WO2015156225A1 - 採光装置 - Google Patents

採光装置 Download PDF

Info

Publication number
WO2015156225A1
WO2015156225A1 PCT/JP2015/060602 JP2015060602W WO2015156225A1 WO 2015156225 A1 WO2015156225 A1 WO 2015156225A1 JP 2015060602 W JP2015060602 W JP 2015060602W WO 2015156225 A1 WO2015156225 A1 WO 2015156225A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
daylighting
light diffusion
diffusion
room
Prior art date
Application number
PCT/JP2015/060602
Other languages
English (en)
French (fr)
Inventor
俊 植木
俊平 西中
大祐 篠崎
豪 鎌田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/302,222 priority Critical patent/US9857041B2/en
Priority to JP2016512699A priority patent/JP6579712B2/ja
Publication of WO2015156225A1 publication Critical patent/WO2015156225A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • F21S11/007Non-electric lighting devices or systems using daylight characterised by the means for transmitting light into the interior of a building
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/049Patterns or structured surfaces for diffusing light, e.g. frosted surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters

Definitions

  • the present invention relates to a daylighting apparatus.
  • This application claims priority based on Japanese Patent Application No. 2014-079513 filed in Japan on April 8, 2014, the contents of which are incorporated herein by reference.
  • the daylighting film with multiple unit prisms described above can guide the light into the back of the room, but the directivity of the sunlight taken into the room is high, so the shadow of the window can appear, Depending on the direction, there was a case where a shadow was made in the room. Such a phenomenon has given the occupants an unfavorable impression of the light environment of the room. Moreover, although the said daylighting film can guide light to the depth direction of a room, since the light cannot be diffused in the vicinity of the window, the room could not be brightened over a wide range.
  • At least two types of light diffusion regions are provided on one surface side of the light diffusion member, and the at least two types of light diffusion regions have different light diffusion characteristics. It is preferable.
  • the proportion of at least one of the light diffusion regions is changed along one direction of one surface of the light diffusion member. Is preferred.
  • a light diffusion region in which light diffusion characteristics continuously change is provided on one surface side of the light diffusion member.
  • the light diffusion region preferably has design properties.
  • a daylighting device that can guide light to the back of the room and diffuse light in the vicinity of the window.
  • FIG. 16A shows (alpha) 2 part.
  • It is a schematic perspective view which shows the lighting device of 7th Embodiment. It is a figure which shows the room model 2000 provided with the lighting apparatus and the illumination light control system. 3 is a plan view showing a ceiling of a room model 2000.
  • FIG. It is a graph which shows the relationship between the illumination intensity of the light (natural light) daylighted indoors by the lighting apparatus, and the illumination intensity (illumination dimming system) by an indoor lighting apparatus.
  • a light transmissive base material made of a resin such as a thermoplastic polymer, a thermosetting resin, or a photopolymerizable resin is used.
  • a light-transmitting substrate made of acrylic polymer, olefin polymer, vinyl polymer, cellulose polymer, amide polymer, fluorine polymer, urethane polymer, silicone polymer, imide polymer, or the like is used.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • a light-transmitting substrate such as a film or a polyimide (PI) film is preferably used.
  • a PET film having a thickness of 100 ⁇ m is used as an example.
  • the total light transmittance of the first base material 21 is preferably 90% or more, for example. Thereby, sufficient transparency is obtained.
  • the second substrate 24 a light-transmitting substrate similar to the first substrate 21 is used.
  • the material of the second base material 24 and the material of the first base material 21 may be the same or different.
  • the daylighting unit 22 is made of an organic material having light transmissivity and photosensitivity, such as an acrylic resin, an epoxy resin, or a silicone resin.
  • a mixture made of a transparent resin in which a polymerization initiator, a coupling agent, a monomer, an organic solvent and the like are mixed with these resins can be used.
  • the polymerization initiator may contain various additional components such as a stabilizer, an inhibitor, a plasticizer, a fluorescent brightening agent, a mold release agent, a chain transfer agent, and other photopolymerizable monomers. . 90% or more of the total light transmittance of the lighting part 22 is preferable. Thereby, sufficient transparency is obtained.
  • the daylighting unit 22 is a member that extends in a straight line in one direction (a direction perpendicular to the paper surface of FIG. 2) and has a trapezoidal cross-sectional shape perpendicular to the longitudinal direction.
  • the longitudinal direction of the daylighting unit 22 is parallel to one side of the rectangular first base material 21.
  • the plurality of daylighting units 22 are arranged in parallel to each other at intervals.
  • the surface corresponding to the short side is the surface facing the second base 24, and will be referred to as the first end surface 22a in the following description.
  • the surface corresponding to the long side is the surface in contact with the first base material 21 and is referred to as a second end surface 22b in the following description.
  • the width of the first end surface 22a of the daylighting unit 22 is W1
  • the width of the second end surface 22b of the daylighting unit 22 is W2
  • the height in the normal direction of the first base material 21 of the daylighting unit 22 is H
  • the arrangement of the daylighting units 22 When the direction pitch is P, the width W1 of the first end surface 22a, the width W2, the height H, and the pitch P of the second end surface 22b of the daylighting unit 22 are the same over all the daylighting units 22.
  • the relationship between the width W1 of the first end face 22a and the width W2 of the second end face 22b is W1 ⁇ W2.
  • the width W1 of the first end surface 22a and the width W2 of the second end surface 22b of the daylighting unit 22 are, for example, 10 ⁇ m to 50 ⁇ m.
  • the height H of the daylighting unit 22 is, for example, 10 ⁇ m to 100 ⁇ m.
  • an example in which a plurality of daylighting units 22 are arranged at intervals is shown, but the end portions of the second end surfaces 22b of the adjacent daylighting units 22 may be in contact with each other.
  • the refractive index of the gap 28 is approximately 1.0.
  • the critical angle at the interface 22c between the gap portion 28 and the daylighting portion 22 is minimized.
  • the gap portion 28 is an air layer made of air, but the gap portion 28 may be an inert gas layer made of an inert gas such as nitrogen, or a reduced pressure layer in a reduced pressure state. It may be.
  • the light scattering layer 26 has a configuration in which a light scattering body 30 is dispersed in a resin 29 having light permeability.
  • a resin 29 for example, a transparent resin mixture in which a polymerization initiator, a coupling agent, a monomer, an organic solvent, and the like are mixed with a resin such as an acrylic resin, an epoxy resin, or a silicone resin can be used.
  • the polymerization initiator may contain various additional components such as a stabilizer, an inhibitor, a plasticizer, a fluorescent brightening agent, a release agent, a chain transfer agent, and other photopolymerizable monomers.
  • the light scatterer 30 has a function of scattering light incident on the light scattering layer 26.
  • the light scattering body 30 is a particle (small piece) having a refractive index different from that of the resin 29 constituting the light scattering layer 26. It is desirable that the light scatterer 30 is mixed inside the light scattering layer 26 and dispersed without agglomeration.
  • the light scatterer 30 is made of, for example, glass, acrylic polymer, olefin polymer, vinyl polymer, cellulose polymer, amide polymer, fluorine polymer, urethane polymer, silicone polymer, imide polymer resin, or the like. A light transmissive material is used. Alternatively, the light scatterer 30 may be bubbles dispersed in the resin 29.
  • the shape of the light scatterer 30 may be, for example, a sphere, an ellipsoid, a flat plate, or a polyhedron.
  • the size of the light scatterer 30 may be about 0.5 to 20 ⁇ m, for example, and may be uniform or different.
  • the light scattering layer 26 is not necessarily limited to the configuration in which the light scatterers 30 are dispersed, and may be configured by a layer having irregularities formed on the surface. In this case, the unevenness may be formed directly on the second surface 21 b of the first base material 21.
  • the refractive index of the second adhesive layer 25 is equal to the refractive index of the second substrate 24 or the refractive index of the window glass 27, the interface between the second adhesive layer 25 and the second substrate 24 or the second adhesive layer 26 and the window. No refraction occurs at the interface with the glass 27.
  • a point C is defined as a point at which any one light beam of light incident on the daylighting unit 22 enters the lower side surface 22c (reflection surface) of the daylighting unit 22.
  • a virtual straight line passing through the point C and orthogonal to the first surface 21 a of the first base material 21 is defined as a straight line F.
  • the space on the side where the light incident on the point C exists is defined as the first space S1
  • the space on the side where the light incident on the point C does not exist is the second space.
  • the light L1 incident from the first end surface 22a of the daylighting unit 22 is totally reflected by the lower side surface 22c of the daylighting unit 22, travels obliquely upward, that is, toward the first space S1, and exits from the daylighting unit 22. Is done.
  • the light L ⁇ b> 1 emitted from the daylighting unit 22 passes through the first base material 21, is scattered by the light scatterer 30 of the light scattering layer 26, and is emitted from the daylighting member 11.
  • the daylighting unit 22 is configured as a striped member having a constant width, but the shape of the daylighting unit 22 is not limited thereto. If each of the plurality of daylighting sections 22 has a longitudinal direction in one direction, and the longitudinal direction is arranged in a direction parallel to one side of the first base material 21 having a rectangular shape, the present embodiment The same effect as the form can be obtained.
  • “each of the plurality of daylighting portions has a longitudinal direction in one direction” means, for example, the following. That is, isotropically diffused light such as fluorescence is incident on the inside of the first base material 21 from the opposite side of the first base material 21 where the daylighting section 22 is formed.
  • the daylighting member 11 of the second example a plurality of convex lenses 32 each extending in the vertical direction and parallel to each other are provided on the second surface of the first base material 31.
  • the lenticular lens is provided on the second surface of the first base material 31.
  • the convex lens 32 may be integrated with the first base material 31 by processing the second surface of the first base material 31, or may be separate from the first base material 31.
  • the daylighting member 11 of the second example does not include the light scattering layer 26 in the daylighting member 11 of the first example. Other components are the same as those in the first example.
  • a plurality of convex lenses 32 are provided on the second surface of the first base material 31, but instead of this configuration, the second surface of the first base material 31 is different.
  • An isotropic scattering structure may be provided.
  • the anisotropic scattering structure for example, a light diffusion control film (trade name: LSD) manufactured by Luminit Corporation having a concavo-convex structure of ⁇ m level formed by a surface, relief, or hologram pattern can be used.
  • a light scattering layer in which particles having an aspect ratio of about 5 to 500 are dispersed in a continuous layer may be used instead of the first substrate 31 having a concavo-convex shape on the second surface.
  • the daylighting member 11 of the second example can scatter light emitted from the first base material 31 anisotropically.
  • the daylighting member 11 of the second example can strongly scatter light emitted from the first base material 31 in the horizontal direction.
  • the light diffusing member 12 is provided with at least two types of light diffusing regions on the surface (one surface) opposite to the surface facing the daylighting member 11, and the at least two types of light diffusing regions are light diffusing regions. The characteristics are different from each other. In addition, at least two kinds of light diffusion regions are arranged adjacent to each other. In the present embodiment, for example, as shown in FIG. 1, the light diffusing member 12 has two types of light diffusing regions A and B having different light diffusing characteristics, and the light diffusing regions A and B are adjacent to each other. It is arranged to fit.
  • the light diffusion regions A and B are formed in a predetermined shape and size (area).
  • the fact that the light diffusion characteristics of the light diffusion regions A and B are different from each other means that the light diffusion of the light diffusion region A is weak and the light diffusion of the light diffusion region B is strong.
  • the light diffusing region A transmits light whose direction has been changed by the daylighting member 11 in substantially that direction. Therefore, the light beam emitted from the light diffusion region A can irradiate the back direction of the room.
  • the haze value is 90
  • the total light transmittance (Tt) is 90%
  • the angle profile of the diffusion characteristic is as shown in FIG.
  • the light diffusion region B scatters the light whose direction has been changed by the daylighting member 11 in the vertical direction of the light diffusion member 12. Thereby, the component of the light scattered in the cross-sectional direction of the light diffusion member 12 can be increased, and light can be illuminated over a wide range from the vicinity of the window of the room to the back of the room.
  • the light can be illuminated in the central direction of the room regardless of the direction of the sun.
  • the haze value is 70
  • the total light transmittance (Tt) is 70%
  • the angle profile of the diffusion characteristic is as shown in FIG.
  • the difference in the degree of light scattering imparted to the light diffusion regions A and B is controlled by a diffusion pattern provided on one surface side of the light diffusion member 12.
  • the light diffusion member 12 is provided with unevenness for diffusing light.
  • a diffusion pattern in which the intensity of light scattering is adjusted according to the size of the irregularities, the density and shape of the arrangement, and the like can be arranged on one surface of the light diffusing member 12.
  • the diffusion patterns (light diffusion regions A and B) provided in the light diffusing member 12 are preferably patterned in such a size and arrangement that the light collected in each pattern is sufficiently mixed indoors. That is, each diffusion pattern (light diffusion regions A and B) is preferably formed on one surface of the light diffusion member 12 to have a size of several mm to several tens of cm. If it is larger than this, the collected light is not sufficiently mixed, and the effect of mixing the light diffusion regions A and B is lost.
  • an uneven pattern as shown in FIGS. 5A to 8B is formed corresponding to the light diffusing regions A and B.
  • the uneven pattern is formed at a pitch of several ⁇ m to several tens of ⁇ m that scatters visible light, and is irregularly provided so that the light is not diffracted.
  • a concave portion 12D and a convex portion 12E are continuously formed on one surface side of a light-transmitting substrate 12A constituting the light diffusing member 12.
  • the angle formed by the convex portion 12E and the surface 12b parallel to the bottom surface 12a of the base material 12A is ⁇ b on average.
  • the light diffusion region A and the light diffusion region B are formed such that the angle ⁇ b in the light diffusion region B is larger than the angle ⁇ a in the light diffusion region A ( ⁇ b > ⁇ a ). In the light diffusion region B, the light bends more than the light diffusion region A and diffuses light more strongly.
  • the diffusion characteristic of the light diffusion region A is a diffusion characteristic having a half-value width of 12 ° as shown by the curve (A).
  • the diffusion characteristic of the light diffusion region B shows a diffusion characteristic with a half-value width of 17 ° as shown by the curve (B).
