WO2020213037A1 - Power conversion device, power conversion system, and program - Google Patents

Power conversion device, power conversion system, and program Download PDF

Info

Publication number
WO2020213037A1
WO2020213037A1 PCT/JP2019/016168 JP2019016168W WO2020213037A1 WO 2020213037 A1 WO2020213037 A1 WO 2020213037A1 JP 2019016168 W JP2019016168 W JP 2019016168W WO 2020213037 A1 WO2020213037 A1 WO 2020213037A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
voltage
circuit breaker
threshold value
control unit
Prior art date
Application number
PCT/JP2019/016168
Other languages
French (fr)
Japanese (ja)
Inventor
慧 関口
崇裕 石黒
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2019/016168 priority Critical patent/WO2020213037A1/en
Priority to JP2021514675A priority patent/JP7146074B2/en
Publication of WO2020213037A1 publication Critical patent/WO2020213037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/25Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • Embodiments of the present invention relate to power conversion devices, power conversion systems, and programs.
  • the MMC is a power converter that includes an arm unit including a plurality of unit converters connected in series, and can handle high voltage and large capacity by adding the outputsable voltages of the unit converters.
  • the power converter is connected between, for example, an AC system and a DC system, and converts electric power to each other.
  • the control / protection of the power converter in the event of an abnormality is, for example, a method of stopping (gate blocking) the switching control of the semiconductor element provided in the power converter, or an AC cutoff provided between the power converter and the AC system. It is realized by a method of switching the vessel to the open state.
  • the power converter can quickly resume the operation (can continue the operation) after the abnormality is resolved when the switching control of the semiconductor element is stopped.
  • the operation could not be resumed promptly (the operation could not be continued) after the abnormality was resolved.
  • An object to be solved by the present invention is to provide a power conversion device, a power conversion system, and a program capable of improving operation continuity in the event of a system accident.
  • the power conversion device of the embodiment can convert alternating current and direct current to each other.
  • the power converter includes a power converter, an AC circuit breaker, a switching control unit, and a circuit breaker control unit.
  • the power converter includes an arm.
  • the arm includes a plurality of unit converters connected in series. Each of the plurality of unit converters includes a capacitor whose charge and discharge can be switched by a switching element.
  • the AC circuit breaker is connected between the AC system that supplies the AC and the power converter.
  • the switching control unit controls the switching element.
  • the cutoff control unit controls the AC circuit breaker. When the absolute value of the AC voltage is larger than the first threshold value or smaller than the second threshold value (the second threshold value is smaller than the first threshold value), the switching control unit outputs a gate block command.
  • the circuit breaker control unit causes the gate block command to be output by the switching control unit.
  • the absolute value does not change instantaneously, when the AC circuit breaker is opened and the absolute value changes instantaneously as the gate block command is output by the switching control unit. , Do not open the AC circuit breaker.
  • FIG. 1 is a diagram showing an example of the configuration of the power conversion device 1 of the embodiment.
  • the power conversion device 1 is provided at the interconnection point between the AC system and the DC system, and mutually converts the AC power supplied by the AC system and the DC power supplied by the DC system.
  • the power converter 1 includes a power converter 10 and a converter control device 20.
  • the power converter 10 is connected to the AC system via the AC circuit breaker CB.
  • the AC circuit breaker CB is controlled to an open state (open state) or a closed state (not an open state) by the converter control device 20 described later.
  • the open state open state
  • the AC circuit breaker CB is controlled to the off state or the cutoff state
  • the closed state not the open state
  • the AC circuit breaker CB is turned on or in the conductive state. It is to be controlled.
  • the AC circuit breaker CB connects the AC system and the power converter 10 in the closed state, and shuts off the AC system and the power converter 10 in the open state.
  • the power converter 10 mutually converts AC power and DC power based on the control of the converter control device 20.
  • the power converter 10 is, for example, a modular multilevel converter (hereinafter, MMC: Modular Multilevel Converter).
  • FIG. 2 is a diagram showing an example of the configuration of the power converter 10 of the embodiment.
  • the power converter 10 includes a plurality of leg LGs between the positive electrode of the DC system (terminal P shown) and the negative electrode of the DC system (terminal N shown).
  • the number of leg LGs corresponds to, for example, the number of phases of AC power supplied by the AC system.
  • the AC system supplies three-phase, three-wire AC power of the first phase (R phase shown in the figure), the second phase (S phase shown in the figure), and the third phase (T phase shown in the figure).
  • the power converter 10 includes a leg LGr corresponding to the R phase, leg LGs corresponding to the S phase, and a leg LGt corresponding to the T phase.
  • leg LGr corresponding to the R phase
  • leg LGs corresponding to the S phase
  • leg LGt corresponding to the T phase.
  • a certain phase of the three phases of AC power supplied by the AC system is connected to the leg LG via the transformer TR.
  • the R phase is connected to the leg LGr
  • the S phase is connected to the leg LGs
  • the T phase is connected to the leg LGt.
  • the connection point between the leg LGr and the R phase is described as the connection point CPr
  • the connection point between the leg LGs and the S phase is described as the connection point CPs
  • the connection between the leg LGt and the T phase is described.
  • the point is referred to as a connection point CPt.
  • the connection point CPr, the connection point CPs, and the connection point CPt are not distinguished from each other, they are simply described as the connection point CP.
  • the portion having the same potential as the terminal P of the DC voltage output by the power converter 10 is also described as the terminal P of the leg LG, and the portion having the same potential as the terminal N of the DC voltage is described. It is also described as the terminal N of the leg LG. Further, the area from the terminal P of the leg LG to the connection point of each phase is also described as a positive arm unit. Further, the area from the connection point of each phase to the terminal N of the leg LG is also described as a negative arm unit.
  • Each leg LG has the same configuration as each other.
  • the configuration related to the leg LGr is given an "r" at the end of the code
  • the configuration related to the leg LGs is given an “s" at the end of the code
  • the configuration related to the leg LGt is given an "s”.
  • Add “t" to the end of the code when it is not possible to distinguish which leg LG has the configuration, "r", "s", or "t” is omitted.
  • the leg LGr will be described on behalf of each leg LG.
  • the leg LGr has n cell CLs (cells CL1-1r to CL1-nr and cells CL2-1r to CL2-nr shown in the figure) and a plurality of reactors in the positive arm unit and the negative arm unit, respectively. It is provided with an RT (reactors RT1r and RT2r shown). n is a natural number.
  • the cells CL1-1r to CL1-nr and the reactor RT1r are connected in series to the positive arm unit of the leg LGr from the terminal P toward the connection point CPr in the order described.
  • the reactor RT2r and the cells CL2-1r to CL2-nr are connected in series in the order described from the connection point CPr toward the terminal N.
  • the reactor RT and the transformer TR may be replaced with a transformer having a special winding structure having a leakage reactance that only replaces the function of the reactor.
  • the leg LGr includes a current detector (not shown) that detects the positive arm current (shown, R-phase positive current Ipr) flowing from the connection point CP to the terminal P, and a negative current flowing from the terminal N to the connection point CP.
  • a current detector (not shown) for detecting the side arm current (R-phase negative side current Inr (not shown)) may be provided.
  • FIG. 3 is a diagram showing an example of the configuration of the cell CL.
  • the cell CL is, for example, a half-bridge circuit.
  • the cell CL includes, for example, a plurality of switching elements Q (switching elements Q1 to Q2 shown), a number of diodes D (diodes D1 to D2 shown) corresponding to the switching element Q, and a capacitor. It has C.
  • the switching element Q is, for example, an insulated gate bipolar transistor (hereinafter, IGBT: Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the switching element Q is not limited to the IGBT.
  • the switching element Q may be any self-extinguishing switching element capable of realizing a converter or an inverter. In this embodiment, a case where the switching element Q is an IGBT will be described.
  • the switching element Q1 and the switching element Q2 are connected in series with each other.
  • the switching element Q1 and the switching element Q2 and the capacitor C are connected in parallel with each other.
  • Each switching element Q and the diode D are connected in parallel with each other. Specifically, the switching element Q1 and the diode D1 are connected in parallel with each other, and the switching element Q2 and the diode D2 are connected in parallel with each other.
  • the cell CL includes a positive electrode terminal connected to the terminal P side of the leg LG and a negative electrode terminal connected to the terminal N side.
  • the positive electrode terminal of the cell CL is connected to the connection point between the switching element Q1 and the switching element Q2, and the negative electrode terminal of the cell CL is connected to the emitter terminal of the switching element Q2.
  • the voltage generated between the positive electrode terminal and the negative electrode terminal of the cell CL will be referred to as the cell voltage Vcl.
  • Each switching element Q is provided with a switching terminal (not shown) for switching on / off of the switching element Q, and the switching terminal is connected to the converter control device 20 to input a control signal.
  • the first gate signal gtp is input to the switching element Q1 as a control signal
  • the second gate signal gtn is input to the switching element Q2 as a control signal.
  • the converter control device 20 includes a control unit 200 and a gate signal generation unit 300.
  • a hardware processor such as a CPU (Central Processing Unit) executes a program (software) stored in a storage unit (not shown) to execute an AC information calculation unit 210 and a first filter 220.
  • the second filter 222, the third filter 224, the voltage command value calculation unit 230, the gate command unit 240, and the circuit breaker control unit 250 are realized as functional units.
  • circuits such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), etc. It may be realized by the part (including circuitry), or it may be realized by the cooperation of software and hardware.
  • the AC information calculation unit 210 acquires information indicating the voltage (R-phase voltage Vr, S-phase voltage Vs, and T-phase voltage Vt shown in the figure) detected by the detector CS that detects the voltage of each phase of the AC system. , The AC system active voltage Vd and the AC system invalid voltage Vq are calculated based on the acquired information. Further, the AC information calculation unit 210 repeats the calculation so that the calculated value of the AC system invalid voltage Vq becomes zero as a calculation for following and synchronizing the AC system voltage. As a result, the AC information calculation unit 210 calculates the AC frequency fpll and the AC system voltage phase theta.
  • the AC frequency fpl is the frequency of the AC system voltage to which the power converter 10 is connected. Further, the AC system voltage phase theta is a value indicating the phase of a reference phase having the AC voltage. The details of the processing of the AC information calculation unit 210 will be described later.
  • the first filter 220 performs the first filter processing (one of the filter processing) on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf1. Further, the first filter 220 performs the first filter processing on the AC system invalid voltage Vq calculated by the AC information calculation unit 210, and acquires the value Vqf1.
  • the first filter 220 is, for example, a general low-pass filter that removes high-frequency components while passing low-frequency components contained in the AC system active voltage Vd and the AC system invalid voltage Vq, and a specific frequency. It is realized by a band removal filter that removes a band, or a combination of a low frequency pass filter and a band removal filter.
  • the second filter 222 performs the second filter processing (one of the filter processing) on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf2.
  • a general low-pass filter or the like can be applied to the second filter 222.
  • the third filter 224 performs a third filter process (one of the filter processes) on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf3.
  • the third filter 224 applies, for example, a general low-pass filter.
  • the second filter 222 and the third filter 224 are designed so that the time constant of the second filter 222 is at least shorter than the time constant of the third filter 224. Designing the time constant to be short includes the case where the input is output as it is without the second filter processing and the AC system effective voltage Vd is output as the value Vdf2.
  • the time constant of the first filter 220 is designed independently of the time constant of the second filter 222 and the time constant of the third filter 224.
  • the third filter processing of the first filter 220, the second filter 222, and the third filter 224 may be a digital filter that realizes the passing characteristics of a desired frequency component by software, or parts such as an operational amplifier and a capacitor. May be used in combination as an analog filter realized by hardware.
  • the band-stop filter may be introduced for the purpose of removing the influence of a specific harmonic when the generation of a specific harmonic becomes large due to the conditions of the interconnected AC system.
  • the filter constant is designed according to the frequency band to be removed and the removal level thereof.
  • the normal AC system voltage may include harmonic components such as 5 times or 7 times the rated frequency in addition to the rated frequency of 50 [Hz] or 60 [Hz].
  • the amplitude including the rated frequency may change suddenly. If the time constant of the first filter 220 is long, the response of the current control to these harmonics and fluctuations is delayed, which makes it difficult for the power converter to operate stably, which may lead to protection stoppage or failure. Therefore, the time constant of the first filter 220 is appropriately designed so as not to be in an unstable operating state due to noise or the like while having the required current control performance.
  • the voltage command value calculation unit 230 is calculated by the AC information calculation unit 210 and each state of the power converter 10 (for example, the positive side currents Ipr to Ipt, the negative side currents Inr to Int, and each capacitor voltage Vc). Based on the AC system voltage phase theta, the value Vdf1 acquired by the first filter 220, and the value Vqf1, the active power PE output by the power converter 10 and the active power QE are predetermined active powers.
  • the cell voltage command value Vcl * that indicates the cell voltage Vcl of each cell CL is calculated so that the command value PE * and the ineffective power command value QE * are obtained.
  • the voltage command value calculation unit 230 has an AC system active voltage Vd that becomes a substantially constant value (DC component) and an AC system invalid voltage Vq that becomes almost zero in the case of a sinusoidal wave in which the AC system voltage is stable. Based on the above, the voltage command value to be output by the power converter 10 is calculated so that the active power PE output by the power converter 10 and the ineffective power QE match the predetermined set values. At this time, it is preferable to calculate the voltage command value to be output by the power converter 10 based on the AC system active voltage Vd from which the noise that causes disturbance is removed and the AC system invalid voltage Vq.
  • the voltage command value calculation unit 230 has a value Vdf1 and a value output by the first filter 220 after removing high-frequency noise while passing low-frequency components such as the DC component of the AC system active voltage Vd and the AC system invalid voltage Vq. Based on Vqf1, the voltage command value to be output by the appropriate power converter 10 is calculated.
  • the gate command unit 240 causes the gate signal generation unit 300 to output the gate block command signal GB to all the cell CLs of the power converter 10 based on the value Vdf2 output by the second filter 222.
  • the conditions for the gate command unit 240 to output the gate block command signal GB will be described later.
  • the circuit breaker control unit 250 outputs the circuit breaker open command signal CBT based on the value Vdf3 output by the third filter 224.
  • the AC circuit breaker CB is controlled to the open state when the circuit breaker open command signal CBT is output by the converter control device 20.
  • controlling the AC circuit breaker CB in the open state by the converter control device 20 is also described as "opening the AC circuit breaker CB".
  • the conditions for the circuit breaker control unit 250 to output the circuit breaker open command signal CBT will be described later.
  • the gate signal generation unit 300 generates a first gate signal gtp and a second gate signal gttn for each cell CL based on the cell voltage command value Vcl * of each cell CL calculated by the voltage command value calculation unit 230. , Output to the power converter 10.
  • FIG. 4 is a diagram schematically showing an example of processing of the AC information calculation unit 210 of the embodiment.
  • the AC information calculation unit 210 includes a conversion unit 211, a PI calculation unit 212, an addition unit 213, and an oscillator 214 as functional units.
  • the conversion unit 211 acquires information indicating the voltage detected by the detector CS (R-phase voltage Vr, S-phase voltage Vs, and T-phase voltage Vt shown).
  • the conversion unit 211 converts (calculates) the acquired R-phase voltage Vr, S-phase voltage Vs, and T-phase voltage Vt into AC system effective voltage Vd and AC system invalid voltage Vq using the equation (1). ..
  • the AC system voltage phase theta is a value output by the oscillator 214 described later, and is a value indicating the voltage phase of a reference phase (R phase in this example) of the AC system.
  • the PI calculation unit 212 has a frequency difference (hereinafter, frequency) between the frequency of the AC system voltage to which the power converter 10 is connected and the reference AC system frequency fs0 based on the AC system invalid voltage Vq converted by the conversion unit 211.
  • the difference ⁇ fpll) is calculated.
  • the frequency difference ⁇ fpll takes a positive value when the frequency of the AC system voltage is higher than the reference AC system frequency fs0, and takes a negative value when the frequency is lower than the reference AC system frequency fs0.
  • the reference AC system frequency fs0 is the rated frequency of the interconnected AC system, and is, for example, a constant of 50 [Hz] or 60 [Hz].
  • the frequency difference ⁇ fpll continues to increase or decrease until the calculated value of the AC system invalid voltage Vq input to the PI calculation unit 212 becomes zero, and is the value of the difference between the actual AC system frequency and the reference AC system frequency fs0. Converges to.
  • the addition unit 213 adds the frequency difference ⁇ fpll calculated by the PI calculation unit 212 to the reference AC system frequency fs0.
  • the oscillator 214 outputs an AC system voltage phase theta that repeatedly and monotonically increases from a minimum value of 0 to a maximum value of 2 ⁇ according to the frequency of the AC frequency fpll calculated by the addition unit 213.
  • the AC system voltage phase theta is used for converting the AC system effective voltage Vd and the AC system invalid voltage Vq of the conversion unit 211 and generating the cell voltage command value Vcl *.
  • the AC information calculation unit 210 repeats the calculation of the AC system voltage phase theta so that the calculated value of the AC system invalid voltage Vq in the conversion unit 211 becomes zero, so that the AC is synchronized with the AC system voltage.
  • the frequency fpll and the AC system voltage phase theta are calculated.
  • the PI calculation unit 212 sets the frequency difference ⁇ fpll to + limit value ⁇ fpll_limit when the frequency difference ⁇ fpll is larger than the limit value (hereinafter, limit value ⁇ fpll_limit), and when it is smaller than the-limit value ⁇ fpll_limit, the frequency difference ⁇ fpll may be output as a ⁇ limit value ⁇ fpll_limit.
  • the addition unit 213 can limit the AC frequency fpl to a frequency in the range of the reference AC system frequency fs0 + limit value ⁇ fpll_limit to the reference AC system frequency fs0-limit value ⁇ fpll_limit.
  • the limit value ⁇ fpll_limit is, for example, a positive value smaller than the reference AC system frequency fs0.
  • FIG. 5 is a diagram schematically showing an example of processing of the gate command unit 240 of the embodiment.
  • the gate command unit 240 includes a first comparator 242 and a timer 244 as functional units.
  • the first comparator 242 compares the value Vdf2 output by the second filter 222 with the predetermined AC system voltage upper limit value Vth_H and the AC system voltage lower limit value Vth_L.
  • the AC system voltage upper limit value Vth_H is, for example, the maximum value of the AC voltage of the AC system in which the power converter 10 can continue operation without impairing the stability of the voltage and frequency of the AC system.
  • the lower limit value Vth_L of the AC system voltage is, for example, the minimum value of the AC voltage of the AC system in which the power converter 10 can continue operation without impairing the stability of the voltage and frequency of the AC system.
  • the AC system voltage upper limit value Vth_H is an example of the “first threshold value”.
  • the AC system voltage lower limit value Vth_L is an example of the "second threshold value”.
  • the first comparator 242 outputs a system voltage abnormality signal ERR when the value Vdf2 is larger than the AC system voltage upper limit value Vth_H or when the value Vdf2 is smaller than the AC system voltage lower limit value Vth_L.
  • a system accident occurs in the AC system and the amplitude of each phase voltage of the AC system is an abnormal value. Is shown, or the phases are unbalanced.
  • the first comparator 242 compares the combined voltage vector Vdqf2 calculated using the equation (2) with a predetermined threshold value, and when the value of the combined voltage vector Vdqf2 is larger than the predetermined upper limit threshold value, or a predetermined value. When it is smaller than the lower limit threshold value, the system voltage abnormality signal ERR may be output.
  • Vqf2 is a value obtained by subjecting the AC system invalid voltage Vq to the second filter processing of the second filter 222.
  • the timer 244 When the system voltage abnormality signal ERR is output by the first comparator 242, the timer 244 outputs the gate block command signal GB only for a predetermined period TM1 after the system voltage abnormality signal ERR is output.
  • the predetermined period TM1 is set to, for example, a time of about several AC cycles in which AC system accidents are generally eliminated.
  • the predetermined period TM1 is an example of a “predetermined period” in which counting is started after the gate block command signal GB is output.
  • FIG. 6 is a diagram schematically showing an example of processing of the circuit breaker control unit 250 of the embodiment.
  • the circuit breaker control unit 250 includes a comparator 252 as a functional unit.
  • the comparator 252 compares the value Vdf3 with a predetermined circuit breaker open threshold V_CBT.
  • the circuit breaker open threshold V_CBT cuts off the AC system and the power converter 10 (that is, the power converter 10) in order to suppress the failure of the power converter 10 due to the influence of an abnormality such as an AC system accident. This is the maximum value of the AC voltage of the AC system when it is required to protect.
  • the circuit breaker opening threshold V_CBT is an example of a “third threshold”.
  • the comparator 252 outputs a circuit breaker opening command signal CBT when the absolute value of the value Vdf3 is larger than the circuit breaker opening threshold value V_CBT.
  • the value Vdf3 is larger than the circuit breaker open threshold value V_CBT, for example, a system accident occurs in the AC system, the amplitude of each phase voltage of the AC system shows an abnormal value, or the phases are unbalanced. It is in a state.
  • the circuit breaker open threshold value V_CBT is set to a value larger than the AC system voltage upper limit value Vth_H.
  • the comparator 252 compares the combined voltage vector Vdqf3 calculated using the equation (3) with a predetermined threshold value, and when the value of the combined voltage vector Vdqf3 is larger than the predetermined threshold value, sets the circuit breaker opening threshold value V_CBT. It may be configured to output. However, the value Vqf3 is a value obtained by subjecting the AC system invalid voltage Vq to the third filter processing of the third filter 224.
  • the AC circuit breaker CB is controlled to the open state when the circuit breaker open threshold value V_CBT is input, and shuts off (disconnects) the AC system and the power converter 10. This is because when the AC system voltage rises outside the normal range and exceeds a certain value, the capacitor C of each cell CL included in the power converter 10 is overcharged exceeding the voltage withstand capacity of the cell CL. This is to prevent.
  • the power converter 10 is in the gate block state, assuming that the line voltage on the secondary side (arm unit side) of the transformer TR, which is proportional to the AC system voltage, is voltage Vs2 and the number of cell CL series for each arm unit is n.
  • the capacitor C is overcharged to the capacitor voltage Vc shown in the equation (4).
  • the capacitor voltage Vc is overcharged in proportion to the AC system voltage. If the AC system voltage becomes even larger than the circuit breaker open threshold value V_CBT and the capacitor voltage Vc exceeds the voltage withstand voltage of the cell CL, the cell CL may fail. In order to prevent this, the AC circuit breaker CB is opened to cut off the AC system from the power converter 10.
  • FIG. 7 is a diagram showing an example of the operation of the conventional power conversion device.
  • the waveform W11 is a waveform showing a change over time in the active power that the conventional power conversion device accommodates in the AC system or the DC system.
  • the value of the active power interchanged by the conventional power converter and the power converter 10 shows a positive value when the active power is interchanged from the AC system side to the DC system side, and is AC from the DC system side.
  • the active power When the active power is accommodated on the grid side, it shall show a negative value.
  • the active power accommodated by the conventional power converter or the power converter 10 is also simply referred to as "active power".
  • the waveform W12 is a waveform showing a change over time in the absolute value of the AC system active voltage Vd.
  • the waveform W13 is a waveform indicating the presence or absence of output of the gate block command signal GB.
  • the waveform W14 is a waveform indicating the presence / absence of output of the circuit breaker opening command signal CBT.
  • the active power is stable at a constant value (-1.0 [pu] in the figure) until time t0.
  • the absolute value of the AC system active voltage Vd is a constant value (1.0 [pu] in the figure) until time t0.
  • the gate block command signal GB is not output until time t0 (that is, it is invalid)
  • the circuit breaker open command signal CBT is at time t0. Until then, it has not been output (that is, it is invalid). Therefore, the conventional power converter is not interrupted by the AC circuit breaker CB, and the switching control is continued and the power is interchanged based on the control of the converter control device 20.
  • an abnormality occurs at time t0. This abnormality occurs, for example, when another power converter that supplies active power to the conventional power converter suddenly stops during the operation of the power converter 10.
  • the active power decreases sharply.
  • the active power becomes almost 0 [pu] between the time t0 and the time t2, for example.
  • the absolute value of the AC system active voltage Vd decreases as the active power accommodated by the conventional power conversion device decreases. This is because the decrease in active power becomes a disturbance, and the same function as the voltage command value calculation unit 230 of the conventional power conversion device cannot be optimally operated. Further, as shown by the waveform W12, at time t1, the absolute value of the AC system effective voltage Vd is smaller than the AC system voltage lower limit value Vth_L. Therefore, as shown in the waveform W13, the gate command unit 240 outputs the gate block command signal GB from time t1.
  • the power converter 10 is controlled to the gate block state in response to the output of the gate block command signal GB by the gate command unit 240.
  • the absolute value of the AC system active voltage Vd rises sharply and exceeds the circuit breaker opening threshold value V_CBT. Therefore, as shown by the waveform W14, the circuit breaker control unit 250 outputs the circuit breaker opening command signal CBT, the circuit breaker CB is opened, and the conventional power conversion device is cut off from the AC system.
  • the AC circuit breaker CB is opened, the operation cannot be restarted at least until the AC circuit breaker CB is turned on again.
  • the opening of the AC circuit breaker CB is generally recognized as a serious failure in which the power converter 10 cannot be connected, the AC circuit breaker CB is not automatically turned on again, and confirmation by the operator may be required. As described above, if the power converter 10 is stopped for a long period of time, the stability of the voltage and frequency of the AC system may be impaired, and the power supply may be stopped in a wide range.
  • the large-capacity power converter 10 has been connected to a backbone system having a large short-circuit capacity, but in the future, with the increase in the introduction of renewable energy, small-scale generator groups and the like will be connected. It may be connected to a small system. In this case, it is expected that the phenomenon in which the absolute value of the AC system active voltage Vd rises sharply becomes more apparent as the gate block state is switched to as described above. Therefore, in the conventional power conversion device, the power supply may be stopped in a wide range.
  • FIG. 8 is a diagram showing an example of the operation of the power conversion device 1 of the present embodiment.
  • the waveform W21 is a waveform showing a time-dependent change in the active power that the power conversion device 1 accommodates in the AC system or the DC system.
  • the waveform W22 is a waveform showing a time-dependent change in the value Vdf3 output by the third filter 224. In FIG. 8, the waveform W22 is shown superimposed on the waveform W12.
  • the waveform W23 is a waveform indicating the presence or absence of output of the gate block command signal GB.
  • the waveform W24 is a waveform indicating the presence / absence of output of the circuit breaker opening command signal CBT.
  • Waveforms W21 to W24 show the same changes as the above-mentioned waveforms W11 to W14 until time t0.
  • the active power sharply decreases.
  • the active power becomes almost 0 [pu] between the time t0 and the time t2, for example.
  • the value Vdf3 decreases as the active power accommodated by the power converter 1 decreases, and becomes a value smaller than the lower limit value Vth_L of the AC system voltage at time t1'.
  • the time t1' is at the same time as the time t1 or It is a time after the time t1.
  • the gate command unit 240 outputs the gate block command signal GB from the time t1'.
  • the power converter 10 is controlled to the gate block state in response to the output of the gate block command signal GB by the gate command unit 240.
  • the value Vdf3 does not rise sharply like the absolute value of the AC system active voltage Vd due to the third filter processing of the third filter 224, so that the circuit breaker open threshold value V_CBT even instantaneously. Does not exceed. Therefore, the circuit breaker control unit 250 does not output the circuit breaker opening command signal CBT, and the AC circuit breaker CB is not opened. In this case, after the abnormality is resolved, the power conversion device 1 can restart the operation only by releasing the gate block command signal GB and without turning on the AC circuit breaker CB again.
  • FIG. 9 is a flowchart showing an example of processing related to the generation of the first gate signal gtp and the second gate signal gtt of the power conversion device 1 of the present embodiment.
  • the flowchart shown in FIG. 9 is executed, for example, constantly or repeatedly at predetermined time intervals.
  • the AC information calculation unit 210 acquires information indicating the voltage of each phase of the AC system (R phase voltage Vr, S phase voltage Vs, and T phase voltage Vt) from the detector CS (step S100).
  • the AC information calculation unit 210 converts the acquired AC system effective voltage Vd and AC system invalid voltage Vq based on the acquired voltage of each phase of the AC system (step S102).
  • the first filter 220 performs the first filter processing on the absolute values of the AC system active voltage Vd and the AC system invalid voltage Vq calculated by the AC information calculation unit 210, and outputs the values Vdf1 and the value Vqf1. (Step S104).
  • the voltage command value calculation unit 230 calculates each state of the power converter 10 (for example, the positive side currents Ipr to Ipt, the negative side currents Inr to Int, and each capacitor voltage Vc) and the AC information calculation unit 210. Based on the AC system voltage phase theta, the value Vdf1 acquired by the first filter 220, and the value Vqf1, the active power PE output by the power converter 10 and the active power QE are predetermined. The cell voltage command value Vcl * that indicates the cell voltage Vcl of each cell CL is calculated so that the active power command value PE * and the ineffective power command value QE * are obtained (step S106).
  • the gate signal generation unit 300 sets the first gate signal gtp and the second gate signal gttn for each cell CL based on the cell voltage command value Vcl * of each cell CL calculated by the voltage command value calculation unit 230. Is generated and output to the power converter 10 (step S108).
  • FIG. 10 is a flowchart showing an example of processing related to the output of the gate block command signal GB of the power conversion device 1 of the present embodiment.
  • the flowchart shown in FIG. 10 is executed, for example, constantly or repeatedly at predetermined time intervals.
  • the AC information calculation unit 210 acquires information indicating the voltage of each phase of the AC system (R phase voltage Vr, S phase voltage Vs, and T phase voltage Vt) from the detector CS (step S200).
  • the AC information calculation unit 210 converts the acquired AC system effective voltage Vd based on the voltage of each phase of the AC system (step S202).
  • the second filter 222 performs the second filter processing on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf2 (step S204).
  • the gate command unit 240 determines whether or not the value Vdf2 output by the second filter 222 exceeds (exceeds) the AC system voltage upper limit value Vth_H (step S206). When the gate command unit 240 determines that the value Vdf2 exceeds the AC system voltage upper limit value Vth_H, the gate command unit 240 outputs the gate block command signal GB (step S208). When the gate command unit 240 determines that the value Vdf2 does not exceed the AC system voltage upper limit value Vth_H, the gate command unit 240 determines whether or not the value Vdf2 is lower than the AC system voltage lower limit value Vth_L (step S210).
  • the gate command unit 240 determines that the value Vdf2 is lower than the AC system voltage lower limit value Vth_L, the gate command unit 240 outputs the gate block command signal GB (step S208).
  • the gate command unit 240 does not output the gate block command signal GB and ends the process.
  • FIG. 11 is a flowchart showing an example of processing related to the output of the circuit breaker opening command signal CBT of the power conversion device 1 of the present embodiment.
  • the flowchart shown in FIG. 11 is executed, for example, constantly or repeatedly at predetermined time intervals.
  • the AC information calculation unit 210 acquires information indicating the voltage of each phase of the AC system (R phase voltage Vr, S phase voltage Vs, and T phase voltage Vt) from the detector CS (step S300).
  • the AC information calculation unit 210 converts the acquired AC system effective voltage Vd based on the acquired voltage of each phase of the AC system (step S302).
  • the third filter 224 performs the third filter processing on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf3 (step S304).
  • the circuit breaker control unit 250 determines whether or not the value Vdf3 output by the third filter 224 exceeds (exceeds) the circuit breaker opening threshold value V_CBT (step S306). When the circuit breaker control unit 250 determines that the value Vdf3 exceeds the circuit breaker opening threshold value V_CBT, the circuit breaker control unit 250 outputs the circuit breaker opening command signal CBT (step S308). When the circuit breaker control unit 250 determines that the value Vdf3 does not exceed the circuit breaker opening threshold value V_CBT, the circuit breaker control unit 250 ends the process.
  • the power conversion device 1 of the present embodiment is an AC circuit breaker based on the value Vdf3 obtained by applying the third filter processing of the third filter 224, which is a low-pass filter, to the AC system active voltage Vd. Determine the necessity of opening the CB.
  • the power conversion device 1 of the present embodiment prevents the unnecessary AC circuit breaker CB from being opened due to the instantaneous system overvoltage caused by the gate block of the cell CL, and shortens the time required for restarting the operation. It is possible to improve the continuity of operation in the event of a system accident.
  • the power conversion device 1 of the present embodiment when a system overvoltage for a relatively long time exceeding the settling time constant of the third filter 224 occurs, the value Vdf3 output by the third filter 224 opens the circuit breaker. Since the threshold value V_CBT is exceeded, the AC circuit breaker CB can be opened. As a result, the power conversion device 1 of the present embodiment can prevent the capacitor voltage Vc from exceeding the withstand voltage of the cell CL as the capacitor C of the cell CL is overcharged.
  • the power converter 1 of the present embodiment determines the gate block of the power converter 10 based on the value Vdf2 obtained by subjecting the AC system active voltage Vd to the processing of the second filter 222.
  • the processing of the second filter 222 is independent of the processing of the third filter 224, and the time constant of the second filter 222 is shorter than the time constant of the third filter 224, or the AC system input as the value Vdf2.
  • the effective voltage Vd is directly output. Therefore, in the power converter 1 of the present embodiment, when an abnormality occurs in the system voltage, the value Vdf2 immediately responds, the power converter 10 shifts to the gate block state, and the capacitor voltage Vc becomes normal.
  • the power converter 1 of the present embodiment immediately shifts to the gate block state when an abnormality occurs in the system voltage. As a result, the current can be cut off and the operation of the power converter 10 can be suppressed more appropriately.
  • the power converter 1 of the present embodiment is a power converter based on the value Vdf1 and the value Vqf1 obtained by subjecting the AC system active voltage Vd and the AC system invalid voltage Vq to the first filter processing of the first filter 220. 10 voltage and current are controlled.
  • the first filter processing of the first filter 220 is independent of the second filter processing of the second filter 222 and the third filter processing of the third filter 224. Therefore, the power conversion device 1 of the present embodiment has the required control performance, and the first filter 220 is designed with arbitrary characteristics so as not to cause an unstable operating state due to noise or the like. Stable operation can be performed even when the AC system voltage contains harmonic components or when an AC system accident occurs and the amplitude of the AC system voltage suddenly changes.
  • the power converter 1 of the present embodiment can suppress the opening of the AC circuit breaker CB which does not contribute to the protection of the power converter 10 while maintaining the operation performance at the time of normal operation and system accident without impairing the operation performance. , It is possible to improve the continuity of operation in the event of a system accident.
  • the third filter 224 is a general low-pass filter, and the case where the AC system active voltage Vd outputs the value Vdf3 obtained by removing the momentary overvoltage signal at the time of the gate block has been described.
  • the third filter 224 of the first modification a case where the momentary overvoltage signal is algorithmically removed will be described.
  • the same components as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • FIG. 12 is a diagram showing an example of the processing operation of the third filter 224 of the modified example 1.
  • the waveform W41 is a waveform showing an example of the time-dependent change of the AC system active voltage Vd.
  • the waveform W42 is a waveform showing another example of the change with time of the AC system active voltage Vd.
  • the waveform W43 is a waveform showing an example of the time-dependent change of the value Vdf3.
  • the waveform W44 is a waveform showing another example of the change with time of the value Vdf3.
  • the waveform W42 and the waveform W44 are waveforms related to the first event, and the waveforms W41 and W43 are waveforms related to the second event.
  • the third filter 224 of the first modification has a circuit breaker open threshold V_CBT when the AC system active voltage Vd does not exceed the circuit breaker open threshold V_CBT, or when the AC system active voltage Vd is m or more in the number of times the third filter process is executed. Is continuously exceeded, the AC system active voltage Vd is output as the value Vdf3, and the AC system active voltage Vd exceeds the circuit breaker open threshold V_CBT m times or more in the number of executions of the third filter processing (that is,). (Up to m-1 times) outputs the AC system active voltage Vd (hereinafter, the previous value effective voltage Vd t-1 ) immediately before exceeding the circuit breaker opening threshold V_CBT as the value Vdf3.
  • the third filter 224 repeatedly executes the third filter process every predetermined period Td.
  • m is set so that the time indicated by m ⁇ predetermined period Td is 1 or more and shorter than the time during which the capacitor C is overcharged.
  • the AC system active voltage Vd is below the circuit breaker open threshold value V_CBT until time t11, exceeds the circuit breaker open threshold value V_CBT from time t12 to time t13, and again after time t14. It is below the circuit breaker opening threshold V_CBT.
  • the third filter 224 outputs the AC system effective voltage Vd (that is, the previous value effective voltage Vd t-1 ) at the time t11 as the value Vdf3 at the time t12.
  • the third filter 224 outputs the previous value effective voltage Vd t-1 again as the value Vdf3 at the time t13.
  • the third filter 224 outputs the AC system active voltage Vd as the value Vdf3.
  • the AC system active voltage Vd is below the circuit breaker opening threshold value V_CBT until time t11, and exceeds the circuit breaker opening threshold value V_CBT after time t12.
  • the third filter 224 outputs the previous value effective voltage Vd t-1 as the value Vdf3 during the time t12 to t13, as in the first event.
  • the third filter 224 outputs the AC system active voltage Vd as the value Vdf3 after the time t14.
  • the third filter 224 according to the power conversion device 1 of the modification 1 removes the overvoltage signal exceeding the instantaneous circuit breaker opening threshold value V_CBT less than the preset number of executions m ⁇ predetermined period Td. , Output to the circuit breaker control unit 250.
  • the power converter 1 of the first modification can suppress the opening of the AC circuit breaker CB that does not contribute to the protection of the power converter 10.
  • the third filter 224 according to the power conversion device 1 of the modification 1 is used when a system overvoltage exceeding the circuit breaker opening threshold V_CBT for a relatively long time of preset number of executions m ⁇ predetermined period Td or more occurs. Can output the circuit breaker opening command signal CBT to the circuit breaker control unit 250 to suppress overcharging of the capacitor C included in the power converter 10.
  • the power conversion device 1 of the modification 1 is based on the value Vdf3 obtained by subjecting the AC system active voltage Vd to the processing of the third filter 224 that algorithmically removes the instantaneous overvoltage signal, and is based on the AC circuit breaker CB. Judge open. As a result, the power converter 1 of the modification 1 protects the power converter 10 by an instantaneous system overvoltage or the like in which the charging energy for the capacitor C is small due to the transition of the power converter 10 to the gate block state. It is possible to suppress the opening of the AC circuit breaker CB, which does not contribute to the above, and improve the continuity of operation.
  • Modification 2 the power conversion device 1 of the modification 2 will be described with reference to the drawings.
  • a case where the circuit breaker control unit 250 of the second modification determines whether or not to output the circuit breaker opening command signal CBT based on the value Vdf3 and the gate block command signal GB will be described.
  • the same reference numerals are given to the above-described embodiments and the same configurations as those of the modified examples, and the description thereof will be omitted.
  • FIG. 13 is a diagram showing an example of the configuration of the power conversion device 1 in the modification 2.
  • the power conversion device 1 of the second modification is provided with a circuit breaker control unit 250a instead of the circuit breaker control unit 250.
  • the gate command unit 240 of the second modification outputs the gate block command signal GB to the gate signal generation unit 300 and the circuit breaker control unit 250a.
  • FIG. 14 is a diagram showing an example of the configuration of the circuit breaker control unit 250a according to the second modification.
  • the circuit breaker control unit 250a includes a comparator 252, a rise detection unit 254, a timer 256, and a logical operation unit 258 as functional units.
  • the rise detection unit 254 detects whether or not the gate block command signal GB has been output by the gate command unit 240. When the rise detection unit 254 detects that the gate block command signal GB has been output by the gate command unit 240, the rise detection unit 254 outputs a signal indicating the detection to the timer 256.
  • the timer 256 When a signal indicating that the timer 256 has been detected by the rise detection unit 254 is output, the timer 256 outputs "1" during the predetermined period TM2, and outputs "0" during the other period.
  • the predetermined period TM2 is set to, for example, a sufficient time (for example, about several ms) required for a momentary AC system overvoltage to occur after the gate block command signal GB is output and the system voltage to return to the normal range.
  • the predetermined period TM2 is an example of a “predetermined period” in which counting is started after the gate block command signal GB is output.
  • the logical operation unit 258 calculates the logical product based on the inverted value of the output of the timer 256 and the comparison result of the comparator 252 (breaker open command signal CBT; “1” with output, “0” without output). The calculated and calculated logical product is output as a breaker open command signal CBT (breaker open command signal CBT; “1” with output, “0” without output).
  • the circuit breaker opening command signal CBT is output by the comparator 252 for a predetermined period TM2 after the gate block command signal GB is output by the gate command unit 240. Even if the circuit breaker control unit 250 is used, the circuit breaker release command signal CBT can be prevented from being output (that is, masked). As described above, in the third filter 224 according to the power conversion device 1 of the modification 2, the circuit breaker open command signal CBT is invalidated during the predetermined period TM2 regardless of the output of the comparator 252. Therefore, the input AC system active voltage Vd may be output as it is as the value Vdf3.
  • the power converter 1 of the second modification temporarily invalidates the circuit breaker open command signal CBT based on the gate block command signal GB, and the power converter 10 due to the instantaneous system overvoltage caused by the gate block. It is possible to suppress the opening of the AC circuit breaker CB, which does not contribute to the protection of the AC circuit breaker, and improve the continuity of operation.
  • FIG. 15 is a diagram showing an example of the configuration of the power conversion system in the modified example 3.
  • the power conversion device 1 ⁇ and the power conversion device 1 ⁇ are connected to one end and the other end of the DC system, respectively.
  • the power conversion device 1 ⁇ is provided at the interconnection point between the first AC system and the DC system, and mutually converts the AC power supplied by the first AC system and the DC power supplied by the DC system.
  • the power conversion device 1 ⁇ is provided at the interconnection point between the second AC system and the DC system, and mutually converts the AC power supplied by the second AC system and the DC power supplied by the DC system.
  • the power conversion device 1 ⁇ and the power conversion device 1 ⁇ are not distinguished from each other, it is simply described as “power conversion device 1”.
  • the gate command unit 240 according to the power conversion device 1 of the modification 3 converts the gate block command signal GB into the gate signal generation unit 300 and another power conversion device 1 (in this case, the power conversion device 1 ⁇ to the power conversion device 1 ⁇ , or Output from the power converter 1 ⁇ to the power converter 1 ⁇ ). Further, the circuit breaker control unit 250a according to the power conversion device 1 of the modification 3 acquires the gate block command signal GB output by the other power conversion device 1.
  • the gate block command signal GB output by another power conversion device 1 is input to the rise detection unit 254 of the circuit breaker control unit 250a in the modification 3 instead of the gate command unit 240.
  • the power conversion device 1 may be connected to two or more power conversion devices 1 via a DC system, for example.
  • the gate block command signal GB output by the gate command unit 240 related to the two or more power conversion devices 1 is input to the rise detection unit 254.
  • the power conversion device 1 of the modification 3 temporarily invalidates the breaker opening command signal CBT based on the gate block command signal GB acquired from the other power conversion device 1, and the other power. Suppresses the sudden decrease in active power due to the gate block of the converter 1 and the opening of the AC breaker CB that does not contribute to the protection of the power converter 10 due to the instantaneous system overvoltage caused by the gate block of the own device, improving operation continuity. Can be made to.
  • Circuit breaker open command signal ERR ... System voltage abnormality signal, GB ... Gate block command signal, TM1, TM2 ... Predetermined period, V_CBT ... Circuit breaker open threshold, Vth_H ... AC system voltage upper limit value, Vth_L ... AC system voltage lower limit value, Vdf1 ... Value, Vdf2 ... Value, Vdf3 ... Value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

