WO2015152577A2 - 골 질환 예방 및 치료용 조성물 - Google Patents

골 질환 예방 및 치료용 조성물 Download PDF

Info

Publication number
WO2015152577A2
WO2015152577A2 PCT/KR2015/003081 KR2015003081W WO2015152577A2 WO 2015152577 A2 WO2015152577 A2 WO 2015152577A2 KR 2015003081 W KR2015003081 W KR 2015003081W WO 2015152577 A2 WO2015152577 A2 WO 2015152577A2
Authority
WO
WIPO (PCT)
Prior art keywords
bone
bone disease
pharmaceutical composition
atemisinin
food composition
Prior art date
Application number
PCT/KR2015/003081
Other languages
English (en)
French (fr)
Other versions
WO2015152577A3 (ko
Inventor
정원윤
박광균
박세영
강은지
정만길
마광택
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140039550A external-priority patent/KR101656306B1/ko
Priority claimed from KR1020140039551A external-priority patent/KR101606494B1/ko
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2015152577A2 publication Critical patent/WO2015152577A2/ko
Publication of WO2015152577A3 publication Critical patent/WO2015152577A3/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • A61K36/282Artemisia, e.g. wormwood or sagebrush
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis

Definitions

  • the present invention relates to a composition for the prevention and treatment of bone diseases with less side effects and toxicity, which can effectively prevent loss.
  • Osteoclast a multinucleated large cell, has the function of destroying and absorbing bone tissue, and is known to play a role in destroying bone matrix and degrading bone minerals.
  • CSF macrophage colony stimulating factor
  • kB 11 311 nuclear factor
  • M— CSF is a cytokine expressed from osteoblasts and stromal cells and plays an important role in osteoclast formation, and plays an important role in cell proliferation, survival, and cytoskeletal organization.
  • Another important factor, RANKL is expressed in osteoblasts and is attached to RANK receptors in osteoclast progenitor cells to induce and differentiate osteoclast growth (Mojtaba A., Cancer biology & Therapy, 7: 1,3— 9; 1 (2008)).
  • RANKL is c— fos
  • NFATcK nuclear factor of activated T cells
  • NF-kB Nuclear factor kappa B
  • osteoclasts cause abnormal bone tissue destruction and absorption due to imbalance with osteoblasts in the bone, thereby causing osteoporosis, which reduces bone mass and bone density.
  • Imbalance between osteoclasts and osteoblasts can be caused by a variety of causes, including bone metastasis of cancer cells, endocrine disorders, and hyperparathyroidism.
  • osteoclasts if it is possible to effectively inhibit the destruction and absorption of bone tissue by osteoclasts, it is expected to be able to treat a variety of bone diseases caused by this, various drugs and treatments for osteoclasts are being actively studied.
  • the treatment of bone damage caused by osteoclasts such as osteoporosis has been used in the treatment of bone damage such as Fosamax (component name: aledronate), Actonel (component name: risedronate), Zometa (zoledronate), etc.
  • Bisphosphonate-based therapeutics are widely used. Most of these bisphosphonate preparations weaken the function of osteoclasts that destroy bone, induce the death of osteoclasts, and delay or inhibit bone loss.
  • Artemisia annua Linne is a plant belonging to the Asteraceae and is commonly found on roadsides, glades, and rivers in China, Korea, Japan, Mongolia, and Siberia. In ancient China, it has been used to treat symptoms caused by the infection of Plasmodium falciparum, such as malaria (Kooy and Sullivan, J Ethnophamacol., 150: 1—13 (2013)). It has been used in the treatment of childhood, indigestion and dysentery. In addition, the anticancer efficacy of atemisinin (artemisinin), one of the ingredients contained in the firewood recently became known, the interest in firewood firewood is increasing. In the current KFDA standards, firewood is only available for edible young leaves. Since the commercially available pills and essences are all processed into young leaves, the roots, leaves, and stems of firewood are known to be effective as medicinal and researches are being actively conducted.