  • curve (C) shows the diffusion characteristics of the light source of the measuring instrument.
  • Curve (C) shows the diffusion characteristics with a half width of 5 °.
  • FIG. 6A and 6B are schematic cross-sectional views showing a second example of the diffusion pattern provided in the light diffusion regions A and B.
  • FIG. In the second example the light diffusion region A is not formed with the concave portion 12B and the convex portion 12C as in the first example.
  • a concave portion 12D and a convex portion 12E are continuously formed on one surface side of a light-transmitting substrate 12A constituting the light diffusing member 12.
  • the light bends more than the light diffusion region A, and the light is diffused and diffused more strongly.
  • FIG. 7A and 7B are schematic perspective views illustrating a third example of the diffusion pattern provided in the light diffusion regions A and B.
  • FIG. In the light diffusion region A, a large number of elliptical light diffusion portions 41 are formed on one surface side of the base 12A of the light diffusion member 12. The light diffusing portion 41 is arranged so that its long axis is parallel to the vertical direction of the light diffusing member 12.
  • the light diffusing portion 41 is arranged so that its long axis is parallel to the vertical direction of the light diffusing member 12.
  • the light diffusing portion 42 is disposed such that its long axis is parallel to the vertical direction of the light diffusing member 12.
  • the elliptical light diffusing portions 41 and 42 are arranged with directivity, so that the light diffuses strongly in a specific direction and weakly diffuses in another direction. Can be realized.
  • the light diffusion pattern (uneven shape) as described above is formed on one surface side of the base 12A of the light diffusing member 12 by performing a heat dripping treatment as necessary after pattern formation by photolithography. Can do. Therefore, the light diffusion regions A and B can be easily patterned, and can be formed in a large area by continuing the pattern by step-and-repeat.
  • two types of light diffusion regions A and B having different light diffusion characteristics are two-dimensionally arranged on one surface side of the light diffusing member 12 to scatter light weakly.
  • the diffusion region A and the light diffusion region B that strongly scatters light are patterned.
  • each diffusion pattern spreads as schematically shown in FIG. 9A and FIG. Scatter.
  • FIG. 9A in the vertical direction of the room, the light scattering region A of weak scattering irradiates mainly in the back direction of the room, and the light diffusion region B of strong scattering is near the window.
  • the light scattering region A of weak scattering irradiates mainly in the back direction of the room, and the light diffusion region B of strong scattering is near the window. Since it irradiates intensively, a wide area from the vicinity of the window to the back of the room can be illuminated on average.
  • the light diffusion region A in the form of vertical stripes is guided to the back of the room without spreading light into the room.
  • the vertically long elliptical light diffusion region B the light is introduced into the room with some expansion in the vertical direction, so that the vicinity of the window is also illuminated. For this reason, a wide area from the vicinity of the window to the back of the room can be illuminated on average.
  • the light diffusion region A in the left-right direction (horizontal direction) of the room, the light diffusion region A is introduced into the room with a large spread in the horizontal direction, and is averaged during the day without being affected by the direction of the sun.
  • the room can be illuminated.
  • the light diffusion region B is not as large as the light diffusion region A, the light diffusion region B is introduced into the room with some extent of spread, and therefore has a function of illuminating a portion different from the light diffusion region A. That is, in the light diffusion region A, the scattering profile spreads in a wide disk shape only in the horizontal direction.
  • the disk ratio is smaller and the light spreads in a form close to a rugby ball.
  • the daylighting member 11 of the third example includes a base material 51, a plurality of daylighting parts 52, and a light scattering layer 53.
  • the plurality of daylighting units 52 are provided on the first surface 51 a of the base material 51.
  • the glass substrate (support plate) 54 is arrange
  • a light scattering layer 53 is disposed on one surface 54a of the glass substrate 54, and these are bonded together with an adhesive.
  • the glass substrate 54 serves to maintain the base 51 on which the daylighting section 52 is formed and the light scattering layer 53 in a planar shape.
  • an adhesive layer is provided on the surface of the daylighting portion 52 opposite to the surface in contact with the base material 51, and the entire daylighting member 11 is adhered to the window glass 61 through the adhesive layer. There are gaps 55 between the plurality of daylighting units 52.
  • the daylighting member 11 includes a base material 51 on which a daylighting part 52 is formed, a light scattering layer 53, and a support plate 54 that supports these in a planar shape.
  • the daylighting member 11 is used by being suspended from the ceiling 62 using a metal fitting 56 or the like.
  • a light transmissive substrate made of a resin such as a thermoplastic polymer or an engineering plastic is used.
  • a resin such as a thermoplastic polymer or an engineering plastic
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PC polycarbonate
  • the daylighting section 52 is formed of a thermoplastic resin such as cycloolefin polymer (COP), polycarbonate (PC), or polymethyl methacrylate (PMMA).
  • the lighting part 52 is comprised with the organic material which has optical transparency and photosensitivity, such as an acrylic resin, an epoxy resin, and a silicone resin, for example.
  • a mixture made of a transparent resin in which a polymerization initiator, a coupling agent, a monomer, an organic solvent, and the like are mixed with these resins can be used.
  • the polymerization initiator may contain various additional components such as a stabilizer, an inhibitor, a plasticizer, a fluorescent brightening agent, a mold release agent, a chain transfer agent, and other photopolymerizable monomers.
  • a stabilizer such as a thermal imprint method or a UV imprint method. 90% or more of the total light transmittance of the lighting part 52 obtained in this way is preferable. Thereby, sufficient transparency is obtained.
  • the daylighting section 52 is a polygonal member that extends in a straight line in one direction (perpendicular to the paper surface of FIG. 11) and has a cross-sectional shape perpendicular to the longitudinal direction, such as the tip of a knife.
  • the daylighting section 52 is arranged so that the knives face the outdoor side.
  • the longitudinal direction of the daylighting unit 52 is parallel to one side of the rectangular base material 51.
  • the plurality of daylighting units 52 are arranged in parallel to each other without intervals or at intervals.
  • the width of the first end face 52a of the daylighting unit 52 is w1
  • the height of the base 51 in the normal direction of the daylighting unit 52 is h
  • the pitch of the daylighting unit 52 in the arrangement direction is p
  • the width w1, the height h, and the pitch p of the one end face 52a are the same over all the daylighting parts 52.
  • the width w1 of the first end face 52a is, for example, 10 ⁇ m to 200 ⁇ m.
  • the height h of the daylighting section 52 is, for example, 10 ⁇ m to 200 ⁇ m.
  • the interval between the daylighting parts 52 is constant, but the interval between the daylighting parts 52 is not necessarily constant.
  • the plurality of daylighting units 52 may be arranged adjacent to each other at irregular intervals. Thereby, generation
  • the plurality of daylighting units 52 do not necessarily have to be arranged at intervals, and the daylighting units 52 do not have to be in contact with each other.
  • the refractive index of the gap 55 is approximately 1.0.
  • the critical angle at the interface 52c between the gap portion 55 and the daylighting portion 52 is minimized.
  • the gap portion 55 is an air layer made of air, but the gap portion 55 may be an inert gas layer made of an inert gas such as nitrogen, or a reduced pressure layer in a reduced pressure state. It may be.
  • the light scatterer 57 included in the light scattering layer 53 has a function of scattering light incident on the light scattering layer 53.
  • the light scatterer 57 is a particle (small piece) having a refractive index different from that of the resin 58 constituting the light scattering layer 53. It is desirable that the light scatterer 57 is mixed inside the light scattering layer 53 and dispersed without agglomeration.
  • the shape of the light scatterer 57 may be, for example, a sphere, an ellipsoid, a flat plate, or a polyhedron.
  • the size of the light scatterer 57 may be, for example, about 0.5 to 20 ⁇ m, and may be uniform or different.
  • the light scattering layer 53 is not necessarily limited to the configuration in which the light scatterers 57 are dispersed, and may be configured by a layer having irregularities formed on the surface. In this case, the unevenness may be formed directly on the second surface 51 b of the substrate 51.
  • the daylighting member 11 is installed so that the longitudinal direction of the daylighting section 52 faces the horizontal direction and the arrangement direction of the plurality of daylighting sections 52 faces the vertical direction so as to be substantially parallel to the window surface. Light that reaches directly from the sun enters the daylighting member 11 from obliquely above.
  • any one light beam out of the light incident on the daylighting unit 52 is incident on the lower side surface 52c of the daylighting unit 52 (reflection surface, interface between the gap 55 and the daylighting unit 52).
  • a virtual straight line passing through the point c and orthogonal to the first surface 51a of the substrate 51 is defined as a straight line f.
  • the space on the side where the light incident on the point c exists is the first space s1
  • the space on the side where the light incident on the point c does not exist is the second space.
  • the light l1 incident from the first end surface 52a of the daylighting unit 52 is totally reflected by the lower side surface 52c of the daylighting unit 52, proceeds obliquely upward, that is, toward the first space s1, and is emitted from the daylighting unit 52. Is done.
  • the light 11 emitted from the daylighting unit 52 passes through the substrate 51, is scattered by the light scatterer 57 of the light scattering layer 53, and is emitted from the daylighting member 11.
  • FIGS. 12A and 12B are schematic views showing the daylighting apparatus of the present embodiment, FIG. 12A is a perspective view, and FIG. 12B is a cross-sectional view.
  • the daylighting device 70 of the present embodiment is generally configured by a daylighting member 71 and a light diffusion member 72 that is disposed on the light emitting surface side of the daylighting member 71 and diffuses the light emitted from the daylighting member 71.
  • the daylighting member 71 and the light diffusion member 72 the same ones as those in the first embodiment described above are used.
  • the ceiling height H of the room 80 is 270 cm.
  • four windows having a width of 150 cm and a length of 180 cm are installed from the ceiling.
  • the lighting device 70 of this embodiment was installed on this window surface.
  • the area where the daylighting device 70 is installed with respect to the window is about 60 cm from the upper side of the window (side in contact with the ceiling). This prevents people in the room 80 from being dazzled when daylighting through the window.
  • the width W 11 of the lighting apparatus 70 was 60cm 150 cm, a longitudinal width W 12. Therefore, the height h from the floor surface 60a of the room 60 to the daylighting device 50 is 210 cm.
  • the light diffusing member 72 has two types of light diffusing regions A and B having different light diffusing characteristics along the vertical direction (vertical direction) of the room.
  • the light diffusion regions A and B are arranged adjacent to each other.
  • the light diffusing region B where light scattering is strong is arranged at the upper part in the vertical direction of the room 80
  • the light diffusing region A where light scattering is weak is arranged at the lower part in the vertical direction of the room 80.
  • the light diffusing regions A and B having the diffusion patterns shown in FIGS. 8A and 8B are used as the light diffusing member 72.
  • the light collected from the light diffusion region B arranged at the upper part of the window surface occupies most of the component that illuminates the vicinity of the window in the room 80, but the amount of the component diffused in the vertical direction of the room 80 is excessive in the vicinity of the window. It is possible to illuminate a wide area up to the back of the room 80 on average. On the other hand, since the light collected from the light diffusion region A arranged at the lower part of the window surface is used to illuminate the back direction of the room 80, it is better not to diffuse the light up and down the room 80 much. If the light collected from the light diffusion region A is diffused in the vertical direction of the room 80, the intensity of the light reaching the back of the room 80 becomes weak.
  • the light collected from the light diffusion region A is likely to enter the eyes of people in the room 80 and become glare.
  • an ideal lighting condition is realized by changing and controlling the diffusion state of the light collected at the upper part (light diffusion area B) and the lower part (light diffusion areas A and B) of the light diffusion member 72. can do.
  • the diffusion pattern of these two types of light diffusion regions in the intermediate region between the two types of light diffusion regions adjacent to each other, is set so as to have an intermediate light diffusion characteristic between these two types of light diffusion regions. It may be formed. Further, the density and shape of the diffusion pattern may be gradually changed from one light diffusion region toward the other light diffusion region.
  • FIG. 13 is a schematic perspective view showing the daylighting apparatus of the present embodiment.
  • the daylighting device 90 of the present embodiment is generally configured by a daylighting member 91 and a light diffusion member 92 that is disposed on the light emitting surface side of the daylighting member 91 and diffuses the light emitted from the daylighting member 91.
  • the daylighting member 91 and the light diffusing member 92 those similar to those in the first embodiment described above are used.
  • the light diffusing member 92 has two types of light diffusing regions A and B having different light diffusing characteristics, so that the light diffusing regions A and B are adjacent to each other. Is arranged. Further, in the light diffusion member 92, the light diffusion region B where light scattering is strong occupies a large area on the upper side of the light diffusion member 92, and the light diffusion region A where light scattering is weak on the lower side of the light diffusion member 92. The light diffusing regions A and B are disposed so as to occupy a large area. That is, in the light diffusion region A, the area that occupies one surface of the light diffusion member 92 increases from the upper side to the lower side of the light diffusion member 92. On the other hand, in the light diffusion region B, the area that occupies one surface of the light diffusion member 92 decreases as it goes from the upper side to the lower side of the light diffusion member 92.
  • the daylighting device 90 When the daylighting device 90 is arranged on the window surface in the same manner as in the second embodiment described above, the light collected from the light diffusion region B that is often arranged at the upper part of the window surface has a large component that illuminates the vicinity of the window. Although it occupies a portion, the amount of light diffused in the vertical direction of the room does not become excessive in the vicinity of the window, and a wide area up to the back of the room can be illuminated on average. On the other hand, since the light collected from the light diffusion region A, which is often arranged at the lower part of the window surface, is used to illuminate the back direction of the room, it does not diffuse much in the vertical direction of the room.
  • the light diffusion regions A and B are formed to have a width of several mm to several tens of cm and a vertical width of several mm to several tens of cm, respectively, and are arranged adjacent to each other. Accordingly, macroscopically, light scattering can be increased on the upper side of the light diffusing member 92 and light scattering can be decreased on the lower side of the light diffusing member 72.
