executed, the current at the initial stage of positioning can be increased while detecting the phase current for two phases. The energization period shown in FIG.
この通電期間が徐々に大きくなり、検出された相電流が所定値以上になると通電補正を停止する。この位置決め初期は、おおよそ50mS実行される。キャリア周波数10kHz、キャリア周期100μSの場合、キャリア周期500回分となる。
通電 The energization correction is stopped when the energization period gradually increases and the detected phase current exceeds a predetermined value. The initial positioning is performed for approximately 50 ms. When the carrier frequency is 10 kHz and the carrier cycle is 100 μS, the carrier cycle is 500 times.
図4(A)は、図5に示す位置決め定常期において、所定の一定電流が流れるように、通電期間を設定した場合である。位置決め初期の電流立ち上り後において、一定電流となる期間を、位置決め定常期と定義する。この期間では通電補正を行わない。即ち、図4(B)及び図4(C)は、図4(A)と同じである。
FIG. 4A shows a case where the energization period is set so that a predetermined constant current flows in the stationary positioning period shown in FIG. A period in which the current is constant after the current rising at the initial stage of positioning is defined as a stationary positioning period. During this period, energization correction is not performed. That is, FIG. 4B and FIG. 4C are the same as FIG.
そして、おおよそ100mS実行される。キャリア周波数10kHz、キャリア周期100μSの場合、キャリア周期1000回分となる。
Then, it is executed for about 100 ms. When the carrier frequency is 10 kHz and the carrier cycle is 100 μS, the carrier cycle is 1000 times.
位置決め期間である初期と定常期の内、定常期で通電補正を行わないことにより、騒音を抑制しつつ、位置決め電流を制御できるので、確実な起動を行うことができる。
¡By not conducting the energization correction in the stationary period during the initial period and the stationary period, which is the positioning period, the positioning current can be controlled while suppressing noise, so that reliable startup can be performed.
(実施の形態2)
図6(A)は、本発明の実施の形態2におけるインバータ装置の位置決め初期における通電例を示す説明図、図6(B)は、同位置決め初期における通電例を示す説明図、図6(C)は、同インバータ装置の通電補正を示す説明図、図7は、同インバータ装置の位置決めから運転に渡るW相の相電流説明図である。なお、上記実施の形態1におけるインバータ装置と同一部分には、同一符号を付してその説明を省略する。 (Embodiment 2)
6A is an explanatory diagram showing an example of energization at the initial stage of positioning of the inverter device according toEmbodiment 2 of the present invention, FIG. 6B is an explanatory diagram showing an example of energization at the initial stage of positioning, and FIG. ) Is an explanatory diagram showing current correction of the inverter device, and FIG. 7 is an explanatory diagram of a W-phase phase current from positioning to operation of the inverter device. The same parts as those of the inverter device in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
図6(A)は、本発明の実施の形態2におけるインバータ装置の位置決め初期における通電例を示す説明図、図6(B)は、同位置決め初期における通電例を示す説明図、図6(C)は、同インバータ装置の通電補正を示す説明図、図7は、同インバータ装置の位置決めから運転に渡るW相の相電流説明図である。なお、上記実施の形態1におけるインバータ装置と同一部分には、同一符号を付してその説明を省略する。 (Embodiment 2)
6A is an explanatory diagram showing an example of energization at the initial stage of positioning of the inverter device according to
本実施の形態におけるインバータ装置における位置決め定常期は、上記実施の形態1におけるそれと同じ(図4参照)なので、位置決め初期について説明する。
Since the stationary stationary period in the inverter device in the present embodiment is the same as that in the first embodiment (see FIG. 4), the initial positioning will be described.
図6(A)は、位置決め初期において、電流を徐々に増加させるため、通電期間を小さく設定した場合である。位置決め初期において、この通電期間は、図6(B)、図6(C)に示すように、徐々に大きくされる。
FIG. 6A shows a case where the energization period is set to be small in order to gradually increase the current at the initial stage of positioning. In the initial stage of positioning, this energization period is gradually increased as shown in FIGS. 6 (B) and 6 (C).
即ち、位置決め初期は、図6(A)、図6(B)、図6(C)により構成される。特に、図6(A)、図6(B)を位置決め初期前半、図6(C)を位置決め初期後半と定義する。ここでは、電流が立ち上がりきるまでの時間(位置決め初期)は、おおよそ50mSであるが、これは、定常期の電流値に到達するまでの時間である。
That is, the initial positioning is configured by FIG. 6 (A), FIG. 6 (B), and FIG. 6 (C). In particular, FIGS. 6A and 6B are defined as the first half of the initial positioning, and FIG. 6C is defined as the second half of the initial positioning. Here, the time until the current rises up (initial positioning) is approximately 50 mS, but this is the time until the current value in the stationary phase is reached.
