WO2015154272A1 - 橡塑造粒机械的喂料方法及装置 - Google Patents

橡塑造粒机械的喂料方法及装置 Download PDF

Info

Publication number
WO2015154272A1
WO2015154272A1 PCT/CN2014/075036 CN2014075036W WO2015154272A1 WO 2015154272 A1 WO2015154272 A1 WO 2015154272A1 CN 2014075036 W CN2014075036 W CN 2014075036W WO 2015154272 A1 WO2015154272 A1 WO 2015154272A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeding
screw
section
granulation
channel
Prior art date
Application number
PCT/CN2014/075036
Other languages
English (en)
French (fr)
Inventor
喻成进
Original Assignee
喻成进
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 喻成进 filed Critical 喻成进
Priority to PCT/CN2014/075036 priority Critical patent/WO2015154272A1/zh
Publication of WO2015154272A1 publication Critical patent/WO2015154272A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder

Definitions

  • the present invention relates to a method of feeding a rubber shaped granule machine.
  • the invention also relates to a feeding device for an oak shaped granulating machine dedicated to the method. Background technique
  • a commonly used rubber-grained mechanical composition includes a granulating screw that is installed in a granulation passage in the lower feed.
  • a granulating screw that is installed in a granulation passage in the lower feed.
  • many loose and foamy materials such as fibrous and film-like materials, are often encountered. Such materials will be difficult to feed during the granulation process. Material problem. If sufficient material is not supplied to the granulator screw of the screw granulator to maintain a higher filling rate on the granulating screw, the capacity of the screw granulator will be greatly reduced.
  • the current screw granulator feeding in addition to the basic elimination of manual feeding, mainly has a hopper freely feeding by the gravity of the material itself, a forced feeding with a conical screw located above the granulation screw and perpendicular to the axis of the granulation screw Material, the single-screw and double-cone screw forced feeding on the side of the granulating screw and perpendicular to the argon screw axis, the friction heating, and the material is fed from the side into the feeding system of the granulating screw by centrifugal force.
  • the free feeding of the hopper by gravity of the material itself is only applicable to the block material, and it is basically unsuitable for loose materials such as fibrous, film-like, foaming; the upper position is perpendicular to the main granulation screw Forced feeding of the screw, due to the small area connected with the granulating screw, the material cannot quickly fill the granulating screw, which affects the capacity of the granulator; when the forced feeding speed is too high, too much material is fed.
  • the material When the material cannot be quickly filled into the groove of the main granulating screw, the material will accumulate at the lower end of the screw of the forced feeding device, causing blockage of the material; forced feeding of the vertical granulation screw on the side of the single screw and the double taper screw
  • the problem of the material is basically the same as the forced feeding of the upper granulated screw with the conical screw of the main granulating screw; as for the frictional heating, the centrifugal force of the high-speed rotation feeds the material from the side into the feeding system of the granulating screw, in the rotary knives Under the action of the material, when the material can not be fed into the main granulating screw, the material will be taken away by the rotating knife, which solves the problem of jamming, but there is still a small feeding port area.
  • the first technical problem solved by the present invention is to provide a feeding method for an oak molding machine.
  • a second technical problem solved by the present invention is to provide a feeding device dedicated to the above method.
  • the technical solution adopted by the present invention is:
  • the invention relates to a feeding method for an oak-shaped granulating machine, which is characterized in that: on the basis of a granulating screw in a feeding section of a granulation machine and a granulation screw in a feeding pass, the diameter of the blanking pass is increased, in granulation On the upper side of the channel, two feeding channels which are symmetrical and parallel to the axis of the granulation channel are added, and the three channels are connected to each other. Two opposite-direction screws with the same diameter and pitch are rotated in the feeding channel, and the upper end of the lower material is connected.
  • the oppositely rotating feeding screw winds the material into the granulating screw which is fed into the lower part, and some of the material is filled into the screw groove of the granulating screw, and the filled material is under the action of the granulating screw Advancing forward and gradually melting, the material that does not enter the granulating screw is pushed by the feeding screw under the action of the feeding screw, starts to melt after heating, reduces the volume and is re-entered into the granulating screw, and a part is again Fill in In the groove of the granulating screw, the material is repeatedly filled into the groove of the granulating screw several times until the material is completely filled into the sizing screw groove, and is advanced and completely melted by the granulation screw.
  • the material when the material is filled into the groove of the granulating screw multiple times, the material gradually melts and reduces the volume, and finally satisfies the filling rate of the granulating screw, ensuring that the granulator can reach the designed capacity.
  • the technical solution adopted by the present invention is:
  • the utility model relates to a feeding device for an rubber molding machine, which comprises a granulating screw installed in a granulation passage in a lower material passage, a feeding port is opened at the upper end of the material feeding, and a material is provided above the feeding port.
  • the outer surface of the lower material is closely attached to the heating ring, and the feature is: the feeding passage above the granulation channel has two feeding channels symmetrically parallel to the granulation channel, and the two feeding channels intersect.
  • a filling channel is connected to the granulation channel at the lower part of the intersecting feeding channels, and a feeding screw is arranged in the feeding channel, and the two feeding screws are counter-rotating screws having the same pitch and opposite rotation.
  • the present invention can further have the following specific and complete structures:
  • the center distance of the feeding screw and the granulating screw is greater than the sum of the radius of the feeding screw and the granulating screw, and the gap between the feeding screw and the granulating screw is 3 mm-100 mm ;
  • the inlet width of the filling channel is It is 50%-90% of the diameter of the granulation screw.
  • the gap between the granulation channel and the granulation screw is 0. lmm-2. 5mm.
  • the feeding screw is composed of a shaft head section, a thread section and a tapered section in turn.
  • the thread of one of the feeding screws corresponds to the center of the thread groove of the other feeding screw, the thread crest peak of one of the feeding screws and the bottom groove of the thread groove of the other feeding screw It is lmm-lOOmm; the feed screw diameter is greater than or equal to the diameter of the granulation screw.
  • the unloading pass is divided into a front flange section, a lower feed section, an initial compression section, a continuous feeding section, a conical clearing section, a melt compression section and a rear flange section in the axial direction;
  • the front flange section The length of the threaded section of the feeding section, the initial compression section and the continuous feeding section is the same as the length of the threaded section of the feeding screw, and the tapered clearing section has the same length as the tapered section of the feeding screw;
  • the front flange section is provided with a front flange, The center of the front flange coincides with the center of the discharge pass, and the length of the front flange section is calculated from the front end face of the front flange to the front end face of the lower feed section;
  • the lower end of the discharge opening has a lower opening