This power conversion device (1) comprises a power converter (10), an AC circuit breaker (CB), a switching control unit (240), and a breaker control unit (250). The power converter (10) includes an arm. The arm includes a plurality of unit converters connected in series. Each of the plurality of unit converters includes a capacitor whose charging/discharging can be switched by a switching element. The AC circuit breaker (CB) is connected between an AC system and the power converter (10). When the absolute value of the AC voltage (Vd) is larger than a first threshold value or smaller than a second threshold value (< the first threshold value), the switching control unit (240) outputs a gate block command (GB) to stop the switching operation of the switching element. When the absolute value is larger than a third threshold value (> the first threshold value) and the absolute value does not instantaneously change according to the output of the gate block command (GB), the breaker control unit (250) opens the AC circuit breaker (CB).

Description

電力変換装置、電力変換システム、及びプログラムPower converters, power conversion systems, and programs
 本発明の実施形態は、電力変換装置、電力変換システム、及びプログラムに関する。 Embodiments of the present invention relate to power conversion devices, power conversion systems, and programs.
 近年、電力変換器の一つであるモジュラー・マルチレベル変換器(以下、MMC:Modular Multilevel Converter)の実用化が進められている。MMCとは、直列に接続された複数の単位変換器を含むアームユニットを備え、各単位変換器の出力可能な電圧を加算することで高電圧、大容量に対応可能な電力変換器である。電力変換器は、例えば、交流系統と直流系統との間に接続され、電力を相互に変換する。 In recent years, a modular multi-level converter (hereinafter referred to as MMC: Modular Multilevel Converter), which is one of the power converters, has been put into practical use. The MMC is a power converter that includes an arm unit including a plurality of unit converters connected in series, and can handle high voltage and large capacity by adding the outputsable voltages of the unit converters. The power converter is connected between, for example, an AC system and a DC system, and converts electric power to each other.
 電力変換器が連系する交流系統や直流系統に事故などの異常が発生した場合、電力変換器は、交流系統の電圧や周波数の安定性を損なわないように運転継続(異常解消後に迅速に運転を再開することも含む)するか、異常の度合いによって電力変換器の故障を抑制するように保護停止するかを適切に選択することが求められる。異常発生時の電力変換器の制御・保護は、例えば、電力変換器が備える半導体素子のスイッチング制御を停止する(ゲートブロックする)方法や、電力変換器と交流系統との間に設けられる交流遮断器を開状態に切り替える方法などにより実現される。交流遮断器の開閉動作は半導体素子のスイッチング制御よりも低速であるため、電力変換器は、半導体素子のスイッチング制御を停止した場合、異常解消後に迅速に運転を再開できる(運転継続できる)が、交流遮断器を開状態に切り替えた場合、異常解消後に迅速に運転を再開することができない(運転継続できない)場合があった。 If an abnormality such as an accident occurs in the AC system or DC system to which the power converter is connected, the power converter will continue to operate so as not to impair the stability of the voltage and frequency of the AC system (operate quickly after the abnormality is resolved). It is required to properly select whether to restart the power converter) or to stop the protection so as to suppress the failure of the power converter depending on the degree of abnormality. The control / protection of the power converter in the event of an abnormality is, for example, a method of stopping (gate blocking) the switching control of the semiconductor element provided in the power converter, or an AC cutoff provided between the power converter and the AC system. It is realized by a method of switching the vessel to the open state. Since the opening / closing operation of the AC circuit breaker is slower than the switching control of the semiconductor element, the power converter can quickly resume the operation (can continue the operation) after the abnormality is resolved when the switching control of the semiconductor element is stopped. When the AC circuit breaker was switched to the open state, the operation could not be resumed promptly (the operation could not be continued) after the abnormality was resolved.
特開2019-22313号公報Japanese Unexamined Patent Publication No. 2019-22313
 本発明が解決しようとする課題は、系統事故時の運転継続性を向上させることができる、電力変換装置、電力変換システム、及びプログラムを提供することである。 An object to be solved by the present invention is to provide a power conversion device, a power conversion system, and a program capable of improving operation continuity in the event of a system accident.
 実施形態の電力変換装置は、交流と直流とを相互に変換可能である。電力変換装置は、電力変換器と、交流遮断器と、スイッチング制御部と、遮断制御部とを持つ。前記電力変換器は、アームを含む。アームは、直列接続された複数の単位変換器を含む。複数の単位変換器のそれぞれは、スイッチング素子によって充放電を切り替え可能なコンデンサを含む。前記交流遮断器は、前記交流を供給する交流系統と、前記電力変換器との間に接続される。前記スイッチング制御部は、前記スイッチング素子を制御する。前記遮断制御部は、前記交流遮断器を制御する。前記スイッチング制御部は、前記交流の電圧の絶対値が第1閾値より大きい、もしくは第2閾値(第2閾値は、前記第1閾値よりも小さい)より小さい場合、ゲートブロック指令を出力して前記スイッチング素子のスイッチング動作を停止させる。前記遮断制御部は、前記絶対値が第3閾値(第3閾値は、前記第1閾値よりも大きい)より大きい場合において、前記スイッチング制御部により前記ゲートブロック指令が出力されたことに伴って前記絶対値が瞬時的に変化していない場合、前記交流遮断器を開放状態にし、前記スイッチング制御部により前記ゲートブロック指令が出力されたことに伴って前記絶対値が瞬時的に変化している場合、前記交流遮断器を開放状態にしない。 The power conversion device of the embodiment can convert alternating current and direct current to each other. The power converter includes a power converter, an AC circuit breaker, a switching control unit, and a circuit breaker control unit. The power converter includes an arm. The arm includes a plurality of unit converters connected in series. Each of the plurality of unit converters includes a capacitor whose charge and discharge can be switched by a switching element. The AC circuit breaker is connected between the AC system that supplies the AC and the power converter. The switching control unit controls the switching element. The cutoff control unit controls the AC circuit breaker. When the absolute value of the AC voltage is larger than the first threshold value or smaller than the second threshold value (the second threshold value is smaller than the first threshold value), the switching control unit outputs a gate block command. Stop the switching operation of the switching element. When the absolute value is larger than the third threshold value (the third threshold value is larger than the first threshold value), the circuit breaker control unit causes the gate block command to be output by the switching control unit. When the absolute value does not change instantaneously, when the AC circuit breaker is opened and the absolute value changes instantaneously as the gate block command is output by the switching control unit. , Do not open the AC circuit breaker.
実施形態の電力変換装置1の構成の一例を示す図である。It is a figure which shows an example of the structure of the power conversion apparatus 1 of embodiment. 実施形態の電力変換器10の構成の一例を示す図である。It is a figure which shows an example of the structure of the power converter 10 of an embodiment. セルCLの構成の一例を示す図である。It is a figure which shows an example of the structure of a cell CL. 実施形態の交流情報算出部210の処理の一例を模式的に示す図である。It is a figure which shows typically an example of the processing of the AC information calculation unit 210 of embodiment. 実施形態のゲート指令部240の処理の一例を模式的に示す図である。It is a figure which shows typically an example of the process of the gate command part 240 of embodiment. 実施形態の遮断器制御部250の処理の一例を模式的に示す図である。It is a figure which shows typically an example of the process of the circuit breaker control part 250 of embodiment. 従来の電力変換装置の動作の一例を示す図である。It is a figure which shows an example of the operation of the conventional power conversion apparatus. 本実施形態の電力変換装置1の動作の一例を示す図である。It is a figure which shows an example of the operation of the power conversion apparatus 1 of this embodiment. 本実施形態の電力変換装置1の第1ゲート信号gtp、及び第2ゲート信号gtnの生成に係る処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which concerns on the generation of the 1st gate signal gtp, and the 2nd gate signal gtn of the power conversion apparatus 1 of this embodiment. 本実施形態の電力変換装置1のゲートブロック指令信号GBの出力に係る処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which concerns on the output of the gate block command signal GB of the power conversion apparatus 1 of this embodiment. 本実施形態の電力変換装置1の遮断器開放指令信号CBTの出力に係る処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which concerns on the output of the circuit breaker open command signal CBT of the power conversion apparatus 1 of this embodiment. 変形例1の第3フィルタ224の処理動作の一例を示す図である。It is a figure which shows an example of the processing operation of the 3rd filter 224 of the modification 1. 変形例2における電力変換装置1の構成の一例を示す図である。It is a figure which shows an example of the structure of the power conversion apparatus 1 in the modification 2. 変形例2に係る遮断器制御部250aの構成の一例を示す図である。It is a figure which shows an example of the structure of the circuit breaker control unit 250a which concerns on the modification 2. 変形例3における電力変換システムの構成の一例を示す図である。It is a figure which shows an example of the structure of the power conversion system in the modification 3.
 以下、実施形態の電力変換装置、電力変換システム、及びプログラムを、図面を参照して説明する。 Hereinafter, the power conversion device, the power conversion system, and the program of the embodiment will be described with reference to the drawings.
(実施形態)
[電力変換装置1の構成]
 図1は、実施形態の電力変換装置1の構成の一例を示す図である。電力変換装置1は、交流系統と直流系統の連系点に設けられ、交流系統が供給する交流電力と、直流系統が供給する直流電力とを相互に変換する。電力変換装置1は、電力変換器10と、変換器制御装置20とを備える。
(Embodiment)
[Configuration of power converter 1]
FIG. 1 is a diagram showing an example of the configuration of the power conversion device 1 of the embodiment. The power conversion device 1 is provided at the interconnection point between the AC system and the DC system, and mutually converts the AC power supplied by the AC system and the DC power supplied by the DC system. The power converter 1 includes a power converter 10 and a converter control device 20.
[電力変換器10について]
 電力変換器10は、交流遮断器CBを介して交流系統に接続される。交流遮断器CBは、後述する変換器制御装置20によって開状態(開放状態)、又は閉状態(開放状態ではない状態)に制御される。開状態(開放状態)は、交流遮断器CBがオフ状態、又は遮断状態に制御されることであり、閉状態(開放状態ではない状態)は、交流遮断器CBがオン状態、又は導通状態に制御されることである。交流遮断器CBは、閉状態において、交流系統と電力変換器10とを連系し、開状態において、交流系統と電力変換器10とを遮断する。電力変換器10は、変換器制御装置20の制御に基づいて、交流電力と直流電力とを相互に変換する。電力変換器10は、例えば、モジュラー・マルチレベル変換器(以下、MMC:Modular Multilevel Converter)である。図2は、実施形態の電力変換器10の構成の一例を示す図である。電力変換器10は、直流系統の正極(図示する端子P)と、直流系統の負極(図示する端子N)との間に複数のレグLGを備える。レグLGの数は、例えば、交流系統が供給する交流電力の相数に対応する。本実施形態では、交流系統は、第1相(図示するR相)、第2相(図示するS相)及び第3相(図示するT相)の三相三線式の交流電力を供給する。このため、電力変換器10は、R相に対応するレグLGrと、S相に対応するレグLGsと、T相に対応するレグLGtとを備える。以降の説明において、レグLGrと、レグLGsと、レグLGtとを互いに区別しない場合には、総称して「レグLG」と記載する。
[About power converter 10]
The power converter 10 is connected to the AC system via the AC circuit breaker CB. The AC circuit breaker CB is controlled to an open state (open state) or a closed state (not an open state) by the converter control device 20 described later. In the open state (open state), the AC circuit breaker CB is controlled to the off state or the cutoff state, and in the closed state (not the open state), the AC circuit breaker CB is turned on or in the conductive state. It is to be controlled. The AC circuit breaker CB connects the AC system and the power converter 10 in the closed state, and shuts off the AC system and the power converter 10 in the open state. The power converter 10 mutually converts AC power and DC power based on the control of the converter control device 20. The power converter 10 is, for example, a modular multilevel converter (hereinafter, MMC: Modular Multilevel Converter). FIG. 2 is a diagram showing an example of the configuration of the power converter 10 of the embodiment. The power converter 10 includes a plurality of leg LGs between the positive electrode of the DC system (terminal P shown) and the negative electrode of the DC system (terminal N shown). The number of leg LGs corresponds to, for example, the number of phases of AC power supplied by the AC system. In the present embodiment, the AC system supplies three-phase, three-wire AC power of the first phase (R phase shown in the figure), the second phase (S phase shown in the figure), and the third phase (T phase shown in the figure). Therefore, the power converter 10 includes a leg LGr corresponding to the R phase, leg LGs corresponding to the S phase, and a leg LGt corresponding to the T phase. In the following description, when the leg LGr, the leg LGs, and the leg LGt are not distinguished from each other, they are collectively referred to as "leg LG".
 レグLGには、トランスTRを介して、交流系統が供給する交流電力の三相のうち、ある相が接続される。具体的には、レグLGrには、R相が接続され、レグLGsには、S相が接続され、レグLGtには、T相が接続される。以降の説明において、レグLGrと、R相との接続点を接続点CPrと記載し、レグLGsと、S相との接続点を接続点CPsと記載し、レグLGtと、T相との接続点を接続点CPtと記載する。以降の説明において、接続点CPrと、接続点CPsと、接続点CPtとを互いに区別しない場合には、単に接続点CPと記載する。 A certain phase of the three phases of AC power supplied by the AC system is connected to the leg LG via the transformer TR. Specifically, the R phase is connected to the leg LGr, the S phase is connected to the leg LGs, and the T phase is connected to the leg LGt. In the following description, the connection point between the leg LGr and the R phase is described as the connection point CPr, the connection point between the leg LGs and the S phase is described as the connection point CPs, and the connection between the leg LGt and the T phase is described. The point is referred to as a connection point CPt. In the following description, when the connection point CPr, the connection point CPs, and the connection point CPt are not distinguished from each other, they are simply described as the connection point CP.
 また、以降の説明において、電力変換器10が出力する直流電圧の端子Pと同電位となる部位を、レグLGの端子Pとも記載し、当該直流電圧の端子Nと同電位となる部位を、レグLGの端子Nとも記載する。また、レグLGの端子Pから各相の接続点までの間を正側アームユニットとも記載する。また、各相の接続点からレグLGの端子Nまでの間を負側アームユニットとも記載する。 Further, in the following description, the portion having the same potential as the terminal P of the DC voltage output by the power converter 10 is also described as the terminal P of the leg LG, and the portion having the same potential as the terminal N of the DC voltage is described. It is also described as the terminal N of the leg LG. Further, the area from the terminal P of the leg LG to the connection point of each phase is also described as a positive arm unit. Further, the area from the connection point of each phase to the terminal N of the leg LG is also described as a negative arm unit.
 各レグLGは、互いに同様の構成を備える。以降の説明において、レグLGrに係る構成には、符号の末尾に「r」を付し、レグLGsに係る構成には、符号の末尾に「s」を付し、レグLGtに係る構成には、符号の末尾に「t」を付す。また、いずれのレグLGに係る構成であるかを互いに区別しない場合には、「r」、「s」、又は「t」を省略して示す。以下、各レグLGを代表してレグLGrについて説明する。 Each leg LG has the same configuration as each other. In the following description, the configuration related to the leg LGr is given an "r" at the end of the code, the configuration related to the leg LGs is given an "s" at the end of the code, and the configuration related to the leg LGt is given an "s". , Add "t" to the end of the code. Further, when it is not possible to distinguish which leg LG has the configuration, "r", "s", or "t" is omitted. Hereinafter, the leg LGr will be described on behalf of each leg LG.
 レグLGrは、正側アームユニットと、負側アームユニットとに、それぞれn個のセルCL(図示するセルCL1-1r~CL1-nr、及びセルCL2-1r~CL2-nr)と、複数のリアクトルRT(図示するリアクトルRT1r、RT2r)とを備える。nは、自然数である。レグLGrの正側アームユニットには、端子Pから接続点CPrに向けて、セルCL1-1r~CL1-nrと、リアクトルRT1rとが記載の順に直列接続される。また、レグLGrの負側アームユニットには、接続点CPrから端子Nに向けて、リアクトルRT2rと、セルCL2-1r~CL2-nrとが記載の順に直列に接続される。なお、リアクトルRTとトランスTRとは、リアクトルの機能を代替するだけの漏れリアクタンスを有する特殊な巻線構造のトランスに置き換えてもよい。 The leg LGr has n cell CLs (cells CL1-1r to CL1-nr and cells CL2-1r to CL2-nr shown in the figure) and a plurality of reactors in the positive arm unit and the negative arm unit, respectively. It is provided with an RT (reactors RT1r and RT2r shown). n is a natural number. The cells CL1-1r to CL1-nr and the reactor RT1r are connected in series to the positive arm unit of the leg LGr from the terminal P toward the connection point CPr in the order described. Further, to the negative arm unit of the leg LGr, the reactor RT2r and the cells CL2-1r to CL2-nr are connected in series in the order described from the connection point CPr toward the terminal N. The reactor RT and the transformer TR may be replaced with a transformer having a special winding structure having a leakage reactance that only replaces the function of the reactor.
 なお、レグLGrは、接続点CPから端子Pに流れる正側アーム電流(図示する、R相正側電流Ipr)を検出する電流検出器(不図示)と、端子Nから接続点CPに流れる負側アーム電流(図示する、R相負側電流Inr)を検出する電流検出器と(不図示)とが設けられていてもよい。 The leg LGr includes a current detector (not shown) that detects the positive arm current (shown, R-phase positive current Ipr) flowing from the connection point CP to the terminal P, and a negative current flowing from the terminal N to the connection point CP. A current detector (not shown) for detecting the side arm current (R-phase negative side current Inr (not shown)) may be provided.
[セルCLについて]
 図3は、セルCLの構成の一例を示す図である。セルCLとは、例えば、ハーフブリッジ回路である。図3に示される通り、セルCLは、例えば、複数のスイッチング素子Q(図示するスイッチング素子Q1~Q2)と、スイッチング素子Qに応じた数のダイオードD(図示するダイオードD1~D2)と、コンデンサCとを備える。スイッチング素子Qは、例えば、絶縁ゲートバイポーラトランジスタ(以下、IGBT:Insulated Gate Bipolar Transistor)である。ただし、スイッチング素子Qは、IGBTに限定されない。スイッチング素子Qは、コンバータ又はインバータを実現可能な自己消弧型スイッチング素子であれば、いかなる素子でもよい。本実施形態では、スイッチング素子QがIGBTである場合について説明する。
[About cell CL]
FIG. 3 is a diagram showing an example of the configuration of the cell CL. The cell CL is, for example, a half-bridge circuit. As shown in FIG. 3, the cell CL includes, for example, a plurality of switching elements Q (switching elements Q1 to Q2 shown), a number of diodes D (diodes D1 to D2 shown) corresponding to the switching element Q, and a capacitor. It has C. The switching element Q is, for example, an insulated gate bipolar transistor (hereinafter, IGBT: Insulated Gate Bipolar Transistor). However, the switching element Q is not limited to the IGBT. The switching element Q may be any self-extinguishing switching element capable of realizing a converter or an inverter. In this embodiment, a case where the switching element Q is an IGBT will be described.
 スイッチング素子Q1と、スイッチング素子Q2とは、互いに直列に接続される。スイッチング素子Q1、及びスイッチング素子Q2と、コンデンサCとは、互いに並列に接続される。各スイッチング素子Qと、ダイオードDとは、互いに並列に接続される。具体的には、スイッチング素子Q1と、ダイオードD1とは、互いに並列に接続され、スイッチング素子Q2と、ダイオードD2とは、互いに並列に接続される。 The switching element Q1 and the switching element Q2 are connected in series with each other. The switching element Q1 and the switching element Q2 and the capacitor C are connected in parallel with each other. Each switching element Q and the diode D are connected in parallel with each other. Specifically, the switching element Q1 and the diode D1 are connected in parallel with each other, and the switching element Q2 and the diode D2 are connected in parallel with each other.
