WO2015154587A1 - 一种纹波电流的测量装置及方法 - Google Patents

一种纹波电流的测量装置及方法 Download PDF

Info

Publication number
WO2015154587A1
WO2015154587A1 PCT/CN2015/072588 CN2015072588W WO2015154587A1 WO 2015154587 A1 WO2015154587 A1 WO 2015154587A1 CN 2015072588 W CN2015072588 W CN 2015072588W WO 2015154587 A1 WO2015154587 A1 WO 2015154587A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
signal
frequency band
ripple
frequency
Prior art date
Application number
PCT/CN2015/072588
Other languages
English (en)
French (fr)
Inventor
杨国科
吴伟兵
冷迪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015154587A1 publication Critical patent/WO2015154587A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present invention relates to the field of electrical engineering, and more particularly to a device and method for measuring ripple current.
  • Electrolytic capacitors are one of the most versatile components in electronic products, and they are also key components that affect and limit the life of electronic products.
  • the reliability and lifetime of electrolytic capacitors are related to the ripple current of electrolytic capacitors. Therefore, determining the ripple current of electrolytic capacitors is an important method to verify the reliability of electronic products.
  • the internal resistance of the electrolytic capacitor decreases as the frequency of the ripple current increases, so the equivalent current value of the ripple current at different frequencies differs from the measured value.
  • the electrolytic capacitor manufacturer will give the frequency correction factor (F n ) for each frequency as shown in Table 1 for correcting the detected ripple current.
  • the theoretical formula for calculating the equivalent ripple current is: In the formula, I 1 , I 2 , ... I n are ripple currents of different frequencies, and F 1 , F 2 ... F n are frequency correction factors of I 1 , I 2 , ... I n at respective frequencies, respectively.
  • the embodiment of the invention provides a device and a method for measuring ripple current, which can decompose the mixed ripple current of the device to be tested into two kinds of ripple currents of high frequency and low frequency, and conveniently calculate the equivalent ripple current of the device to be tested.
  • an embodiment of the present invention provides a device for measuring ripple current, including:
  • the sampling module is configured to: sample a mixed ripple current of the device to be tested to obtain a current signal; the mixed ripple current refers to a ripple current including a plurality of frequencies;
  • the frequency decomposition module is configured to: decompose the current signal into a first current sub-signal belonging to the first frequency band and a second current sub-signal belonging to the second frequency band; the first frequency band has a value range smaller than the second frequency band ;as well as
  • the processing module is configured to: correct the first current sub-signal according to the frequency correction factor of the first frequency band, correct the second current sub-signal according to the frequency correction factor of the second frequency band, and according to the corrected first current sub-signal and The second current sub-signal synthesizes the equivalent ripple current of the device under test.
  • the device to be tested is an electrolytic capacitor.
  • the sampling module is a current transformer or a current testing system
  • the primary coil of the current transformer is connected to the mixed ripple current, and the secondary coil is connected to the frequency decomposition module;
  • the input end of the current test system is connected to the mixed ripple current, and the output end is connected to the frequency decomposition module;
  • the current transformer or the current testing system is configured to convert the current magnitude of the mixed ripple current according to a preset ratio to obtain the current signal.
  • the frequency decomposition module is:
  • An RC series circuit composed of a resistor R1 and a capacitor C1;
  • the sampling module is a current transformer
  • the two ends of the RC series circuit are respectively connected to the current signal on the secondary coil of the current sensor
  • the RC series circuit is respectively connected to the current signal on the output end of the current testing system
  • the current signal is decomposed into the resistor R1 of the RC series circuit as a first current sub-signal belonging to the first frequency band, and the current signal is decomposed into the capacitor C1 of the RC series circuit.
  • the current sub-signal acts as a second current sub-signal belonging to the second frequency band.
  • the device further includes:
  • a resistor R2 configured to cancel a load effect of the RC series circuit
  • the sampling module is a current transformer
  • one end of the resistor R2 is connected to a secondary coil of the current transformer and one end of the RC series circuit, and the other end of the resistor R2 and the current transformer a secondary coil connection and the other end of the RC series circuit are connected, and the resistor R2 is disposed between the secondary coil of the current transformer and the RC series circuit, and the resistance of the resistor R2 is equal to the secondary coil and The turns ratio of the original coil;
  • the sampling module is a current testing system
  • one end of the resistor R2 is connected to an output end of the current testing system and one end of the RC series circuit, and the other end of the resistor R2 is connected to the current testing system
  • the output end and the other end of the RC series circuit are connected, and the resistor R2 is disposed between the output end of the current testing system and the RC series circuit, and the resistance of the R2 is equal to the output impedance of the current testing system .
  • the processing module is set to according to a formula: Determining an equivalent ripple current of the electrolytic capacitor to be tested; wherein In is an equivalent ripple current of the electrolytic capacitor to be tested; I L is a current value of the first current sub-signal; and F L is a frequency of the ripple voltage of the first frequency band Correction factor; I H is the current value of the second current sub-signal; F H is the frequency correction factor of the ripple voltage of the second frequency band.
  • a method of measuring a ripple current comprising:
  • the mixing ripple Current refers to ripple currents containing multiple frequencies
  • the device to be tested is an electrolytic capacitor.
  • sampling the mixed ripple current of the device to be tested, and obtaining a current signal includes:
  • the current transformer or the current testing system converts the current magnitude of the mixed ripple current according to a preset ratio to obtain the current signal.
  • the current signal is decomposed into a first current sub-signal belonging to the first frequency band and a second current sub-signal belonging to the second frequency band, including:
  • the method further includes:
  • one end of the resistor R2 is connected to the secondary coil of the current transformer and one end of the RC series circuit, and the other end of the resistor R2 is in mutual inductance with the current.
  • the secondary coil connection of the device and the other end of the RC series circuit are connected, and the resistor R2 is disposed between the secondary coil of the current transformer and the RC series circuit, and the resistance of the resistor R2 is equal to the secondary coil.
  • one end of the resistor R2 is connected to an output end of the current testing system and one end of the RC series circuit, and the other end of the resistor R2 is connected to the current testing system.
  • the output end is connected to the other end of the RC series circuit, and the resistor R2 is disposed between the output end of the current testing system and the RC series circuit, and the resistance of the R2 is equal to the output of the current testing system. impedance.
  • the solution of the embodiment of the invention can decompose the mixed ripple current of the device under test into two ripple currents of high frequency and low frequency, and conveniently calculate the equivalent ripple current of the device to be tested.
  • FIG. 1 is a schematic structural view of a device for measuring a ripple current according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a specific structure of a device for measuring ripple current according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a specific structure of another apparatus for measuring ripple current according to an embodiment of the present invention.
  • FIG. 5 is a low-frequency time-domain waveform diagram obtained by decomposing the time-domain waveform diagram of FIG. 4 by using a ripple current measuring device according to an embodiment of the present invention
  • FIG. 6 is a high-frequency time-domain waveform diagram obtained by decomposing the time-domain waveform diagram of FIG. 4 by using a ripple current measuring device according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing the steps of a method for measuring ripple current according to an embodiment of the present invention.
  • an embodiment of the present invention provides a device for measuring ripple current, including:
  • a sampling module configured to sample a mixed ripple current of the device under test to obtain a current signal;
  • the mixed ripple current refers to a ripple current including a plurality of frequencies;
  • a frequency decomposition module configured to decompose the current signal into a first current sub-signal belonging to a first frequency band and a second current sub-signal belonging to a second frequency band; a value range of the first frequency band is smaller than the second frequency band;
  • the first current sub-signal can be corrected according to a frequency correction factor of the first frequency band
  • the second current sub-signal can be corrected according to a frequency correction factor of the second frequency band
  • the corrected first current sub-signal and the first The two current sub-signals are used to synthesize the equivalent ripple current of the electrolytic capacitor to be tested.
  • the device of the embodiment of the present invention can decouple the mixed ripple current of the device under test into two current waveforms of the high frequency band and the low frequency band (ie, the first current sub-signal and the second current sub-signal). Subsequent correction of the two current waveforms according to the frequency correction factors of the two frequency bands, and then synthesizing the corrected current waveforms, can accurately and simply obtain the equivalent ripple current of the electrolytic capacitor.
  • the measuring device of this embodiment further includes:
  • the processing module is configured to correct the first current sub-signal according to the frequency correction factor of the first frequency band, correct the second current sub-signal according to the frequency correction factor of the second frequency band, and according to the corrected first current sub-signal and the first The two current sub-signals synthesize the equivalent ripple current of the electrolytic capacitor to be tested.
  • the processing module is based on the formula: Determining an equivalent ripple current of the electrolytic capacitor to be tested; wherein In is an equivalent ripple current of the electrolytic capacitor to be tested; I L is a current value of the first current sub-signal; and F L is a frequency of the ripple voltage of the first frequency band Correction factor; I H is the current value of the second current sub-signal; F H is the frequency correction factor of the ripple voltage of the second frequency band.
  • the frequency correction factor of the ripple current of the first frequency band may be a frequency correction factor corresponding to the existing ripple current of any frequency point in the first frequency range.
  • the device under test is an electrolytic capacitor, assuming that the frequency range of the first frequency band is 30 Hz to 130 Hz, according to Table 1 above, one of 0.77, 0.82, and 1.00 may be selected as the frequency correction factor of the first frequency band, or A value is selected from the range of values of [0.77, 1.00] as the frequency correction factor for the first frequency band.
  • the frequency correction factor of the second frequency band can also be determined according to the above method.
  • the frequency of the electrolytic capacitor is greater than 10KHz.
  • the ripple current has a frequency correction factor of 1.43, so that the current signal of the mixed ripple current of the electrolytic capacitor can be decomposed into a first current sub-signal having a frequency of 1 kHz or less and a second current sub-signal having a frequency of 10 kHz or more. That is, the value range of the first frequency band ⁇ (0, 1 KHz), and the value range of the second frequency band ⁇ [10 KHz, + ⁇ ).
  • 1.43 can be used as the frequency correction factor of the second frequency band, so that the finally calculated equivalent ripple current is more accurate.
  • the current transformer is used as a sampling module, and the mixed ripple current and the secondary coil of the primary coil connected to the electrolytic capacitor are connected to the frequency decomposition modules (R1 and C1).
  • the function of the current transformer is to convert the current of the mixed ripple current according to a preset ratio (ie, the turns ratio of the primary coil to the secondary coil), thereby preventing the mixed ripple current from receiving external noise interference and affecting the test result.
  • the frequency decomposition module is:
  • An RC series circuit composed of a resistor R1 and a capacitor C1; the two ends of the RC series circuit are respectively connected to the current signal on the secondary coil of the current sensor.