  • the length of the feeding section is 2-4 times the thread pitch of the feeding screw;
  • the initial compression section an ellipse is formed on the end surface of the lower opening, the
  • the continuous feeding section starts from the end of the initial compression section,
  • the length is 0. 5-2 times the feeding screw pitch
  • the conical clearing section the upper part is matched with the feeding screw taper section, and the lower part is: the trapezoidal surface of a vertical feeding channel is cut along the feeding channel axis a space formed by the bottom surface of the first compression section, the upper two vertices of the trapezoidal surface are two tapered vertices, and the lower two points are through two tapered vertices and perpendicular to the filling channel and the filling channel inlet Two points intersecting;
  • the length of the conical clearing section is the height of the conical cone of the double cone feeding screw;
  • the starting surface of the molten compression section is a trapezoidal surface formed by the conical clearing section, and is inclined downwardly Sampling to the molten compression space formed by the section of the granulation channel, the length of the axial direction of the feed channel for this space; the starting face of the rear flange section and the end face of
  • the granulation machine is provided with a three-axis gear box, one end of the input shaft is connected with the output shaft of the reduction gear box of the original driving granulation screw, and the other end is an output end, and the granulation screw is connected, and the input shaft drives a sub-shaft through the gear rotation,
  • the secondary shaft is connected to a feed screw, and the secondary shaft is driven by the gear to drive the other secondary shaft, and the other secondary shaft Connect another feed screw.
  • the hopper is provided with a hopper on the discharge opening, and the hopper is fixed on the lower material through the two locking hoops.
  • the locking hoop is designed to be semicircular, and the middle is connected by a nut, and the two sides of the hopper are provided with an observation port.
  • a pressure plexiglass door is installed on the observation port, and a limit switch is installed outside the plexiglass door;
  • a feeding box is installed on the hopper, and a pair of parallel inwardly rotating drums are installed at the lower end of the feeding box, one of which is installed There is a spring compression device.
  • the invention has compact structure and greatly improved the efficiency of the granulator.
  • the design has multiple repeated feedings to the granulation screw, the first effective realization of the main granulation screw filling rate, and the second when feeding Too many times, the material can be returned through the counter-feeding screw to ensure that the granulator feed is stuck.
  • Figure 1 is a schematic view of the principle of the granulator with the present invention
  • Figure 2 is a front elevational view of the granulator with the present invention
  • Figure 3 is a top plan view of Figure 2;
  • Figure 4 is a perspective view of Figure 2;
  • Figure 5 is a left side view of Figure 2;
  • Figure 6 is a right side view of Figure 2;
  • Figure 7 is a perspective view of the blank of the present invention.
  • Figure 8 is a front view of the blanking of the present invention.
  • Figure 9 is a top plan view of Figure 8.
  • Figure 10 is a left side view of Figure 8.
  • Figure 11 is a right side view of Figure 8.
  • Figure 12 is a vertical cross-sectional view along the axis of the granulation channel of Figure 8 (cross-sectional view taken along line A-A of Figure 11);
  • Figure 13 is a schematic vertical cross-sectional view along the axis of one of the feeding passages of Figure 8 (taken along line B-B of Figure 11);
  • Figure 14 is a horizontal cross-sectional view of Figure 12 (a cross-sectional view taken along line CC of Figure 12);
  • Figure 15 is a second horizontal cross-sectional view of Figure 12 (a cross-sectional view taken along line DD of Figure 12);
  • Figure 16 is a cross-sectional view along Figure 12 EE line cross-sectional view (front flange section);
  • Figure 17 is a cross-sectional view taken along line FF of Figure 12 (cutting port section);
  • Figure 18 is a cross-sectional view taken along line GG of Figure 12 (initial position of the initial compression section);
  • Figure 19 is a schematic cross-sectional view along line HH of Figure 12 (intermediate position of the initial compression section);
  • Figure 20 is a cross-sectional view taken along line I-I of Figure 12 (the end position of the initial compression section);
  • Figure 21 is a cross-sectional view taken along line J-J of Figure 12 (continuous feeding);
  • Figure 22 is a cross-sectional view taken along line K-K of Figure 12 (starting position of the tapered cleaning section);
  • Figure 23 is a cross-sectional view taken along line L-L of Figure 12 (middle position of the tapered clearing section);
  • Figure 25 is a cross-sectional view taken along line N-N of Figure 8 (middle position of the molten compression section);
  • Figure 26 is a cross-sectional view taken along line 0-0 of Figure 12 (end position of the molten compression section);
  • Figure 27 is a cross-sectional view taken along line P-P of Figure 12 (rear flange section);
  • Figure 28 is a schematic view of a feeding screw
  • Figure 29 is a schematic view of the engagement of the double feed screw
  • Figure 30 is a perspective view of the gear box
  • Figure 31 is a front view of Figure 30.
  • the feeding method of the rubber molding machine of the present invention adds the diameter of the blanking pass on the basis of the granulation screw in the feed passage and the granulation passage of the existing granulation machine feeding section.
  • two feeding channels are arranged symmetrically parallel to the axis of the granulation channel.
  • the three channels are connected to each other.
  • Two feeds with the same diameter and pitch are rotated in the feeding channel.
  • the material screw has a feeding port to the feeding channel at the upper end of the material feeding, a hopper is arranged above the feeding port, and a heating ring is closely attached to the outer surface of the material feeding. The heating ring provides the required temperature for the three screws in the unloading pass and the unloading pass.
  • the material enters from the feed port and falls on the rotating feed screw, and the feed screw winds the material into the granulation screw fed below. Part of the material is filled into the groove of the granulating screw, and the filled material is pushed forward by the granulation screw and gradually melted. The material that does not enter the granulation screw is driven by the feeding screw. The propulsion is started to melt after heating, the volume is reduced and re-entered into the granulating screw, and a part is again filled into the groove of the granulating screw, and the material is repeatedly filled into the granulating screw several times. The groove, until the material is completely filled into the granulating screw groove, advances and completely melts under the action of the granulation screw. During the above process, the material gradually melts when it is filled into the groove of the granulation screw multiple times. And reduce the volume, and finally meet the filling rate of the granulation screw to ensure that the granulator can reach the designed capacity.
  • the feeding device dedicated to the feeding method of the rubber molding machine described above is as shown in Fig. 1:
  • the rubber molding machine includes a granulating screw 3 installed in the granulation passage 2 in the lower material passage 1, and the material is passed through
  • the upper end is provided with a feed port 4, and the feed port 4 is provided with a hopper 5, the outer surface of the lower material is closely attached to the heating ring 6, and the lower material passage above the granulation channel is opened in two symmetry and parallel to the granulation
  • the feeding channel 7 of the channel intersects the two feeding channels, and a filling channel 9 is connected to the granulation channel at the lower part of the intersecting feeding channels, and a feeding screw 8 is arranged in the feeding channel, and the two feeding screws have An anisotropic screw of the same diameter and pitch that rotates toward each other.