  • Atemisinin is a sesquiterpene tr ioxane lactone-based compound isolated from firewood, which is known to have an excellent therapeutic effect against malaria infection by removing the malaria parasitic layer through the generation of free radicals. , It is used as oral administration or intramuscular injection. Also among the scoops (Toxoplasma gondii). Schistosoma, Pneumocyst is car ini i, Human cytomegalovirus (Human
  • Atemisinin It is known to be effective against other infectious diseases such as cytomegalovirus, herpes sim lex viruses, hepatitis ⁇ and hepatitis C.
  • studies have been made on the synthesis of various derivatives such as dihydroartemisinin, arteether, artemether, and artesunate.
  • Dihydroatemicinin has stronger antimalarial efficacy than atemisinin and is known as the final metabolite of ateters, atemeters and atesunates (Li QG., Et al., J Pharw Pharmacol., 50: 173-182 (1998).
  • atemisinin and dehydroatomycinin have excellent anticancer effects by inducing apoptosis and inhibiting invasion of lung cancer in breast cancer, breast cancer and prostate cancer. It is becoming.
  • Atemisinin as a derivative of atemisinin—glycolipids
  • Atemisinin-glycolipid complex derivatives are complex derivatives prepared by combining atemisinin with a glycolipid called daumone isolated from Caenorhabditis elegans.
  • Doumon is known as a substance that delays aging by inducing a nematode to dormancy and is known to inhibit angiogenesis of cancer (Jung M., et al., Eur J Med Chen)., 44: 3120-3129 ( 2009)).
  • lotus (Nelumbo iiucifera Gaertn) is a widely grown plant in East Asia, widely used as a therapeutic agent for inflammation, neurological diseases, hypertension, arrhythmia, and the like. It is known to contain various ingredients such as favin, nuciferin, sugar, methyl coripalin heart, and liensinin.
  • the present invention has been made to solve the above-mentioned problems in the prior art, an object of the present invention to provide a composition for the prevention and treatment of bone disease containing the extracts of Artemisia wormwood, atemisinin, or derivatives thereof as an active ingredient. It is for that purpose.
  • bone di sease refers to osteoclasts in bone.
  • Articleemisinin der ivat ive means a similar compound obtained by chemically changing a part of atemisinin.
  • dihydroartemisinin, Artesunate, Artemether, Arteether, SM 905, Artemiside, Artemisicle, Artemis Zone (Ar t em i sone), SM 934 (SM934), atemisinin glycolipid complex derivatives, etc. Wangxing EH., Et aJ., Pharmacology & Therapeutics, 142: 126—139 (2014).
  • any similar compound obtained from atemisinin is not limited thereto.
  • Atemisinin-glycolipid complex derivative refers to a complex-derived derivative prepared by combining atemisinin and glycolipids.
  • daumone is isolated from Caenorhabditis elegans. It is a complex derivative prepared by combining glycolipid and atemisinin, but is not limited thereto.
  • Nelumbo nucifera Gaertn is a perennial aquatic plant of the genus Asteraceae, and is a dicotyledonous plant
  • a "lead extract” means a component extracted from a lotus, preferably Nerlumbin, nuferin , Isoriensinine , Asparagine, Rotucin, armepabin, nuciferin, sugar, methyl copaliline heart, liensinin, and the like, but is not limited to the components extracted from the lead.
  • the bis-benzyl-isoquinoline type alkaloids refers to a bis-benzyl-isoquinoline type alkaloids extracted from a soft and, preferably Li they dont Nin (Liensinine), yisori they dont Nin (Isoliensinine), four Perrin (Nefer ine), 0 ⁇ Methylneferine, Nelumbof er ine, Nelumborines A, Nelumborines B, (R) -N ⁇ Methylcoclain ((R) -N-methylcoclaurine) and the like, but not limited thereto (Zhou M., et al., PLoS One, 8 (ll): e 81971 (2013); Itoh A., et al., Chew Pl rm Bull., 59 (8): 947-951 (2011)).
  • liensinin C 37 H 42 N 2 0 6
  • Similar compounds obtained from encinin are not limited thereto.