  • FIG. 2 further includes a resistor R2 for eliminating the load effect of the RC series circuit
  • resistor R2 One end of the resistor R2 is connected to the secondary coil of the current transformer and one end of the RC series circuit, the other end of the resistor R2 is connected to the secondary coil of the current transformer and the RC series circuit The other end is connected, and the resistor R2 is disposed between the secondary coil of the current transformer and the RC series circuit.
  • the resistance of the resistor R2 is equal to the turns ratio of the secondary coil to the primary coil, and the voltage on the secondary winding is equal to the voltage of the secondary winding of the current transformer.
  • the impedance of C1 is much smaller than R1, so that the current on R1 can reflect the ripple current of the second frequency (second current sub-signal).
  • the impedance of C1 is much larger than R1, because the current on C1 can reflect the wave of the first frequency. Line current (first current sub-signal).
  • a frequency demarcation point F dividing the first frequency band and the second frequency band may be set, Therefore, the resistance value of R1 and the capacitance value of C1 can be selected according to the set F.
  • f is the frequency of the ripple current
  • V is the voltage across R2.
  • the voltage V 1 of the capacitor C1 is V, that is, the voltage on the capacitor C1 can be considered as the low-frequency part of the electrolytic capacitor.
  • F can be set, but not necessarily set to 5 kHz, so that the minimum frequency of the second frequency band is 10 KHz >> 5 KHz, and the maximum frequency of the first frequency band is 1 KHz ⁇ 5 KHz. That is, the current on C1 is substantially the first current sub-signal belonging to the first frequency band, and the current on R1 is basically the second current sub-signal belonging to the second frequency band. In this way, the current value I L of the first current sub-signal can be obtained by detecting the current on C1, and the current value I H of the second current sub-signal can be obtained by detecting the current on R1.
  • Figure 5 shows the time-domain waveform of the mixed ripple current of the electrolytic capacitor. It can be seen that the frequency in Figure 5 is confusing and it is difficult to determine the equivalent ripple current.
  • the mixed ripple current of FIG. 5 can be decomposed into the one shown in FIG. The low frequency ripple current and the high frequency ripple current shown in Figure 7. Then, the ripple currents of FIGS. 6 and 7 are corrected according to the respective frequency correction factors, and the corrected ripple currents are recombined to obtain an accurate equivalent ripple current.
  • the second implementation method uses a current testing system (the current testing system is a product for testing current) as a sampling module, and is used to preset the mixing ripple according to a preset ratio.
  • the current is transformed to obtain a current signal.
  • the input end of the current test system is connected to the mixed ripple current, and the output end is connected to the frequency decomposition module (R1 and C1).
  • the frequency decomposition module is:
  • An RC series circuit comprising a resistor R1 and a capacitor C1, the two ends of which are respectively connected to the current signal on the output end;
  • FIG. 3 further includes a resistor R2 for canceling the load effect of the RC series circuit; when the sampling module is a current testing system, one end of the resistor R2 and the output of the current testing system and One end of the RC series circuit is connected, the other end of the resistor R2 is connected to an output end of the current testing system and the other end of the RC series circuit, and the resistor R2 is disposed at the output end and the Between the RC series circuits.
  • the resistance of the R2 is equal to the output impedance for reducing high frequency transmission distortion.
  • the ripple current measuring device of the embodiment of the present invention can determine the equivalent ripple current of the electrolytic capacitor simply and accurately, and has high practical value.
  • an embodiment of the present invention further provides a method for measuring a ripple current, comprising:
  • Step 71 sampling a mixed ripple current of the electrolytic capacitor to be measured to obtain a current signal;
  • the mixed ripple current refers to a ripple current including a plurality of frequencies;
  • Step 72 the current signal is decomposed into a first current sub-signal belonging to the first frequency band and a second current sub-signal belonging to the second frequency band; the value range of the first frequency band is smaller than the second frequency band;
  • first current sub-signal can be corrected according to a frequency correction factor of the first frequency band
  • the second current sub-signal can be corrected according to a frequency correction factor of the second frequency band
  • the modified first current sub-signal and the second current sub-signal are used to synthesize an equivalent ripple current of the electrolytic capacitor to be tested.
  • the method of the embodiment of the present invention can decouple the mixed ripple current of the device under test into two current waveforms of the high frequency band and the low frequency band (ie, the first current sub-signal and the second current self-signal). Subsequently, the two current waveforms can be corrected according to the frequency correction factors of the two frequency bands, and then the corrected current waveforms can be synthesized to obtain the equivalent ripple current of the electrolytic capacitor accurately and simply.
  • the measurement method of this embodiment further includes:
  • Step 73 Correct the first current sub-signal according to the frequency correction factor of the first frequency band, correct the second current sub-signal according to the frequency correction factor of the second frequency band, and according to the corrected first current sub-signal and the second current The sub-signal synthesizes the equivalent ripple current of the electrolytic capacitor to be tested.
  • step 73 it can be based on the formula: Determining an equivalent ripple current of the electrolytic capacitor to be tested; wherein In is an equivalent ripple current of the electrolytic capacitor to be tested; I L is a current value of the first current sub-signal; and F L is a frequency of the ripple voltage of the first frequency band Correction factor; I H is the current value of the second current sub-signal; F H is the frequency correction factor of the ripple voltage of the second frequency band.
  • the solution of the embodiment of the invention can decompose the mixed ripple current of the device under test into two ripple currents of high frequency and low frequency, and conveniently calculate the equivalent ripple current of the device to be tested.