 図3においてセルCLは、レグLGの端子P側に接続される正極端子と、端子N側に接続される負極端子とを備える。セルCLの正極端子は、スイッチング素子Q1と、スイッチング素子Q2との接続点に接続され、セルCLの負極端子は、スイッチング素子Q2のエミッタ端子に接続される。以降の説明において、セルCLの正極端子と負極端子との間に生じる電圧を、セル電圧Vclと記載する。 In FIG. 3, the cell CL includes a positive electrode terminal connected to the terminal P side of the leg LG and a negative electrode terminal connected to the terminal N side. The positive electrode terminal of the cell CL is connected to the connection point between the switching element Q1 and the switching element Q2, and the negative electrode terminal of the cell CL is connected to the emitter terminal of the switching element Q2. In the following description, the voltage generated between the positive electrode terminal and the negative electrode terminal of the cell CL will be referred to as the cell voltage Vcl.
 各スイッチング素子Qには、スイッチング素子Qのオン、オフを切り替える切替端子(不図示)を備え、切替端子は、変換器制御装置20と接続され、制御信号が入力される。具体的には、スイッチング素子Q1には、制御信号として第1ゲート信号gtpが入力され、スイッチング素子Q2には、制御信号として第2ゲート信号gtnが入力される。制御信号に基づいて各スイッチング素子Qがオン、又はオフに切り替えられることにより、セルCLが備えるコンデンサCは、充電又は放電される。また、セルCLは、コンデンサCの電圧であるコンデンサ電圧Vcを検出する電圧検出器(不図示)が設けられる。 Each switching element Q is provided with a switching terminal (not shown) for switching on / off of the switching element Q, and the switching terminal is connected to the converter control device 20 to input a control signal. Specifically, the first gate signal gtp is input to the switching element Q1 as a control signal, and the second gate signal gtn is input to the switching element Q2 as a control signal. By switching each switching element Q on or off based on the control signal, the capacitor C included in the cell CL is charged or discharged. Further, the cell CL is provided with a voltage detector (not shown) that detects the capacitor voltage Vc, which is the voltage of the capacitor C.
 スイッチング素子Qをオン状態にする制御信号を「1」と表現し、オフ状態にする制御信号を「0」と表現すると、セル電圧Vclは、(gtp、gtn)=(1、0)の場合、コンデンサ電圧Vcと一致し、(gtp、gtn)=(0、1)の場合、0[V]である。このように、各レグLGが備えるスイッチング素子Qがスイッチングされることにより、マルチレベルの波形を生成することができる。 When the control signal for turning on the switching element Q is expressed as "1" and the control signal for turning off the switching element Q is expressed as "0", the cell voltage Vcl is when (gtp, gtn) = (1, 0). , It corresponds to the capacitor voltage Vc, and when (gtp, gtn) = (0, 1), it is 0 [V]. By switching the switching element Q included in each leg LG in this way, a multi-level waveform can be generated.
 なお、スイッチング素子Qを(gtp、gtn)=(1、1)とすることは、コンデンサCを短絡するため、禁止である。また、スイッチング時においてスイッチング素子Qが過渡的に(gtp、gtn)=(1、1)となるのを防止するため、スイッチング素子Qは、通常はごく短時間、過渡的に(gtp、gtn)=(0、0)の状態(デッドタイム)に制御される。ただし、スイッチング素子Qが、(gtp、gtn)=(0、0)の状態(デッドタイム)に制御される時間は、スイッチング周期に比べて十分に短時間であるため、以降の説明から省略する。また、スイッチング素子Qのスイッチング制御を停止する場合、(gtp、gtn)=(0、0)の状態に固定することにより、実現される。以降の説明において、第1ゲート信号gtp、及び第2ゲート信号gtnを(gtp、gtn)=(0、0)に固定した状態をゲートブロック状態とも記載する。 It should be noted that setting the switching element Q to (gtp, gtn) = (1, 1) is prohibited because the capacitor C is short-circuited. Further, in order to prevent the switching element Q from transiently (gtp, gtn) = (1, 1) during switching, the switching element Q is usually transiently (gtp, gtn) for a very short time. It is controlled to the state (dead time) of = (0, 0). However, the time during which the switching element Q is controlled to the state (dead time) of (gtp, gtn) = (0, 0) is sufficiently shorter than the switching cycle, and thus is omitted from the following description. .. Further, when the switching control of the switching element Q is stopped, it is realized by fixing it in the state of (gtp, gtn) = (0,0). In the following description, a state in which the first gate signal gtp and the second gate signal gtn are fixed at (gtp, gttn) = (0, 0) is also described as a gate block state.
[変換器制御装置20について]
 図1に戻り、変換器制御装置20は、制御部200と、ゲート信号生成部300とを備える。制御部200は、例えば、CPU(Central Processing Unit)等のハードウェアプロセッサが記憶部(不図示)に記憶されるプログラム(ソフトウェア)を実行することにより、交流情報算出部210と、第1フィルタ220と、第2フィルタ222と、第3フィルタ224と、電圧指令値演算部230と、ゲート指令部240と、遮断器制御部250とを機能部として実現する。また、これらの構成要素のうち一部又は全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)等のハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
[About the converter control device 20]
Returning to FIG. 1, the converter control device 20 includes a control unit 200 and a gate signal generation unit 300. In the control unit 200, for example, a hardware processor such as a CPU (Central Processing Unit) executes a program (software) stored in a storage unit (not shown) to execute an AC information calculation unit 210 and a first filter 220. The second filter 222, the third filter 224, the voltage command value calculation unit 230, the gate command unit 240, and the circuit breaker control unit 250 are realized as functional units. In addition, some or all of these components are hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), etc. It may be realized by the part (including circuitry), or it may be realized by the cooperation of software and hardware.
 交流情報算出部210は、交流系統の各相の電圧を検出する検出器CSによって検出された電圧(図示するR相電圧Vr、S相電圧Vs、及びT相電圧Vt)を示す情報を取得し、取得した情報に基づいて、交流系統有効電圧Vd、及び交流系統無効電圧Vqを算出する。また、交流情報算出部210は、交流系統電圧に追従し、同期するための演算として、交流系統無効電圧Vqの算出値が零になるように演算を繰り返す。これにより、交流情報算出部210は、交流周波数fpll、及び交流系統電圧位相thetaを算出する。交流周波数fpllは、電力変換器10が連系する交流系統電圧の周波数である。また、交流系統電圧位相thetaは、当該交流電圧のある基準相の位相を示す値である。交流情報算出部210の処理の詳細については、後述する。 The AC information calculation unit 210 acquires information indicating the voltage (R-phase voltage Vr, S-phase voltage Vs, and T-phase voltage Vt shown in the figure) detected by the detector CS that detects the voltage of each phase of the AC system. , The AC system active voltage Vd and the AC system invalid voltage Vq are calculated based on the acquired information. Further, the AC information calculation unit 210 repeats the calculation so that the calculated value of the AC system invalid voltage Vq becomes zero as a calculation for following and synchronizing the AC system voltage. As a result, the AC information calculation unit 210 calculates the AC frequency fpll and the AC system voltage phase theta. The AC frequency fpl is the frequency of the AC system voltage to which the power converter 10 is connected. Further, the AC system voltage phase theta is a value indicating the phase of a reference phase having the AC voltage. The details of the processing of the AC information calculation unit 210 will be described later.
 第1フィルタ220は、交流情報算出部210によって算出された交流系統有効電圧Vdの絶対値に対して第1フィルタ処理(フィルタ処理の一つ)を行い、値Vdf1を出力する。また、第1フィルタ220は、交流情報算出部210によって算出された交流系統無効電圧Vqに対して第1フィルタ処理を行い、値Vqf1を取得する。第1フィルタ220は、例えば、交流系統有効電圧Vd、及び交流系統無効電圧Vqに含まれる低域周波数成分を通過させつつ、高域周波数成分を除去する一般的な低域通過フィルタ、特定の周波数帯域を除去する帯域除去フィルタ、或いは低域通過フィルタと、帯域除去フィルタとの組合せによって実現される。 The first filter 220 performs the first filter processing (one of the filter processing) on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf1. Further, the first filter 220 performs the first filter processing on the AC system invalid voltage Vq calculated by the AC information calculation unit 210, and acquires the value Vqf1. The first filter 220 is, for example, a general low-pass filter that removes high-frequency components while passing low-frequency components contained in the AC system active voltage Vd and the AC system invalid voltage Vq, and a specific frequency. It is realized by a band removal filter that removes a band, or a combination of a low frequency pass filter and a band removal filter.
 第2フィルタ222は、交流情報算出部210によって算出された交流系統有効電圧Vdの絶対値に対して第2フィルタ処理(フィルタ処理の一つ)を行い、値Vdf2を出力する。第2フィルタ222は、例えば、一般的な低域通過フィルタなどが適用できる。 The second filter 222 performs the second filter processing (one of the filter processing) on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf2. For example, a general low-pass filter or the like can be applied to the second filter 222.
 第3フィルタ224は、交流情報算出部210によって算出された交流系統有効電圧Vdの絶対値に対して第3フィルタ処理(フィルタ処理の一つ)を行い、値Vdf3を出力する。第3フィルタ224は、例えば、一般的な低域通過フィルタを適用する。 The third filter 224 performs a third filter process (one of the filter processes) on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf3. The third filter 224 applies, for example, a general low-pass filter.
 第2フィルタ222と、第3フィルタ224とは、第2フィルタ222の時定数が、少なくとも第3フィルタ224の時定数よりも短くなるように設計される。時定数を短く設計するとは、第2フィルタ処理を施さず、そのまま入力を出力し、交流系統有効電圧Vdを値Vdf2として出力する場合も含む。 The second filter 222 and the third filter 224 are designed so that the time constant of the second filter 222 is at least shorter than the time constant of the third filter 224. Designing the time constant to be short includes the case where the input is output as it is without the second filter processing and the AC system effective voltage Vd is output as the value Vdf2.
 なお、第1フィルタ220の時定数は、第2フィルタ222の時定数、及び第3フィルタ224の時定数とは独立して設計される。また、第1フィルタ220と、第2フィルタ222と、第3フィルタ224の第3フィルタ処理は、所望の周波数成分の通過特性をソフトウェアで実現するディジタルフィルタとしてもよいし、オペアンプやキャパシタなどの部品を組み合わせて用い、ハードウェアで実現するアナログフィルタとしてもよい。また、帯域除去フィルタは、連系する交流系統条件によって特定高調波の発生が大きくなる場合、その影響を除去する目的で導入されてもよい。帯域除去フィルタは、除去したい周波数帯域とその除去レベルに応じてフィルタ定数が設計される。 The time constant of the first filter 220 is designed independently of the time constant of the second filter 222 and the time constant of the third filter 224. Further, the third filter processing of the first filter 220, the second filter 222, and the third filter 224 may be a digital filter that realizes the passing characteristics of a desired frequency component by software, or parts such as an operational amplifier and a capacitor. May be used in combination as an analog filter realized by hardware. Further, the band-stop filter may be introduced for the purpose of removing the influence of a specific harmonic when the generation of a specific harmonic becomes large due to the conditions of the interconnected AC system. In the band removal filter, the filter constant is designed according to the frequency band to be removed and the removal level thereof.
 ここで、通常の交流系統電圧には、50[Hz]や60[Hz]の定格周波数の他に、定格周波数の5倍や7倍などの高調波成分が含まれることがある。また、交流系統事故が発生すると、定格周波数を含めた振幅が急変することがある。第1フィルタ220の時定数が長いと、これら高調波や変動に対する電流制御の応答が遅れ、電力変換器の安定運転が困難になり、保護停止や故障につながる恐れがある。このため、第1フィルタ220の時定数は、必要な電流制御性能を有しつつ、ノイズ等に起因して不安定な運転状態にならないように適切に設計される。 Here, the normal AC system voltage may include harmonic components such as 5 times or 7 times the rated frequency in addition to the rated frequency of 50 [Hz] or 60 [Hz]. In addition, when an AC system accident occurs, the amplitude including the rated frequency may change suddenly. If the time constant of the first filter 220 is long, the response of the current control to these harmonics and fluctuations is delayed, which makes it difficult for the power converter to operate stably, which may lead to protection stoppage or failure. Therefore, the time constant of the first filter 220 is appropriately designed so as not to be in an unstable operating state due to noise or the like while having the required current control performance.
 電圧指令値演算部230は、電力変換器10の各状態(例えば、正側電流Ipr~Ipt、負側電流Inr~Int、及び各コンデンサ電圧Vc)と、交流情報算出部210によって算出された、交流系統電圧位相thetaと、第1フィルタ220によって取得された値Vdf1、及び値Vqf1とに基づいて、電力変換器10の出力する有効電力PEと、無効電力QEとが、予め定められた有効電力指令値PE*と、無効電力指令値QE*とになるように、各セルCLのセル電圧Vclを指示するセル電圧指令値Vcl*を算出する。 The voltage command value calculation unit 230 is calculated by the AC information calculation unit 210 and each state of the power converter 10 (for example, the positive side currents Ipr to Ipt, the negative side currents Inr to Int, and each capacitor voltage Vc). Based on the AC system voltage phase theta, the value Vdf1 acquired by the first filter 220, and the value Vqf1, the active power PE output by the power converter 10 and the active power QE are predetermined active powers. The cell voltage command value Vcl * that indicates the cell voltage Vcl of each cell CL is calculated so that the command value PE * and the ineffective power command value QE * are obtained.
 ここで、電圧指令値演算部230は、交流系統電圧が安定した正弦波の場合においては、ほぼ一定の値(直流成分)になる交流系統有効電圧Vdと、ほぼ零となる交流系統無効電圧Vqとに基づいて、電力変換器10の出力する有効電力PEと、無効電力QEとが、あらかじめ定められた設定値に一致するように、電力変換器10の出力すべき電圧指令値を算出する。この際、外乱となるノイズが除去された交流系統有効電圧Vd、及び交流系統無効電圧Vqとに基づいて、電力変換器10の出力すべき電圧指令値を算出することが好ましい。電圧指令値演算部230は、第1フィルタ220が交流系統有効電圧Vdと交流系統無効電圧Vqの直流成分など低周波成分は通過させつつ、高周波のノイズを除去して出力した値Vdf1と、値Vqf1とに基づいて、適切な電力変換器10の出力すべき電圧指令値を算出する。 Here, the voltage command value calculation unit 230 has an AC system active voltage Vd that becomes a substantially constant value (DC component) and an AC system invalid voltage Vq that becomes almost zero in the case of a sinusoidal wave in which the AC system voltage is stable. Based on the above, the voltage command value to be output by the power converter 10 is calculated so that the active power PE output by the power converter 10 and the ineffective power QE match the predetermined set values. At this time, it is preferable to calculate the voltage command value to be output by the power converter 10 based on the AC system active voltage Vd from which the noise that causes disturbance is removed and the AC system invalid voltage Vq. The voltage command value calculation unit 230 has a value Vdf1 and a value output by the first filter 220 after removing high-frequency noise while passing low-frequency components such as the DC component of the AC system active voltage Vd and the AC system invalid voltage Vq. Based on Vqf1, the voltage command value to be output by the appropriate power converter 10 is calculated.
 ゲート指令部240は、第2フィルタ222により出力された値Vdf2に基づいて、ゲート信号生成部300に電力変換器10の全てのセルCLに対してゲートブロック指令信号GBを出力させる。ゲート指令部240が、ゲートブロック指令信号GBを出力する際の条件については、後述する。 The gate command unit 240 causes the gate signal generation unit 300 to output the gate block command signal GB to all the cell CLs of the power converter 10 based on the value Vdf2 output by the second filter 222. The conditions for the gate command unit 240 to output the gate block command signal GB will be described later.
 遮断器制御部250は、第3フィルタ224により出力された値Vdf3に基づいて、遮断器開放指令信号CBTを出力する。交流遮断器CBは、遮断器開放指令信号CBTが変換器制御装置20により出力された場合、開状態に制御される。以下、変換器制御装置20が、交流遮断器CBを開状態に制御することを、「交流遮断器CBを開放する」とも記載する。遮断器制御部250が遮断器開放指令信号CBTを出力する際の条件については、後述する。 The circuit breaker control unit 250 outputs the circuit breaker open command signal CBT based on the value Vdf3 output by the third filter 224. The AC circuit breaker CB is controlled to the open state when the circuit breaker open command signal CBT is output by the converter control device 20. Hereinafter, controlling the AC circuit breaker CB in the open state by the converter control device 20 is also described as "opening the AC circuit breaker CB". The conditions for the circuit breaker control unit 250 to output the circuit breaker open command signal CBT will be described later.
 ゲート信号生成部300は、電圧指令値演算部230によって算出された各セルCLのセル電圧指令値Vcl*に基づいて、セルCL毎の第1ゲート信号gtp、及び第2ゲート信号gtnを生成し、電力変換器10に出力する。 The gate signal generation unit 300 generates a first gate signal gtp and a second gate signal gttn for each cell CL based on the cell voltage command value Vcl * of each cell CL calculated by the voltage command value calculation unit 230. , Output to the power converter 10.
 以下、変換器制御装置20が備える各部の処理の内容について説明する。 Hereinafter, the processing contents of each part included in the converter control device 20 will be described.
[交流情報算出部210について]
 図4は、実施形態の交流情報算出部210の処理の一例を模式的に示す図である。交流情報算出部210は、変換部211と、PI演算部212と、加算部213と、発振器214とを機能部として備える。
[About AC information calculation unit 210]
FIG. 4 is a diagram schematically showing an example of processing of the AC information calculation unit 210 of the embodiment. The AC information calculation unit 210 includes a conversion unit 211, a PI calculation unit 212, an addition unit 213, and an oscillator 214 as functional units.
 変換部211は、検出器CSによって検出された電圧(図示するR相電圧Vr、S相電圧Vs、及びT相電圧Vt)を示す情報を取得する。変換部211は、式(1)を用いて、取得したR相電圧Vr、S相電圧Vs、及びT相電圧Vtを、交流系統有効電圧Vd、及び交流系統無効電圧Vqに変換(算出)する。なお、交流系統電圧位相thetaは、後述する発振器214によって出力される値であり、交流系統のある基準相(この一例では、R相)の電圧位相を示す値である。 The conversion unit 211 acquires information indicating the voltage detected by the detector CS (R-phase voltage Vr, S-phase voltage Vs, and T-phase voltage Vt shown). The conversion unit 211 converts (calculates) the acquired R-phase voltage Vr, S-phase voltage Vs, and T-phase voltage Vt into AC system effective voltage Vd and AC system invalid voltage Vq using the equation (1). .. The AC system voltage phase theta is a value output by the oscillator 214 described later, and is a value indicating the voltage phase of a reference phase (R phase in this example) of the AC system.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 PI演算部212は、変換部211によって変換された交流系統無効電圧Vqに基づいて、電力変換器10が連系する交流系統電圧の周波数と、基準交流系統周波数fs0との周波数差(以下、周波数差Δfpll)を算出する。周波数差Δfpllは、交流系統電圧の周波数が基準交流系統周波数fs0より高い場合、プラスの値をとり、基準交流系統周波数fs0より低い場合、マイナスの値をとる。基準交流系統周波数fs0は、連系する交流系統の定格周波数であり、例えば、50[Hz]、又は60[Hz]の定数である。周波数差Δfpllは、PI演算部212に入力される交流系統無効電圧Vqの算出値が零になるまで、増加、又は減少を続け、実際の交流系統周波数と基準交流系統周波数fs0との差の値に収束する。 The PI calculation unit 212 has a frequency difference (hereinafter, frequency) between the frequency of the AC system voltage to which the power converter 10 is connected and the reference AC system frequency fs0 based on the AC system invalid voltage Vq converted by the conversion unit 211. The difference Δfpll) is calculated. The frequency difference Δfpll takes a positive value when the frequency of the AC system voltage is higher than the reference AC system frequency fs0, and takes a negative value when the frequency is lower than the reference AC system frequency fs0. The reference AC system frequency fs0 is the rated frequency of the interconnected AC system, and is, for example, a constant of 50 [Hz] or 60 [Hz]. The frequency difference Δfpll continues to increase or decrease until the calculated value of the AC system invalid voltage Vq input to the PI calculation unit 212 becomes zero, and is the value of the difference between the actual AC system frequency and the reference AC system frequency fs0. Converges to.
 加算部213は、PI演算部212によって算出された周波数差Δfpllを、基準交流系統周波数fs0に加算する。 The addition unit 213 adds the frequency difference Δfpll calculated by the PI calculation unit 212 to the reference AC system frequency fs0.
 発振器214は、加算部213によって算出された交流周波数fpllの周波数によって、最小値0から最大値2πまでを、繰り返し単調増加する交流系統電圧位相thetaを出力する。なお、上述したように、交流系統電圧位相thetaは、変換部211の交流系統有効電圧Vd、及び交流系統無効電圧Vqの変換と、セル電圧指令値Vcl*の生成とに用いられる。 The oscillator 214 outputs an AC system voltage phase theta that repeatedly and monotonically increases from a minimum value of 0 to a maximum value of 2π according to the frequency of the AC frequency fpll calculated by the addition unit 213. As described above, the AC system voltage phase theta is used for converting the AC system effective voltage Vd and the AC system invalid voltage Vq of the conversion unit 211 and generating the cell voltage command value Vcl *.