  • FIGS. 14A to 14C are schematic views showing the daylighting apparatus of the present embodiment, in which FIG. 14A is a cross-sectional view, FIG. 14B is a plan view, and FIG. 14C is a plan view.
  • the daylighting apparatus 100 according to the present embodiment is generally configured by a daylighting member 101 and a light diffusion member 102 that is disposed on the light emitting surface side of the daylighting member 101 and diffuses the light emitted from the daylighting member 101.
  • the daylighting member 101 the same one as in the first embodiment described above is used.
  • the light diffusing member 102 has two types of light diffusing areas A and B having different light diffusing characteristics, and the light diffusing areas A and B are arranged adjacent to each other. .
  • a large number of protrusions 103 are arranged in parallel at a predetermined interval, and are constituted by these protrusions 103 and a recess 104 therebetween. Further, the protrusion 103 and the recess 104 are curved.
  • a large number of protrusions 105 are arranged in parallel at a predetermined interval, and are composed of these protrusions 105 and a recess 106 therebetween.
  • the protrusion part 105 and the recessed part 106 are curving. Further, the width of the protrusion 105 in the light diffusion region B is larger than the width of the protrusion 103 in the light diffusion region A. Thereby, light scattering is weak in the light diffusion region A, and light scattering is strong in the light diffusion region B.
  • the light collected from the light diffusion region B is mostly composed of components that illuminate the vicinity of the window.
  • the amount of the component diffused into the window does not become excessive in the vicinity of the window, and a wide area up to the back of the room can be illuminated on average.
  • the light collected from the light diffusion region A is used to illuminate the back direction of the room, it does not diffuse much in the vertical direction of the room.
  • FIG. 15 is a schematic perspective view showing the daylighting apparatus of the present embodiment.
  • the daylighting device 110 of the present embodiment is generally configured by a daylighting member 111 and a light diffusion member 112 that is disposed on the light emitting surface side of the daylighting member 111 and diffuses the light emitted from the daylighting member 111.
  • the daylighting member 111 the same member as in the first embodiment described above is used.
  • the light diffusing member 112 has two types of light diffusing regions A and B having different light diffusing characteristics, and the light diffusing regions A and B are arranged adjacent to each other. .
  • the light diffusing region A is a region where a design such as a pattern is not drawn
  • the light diffusing region B is a region displaying a design such as a pattern, that is, a region composed of the design itself.
  • the light diffusion region A is a region in which a diffusion pattern such as unevenness is not formed.
  • the light diffusion region B is a region in which a diffusion pattern such as irregularities is formed, and is a region in which the diffusion pattern is formed in a visible size. Thereby, light scattering is weak in the light diffusion region A, and light scattering is strong in the light diffusion region B.
  • the intensity of the light transmitted through the light diffusion region A and the light transmitted through the light diffusion region A is increased by forming the diffusion pattern forming the light diffusion region B in a visible size. This difference is recognized, and this difference is recognized as a pattern by a person in the room. Moreover, since the daylighting apparatus 110 is installed at the boundary (window surface) with the room or the outdoors, it is preferable to have a side as an interior or an exterior. In this way, by forming a visually diffusible diffusion pattern on the light diffusing member 112, it is possible to easily impart design characteristics with a pattern to the daylighting apparatus 110.
  • each diffusion pattern is preferably formed in a size of several mm to several tens of cm in one surface of the light diffusion member 112. If the size of the diffusion pattern is larger than this, the collected light may not be sufficiently mixed, and the effect of mixing the light diffusion regions A and B may not be obtained.
  • FIGS. 16A to 16C are schematic plan views showing light diffusing members that constitute the daylighting apparatus of the present embodiment.
  • the daylighting device of the present embodiment is generally configured by a daylighting member and a light diffusion member 121 that is disposed on the light emitting surface side of the daylighting member and diffuses light emitted from the daylighting member.
  • the daylighting member the same one as in the first embodiment described above is used.
  • the light diffusion member 121 is provided with a plurality of tiling areas TA1 and TA2 on one surface 122a of the base material 122.
  • a plurality of arc-shaped light diffusion portions 123 arranged concentrically as viewed from the normal direction of the base material 122 are formed.
  • the shape of the light diffusion portion 123 in the tiling area is the same, but the directions of the convex arcs are different from each other.
  • the plurality of tiling areas TA1 and TA2 include two types of tiling areas.
  • the first tiling area TA1 and the second tiling area TA2 each have a quadrangular shape. More specifically, the quadrilateral has two sets in which the lengths of two adjacent sides are equal. In the present embodiment, a quadrangular shape having four interior angles of 120 °, 90 °, 60 °, and 90 ° is employed.
  • a plurality (six in this embodiment) of concentric fan-shaped stripes of light diffusion portions 123 centering on the apex having an inner angle of 60 ° are formed.
  • the cross-sectional shape of the light diffusing portion 123 is a cross section of an arc-shaped lenticular lens structure as shown in FIG. 16B, and this cross-sectional structure diffuses light in a direction perpendicular to the direction in which the fan-shaped stripe is formed.
  • the On the base material 122, a plurality of light diffusion portions 123 having the same cross-sectional shape are arranged concentrically at regular intervals.
  • the shapes of the first tiling area TA1 and the second tiling area TA2 are the same except that the shapes of the first tiling area TA1 and the second tiling area TA2 are vertically inverted so that the convex directions of the arcs are opposite to each other.
  • the first tiling area TA1 and the second tiling area TA2 are arranged without a gap.
  • the light diffusing portion 123 is curved, and the extending direction of the light diffusing portion 123 changes in one tiling region TA1, TA2.
  • the first tiling area TA1 is the light diffusion area A
  • the second tiling area TA2 is the light diffusion area B.
  • the light diffusing member is substantially vertically arranged if the direction having an angle of 60 ° -120 ° is oriented in the horizontal direction. In the direction, the light diffused in the ⁇ 1 part and ⁇ 2 part of FIG. 16A is diffused in the direction of the arrow in FIG. 16C, so that a wide range of the room can be illuminated on average.
  • the light collected from the light diffusion region B which occupies a large area on the upper side of the window surface, occupies most of the component that illuminates the vicinity of the window, but the amount of the component diffused in the vertical direction of the room is near the window It is possible to illuminate a wide area up to the back of the room on average.
  • the light collected from the light diffusion region A which occupies a large area on the lower side of the window surface, is used to illuminate the back direction of the room, and therefore does not diffuse much in the vertical direction of the room.
  • FIG. 17 is a schematic perspective view showing the daylighting apparatus of the present embodiment.
  • the daylighting device 130 of the present embodiment is generally configured by a daylighting member 131 and a light diffusion member 132 that is disposed on the light emission surface side of the daylighting member 131 and diffuses the light emitted from the daylighting member 131.
  • the daylighting member 131 the same member as in the first embodiment described above is used.
  • the light diffusion member 132 has a waveform in the vertical direction, and a plurality of diffusion patterns that scatter light in different directions are continuously formed, and these diffusion patterns have a clear boundary. It is formed continuously without holding.
  • this diffusion pattern for example, a large number of ridges are arranged in parallel at predetermined intervals, and are constituted by these ridges and a recess therebetween.
  • the protrusion part and the recessed part are curving.
  • the light diffusing member 132 having such a diffusion pattern, when an arbitrary region A (light diffusing region A) and an arbitrary region B (light diffusing region B) are extracted and the diffusion structure is observed, the light diffusing region A It can be considered that a diffusion pattern is formed toward the lower right of the light diffusion member 132, and a diffusion pattern is formed in the light diffusion region B toward the lower left of the light diffusion member 132. That is, the light diffusing member 132 can be regarded as a plurality of different light diffusing regions formed continuously without having a clear boundary.
  • the daylighting device 130 When the daylighting device 130 is arranged on the window surface as in the second embodiment, for example, the light collected from the light diffusion region B illuminates the vicinity of the window and is collected from the light diffusion region A. Illuminates the back of the room.
  • FIG. 18 is a diagram illustrating a room model 2000 including a lighting device and an illumination dimming system.
  • FIG. 19 is a plan view showing the ceiling of the room model 2000.
  • the ceiling material constituting the ceiling 2003a of the room 2003 into which external light is introduced may have high light reflectivity.
  • a light-reflective ceiling material 2003 ⁇ / b> A is installed on the ceiling 2003 a of the room 2003 as a light-reflective ceiling material.
  • the light-reflective ceiling material 2003A is intended to promote the introduction of outside light from the daylighting device 2010 installed in the window 2002 into the interior of the room, and is installed on the ceiling 2003a near the window. Yes. Specifically, it is installed in a predetermined area E (an area about 3 m from the window 2002) of the ceiling 2003a.
  • the light-reflective ceiling material 2003A is external light introduced into the room through the window 2002 in which the daylighting apparatus 2010 of the present invention (the daylighting apparatus of any of the above-described embodiments) is installed. Efficiently leads to the back of the room.
  • the external light introduced from the lighting device 2010 toward the indoor ceiling 2003a is reflected by the light-reflective ceiling material 2003A and changes its direction to illuminate the desk surface 2005a of the desk 2005 placed in the interior of the room. The effect of brightening the desk top surface 2005a is exhibited.
  • the light-reflective ceiling material 2003A may be diffusely reflective or specularly reflective, but has the effect of brightening the desk top surface 2005a of the desk 2005 placed in the interior of the room, and is in the room. In order to achieve both effects of suppressing glare light that is unpleasant for humans, it is preferable that the characteristics of the two are appropriately mixed.
  • the light introduced into the room by the daylighting apparatus 2010 of the present invention goes to the ceiling near the window 2002, but the vicinity of the window 2002 often has a sufficient amount of light. Therefore, by using together the light-reflective ceiling material 2003A as described above, the light incident on the ceiling (region E) in the vicinity of the window can be distributed toward the back of the room where the amount of light is small compared to the window.
  • the light-reflective ceiling material 2003A is formed by, for example, embossing a metal plate such as aluminum with unevenness of about several tens of microns, or depositing a metal thin film such as aluminum on the surface of a resin substrate on which similar unevenness is formed. Can be created. Or the unevenness
  • the emboss shape formed on the light-reflective ceiling material 2003A it is possible to control the light distribution characteristics and the light distribution in the room. For example, when embossing is performed in a stripe shape extending toward the back of the room, the light reflected by the light-reflective ceiling material 2003A is in the left-right direction of the window 2002 (direction intersecting the longitudinal direction of the unevenness). spread. When the size and direction of the window 2002 in the room 2003 are limited, the light is reflected in the horizontal direction by the light-reflective ceiling material 2003A and the interior of the room 2003 is moved to the back of the room. It can be reflected toward.
  • the daylighting apparatus 2010 of the present invention is used as a part of the illumination dimming system in the room 2003.
  • the lighting dimming system includes, for example, a lighting device 2010, a plurality of indoor lighting devices 2007, a solar radiation adjusting device 2008 installed in a window, a control system 2009 thereof, and a light-reflective ceiling material installed on a ceiling 2003a. 2003A and the entire room.
  • a lighting device 2010 is installed on the upper side, and a solar radiation adjusting device 2008 is installed on the lower side.
  • a blind is installed as the solar radiation adjustment device 2008, but this is not a limitation.
  • a plurality of indoor lighting devices 2007 are arranged in a grid in the left-right direction (Y direction) of the window 2002 and the depth direction (X direction) of the room.
  • the plurality of indoor lighting devices 2007 together with the daylighting device 2010 constitute an entire lighting system of the room 2003.
  • an office ceiling 2003a in which the length L1 of the window 2002 in the left-right direction (Y direction) is 18 m and the length L2 in the depth direction (X direction) of the room 2003 is 9 m is shown.
  • the indoor lighting devices 2007 are arranged in a grid pattern with an interval P of 1.8 m in the horizontal direction (Y direction) and the depth direction (X direction) of the ceiling 2003a. More specifically, 50 indoor lighting devices 2007 are arranged in 10 rows (Y direction) ⁇ 5 columns (X direction).
  • the indoor lighting device 2007 includes an indoor lighting fixture 2007a, a brightness detection unit 2007b, and a control unit 2007c.
  • the indoor lighting fixture 2007a is configured by integrating the brightness detection unit 2007b and the control unit 2007c. It is.
  • the indoor lighting device 2007 may include a plurality of indoor lighting fixtures 2007a and a plurality of brightness detection units 2007b. However, one brightness detector 2007b is provided for each indoor lighting device 2007a.
  • the brightness detection unit 2007b receives the reflected light of the irradiated surface illuminated by the indoor lighting fixture 2007a, and detects the illuminance of the irradiated surface.
  • the brightness detector 200b detects the illuminance of the desk surface 2005a of the desk 2005 placed indoors.
  • the control units 2007c provided for each room lighting device 2007 are connected to each other.
  • Each indoor lighting device 2007 is configured such that the illuminance of the desk top surface 2005a detected by each brightness detecting unit 2007b becomes a constant target illuminance L0 (for example, average illuminance: 750 lx) by the control units 2007c connected to each other.
  • Feedback control is performed to adjust the light output of the LED lamp of each indoor lighting fixture 2007a.
  • FIG. 20 is a graph showing the relationship between the illuminance of light (natural light) collected indoors by the daylighting device and the illuminance (illumination dimming system) by the indoor lighting device.
  • the illuminance on the desk surface by the daylighting device 2010 decreases as the distance from the window increases.
  • the indoor lighting device 2007 is installed on the indoor ceiling without installing the lighting device 2010 on the window
  • the illuminance on the desk surface increases as the distance from the window increases.
  • the desk surface in the room is greater than when either lighting device 2010 or indoor lighting device 2007 (illumination dimming system) is used. It can be seen that the illuminance of is generally increased. Due to the effect of the daylighting device 2010, the edge of the window is brightest, and a slight decrease in brightness is observed with increasing distance from the window, but a substantially constant illuminance (average illuminance: 750 lx) is obtained.
  • the daylighting device 2010 and the lighting dimming system indoor lighting device 2007
  • One embodiment of the present invention can be used for a daylighting apparatus that can effectively incorporate light into a space such as a room.