ここで、位置決め初期の前半の25mSを位置決め初期前半、後半の25mSを位置決め初期後半としている。図7にこのときの相電流の様子を示す。位置決め初期の期間では、定常期よりも通電期間が小さく設定されているため、尚一層、通電補正の騒音への影響が大きい。
Here, the first 25 mS in the first half of positioning is the first half of the initial positioning, and the second half 25 mS is the second half of the initial positioning. FIG. 7 shows the phase current at this time. In the initial period of positioning, since the energization period is set to be shorter than that in the stationary period, the effect of the energization correction on the noise is even greater.
この位置決め初期前半を、通電補正を行わない期間とすることにより、位置決め時の騒音を大きく抑制することができる。位置決め初期後半では、通電補正を行なう期間としているが、位置決め電流を所定の電流に到達後、通電補正を停止するので、騒音を抑制しつつ、位置決め電流を制御できるので、確実な起動を行うことができる。
The noise during positioning can be greatly suppressed by setting the initial first half of the positioning as a period during which no energization correction is performed. In the second half of the initial positioning, the period for performing energization correction is set. However, since the energization correction is stopped after the positioning current reaches the predetermined current, the positioning current can be controlled while suppressing noise, so that reliable start-up is performed. Can do.
尚、上記実施の形態1、2において、固定子巻線4のU相とV相をS極に、W相をN極にして、4極の磁石回転子5を位置決めする場合を示したが、これに限るものではなく、固定子巻線4のS極N極の相は任意であり、2極、6極等にも、また、固定子巻線4の2相のみに電流を流す場合にも適用できる(2相をW相、U相とすれば例えば、位相300度に相当する)。相電流を検出するための通電補正は上記に限らず、常に3相分検出、キャリア周期の前半のみで検出など任意である。また、位置決め初期前半、位置決め初期後半を時間で定義したが、DUTY値で定義しても同様である。
In the first and second embodiments, the U-phase and V-phase of the stator winding 4 are set to the S pole, and the W-phase is set to the N pole. However, the present invention is not limited to this, and the phase of the S pole and the N pole of the stator winding 4 is arbitrary, and the current flows only to the two poles, the six poles, and the two phases of the stator winding 4. (If the two phases are the W phase and the U phase, for example, it corresponds to a phase of 300 degrees). The energization correction for detecting the phase current is not limited to the above, but may be any detection such as detection for three phases, detection only in the first half of the carrier cycle. In addition, the first half of positioning and the second half of initial positioning are defined by time, but the same is true if they are defined by DUTY values.
(実施の形態3)
図8は、本発明の実施の形態3における電動圧縮機の断面図である。なお、上記実施の形態におけるインバータ装置と同一部分には、同一符号を付してその説明を省略する。 (Embodiment 3)
FIG. 8 is a cross-sectional view of the electric compressor according toEmbodiment 3 of the present invention. In addition, the same code | symbol is attached | subjected to the same part as the inverter apparatus in the said embodiment, and the description is abbreviate | omitted.
図8は、本発明の実施の形態3における電動圧縮機の断面図である。なお、上記実施の形態におけるインバータ装置と同一部分には、同一符号を付してその説明を省略する。 (Embodiment 3)
FIG. 8 is a cross-sectional view of the electric compressor according to
図8において、本実施の形態における電動圧縮機40の金属製筐体32の中には、圧縮機構部28、モータ11等が設置され、また、電動圧縮機40の右側面には、上記実施の形態におけるインバータ装置22を内蔵したケース30が密着させて取り付けられている。
In FIG. 8, the compression mechanism 28, the motor 11, and the like are installed in the metal casing 32 of the electric compressor 40 in the present embodiment, and the above-described implementation is provided on the right side surface of the electric compressor 40. The case 30 containing the inverter device 22 in the form is attached in close contact.
冷媒は、吸入口33から吸入され、圧縮機構部28(この例では、スクロール)がモータ11で駆動されることにより、圧縮される。この圧縮された冷媒は、モータ11を通過する際にモータ11を冷却し、吐出口34より吐出される。
The refrigerant is sucked from the suction port 33 and is compressed by driving the compression mechanism 28 (in this example, scroll) by the motor 11. The compressed refrigerant cools the motor 11 when passing through the motor 11 and is discharged from the discharge port 34.