 上述の処理によって、交流情報算出部210は、変換部211における交流系統無効電圧Vqの算出値が零になるように、交流系統電圧位相thetaの算出を繰り返すことで、交流系統電圧に同期した交流周波数fpll、及び交流系統電圧位相thetaを算出する。 By the above processing, the AC information calculation unit 210 repeats the calculation of the AC system voltage phase theta so that the calculated value of the AC system invalid voltage Vq in the conversion unit 211 becomes zero, so that the AC is synchronized with the AC system voltage. The frequency fpll and the AC system voltage phase theta are calculated.
 交流系統の状態が不安定となり、周波数差Δfpllが通常の範囲を逸脱して変動した場合、電力変換装置1が安定運転できなくなる恐れがある。これを防止するため、PI演算部212は、周波数差Δfpllが、限界値(以下、限界値Δfpll_limit)より大きい場合、周波数差Δfpllを+限界値Δfpll_limitとし、-限界値Δfpll_limitより小さい場合、周波数差Δfpllを-限界値Δfpll_limitとして出力してもよい。この場合、加算部213は、交流周波数fpllを、基準交流系統周波数fs0+限界値Δfpll_limit~基準交流系統周波数fs0-限界値Δfpll_limitの範囲の周波数に制限することができる。限界値Δfpll_limitは、例えば、基準交流系統周波数fs0より小さい正の値である。 If the state of the AC system becomes unstable and the frequency difference Δfpll fluctuates outside the normal range, the power converter 1 may not be able to operate stably. In order to prevent this, the PI calculation unit 212 sets the frequency difference Δfpll to + limit value Δfpll_limit when the frequency difference Δfpll is larger than the limit value (hereinafter, limit value Δfpll_limit), and when it is smaller than the-limit value Δfpll_limit, the frequency difference Δfpll may be output as a −limit value Δfpll_limit. In this case, the addition unit 213 can limit the AC frequency fpl to a frequency in the range of the reference AC system frequency fs0 + limit value Δfpll_limit to the reference AC system frequency fs0-limit value Δfpll_limit. The limit value Δfpll_limit is, for example, a positive value smaller than the reference AC system frequency fs0.
[ゲート指令部240について]
 図5は、実施形態のゲート指令部240の処理の一例を模式的に示す図である。ゲート指令部240は、第1比較器242と、タイマ244とを機能部として備える。第1比較器242は、第2フィルタ222によって出力された値Vdf2と、予め定められた交流系統電圧上限値Vth_H、及び交流系統電圧下限値Vth_Lとを比較する。交流系統電圧上限値Vth_Hは、例えば、電力変換器10が交流系統の電圧や周波数の安定性を損なうことなく運転継続可能な交流系統の交流電圧の最大値である。また、交流系統電圧下限値Vth_Lは、例えば、電力変換器10が交流系統の電圧や周波数の安定性を損なうことなく運転継続可能な交流系統の交流電圧の最小値である。交流系統電圧上限値Vth_Hは、「第1閾値」の一例である。また、交流系統電圧下限値Vth_Lは、「第2閾値」の一例である。
[About Gate Command Unit 240]
FIG. 5 is a diagram schematically showing an example of processing of the gate command unit 240 of the embodiment. The gate command unit 240 includes a first comparator 242 and a timer 244 as functional units. The first comparator 242 compares the value Vdf2 output by the second filter 222 with the predetermined AC system voltage upper limit value Vth_H and the AC system voltage lower limit value Vth_L. The AC system voltage upper limit value Vth_H is, for example, the maximum value of the AC voltage of the AC system in which the power converter 10 can continue operation without impairing the stability of the voltage and frequency of the AC system. Further, the lower limit value Vth_L of the AC system voltage is, for example, the minimum value of the AC voltage of the AC system in which the power converter 10 can continue operation without impairing the stability of the voltage and frequency of the AC system. The AC system voltage upper limit value Vth_H is an example of the “first threshold value”. Further, the AC system voltage lower limit value Vth_L is an example of the "second threshold value".
 第1比較器242は、値Vdf2が交流系統電圧上限値Vth_Hよりも大きい場合、又は値Vdf2が交流系統電圧下限値Vth_Lよりも小さい場合、系統電圧異常信号ERRを出力する。値Vdf2が交流系統電圧上限値Vth_Hよりも大きい状態、又は交流系統電圧下限値Vth_Lよりも小さい状態とは、例えば、交流系統に系統事故が発生し、交流系統の各相電圧の振幅が異常値を示していたり、相間が不平衡になっていたりする状態である。 The first comparator 242 outputs a system voltage abnormality signal ERR when the value Vdf2 is larger than the AC system voltage upper limit value Vth_H or when the value Vdf2 is smaller than the AC system voltage lower limit value Vth_L. When the value Vdf2 is larger than the AC system voltage upper limit value Vth_H or smaller than the AC system voltage lower limit value Vth_L, for example, a system accident occurs in the AC system and the amplitude of each phase voltage of the AC system is an abnormal value. Is shown, or the phases are unbalanced.
 なお、第1比較器242は、式(2)を用いて算出した合成電圧ベクトルVdqf2と、所定の閾値とを比較し、合成電圧ベクトルVdqf2の値が所定の上限閾値より大きい場合、又は所定の下限閾値より小さい場合に、系統電圧異常信号ERRを出力する構成であってもよい。ただし、Vqf2は交流系統無効電圧Vqに第2フィルタ222の第2フィルタ処理を施した値である。 The first comparator 242 compares the combined voltage vector Vdqf2 calculated using the equation (2) with a predetermined threshold value, and when the value of the combined voltage vector Vdqf2 is larger than the predetermined upper limit threshold value, or a predetermined value. When it is smaller than the lower limit threshold value, the system voltage abnormality signal ERR may be output. However, Vqf2 is a value obtained by subjecting the AC system invalid voltage Vq to the second filter processing of the second filter 222.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 タイマ244は、第1比較器242によって系統電圧異常信号ERRが出力される場合、系統電圧異常信号ERRが出力されてから所定期間TM1だけ、ゲートブロック指令信号GBを出力する。所定期間TM1は、例えば、一般的に交流系統事故が除去される交流数サイクル程度の時間に設定する。所定期間TM1は、ゲートブロック指令信号GBが出力されてからカウントが開始される「所定の期間」の一例である。 When the system voltage abnormality signal ERR is output by the first comparator 242, the timer 244 outputs the gate block command signal GB only for a predetermined period TM1 after the system voltage abnormality signal ERR is output. The predetermined period TM1 is set to, for example, a time of about several AC cycles in which AC system accidents are generally eliminated. The predetermined period TM1 is an example of a “predetermined period” in which counting is started after the gate block command signal GB is output.
[遮断器制御部250について]
 図6は、実施形態の遮断器制御部250の処理の一例を模式的に示す図である。遮断器制御部250は、比較器252を機能部として備える。比較器252は、値Vdf3と、予め定められた遮断器開放閾値V_CBTとを比較する。遮断器開放閾値V_CBTは、例えば、交流系統の事故などの異常の影響によって電力変換器10が故障することを抑制するため、交流系統と電力変換器10とを遮断する(つまり、電力変換器10を保護する)ことが求められる場合の、交流系統の交流電圧の最大値である。遮断器開放閾値V_CBTは、「第3閾値」の一例である。
[About the circuit breaker control unit 250]
FIG. 6 is a diagram schematically showing an example of processing of the circuit breaker control unit 250 of the embodiment. The circuit breaker control unit 250 includes a comparator 252 as a functional unit. The comparator 252 compares the value Vdf3 with a predetermined circuit breaker open threshold V_CBT. The circuit breaker open threshold V_CBT cuts off the AC system and the power converter 10 (that is, the power converter 10) in order to suppress the failure of the power converter 10 due to the influence of an abnormality such as an AC system accident. This is the maximum value of the AC voltage of the AC system when it is required to protect. The circuit breaker opening threshold V_CBT is an example of a “third threshold”.
 比較器252は、値Vdf3の絶対値が遮断器開放閾値V_CBTよりも大きい場合、遮断器開放指令信号CBTを出力する。値Vdf3が遮断器開放閾値V_CBTよりも大きい状態は、例えば、交流系統に系統事故が発生し、交流系統の各相電圧の振幅が異常値を示していたり、相間が不平衡になっていたりする状態である。遮断器開放閾値V_CBTは、交流系統電圧上限値Vth_Hよりも大きい値に設定される。 The comparator 252 outputs a circuit breaker opening command signal CBT when the absolute value of the value Vdf3 is larger than the circuit breaker opening threshold value V_CBT. When the value Vdf3 is larger than the circuit breaker open threshold value V_CBT, for example, a system accident occurs in the AC system, the amplitude of each phase voltage of the AC system shows an abnormal value, or the phases are unbalanced. It is in a state. The circuit breaker open threshold value V_CBT is set to a value larger than the AC system voltage upper limit value Vth_H.
 なお、比較器252は、式(3)を用いて算出した合成電圧ベクトルVdqf3と、所定の閾値とを比較し、合成電圧ベクトルVdqf3の値が所定の閾値より大きい場合、遮断器開放閾値V_CBTを出力する構成であってもよい。ただし、値Vqf3は交流系統無効電圧Vqに第3フィルタ224の第3フィルタ処理を施した値である。 The comparator 252 compares the combined voltage vector Vdqf3 calculated using the equation (3) with a predetermined threshold value, and when the value of the combined voltage vector Vdqf3 is larger than the predetermined threshold value, sets the circuit breaker opening threshold value V_CBT. It may be configured to output. However, the value Vqf3 is a value obtained by subjecting the AC system invalid voltage Vq to the third filter processing of the third filter 224.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 交流遮断器CBは、遮断器開放閾値V_CBTが入力された場合、開状態に制御され、交流系統と電力変換器10とを遮断する(切り離す)。これは、交流系統電圧が通常範囲を逸脱して上昇し、ある値を超過した場合に、電力変換器10が備える各セルCLのコンデンサCが、セルCLの電圧耐量を超えて過充電されるのを防止するためである。電力変換器10がゲートブロック状態のとき、交流系統電圧に比例するトランスTRの2次側(アームユニット側)の線間電圧を電圧Vs2とし、アームユニット毎のセルCL直列数をnとすると、コンデンサCは、式(4)に示すコンデンサ電圧Vcまで過充電される。 The AC circuit breaker CB is controlled to the open state when the circuit breaker open threshold value V_CBT is input, and shuts off (disconnects) the AC system and the power converter 10. This is because when the AC system voltage rises outside the normal range and exceeds a certain value, the capacitor C of each cell CL included in the power converter 10 is overcharged exceeding the voltage withstand capacity of the cell CL. This is to prevent. When the power converter 10 is in the gate block state, assuming that the line voltage on the secondary side (arm unit side) of the transformer TR, which is proportional to the AC system voltage, is voltage Vs2 and the number of cell CL series for each arm unit is n. The capacitor C is overcharged to the capacitor voltage Vc shown in the equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 つまり、コンデンサ電圧Vcは、交流系統電圧に比例して過充電される。交流系統電圧が遮断器開放閾値V_CBTよりもさらに大きくなり、コンデンサ電圧VcがセルCLの電圧耐量を超えると、セルCLは、故障する恐れがある。これを防止するため、交流遮断器CBを開放して交流系統を電力変換器10から遮断する。 That is, the capacitor voltage Vc is overcharged in proportion to the AC system voltage. If the AC system voltage becomes even larger than the circuit breaker open threshold value V_CBT and the capacitor voltage Vc exceeds the voltage withstand voltage of the cell CL, the cell CL may fail. In order to prevent this, the AC circuit breaker CB is opened to cut off the AC system from the power converter 10.
[異常発生時の動作について:従来の電力変換装置]
 図7は、従来の電力変換装置の動作の一例を示す図である。波形W11は、従来の電力変換装置が交流系統、又は直流系統に融通する有効電力の経時変化を示す波形である。以下、従来の電力変換装置、及び電力変換器10が融通する有効電力の値は、交流系統側から直流系統側に有効電力を融通している場合、正の値を示し、直流系統側から交流系統側に有効電力を融通している場合、負の値を示すものとする。以降の説明において、従来の電力変換装置、又は電力変換器10が融通する有効電力を、単に「有効電力」とも記載する。波形W12は、交流系統有効電圧Vdの絶対値の経時変化を示す波形である。波形W13はゲートブロック指令信号GBの出力の有無を示す波形である。波形W14は、遮断器開放指令信号CBTの出力の有無を示す波形である。
[Operation when an abnormality occurs: Conventional power converter]
FIG. 7 is a diagram showing an example of the operation of the conventional power conversion device. The waveform W11 is a waveform showing a change over time in the active power that the conventional power conversion device accommodates in the AC system or the DC system. Hereinafter, the value of the active power interchanged by the conventional power converter and the power converter 10 shows a positive value when the active power is interchanged from the AC system side to the DC system side, and is AC from the DC system side. When the active power is accommodated on the grid side, it shall show a negative value. In the following description, the active power accommodated by the conventional power converter or the power converter 10 is also simply referred to as "active power". The waveform W12 is a waveform showing a change over time in the absolute value of the AC system active voltage Vd. The waveform W13 is a waveform indicating the presence or absence of output of the gate block command signal GB. The waveform W14 is a waveform indicating the presence / absence of output of the circuit breaker opening command signal CBT.
 波形W11が示す通り、有効電力は、時刻t0までの間、一定の値(図示では-1.0[pu])で安定している。波形W12が示す通り、交流系統有効電圧Vdの絶対値は、時刻t0までの間、一定の値(図示では、1.0[pu])である。また、波形W13が示す通り、ゲートブロック指令信号GBは、時刻t0までの間、出力されておらず(つまり、無効であり)、波形W14が示す通り、遮断器開放指令信号CBTは、時刻t0までの間、出力されていない(つまり、無効である)。したがって、従来の電力変換装置は、交流遮断器CBによって遮断されておらず、変換器制御装置20の制御に基づいて、スイッチング制御を継続し、電力を融通する。 As the waveform W11 shows, the active power is stable at a constant value (-1.0 [pu] in the figure) until time t0. As shown by the waveform W12, the absolute value of the AC system active voltage Vd is a constant value (1.0 [pu] in the figure) until time t0. Further, as the waveform W13 shows, the gate block command signal GB is not output until time t0 (that is, it is invalid), and as the waveform W14 shows, the circuit breaker open command signal CBT is at time t0. Until then, it has not been output (that is, it is invalid). Therefore, the conventional power converter is not interrupted by the AC circuit breaker CB, and the switching control is continued and the power is interchanged based on the control of the converter control device 20.
 以下、時刻t0において、異常が発生するものとする。この異常は、例えば、電力変換器10の運転中に、従来の電力変換装置に有効電力を供給する他の電力変換器が急停止することに伴い発生する。 Hereafter, it is assumed that an abnormality occurs at time t0. This abnormality occurs, for example, when another power converter that supplies active power to the conventional power converter suddenly stops during the operation of the power converter 10.
 波形W11が示す通り、他の電力変換器が停止する異常が発生すると、有効電力は急激に減少する。有効電力は、例えば、時刻t0から時刻t2までの間でほぼ0[pu]になる。 As the waveform W11 shows, when an abnormality occurs in which another power converter stops, the active power decreases sharply. The active power becomes almost 0 [pu] between the time t0 and the time t2, for example.
 波形W12が示す通り、従来の電力変換装置が融通する有効電力が減少することに応じて、交流系統有効電圧Vdの絶対値が減少する。これは、有効電力の減少が外乱となり、従来の電力変換装置が有する電圧指令値演算部230と同様の機能が、最適に動作できていないことが要因である。また、波形W12が示す通り、時刻t1において、交流系統有効電圧Vdの絶対値は、交流系統電圧下限値Vth_Lよりも小さい値となる。したがって、波形W13に示す通り、ゲート指令部240は、時刻t1からゲートブロック指令信号GBを出力する。 As the waveform W12 shows, the absolute value of the AC system active voltage Vd decreases as the active power accommodated by the conventional power conversion device decreases. This is because the decrease in active power becomes a disturbance, and the same function as the voltage command value calculation unit 230 of the conventional power conversion device cannot be optimally operated. Further, as shown by the waveform W12, at time t1, the absolute value of the AC system effective voltage Vd is smaller than the AC system voltage lower limit value Vth_L. Therefore, as shown in the waveform W13, the gate command unit 240 outputs the gate block command signal GB from time t1.
 電力変換器10は、ゲート指令部240によりゲートブロック指令信号GBが出力されることに応じて、ゲートブロック状態に制御される。これに伴い、波形W12が示す通り、交流系統有効電圧Vdの絶対値が急峻に上昇し、遮断器開放閾値V_CBTを上回る。したがって、波形W14が示す通り、遮断器制御部250は、遮断器開放指令信号CBTを出力し、交流遮断器CBが開放され、従来の電力変換装置は、交流系統から遮断される。交流遮断器CBが開放されると、少なくとも交流遮断器CBを再投入するまでの間は、運転を再開できない。また、交流遮断器CBの開放は、一般には電力変換器10を接続できない重大な故障と認識されるため、自動的に再投入されず、運用者による確認が必要になる場合もある。このように、電力変換器10が長時間に亘って運転を停止すると、交流系統の電圧や周波数の安定性を損ない、広範囲において電力供給が停止する恐れもある。 The power converter 10 is controlled to the gate block state in response to the output of the gate block command signal GB by the gate command unit 240. Along with this, as shown by the waveform W12, the absolute value of the AC system active voltage Vd rises sharply and exceeds the circuit breaker opening threshold value V_CBT. Therefore, as shown by the waveform W14, the circuit breaker control unit 250 outputs the circuit breaker opening command signal CBT, the circuit breaker CB is opened, and the conventional power conversion device is cut off from the AC system. When the AC circuit breaker CB is opened, the operation cannot be restarted at least until the AC circuit breaker CB is turned on again. Further, since the opening of the AC circuit breaker CB is generally recognized as a serious failure in which the power converter 10 cannot be connected, the AC circuit breaker CB is not automatically turned on again, and confirmation by the operator may be required. As described above, if the power converter 10 is stopped for a long period of time, the stability of the voltage and frequency of the AC system may be impaired, and the power supply may be stopped in a wide range.
 以上、有効電力が減少することに応じて、交流系統有効電圧Vdの絶対値が減少し、その後、ゲートブロック状態に切り替わること伴い、交流系統有効電圧Vdの絶対値が急峻に上昇する一連の事象は、電力変換器10の応動によって交流系統の電圧が大きく変動することに起因し、特に、連系する交流系統の規模が小さく、短絡容量が小さい場合に発生しやすい。短絡容量が小さい場合、連系点から発電機までの系統上位側の背後インピーダンスが大きいため、連系点の交流系統の電圧は、電力変換器10の出力電圧変動の影響を受けやすい。従来、大容量の電力変換器10は、短絡容量の大きな基幹系統に連系されるものであったが、今後は再生可能エネルギーの導入増加に伴い、小規模な発電機群などが連系する小規模系統に連系される場合がある。この場合、上述したような、ゲートブロック状態に切り替わることに伴い、交流系統有効電圧Vdの絶対値が急峻に上昇する事象がさらに顕在化することが予想される。したがって、従来の電力変換装置では、広範囲において電力供給が停止する恐れがある。 As described above, a series of events in which the absolute value of the AC system active voltage Vd decreases as the active power decreases, and then the absolute value of the AC system active voltage Vd rises sharply as the gate block state is switched. Is caused by the fact that the voltage of the AC system fluctuates greatly due to the response of the power converter 10, and is particularly likely to occur when the scale of the AC system to be connected is small and the short-circuit capacity is small. When the short-circuit capacitance is small, the back impedance on the upper side of the system from the interconnection point to the generator is large, so that the voltage of the AC system at the interconnection point is easily affected by the output voltage fluctuation of the power converter 10. Conventionally, the large-capacity power converter 10 has been connected to a backbone system having a large short-circuit capacity, but in the future, with the increase in the introduction of renewable energy, small-scale generator groups and the like will be connected. It may be connected to a small system. In this case, it is expected that the phenomenon in which the absolute value of the AC system active voltage Vd rises sharply becomes more apparent as the gate block state is switched to as described above. Therefore, in the conventional power conversion device, the power supply may be stopped in a wide range.
[異常発生時の動作について:電力変換装置1]
 図8は、本実施形態の電力変換装置1の動作の一例を示す図である。波形W21は、電力変換装置1が交流系統、又は直流系統に融通する有効電力の経時変化を示す波形である。波形W22は、第3フィルタ224が出力する値Vdf3の経時変化を示す波形である。図8において、波形W22は、波形W12に重畳して示されている。波形W23はゲートブロック指令信号GBの出力の有無を示す波形である。波形W24は、遮断器開放指令信号CBTの出力の有無を示す波形である。
[Operation when an abnormality occurs: Power converter 1]
FIG. 8 is a diagram showing an example of the operation of the power conversion device 1 of the present embodiment. The waveform W21 is a waveform showing a time-dependent change in the active power that the power conversion device 1 accommodates in the AC system or the DC system. The waveform W22 is a waveform showing a time-dependent change in the value Vdf3 output by the third filter 224. In FIG. 8, the waveform W22 is shown superimposed on the waveform W12. The waveform W23 is a waveform indicating the presence or absence of output of the gate block command signal GB. The waveform W24 is a waveform indicating the presence / absence of output of the circuit breaker opening command signal CBT.