Abstract

 光透過性を有する基材、基材の一方の面に設けられた光透過性を有する複数の採光部、および、複数の採光部の間に設けられた空隙部を有する採光部材(11)と、採光部材(11)の光出射面側に配置され、採光部材(11)から射出された光を拡散させる光拡散部材(12)と、を備えてなる採光装置(10)。

Description

採光装置
 本発明は、採光装置に関する。
 本願は、2014年4月8日に、日本に出願された特願2014-079513号に基づき優先権を主張し、その内容をここに援用する。
 建築物の窓等を通して太陽光を室内に採り込むための採光フィルムが提案されている(例えば、特許文献1参照)。この採光フィルムは、複数の単位プリズムと平坦面とが透光性の支持体の一方の面に形成されている。太陽光は、単位プリズムを通して室内に採り込まれる。
特開2008-40021号公報
 上記の複数の単位プリズムを備えた採光フィルムは、部屋の奥方向まで光を導くことができるものの、部屋内に取り込む太陽光の指向性が高いため窓の桟の影が出てしまったり、太陽の方位によって室内に影が出来てしまったりすることがあった。このような現象は、在室者に、部屋の光環境に対してあまり好ましくない印象を与えてしまっていた。また、上記の採光フィルムは、部屋の奥方向まで光を導くことができるものの、窓の近傍に光を拡散することができないため、広範囲にわたって部屋を明るくすることができなかった。
 本発明の1つの態様は、上記の課題を解決するためになされたものであり、部屋の奥方向まで光を導くことができるとともに、窓の近傍に光を拡散することができる採光装置の提供を目的とする。
 上記の目的を達成するために、本発明の一態様は以下の手段を採用した。
(1)本発明の一態様における採光装置は、光透過性を有する基材、前記基材の一方の面に設けられた光透過性を有する複数の採光部、および、前記複数の採光部の間に設けられた空隙部を有する採光部材と、前記採光部材の光出射面側に配置され、前記採光部材から射出された光を拡散させる光拡散部材と、を備える。
(2)前記(1)に記載の採光装置において、前記光拡散部材の一面側に、少なくとも2種の光拡散領域が設けられ、該少なくとも2種の光拡散領域は、光拡散特性が互いに異なることが好ましい。
(3)前記(2)に記載の採光装置において、前記少なくとも2種の光拡散領域は、互いに隣り合うように配置されていることが好ましい。
(4)前記(2)または(3)に記載の採光装置において、前記光拡散部材の一面の一方向に沿って、前記光拡散領域のうちの少なくとも1種が占める割合が変化していることが好ましい。
(5)前記(1)に記載の採光装置において、前記光拡散部材の一面側に、光拡散特性が連続的に変化する光拡散領域が設けられたことが好ましい。
(6)前記(1)に記載の採光装置において、前記光拡散領域は、意匠性を有することが好ましい。
 本発明の1つの態様によれば、部屋の奥方向まで光を導くことができるとともに、窓の近傍に光を拡散することができる採光装置を提供することができる。
第1の実施形態の採光装置を示す概略斜視図である。 採光部材の第1の例を示す概略断面図である。 採光部材の第2の例を示す概略斜視図である。 光拡散特性が互いに異なる2種の光拡散領域の拡散特性の角度プロファイルを示すグラフである。 光拡散特性が互いに異なる2種の光拡散領域に設けられる拡散パターンの第1の例を示す第1の概略断面図である。 光拡散特性が互いに異なる2種の光拡散領域に設けられる拡散パターンの第1の例を示す第2の概略断面図である。 光拡散特性が互いに異なる2種の光拡散領域に設けられる拡散パターンの第2の例を示す第1の概略断面図である。 光拡散特性が互いに異なる2種の光拡散領域に設けられる拡散パターンの第2の例を示す第2の概略断面図である。 光拡散特性が互いに異なる2種の光拡散領域に設けられる拡散パターンの第3の例を示す第1の概略斜視図である。 光拡散特性が互いに異なる2種の光拡散領域に設けられる拡散パターンの第3の例を示す第2の概略斜視図である。 光拡散特性が互いに異なる2種の光拡散領域に設けられる拡散パターンの第4の例を示す第1の概略斜視図である。 光拡散特性が互いに異なる2種の光拡散領域に設けられる拡散パターンの第4の例を示す第2の概略斜視図である。 第1の実施形態の採光装置により室内に光を照射する状態の一例を示す概略断面図である。 第1の実施形態の採光装置により室内に光を照射する状態の一例を示す概略平面図である。 第1の実施形態の採光装置により室内に光を照射する状態の他の例を示す概略断面図である。 第1の実施形態の採光装置により室内に光を照射する状態の他の例を示す概略平面図である。 採光部材の第3の例を示す概略斜視図である。 第2の実施形態の採光装置を示す概略斜視図である。 第2の実施形態の採光装置を示す概略断面図である。 第3の実施形態の採光装置を示す概略斜視図である。 第4の実施形態の採光装置を示す概略断面図である。 第4の実施形態の採光装置を示す第1の概略平面図である。 第4の実施形態の採光装置を示す第2の概略平面図である。 第5の実施形態の採光装置を示す概略斜視図である。 第6の実施形態の採光装置を構成する光拡散部材を示す概略平面図である。 第6の実施形態の採光装置を構成する光拡散部材を示す概略図であり、図16AのA-A線に沿う断面図である。 第6の実施形態の採光装置を構成する光拡散部材を示す概略図であり、図16Aのα部およびα部における光の拡散方向を示す図である。 第7の実施形態の採光装置を示す概略斜視図である。 採光装置及び照明調光システムを備えた部屋モデル2000を示す図である。 部屋モデル2000の天井を示す平面図である。 採光装置によって室内に採光された光(自然光)の照度と、室内照明装置による照度(照明調光システム)との関係を示すグラフである。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 なお、以下の全ての図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[第1の実施形態]
 以下、図1~9を参照して、本発明の第1の実施形態について説明する。
 第1の実施形態の採光装置は、例えば、窓に貼り付けた形態で太陽光を室内に採り入れるために用いられる。
 図1は、本実施形態の採光装置を示す概略斜視図である。
 本実施形態の採光装置10は、採光部材11と、採光部材11の光出射面側に配置され、採光部材11から射出された光を拡散させる光拡散部材12とから概略構成されている。
 採光部材11としては、例えば、図2に示す部材が挙げられる。第1の例の採光部材11は、第1基材21と、複数の採光部22と、第1接着層23と、第2基材24と、第2接着層25と、光散乱層26と、を備えている。複数の採光部22は、第1基材21の第1面21aに設けられている。第2基材24は、複数の採光部22を挟んで第1基材21の第1面21aと対向するように配置されている。第2基材24の第1面24aと複数の採光部22とは、第1接着層23により接着されている。光散乱層26は、第1基材21の第2面21bに設けられている。第2接着層25は、第2基材24の第2面24bに設けられ、採光部材11の全体を窓ガラス27に接着する役目を果たす。複数の採光部22の間は空隙部28となっている。
 第1基材21としては、例えば、熱可塑性ポリマーや熱硬化性樹脂、光重合性樹脂等の樹脂類等からなる光透過性の基材が用いられる。アクリル系ポリマー、オレフィン系ポリマー、ビニル系ポリマー、セルロース系ポリマー、アミド系ポリマー、フッ素系ポリマー、ウレタン系ポリマー、シリコーン系ポリマー、イミド系ポリマー等等からなる光透過性の基材が用いられる。具体的には、例えば、トリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、シクロオレフィンポリマー(COP)フィルム、ポリカーボネート(PC)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリエーテルサルホン(PES)フィルム、ポリイミド(PI)フィルム等の光透過性の基材が好ましく用いられる。本実施形態では、一例として厚さが100μmのPETフィルムが用いられる。第1基材21の全光線透過率は、例えば、90%以上が好ましい。これにより、十分な透明性が得られる。
 第2基材24としては、第1基材21と同様の光透過性の基材が用いられる。第2基材24の材料と第1基材21の材料とは同じでもよいし、異なっていてもよい。
 採光部22は、例えば、アクリル樹脂やエポキシ樹脂、シリコーン樹脂等の光透過性および感光性を有する有機材料で構成されている。これら樹脂に重合開始剤、カップリング剤、モノマー、有機溶媒等を混合した透明樹脂製の混合物を用いることができる。さらに、重合開始剤は安定剤、禁止剤、可塑剤、蛍光増白剤、離型剤、連鎖移動剤、他の光重合性単量体等のような各種の追加成分を含んでいてもよい。採光部22の全光線透過率は90%以上が好ましい。これにより、十分な透明性が得られる。
 採光部22は、一方向(図2の紙面と垂直な方向)に直線状に細長く延び、長手方向と直交する断面形状が台形の部材である。採光部22の長手方向は、矩形状の第1基材21の1辺と平行である。複数の採光部22は、間隔をおいて互いに平行に配置されている。
採光部22の断面形状をなす台形の互いに平行な2辺のうち、短辺に相当する面は第2基材24に対向する側の面であり、以下の説明では第1端面22aと称する。長辺に相当する面は第1基材21に接する側の面であり、以下の説明では第2端面22bと称する。
 採光部22の第1端面22aの幅をW1、採光部22の第2端面22bの幅をW2、採光部22の第1基材21の法線方向の高さをH、採光部22の配列方向のピッチをPとしたときに、採光部22の第1端面22aの幅W1、第2端面22bの幅W2、高さH、およびピッチPは、全ての採光部22にわたって等しい。また、第1端面22aの幅W1と第2端面22bの幅W2との関係は、W1<W2である。採光部22の第1端面22aの幅W1および第2端面22bの幅W2は、例えば、10μm~50μmである。採光部22の高さHは、例えば、10μm~100μmである。
 なお、ここでは、複数の採光部22が間隔をおいて配置されている例を示すが、隣り合う採光部22の第2端面22bの端部同士が接していてもよい。
 空隙部28には空気が存在している。したがって、空隙部28の屈折率は概ね1.0である。空隙部28の屈折率を1.0とすることにより、空隙部28と採光部22との界面22cにおける臨界角が最小となる。本実施形態の場合、空隙部28は、空気からなる空気層としたが、空隙部28は、窒素等の不活性ガスからなる不活性ガス層であってもよく、減圧状態とされた減圧層であってもよい。
 光散乱層26は、光透過性を有する樹脂29中に光散乱体30が分散された構成を有する。樹脂29としては、例えば、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂等の樹脂に重合開始剤、カップリング剤、モノマー、有機溶媒等を混合した透明樹脂製の混合物を用いることができる。重合開始剤は、安定剤、禁止剤、可塑剤、蛍光増白剤、離型剤、連鎖移動剤、他の光重合性単量体等のような各種の追加成分を含んでいてもよい。
 光散乱体30は、光散乱層26に入射した光を散乱させる作用を有する。光散乱体30は、光散乱層26を構成する樹脂29とは異なる屈折率を有する粒子(小片)である。光散乱体30は、光散乱層26の内部に混入され、凝集することなく分散されていることが望ましい。光散乱体30は、例えば、ガラス類やアクリル系ポリマー、オレフィン系ポリマー、ビニル系ポリマー、セルロース系ポリマー、アミド系ポリマー、フッ素系ポリマー、ウレタン系ポリマー、シリコーン系ポリマー、イミド系ポリマー樹脂類等からなる光透過性材料が用いられる。あるいは、光散乱体30は、樹脂29中に分散した気泡であってもよい。光散乱体30の形状は、例えば、球形、楕円球形、平板形、多面体等であってもよい。
 光散乱体30のサイズは、例えば、0.5~20μm程度であればよく、均一であってもよいし、異なっていてもよい。
 光散乱層26は、必ずしも光散乱体30が分散された構成に限ることはなく、表面に凹凸が形成された層で構成されていてもよい。この場合、凹凸は、第1基材21の第2面21bに直接形成されていてもよい。
 第1接着層23は、第2基材24の第1面24aと複数の採光部22の第1端面22aとを接着する。第1接着層23には、一般的な光学接着剤が用いられる。第1接着層23の屈折率は、第2基材24の屈折率もしくは採光部22の屈折率と等しいことが望ましい。第1接着層23の屈折率が第2基材24の屈折率もしくは採光部22の屈折率と等しい場合、第1接着層23と第2基材24との界面もしくは第1接着層23と採光部22との界面において屈折が生じなくなる。
 第2接着層25は、第2基材24の第2面24bと窓ガラス27とを接着する。第2接着層25は、採光部材11の構成要素として当初から第2基材24の第2面24bに設けられていてもよいし、設けられていなくてもよい。第2接着層25が設けられていない場合には、採光部材11を窓ガラス27に貼り付ける作業を行う際に第2基材24の第2面24bに供給すればよい。第2接着層25には、一般的な光学接着剤が用いられる。第2接着層25の屈折率は、第2基材24の屈折率もしくは窓ガラス27の屈折率と等しいことが望ましい。第2接着層25の屈折率が第2基材24の屈折率もしくは窓ガラス27の屈折率と等しい場合、第2接着層25と第2基材24との界面もしくは第2接着層26と窓ガラス27との界面において屈折が生じなくなる。
 採光部材11は、採光部22の長手方向が水平方向を向き、複数の採光部22の配列方向が鉛直方向を向くように窓ガラス27に貼り付けられる。太陽から直接届く光は、窓ガラス27に設置された採光部材11に対して斜め上方から入射する。採光部材11に入射した光は、窓ガラス27、第2接着層25、第2基材24、第1接着層23を透過して採光部22に到達する。
 ここで、説明の便宜上、採光部22に入射した光のうち任意の1本の光束が採光部22の下側側面22c(反射面)に入射する点を点Cとする。点Cを通り、第1基材21の第1面21aに直交する仮想的な直線を直線Fとする。直線Fを含む水平面を境界とする2つの空間のうち、点Cに入射する光が存在する側の空間を第1空間S1とし、点Cに入射する光が存在しない側の空間を第2空間S2とする。
 採光部22の第1端面22aから入射した光L1は、例えば、採光部22の下側側面22cで全反射して斜め上方、すなわち第1空間S1の側に向かって進み、採光部22から射出される。