発熱源となるインバータ回路10は、低圧配管38を介して低圧冷媒で冷却される。電動圧縮機40の内部で、モータ11の固定子巻線4に接続されているターミナル39は、インバータ回路10の出力部に接続される。保持部35でインバータ装置22に固定される接続線36には、バッテリー1への電源線と回転数信号を送信するエアコンコントローラ(図示せず)との信号線(図示せず)がある。
The inverter circuit 10 serving as a heat source is cooled by the low-pressure refrigerant via the low-pressure pipe 38. Inside the electric compressor 40, the terminal 39 connected to the stator winding 4 of the motor 11 is connected to the output part of the inverter circuit 10. The connection line 36 fixed to the inverter device 22 by the holding unit 35 includes a power line to the battery 1 and a signal line (not shown) to an air conditioner controller (not shown) that transmits a rotation speed signal.
電動圧縮機40は、ルームエアコン、カーエアコンなどに使用されるため、ユーザにその騒音が認識されやすい。そのため、低騒音化できる本発明の効果が大きい。また、上記のようなインバータ装置一体型電動圧縮機では、インバータ装置22が小さいこと、振動に強いことが必要になる。そのため、シャント抵抗6など1個の電流センサにより電流検出し、低騒音を実現する本発明の実施の形態として好適である。
Since the electric compressor 40 is used for a room air conditioner, a car air conditioner, etc., the noise is easily recognized by the user. Therefore, the effect of the present invention that can reduce noise is great. Moreover, in the inverter apparatus integrated electric compressor as described above, the inverter apparatus 22 needs to be small and resistant to vibration. Therefore, it is suitable as an embodiment of the present invention in which current is detected by one current sensor such as the shunt resistor 6 and low noise is realized.
尚、上記実施の形態において、電動圧縮機40の圧縮機構部28をスクロールとしたが、これに限るものではない。また、圧縮された冷媒がモータ11を冷却する高圧型について示したが、低圧型でもよい。
In the above-described embodiment, the compression mechanism 28 of the electric compressor 40 is a scroll. However, the present invention is not limited to this. Moreover, although the compressed refrigerant showed about the high pressure type which cools the motor 11, a low pressure type may be sufficient.
(実施の形態4)
図9は、本発明の実施の形態4における車両の模式図である。なお、上記実施の形態におけるインバータ装置又は電動圧縮機と同一部分には、同一符号を付してその説明を省略する。 (Embodiment 4)
FIG. 9 is a schematic diagram of a vehicle in the fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part as the inverter apparatus or electric compressor in the said embodiment, and the description is abbreviate | omitted.
図9は、本発明の実施の形態4における車両の模式図である。なお、上記実施の形態におけるインバータ装置又は電動圧縮機と同一部分には、同一符号を付してその説明を省略する。 (Embodiment 4)
FIG. 9 is a schematic diagram of a vehicle in the fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part as the inverter apparatus or electric compressor in the said embodiment, and the description is abbreviate | omitted.
本実施の形態における車両60は、上記実施の形態3における電動圧縮機40とインバータ装置22とが一体化されたインバータ装置一体型電動圧縮機61と、室外熱交換器63と、室外ファン62が、車両60の前方のエンジンルーム68(乃至モータルーム)に搭載されている。
The vehicle 60 in the present embodiment includes an inverter device integrated electric compressor 61 in which the electric compressor 40 and the inverter device 22 in the third embodiment are integrated, an outdoor heat exchanger 63, and an outdoor fan 62. It is mounted in the engine room 68 (or motor room) in front of the vehicle 60.
一方、車両室内69には、室内送風ファン65、室内熱交換器67、エアコンコントローラ64が配置されている。空気導入口66から車外空気を吸込み、室内熱交換器67で熱交換した空気を車室内に吹き出す。
On the other hand, an indoor fan 65, an indoor heat exchanger 67, and an air conditioner controller 64 are arranged in the vehicle interior 69. Air outside the vehicle is sucked from the air inlet 66 and the air heat-exchanged by the indoor heat exchanger 67 is blown out into the vehicle interior.