 波形W21~W24は、時刻t0までの間、上述した波形W11~W14と同様の変化を示す。 Waveforms W21 to W24 show the same changes as the above-mentioned waveforms W11 to W14 until time t0.
 波形W21が示す通り、時刻t0において、他の電力変換器が停止する異常が発生すると、有効電力は急激に減少する。有効電力は、例えば、時刻t0から時刻t2までの間でほぼ0[pu]になる。 As the waveform W21 shows, when an abnormality occurs in which another power converter stops at time t0, the active power sharply decreases. The active power becomes almost 0 [pu] between the time t0 and the time t2, for example.
 波形W22が示す通り、電力変換装置1が融通する有効電力が減少することに応じて、値Vdf3が減少し、時刻t1´において、交流系統電圧下限値Vth_Lよりも小さい値となる。ここで、波形W22が示す通り、値Vdf3は、波形W21が示す交流系統有効電圧Vdの絶対値と比して、高周波成分が除かれているため、時刻t1´は、時刻t1と同時、又は時刻t1よりも後の時刻である。波形W23に示す通り、ゲート指令部240は、時刻t1´からゲートブロック指令信号GBを出力する。 As the waveform W22 shows, the value Vdf3 decreases as the active power accommodated by the power converter 1 decreases, and becomes a value smaller than the lower limit value Vth_L of the AC system voltage at time t1'. Here, as shown by the waveform W22, since the high frequency component is removed from the value Vdf3 as compared with the absolute value of the AC system active voltage Vd indicated by the waveform W21, the time t1'is at the same time as the time t1 or It is a time after the time t1. As shown in the waveform W23, the gate command unit 240 outputs the gate block command signal GB from the time t1'.
 電力変換器10は、ゲート指令部240によりゲートブロック指令信号GBが出力されることに応じて、ゲートブロック状態に制御される。これに伴い、波形W22が示す通り、値Vdf3は、第3フィルタ224の第3フィルタ処理によって交流系統有効電圧Vdの絶対値のように急峻に上昇しないため、瞬時的にでも遮断器開放閾値V_CBTを上回らない。したがって、遮断器制御部250は、遮断器開放指令信号CBTを出力せず、交流遮断器CBが開放されない。この場合、電力変換装置1は、異常の解消後、ゲートブロック指令信号GBを解除するのみで交流遮断器CBの再投入をすることなく、運転を再開できる。 The power converter 10 is controlled to the gate block state in response to the output of the gate block command signal GB by the gate command unit 240. Along with this, as the waveform W22 shows, the value Vdf3 does not rise sharply like the absolute value of the AC system active voltage Vd due to the third filter processing of the third filter 224, so that the circuit breaker open threshold value V_CBT even instantaneously. Does not exceed. Therefore, the circuit breaker control unit 250 does not output the circuit breaker opening command signal CBT, and the AC circuit breaker CB is not opened. In this case, after the abnormality is resolved, the power conversion device 1 can restart the operation only by releasing the gate block command signal GB and without turning on the AC circuit breaker CB again.
[動作フロー]
 図9は、本実施形態の電力変換装置1の第1ゲート信号gtp、及び第2ゲート信号gtnの生成に係る処理の一例を示すフローチャートである。図9に示すフローチャートは、例えば、常時、又は所定の時間間隔毎に繰り返し実行される。まず、交流情報算出部210は、検出器CSから交流系統の各相の電圧(R相電圧Vr、S相電圧Vs、及びT相電圧Vt)を示す情報を取得する(ステップS100)。交流情報算出部210は、取得した交流系統の各相の電圧に基づいて、交流系統有効電圧Vd、及び交流系統無効電圧Vqに変換する(ステップS102)。次に、第1フィルタ220は、交流情報算出部210によって算出された交流系統有効電圧Vd、及び交流系統無効電圧Vqの絶対値に対して第1フィルタ処理行い、値Vdf1、及び値Vqf1を出力する(ステップS104)。
[Operation flow]
FIG. 9 is a flowchart showing an example of processing related to the generation of the first gate signal gtp and the second gate signal gtt of the power conversion device 1 of the present embodiment. The flowchart shown in FIG. 9 is executed, for example, constantly or repeatedly at predetermined time intervals. First, the AC information calculation unit 210 acquires information indicating the voltage of each phase of the AC system (R phase voltage Vr, S phase voltage Vs, and T phase voltage Vt) from the detector CS (step S100). The AC information calculation unit 210 converts the acquired AC system effective voltage Vd and AC system invalid voltage Vq based on the acquired voltage of each phase of the AC system (step S102). Next, the first filter 220 performs the first filter processing on the absolute values of the AC system active voltage Vd and the AC system invalid voltage Vq calculated by the AC information calculation unit 210, and outputs the values Vdf1 and the value Vqf1. (Step S104).
 次に、電圧指令値演算部230は、電力変換器10の各状態(例えば、正側電流Ipr~Ipt、負側電流Inr~Int、及び各コンデンサ電圧Vc)と、交流情報算出部210によって算出された、交流系統電圧位相thetaと、第1フィルタ220によって取得された値Vdf1、及び値Vqf1とに基づいて、電力変換器10の出力する有効電力PEと、無効電力QEとが、予め定められた有効電力指令値PE*と、無効電力指令値QE*とになるように、各セルCLのセル電圧Vclを指示するセル電圧指令値Vcl*を算出する(ステップS106)。次に、ゲート信号生成部300は、電圧指令値演算部230によって算出された各セルCLのセル電圧指令値Vcl*に基づいて、セルCL毎の第1ゲート信号gtp、及び第2ゲート信号gtnを生成し、電力変換器10に出力する(ステップS108)。 Next, the voltage command value calculation unit 230 calculates each state of the power converter 10 (for example, the positive side currents Ipr to Ipt, the negative side currents Inr to Int, and each capacitor voltage Vc) and the AC information calculation unit 210. Based on the AC system voltage phase theta, the value Vdf1 acquired by the first filter 220, and the value Vqf1, the active power PE output by the power converter 10 and the active power QE are predetermined. The cell voltage command value Vcl * that indicates the cell voltage Vcl of each cell CL is calculated so that the active power command value PE * and the ineffective power command value QE * are obtained (step S106). Next, the gate signal generation unit 300 sets the first gate signal gtp and the second gate signal gttn for each cell CL based on the cell voltage command value Vcl * of each cell CL calculated by the voltage command value calculation unit 230. Is generated and output to the power converter 10 (step S108).
 図10は、本実施形態の電力変換装置1のゲートブロック指令信号GBの出力に係る処理の一例を示すフローチャートである。図10に示すフローチャートは、例えば、常時、又は所定の時間間隔毎に繰り返し実行される。まず、交流情報算出部210は、検出器CSから交流系統の各相の電圧(R相電圧Vr、S相電圧Vs、及びT相電圧Vt)を示す情報を取得する(ステップS200)。交流情報算出部210は、取得した交流系統の各相の電圧に基づいて、交流系統有効電圧Vdに変換する(ステップS202)。次に、第2フィルタ222は、交流情報算出部210によって算出された交流系統有効電圧Vdの絶対値に対して第2フィルタ処理を行い、値Vdf2を出力する(ステップS204)。 FIG. 10 is a flowchart showing an example of processing related to the output of the gate block command signal GB of the power conversion device 1 of the present embodiment. The flowchart shown in FIG. 10 is executed, for example, constantly or repeatedly at predetermined time intervals. First, the AC information calculation unit 210 acquires information indicating the voltage of each phase of the AC system (R phase voltage Vr, S phase voltage Vs, and T phase voltage Vt) from the detector CS (step S200). The AC information calculation unit 210 converts the acquired AC system effective voltage Vd based on the voltage of each phase of the AC system (step S202). Next, the second filter 222 performs the second filter processing on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf2 (step S204).
 次に、ゲート指令部240は、第2フィルタ222によって出力された値Vdf2が、交流系統電圧上限値Vth_Hを超えるか(上回るか)否かを判定する(ステップS206)。ゲート指令部240は、値Vdf2が交流系統電圧上限値Vth_Hを超えると判定した場合、ゲートブロック指令信号GBを出力する(ステップS208)。ゲート指令部240は、値Vdf2が交流系統電圧上限値Vth_Hを超えないと判定した場合、値Vdf2が交流系統電圧下限値Vth_Lを下回るか否かを判定する(ステップS210)。ゲート指令部240は、値Vdf2が交流系統電圧下限値Vth_Lを下回ると判定した場合、ゲートブロック指令信号GBを出力する(ステップS208)。ゲート指令部240は、値Vdf2が、交流系統電圧上限値Vth_H以下、且つ交流系統電圧下限値Vth_L以上の値である場合、ゲートブロック指令信号GBを出力せず、処理を終了する。 Next, the gate command unit 240 determines whether or not the value Vdf2 output by the second filter 222 exceeds (exceeds) the AC system voltage upper limit value Vth_H (step S206). When the gate command unit 240 determines that the value Vdf2 exceeds the AC system voltage upper limit value Vth_H, the gate command unit 240 outputs the gate block command signal GB (step S208). When the gate command unit 240 determines that the value Vdf2 does not exceed the AC system voltage upper limit value Vth_H, the gate command unit 240 determines whether or not the value Vdf2 is lower than the AC system voltage lower limit value Vth_L (step S210). When the gate command unit 240 determines that the value Vdf2 is lower than the AC system voltage lower limit value Vth_L, the gate command unit 240 outputs the gate block command signal GB (step S208). When the value Vdf2 is equal to or less than the AC system voltage upper limit value Vth_H and not more than or equal to the AC system voltage lower limit value Vth_L, the gate command unit 240 does not output the gate block command signal GB and ends the process.
 図11は、本実施形態の電力変換装置1の遮断器開放指令信号CBTの出力に係る処理の一例を示すフローチャートである。図11に示すフローチャートは、例えば、常時、又は所定の時間間隔毎に繰り返し実行される。まず、交流情報算出部210は、検出器CSから交流系統の各相の電圧(R相電圧Vr、S相電圧Vs、及びT相電圧Vt)を示す情報を取得する(ステップS300)。交流情報算出部210は、取得した交流系統の各相の電圧に基づいて、交流系統有効電圧Vdに変換する(ステップS302)。次に、第3フィルタ224は、交流情報算出部210によって算出された交流系統有効電圧Vdの絶対値に対して第3フィルタ処理を行い、値Vdf3を出力する(ステップS304)。 FIG. 11 is a flowchart showing an example of processing related to the output of the circuit breaker opening command signal CBT of the power conversion device 1 of the present embodiment. The flowchart shown in FIG. 11 is executed, for example, constantly or repeatedly at predetermined time intervals. First, the AC information calculation unit 210 acquires information indicating the voltage of each phase of the AC system (R phase voltage Vr, S phase voltage Vs, and T phase voltage Vt) from the detector CS (step S300). The AC information calculation unit 210 converts the acquired AC system effective voltage Vd based on the acquired voltage of each phase of the AC system (step S302). Next, the third filter 224 performs the third filter processing on the absolute value of the AC system active voltage Vd calculated by the AC information calculation unit 210, and outputs the value Vdf3 (step S304).
 次に、遮断器制御部250は、第3フィルタ224によって出力された値Vdf3が、遮断器開放閾値V_CBTを超えるか(上回るか)否かを判定する(ステップS306)。遮断器制御部250は、値Vdf3が遮断器開放閾値V_CBTを超えると判定した場合、遮断器開放指令信号CBTを出力する(ステップS308)。遮断器制御部250は、値Vdf3が遮断器開放閾値V_CBTを超えないと判定した場合、処理を終了する。 Next, the circuit breaker control unit 250 determines whether or not the value Vdf3 output by the third filter 224 exceeds (exceeds) the circuit breaker opening threshold value V_CBT (step S306). When the circuit breaker control unit 250 determines that the value Vdf3 exceeds the circuit breaker opening threshold value V_CBT, the circuit breaker control unit 250 outputs the circuit breaker opening command signal CBT (step S308). When the circuit breaker control unit 250 determines that the value Vdf3 does not exceed the circuit breaker opening threshold value V_CBT, the circuit breaker control unit 250 ends the process.
[実施形態のまとめ]
 以上説明したように、本実施形態の電力変換装置1は、交流系統有効電圧Vdに、低域通過フィルタである第3フィルタ224の第3フィルタ処理を施した値Vdf3に基づいて、交流遮断器CBの開放の要否を判定する。これにより、本実施形態の電力変換装置1は、セルCLのゲートブロックに起因した瞬時的な系統過電圧による不要な交流遮断器CBの開放を防止し、運転再開までに要する時間を短縮しつつ、系統事故時の運転継続性を向上させることができる。
[Summary of Embodiment]
As described above, the power conversion device 1 of the present embodiment is an AC circuit breaker based on the value Vdf3 obtained by applying the third filter processing of the third filter 224, which is a low-pass filter, to the AC system active voltage Vd. Determine the necessity of opening the CB. As a result, the power conversion device 1 of the present embodiment prevents the unnecessary AC circuit breaker CB from being opened due to the instantaneous system overvoltage caused by the gate block of the cell CL, and shortens the time required for restarting the operation. It is possible to improve the continuity of operation in the event of a system accident.
 また、本実施形態の電力変換装置1は、第3フィルタ224の整定時定数を超える比較的長時間の系統過電圧が発生した場合には、第3フィルタ224が出力する値Vdf3が、遮断器開放閾値V_CBTを上回るため、交流遮断器CBを開放することができる。これにより、本実施形態の電力変換装置1は、セルCLのコンデンサCが過充電されることに伴い、コンデンサ電圧VcがセルCLの電圧耐量を超えることを抑制することができる。 Further, in the power conversion device 1 of the present embodiment, when a system overvoltage for a relatively long time exceeding the settling time constant of the third filter 224 occurs, the value Vdf3 output by the third filter 224 opens the circuit breaker. Since the threshold value V_CBT is exceeded, the AC circuit breaker CB can be opened. As a result, the power conversion device 1 of the present embodiment can prevent the capacitor voltage Vc from exceeding the withstand voltage of the cell CL as the capacitor C of the cell CL is overcharged.
 また、本実施形態の電力変換装置1は、交流系統有効電圧Vdに第2フィルタ222の処理を施した値Vdf2に基づいて、電力変換器10のゲートブロックを判定する。第2フィルタ222の処理は、第3フィルタ224の処理と独立しており、且つ第2フィルタ222の時定数は、第3フィルタ224の時定数よりも短く、又は値Vdf2として入力された交流系統有効電圧Vdを直接出力している。このため、本実施形態の電力変換装置1は、系統電圧に異常が発生している際に、値Vdf2が即座に応答し、電力変換器10をゲートブロック状態に移行し、コンデンサ電圧Vcを正常運転可能な範囲に維持できなくなる状態や、変換器電流(正側電流Ip、や負側電流In)の急変に伴い電力変換器10の動作が停止される状態を抑制することができる。特に、変換器電流は、コンデンサ電圧Vcと比較して応答時定数が短いため、本実施形態の電力変換装置1が、系統電圧に異常が発生したことに伴い、即座にゲートブロック状態に移行することで、電流を遮断し、より適切に電力変換器10の動作が停止されるのを抑制することができる。 Further, the power converter 1 of the present embodiment determines the gate block of the power converter 10 based on the value Vdf2 obtained by subjecting the AC system active voltage Vd to the processing of the second filter 222. The processing of the second filter 222 is independent of the processing of the third filter 224, and the time constant of the second filter 222 is shorter than the time constant of the third filter 224, or the AC system input as the value Vdf2. The effective voltage Vd is directly output. Therefore, in the power converter 1 of the present embodiment, when an abnormality occurs in the system voltage, the value Vdf2 immediately responds, the power converter 10 shifts to the gate block state, and the capacitor voltage Vc becomes normal. It is possible to suppress a state in which the operation cannot be maintained within the operable range and a state in which the operation of the power converter 10 is stopped due to a sudden change in the converter current (positive side current Ip or negative side current In). In particular, since the converter current has a shorter response time constant than the capacitor voltage Vc, the power converter 1 of the present embodiment immediately shifts to the gate block state when an abnormality occurs in the system voltage. As a result, the current can be cut off and the operation of the power converter 10 can be suppressed more appropriately.
 また、本実施形態の電力変換装置1は、交流系統有効電圧Vd、及び交流系統無効電圧Vqに第1フィルタ220の第1フィルタ処理を施した値Vdf1、及び値Vqf1に基づいて、電力変換器10の電圧、及び電流を制御する。第1フィルタ220の第1フィルタ処理は、第2フィルタ222の第2フィルタ処理や、第3フィルタ224の第3フィルタ処理とは独立している。このため、本実施形態の電力変換装置1は、必要な制御性能を有しつつ、ノイズ等に起因して不安定な運転状態にならないように任意の特性に第1フィルタ220を設計することにより、交流系統電圧に高調波成分が含まれている場合や交流系統事故が発生し、交流系統電圧の振幅が急変した場合などにも安定な運転をすることができる。 Further, the power converter 1 of the present embodiment is a power converter based on the value Vdf1 and the value Vqf1 obtained by subjecting the AC system active voltage Vd and the AC system invalid voltage Vq to the first filter processing of the first filter 220. 10 voltage and current are controlled. The first filter processing of the first filter 220 is independent of the second filter processing of the second filter 222 and the third filter processing of the third filter 224. Therefore, the power conversion device 1 of the present embodiment has the required control performance, and the first filter 220 is designed with arbitrary characteristics so as not to cause an unstable operating state due to noise or the like. Stable operation can be performed even when the AC system voltage contains harmonic components or when an AC system accident occurs and the amplitude of the AC system voltage suddenly changes.
 以上より、本実施形態の電力変換装置1は、通常運転時、系統事故時の運転性能を損なうことなく維持しつつ、電力変換器10の保護に寄与しない交流遮断器CBの開放を抑制できるため、系統事故時の運転継続性を向上させることができる。 From the above, the power converter 1 of the present embodiment can suppress the opening of the AC circuit breaker CB which does not contribute to the protection of the power converter 10 while maintaining the operation performance at the time of normal operation and system accident without impairing the operation performance. , It is possible to improve the continuity of operation in the event of a system accident.
(変形例1)
 以下、図面を参照して変形例1の第3フィルタ224の処理について説明する。実施形態では、第3フィルタ224は、一般的な低域通過フィルタであり、交流系統有効電圧Vdについて、ゲートブロック時の瞬間的な過電圧信号を除去した値Vdf3を出力する場合について説明した。変形例1の第3フィルタ224では、瞬間的な過電圧信号をアルゴリズム的に除去する場合について説明する。なお、上述した実施形態と同様の構成については、同一の符号を付して説明を省略する。
(Modification example 1)
Hereinafter, the processing of the third filter 224 of the first modification will be described with reference to the drawings. In the embodiment, the third filter 224 is a general low-pass filter, and the case where the AC system active voltage Vd outputs the value Vdf3 obtained by removing the momentary overvoltage signal at the time of the gate block has been described. In the third filter 224 of the first modification, a case where the momentary overvoltage signal is algorithmically removed will be described. The same components as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.
 図12は、変形例1の第3フィルタ224の処理動作の一例を示す図である。波形W41は、交流系統有効電圧Vdの経時変化の一例を示す波形である。波形W42は、交流系統有効電圧Vdの経時変化の他の例を示す波形である。波形W43は、値Vdf3の経時変化の一例を示す波形である。波形W44は、値Vdf3の経時変化の他の例を示す波形である。波形W42と波形W44は、第1事象に係る波形であり、波形W41と波形W43は、第2事象に係る波形である。 FIG. 12 is a diagram showing an example of the processing operation of the third filter 224 of the modified example 1. The waveform W41 is a waveform showing an example of the time-dependent change of the AC system active voltage Vd. The waveform W42 is a waveform showing another example of the change with time of the AC system active voltage Vd. The waveform W43 is a waveform showing an example of the time-dependent change of the value Vdf3. The waveform W44 is a waveform showing another example of the change with time of the value Vdf3. The waveform W42 and the waveform W44 are waveforms related to the first event, and the waveforms W41 and W43 are waveforms related to the second event.
 変形例1の第3フィルタ224は、交流系統有効電圧Vdが遮断器開放閾値V_CBTを超過しない場合、又は交流系統有効電圧Vdが第3フィルタ処理の実行回数においてm回以上、遮断器開放閾値V_CBTを連続で超過した場合に、交流系統有効電圧Vdを値Vdf3として出力し、交流系統有効電圧Vdが第3フィルタ処理の実行回数においてm回以上、遮断器開放閾値V_CBTを超過するまで(つまり、m-1回まで)は、遮断器開放閾値V_CBTを超過する直前の交流系統有効電圧Vd(以下、前回値有効電圧Vdt-1)を値Vdf3として出力する。第3フィルタ224は、第3フィルタ処理を、所定周期Td毎に繰り返し実行する。ここで、mは、1以上、且つ、m×所定周期Tdによって示される時間が、コンデンサCの過充電される時間よりも短い時間になるように設定される。以下、m=3である場合について説明する。 The third filter 224 of the first modification has a circuit breaker open threshold V_CBT when the AC system active voltage Vd does not exceed the circuit breaker open threshold V_CBT, or when the AC system active voltage Vd is m or more in the number of times the third filter process is executed. Is continuously exceeded, the AC system active voltage Vd is output as the value Vdf3, and the AC system active voltage Vd exceeds the circuit breaker open threshold V_CBT m times or more in the number of executions of the third filter processing (that is,). (Up to m-1 times) outputs the AC system active voltage Vd (hereinafter, the previous value effective voltage Vd t-1 ) immediately before exceeding the circuit breaker opening threshold V_CBT as the value Vdf3. The third filter 224 repeatedly executes the third filter process every predetermined period Td. Here, m is set so that the time indicated by m × predetermined period Td is 1 or more and shorter than the time during which the capacitor C is overcharged. Hereinafter, the case where m = 3 will be described.