  • a feeding screw 8 is disposed in the feeding passage 7, and the feeding screw 8 is composed of a shaft head section 801, a threaded section 802 and a tapered section 803, and the two feeding screws 8 have the same diameter and a pitch opposite (inward) rotation.
  • the opposite direction (shown in Figure 1) is the screw, as shown in Figure 28.
  • the thread of one of the feeding screws 8 corresponds to the center of the thread groove of the other feeding screw 8, and the center distance of the two feeding screws 8 is smaller than the sum of the radii of the two feeding screws 8. That is, the center distance of the two feeding channels 7 is less than the sum of the radii of the two feeding channels 7, and the two channels are communicated, and the gap between the thread crest peak of one feeding screw and the thread groove of the other feeding screw is lmm-100 mm.
  • the feed screw 8 has a diameter greater than or equal to the diameter of the granulating screw 3, as shown in FIG.
  • the discharge pass 1 is divided into a front flange section 101, a feed port 4 section 102, an initial compression section 103, a continuous feed section 104, a tapered clear section 105, a melt compression section 106 and a rear flange section in the axial direction. 107, each section is fed
  • the spatial variation of the track 7 and the different functions are defined; wherein the front flange section 101, the feed port 4 section 102, the initial compression section 103, the continuous feed section 104 and the threaded section 802 of the feed screw 8 are of the same length, tapered
  • the section 105 is the same length as the tapered section 803 of the feed screw 8, as shown in Figures 12 and 13.
  • the front flange section 101 is provided with a flange on the outer end surface of the lower material passage, and the center of the flange coincides with the center of the material discharge passage 1 from the front end surface of the flange to the front end surface of the feed port 4, the flange A cross-sectional view of the segment is shown in FIG.
  • the upper end of the feed opening 102 of the feed port section 102 has a feed port 4 to a feed channel 7 for material feeding, a thread pitch of a feed screw 8 of 2-4 times in length, and material entering from the feed port. Dropped on the top of the feed screw, fed through the feed screw, fed from the fill channel to the granulation screw, and a cross-sectional view of the feed port section is shown in FIG.
  • the initial compression section 103 has an ellipse on the end surface of the lower opening, the upper side of the ellipse is higher than the upper edge of the feeding passage 7, lower than the outer circle of the lower material passage 1, and the elliptical surface is inclined downward along the axial direction of the feeding passage 7.
  • the cut-out is staked to the cross section of the feed passage to form a contracted initial compression space.
  • the length of the initial compression section 103 is the axial length of the feed passage 7 for this space.
  • the primary purpose of the initial compression section is to cause the feed screw not to be caught. The material can be compressed and continue to be fed by the feeding screw after passing through the lower opening section.
  • the initial compression section is shown in Fig. 18, Fig. 19 and Fig. 20.
  • the continuous feeding section 104 starts from the end of the initial compression section 103 and has a length of 0. 5-2 times the double feed screw 8 pitch.
  • the main function is to ensure that the feeding screw further entrains the material into the melted filling channel.
  • 9 Filling into the groove of the granulating screw, the material starts to melt and reduce the volume under the action of heating, the density of the material on the granulating screw is increased, and the space is released to allow more materials to be filled, and the cross section of the continuous feeding section is as Figure 21 shows.
  • the upper portion of the conical clearing section 105 is partially overlapped with the upper portion of the tapered section 803 of the feeding screw 8, and the lower part is: a space formed by cutting the trapezoidal surface of a vertical feeding passage along the axis of the feeding passage to the bottom surface of the initial compression section.
  • the upper two vertices of the trapezoidal surface are two tapered vertices, and the lower two points are two points passing through the two tapered vertices and perpendicular to the filling channel and the filling material channel inlet;
  • the length of the section 105 is the height of the conical section of the feeding screw 8, and the function of the conical clearing section is when the material on the feeding screw runs to the conical section, due to the partial gap between the feeding screw and the conical clearing section Cooperating, the material is cleaned and falls into the lower part of the conical clearing section, the lower part of the space is connected with the filling material passage 9, and the material is fed to the granulating screw.
  • the cross-sectional view of the conical clearing section is shown in Fig. 22 and Fig. 23. Figure 24 shows.
  • the starting surface of the molten compression section 106 is a trapezoidal surface formed by the tapered cleaning section 105, and is cut obliquely downward to the molten compression space formed by the section of the granulation passage, and the length is the axial height of the feeding passage 7 of the space.
  • the cross-sectional view of the melt compression section is shown in Fig. 24 and Fig. 25. Figure 26 shows.
  • the starting face of the rear flange section 107 coincides with the end face of the molten compression section 106, and the end is provided with a rear flange, and the center of the rear flange coincides with the center of the granulating screw 3 for use in the unit connected to the rear section.
  • the length is 50mm-300mm, as shown in Figure 7-27.
  • the present invention does not require a separate driving device to drive the feeding screw 8, and a gearbox 15 having three shafts is added to the original granulating machine, and the input shaft 16 is added.
  • One end is connected to the output shaft of the reduction gear box of the original driving granulation screw 3, the other end of the input shaft 16 is the output end 17, the output end 17 is connected to the granulating screw 3, and the input shaft 16 drives the first sub-shaft 18 through the gear rotation,
  • a pair of shafts is connected to a feeding screw, and the first countershaft is further driven by the gear to drive the second countershaft 19, and the second countershaft is connected to the other feeding screw, and the shafts are turned as shown in FIG.
  • the hopper 1 is provided with a hopper 5, and the hopper 5 is fixed on the lower material passage 1 by two locking hoops.
  • the locking hoop is designed to be semicircular, and the middle is connected by a nut, and the two sides of the hopper 5 are opened.
  • a feeding box is installed on the hopper 5, and a pair of rollers 11 rotating in parallel inward (as shown in Fig. 1) are mounted at the lower end of the feeding box 10, wherein one of the rollers is equipped with a spring compression device 12. Ensure that the material is pre-compressed and then fall in the middle of the feed screw 8, as shown in Figure 1.
  • the main problem solved by the present invention is to convert the current vertical feed mode perpendicular to the granulation screw 3 into a multi-point feeding mode parallel to the granulation screw 3.
  • the invention is mainly composed of the following parts:
  • the first part is a blanking pass assembly 20, which is composed of two oppositely rotating feeding screws 8, parallel with the granulating screw 3 and the lower material passing 1;
  • the second part is The hopper 5, the hopper 5 is fixed on the upper surface of the blanking pass 1 by the hoop;
  • the third part is the feeding box 10, and the feeding box 10 is mounted on the hopper 5, and a pair of rollers 11 with the spring pressing mechanism 12 are installed therein;
  • the fifth part is a gear box 15, and the gear box 15 provides power for the feeding screw 8 and the granulating screw 3;
  • the sixth part is the second indirect body 22, the second indirect body 22 is connected to the gear box 15 and the granulator reduction box, the seventh part is the adding ring 6, and the heating ring 6 is closely attached to the outer circular surface of the blanking pass 1, as shown in the figure 3 is