車両60、特に電気自動車やハイブリッドカーにおいては、走行性能確保、搭載性の面から、車両用空調装置にも小型軽量が求められ、その中でも重量があり、しかも狭いエンジンルーム68内やその他のスペースに取り付けられる電動圧縮機の小型軽量化は重要課題である。また、モータ(図示せず)による走行においては静粛性が高く、電動圧縮機に低騒音が求められる。走行時などの振動に対する耐振性も必要である。
In the vehicle 60, particularly an electric vehicle and a hybrid car, the vehicle air conditioner is required to be small and light from the viewpoint of securing traveling performance and mounting properties, and among them, the weight is heavy, and the interior of the engine room 68 and other spaces are small. It is important to reduce the size and weight of the electric compressor attached to the motor. In addition, when traveling by a motor (not shown), the quietness is high, and low noise is required for the electric compressor. It is also necessary to have vibration resistance against vibration during traveling.
本実施の形態におけるインバータ装置一体型電動圧縮機61に使用されるインバータ装置22は、上記各実施の形態に示すシャント抵抗6など電流センサ1個の構成により、小型化と耐振性が実現でき、低騒音も達成できる。従って、上記実施の形態におけるインバータ装置22は、これら車両60用として大変好適である。
The inverter device 22 used in the inverter device-integrated electric compressor 61 in the present embodiment can achieve downsizing and vibration resistance due to the configuration of one current sensor such as the shunt resistor 6 shown in the above embodiments, Low noise can also be achieved. Therefore, the inverter device 22 in the above embodiment is very suitable for the vehicle 60.
尚、上記各実施の形態において、直流電源をバッテリーとしたが、これに限るものではなく、商用交流電源を整流した直流電源などでもよい。モータ11をセンサレスDCブラシレスモータとしたが、リラクタンスモータ等位置決め必要なモータに適用できる。正弦波駆動に限らず位置決め時に相電流の検出が必要となる駆動方式に適用できる。また、PWM2相変調においても適用できる。
In each of the above embodiments, the DC power source is a battery. However, the present invention is not limited to this, and a DC power source rectified from a commercial AC power source may be used. Although the motor 11 is a sensorless DC brushless motor, it can be applied to a motor that requires positioning, such as a reluctance motor. The present invention is not limited to sinusoidal driving, and can be applied to a driving method that requires detection of phase current during positioning. It can also be applied to PWM two-phase modulation.
以上のように、本発明にかかるインバータ装置は、通電補正による位置決め時の騒音を抑制しつつ、単一の電流センサによる相電流の検出が可能であり、安定した起動を行うことができる。また、小型で耐振などの信頼性を向上できるので、各種民生用製品、各種産業用機器に適用できる。
As described above, the inverter device according to the present invention can detect a phase current with a single current sensor while suppressing noise during positioning by energization correction, and can perform stable start-up. In addition, since it is small and can improve reliability such as vibration resistance, it can be applied to various consumer products and various industrial equipment.
Claims (7)
- 直流電源のプラス側に接続される上アームスイッチング素子と前記直流電源のマイナス側に接続される下アームスイッチング素子とを備えたインバータ回路と、
前記直流電源と前記インバータ回路間の電流を検出する電流センサと、
前記インバータ回路にPWM変調の通電により駆動電流をモータへ出力すると共に、前記通電に補正をして前記電流センサにより相電流を検出する制御回路とを備え、
前記制御回路は、前記モータの運転前における磁石回転子の位置決めを行う位置決め期間のうち、一部の期間にのみ通電補正をして相電流検出を行うことを特徴とするインバータ装置。 An inverter circuit comprising an upper arm switching element connected to the positive side of the DC power source and a lower arm switching element connected to the negative side of the DC power source;
A current sensor for detecting a current between the DC power supply and the inverter circuit;
A drive circuit that outputs a drive current to the motor by energization of PWM modulation to the inverter circuit, and a control circuit that corrects the energization and detects a phase current by the current sensor;
The control device performs phase current detection by performing energization correction only during a part of a positioning period in which the magnet rotor is positioned before the motor is operated. - 前記制御回路は、通電補正により検出された相電流が所定値以上となった場合、前記通電補正を行わないことを特徴とする請求項1に記載のインバータ装置。 The inverter device according to claim 1, wherein the control circuit does not perform the energization correction when the phase current detected by the energization correction becomes a predetermined value or more.
- 前記制御回路は、前記位置決め期間である位置決め初期と位置決め定常期のうち、前記位置決め定常期では前記通電補正を行わないことを特徴とする請求項2に記載のインバータ装置。 3. The inverter device according to claim 2, wherein the control circuit does not perform the energization correction in the stationary positioning period among the initial positioning period and the stationary stationary period, which are the positioning periods.
- 通電補正開始を、位置決め初期の後半以降とする請求項2に記載のインバータ装置。 The inverter device according to claim 2, wherein the energization correction is started after the latter half of the initial positioning.