 まず、第1事象の場合を説明する。波形W42が示す通り、交流系統有効電圧Vdは、時刻t11までの間、遮断器開放閾値V_CBTを下回り、時刻t12から時刻t13までの間、遮断器開放閾値V_CBTを上回り、時刻t14以降は、再び遮断器開放閾値V_CBTを下回っている。 First, the case of the first event will be described. As shown by the waveform W42, the AC system active voltage Vd is below the circuit breaker open threshold value V_CBT until time t11, exceeds the circuit breaker open threshold value V_CBT from time t12 to time t13, and again after time t14. It is below the circuit breaker opening threshold V_CBT.
 この場合、時刻t12において交流系統有効電圧Vdは、遮断器開放閾値V_CBTを上回っているものの、上回っている状態が第3フィルタ処理の実行回数において3回以上継続していない(時刻t12は、1回目。)。したがって、波形W44に示す通り、第3フィルタ224は、時刻t12では、時刻t11における交流系統有効電圧Vd(つまり、前回値有効電圧Vdt-1)を値Vdf3として出力する。 In this case, although the AC system active voltage Vd exceeds the circuit breaker opening threshold value V_CBT at time t12, the state of exceeding the AC system active voltage Vd does not continue three times or more in the number of executions of the third filter processing (time t12 is 1). The second time.). Therefore, as shown in the waveform W44, the third filter 224 outputs the AC system effective voltage Vd (that is, the previous value effective voltage Vd t-1 ) at the time t11 as the value Vdf3 at the time t12.
 また、時刻t13において交流系統有効電圧Vdは、遮断器開放閾値V_CBTを上回っているものの、上回っている状態が第3フィルタ処理の実行回数において3回以上継続していない(時刻t13は、2回目。)したがって、波形W44に示す通り、第3フィルタ224は、時刻t13では、前回値有効電圧Vdt-1を、再び値Vdf3として出力する。 Further, although the AC system active voltage Vd exceeds the circuit breaker opening threshold value V_CBT at time t13, the state of exceeding the AC system active voltage Vd does not continue three times or more in the number of executions of the third filter processing (time t13 is the second time). Therefore, as shown in the waveform W44, the third filter 224 outputs the previous value effective voltage Vd t-1 again as the value Vdf3 at the time t13.
 また、時刻t14以降、交流系統有効電圧Vdが遮断器開放閾値V_CBTを超過しないため、第3フィルタ224は、値Vdf3として、交流系統有効電圧Vdを出力する。 Further, since the AC system active voltage Vd does not exceed the circuit breaker open threshold value V_CBT after the time t14, the third filter 224 outputs the AC system active voltage Vd as the value Vdf3.
 次に、第2事象の場合を説明する。波形W41が示す通り、交流系統有効電圧Vdは、時刻t11までの間、遮断器開放閾値V_CBTを下回り、時刻t12以降、遮断器開放閾値V_CBTを上回る。 Next, the case of the second event will be described. As shown by the waveform W41, the AC system active voltage Vd is below the circuit breaker opening threshold value V_CBT until time t11, and exceeds the circuit breaker opening threshold value V_CBT after time t12.
 この場合、波形W43が示す通り、第3フィルタ224は、時刻t12からt13の間は、第1事象と同様に、前回値有効電圧Vdt-1を、値Vdf3として出力する。 In this case, as shown by the waveform W43, the third filter 224 outputs the previous value effective voltage Vd t-1 as the value Vdf3 during the time t12 to t13, as in the first event.
 また、時刻t14以降、交流系統有効電圧Vdは、遮断器開放閾値V_CBTを上回り、且つ上回っている状態が第3フィルタ処理の実行回数において3回以上継続している(時刻t14は、3回目。)。したがって、波形W43が示す通り、第3フィルタ224は、時刻t14以降、交流系統有効電圧Vdを値Vdf3として出力する。 Further, after the time t14, the AC system active voltage Vd exceeds the circuit breaker opening threshold value V_CBT, and the state of exceeding the breaker opening threshold value V_CBT continues three times or more in the number of executions of the third filter processing (time t14 is the third time. ). Therefore, as shown by the waveform W43, the third filter 224 outputs the AC system active voltage Vd as the value Vdf3 after the time t14.
[変形例1のまとめ]
 以上説明したように、変形例1の電力変換装置1に係る第3フィルタ224は、予め設定された実行回数m×所定周期Td未満の瞬間的な遮断器開放閾値V_CBTを上回る過電圧信号を除去し、遮断器制御部250に出力する。これにより、変形例1の電力変換装置1は、電力変換器10の保護に寄与しない交流遮断器CBの開放を抑制できる。また、変形例1の電力変換装置1に係る第3フィルタ224は、予め設定された実行回数m×所定周期Td以上の比較的長時間の遮断器開放閾値V_CBTを上回る系統過電圧が発生した場合には、遮断器制御部250に遮断器開放指令信号CBTを出力させ、電力変換器10が備えるコンデンサCの過充電を抑制することができる。
[Summary of Modification 1]
As described above, the third filter 224 according to the power conversion device 1 of the modification 1 removes the overvoltage signal exceeding the instantaneous circuit breaker opening threshold value V_CBT less than the preset number of executions m × predetermined period Td. , Output to the circuit breaker control unit 250. As a result, the power converter 1 of the first modification can suppress the opening of the AC circuit breaker CB that does not contribute to the protection of the power converter 10. Further, the third filter 224 according to the power conversion device 1 of the modification 1 is used when a system overvoltage exceeding the circuit breaker opening threshold V_CBT for a relatively long time of preset number of executions m × predetermined period Td or more occurs. Can output the circuit breaker opening command signal CBT to the circuit breaker control unit 250 to suppress overcharging of the capacitor C included in the power converter 10.
 また、変形例1の電力変換装置1は、交流系統有効電圧Vdに、瞬間的な過電圧信号をアルゴリズム的に除去する第3フィルタ224の処理を施した値Vdf3に基づいて、交流遮断器CBの開放を判定する。これにより、変形例1の電力変換装置1は、電力変換器10がゲートブロック状態に遷移することに起因した、コンデンサCに対する充電エネルギーが小さい瞬時的な系統過電圧等により、電力変換器10の保護に寄与しない交流遮断器CBの開放を抑制し、運転継続性を向上させることができる。 Further, the power conversion device 1 of the modification 1 is based on the value Vdf3 obtained by subjecting the AC system active voltage Vd to the processing of the third filter 224 that algorithmically removes the instantaneous overvoltage signal, and is based on the AC circuit breaker CB. Judge open. As a result, the power converter 1 of the modification 1 protects the power converter 10 by an instantaneous system overvoltage or the like in which the charging energy for the capacitor C is small due to the transition of the power converter 10 to the gate block state. It is possible to suppress the opening of the AC circuit breaker CB, which does not contribute to the above, and improve the continuity of operation.
(変形例2)
 以下、図面を参照して変形例2の電力変換装置1について説明する。上述した実施形態、及び変形例1の遮断器制御部250は、値Vdf3に基づいて、遮断器開放指令信号CBTを出力するか否かを判定する場合について説明した。変形例2の遮断器制御部250は、値Vdf3と、ゲートブロック指令信号GBに基づいて、遮断器開放指令信号CBTを出力するか否かを判定する場合について説明する。なお、上述した実施形態、及び変形例と同様の構成については、同一の符号を付して説明を省略する。
(Modification 2)
Hereinafter, the power conversion device 1 of the modification 2 will be described with reference to the drawings. The case where the circuit breaker control unit 250 of the above-described embodiment and the first modification determines whether or not to output the circuit breaker opening command signal CBT based on the value Vdf3 has been described. A case where the circuit breaker control unit 250 of the second modification determines whether or not to output the circuit breaker opening command signal CBT based on the value Vdf3 and the gate block command signal GB will be described. The same reference numerals are given to the above-described embodiments and the same configurations as those of the modified examples, and the description thereof will be omitted.
 図13は、変形例2における電力変換装置1の構成の一例を示す図である。変形例2の電力変換装置1は、遮断器制御部250に代えて、遮断器制御部250aをそなえる。また、変形例2のゲート指令部240は、ゲートブロック指令信号GBをゲート信号生成部300、及び遮断器制御部250aに出力する。 FIG. 13 is a diagram showing an example of the configuration of the power conversion device 1 in the modification 2. The power conversion device 1 of the second modification is provided with a circuit breaker control unit 250a instead of the circuit breaker control unit 250. Further, the gate command unit 240 of the second modification outputs the gate block command signal GB to the gate signal generation unit 300 and the circuit breaker control unit 250a.
 図14は、変形例2に係る遮断器制御部250aの構成の一例を示す図である。遮断器制御部250aは、比較器252と、立ち上がり検出部254と、タイマ256と、論理演算部258とを機能部として備える。 FIG. 14 is a diagram showing an example of the configuration of the circuit breaker control unit 250a according to the second modification. The circuit breaker control unit 250a includes a comparator 252, a rise detection unit 254, a timer 256, and a logical operation unit 258 as functional units.
 立ち上がり検出部254は、ゲート指令部240によりゲートブロック指令信号GBが出力されたか否かを検出する。立ち上がり検出部254は、ゲート指令部240によりゲートブロック指令信号GBが出力されたことを検出した場合、検出したことを示す信号をタイマ256に出力する。 The rise detection unit 254 detects whether or not the gate block command signal GB has been output by the gate command unit 240. When the rise detection unit 254 detects that the gate block command signal GB has been output by the gate command unit 240, the rise detection unit 254 outputs a signal indicating the detection to the timer 256.
 タイマ256は、立ち上がり検出部254により検出したことを示す信号が出力された場合、所定期間TM2の間、「1」を出力し、それ以外の間は、「0」を出力する。所定期間TM2は、例えば、ゲートブロック指令信号GBが出力されてから瞬間的な交流系統過電圧が発生し、系統電圧が正常範囲に戻るまでに要する十分な時間(たとえば、数ms程度)に設定される。所定期間TM2は、ゲートブロック指令信号GBが出力されからカウントが開始される「所定の期間」の一例である。 When a signal indicating that the timer 256 has been detected by the rise detection unit 254 is output, the timer 256 outputs "1" during the predetermined period TM2, and outputs "0" during the other period. The predetermined period TM2 is set to, for example, a sufficient time (for example, about several ms) required for a momentary AC system overvoltage to occur after the gate block command signal GB is output and the system voltage to return to the normal range. To. The predetermined period TM2 is an example of a “predetermined period” in which counting is started after the gate block command signal GB is output.
 論理演算部258は、タイマ256の出力を反転した値と、比較器252の比較結果(遮断器開放指令信号CBT;出力有り「1」、出力無し「0」)とに基づいて、論理積を算出し、算出した論理積を遮断器開放指令信号CBT(遮断器開放指令信号CBT;出力有り「1」、出力無し「0」)として出力する。 The logical operation unit 258 calculates the logical product based on the inverted value of the output of the timer 256 and the comparison result of the comparator 252 (breaker open command signal CBT; “1” with output, “0” without output). The calculated and calculated logical product is output as a breaker open command signal CBT (breaker open command signal CBT; “1” with output, “0” without output).
[変形例2のまとめ]
 以上説明したように、変形例2の電力変換装置1は、ゲート指令部240によりゲートブロック指令信号GBが出力されてから、所定期間TM2の間、比較器252によって遮断器開放指令信号CBTが出力されていても、遮断器制御部250から遮断器開放指令信号CBTが出力されないようにする(つまり、マスクする)ことができる。なお、変形例2の電力変換装置1に係る第3フィルタ224は、上述したように、所定期間TM2の間、比較器252の出力の有無に関わらず、遮断器開放指令信号CBTが無効化されるため、入力された交流系統有効電圧Vdをそのまま値Vdf3として出力してもよい。これにより、変形例2の電力変換装置1は、ゲートブロック指令信号GBに基づいて、遮断器開放指令信号CBTを一時的に無効化し、ゲートブロックに起因した瞬時的な系統過電圧による電力変換器10の保護に寄与しない交流遮断器CBの開放を抑制し、運転継続性を向上させることができる。
[Summary of Modification 2]
As described above, in the power conversion device 1 of the modification 2, the circuit breaker opening command signal CBT is output by the comparator 252 for a predetermined period TM2 after the gate block command signal GB is output by the gate command unit 240. Even if the circuit breaker control unit 250 is used, the circuit breaker release command signal CBT can be prevented from being output (that is, masked). As described above, in the third filter 224 according to the power conversion device 1 of the modification 2, the circuit breaker open command signal CBT is invalidated during the predetermined period TM2 regardless of the output of the comparator 252. Therefore, the input AC system active voltage Vd may be output as it is as the value Vdf3. As a result, the power converter 1 of the second modification temporarily invalidates the circuit breaker open command signal CBT based on the gate block command signal GB, and the power converter 10 due to the instantaneous system overvoltage caused by the gate block. It is possible to suppress the opening of the AC circuit breaker CB, which does not contribute to the protection of the AC circuit breaker, and improve the continuity of operation.
(変形例3)
 以下、図面を参照して変形例3の電力変換装置1について説明する。上述した実施形態、及び変形例では、値Vdf3、及びゲートブロック指令信号GBに基づいて、遮断器開放指令信号CBTを出力するか否かを判定する場合について説明した。変形例3の電力変換システムでは、電力変換装置1に連系される系統のうち、直流側に接続される他の電力変換装置1から出力されるゲートブロック指令信号GBに基づいて、自装置に係る交流遮断器CBに遮断器開放指令信号CBTを出力するか否かを判定する場合について説明する。なお、上述した実施形態、及び変形例と同様の構成については、同一の符号を付して説明を省略する。
(Modification 3)
Hereinafter, the power conversion device 1 of the modification 3 will be described with reference to the drawings. In the above-described embodiment and modification, a case where it is determined whether or not to output the circuit breaker opening command signal CBT based on the value Vdf3 and the gate block command signal GB has been described. In the power conversion system of the third modification, among the systems connected to the power conversion device 1, the own device is connected based on the gate block command signal GB output from the other power conversion device 1 connected to the DC side. A case of determining whether or not to output the breaker opening command signal CBT to the AC breaker CB will be described. The same reference numerals are given to the above-described embodiments and the same configurations as those of the modified examples, and the description thereof will be omitted.
 図15は、変形例3における電力変換システムの構成の一例を示す図である。変形例3において、直流系統の一端と、他端とには、それぞれ電力変換装置1αと、電力変換装置1βとが対向して接続される。電力変換装置1αは第1交流系統と、直流系統との連系点に設けられ、第1交流系統が供給する交流電力と、直流系統が供給する直流電力とを相互に変換する。電力変換装置1βは、第2交流系統と、直流系統との連系点に設けられ、第2交流系統が供給する交流電力と、直流系統が供給する直流電力とを相互に変換する。以降の説明において、電力変換装置1αと、電力変換装置1βとを互いに区別しない場合には、単に「電力変換装置1」と記載する。 FIG. 15 is a diagram showing an example of the configuration of the power conversion system in the modified example 3. In the third modification, the power conversion device 1α and the power conversion device 1β are connected to one end and the other end of the DC system, respectively. The power conversion device 1α is provided at the interconnection point between the first AC system and the DC system, and mutually converts the AC power supplied by the first AC system and the DC power supplied by the DC system. The power conversion device 1β is provided at the interconnection point between the second AC system and the DC system, and mutually converts the AC power supplied by the second AC system and the DC power supplied by the DC system. In the following description, when the power conversion device 1α and the power conversion device 1β are not distinguished from each other, it is simply described as “power conversion device 1”.
 変形例3の電力変換装置1に係るゲート指令部240は、ゲートブロック指令信号GBをゲート信号生成部300、及び他の電力変換装置1(この場合、電力変換装置1αから電力変換装置1β、又は電力変換装置1βから電力変換装置1α)に出力する。また、変形例3の電力変換装置1に係る遮断器制御部250aは、他の電力変換装置1により出力されたゲートブロック指令信号GBを取得する。 The gate command unit 240 according to the power conversion device 1 of the modification 3 converts the gate block command signal GB into the gate signal generation unit 300 and another power conversion device 1 (in this case, the power conversion device 1α to the power conversion device 1β, or Output from the power converter 1β to the power converter 1α). Further, the circuit breaker control unit 250a according to the power conversion device 1 of the modification 3 acquires the gate block command signal GB output by the other power conversion device 1.
 変形例3における遮断器制御部250aの立ち上がり検出部254には、ゲート指令部240に代えて他の電力変換装置1により出力されたゲートブロック指令信号GBが入力される。 The gate block command signal GB output by another power conversion device 1 is input to the rise detection unit 254 of the circuit breaker control unit 250a in the modification 3 instead of the gate command unit 240.
 なお、上述では、2つの電力変換装置1が直流系統の一端と、他端とに接続される場合について説明したが、これに限られない。電力変換装置1は、例えば、2以上の電力変換装置1と直流系統を介して接続されてもよい。この場合、立ち上がり検出部254には、2以上の電力変換装置1に係るゲート指令部240により出力されたゲートブロック指令信号GBが入力される。 In the above description, the case where the two power conversion devices 1 are connected to one end and the other end of the DC system has been described, but the present invention is not limited to this. The power conversion device 1 may be connected to two or more power conversion devices 1 via a DC system, for example. In this case, the gate block command signal GB output by the gate command unit 240 related to the two or more power conversion devices 1 is input to the rise detection unit 254.
[変形例3のまとめ]
 以上説明したように、変形例3の電力変換装置1は、他の電力変換装置1から取得したゲートブロック指令信号GBに基づいて、遮断器開放指令信号CBTを一時的に無効化し、他の電力変換装置1のゲートブロックによる有効電力急減、及び自装置のゲートブロックに起因した瞬時的な系統過電圧による電力変換器10の保護に寄与しない交流遮断器CBの開放を抑制し、運転継続性を向上させることができる。
[Summary of Modification 3]
As described above, the power conversion device 1 of the modification 3 temporarily invalidates the breaker opening command signal CBT based on the gate block command signal GB acquired from the other power conversion device 1, and the other power. Suppresses the sudden decrease in active power due to the gate block of the converter 1 and the opening of the AC breaker CB that does not contribute to the protection of the power converter 10 due to the instantaneous system overvoltage caused by the gate block of the own device, improving operation continuity. Can be made to.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention as well as the invention described in the claims and the equivalent scope thereof.
1、1α、1β…電力変換装置、10…電力変換器、20…変換器制御装置、200…制御部、210…交流情報算出部、211…変換部、212…PI演算部、213…加算部、214…発振器、220…第1フィルタ、222…第2フィルタ、224…第3フィルタ、230…電圧指令値演算部、240…ゲート指令部、242…第1比較器、244…タイマ、250、250a…遮断器制御部、252…比較器、254…検出部、256…タイマ、258…論理演算部、300…ゲート信号生成部、CB…交流遮断器、CBT…遮断器開放指令信号、ERR…系統電圧異常信号、GB…ゲートブロック指令信号、TM1、TM2…所定期間、V_CBT…遮断器開放閾値、Vth_H…交流系統電圧上限値、Vth_L…交流系統電圧下限値、Vdf1…値、Vdf2…値、Vdf3…値 1, 1α, 1β ... power converter, 10 ... power converter, 20 ... converter control device, 200 ... control unit, 210 ... AC information calculation unit, 211 ... conversion unit, 212 ... PI calculation unit, 213 ... addition unit , 214 ... oscillator, 220 ... first filter, 222 ... second filter, 224 ... third filter, 230 ... voltage command value calculation unit, 240 ... gate command unit, 242 ... first comparator, 244 ... timer, 250, 250a ... Circuit breaker control unit, 252 ... Comparer, 254 ... Detection unit, 256 ... Timer, 258 ... Logic calculation unit, 300 ... Gate signal generator, CB ... AC circuit breaker, CBT ... Circuit breaker open command signal, ERR ... System voltage abnormality signal, GB ... Gate block command signal, TM1, TM2 ... Predetermined period, V_CBT ... Circuit breaker open threshold, Vth_H ... AC system voltage upper limit value, Vth_L ... AC system voltage lower limit value, Vdf1 ... Value, Vdf2 ... Value, Vdf3 ... Value