 採光部22から射出された光L1は、第1基材21を透過して光散乱層26の光散乱体30により散乱され、採光部材11から射出される。一方、第1接着層23から空隙部28を通って採光部22の上側側面22dから入射した光L2は、例えば、採光部22の下側側面22cに臨界角未満の角度で入射すると、採光部22の下側側面22cで反射せず、斜め下方、すなわち第2空間S2の側に向かって進み、採光部22から射出される。採光部22から射出された光L2は、光散乱層26の光散乱体30により散乱され、採光部材11から射出される。
 また、本実施形態では、第1基材21、第2基材24、および採光部22として、無色透明の部材が用いられるが、第1基材21、第2基材24、および採光部22の色はこれに限定されない。例えば、屋内に取り込む光の色温度を調整するために、第1基材21、第2基材24、採光部22の色が薄い黄色やオレンジ、ブルー等で着色されていてもよい。デザイン性等を考慮して、第1基材21、第2基材24、採光部22の一部もしくは全部が赤色や青色等に着色されていてもよい。これにより、ステンドグラス風の窓を提供することができる。
 本実施形態では、採光部22は一定幅のストライプ状の部材として構成されているが、採光部22の形状はこれに限られない。複数の採光部22の各々が概ね一方向に長手方向を有しており、その長手方向が、矩形形状を有する第1基材21の1辺と平行な方向に配置されていれば、本実施形態と同様の作用効果が得られる。ここで、「複数の採光部の各々が概ね一方向に長手方向を有している」とは、例えば、次のようなことをいう。すなわち、第1基材21の採光部22が形成された側とは反対側から第1基材21の内部に蛍光のような等方的に拡散する光を入射させ、複数の採光部22の外部に射出される光の極角輝度分布を測定する。このとき、複数の採光部22から射出される光の輝度が相対的に強い方向と相対的に弱い方向とが存在する場合に「採光部が概ね一方向に長手方向を有している」という。輝度が相対的に強い方向と直交する方向は、前記「一方向」として規定される。
 本実施形態では、採光部22の間隔は一定であるが、採光部22の間隔は必ずしも一定である必要はない。複数の採光部22は不規則な間隔で互いに隣接して配置されていてもよい。
 これにより、採光部22が規則的に形成された場合に生じる干渉縞の発生を抑制することができる。また、複数の採光部22は、必ずしも間隔をおいて配置されていなくてもよく、採光部22同士が接していてもよい。
 第1の例の採光部材11は、第1基材21から全方向に向けて射出される光を等方的に散乱させることができる。
 また、採光部材11としては、例えば、図3に示す部材が挙げられる。第2の例の採光部材11は、第1基材31の第2面に、各々が鉛直方向に延び、互いに平行な複数の凸レンズ32が設けられている。言い換えると、第1基材31の第2面に、レンチキュラーレンズが設けられている。凸レンズ32は、第1基材31の第2面自体が加工されて第1基材31と一体化されたものでもよいし、第1基材31と別体のものであってもよい。第2の例の採光部材11は、第1の例の採光部材11における光散乱層26を備えていない。
その他の構成要素については第1の例と同様である。
 凸レンズ32のレンズ面は、水平面内で曲率を持ち、鉛直方向には曲率を持っていない。したがって、凸レンズ32は、水平方向に高い光散乱性を有し、鉛直方向には光散乱性を有していない。したがって、採光部22から第1基材31に入射した光Lは、凸レンズ32から射出する際に水平方向に大きく散乱し、鉛直方向には散乱することなく、採光部22から射出されたときの角度分布を維持したまま射出される。
 なお、第2の例の採光部材11では、第1基材31の第2面に複数の凸レンズ32が設けられているが、この構成に代えて、第1基材31の第2面に異方性散乱構造が設けられていてもよい。異方性散乱構造としては、例えば、ルミニット社製の光拡散制御フィルム(商品名:LSD)のように、サーフェス・レリーフ・ホログラムパターンによりμmレベルの凹凸構造を形成したものを用いることができる。もしくは、第1基材31の第2面に凹凸形状を有するものに代えて、アスペクト比が5~500程度の粒子を連続層中に分散させた光散乱層を用いてもよい。
 第2の例の採光部材11は、第1基材31から射出される光を異方的に散乱させることができる。特に、第2の例の採光部材11は、第1基材31から射出される光を水平方向に強く散乱させることができる。
 光拡散部材12は、採光部材11と対向する面とは反対側の面(一方の面)側に、少なくとも2種の光拡散領域が設けられ、その少なくとも2種の光拡散領域は、光拡散特性が互いに異なっている。また、少なくとも2種の光拡散領域は、互いに隣り合うように配置されている。
 本実施形態では、例えば、図1に示すように、光拡散部材12は、光拡散特性が互いに異なる2種の光拡散領域A,Bを有しており、光拡散領域A,Bが互いに隣り合うように配置されている。光拡散領域A,Bは、所定の形状、大きさ(面積)に形成されている。
 ここでは、光拡散領域A,Bの光拡散特性が互いに異なるとは、光拡散領域Aの光散乱が弱く、光拡散領域Bの光散乱が強いことを指している。
 光拡散領域Aは、採光部材11で方向を変えられた光を、ほぼその方向に光を送る。したがって、光拡散領域Aから出射された光線は、部屋の奥方向を照射することができる。
光拡散領域Aは、例えば、ヘイズ値が90であり、全光線透過率(Tt)は90%、拡散特性の角度プロファイルは図4に示す通りである。
 光拡散領域Bは、採光部材11で方向を変えられた光を、光拡散部材12の上下方向に光を散乱する。これにより、光拡散部材12の断面方向に散乱する光の成分を増し、部屋の窓近傍から部屋の奥方向まで広い範囲に光を照らすことができる。また、光拡散部材12の断面方向に光を散乱することにより、太陽がどの方位にあっても部屋の中央方向に光を照らすことができる。光拡散領域Bは、例えば、ヘイズ値が70であり、全光線透過率(Tt)は70%、拡散特性の角度プロファイルは図4に示す通りである。
 光拡散領域A,Bに付与される光の散乱の程度の差異は、光拡散部材12の一方の面側に設けた拡散パターンによって制御される。光拡散部材12には、光を拡散する凹凸が設けられている。この凹凸の大きさや配置の密度、形状等によって、光の散乱の強弱を調整した拡散パターンを、光拡散部材12の一方の面に配設することができる。
 光拡散部材12内に設けられる拡散パターン(光拡散領域A,B)は、それぞれのパターンで採光された光が室内で十分混合する程度の大きさ、配置でパターニングされることが好ましい。すなわち、それぞれの拡散パターン(光拡散領域A,B)は、光拡散部材12の一方の面に数mm~数十cmの大きさで形成されていることが好ましい。これ以上大きいと、採光された光が十分に混ざらず、光拡散領域A,Bを混在させた効果がなくなってしまう。
 光拡散部材12の一方の面には、光拡散領域A,Bに対応して、例えば、図5A~図8Bに示すような凹凸パターン(拡散パターン)が形成されている。凹凸のパターンは可視光を散乱する程度の数μm~数十μmのピッチで形成されており、光が回折しない程度に不規則に設けられている。
 図5A及び図5Bは、光拡散領域A,Bに設けられる拡散パターンの第1の例を示す概略断面図である。
 光拡散領域Aには、光拡散部材12を構成する光透過性の基材12Aの一方の面側に、凹部12Bと凸部12Cとが連続して形成されている。図5A及び図5Bに示すように、例えば、凸部12Cと、基材12Aの底面12aと平行な面12bとのなす角度が平均してθとなっている。
 一方、光拡散領域Bには、光拡散部材12を構成する光透過性の基材12Aの一方の面側に、凹部12Dと凸部12Eとが連続して形成されている。図5A及び図5Bに示すように、例えば、凸部12Eと、基材12Aの底面12aと平行な面12bとのなす角度が平均してθとなっている。
 光拡散領域Aと光拡散領域Bは、光拡散領域Bにおける角度θが、光拡散領域Aにおける角度θよりも大きくなるように形成されている(θ>θ)。光拡散領域Bにおいて、光拡散領域Aよりも光が大きく曲がり、より強く光を拡散する。
 また、第1の例の拡散パターンについて、拡散特性を測定した結果を図4に示す。
 図4において、光拡散領域Aの拡散特性は、曲線(A)で示したように、半値幅12°の拡散特性を示す。一方、光拡散領域Bの拡散特性は、曲線(B)で示したように、半値幅17°の拡散特性を示す。
 なお、図4において、曲線(C)は、測定器の光源の拡散特性を示す。曲線(C)は、半値幅5°の拡散特性を示す。
 図6A及び図6Bは、光拡散領域A,Bに設けられる拡散パターンの第2の例を示す概略断面図である。
 第2の例では、光拡散領域Aには、第1の例のような凹部12Bおよび凸部12Cが形成されていない。一方、光拡散領域Bには、光拡散部材12を構成する光透過性の基材12Aの一方の面側に、凹部12Dと凸部12Eとが連続して形成されている。
 第2の例では、光拡散領域Bにおいて、光拡散領域Aよりも光が大きく曲がり、より強く光を散拡散する。
 図7A及び図7Bは、光拡散領域A,Bに設けられる拡散パターンの第3の例を示す概略斜視図である。
 光拡散領域Aには、光拡散部材12の基材12Aの一方の面側に、楕円形の光拡散部41が多数形成されている。光拡散部41は、その長軸が光拡散部材12の上下方向と平行になるように配設されている。
 一方、光拡散領域Bには、光拡散部材12の基材12Aの一方の面側に、楕円形の光拡散部42が多数形成されている。光拡散部42は、その長軸が光拡散部材12の上下方向と平行になるように配設されている。
 このように、楕円形の光拡散部41,42が方向性を持って配設されることによって、光が特定方向には強く拡散し、他方向には弱く拡散するという、異方性拡散を実現することができる。
 第3の例では、光拡散部41と光拡散部42を配置する密度を、光拡散領域Aと光拡散領域Bとで変えることにより、それぞれの光拡散領域において光を拡散する強度を変えることができる。第3の例では、光拡散領域Bにおいて光拡散部42を配置する密度を、光拡散領域Aにおいて光拡散部41を配置する密度よりも多くすることにより、光拡散領域Bにおいて、光拡散領域Aよりも光が大きく曲がり、より強く光を拡散する。
 また、第3の例では、光拡散部41と光拡散部42の大きさや楕円比(長軸と短軸の比)を変えることにより、それぞれの光拡散領域において光を拡散する強度を変えることができる。第3の例では、例えば、光拡散部42の大きさを、光拡散部41の大きさよりも大きくすることにより、光拡散領域Bにおいて、光拡散領域Aよりも光が大きく曲がり、より強く光を拡散する。
 図8A及び図8Bは、光拡散領域A,Bに設けられる拡散パターンの第4の例を示す概略斜視図である。
 光拡散領域Aには、光拡散部材12の基材12Aの一方の面側に、各々が鉛直方向に延び、互いに平行な複数の凸レンズ43が設けられている。言い換えると、光拡散部材12の基材12Aの一方の面側に、レンチキュラーレンズが設けられている。凸レンズ43は、光拡散部材12の基材12A自体が加工されて基材12Aと一体化されたものでもよいし、基材12Aと別体のものであってもよい。
 一方、光拡散領域Bには、光拡散部材12の基材12Aの一方の面側に、楕円形の光拡散部42が多数形成されている。光拡散部42は、その長軸が光拡散部材12の上下方向と平行になるように配設されている。
 第4の例では、光拡散領域Aにおける凸レンズ43の形状や大きさ、光拡散領域Bにおいて光拡散部42を配置する密度、光拡散部42の大きさや楕円比(長軸と短軸の比)を変えることにより、それぞれの光拡散領域において光を拡散する強度を変えることができる。
 光拡散部材12は、光透過性の基材12Aに、上記のような光拡散領域A,Bが設けられたものである。光拡散部材12を構成する光透過性の基材12Aとしては、例えば、熱可塑性ポリマーや熱硬化性樹脂、光重合性樹脂等の樹脂類等からなる光透過性の基材が用いられる。アクリル系ポリマー、オレフィン系ポリマー、ビニル系ポリマー、セルロース系ポリマー、アミド系ポリマー、フッ素系ポリマー、ウレタン系ポリマー、シリコーン系ポリマー、イミド系ポリマー等からなる光透過性の基材が用いられる。具体的には、例えば、トリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、シクロオレフィンポリマー(COP)フィルム、ポリカーボネート(PC)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリエーテルサルホン(PES)フィルム、ポリイミド(PI)フィルム等の光透過性の基材が好ましく用いられる。
本実施形態では、一例として厚さが100μmのPETフィルムが用いられる。光拡散部材12の全光線透過率は、例えば、90%以上が好ましい。これにより、十分な透明性が得られる。
 上記のような光拡散パターン(凹凸形状)は、フォトリソグラフィーでパターン形成した後、必要に応じて熱だれ処理を行うことにより、光拡散部材12の基材12Aの一方の面側に形成することができる。そのため、光拡散領域A,B毎に、容易にパターニングできるとともに、ステップアンドリピートによって、パターンを継ぐことによって大面積で形成することもできる。
 なお、上記の拡散パターンの第1~4の例では、光拡散部材12に、光拡散特性が互いに異なる2種の光拡散領域A,Bを設けた場合を例示したが、本発明の実施形態はこれに限定されない。本発明の実施形態では、光拡散部材に、光拡散特性が互いに異なる3種以上の光拡散領域を設けてもよい。
 本実施形態の採光装置10では、光拡散部材12の一方の面側に、光拡散特性が互いに異なる2種の光拡散領域A,Bを2次元的に配置して、光を弱く散乱する光拡散領域Aと、光を強く散乱する光拡散領域Bとをパターン形成する。本実施形態において、上記の第1~第3の例の拡散パターンの光拡散領域A,Bを用いた場合、それぞれの拡散パターンは模式的に図9Aおよび図9Bに示すように拡がりながら、光を散乱する。これにより、図9Aに示すように、部屋の上下方向(垂直方向)においては、弱散乱の光拡散領域Aは部屋の奥方向を重点的に照射し、強散乱の光拡散領域Bは窓近傍を重点的に照射するので、窓近傍から部屋の奥までの広い面積を平均的に照らすことができる。
 また、図9Bに示すように、部屋の左右方向(水平方向)においては、弱散乱の光拡散領域Aは部屋の奥方向を重点的に照射し、強散乱の光拡散領域Bは窓の近傍を重点的に照射するので、窓近傍から部屋の奥までの広い面積を平均的に照らすことができる。