Abstract

一种纹波电流的测量装置及方法,装置包括:采样模块,设置为:对待测器件的混频波纹电流进行采样,得到一电流信号;所述混频波纹电流是指包含多种频率的波纹电流;频率分解模块,设置为:将所述电流信号分解为属于第一频段的第一电流子信号以及属于第二频段的第二电流子信号;所述第一频段的值域小于所述第二频段;处理模块,设置为:根据第一频段的频率修正因子对第一电流子信号进行修正,根据第二频段的频率修正因子对第二电流子信号进行修正,并根据修正后第一电流子信号和第二电流子信号合成出待测器件的等效波纹电流。

Description

一种纹波电流的测量装置及方法 技术领域
本发明涉及电学领域,特别是一种纹波电流的测量装置及方法。
背景技术
电解电容是电子产品中用途最为广泛的元器件之一,同时也是影响和制约电子产品寿命的关键器件。而电解电容的可靠性和寿命与电解电容的纹波电流相关,因此确定电解电容的波纹电流是检验电子产品是否可靠的重要方法。
但是,目前很多电解电容产品并不只在单一频率下工作,因此具有不同频率的纹波电流,所以需要将所有频率下的纹波电流进行合成,得到电解电容的等效纹波电流。
而电解电容的内部电阻会随着波纹电流的频率的增加而减小,所以不同频率下纹波电流的等效电流数值与测量数值存在差异。为此,电解电容厂家会给出表一所示的各频率的频率修正因子(Fn),用于对检测到的波纹电流进行修正。
频率(Hz) 50 60 120 1K >10K
频率修正因子 0.77 0.82 1.00 1.30 1.43
表一
计算等效纹波电流的理论公式为:
Figure PCTCN2015072588-appb-000001
式中,I1、I2、…In为不同频率的波纹电流,F1、F2…Fn分别为I1、I2、…In在各自频率下的频率修正因子。
即便目前已经给出理论公式,但是,在实际计算等效纹波电流时,存在以下困难:
1)由于电解电容自身包含了过多频率的纹波电流,很难识别出各频率的 波纹电流,因此难以对各频率的波纹电流进行修正;
2)电解电容工作的纹波电流是脉冲状的,而检测结果只能反映瞬时时刻的情况,因此一个检测结果难以准确反映出电解电容的等效波纹电流。
发明内容
本发明实施例提供一种纹波电流的测量装置及方法,能够将待测器件的混频波纹电流分解成高频和低频的两种波纹电流,方便计算待测器件的等效波纹电流。
为解决上述技术问题,本发明的实施例提供一种纹波电流的测量装置,包括:
采样模块,设置为:对待测器件的混频波纹电流进行采样,得到一电流信号;所述混频波纹电流是指包含多种频率的波纹电流;
频率分解模块,设置为:将所述电流信号分解为属于第一频段的第一电流子信号以及属于第二频段的第二电流子信号;所述第一频段的值域小于所述第二频段;以及
处理模块,设置为:根据第一频段的频率修正因子对第一电流子信号进行修正,根据第二频段的频率修正因子对第二电流子信号进行修正,并根据修正后第一电流子信号和第二电流子信号合成出待测器件的等效波纹电流。
可选地,所述待测器件为电解电容。
可选地,所述采样模块为电流互感器或电流测试系统;
所述电流互感器的原线圈接入所述混频波纹电流、副线圈与所述频率分解模块连接;
所述电流测试系统的输入端接入所述混频波纹电流、输出端与所述频率分解模块连接;
其中,所述电流互感器或所述电流测试系统设置为按照预设比例对所述混频波纹电流的电流大小进行变换,得到所述电流信号。
可选地,所述频率分解模块为:
由电阻R1和电容C1组成的RC串联电路;
当所述采样模块为电流互感器时,所述RC串联电路两端分别接入该电流传感器的副线圈上的所述电流信号;
当所述采样模块为电流测试系统时,所述RC串联电路两端分别接入所述电流测试系统的输出端上的所述电流信号;
其中,将所述电流信号分解到所述RC串联电路的电阻R1上的电流子信号作为属于第一频段的第一电流子信号,将所述电流信号分解到所述RC串联电路的电容C1上的电流子信号作为属于第二频段的第二电流子信号。
可选地,该装置还包括:
电阻R2,设置为消除所述RC串联电路的负载效应;
当所述采样模块为电流互感器时,所述电阻R2的一端与所述电流互感器的副线圈连接以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流互感器的副线圈连接以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述电流互感器的副线圈与所述RC串联电路之间,所述电阻R2的阻值等于副线圈与原线圈的匝数比;
当所述采样模块为电流测试系统时,所述电阻R2的一端与所述电流测试系统的输出端以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流测试系统的输出端以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述电流测试系统的输出端与所述RC串联电路之间,所述R2的阻值等于电流测试系统的输出阻抗。
可选地,所述处理模块是设置为根据公式:
Figure PCTCN2015072588-appb-000002
确定所述待测电解电容的等效波纹电流;其中,In为待测电解电容的等效波纹电流;IL为第一电流子信号的电流值;FL为第一频段的波纹电压的频率修正因子;IH为第二电流子信号的电流值;FH为第二频段的波纹电压的频率修正因子。
一种纹波电流的测量装置的方法,包括:
对待测器件的混频波纹电流进行采样,得到一电流信号;所述混频波纹 电流是指包含多种频率的波纹电流;
将所述电流信号分解为属于第一频段的第一电流子信号以及属于第二频段的第二电流子信号;所述第一频段的值域小于所述第二频段;
根据第一频段的频率修正因子对第一电流子信号进行修正,根据第二频段的频率修正因子对第二电流子信号进行修正,并根据修正后第一电流子信号和第二电流子信号合成出待测器件的等效波纹电流。