  • aporphine alkaloid refers to an apopin-based alkaloid extracted from a lead, and preferably Nuciferine, Pronuciferine, and 0-northiprine ( 0— nornuci ferine, nuciferine N—oxide, N-nornuciferine, dehydronuciferin, N—methylassimilobin If— N-methylasimilobhie N-oxide, N-methylasimilobine, Asimi lobine, Li iodenine, Li-nidine ((-)) — Lirinidine), 2-hydroxy-1-methoxy-6a, 7-dihydroapopine (2- Hydr oxy-1-met hoxy-6a, 7-dehyclr oapor hi ne), Lysicamine, ( +) — Noarmepavine ((+) — Norarmepavine), (-) ⁇ armepavine ((-) ⁇ Armepavine), Lemer
  • nuciferin derivative means a similar compound obtained by chemically changing a part of nuciferin (C 19 H 21 N0 2 ) represented by the following Chemical Formula 2, and is obtained from nuciferin Similar compounds are not limited thereto.
  • the present invention provides a pharmaceutical composition for the prevention and treatment of bone disease, which contains the firewood extract, artemisinin or derivatives thereof as an active ingredient.
  • the present invention provides a pharmaceutical composition for the prevention and treatment of bone diseases containing a lead extract, bisbenzyl isoquinoline alkaloid or apopin alkaloid as an active ingredient.
  • the pharmaceutical composition may be characterized in that the capsule, tablets, granules, injections, ointments, powder or beverage form, the pharmaceutical composition may be characterized in that the human.
  • the route of administration of the pharmaceutical composition according to the present invention is limited to these But not include gugging, intravenous, intramuscular, intraarterial, intramedullary, intradural, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, intestinal, topical, sublingual or rectal. Oral or parenteral release is preferred.
  • parenteral includes subcutaneous, intradermal, intravenous, intramuscular joint, intramuscular, sternum, intradural, intralesional, and intracranial injection or infusion techniques.
  • the pharmaceutical compositions of the invention may also be administered in the form of suppositories for rectal administration.
  • compositions of the present invention are not limited thereto, but may be formulated in the form of powders, granules, capsules, capsules, tablets, oral suspensions, etc., according to a conventional method, for external use, suppositories, and sterile injectable solutions.
  • the pharmaceutical composition of the present invention may comprise a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers may include binders, suspending agents, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, pigments, perfumes, etc. in the case of oral administration. In the case of injections, buffers, preservatives, A non-solvent, solubilizer, isotonic agent, stabilizer, etc.
  • the formulation of the pharmaceutical composition of the present invention can be prepared in various ways by mixing with a pharmaceutically acceptable carrier as described above.
  • a pharmaceutically acceptable carrier as described above.
  • oral administration it may be prepared in the form of tablets, troches, capsuls, elixirs, suspensions, syrups, wafers, etc.
  • injections they may be prepared in unit dosage ampoules or in multiple dosage forms. can do- . It can be formulated in a kitty-, solution, suspension, tablet, capsul, sustained release formulation and the like.
  • suitable carriers, excipients and diluents for formulation include, lactose, Dextrose, Sucrose, Solbi, Manny, Xili, Erysri, Maldi, Starch, Acacia Gum, Alginate, Gelatin, Shampoo Phosphate, Sham Silicate, Cellulose, Methyl Cellulose, Microcrystalline Cellulose, Polyvinylpyridone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil and the like can be used.
  • it may further include a filler, anti-coating agent 1, lubricants, wetting agents, fragrances, emulsifiers, preservatives.
  • compositions of the present invention vary depending on a number of factors, including the activity, age, weight, general health, sex, formulation, time of administration, route of administration, release rate, drug combination and severity of the particular disease to be prevented or treated, of the specific compound used.
  • the dosage of the Xing-gi pharmaceutical composition varies depending on the patient's condition, body weight, degree of disease, drug form, route of administration, and duration, and may be appropriately selected by those skilled in the art,
  • the pharmaceutical composition according to the present invention may be formulated as a pill, dragee, capsul, solution, gel, syrup, slurry, suspension.
  • the present invention provides a food composition for improving and mitigating bone disease containing the extract from the firefly, atemisinin or derivatives thereof as an active ingredient.
  • the present invention is a food for bone disease improvement and alleviation containing a lotus extract, bisbenzyl isoquinoline alkaloid or apopin alkaloid as an active ingredient
  • a lotus extract, bisbenzyl isoquinoline alkaloid or apopin alkaloid as an active ingredient
  • the food composition may be used in various foods, for example, beverages, gums, teas, vitamin complexes, health supplements, etc., pills, powders. It can be used in the form of granules, repellents, tablets, capsules or beverages.