 本実施形態の採光装置10では、光拡散部材12の一方の面側に、光拡散特性が互いに異なる2種の光拡散領域A,Bを2次元的に配置して、光を水平方向に強く散乱する光拡散領域Aと、これと比較して光を縦横に均等に散乱する光拡散領域Bとをパターン形成する。第4の例(図8A及び図8B)を拡散パターンA、Bを実施形態として用いた場合には、それぞれのパターンは模式的に図10Aおよび図10Bに示したような拡がりを持ちながら光が散乱されることになる。これにより、図10Aに示すように、部屋の上下方向(垂直方向)においては、縦ストライプ状の光拡散領域Aは、部屋の中に光が拡がらずに部屋の奥まで導光される。一方、縦に長い楕円状の光拡散領域Bは、光が上下方向に幾分の拡がりをもって室内に導入されるため、窓の近傍も照らされる。このため、窓の近傍から部屋の奥までの広い面積を平均的に照らすことができる。
 また、図10Bに示すように、部屋の左右方向(水平方向)においては、光拡散領域Aは、水平方向に大きな拡がりをもって室内に導入され、日中の間、太陽の方位に影響されずに平均的に室内を照らすことができる。また、光拡散領域Bでは、光拡散領域Aほどは大きくないものの、幾分の拡がりをもって室内に導入されるため、光拡散領域Aとは異なる部分を照らす働きを担う。
 すなわち、光拡散領域Aでは、散乱プロファイルが水平方向にのみ広い円盤状に拡がっている。一方、光拡散領域Bでは、より円盤比が小さく、ラグビーボールに近い形で光が拡がる。光拡散領域A,Bのパラメータに依存するため、光拡散領域Aと光拡散領域Bのどちらが遠くまで光を拡散するか一概に言えないが、図10A、図10Bでは、光拡散領域Bの方が遠くまで光を導光している。光拡散が拡がる楕円体(円盤)の立体角が小さい方が、より遠くまで光を導光することができる。
 このように、複数の異なる拡散特性を面内に持つ光拡散領域を用いることにより、窓の近傍から部屋の奥までの部屋内の広い面積を照らすことができる。なお、部屋の左右方向(水平方向)においては、光拡散領域Bは部屋の奥方向を照射するものの、直線性が高いため太陽の方位に大きく影響を受ける。そこで、光拡散部材12に、光拡散領域Aと光拡散領域Bを適宜混在させることによって、照度ムラが小さく、部屋の奥も明るく照射することができる。
 また、採光部材11としては、例えば、図11に示す部材が挙げられる。第3の例の採光部材11は、基材51と、複数の採光部52と、光散乱層53と、を備えている。複数の採光部52は、基材51の第1面51aに設けられている。また、基材51の第2面51bにはガラス基板(支持板)54が配置され、基材51とガラス基板54は接着剤により貼り合わせられている。ガラス基板54の一方の面54aには光散乱層53が配置され、これらは接着剤により貼り合わせられている。ガラス基板54は、採光部52が形成された基材51、および光散乱層53を面状に維持する働きをしている。また、採光部52の基材51と接している面とは反対側の面に接着層が設けられ、その接着層を介して、採光部材11の全体が、窓ガラス61に接着される。複数の採光部52の間は、空隙部55となっている。
 採光部材11は、採光部52が形成された基材51、光散乱層53、およびこれらを面状に支持する支持板54から構成される。この採光部材11は、天井62から金具56等を用いて吊り下げられて用いられる。
 基材51としては、例えば、熱可塑性ポリマーやエンジニアリングプラスチック等の樹脂類等からなる光透過性の基材が用いられる。具体的には、例えば、トリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、シクロオレフィンポリマー(COP)フィルム、ポリカーボネイト(PC)等が好適な材料として用いられる。
 採光部52は、例えば、シクロオレフィンポリマー(COP)やポリカーボネート(PC)、またはポリメチルメタクリレート(PMMA)のような熱可塑性樹脂で形成されている。もしくは、採光部52は、例えば、アクリル樹脂やエポキシ樹脂、シリコーン樹脂等の光透過性および感光性を有する有機材料で構成されている。採光部52を形成するには、これらの樹脂に重合開始剤、カップリング剤、モノマー、有機溶媒等を混合した透明樹脂製の混合物を用いることができる。さらに、重合開始剤は、安定剤、禁止剤、可塑剤、蛍光増白剤、離型剤、連鎖移動剤、他の光重合性単量体等のような各種の追加成分を含んでいてもよい。採光部52は、熱インプリント法やUVインプリント法のような方法によって金型から転写されて形成される。このようにして得られる採光部52の全光線透過率は、90%以上が好ましい。これにより、十分な透明性が得られる。
 採光部52は、一方向(図11の紙面と垂直な方向)に直線状に細長く延び、長手方向と直交する断面形状が小刀の先端の様な多角形の部材である。採光部52は、この小刀が室外側を向くように配置されている。採光部52の長手方向は、矩形状の基材51の1辺と平行である。複数の採光部52は、間隔なく、もしくは間隔をおいて互いに平行に配置されている。
 採光部52の第1端面52aの幅をw1、採光部52の基材51の法線方向の高さをh、採光部52の配列方向のピッチをpとしたときに、採光部52の第1端面52aの幅w1、高さh、およびピッチpは、全ての採光部52にわたって等しい。また、第1端面52aの幅w1は例えば10μm~200μmである。採光部52の高さhは、例えば、10μm~200μmである。
 本実施形態では、採光部52の間隔は一定であるが、採光部52の間隔は必ずしも一定である必要はない。複数の採光部52は不規則な間隔で互いに隣接して配置されていてもよい。
 これにより、採光部52が規則的に形成された場合に生じる干渉縞の発生を抑制することができる。また、複数の採光部52は、必ずしも間隔をおいて配置されていなくてもよく、採光部52同士が接していなくてもよい。
 空隙部55には、空気が存在している。したがって、空隙部55の屈折率は概ね1.0である。空隙部55の屈折率を1.0とすることにより、空隙部55と採光部52との界面52cにおける臨界角が最小となる。本実施形態の場合、空隙部55は、空気からなる空気層としたが、空隙部55は、窒素等の不活性ガスからなる不活性ガス層であってもよく、減圧状態とされた減圧層であってもよい。
 光散乱層53に含まれる光散乱体57は、光散乱層53に入射した光を散乱させる作用を有する。光散乱体57は、光散乱層53を構成する樹脂58とは異なる屈折率を有する粒子(小片)である。光散乱体57は、光散乱層53の内部に混入され、凝集することなく分散されていることが望ましい。光散乱体57の形状は、例えば、球形、楕円球形、平板形、多面体等であってもよい。光散乱体57のサイズは、例えば、0.5~20μm程度であればよく、均一であってもよいし、異なっていてもよい。
 光散乱層53は、必ずしも光散乱体57が分散された構成に限ることはなく、表面に凹凸が形成された層で構成されていてもよい。この場合、凹凸は、基材51の第2面51bに直接形成されていてもよい。
 採光部材11は、採光部52の長手方向が水平方向を向き、複数の採光部52の配列方向が鉛直方向を向くように窓面と略平行になる様に設置される。太陽から直接届く光は採光部材11に対して斜め上方から入射する。
 ここで、説明の便宜上、採光部52に入射した光のうち任意の1本の光束が採光部52の下側側面52c(反射面、空隙部55と採光部52との界面)に入射する点を点cとする。点cを通り、基材51の第1面51aに直交する仮想的な直線を直線fとする。直線fを含む水平面を境界とする2つの空間のうち、点cに入射する光が存在する側の空間を第1空間s1とし、点cに入射する光が存在しない側の空間を第2空間s2とする。
 採光部52の第1端面52aから入射した光l1は、例えば、採光部52の下側側面52cで全反射して斜め上方、すなわち第1空間s1の側に向かって進み、採光部52から射出される。
 採光部52から射出された光l1は、基材51を透過して光散乱層53の光散乱体57により散乱され、採光部材11から射出される。
[第2の実施形態]
 以下、図12A及び図12Bを参照して、本発明の第2の実施形態について説明する。
 第2の実施形態の採光装置は、例えば、窓に貼り付けた形態で太陽光を室内に採り入れるために用いられる。
 図12A及び図12Bは、本実施形態の採光装置を示す概略図であり、図12Aは斜視図、図12Bは断面図である。
 本実施形態の採光装置70は、採光部材71と、採光部材71の光出射面側に配置され、採光部材71から射出された光を拡散させる光拡散部材72とから概略構成されている。
 採光部材71と光拡散部材72としては、上述の第1の実施形態と同様のものが用いられる。
 ここで、例えば、部屋80の天井高Hは270cmである。この部屋80の一面には、横幅150cm、縦幅180cmの窓が、天井から4枚設置されている。この窓面に、本実施形態の採光装置70を設置した。窓に対して採光装置70を設置する領域は、窓の上辺(天井と接する辺)から60cm程度とした。これにより、窓を介して採光するとき、部屋80内に居る人が眩しくないようにした。
 ここで、採光装置70の横幅W11を150cm、縦幅W12を60cmとした。よって、部屋60の床面60aから採光装置50までの高さhは210cmである。
 本実施形態では、図12A及び図12Bに示すように、光拡散部材72は、部屋の上下方向(垂直方向)に沿って、光拡散特性が互いに異なる2種の光拡散領域A,Bを有しており、光拡散領域A,Bが互いに隣り合うように配置されている。光拡散部材72において、光散乱が強い光拡散領域Bが部屋80の上下方向の上部に配設され、光散乱が弱い光拡散領域Aが部屋80の上下方向の下部に配設されている。
 本実施形態では、例えば、光拡散部材72としては、光拡散領域A,Bが、図8A、図8Bに示す拡散パターンからなるものが用いられる。
 窓面の上部に配置される光拡散領域Bから採光された光は、部屋80の窓近傍を照らす成分が大部分を占めるが、部屋80の上下方向に拡散する成分の光量が窓近傍において過剰になることがなく、部屋80の奥までの広い面積を平均的に照らすことができる。
 一方、窓面の下部に配置される光拡散領域Aから採光された光は、部屋80の奥方向を照らすために用いられるため、あまり部屋80の上下方向に拡散させない方がよい。光拡散領域Aから採光された光を、部屋80の上下方向に拡散させると、部屋80の奥まで達する光の強度が弱くなってしまう。
 また、光拡散領域Aから採光された光は、部屋80内に居る人の目に入りグレアとなり易い。こうした事情を踏まえて、光拡散部材72の上部(光拡散領域B)と下部(光拡散領域A,B)で採光した光の拡散状態を変えて制御することにより、理想的な採光状態を実現することができる。
 なお、本実施形態では、光拡散領域Aと光拡散領域Bとを水平方向に明確に区分した場合を例示したが、本発明の実施形態はこれに限定されない。本発明の実施形態では、互いに隣り合う2種の光拡散領域の中間領域では、これら2種の光拡散領域の中間の光拡散特性となるように、これら2種の光拡散領域の拡散パターンを形成してもよい。また、一方の光拡散領域から他方の光拡散領域に向かって、拡散パターンを配置する密度や形状を段階的に少しずつ変化させてもよい。
[第3の実施形態]
 以下、図13を参照して、本発明の第3の実施形態について説明する。
 第3の実施形態の採光装置は、例えば、窓に貼り付けた形態で太陽光を室内に採り入れるために用いられる。
 図13は、本実施形態の採光装置を示す概略斜視図である。
 本実施形態の採光装置90は、採光部材91と、採光部材91の光出射面側に配置され、採光部材91から射出された光を拡散させる光拡散部材92とから概略構成されている。
 採光部材91と光拡散部材92としては、上述の第1の実施形態と同様のものが用いられる。
 本実施形態では、図13に示すように、光拡散部材92は、光拡散特性が互いに異なる2種の光拡散領域A,Bを有しており、光拡散領域A,Bが互いに隣り合うように配置されている。また、光拡散部材92は、光拡散部材92の上部側において、光散乱が強い光拡散領域Bが大きな面積を占め、かつ、光拡散部材92の下部側において、光散乱が弱い光拡散領域Aが大きな面積を占めるように、光拡散領域A,Bが配設されている。すわなち、光拡散領域Aは、光拡散部材92の上部側から下部側に向かうに従って、光拡散部材92の一方の面を占める面積が大きくなっている。一方、光拡散領域Bは、光拡散部材92の上部側から下部側に向かうに従って、光拡散部材92の一方の面を占める面積が小さくなっている。
 採光装置90を、上述の第2の実施形態と同様に、窓面に配置した場合、窓面の上部に多く配置される光拡散領域Bから採光された光は、窓近傍を照らす成分が大部分を占めるが、部屋の上下方向に拡散する成分の光量が窓近傍において過剰になることがなく、部屋の奥までの広い面積を平均的に照らすことができる。
 一方、窓面の下部に多く配置される光拡散領域Aから採光された光は、部屋の奥方向を照らすために用いられるため、あまり部屋の上下方向に拡散しない。
 また、本実施形態では、光拡散領域A,Bを、例えば、横幅が数mm~数十cm、縦幅が数mm~数十cmの大きさに形成し、かつ、互いに隣り合うように配置することにより、巨視的には、光拡散部材92の上部側で光散乱を強く、光拡散部材72の下部側で光散乱を弱くすることができる。
[第4の実施形態]
 以下、図14A~図14Cを参照して、本発明の第4の実施形態について説明する。
 第4の実施形態の採光装置は、例えば、窓に貼り付けた形態で太陽光を室内に採り入れるために用いられる。
 図14A~図14Cは、本実施形態の採光装置を示す概略図であり、図14Aは断面図、図14Bは平面図、図14Cは平面図である。
 本実施形態の採光装置100は、採光部材101と、採光部材101の光出射面側に配置され、採光部材101から射出された光を拡散させる光拡散部材102とから概略構成されている。
 採光部材101としては、上述の第1の実施形態と同様のものが用いられる。
 光拡散部材102は、図14Cに示すように、光拡散特性が互いに異なる2種の光拡散領域A,Bを有しており、光拡散領域A,Bが互いに隣り合うように配置されている。
 光拡散領域Aは、多数の突条部103が、所定の間隔を置いて並列に配設され、これら突条部103と、その間の凹部104とから構成されている。また、突条部103および凹部104は、湾曲している。
 一方、光拡散領域Bは、多数の突条部105が、所定の間隔を置いて並列に配設され、これら突条部105と、その間の凹部106とから構成されている。また、突条部105および凹部106は、湾曲している。
 また、光拡散領域Bの突条部105の幅は、光拡散領域Aの突条部103の幅よりも大きくなっている。これにより、光拡散領域Aでは、光散乱が弱く、光拡散領域Bでは、光散乱が強くなっている。