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

橡塑造粒机械的喂料方法及装置:在现有造粒机械喂料段下料通(1)和下料通造粒通道(2)里的造粒螺杆(3)基础上,将下料通(1)的直径加大,在造粒通道(2)的上面,增设两个对称且平行于造粒通道轴线的喂料通道(7),三个通道相互连通,在喂料通道(7)里增设两条具有相同直径和螺距、相向转动的异向喂料螺杆(8),下料通(1)上端开有进料口(4)至喂料通道(7),从进料口(4)进入的物料经喂料螺杆(8)反复将物料喂入造粒螺杆(3)里。该喂料装置结构紧凑,大大提高了造粒机的效率,其设计具有的多次反复喂入造粒螺杆(3),第一有效实现了主造粒螺杆填满率,第二当喂料太多的时候,物料能够通过异向双喂料螺杆(8)返回上来,确保防止造粒机喂料卡死的问题。

Description

橡塑造粒机械的喂料方法及装置 技术领域
本发明涉及一种橡塑造粒机械的喂料方法。 本发明还涉及专用于所述方法的 橡塑造粒机械的喂料装置。 背景技术
常用的橡塑造粒机械组成包括安装在下料通中造粒通道内的造粒螺杆。 在橡 塑行业的造粒过程中, 特别是在再生塑料行业里, 经常遇见很多疏松、 发泡的物 料, 比如纤维状的、 薄膜状的物料, 这样的物料会在造粒过程中产生难喂料的问 题。 而如果不能提供足够的物料喂给螺杆造粒机的造粒螺杆, 保持造粒螺杆上较 高填满率, 那将大大降低螺杆造粒机的产能。 现行的螺杆造粒机喂料, 除了基本 淘汰的手工喂料外, 主要有依靠物料本身重力的料斗自由喂料、 位于造粒螺杆上 方且垂直于造粒螺杆轴线的带锥形螺杆的强制喂料、 在造粒螺杆侧面并垂直造粒 螺杆轴线的单螺杆及双锥螺杆强制喂料、 摩擦发热后靠离心力将物料从侧面喂入 造粒螺杆的喂料系统。 分析这些喂料方法, 依靠物料本身重力的料斗自由喂料只 适用于块状的物料, 对于纤维状、 薄膜状、 发泡等疏松的物料基本不能使用; 上 位垂直于主造粒螺杆带锥形螺杆的强制喂料, 由于和造粒螺杆相连的面积较小, 物料不能迅速的将造粒螺杆填满, 影响了造粒机的产能; 当强制喂料转速太高, 喂给的物料太多, 物料不能迅速的填进主造粒螺杆的螺槽里时, 物料就会堆积在 强制喂料装置的螺杆下端部, 造成物料的堵塞; 单螺杆及双锥螺杆侧面垂直造粒 螺杆的强制喂料所存在的问题和上位垂直于主造粒螺杆带锥形螺杆的强制喂料基 本相同; 至于摩擦发热后靠高速旋转的离心力将物料从侧面喂入造粒螺杆的喂料 系统, 在旋转刀的作用下, 当物料不能喂入主造粒螺杆时, 物料会被旋转刀带走, 解决了卡死的问题, 但还是存在喂料口面积小, 主造粒螺杆的填满率不高的问题; 此外还有能耗大的问题。 从上面的分析看出, 现行的这些喂料方法中, 都采用了 与主造粒螺杆垂直方向的喂料方式, 喂料装置只能在 1-2 螺距的造粒螺杆的螺纹 面上喂料, 如果在物料疏松、 发泡等情况下, 无法达到造粒螺杆螺槽设计的填满 率, 大大降低了螺杆造粒机的效益。 发明内容
本发明解决的第一个技术问题, 就是提供一种橡塑造粒机械的喂料方法。 本发明解决的第二个技术问题, 就是提供一种专用于上述方法的喂料装置。 采用本发明的橡塑造粒机械喂料方法和装置, 即便是在物料疏松、 发泡等情 况下, 也无须过高的喂料螺杆转速, 即可将物料有效地填满造粒螺杆的螺槽, 且 不会造成物料的堵塞, 大大提高螺杆造粒机的产能和效益。
解决上述第一个技术问题, 本发明采用的技术方案是:
一种橡塑造粒机械的喂料方法, 其特征是: 在造粒机械喂料段下料通和下料 通里的造粒螺杆基础上, 将下料通的直径加大, 在造粒通道的上面, 增设两个对 称且平行于造粒通道轴线的喂料通道, 三个通道相互连通, 在喂料通道里增设两 条具有相同直径和螺距相向转动的异向螺杆, 下料通上端开有进料口至喂料通道, 下料通外表面紧贴有发热圈, 发热圈提供所需的温度给下料通和下料通内的三条 螺杆, 物料从进料口进入掉在转动的喂料螺杆上, 相向转动的喂料螺杆将物料卷 入送进下方的造粒螺杆上, 部分物料被填入造粒螺杆的螺槽里, 被填入的物料在 造粒螺杆的作用下向前推进并逐渐熔融, 没有进入造粒螺杆的物料在喂料螺杆的 作用下, 向前推进在加热的情况下开始熔融后减少体积并再次卷入到造粒螺杆上, 又有一部分被再次的填入造粒螺杆的螺槽里, 物料就这样多次反复的填入造粒螺 杆的螺槽, 直至物料最后完全填入造粒螺杆螺槽, 在造粒螺杆的作用下向前推进 并完全熔融, 上述过程中, 物料在多次的填入造粒螺杆的螺槽时, 逐渐熔融和减 少体积, 最后满足造粒螺杆的填满率, 确保造粒机能达到设计的产能。
解决上述第二个技术问题, 本发明采用的技术方案是:
一种橡塑造粒机械的喂料装置, 所述橡塑造粒机械包括安装在下料通中造粒 通道内的造粒螺杆, 下料通上端开有进料口, 进料口上方设有料斗, 下料通外表 面紧贴发热圈, 其特征是: 所述造粒通道上方的下料通中, 开有两条对称且平行 于造粒通道的喂料通道, 两喂料通道相交, 相交的两喂料通道下部开有一填入料 通道连通造粒通道, 喂料通道内设有喂料螺杆, 两条喂料螺杆为具有相同螺距相 向转动的异向螺杆。
如此, 在螺杆造粒过程中, 即便是疏松物料本喂料装置也能提供足够的物料 喂给造粒螺杆, 确保造粒螺杆上具有最高的填满率。
在上述基础上, 进一步地本发明还可以有以下各种具体的完善结构: 所述的喂料螺杆和造粒螺杆的中心距大于喂料螺杆和造粒螺杆半径之和, 喂 料螺杆和造粒螺杆之间的间隙为 3mm-100mm;所述的填入料通道入口宽度为造粒螺 杆直径的 50%-90%。
所述的喂料通道与喂料螺杆的配合间隙为 0. lmm-2mm;所述的造粒通道与造粒 螺杆的配合间隙为 0. lmm-2. 5mm。
所述的喂料螺杆都依次由轴头段、 螺纹段和锥形段组成。
所述的两条喂料螺杆中, 任一条喂料螺杆的螺纹牙对应于另一条喂料螺杆的 螺纹槽中心, 任一条喂料螺杆的螺纹牙顶峰和另一条喂料螺杆的螺纹槽底部间隙 为 lmm-lOOmm; 所述的喂料螺杆直径大于或等于造粒螺杆的直径。