  • the amount of the firewood root extract, artemisinin or derivatives thereof in the food or beverage can generally be added to 0.01 to 15% by weight of the total food weight in the case of the food composition of the present invention, lOOmL for the health beverage composition 0.02 to
  • the food composition of the present invention may include food additives conventional in the art, for example, flavoring agents, flavoring agents, coloring agents, layering agents, stabilizers, and the like.
  • the food composition according to the present invention is an essential ingredient, and there are no particular limitations on the ingredients added in addition to the firewood root extract, atemisinin or derivatives thereof, and may contain various flavors or natural carbohydrates as additional ingredients, as in conventional foods. can do.
  • the natural carbohydrates include monosaccharides such as glucose, fructose and the like; Disaccharides such as maltose, sucrose and the like; Polysaccharides such as dextrin, cyclodextrin; Conventional sugars such as Xyl and sugar alcohols such as sorby and erythritol.
  • natural flavoring agents tautin, stevia extract (e.g., rebaudioside A, glycyrzin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.) can be advantageously used.
  • the proportion of natural carbohydrates is generally about 1-20 g, preferably about 5-12 g per 100 mL of the composition of the present invention.
  • the food composition of the present invention includes various nutrients, vitamins, minerals (electrolytes), flavors such as synthetic and natural flavors, coloring and neutralizing agents (such as cheese, chocolate), pectic acid and salts thereof, alginic acid and Its salt, organic acid, protective colloid thickener, pH adjuster, stabilizer, preservative, glycerin, alcohol, carbonation agent used in carbonated beverages and the like can be contained.
  • These components can be used independently or in combination.
  • the proportion of such additives is not so critical but is in the range of 0 to about 20 per 100 parts by weight of the composition of the present invention . It is common to select from the range of amounts.
  • the composition according to the present invention has low cytotoxicity and is stable, and effectively inhibits the formation of osteoclasts, and also effectively inhibits the mechanism of bone resorption of the formed osteoclasts. It is expected that it can be used in various ways, such as food compositions for improvement and alleviation.
  • FIG. 1 is a view showing the results of cytotoxicity measurement of atemisinin, dihydro atemisinin, atemisinin-glycolipid complex derivative and zoledronic acid according to an embodiment of the present invention.
  • Figure 2 is a diagram showing the results of cytotoxicity measurement experiments of the firewood root extract and leaves and fungi extract according to an embodiment of the present invention.
  • Figure 3a and Figure 3b is atemisinin, dihydro atemisinin, atemisinin—glycolipid complex derivative, osteoclast of zoledronic acid according to an embodiment of the present invention
  • Figures 4a and 4b is a view showing the results of confirming the osteoclast formation inhibitory ability of the cedar root extract and leaf and stem extract according to an embodiment of the present invention.
  • Figure 5 is a view showing the results of the osteoclast bone absorption inhibition test results of atemisinin, dihydro atamisinin, atemisinin-glycolipid complex derivatives according to an embodiment of the present invention.
  • Figure 6 is a view showing the results of the activity inhibition test of ⁇ P-9 and ⁇ P-2 of the atemisinin, dihydro atamisinin, atemisinin-glycolipid complex derivatives according to an embodiment of the present invention.
  • Figure 7 is a view showing the results of the cathepsin K activity inhibitory activity of the atemisinin, dihydro atamicinin, atemisinin ⁇ glycolipid complex derivative according to an embodiment of the present invention.
  • FIG. 8 is a view showing the cytotoxicity test results of the lotus extract according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing the results of cytotoxicity measurement experiments of liensinin and nuciferin according to an embodiment of the present invention.
  • 10a to 10c is a view showing the results of confirming the inhibition of osteoclast formation of the lotus extract according to an embodiment of the present invention.
  • 11a and lib are diagrams showing the results of experiments confirming the inhibition of osteoclast formation of liensinin and nuciferin according to an embodiment of the present invention.
  • FIG. 13 is a view showing the results of confirming the inhibition of osteoclast bone uptake of liensinin and nuciferin according to an embodiment of the present invention.