- 前記電流センサがシャント抵抗であり、
前記制御回路が前記シャント抵抗からの電圧により、相電流を検出することを特徴とする請求項2に記載のインバータ装置。 The current sensor is a shunt resistor;
The inverter device according to claim 2, wherein the control circuit detects a phase current based on a voltage from the shunt resistor. - 圧縮機構部と、前記圧縮機構部を駆動するモータとを備え、
前記モータを、請求項1~5の何れかに記載のインバータ装置で駆動することを特徴とする電動圧縮機。 A compression mechanism, and a motor that drives the compression mechanism,
An electric compressor, wherein the motor is driven by the inverter device according to any one of claims 1 to 5. - 請求項6に記載の電動圧縮機を搭載した車両。 A vehicle equipped with the electric compressor according to claim 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011197964 | 2011-09-12 | ||
JP2011-197964 | 2011-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013038612A1 true WO2013038612A1 (en) | 2013-03-21 |
Family
ID=47882865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/005555 WO2013038612A1 (en) | 2011-09-12 | 2012-09-03 | Inverter device, electrically-operated compressor and vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013038612A1 (en) |
WO (1) | WO2013038612A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180079795A (en) * | 2017-01-02 | 2018-07-11 | 엘지전자 주식회사 | Apparatus for controlling motor and control method of apparatus for controlling motor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008206386A (en) * | 2007-01-24 | 2008-09-04 | Matsushita Electric Ind Co Ltd | Inverter apparatus |
JP2009136129A (en) * | 2007-11-06 | 2009-06-18 | Panasonic Corp | Inverter apparatus |
JP2009240147A (en) * | 2008-03-07 | 2009-10-15 | Panasonic Corp | Inverter apparatus |
-
2012
- 2012-09-03 WO PCT/JP2012/005555 patent/WO2013038612A1/en active Application Filing
- 2012-09-03 JP JP2013509373A patent/JPWO2013038612A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008206386A (en) * | 2007-01-24 | 2008-09-04 | Matsushita Electric Ind Co Ltd | Inverter apparatus |
JP2009136129A (en) * | 2007-11-06 | 2009-06-18 | Panasonic Corp | Inverter apparatus |
JP2009240147A (en) * | 2008-03-07 | 2009-10-15 | Panasonic Corp | Inverter apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180079795A (en) * | 2017-01-02 | 2018-07-11 | 엘지전자 주식회사 | Apparatus for controlling motor and control method of apparatus for controlling motor |
KR101888843B1 (en) * | 2017-01-02 | 2018-09-20 | 엘지전자 주식회사 | Apparatus for controlling motor and control method of apparatus for controlling motor |
US10411623B2 (en) | 2017-01-02 | 2019-09-10 | Lg Electronics Inc. | Motor control device and method for controlling motor control device |
US10651768B2 (en) | 2017-01-02 | 2020-05-12 | Lg Electronics Inc. | Motor control device and method for controlling motor control device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013038612A1 (en) | 2015-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4561838B2 (en) | Inverter device | |
JP5256837B2 (en) | Inverter device | |
JP4497149B2 (en) | Inverter device | |
US7855527B2 (en) | Inverter device | |
JP4259173B2 (en) | Electric compressor drive device | |
JP4428017B2 (en) | Inverter device | |
JP2006101685A (en) | Inverter device | |
WO2006009145A1 (en) | Inverter | |
JP5539928B2 (en) | Motor drive device, fan control device and heat pump device using the same | |
JP6217667B2 (en) | Electric compressor | |
JP5200569B2 (en) | Inverter device | |
JP2008160950A (en) | Motor driver and refrigerator possessing it | |
JP5353021B2 (en) | Control device for electric compressor | |
JP4539237B2 (en) | Inverter device | |
JP5146128B2 (en) | Inverter device | |
JP2009194974A (en) | Inverter apparatus | |
JP4595372B2 (en) | Compressor, compressor drive control device, and compressor drive control method | |
JP4497148B2 (en) | Inverter device | |
JP5353025B2 (en) | Control device for electric compressor | |
WO2013038612A1 (en) | Inverter device, electrically-operated compressor and vehicle | |
JP3750691B1 (en) | Inverter device | |
JP5200395B2 (en) | Inverter device | |
JP4239643B2 (en) | Motor drive device | |
JP4311045B2 (en) | Motor drive device | |
JP5256836B2 (en) | Inverter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013509373 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12831472 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12831472 Country of ref document: EP Kind code of ref document: A1 |