所述的下料通沿轴向依次分为前法兰段、 下料口段、 初压缩段、 持续喂料段、 锥形清料段、 熔融压缩段和后法兰段; 前法兰段、 下料口段、 初压缩段、 持续喂 料段与喂料螺杆的螺纹段长度相同, 锥形清料段与喂料螺杆的锥形段长度相同; 前法兰段设置有前法兰, 前法兰的中心和下料通的中心重合, 前法兰段长度计算 从前法兰前端面起到下料口段的前端面为止; 下料口段的下料通上端开有一个下 料口至喂料通道, 下料口段长度为 2-4倍的喂料螺杆螺纹螺距; 初压缩段: 在下 料口末端面上开一个椭圆, 椭圆的上边高于喂料通道上边缘, 低于下料通的外圆, 以椭圆面沿喂料通道的轴向倾斜向下切除放样至喂料通道截面上, 形成一个收缩 的初压缩空间, 初压缩段的长度为此空间延喂料通道的轴向长度; 持续喂料段从 初压缩段末端开始, 长度为 0. 5-2倍喂料螺杆螺距; 锥形清料段: 上部分与喂料 螺杆锥形段间隙配合, 下部分为: 以一个垂直喂料通道的梯形面沿喂料通道轴线 切除至初压缩段的底面形成的空间, 所述的梯形面的上面两个顶点为两锥形顶点、 下面的两个点为经过两锥形顶点并垂直于填入料通道与填入料通道入口相交的两 个点; 所述锥形清料段的长度为双锥喂料螺杆轴尾锥形的高度; 熔融压缩段的起 始面为锥形清料段形成的梯形面, 倾斜向下切除放样至造粒通道截面形成的熔融 压缩空间, 长度为此空间的喂料通道的轴向高度; 后法兰段的起始面和熔融压缩 段的结束面, 末端设置有后法兰, 后法兰的中心和造粒螺杆的中心重合, 长度为 50讓一 300讓。
所述的造粒机械增设有三轴齿轮箱, 其输入轴一端联接原驱动造粒螺杆的减 速箱输出轴、 另一端为输出端, 连接造粒螺杆, 输入轴通过齿轮转动驱动一条副 轴, 该副轴连接一条喂料螺杆, 该副轴再通过齿轮转动驱动另一副轴, 另一副轴 连接另一喂料螺杆。
所述的下料通下料口上设有料斗, 料斗用两个锁紧抱箍固定在下料通上, 锁 紧抱箍设计成半圆状, 中间用螺母相连, 料斗的两侧面开有观察口, 观察口上安 装有压力的有机玻璃门, 有机玻璃门外面安装有限位开关; 在料斗上安装有入料 箱, 入料箱下端安装有一对平行的异向向内转动的滚筒, 其中有一个滚筒安装有 弹簧压缩装置。
有益效果: 本发明结构紧凑, 大大提高了造粒机的效率, 其设计具有的多次 反复给造粒螺杆喂料, 第一有效的实现了主造粒螺杆填满率, 第二当喂料太多的 时候, 物料能通过异向双喂料螺杆返回上来, 确保造粒机喂料卡死的问题。 附图说明
图 1为带有本发明的造粒机原理示意图;
图 2为带有本发明的造粒机主视示意图;
图 3为图 2的俯视示意图;
图 4为图 2的立体示意图;
图 5为图 2的左视示意图;
图 6为图 2的右视示意图;
图 7为本发明的下料通立体示意图;
图 8为本发明的下料通主视示意图;
图 9为图 8的俯视示意图;
图 10为图 8的左视示意图;
图 11为图 8的右视示意图;
图 12为沿图 8造粒通道轴线的垂直剖视示意图之一 (沿图 11的 A-A线剖视 图);
图 13为沿图 8喂料通道之一轴线的垂直剖视示意图之二 (沿图 11的 B-B线 剖视图);
图 14为图 12的水平剖视示意图之一 (沿图 12的 C-C线剖视图); 图 15为图 12的水平剖视示意图之二 (沿图 12的 D-D线剖视图); 图 16为沿图 12的 E-E线剖视示意图 (前法兰段);
图 17为沿图 12的 F-F线剖视示意图 (下料口段); 图 18为沿图 12的 G-G线剖视示意图 (初压缩段起始位置); 图 19为沿图 12的 H-H线剖视示意图 (初压缩段中间位置);
图 20为沿图 12的 I-I线剖视示意图 (初压缩段结束位置);
图 21为沿图 12的 J-J线剖视示意图 (持续喂料);
图 22为沿图 12的 K-K线剖视示意图 (锥形清料段起始位置);
图 23为沿图 12的 L-L线剖视示意图 (锥形清料段中间位置);
图 24为沿图 12的 M-M线剖视示意图 (锥形清料段结束位置=熔融压缩段起始 位置);
图 25为沿图 8的 N-N线剖视示意图 (熔融压缩段中间位置);
图 26为沿图 12的 0-0线剖视示意图 (熔融压缩段结束位置);
图 27为沿图 12的 P-P线剖视示意图 (后法兰段);
图 28为喂料螺杆示意图;
图 29为双喂料螺杆啮合示意图;
图 30为齿轮箱立体示意图;
图 31为图 30的主视图。
图中: 1-下料通, 2-造粒通道, 3-造粒螺杆, 4-进料口, 5-料斗, 6-发热圈, 7-喂料通道, 8-喂料螺杆, 9-填入料通道, 10-入料箱, 11-对压滚筒, 12-弹簧压 紧机构, 13-有机玻璃门, 14-限位开关, 15-齿轮箱, 16-输入轴, 17-输入轴输出 端, 18-第一副轴, 19-第二幅轴, 20-下料通总成, 21-第一连接体, 22-第二连接 体, 101-下料通前法兰段, 102-下料通下料口段, 103-下料通初压缩段, 104-下 料通持续喂料段, 105-下料通锥形清料段, 106-下料通熔融压缩段, 107-下料通 后法兰段, 801-轴头段, 802-螺纹段, 803-锥形段, A-顺时针转动, B-逆时针转 动。 具体实施方式
参见说明书附图, 本发明的橡塑造粒机械的喂料方法, 在现有的造粒机械喂 料段下料通和造粒通道里的造粒螺杆基础上, 将下料通的直径加大, 在造粒通道 的上面, 增设两个对称且平行于造粒通道轴线的喂料通道, 三个通道相互连通, 在喂料通道里增设两条具有相同直径和螺距相向转动的异向喂料螺杆, 下料通上 端开有进料口至喂料通道, 进料口上方设有料斗, 下料通外表面紧贴有发热圈, 发热圈提供所需的温度给下料通和下料通内的三条螺杆, 物料从进料口进入掉在 转动的喂料螺杆上, 喂料螺杆将物料卷入送进下方的造粒螺杆上, 部分物料被填 入造粒螺杆的螺槽里, 被填入的物料在造粒螺杆的作用下向前推进并逐渐熔融, 没有进入造粒螺杆的物料在喂料螺杆的作用下, 向前推进在加热的情况下开始熔 融后减少体积并再次卷入到造粒螺杆上, 又有一部分被再次的填入造粒螺杆的螺 槽里, 物料就这样多次反复的填入造粒螺杆的螺槽, 直至物料最后完全填入造粒 螺杆螺槽, 在造粒螺杆的作用下向前推进并完全熔融, 上述过程中, 物料在多次 的填入造粒螺杆的螺槽时, 逐渐熔融和减少体积, 最后满足造粒螺杆的填满率, 确保造粒机能达到设计的产能。
上述橡塑造粒机械的喂料方法专用的喂料装置, 如图 1 所示: 所述橡塑造粒 机械包括安装在下料通 1中造粒通道 2内的造粒螺杆 3,下料通 1上端开有进料口 4, 进料口 4上方设有料斗 5, 下料通外表面紧贴发热圈 6, 造粒通道上方的下料 通中, 开有两条对称且平行于造粒通道的喂料通道 7, 两喂料通道相交, 相交的两 喂料通道下部开有一填入料通道 9连通造粒通道, 喂料通道内设有喂料螺杆 8, 两 条喂料螺杆为具有相同直径和螺距相向转动的异向螺杆。