  • FIG. 14 is a view showing the results of experiments to confirm the inhibition of cathepsin K activity of the lotus extract according to an embodiment of the present invention.
  • 15 is a view showing the results of experiments to confirm the inhibition of cathepsin K activity of liensinin and nuciferin according to an embodiment of the present invention.
  • 16A and 16B are diagrams showing the results of experiments confirming activity inhibition of MMP-9 and MMP-2 of a lotus extract according to an embodiment of the present invention.
  • 17 is a view showing the results of experiments confirming the activity inhibitory activity of ⁇ P-9 and MMP-2 of liensinin and nuciferin according to an embodiment of the present invention.
  • 18A and 18B show changes in biochemical parameters in blood serum following administration of liensinin according to an embodiment of the present invention.
  • FIG. 19 is a diagram showing an X-ray photograph of a mouse tibia after administration of liensinin according to an embodiment of the present invention.
  • 20A to 20E are diagrams illustrating changes in morphological parameters of bones according to administration of liensinin according to an embodiment of the present invention.
  • FIG. 21 is a diagram showing the tibia of the mouse in a radiographic and 3D image using micro—CT after administration of the atemisinin glycolipid complex derivative according to an embodiment of the present invention.
  • FIG. 22A-22E illustrate artemisinin—glycolipids in accordance with an embodiment of the present invention.
  • the figure shows the change of the morphological parameters of the bone according to the administration of the complex derivative.
  • FIG. 23 is a view showing a photomicrograph of a mouse tibia after administration of atemisinin-glycolipid complex derivative according to one embodiment of the present invention.
  • 24 is a view showing a photomicrograph of the tibia of the mouse after administration of the atemisinin-glycolipid complex derivative according to an embodiment of the present invention.
  • FIG. 25 is a view showing a microscope photograph of the liver of a mouse after administration of atemisinin-glycolipid complex derivative according to one embodiment of the present invention.
  • FIG. 25 is a view showing a microscope photograph of the liver of a mouse after administration of atemisinin-glycolipid complex derivative according to one embodiment of the present invention.
  • FIG. 26 is a view showing a microscope photograph of kidneys of mice after administration of atemisinin-glycolipid according to an embodiment of the present invention.
  • FIG. 26 is a view showing a microscope photograph of kidneys of mice after administration of atemisinin-glycolipid according to an embodiment of the present invention.
  • 27A to 27C illustrate changes in the amount of bone resorption markers, calcium, TRAP5b and CTX in serum following administration of atemisinin-glycolipid according to an embodiment of the present invention.
  • Example Example 1 Preparation of Mouse Bone Marrow Macrophages
  • mice Central Experimental Animal Co., Ltd., Korea
  • mice were degenerated from the cervical spine, and the hind limbs were removed using a forceps and the exfoliated hind limbs were cut with surgical scissors. Soaked in a-MEM (Minimum Essential medium alpha; Gibco, USA) without serum.
  • the bones in the muscle were separated using tweezers and transferred to a new ⁇ -MEM, and 600uL of a-MEM was placed in the syringe and inserted into the central spinal cord of the separated leg bones.
  • Atemisinin, dihydroatemisinin, atemisinin—glycolipid complex derivatives include DMSCKdimethyl sulfoxide; Sigma, USA), and zoledronic acid was dissolved in PBS (phosphate buffered saline; Gibco, USA), and then each of 13 ⁇ 4 of antibiotic-antibacterial solution, 10% FBS, and 30ng / mL of M-CSF Diluted with added ⁇ -MEM.
  • Atemisinin was diluted to concentrations of 0.1, 0.2, 0.3, 0.4, 0.5, and luM, and dihydroatemisinin, atemisinin glycolipid complex derivatives, and zoledronic acid were 0.1, 0.2, 0.3, 0.4, and Dilute to a concentration of 0.5 uM.
  • 5 ⁇ 10 4 mouse bone marrow macrophages added to each well of a 96-well plate, followed by the addition of diluted atemisinin, dihydroatemycinin, atemisinin-glycolipid complex, zoledronic acid 200 ⁇ l of ⁇ was added to each other, and the mouse bone marrow macrophages were cultured in a cell incubator at 37 ° C.