Claims (10)

  1.  交流と直流とを相互に変換可能な電力変換装置であって、
     スイッチング素子によって充放電を切り替え可能なコンデンサを含む単位変換器が直列接続された一以上のアームを含む電力変換器と、
     前記交流を供給する交流系統と、前記電力変換器との間に接続された交流遮断器と、
     前記スイッチング素子を制御するスイッチング制御部と、
     前記交流遮断器を制御する遮断制御部とを備え、
     前記スイッチング制御部は、
     前記交流の電圧の絶対値が第1閾値より大きい、もしくは第2閾値(第2閾値は、前記第1閾値よりも小さい)より小さい場合、ゲートブロック指令を出力して前記スイッチング素子のスイッチング動作を停止させ、
     前記遮断制御部は、前記絶対値が第3閾値(第3閾値は、前記第1閾値よりも大きい)より大きい場合において、
      前記スイッチング制御部により前記ゲートブロック指令が出力されたことに伴って前記絶対値が瞬時的に変化していない場合、前記交流遮断器を開放状態にし、
      前記スイッチング制御部により前記ゲートブロック指令が出力されたことに伴って前記絶対値が瞬時的に変化している場合、前記交流遮断器を開放状態にしない、
     電力変換装置。
    It is a power converter that can convert alternating current and direct current to each other.
    A power converter that includes one or more arms connected in series with a unit converter that includes a capacitor that can be charged and discharged by a switching element.
    An AC circuit breaker connected between the AC system that supplies the AC and the power converter,
    A switching control unit that controls the switching element,
    A circuit breaker control unit for controlling the AC circuit breaker is provided.
    The switching control unit
    When the absolute value of the AC voltage is larger than the first threshold value or smaller than the second threshold value (the second threshold value is smaller than the first threshold value), a gate block command is output to perform the switching operation of the switching element. Stop,
    When the absolute value is larger than the third threshold value (the third threshold value is larger than the first threshold value), the cutoff control unit is used.
    When the absolute value does not change instantaneously as the gate block command is output by the switching control unit, the AC circuit breaker is opened.
    When the absolute value changes instantaneously as the gate block command is output by the switching control unit, the AC circuit breaker is not opened.
    Power converter.
  2.  前記スイッチング制御部は、前記絶対値に第1フィルタ処理を行った値と、予め定められた有効電力値と、予め定められた無効電力値とに基づいて、前記電力変換器が出力する電圧指令値を算出し、算出した前記電圧指令値に基づいて、前記スイッチング素子を制御する、
     請求項1に記載の電力変換装置。
    The switching control unit outputs a voltage command to the power converter based on a value obtained by subjecting the absolute value to a first filter process, a predetermined active power value, and a predetermined reactive power value. A value is calculated, and the switching element is controlled based on the calculated voltage command value.
    The power conversion device according to claim 1.
  3.  前記スイッチング制御部は、前記絶対値に第2フィルタ処理を行った値が、前記第1閾値より大きい、もしくは前記第2閾値より小さい場合、前記ゲートブロック指令を出力して前記スイッチング素子を停止させ、
     前記遮断制御部は、前記絶対値に第3フィルタ処理を行った値が、前記第3閾値より大きい場合、前記交流遮断器を開放状態にする、
     請求項1又は請求項2に記載の電力変換装置。
    When the value obtained by performing the second filter processing on the absolute value is larger than the first threshold value or smaller than the second threshold value, the switching control unit outputs the gate block command to stop the switching element. ,
    When the value obtained by performing the third filter processing on the absolute value is larger than the third threshold value, the cutoff control unit opens the AC circuit breaker.
    The power conversion device according to claim 1 or 2.
  4.  前記第3フィルタ処理の時定数は、前記第2フィルタ処理の時定数よりも短い、
     請求項3に記載の電力変換装置。
    The time constant of the third filtering process is shorter than the time constant of the second filtering process.
    The power conversion device according to claim 3.
  5.  前記フィルタ処理のうち、少なくとも1つは、ディジタルフィルタによって実現される、
     請求項1から請求項4のうちいずれか一項に記載の電力変換装置。
    At least one of the filtering processes is realized by a digital filter.
    The power conversion device according to any one of claims 1 to 4.
  6.  前記フィルタ処理のうち、少なくとも1つは、アナログ回路によって実現される、
     請求項1から請求項5のうちいずれか一項に記載の電力変換装置。
    At least one of the filtering processes is realized by an analog circuit.
    The power conversion device according to any one of claims 1 to 5.
  7.  前記第3フィルタ処理は、前記絶対値の瞬時的な異常値を除去するアルゴリズムで実現される、
     請求項3又は請求項4に記載の電力変換装置。
    The third filtering process is realized by an algorithm for removing an instantaneous abnormal value of the absolute value.
    The power conversion device according to claim 3 or 4.
  8.  前記遮断制御部は、
     前記スイッチング制御部により前記ゲートブロック指令が出力されてから所定の期間は、前記交流遮断器を開放状態にしない、
     請求項1から請求項7のうちいずれか一項に記載の電力変換装置。
    The cutoff control unit
    The AC circuit breaker is not opened for a predetermined period after the gate block command is output by the switching control unit.
    The power conversion device according to any one of claims 1 to 7.
  9.  請求項1から請求項8のいずれかに記載の電力変換装置を二つ以上備え、前記二つ以上の電力変換装置の直流側が互いに接続されて構成される電力変換システムであって、
     前記遮断制御部は、自装置の直流側に接続される他の電力変換装置からゲートブロック指令が出力されから所定の期間は、前記交流遮断器を開放させない、
     電力変換システム。
    A power conversion system including two or more power conversion devices according to any one of claims 1 to 8, wherein the DC sides of the two or more power conversion devices are connected to each other.
    The cutoff control unit does not open the AC circuit breaker for a predetermined period after the gate block command is output from another power conversion device connected to the DC side of the own device.
    Power conversion system.
  10.  スイッチング素子によって充放電を切り替え可能とされたコンデンサを含む単位変換器が直列接続されたアームを含む電力変換器を備え、交流と直流とを相互に変換可能な電力変換装置を実現するコンピュータに、
     前記スイッチング素子を制御させ、
     前記交流を供給する交流系統と、前記電力変換器との間に接続された交流遮断器を制御させ、
     前記交流の電圧の絶対値が第1閾値より大きい、もしくは第2閾値(第2閾値は、前記第1閾値よりも小さい)より小さい場合、ゲートブロック指令を出力して前記スイッチング素子のスイッチング動作を停止させ、
     前記絶対値が第3閾値(第3閾値は、前記第1閾値よりも大きい)より大きい場合において、
      前記スイッチング制御部により前記ゲートブロック指令が出力されたことに伴って前記絶対値が瞬時的に変化していない場合、前記交流遮断器を開放状態にさせ、
      前記スイッチング制御部により前記ゲートブロック指令が出力されたことに伴って前記絶対値が瞬時的に変化している場合、前記交流遮断器を開放状態にさせない、
     ことを実行させるプログラム。
    A computer that has a power converter that includes an arm in which a unit converter that includes a capacitor whose charge and discharge can be switched by a switching element is connected in series, and realizes a power converter that can convert alternating current and direct current to each other.
    By controlling the switching element,
    The AC circuit breaker connected between the AC system that supplies the AC and the power converter is controlled.
    When the absolute value of the AC voltage is larger than the first threshold value or smaller than the second threshold value (the second threshold value is smaller than the first threshold value), a gate block command is output to perform the switching operation of the switching element. Stop,
    When the absolute value is larger than the third threshold value (the third threshold value is larger than the first threshold value),
    When the absolute value does not change instantaneously as the gate block command is output by the switching control unit, the AC circuit breaker is opened.
    When the absolute value changes instantaneously with the output of the gate block command by the switching control unit, the AC circuit breaker is not opened.
    A program that lets you do things.
PCT/JP2019/016168 2019-04-15 2019-04-15 Power conversion device, power conversion system, and program WO2020213037A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/016168 WO2020213037A1 (en) 2019-04-15 2019-04-15 Power conversion device, power conversion system, and program
JP2021514675A JP7146074B2 (en) 2019-04-15 2019-04-15 POWER CONVERTER, POWER CONVERSION SYSTEM, AND PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016168 WO2020213037A1 (en) 2019-04-15 2019-04-15 Power conversion device, power conversion system, and program