喂料通道 Ί与喂料螺杆 8的配合间隙为 0. lmm-2mm; 造粒通道 2与造粒螺杆 3 的配合间隙为 0. lmm-2. 5mm;喂料螺杆 8和造粒螺杆 3的中心距大于喂料螺杆 8和 造粒螺杆 3半径之和, 喂料螺杆 8和造粒螺杆 3之间的间隙为 3mm- 100mm; 两个 喂料通道 7与造粒通道 2的填入料通道 9入口宽度为造粒螺杆 3直径的 50%-90%, 确保被造粒螺杆 3卷入的物料能经该通道填入造粒螺杆 3的螺槽里。
喂料通道 7内设有喂料螺杆 8, 喂料螺杆 8由轴头段 801、 螺纹段 802和锥形 段 803组成, 两条喂料螺杆 8为具有相同直径和螺距相向(向内)转动的异向(如 图 1所示) 螺杆, 如图 28所示。
两条喂料螺杆 8中, 任一条喂料螺杆 8的螺纹牙对应于另一条喂料螺杆 8的 螺纹槽中心, 两条喂料螺杆 8的中心距小于两条喂料螺杆 8半径之和, 也即是两 喂料通道 7中心距小于两喂料通道 7的半径之和, 两通道相通, 任一条喂料螺杆 的螺纹牙顶峰和另一条喂料螺杆的螺纹槽底部间隙为 lmm-100mm,喂料螺杆 8直 径大于或等于造粒螺杆 3的直径, 如图 29所示。
下料通 1沿轴向依次分为前法兰段 101、 进料口 4段 102、 初压缩段 103、 持 续喂料段 104、 锥形清料段 105、 熔融压缩段 106和后法兰段 107, 各段以喂料通 道 7的空间变化和不同功能来定义; 其中前法兰段 101、 进料口 4段 102、 初压缩 段 103、持续喂料段 104与喂料螺杆 8的螺纹段 802长度相同, 锥形清料段 105与 喂料螺杆 8的锥形段 803长度相同, 如图 12、 图 13所示。
前法兰段 101在下料通的外端面设置有法兰, 法兰的中心和下料通 1 的中心 重合, 长度从所设的法兰前端面到进料口 4 的前面端面为止, 法兰段的剖视图如 图 16所示。
进料口段 102的下料通 1上端开有一个进料口 4至喂料通道 7, 供物料喂入, 长度为 2-4倍的喂料螺杆 8螺纹螺距, 物料从进料口进入, 掉在喂料螺杆的上面, 经喂料螺杆卷入, 从填入料通道喂给造粒螺杆, 进料口段的剖视图如图 17所示。
初压缩段 103在下料口末端面上开一个椭圆, 椭圆的上边高于喂料通道 7上 边缘, 低于下料通 1的外圆, 以椭圆面沿喂料通道 7的轴向倾斜向下切除放样至 喂料通道截面上, 形成一个收缩的初压缩空间, 初压缩段 103 的长度为此空间延 喂料通道 7 的轴向长度, 初压缩段主要目的是使没有被喂料螺杆卷入的物料, 在 经过下料口段后还能被压缩和继续被喂料螺杆卷入后喂料造粒螺杆, 初压缩段剖 视图如图 18、 图 19、 图 20所示。
持续喂料段 104从初压缩段 103末端开始,长度为 0. 5-2倍异向双喂料螺杆 8 螺距, 主要功能是确保喂料螺杆进一步的将物料卷入熔融后经填入料通道 9填入 造粒螺杆的螺槽里, 物料在加热的作用下开始熔融减少体积, 造粒螺杆上的物料 密度得到提高,释放出空间能让更多的物料填入,持续喂料段剖视图如图 21所示。
锥形清料段 105上部分与喂料螺杆 8锥形段 803上部分间隙配合, 下部分为: 以一个垂直喂料通道的梯形面沿喂料通道轴线切除至初压缩段的底面形成的空 间, 所述的梯形面的上面两个顶点为两锥形顶点、 下面的两个点为经过两锥形顶 点并垂直于填入料通道与填入料通道入口相交的两个点; 锥形清料段 105 的长度 为喂料螺杆 8锥形段的高度, 锥形清料段的功能是喂料螺杆上的物料运行至锥形 段时, 由于喂料螺杆与锥形清料段上部分间隙配合, 物料被清理落入锥形清料段 的下部分空间里, 下部分空间和填入料通道 9相连, 物料被喂给造粒螺杆, 锥形 清料段的剖视图如图 22、 图 23、 图 24所示。
熔融压缩段 106的起始面为锥形清料段 105形成的梯形面, 倾斜向下切除放 样至造粒通道截面形成的熔融压缩空间, 长度为此空间的喂料通道 7的轴向高度, 物料在熔融的情况下, 持续的喂入造粒螺杆, 熔融压缩段剖视图如图 24、 图 25、 图 26所示。
后法兰段 107的起始面和熔融压缩段 106的结束面一致, 末端设置有后法兰, 后法兰的中心和造粒螺杆 3 的中心重合, 供连接后段的机组用, 此段的长度为 50mm-300mm, 如图 7-27所示。
为了能更进一步的完善本发明, 在动力传动方面, 本发明不需要单独的驱动 装置来驱动喂料螺杆 8, 在原有的造粒机械中增设一个有三条轴的齿轮箱 15, 输 入轴 16的一端联接原驱动造粒螺杆 3的减速箱输出轴, 输入轴 16的另一端是输 出端 17, 输出端 17连接造粒螺杆 3, 同时输入轴 16通过齿轮转动驱动第一条副 轴 18, 第一副轴连接一条喂料螺杆, 第一副轴再通过齿轮转动驱动第二副轴 19, 第二副轴连接另一条喂料螺杆, 各轴转向如图 30所示。
下料通 1进料口 4上设有料斗 5, 料斗 5用两个锁紧抱箍固定在下料通 1上, 锁紧抱箍设计成半圆状, 中间用螺母相连, 料斗 5 的两侧面开有观察口, 观察口 上安装有压力的有机玻璃门 13, 有机玻璃门 13外面安装有限位开关 14, 当下料 过多时, 物料堆积在料斗 5 内, 物料压缩有机玻璃门使限位开关动作, 控制物料 的喂入; 在料斗 5上安装有入料箱, 入料箱 10下端安装有一对平行异向向内转动 (如图 1中所示) 的滚筒 11, 其中有一个滚筒安装有弹簧压缩装置 12, 确保物料 被预压缩后掉在喂料螺杆 8的中间, 如图 1所示。
本发明解决的主要问题就是将现行的垂直于造粒螺杆 3 的垂直一点喂料方式 转为平行与造粒螺杆 3的多点喂料方式。
本发明主要由以下几部分组成: 第一部分是下料通总成 20, 由两条异向转动 的喂料螺杆 8, 与之平行的造粒螺杆 3及下料通 1组成; 第二部分是料斗 5, 料斗 5用抱紧箍固定在下料通 1的上面; 第三部分是入料箱 10, 入料箱 10安装在料斗 5上面, 内装一对带弹簧压紧机构 12的滚筒 11 ; 第四部分第一连接体 21, 第一连 接体 21连接齿轮箱 15和下料通总成 20; 第五部分是齿轮箱 15, 齿轮箱 15提供 喂料螺杆 8和造粒螺杆 3的动力; 第六部分是第二间接体 22, 第二间接体 22连接 齿轮箱 15和造粒机减速箱, 第七部分是加入圈 6, 发热圈 6紧贴在下料通 1的外 圆面上, 如图 3所示。