 採光装置100を、上述の第2の実施形態と同様に、窓面に配置した場合、光拡散領域Bから採光された光は、窓近傍を照らす成分が大部分を占めるが、部屋の上下方向に拡散する成分の光量が窓近傍において過剰になることがなく、部屋の奥までの広い面積を平均的に照らすことができる。
 一方、光拡散領域Aから採光された光は、部屋の奥方向を照らすために用いられるため、あまり部屋の上下方向に拡散しない。
[第5の実施形態]
 以下、図15を参照して、本発明の第5の実施形態について説明する。
 第5の実施形態の採光装置は、例えば、窓に貼り付けた形態で太陽光を室内に採り入れるために用いられる。
 図15は、本実施形態の採光装置を示す概略斜視図である。
 本実施形態の採光装置110は、採光部材111と、採光部材111の光出射面側に配置され、採光部材111から射出された光を拡散させる光拡散部材112とから概略構成されている。
 採光部材111としては、上述の第1の実施形態と同様のものが用いられる。
 光拡散部材112は、図15に示すように、光拡散特性が互いに異なる2種の光拡散領域A,Bを有しており、光拡散領域A,Bが互いに隣り合うように配置されている。
 光拡散部材112において、光拡散領域Aは、模様等の意匠が描かれていない領域であり、光拡散領域Bは、模様等の意匠を表示する領域、すなわち、意匠自体からなる領域である。
 光拡散領域Aは、凹凸等の拡散パターンが形成されていない領域である。一方、光拡散領域Bは、凹凸等の拡散パターンが形成された領域であり、拡散パターンが目視可能な大きさに形成された領域である。これにより、光拡散領域Aでは、光散乱が弱く、光拡散領域Bでは、光散乱が強くなっている。
 採光装置110では、光拡散領域Bを形成する拡散パターンが目視可能な大きさに形成されることにより、光拡散領域Bを透過した光と、光拡散領域Aを透過した光との間に強度の差が生じ、この差が室内に居る人に模様として認識される。また、採光装置110は、室内や屋外との境界(窓面)に設置されるため、インテリアやエクステリアとしての側面も持ち合わせていることが好ましい。このように光拡散部材112に、目視可能な大きさの拡散パターンを形成することにより、採光装置110に対して、容易に模様による意匠性を付与することができる。
 また、光拡散領域Bを形成する拡散パターン、すなわち、図15に示す意匠を形成する拡散パターンのそれぞれで採光された光が室内で十分に混合する程度の大きさや配置で形成することが好ましい。すなわち、それぞれの拡散パターンは、光拡散部材112の一方の面内に数mm~数十cmの大きさで形成されていることが好ましい。拡散パターンの大きさがこれ以上大きいと、採光された光が十分に混ざらず、光拡散領域A,Bを混在させた効果が得られなくなることがある。
[第6の実施形態]
 以下、図16A~図16Cを参照して、本発明の第6の実施形態について説明する。
 第6の実施形態の採光装置は、例えば、窓に貼り付けた形態で太陽光を室内に採り入れるために用いられる。
 図16A~図16Cは、本実施形態の採光装置を構成する光拡散部材を示す概略平面図である。
 本実施形態の採光装置は、採光部材と、採光部材の光出射面側に配置され、採光部材から射出された光を拡散させる光拡散部材121とから概略構成されている。
 採光部材としては、上述の第1の実施形態と同様のものが用いられる。
 光拡散部材121は、図16A、図16Bに示すように、基材122の一方の面122aに、複数のタイリング領域TA1,TA2が設けられている。複数のタイリング領域TA1,TA2の各々には、基材122の法線方向から見て、同心円状に配置された複数の円弧状の光拡散部123が形成されている。互いに隣接する2つのタイリング領域TA1,TA2では、タイリング領域内の光拡散部123の形状は同一であるが、円弧の凸となる方向が互いに異なっている。
 複数のタイリング領域TA1,TA2は、2種類のタイリング領域を含んでいる。第1タイリング領域TA1と第2タイリング領域TA2は、それぞれ四角形の形状を有する。
より具体的には、四角形は、隣り合う2本の辺の長さが等しい組が2組あるものである。
本実施形態では、4つの内角が、120°、90°、60°、90°となるような四角形が採用されている。
 第1タイリング領域TA1と第2タイリング領域TA2には、内角が60°となる頂点を中心とした複数(本実施形態では6本)の同心円扇状ストライプの光拡散部123が形成されている。光拡散部123の断面形状は、図16Bに示すように、円弧状のレンチキュラーレンズ構造の断面となっており、この断面構造により、扇状ストライプが形成された方位とは直角方向に光が拡散される。基材122には、互いに断面形状が等しい複数の光拡散部123が一定の間隔で同心円状に配置されている。
 第1タイリング領域TA1および第2タイリング領域TA2の形状は、円弧の凸となる方向が互いに逆向きとなるように上下反転させた形状である点以外は、同じである。基材122の一方の面には、第1タイリング領域TA1と第2タイリング領域TA2とが隙間なく並んでいる。
 光拡散部材121では、光拡散部123が湾曲しており、光拡散部123の延在方向が1つのタイリング領域TA1,TA2内で変化している。
 本実施形態では、例えば、第1タイリング領域TA1が光拡散領域Aであり、第2タイリング領域TA2が光拡散領域Bである。
 第1タイリング領域TA1、第2タイリング領域TA2の4つの内角のうち、角度が60°-120°の角度を持つ向きが水平方向を向くように配置すれば、この光拡散部材は概ね縦方向に、図16Aのα部やα部で拡散された光は、図16Cの矢印の方向に拡散されるため、部屋の広い範囲を平均的に照らすことが可能となる。
 これにより、窓面の上部側にて占める面積が大きい光拡散領域Bから採光された光は、窓近傍を照らす成分が大部分を占めるが、部屋の上下方向に拡散する成分の光量が窓近傍において過剰になることがなく、部屋の奥までの広い面積を平均的に照らすことができる。
 一方、窓面の下部側にて占める面積が大きい光拡散領域Aから採光された光は、部屋の奥方向を照らすために用いられるため、あまり部屋の上下方向に拡散しない。
[第7の実施形態]
 以下、図17を参照して、本発明の第7の実施形態について説明する。
 第7の実施形態の採光装置は、例えば、窓に貼り付けた形態で太陽光を室内に採り入れるために用いられる。
 図17は、本実施形態の採光装置を示す概略斜視図である。
 本実施形態の採光装置130は、採光部材131と、採光部材131の光出射面側に配置され、採光部材131から射出された光を拡散させる光拡散部材132とから概略構成されている。
 採光部材131としては、上述の第1の実施形態と同様のものが用いられる。
 光拡散部材132は、図17に示すように、その上下方向に波形からなり、異なる方向に光を散乱させる複数の拡散パターンが連続的に形成されており、それらの拡散パターンが明確な境を持たずに連続的に形成されていている。この拡散パターンは、例えば、多数の突条部が、所定の間隔を置いて並列に配設され、これら突条部と、その間の凹部とから構成されている。また、突条部および凹部は、湾曲している。
 このような拡散パターンを有する光拡散部材132において、任意の領域A(光拡散領域A)と任意の領域B(光拡散領域B)を抽出し、その拡散構造を観察した場合、光拡散領域Aは光拡散部材132の右下に向かって拡散パターンが形成され、光拡散領域Bは光拡散部材132の左下に向かって拡散パターンが形成されているとみなすことができる。
すなわち、この光拡散部材132は、複数の異なる光拡散領域が明確な境を持たずに連続的に形成されているとみなすことができる。
 採光装置130を、上述の第2の実施形態と同様に、窓面に配置した場合、例えば、光拡散領域Bから採光された光は、窓近傍を照らし、光拡散領域Aから採光された光は、部屋の奥方向を照らす。
[照明調光システム]
 図18は、採光装置及び照明調光システムを備えた部屋モデル2000を示す図である。
 図19は、部屋モデル2000の天井を示す平面図である。
 本発明において、外光が導入される部屋2003の天井2003aを構成する天井材は、高い光反射性を有していてもよい。図18及び図19に示すように、部屋2003の天井2003aには、光反射性を有する天井材として、光反射性天井材2003Aが設置されている。光反射性天井材2003Aは、窓2002に設置された採光装置2010からの外光を室内の奥の方に導入することを促進することを目的とするもので、窓際の天井2003aに設置されている。具体的には、天井2003aの所定の領域E(窓2002から約3mの領域)に設置されている。
 この光反射性天井材2003Aは、先に述べたように、本発明の採光装置2010(上述したいずれかの実施形態の採光装置)が設置された窓2002を介して室内に導入された外光を室内の奥の方まで効率よく導く働きをする。採光装置2010から室内の天井2003aへ向けて導入された外光は、光反射性天井材2003Aで反射され、向きを変えて室内の奥に置かれた机2005の机上面2005aを照らすことになり、当該机上面2005aを明るくする効果を発揮する。
 光反射性天井材2003Aは、拡散反射性であってもよいし、鏡面反射性であってもよいが、室内の奥に置かれた机2005の机上面2005aを明るくする効果と、室内に居る人とって不快なグレア光を抑える効果を両立するために、両者の特性が適度にミックスされたものが好ましい。
 本発明の採光装置2010によって室内に導入された光の多くは、窓2002の付近の天井に向かうが、窓2002の近傍は光量が十分である場合が多い。そのため、上記のような光反射性天井材2003Aを併用することによって、窓付近の天井(領域E)に入射した光を、窓際に比べて光量の少ない室内の奥の方へ振り分けることができる。
 光反射性天井材2003Aは、例えば、アルミニウムのような金属板に数十ミクロン程度の凹凸によるエンボス加工を施したり、同様の凹凸を形成した樹脂基板の表面にアルミのような金属薄膜を蒸着したりして作成することができる。あるいは、エンボス加工によって形成される凹凸がもっと大きな周期の曲面で形成されていてもよい。
 さらに、光反射性天井材2003Aに形成するエンボス形状を適宜変えることによって、光の配光特性や室内における光の分布を制御することができる。例えば、室内の奥の方に延在するストライプ状にエンボス加工を施した場合は、光反射性天井材2003Aで反射した光が、窓2002の左右方向(凹凸の長手方向に交差する方向)に拡がる。部屋2003の窓2002の大きさや向きが限られているような場合は、このような性質を利用して、光反射性天井材2003Aによって光を水平方向へ拡散させるとともに、室内の奥の方向へ向けて反射させることができる。
 本発明の採光装置2010は、部屋2003の照明調光システムの一部として用いられる。照明調光システムは、例えば、採光装置2010と、複数の室内照明装置2007と、窓に設置された日射調整装置2008と、これらの制御系2009と、天井2003aに設置された光反射性天井材2003Aと、を含む部屋全体の構成部材から構成される。
 部屋2003の窓2002には、上部側に採光装置2010が設置され、下部側に日射調整装置2008が設置されている。ここでは、日射調整装置2008として、ブラインドが設置されているが、これに限らない。
 部屋2003には、複数の室内照明装置2007が、窓2002の左右方向(Y方向)および室内の奥行き方向(X方向)に格子状に配置されている。これら複数の室内照明装置2007は、採光装置2010と併せて部屋2003の全体の照明システムを構成している。
 図18及び図19に示すように、例えば、窓2002の左右方向(Y方向)の長さL1が18m、部屋2003の奥行方向(X方向)の長さL2が9mのオフィスの天井2003aを示す。ここでは、室内照明装置2007は、天井2003aの横方向(Y方向)及び奥行方向(X方向)に、それぞれ1.8mの間隔Pをおいて格子状に配置されている。より具体的には、50個の室内照明装置2007が10行(Y方向)×5列(X方向)に配列されている。
 室内照明装置2007は、室内照明器具2007aと、明るさ検出部2007bと、制御部2007cと、を備え、室内照明器具2007aに明るさ検出部2007b及び制御部2007cが一体化されて構成されたものである。
 室内照明装置2007は、室内照明器具2007a及び明るさ検出部2007bをそれぞれ複数ずつ備えていてもよい。但し、明るさ検出部2007bは、各室内照明器具2007aに対して1個ずつ設けられる。明るさ検出部2007bは、室内照明器具2007aが照明する被照射面の反射光を受光して、被照射面の照度を検出する。ここでは、明るさ検出部200bによって、室内に置かれた机上2005の机上面2005aの照度を検出する。
 各室内照明装置2007に1個ずつ設けられた制御部2007cは、互いに接続されている。各室内照明装置2007は、互いに接続された制御部2007cにより、各々の明るさ検出部2007bが検出する机上面2005aの照度が一定の目標照度L0(例えば、平均照度:750lx)になるように、それぞれの室内照明器具2007aのLEDランプの光出力を調整するフィードバック制御を行っている。
 図20は、採光装置によって室内に採光された光(自然光)の照度と、室内照明装置による照度(照明調光システム)との関係を示すグラフである。
 図20に示すように、採光装置2010(自然光の採光)による机上面の照度は、窓から遠くなる程、低下している。一方で、採光装置2010を窓に設置することなく室内の天井に室内照明装置2007(照明調光システム)を設置した場合には、窓から遠くなる程、机上面の照度が上昇する。これら採光装置2010と室内照明装置2007(照明調光システム)とを併用した場合、採光装置2010及び室内照明装置2007(照明調光システム)のいずれか一方を用いた場合よりも、室内における机上面の照度が全体的に上昇していることが分かる。採光装置2010の効果により窓際が最も明るく、窓から離れるに従って明るさの低下が若干みられるが、略一定の照度(平均照度:750lx)が得られている。
 以上述べたように、採光装置2010と照明調光システム(室内照明装置2007)とを併用することにより、室内の奥の方まで光を届けることが可能となり、室内の明るさをさらに向上させることができる。したがって、太陽高度による影響を受けずにより一層安定した明るい光環境が得られる。
 本発明の一態様は、室内等の空間に対して光を有効に採り入れることができる採光装置に利用可能である。
10・・・採光装置、11・・・採光部材、12・・・光拡散部材。