可选地,所述待测器件为电解电容。
可选地,对待测器件的混频波纹电流进行采样,得到一电流信号包括:
电流互感器或电流测试系统按照预设比例对所述混频波纹电流的电流大小进行变换,得到所述电流信号。
可选地,将所述电流信号分解为属于第一频段的第一电流子信号以及属于第二频段的第二电流子信号,包括:
将所述电流信号分解到RC串联电路的电阻R1上的电流子信号作为属于第一频段的第一电流子信号,将所述电流信号分解到所述RC串联电路的电容C1上的电流子信号作为属于第二频段的第二电流子信号。
可选地,该方法还包括:
利用电阻R2消除所述RC串联电路的负载效应;
当利用电流互感器得到所述电流信号时,所述电阻R2的一端与所述电流互感器的副线圈连接以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流互感器的副线圈连接以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述电流互感器的副线圈与所述RC串联电路之间,所述电阻R2的阻值等于副线圈与原线圈的匝数比;
当利用电流测试系统得到所述电流信号时,所述电阻R2的一端与所述电流测试系统的输出端以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流测试系统的输出端以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述电流测试系统的输出端与所述RC串联电路之间,所述R2的阻值等于电流测试系统的输出阻抗。
可选地,根据公式:
Figure PCTCN2015072588-appb-000003
确定所述待测电解电容的等效波纹电流;其中,In为待测电解电容的等效波纹电流;IL为第一电流子信号的电流值;FL为第一频段的波纹电压的频率修正因子;IH为第二电流子信号的电流值;FH为第二频段的波纹电压的频率修正因子。
本发明实施例的方案能够将待测器件的混频波纹电流分解成高频和低频的两种波纹电流,方便计算待测器件的等效波纹电流。
附图概述
图1为本发明实施例的纹波电流的测量装置的结构示意图;
图2为本发明实施例的纹波电流的测量装置对应一种实现方式的具体结构示意图;
图3为本发明实施例的纹波电流的测量装置对应另一种实现方式的具体结构示意图;
图4为电解电容的混频纹波电流对应的时域波形图;
图5为采用本发明实施例的纹波电流的测量装置,对图4的时域波形图进行分解得到的低频的时域波形图;
图6为采用本发明实施例的纹波电流的测量装置,对图4的时域波形图进行分解得到的高频的时域波形图;
图7为本发明实施例的纹波电流的测量方法的步骤示意图。
本发明的较佳实施方式
下面将结合附图对本发明的实施例进行详细描述。
如图1所示,本发明的实施例提供一种纹波电流的测量装置,包括:
采样模块,设置为对待测器件的混频波纹电流进行采样,得到一电流信号;所述混频波纹电流是指包含多种频率的波纹电流;
频率分解模块,设置为将所述电流信号分解为属于第一频段的第一电流子信号以及属于第二频段的第二电流子信号;所述第一频段的值域小于所述第二频段;
其中,所述第一电流子信号能够根据第一频段的频率修正因子进行修正,所述第二电流子信号能够根据第二频段的频率修正因子进行修正,且修正后第一电流子信号和第二电流子信号用于合成出待测电解电容的等效波纹电流。
根据上述描述可以知道:本发明实施例的装置可将待测器件的混频波纹电流解耦成高频段和低频段的2个电流波形(即第一电流子信号和第二电流子信号),后续可根据两种频段的频率修正因子对应修正这2个电流波形,再将修正后的电流波形进行合成,即可准确且简单地得到电解电容的等效波纹电流。
对应的,本实施例测量装置还包括:
处理模块,设置为根据第一频段的频率修正因子对第一电流子信号进行修正,根据第二频段的频率修正因子对第二电流子信号进行修正,并根据修正后第一电流子信号和第二电流子信号合成出待测电解电容的等效波纹电流。
其中,处理模块根据公式:
Figure PCTCN2015072588-appb-000004
确定所述待测电解电容的等效波纹电流;其中,In为待测电解电容的等效波纹电流;IL为第一电流子信号的电流值;FL为第一频段的波纹电压的频率修正因子;IH为第二电流子信号的电流值;FH为第二频段的波纹电压的频率修正因子。
需要说明的是,上述第一频段的波纹电流的频率修正因子,可以是现有的、在第一频段范围内,任一频点的波纹电流所对应的频率修正因子。例如,待测器件为电解电容,假设第一频段频的值域为30Hz到130Hz,则根据上文表一,可以从0.77、0.82和1.00中选择一个作为第一频段的频率修正因子,或者是从[0.77,1.00]的值域范围内选择一个数值作为第一频段的频率修正因子。同理,第二频段的频率修正因子也可以根据上述方法确定。
当然,根据表一中的特点,可以知道电解电容中凡是频率大于10KHz的 波纹电流,其频率修正因子均为1.43,因此可将电解电容的混频波纹电流的电流信号分解为频率小于等于1KHz的第一电流子信号,以及频率大于等于10KHz的第二电流子信号。即,所述第一频段的值域∈(0,1KHz],所述第二频段的值域∈[10KHz,+∞)。根据表一,可将1.43作为第二频段的频率修正因子,这样一来使得最终计算出的等效波纹电流更加准确。
下面对如何确定电解电容的等效波纹电流进行详细介绍。
<实现方式一>
如图2所示,本实现方式一中,将电流互感器作为采样模块,其原线圈接入电解电容的混频波纹电流、副线圈与所述频率分解模块(R1和C1)连接。电流互感器的作用是将混频波纹电流的电流大小按照预设比例(即,原线圈与副线圈的匝数比)进行变换,从而避免混频波纹电流收到外界噪声干扰,影响测试结果。
所述频率分解模块为:
由电阻R1和电容C1组成的RC串联电路;所述RC串联电路两端分别接入该电流传感器的副线圈上的所述电流信号。
此外,图2中还包括一用于消除所述RC串联电路的负载效应的电阻R2;
所述电阻R2的一端与所述电流互感器的副线圈连接以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流互感器的副线圈连接以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述电流互感器的副线圈与所述RC串联电路之间。其中,电阻R2的阻值等于副线圈与原线圈的匝数比,保证其上的电压等于电流互感器副线圈的电压。当R2远大于电阻R1时,即可消除RC串联电路的负载效应。
由于电容的电学特性是对高频电流的阻抗大,对低频电流的阻抗小。因此针对大于等于10KHz的波纹电流时,C1的阻抗远小于R1,使得R1上的电流能够体现出第二频率的波纹电流(第二电流子信号)。针对小于等于1KHz的波纹电流,C1的阻抗远大于R1,因次C1上的电流可体现出第一频率的波 纹电流(第一电流子信号)。
这里可设置一个划分第一频段以及第二频段的频率分界点F,
Figure PCTCN2015072588-appb-000005
因此可根据设定的F选择R1的阻值以及C1的电容值。
根据电学知识,图2中电容C1上的电压V1和电阻R1上的电压V2分别为:
Figure PCTCN2015072588-appb-000006
式中,f为波纹电流的频率;V为R2上的电压。
当f∈(0,1KHz]<<F时,电容C1上的电压V1=V,即可以认为电容C1上的电压是电解电容的低频部分电流。
当f∈[10KHZ,+∞)>>F时,电阻R2上的电压V2=V,即可以认为电容R2上的电压是电解电容的高频部分电流。
在这里,可以但不一定将F设置为5KHz,从而保证了第二频段最小的频率10KHz>>5KHz,而第一频段最大的频率1KHz<<5KHz。即,C1上的电流基本上是属于第一频段的第一电流子信号,而R1上的电流基本上是属于第二频段的第二电流子信号。这样一来,通过检测C1上的电流即可得到第一电流子信号的电流值IL,通过检测R1上的电流即可得到第二电流子信号的电流值IH
之后,根据表一,示例性地将1.00作为第一频段的频率修正因子,将1.43作为第二频段的频率修正因子,并根据上文给出的等效波纹计算公式进行计算。
图5所示的是电解电容的混频波纹电流的时域波形图,可见图5中的频率混乱,难以确定出等效波纹电流。
采用本发明实施例的方法,可将图5的混频波纹电流分解成图6所示的 低频的波纹电流,以及图7所示的高频的波纹电流。之后根据各自的频率修正因子对图6和图7的波纹电流进行修正,并将修正后的波纹电流重新进行合成,即可得到准确的等效波纹电流。
<实现方式二>
如图3所示,与上述实现方式一不同的是,本实现方式二采用电流测试系统(电流测试系统是现有用于测试电流的产品)作为采样模块,用于照预设比例对混频波纹电流进行变换,得到电流信号。其中,电流测试系统的输入端接入所述混频波纹电流,输出端与所述频率分解模块(R1和C1)连接。
所述频率分解模块为:
由电阻R1和电容C1组成的RC串联电路,其两端分别接入所述的输出端上的所述电流信号;
此外,图3中还包括一用于消除所述RC串联电路的负载效应的电阻R2;当所述采样模块为电流测试系统时,所述电阻R2的一端与所述电流测试系统的输出端以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流测试系统的输出端以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述的输出端与所述RC串联电路之间。其中,所述R2的阻值等于的输出阻抗,用于降低高频传输失真。
由于图3的工作原理与图2一致,本文不再赘述。
综上所述,本发明实施例的纹波电流的测量装置能够简单、准确地确定出电解电容的等效波纹电流,具有很高的实用价值。
此外,如图7所示,本发明的实施例还提供一种纹波电流的测量装置的方法,包括:
步骤71,对待测电解电容的混频波纹电流进行采样,得到一电流信号;所述混频波纹电流是指包含多种频率的波纹电流;
步骤72,将所述电流信号分解为属于第一频段的第一电流子信号以及属于第二频段的第二电流子信号;所述第一频段的值域小于所述第二频段;
其中,所述第一电流子信号能够根据第一频段的频率修正因子进行修正, 所述第二电流子信号能够根据第二频段的频率修正因子进行修正,且修正后第一电流子信号和第二电流子信号用于合成出待测电解电容的等效波纹电流。
根据上述描述可以知道:本发明实施例的方法将可将待测器件的混频波纹电流解耦成高频段和低频段的2个电流波形(即第一电流子信号和第二电流自信号),后续可根据两种频段的频率修正因子对应修正这2个电流波形,再将修正后的电流波形进行合成,即可准确且简单地得到电解电容的等效波纹电流。
对应的,本实施例测量方法还包括:
步骤73,根据第一频段的频率修正因子对第一电流子信号进行修正,根据第二频段的频率修正因子对第二电流子信号进行修正,并根据修正后第一电流子信号和第二电流子信号合成出待测电解电容的等效波纹电流。
在执行步骤73时,可以根据公式:
Figure PCTCN2015072588-appb-000007
确定所述待测电解电容的等效波纹电流;其中,In为待测电解电容的等效波纹电流;IL为第一电流子信号的电流值;FL为第一频段的波纹电压的频率修正因子;IH为第二电流子信号的电流值;FH为第二频段的波纹电压的频率修正因子。
以上所述是本发明的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰。
工业实用性
本发明实施例的方案能够将待测器件的混频波纹电流分解成高频和低频的两种波纹电流,方便计算待测器件的等效波纹电流。