Claims

权利 要求
1. 一种橡塑造粒机械的喂料方法, 其特征是: 在造粒机械喂料段下料通和下料通 里的造粒螺杆基础上, 将下料通的直径加大, 在造粒通道的上面, 增设两个对 称且平行于造粒通道轴线的喂料通道, 三个通道相互连通, 在喂料通道里增设 两条具有相同直径和螺距相向转动的异向螺杆, 下料通上端开有进料口至喂料 通道, 下料通外表面紧贴有发热圈, 发热圈提供所需的温度给下料通和下料通 内的三条螺杆, 物料从进料口进入掉在转动的喂料螺杆上, 相向转动的喂料螺 杆将物料卷入送进下方的造粒螺杆上, 部分物料被填入造粒螺杆的螺槽里, 被 填入的物料在造粒螺杆的作用下向前推进并逐渐熔融, 没有进入造粒螺杆的物 料在喂料螺杆的作用下, 向前推进在加热的情况下开始熔融后减少体积并再次 卷入到造粒螺杆上, 又有一部分被再次的填入造粒螺杆的螺槽里, 物料就这样 多次反复的填入造粒螺杆的螺槽, 直至物料最后完全填入造粒螺杆螺槽, 在造 粒螺杆的作用下向前推进并完全熔融, 上述过程中, 物料在多次的填入造粒螺 杆的螺槽时, 逐渐熔融和减少体积, 最后满足造粒螺杆的填满率, 确保造粒机 能达到设计的产能。
2. 一种专用于权利要求 1所述喂料方法的橡塑造粒机械喂料装置, 所述橡塑造粒 机械包括安装在下料通中造粒通道内的造粒螺杆, 下料通上端开有进料口, 进 料口上方设有料斗, 下料通外表面紧贴发热圈, 其特征是: 所述造粒通道上方 的下料通中, 开有两条对称且平行于造粒通道的喂料通道, 两喂料通道相交, 相交的两喂料通道下部开有一填入料通道连通造粒通道, 喂料通道内设有喂料 螺杆, 两条喂料螺杆为具有相同螺距相向转动的异向螺杆。
3. 根据权利要求 2所述的橡塑造粒机械喂料装置, 其特征是: 所述的喂料螺杆和 造粒螺杆的中心距大于喂料螺杆和造粒螺杆半径之和, 喂料螺杆和造粒螺杆之 间的间隙为 3讓-100讓; 所述的填入料通道入口宽度为造粒螺杆直径的 50%- 90%。
4. 根据权利要求 3所述的橡塑造粒机械喂料装置, 其特征是: 所述的喂料通道与 喂料螺杆的配合间隙为 0. lmm-2mm; 所述的造粒通道与造粒螺杆的配合间隙为 0. lmm-2. 5讓。
5. 根据权利要求 2所述的橡塑造粒机械喂料装置, 其特征是: 所述的喂料螺杆依 次由轴头段、 螺纹段和锥形段组成。
6. 根据权利要求 2所述的橡塑造粒机械喂料装置, 其特征是: 所述的两条喂料螺 杆中, 任一条喂料螺杆的螺纹牙对应于另一条喂料螺杆的螺纹槽中心, 任一条 喂料螺杆的螺纹牙顶峰和另一条喂料螺杆的螺纹槽底部间隙为 lmm-lOOmm; 所 述的喂料螺杆直径大于或等于造粒螺杆的直径。
7. 根据权利要求 2所述的橡塑造粒机械喂料装置, 其特征是: 所述的下料通沿轴 向依次分为前法兰段、 下料口段、 初压缩段、 持续喂料段、 锥形清料段、 熔融 压缩段和后法兰段; 前法兰段、 下料口段、 初压缩段、 持续喂料段与喂料螺杆 的螺纹段长度相同, 锥形清料段与喂料螺杆的锥形段长度相同; 前法兰段设置 有前法兰, 前法兰的中心和下料通的中心重合, 前法兰段长度计算从前法兰前 端面起到下料口段的前端面为止; 下料口段的下料通上端开有一个下料口至喂 料通道, 下料口段长度为 2-4倍的喂料螺杆螺纹螺距; 初压缩段: 在下料口末 端面上开一个椭圆, 椭圆的上边高于喂料通道上边缘, 低于下料通的外圆, 以 椭圆面沿喂料通道的轴向倾斜向下切除放样至喂料通道截面上, 形成一个收缩 的初压缩空间, 初压缩段的长度为此空间延喂料通道的轴向长度; 持续喂料段 从初压缩段末端开始, 长度为 0. 5-2倍喂料螺杆螺距; 锥形清料段: 上部分与 喂料螺杆锥形段间隙配合, 下部分为: 以一个垂直喂料通道的梯形面沿喂料通 道轴线切除至初压缩段的底面形成的空间, 所述的梯形面的上面两个顶点为两 锥形顶点、 下面的两个点为经过两锥形顶点并垂直于填入料通道与填入料通道 入口相交的两个点; 所述锥形清料段的长度为双锥喂料螺杆轴尾锥形段的高 度; 熔融压缩段的起始面为锥形清料段形成的梯形面, 倾斜向下切除放样至造 粒通道截面形成的熔融压缩空间, 长度为此空间的喂料通道的轴向高度; 后法 兰段的起始面即熔融压缩段的结束面, 末端设置有后法兰, 后法兰的中心和造 粒螺杆的中心重合, 长度为 50讓-300讓。
8. 根据权利要求 2所述的橡塑造粒机械喂料装置, 其特征是: 所述的造粒机械增 设有三轴齿轮箱, 其输入轴一端联接原驱动造粒螺杆的减速箱输出轴、 另一端 为输出端连接造粒螺杆, 输入轴通过齿轮转动驱动一条副轴, 该副轴连接一条 喂料螺杆,该副轴再通过齿轮转动驱动另一副轴,另一副轴连接另一喂料螺杆。
9. 根据权利要求 2所述的橡塑造粒机械喂料装置, 其特征是: 所述的下料通下料 口上设有料斗,料斗用两个锁紧抱箍固定在下料通上,锁紧抱箍设计成半圆状, 中间用连接件相连, 料斗的两侧面开有观察口, 观察口上安装有压力的有机玻 璃门, 有机玻璃门外面安装有限位开关; 在料斗上安装有入料箱, 入料箱下端 安装有一对平行的异向向内转动的滚筒, 其中有一个滚筒安装有弹簧压缩装 置。
PCT/CN2014/075036 2014-04-10 2014-04-10 橡塑造粒机械的喂料方法及装置 WO2015154272A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075036 WO2015154272A1 (zh) 2014-04-10 2014-04-10 橡塑造粒机械的喂料方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075036 WO2015154272A1 (zh) 2014-04-10 2014-04-10 橡塑造粒机械的喂料方法及装置