Publications (1)

Publication Number Publication Date
WO2020213037A1 true WO2020213037A1 (en) 2020-10-22

Family

ID=72838089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016168 WO2020213037A1 (en) 2019-04-15 2019-04-15 Power conversion device, power conversion system, and program

Country Status (2)

Country Link
JP (1) JP7146074B2 (en)
WO (1) WO2020213037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246169A1 (en) * 2022-06-22 2023-12-28 上海勘测设计研究院有限公司 Fault clearing method for alternating-current bus of energy storage power station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462650U (en) * 1977-10-12 1979-05-02
JP2012215423A (en) * 2011-03-31 2012-11-08 Patokkusu Japan Kk Leak current measuring device and leak current measuring method in power supply system
WO2015156347A1 (en) * 2014-04-10 2015-10-15 ダイキン工業株式会社 Actuator drive device
JP2016119772A (en) * 2014-12-19 2016-06-30 三菱電機株式会社 System interconnection inverter
WO2018211658A1 (en) * 2017-05-18 2018-11-22 三菱電機株式会社 Reactive power compensation device and method for controlling same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462650B2 (en) 2010-02-09 2014-04-02 株式会社日本セラテック Manufacturing method of composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462650U (en) * 1977-10-12 1979-05-02
JP2012215423A (en) * 2011-03-31 2012-11-08 Patokkusu Japan Kk Leak current measuring device and leak current measuring method in power supply system
WO2015156347A1 (en) * 2014-04-10 2015-10-15 ダイキン工業株式会社 Actuator drive device
JP2016119772A (en) * 2014-12-19 2016-06-30 三菱電機株式会社 System interconnection inverter
WO2018211658A1 (en) * 2017-05-18 2018-11-22 三菱電機株式会社 Reactive power compensation device and method for controlling same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246169A1 (en) * 2022-06-22 2023-12-28 上海勘测设计研究院有限公司 Fault clearing method for alternating-current bus of energy storage power station

Also Published As

Publication number Publication date
JPWO2020213037A1 (en) 2021-10-21
JP7146074B2 (en) 2022-10-03

Similar Documents

Publication Publication Date Title
US10326355B2 (en) Power conversion device
WO2020136699A1 (en) Power conversion device
US11056907B2 (en) Uninterruptible power supply device
JP6526924B1 (en) Power converter
JP6622442B1 (en) POWER CONVERSION DEVICE, POWER CONVERSION SYSTEM, POWER CONVERSION METHOD, AND PROGRAM
JP6719401B2 (en) Power converter
Hamed et al. A fast recovery technique for grid-connected converters after short dips using a hybrid structure PLL
JP3656694B2 (en) Power converter
JP2008228494A (en) Inverter for coordinating system
WO2020213037A1 (en) Power conversion device, power conversion system, and program
JP2019022313A (en) Power conversion device
JP4034458B2 (en) Self-excited AC / DC converter control device and circuit breaker circuit control device
JP5490801B2 (en) Self-excited reactive power compensator
JP7160214B2 (en) power converter
Salem et al. Islanding and resynchronization process of a grid-connected microgrid with series transformerless H-bridge inverter installed at PCC
JP7370954B2 (en) power converter
US20220200475A1 (en) Control device
WO2020105140A1 (en) Power conversion device
EP3780311A1 (en) Power conversion system
JP2023067539A (en) Power conversion device
JP2013243934A (en) Self-excited reactive power compensation device
JP7379395B2 (en) Power converters and DC power transmission systems
JP7255703B2 (en) power converter
Park et al. Trigonometric angle based power control of cycloconverter-type high-frequency link converter for vehicle-to-grid applications
JP7031065B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925211

Country of ref document: EP

Kind code of ref document: A1