Claims (12)

  1. 一种纹波电流的测量装置,包括:
    采样模块,设置为:对待测器件的混频波纹电流进行采样,得到一电流信号;所述混频波纹电流是指包含多种频率的波纹电流;
    频率分解模块,设置为:将所述电流信号分解为属于第一频段的第一电流子信号以及属于第二频段的第二电流子信号;所述第一频段的值域小于所述第二频段;以及
    处理模块,设置为:根据第一频段的频率修正因子对第一电流子信号进行修正,根据第二频段的频率修正因子对第二电流子信号进行修正,并根据修正后第一电流子信号和第二电流子信号合成出待测器件的等效波纹电流。
  2. 根据权利要求1所述的装置,其中,所述待测器件为电解电容。
  3. 根据权利要求1所述的装置,其中,
    所述采样模块为电流互感器或电流测试系统;
    所述电流互感器的原线圈接入所述混频波纹电流、副线圈与所述频率分解模块连接;
    所述电流测试系统的输入端接入所述混频波纹电流、输出端与所述频率分解模块连接;
    其中,所述电流互感器或所述电流测试系统设置为按照预设比例对所述混频波纹电流的电流大小进行变换,得到所述电流信号。
  4. 根据权利要求3所述的装置,其中,
    所述频率分解模块为:
    由电阻R1和电容C1组成的RC串联电路;
    当所述采样模块为电流互感器时,所述RC串联电路两端分别接入该电流传感器的副线圈上的所述电流信号;
    当所述采样模块为电流测试系统时,所述RC串联电路两端分别接入所述电流测试系统的输出端上的所述电流信号;
    其中,将所述电流信号分解到所述RC串联电路的电阻R1上的电流子信 号作为属于第一频段的第一电流子信号,将所述电流信号分解到所述RC串联电路的电容C1上的电流子信号作为属于第二频段的第二电流子信号。
  5. 根据权利要求4所述的装置,还包括:
    电阻R2,设置为消除所述RC串联电路的负载效应;
    当所述采样模块为电流互感器时,所述电阻R2的一端与所述电流互感器的副线圈连接以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流互感器的副线圈连接以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述电流互感器的副线圈与所述RC串联电路之间,所述电阻R2的阻值等于副线圈与原线圈的匝数比;
    当所述采样模块为电流测试系统时,所述电阻R2的一端与所述电流测试系统的输出端以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流测试系统的输出端以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述电流测试系统的输出端与所述RC串联电路之间,所述R2的阻值等于电流测试系统的输出阻抗。
  6. 根据权利要求3所述的装置,其中,
    所述处理模块是设置为根据公式:
    Figure PCTCN2015072588-appb-100001
    确定所述待测电解电容的等效波纹电流;其中,In为待测电解电容的等效波纹电流;IL为第一电流子信号的电流值;FL为第一频段的波纹电压的频率修正因子;IH为第二电流子信号的电流值;FH为第二频段的波纹电压的频率修正因子。
  7. 一种纹波电流的测量装置的方法,包括:
    对待测器件的混频波纹电流进行采样,得到一电流信号;所述混频波纹电流是指包含多种频率的波纹电流;
    将所述电流信号分解为属于第一频段的第一电流子信号以及属于第二频段的第二电流子信号;所述第一频段的值域小于所述第二频段;
    根据第一频段的频率修正因子对第一电流子信号进行修正,根据第二频 段的频率修正因子对第二电流子信号进行修正,并根据修正后第一电流子信号和第二电流子信号合成出待测器件的等效波纹电流。
  8. 根据权利要求7所述的方法,其中,所述待测器件为电解电容。
  9. 根据权利要求7所述的方法,其中,
    对待测器件的混频波纹电流进行采样,得到一电流信号包括:
    电流互感器或电流测试系统按照预设比例对所述混频波纹电流的电流大小进行变换,得到所述电流信号。
  10. 根据权利要求9所述的方法,其中,
    将所述电流信号分解为属于第一频段的第一电流子信号以及属于第二频段的第二电流子信号,包括:
    将所述电流信号分解到RC串联电路的电阻R1上的电流子信号作为属于第一频段的第一电流子信号,将所述电流信号分解到所述RC串联电路的电容C1上的电流子信号作为属于第二频段的第二电流子信号。
  11. 根据权利要求10所述的方法,还包括:
    利用电阻R2消除所述RC串联电路的负载效应;
    当利用电流互感器得到所述电流信号时,所述电阻R2的一端与所述电流互感器的副线圈连接以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流互感器的副线圈连接以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述电流互感器的副线圈与所述RC串联电路之间,所述电阻R2的阻值等于副线圈与原线圈的匝数比;
    当利用电流测试系统得到所述电流信号时,所述电阻R2的一端与所述电流测试系统的输出端以及所述RC串联电路的一端连接,所述电阻R2的另一端与所述电流测试系统的输出端以及所述RC串联电路的另一端连接,且所述电阻R2设置在所述电流测试系统的输出端与所述RC串联电路之间,所述R2的阻值等于电流测试系统的输出阻抗。
  12. 根据权利要求9所述的方法,其中,
    根据公式:
    Figure PCTCN2015072588-appb-100002
    确定所述待测电解电容的等效波纹电流;其中,In为待测电解电容的等效波纹电流;IL为第一电流子信号的电流值;FL为第一频段的波纹电压的频率修正因子;IH为第二电流子信号的电流值;FH为第二频段的波纹电压的频率修正因子。
PCT/CN2015/072588 2014-10-24 2015-02-09 一种纹波电流的测量装置及方法 WO2015154587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410577401.3A CN105588969A (zh) 2014-10-24 2014-10-24 一种纹波电流的测量装置及方法
CN201410577401.3 2014-10-24

Publications (1)

Publication Number Publication Date
WO2015154587A1 true WO2015154587A1 (zh) 2015-10-15

Family

ID=54287296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072588 WO2015154587A1 (zh) 2014-10-24 2015-02-09 一种纹波电流的测量装置及方法

Country Status (2)