Publications (1)

Publication Number Publication Date
WO2015154272A1 true WO2015154272A1 (zh) 2015-10-15

Family

ID=54287115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075036 WO2015154272A1 (zh) 2014-04-10 2014-04-10 橡塑造粒机械的喂料方法及装置

Country Status (1)

Country Link
WO (1) WO2015154272A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700099979A1 (it) * 2017-09-06 2019-03-06 Colmec S P A Sistema di alimentazione per estrusore ed estrusore che lo incorpora

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286882A (en) * 1977-09-02 1981-09-01 Schiesser Ag Apparatus for the automatic, uniform drawing-in of elastomeric material into worm extruders
CN2897612Y (zh) * 2006-05-18 2007-05-09 孟祥书 塑料自动喂料机
CN200951607Y (zh) * 2006-08-29 2007-09-26 高庆山 聚合胶体高压挤出造粒机
CN101081539A (zh) * 2007-06-30 2007-12-05 张家港美星三和机械有限公司 挤出机中的喂料装置
CN202264376U (zh) * 2011-09-26 2012-06-06 东莞市利拿实业有限公司 一种造粒机的双锥喂料装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286882A (en) * 1977-09-02 1981-09-01 Schiesser Ag Apparatus for the automatic, uniform drawing-in of elastomeric material into worm extruders
CN2897612Y (zh) * 2006-05-18 2007-05-09 孟祥书 塑料自动喂料机
CN200951607Y (zh) * 2006-08-29 2007-09-26 高庆山 聚合胶体高压挤出造粒机
CN101081539A (zh) * 2007-06-30 2007-12-05 张家港美星三和机械有限公司 挤出机中的喂料装置
CN202264376U (zh) * 2011-09-26 2012-06-06 东莞市利拿实业有限公司 一种造粒机的双锥喂料装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700099979A1 (it) * 2017-09-06 2019-03-06 Colmec S P A Sistema di alimentazione per estrusore ed estrusore che lo incorpora
EP3453508A1 (en) * 2017-09-06 2019-03-13 COLMEC S.p.A. Extruder feeding assembly and extruder apparatus incorporating it

Similar Documents

Publication Publication Date Title
CN113333140B (zh) 一种纤维混凝土添加料纤维粉碎装置
TWI568560B (zh) 用於製備塑料材料的裝置
AT512148B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
AT512205B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
DE202012012589U1 (de) Vorrichtung zum Aufbereiten von Kunststoffmaterial
CN111660533A (zh) 一种防堵料型螺杆挤出机混料下料装置
WO2015154272A1 (zh) 橡塑造粒机械的喂料方法及装置
CN115503147A (zh) 一种pvc塑料颗粒造粒设备
CN108858895A (zh) 一种便于充分粉碎的塑料制品用破碎回收装置
CN216032361U (zh) 一种塑料管挤出机用搅拌式喂料装置
CN104526996B (zh) 一种高剪切高混炼塑化螺杆
CN102601886B (zh) 石头纸母粒挤出造粒机组
JP3168801U (ja) 脱水原料製造機
CN209832548U (zh) 一种单螺杆挤出机的杆筒
CN104972633B (zh) 橡塑造粒机械的喂料方法及装置
CN103349941A (zh) 一种新型对辊式造粒装置
CN106513134B (zh) 塑料颗粒的加工装置
CN215543525U (zh) 一种脱标机
CN208263391U (zh) 一种间断下料的挤塑机
CN203331391U (zh) 一种有机硅塑料颗粒用锥形双螺杆喂料机
CN204505769U (zh) 一种塑料挤出机
CN207669745U (zh) 一种螺杆挤出机
CN210026232U (zh) 一种双螺杆挤出机用螺杆结构
CN209076891U (zh) 一种酚醛模塑料磨研机的输料装置
CN220841359U (zh) 一种通过废旧塑料瓶再生pet树脂的制粒成型装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889028

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/03/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14889028

Country of ref document: EP

Kind code of ref document: A1