Claims (6)

  1.  光透過性を有する基材、前記基材の一方の面に設けられた光透過性を有する複数の採光部、および、前記複数の採光部の間に設けられた空隙部を有する採光部材と、
     前記採光部材の光出射面側に配置され、前記採光部材から射出された光を拡散させる光拡散部材と、を備える採光装置。
  2.  前記光拡散部材の一面側に、少なくとも2種の光拡散領域が設けられ、該少なくとも2種の光拡散領域は、光拡散特性が互いに異なる請求項1に記載の採光装置。
  3.  前記少なくとも2種の光拡散領域は、互いに隣り合うように配置されている請求項2に記載の採光装置。
  4.  前記光拡散部材の一面の一方向に沿って、前記光拡散領域のうちの少なくとも1種が占める割合が変化している請求項2または3に記載の採光装置。
  5.  前記光拡散部材の一面側に、光拡散特性が連続的に変化する光拡散領域が設けられた請求項1に記載の採光装置。
  6.  前記光拡散領域は、意匠性を有する請求項1に記載の採光装置。
PCT/JP2015/060602 2014-04-08 2015-04-03 採光装置 WO2015156225A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/302,222 US9857041B2 (en) 2014-04-08 2015-04-03 Daylighting device
JP2016512699A JP6579712B2 (ja) 2014-04-08 2015-04-03 採光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014079513 2014-04-08
JP2014-079513 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015156225A1 true WO2015156225A1 (ja) 2015-10-15

Family

ID=54287801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060602 WO2015156225A1 (ja) 2014-04-08 2015-04-03 採光装置

Country Status (3)

Country Link
US (1) US9857041B2 (ja)
JP (1) JP6579712B2 (ja)
WO (1) WO2015156225A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130920A1 (en) * 2014-06-30 2017-05-11 Sharp Kabushiki Kaisha Daylighting member, daylighting apparatus, roll screen, and blind
WO2018117223A1 (ja) * 2016-12-21 2018-06-28 シャープ株式会社 光拡散部材および採光装置
WO2019225749A1 (ja) * 2018-05-25 2019-11-28 Agc株式会社 映像投影構造体、その製造方法、および映像表示システム
US10718479B2 (en) 2016-11-03 2020-07-21 Basf Se Daylighting illumination system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014004771T5 (de) * 2013-10-17 2016-06-30 Sharp Kabushiki Kaisha Leuchtelement, Leuchtvorrichtung und Verfahren zum Installieren eines Leuchtelements
WO2015072420A1 (ja) * 2013-11-13 2015-05-21 シャープ株式会社 採光フィルム
WO2015174401A1 (ja) * 2014-05-12 2015-11-19 シャープ株式会社 採光装置
US20150354272A1 (en) * 2014-06-10 2015-12-10 Sergiy Vasylyev Light-redirecting retractable window covering
EP3234660A4 (en) * 2014-12-19 2018-08-01 3M Innovative Properties Company Optical structures for redirecting daylight
WO2017131012A1 (ja) * 2016-01-29 2017-08-03 シャープ株式会社 採光ブラインド、採光装置、照明システム
US10538964B2 (en) * 2016-04-27 2020-01-21 Sharp Kabushiki Kaisha Daylighting device and daylighting system
US10012356B1 (en) 2017-11-22 2018-07-03 LightLouver LLC Light-redirecting optical daylighting system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266794A (ja) * 2007-11-29 2009-11-12 Ishikawa Kogaku Zokei Kenkyusho:Kk 太陽光照明器
WO2011129069A1 (ja) * 2010-04-15 2011-10-20 ソニー株式会社 光学素子および照明装置
JP2012518190A (ja) * 2009-02-14 2012-08-09 ルクスエクセル ホールディング ビーヴィ 光ビームを方向付けるための装置、描写装置、装置および描写装置を作成するための方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US752429A (en) * 1904-02-16 Prismatic illuminating structure
US607792A (en) * 1898-07-19 Oswald e
JP4887092B2 (ja) 2006-08-03 2012-02-29 富士フイルム株式会社 採光フィルム及びそれを備えた窓
EP2734872A4 (en) * 2011-07-19 2015-04-15 3M Innovative Properties Co DOUBLE-SIDED FILM REDIRECTING THE LIGHT OF THE DAY
US8824050B2 (en) * 2012-04-06 2014-09-02 Svv Technology Innovations, Inc. Daylighting fabric and method of making the same
WO2014054574A1 (ja) * 2012-10-02 2014-04-10 シャープ株式会社 採光フィルム、採光フィルムの原反ロール、窓ガラス、ロールスクリーンおよび採光ルーバー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266794A (ja) * 2007-11-29 2009-11-12 Ishikawa Kogaku Zokei Kenkyusho:Kk 太陽光照明器
JP2012518190A (ja) * 2009-02-14 2012-08-09 ルクスエクセル ホールディング ビーヴィ 光ビームを方向付けるための装置、描写装置、装置および描写装置を作成するための方法
WO2011129069A1 (ja) * 2010-04-15 2011-10-20 ソニー株式会社 光学素子および照明装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130920A1 (en) * 2014-06-30 2017-05-11 Sharp Kabushiki Kaisha Daylighting member, daylighting apparatus, roll screen, and blind
US10718479B2 (en) 2016-11-03 2020-07-21 Basf Se Daylighting illumination system
US10794557B2 (en) 2016-11-03 2020-10-06 Basf Se Daylighting panel
US11209142B2 (en) 2016-11-03 2021-12-28 Skynative UG Daylighting illumination system
WO2018117223A1 (ja) * 2016-12-21 2018-06-28 シャープ株式会社 光拡散部材および採光装置
WO2019225749A1 (ja) * 2018-05-25 2019-11-28 Agc株式会社 映像投影構造体、その製造方法、および映像表示システム

Also Published As

Publication number Publication date
US9857041B2 (en) 2018-01-02
US20170023197A1 (en) 2017-01-26
JP6579712B2 (ja) 2019-09-25
JPWO2015156225A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6579712B2 (ja) 採光装置
US10337682B2 (en) Lighting member, lighting device, and method for installing lighting member
US10072816B2 (en) Microstructure-based optical diffusers for creating batwing and other lighting patterns
US9765949B2 (en) Shaped microstructure-based optical diffusers for creating batwing and other lighting patterns
US10125948B2 (en) Optical member and lighting device using the same
JP6716733B2 (ja) 採光装置及び採光スラット
US10317583B2 (en) 2D deglaring diffusers increasing axial luminous intensity
US10302275B2 (en) Microstructure-based diffusers for creating batwing lighting patterns
KR20120052289A (ko) 자유 형태 조명 모듈
US10338297B2 (en) Lighting device using line shaped beam
KR101279483B1 (ko) 광학플레이트 및 이를 이용한 조명부재
US10882223B2 (en) Daylighting device, molding die, and method of manufacturing daylighting film
WO2016104626A1 (ja) 採光装置
WO2018025993A1 (ja) 採光装置
WO2018117223A1 (ja) 光拡散部材および採光装置
US20200200344A1 (en) Daylighting member and daylighting device
JP5988136B2 (ja) パネル部材、光学デバイス及び壁材
JP2016081660A (ja) 採光システムおよび天井構造体
WO2017086331A1 (ja) 採光装置、採光システムおよび採光装置の製造方法
JP2011054333A (ja) 照明装置及び照明システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15775960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512699

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15302222

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15775960

Country of ref document: EP

Kind code of ref document: A1