Country Link
CN (1) CN105588969A (zh)
WO (1) WO2015154587A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447737A (zh) * 2021-06-12 2021-09-28 四川虹美智能科技有限公司 空调变频控制器中的电解电容监测方法
CN114694938A (zh) * 2022-03-30 2022-07-01 安徽省昌盛电子有限公司 一种电流杂波过滤系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645873B (zh) * 2016-12-22 2019-02-26 北京金风科创风电设备有限公司 直流支撑电容保护方法和装置及纹波电流检测方法和装置
CN106645880B (zh) * 2016-12-26 2019-04-09 珠海格力电器股份有限公司 电容纹波电流估算方法及装置、变频空调控制方法及装置、变频器和变频空调
CN112924744A (zh) * 2019-12-06 2021-06-08 新疆金风科技股份有限公司 纹波电流的测量方法和装置、计算机设备、线圈组件
CN113670345B (zh) * 2021-08-10 2023-09-15 之江实验室 一种用于光电流信号分解的低噪声光电探测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2456171Y (zh) * 2000-12-18 2001-10-24 无锡市斯达自控设备厂 在线纹波检测装置
JP3472517B2 (ja) * 1999-12-20 2003-12-02 コーセル株式会社 直流安定化電源装置
CN101039077A (zh) * 2007-04-28 2007-09-19 电子科技大学 具有电压纹波检测电路的稳流开关电源
US7626370B1 (en) * 2007-09-21 2009-12-01 National Semiconductor Corporation Apparatus and method for hysteretic boost DC-DC converter
CN202057732U (zh) * 2011-02-23 2011-11-30 深圳创维数字技术股份有限公司 电容及开关电源高压铝电解电容纹波电流检测装置
CN102830296A (zh) * 2011-06-16 2012-12-19 上海天祥质量技术服务有限公司 电源纹波干扰测试方法及系统
CN103954821A (zh) * 2014-04-30 2014-07-30 上海电力学院 一种滤波电容等效串联电阻的纹波电压检测方法
CN104038074A (zh) * 2013-03-06 2014-09-10 洛克威尔自动控制技术股份有限公司 用于纹波和缺相检测的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4441108B2 (ja) * 2000-12-05 2010-03-31 池田電機株式会社 放電灯点灯装置
JP2009077510A (ja) * 2007-09-20 2009-04-09 Hitachi Ltd 電解コンデンサの充放電回路
CN202995006U (zh) * 2012-12-12 2013-06-12 国电南瑞科技股份有限公司 一种预测继电保护装置剩余寿命的电源检测电路
CN103822702A (zh) * 2014-03-14 2014-05-28 北京理工大学 一种用于超声相控阵换能器声场测量数据采集同步触发的脉冲信号转换装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472517B2 (ja) * 1999-12-20 2003-12-02 コーセル株式会社 直流安定化電源装置
CN2456171Y (zh) * 2000-12-18 2001-10-24 无锡市斯达自控设备厂 在线纹波检测装置
CN101039077A (zh) * 2007-04-28 2007-09-19 电子科技大学 具有电压纹波检测电路的稳流开关电源
US7626370B1 (en) * 2007-09-21 2009-12-01 National Semiconductor Corporation Apparatus and method for hysteretic boost DC-DC converter
CN202057732U (zh) * 2011-02-23 2011-11-30 深圳创维数字技术股份有限公司 电容及开关电源高压铝电解电容纹波电流检测装置
CN102830296A (zh) * 2011-06-16 2012-12-19 上海天祥质量技术服务有限公司 电源纹波干扰测试方法及系统
CN104038074A (zh) * 2013-03-06 2014-09-10 洛克威尔自动控制技术股份有限公司 用于纹波和缺相检测的方法和设备
CN103954821A (zh) * 2014-04-30 2014-07-30 上海电力学院 一种滤波电容等效串联电阻的纹波电压检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447737A (zh) * 2021-06-12 2021-09-28 四川虹美智能科技有限公司 空调变频控制器中的电解电容监测方法
CN114694938A (zh) * 2022-03-30 2022-07-01 安徽省昌盛电子有限公司 一种电流杂波过滤系统

Also Published As

Publication number Publication date
CN105588969A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2015154587A1 (zh) 一种纹波电流的测量装置及方法
CN106066425B (zh) 一种阻抗测量装置及其实现校准补偿的方法
CN107209211B (zh) 用于罗戈夫斯基线圈传感器的电子积分器
CN107076789B (zh) 测量和确定噪声参数的系统和方法
CN104198976A (zh) 一种用于霍尔电压传感器测量电压的校正方法
TW201531728A (zh) 利用頻域內校正之時域測量方法
CN110673223B (zh) 一种无需同步电流采集和传输的sip观测方法
Zhang et al. Predicting far-field radiation with the emission models of power converters
US20220252642A1 (en) Current Sensors Employing Rogowski Coils And Methods Of Using Same
CN108732414B (zh) 电流传感器及断路器
RU2499997C2 (ru) Мостовой измеритель параметров двухполюсников
CN108572277B (zh) 多频信号测量方法及系统
CN110286253A (zh) 一种自适应探头阻抗匹配方法及装置
KR940002720B1 (ko) 파형해석장치의 레벨교정방법 및 교정장치
CN114691437A (zh) 一种测试校正装置及方法
CN109884571B (zh) 一种基于非标准器多传感器融合的直流互感器计量方法
JP2010286453A (ja) 寄生成分測定装置及び寄生成分測定方法
US10955462B2 (en) Apparatus and method for frequency characterization of an electronic system
US20170097386A1 (en) Apparatus and methods for measuring electrical current
US11719663B2 (en) Measuring apparatus
KR101832190B1 (ko) 보정 기능을 가지는 부분 방전 진단 장치 및 방법
CN211656149U (zh) 通讯信号校准装置及通讯信号检测系统
Pogliano et al. Traceability for accurate resistive dividers
CN109581193B (zh) 电路滤波功能的检测方法、检测装置及计算机存储介质
CN113884739B (zh) 一种宽频电压分压器装置及刻度因数标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776140

Country of ref document: EP

Kind code of ref document: A1