  • Cell viability is the percentage of the absorbance of the experimental group (each well treated with atemisinin, dihydroatemisinin, atemisinin-glycolipid complex, zoledronic acid) versus the absorbance of the control group (experimentally treated experimental group). Calculated. The results are shown in FIG. As shown in FIG. 1, atemisinin, dihydroatomycinin, atemisinin-glycolipid complex derivatives, and zoledronic acid all showed over 90% cell viability at experimental concentrations, and showed significant cell survival inhibition effects.
  • the firewood root extract and leaf and stem extracts were prepared, respectively.
  • the washed firewood was divided into leaves, stems and roots, and then dried in 5 (rc, and ground to prepare each powder) 120 g of each powder was accelerated solvent extraction device (ASE ( Repeated extraction with 100% methane twice at 50 ° C for 5 min using Acce lerated Solvent Extractor) -300; DI0NEX, USA). Extracts were concentrated under reduced pressure (SB-1000; EYELA, Japan). The extracts were finally obtained by concentrating at a temperature of 50 ° C. or below, and the prepared M. root extract and leaf and stem extracts were dissolved in DMS0, respectively, followed by 1% antibiotic-antibacterial solution, 10% FBS and 30ng / inL. of
  • M— CSF-added ⁇ - ⁇ were diluted to concentrations of 1, 3, 5 ′ 7, and 10 ug / ml, respectively.
  • MTT assay was carried out in the same manner as in Example 2. The results are shown in FIG.
  • the firewood root extract is 5, 7, and 10ug / mL of Survival was increased significantly by more than about 15% when treated with a concentration, and the leaves and stem extracts of larvae were able to confirm the cell viability of more than 90% even when treated with a concentration of 10ug / mL.
  • the firewood root extract and leaf and stem extract does not show toxicity to bone marrow macrophages at the experimental concentration.
  • Example 4 Experiment for confirming the ability to inhibit osteoclast formation of atemisinin, dihydro atemisinin, atemisinin-glycolipid complex derivative, zoledronic acid
  • the number of osteoclasts was significantly increased in the positive control group treated with 100ng / iiiL RANKL, atemisinin, dihydro atamicinin, atemisinin-glycolipid complex derivative, sol
  • the formation of osteoclasts decreased with concentration.
  • the osteoclast formation was inhibited by 28% when treated with 0.5uM of atemisinin, and 69% when treated with luM atemisinin.
  • the dehydroatemisinin showed almost no osteoclast formation at 0.4uM. It was confirmed that the atemisinin-glycolipid complex derivative had little osteoclast formation at 0.3 uM.
  • Example 3 In order to confirm the inhibitory effect of the fungus root extract and the leaves and stem extracts of osteoclast formation, was prepared in the same manner as in Example 3 were extracts of the extract of the leaves of the genus Artemisia root and the leaf and stem extract. And the experiment to confirm the inhibition of osteoclast formation in the same manner as in Example 4. The results are shown in Figures 4a and 4b.
  • the positive control group treated with and cultured RANKL significantly increased the generation of absorption pores, compared to the negative control group, and treated with 0.5 and luM of atemisinin and dihydroatemicinin 0.1. And even when 0.2 uM was treated, absorption hole generation was hardly suppressed. However, when the atemisinin-glycolipid complex derivative was treated, it was confirmed that the formation of absorption pores was significantly suppressed at concentrations of 0.1 and 0.2 uM.
  • Atemisinin, dihydroatemisinin, atemisinin-glycolipid complex derivatives all inhibit the formation of osteoclasts, and thus can finally inhibit bone resorption by osteoclasts, but atemisinin- Glycolipid complex derivatives were confirmed to inhibit the bone uptake by osteoclasts as well as the formation of osteoclasts.
  • Example 7 Confirmation of the activity inhibitory activity of MMP-9 and MMP-2 of atemisinin, dihydro atamicinin, atemisinin-glycolipid complex derivatives
  • Osteoclasts are known to cause bone resorption by degrading the organic components of the bone matrix by secreting matrix metalloproteinase (mat P) and cathepsin K (Catheps in 10).
  • matrix metalloproteinase matrix metalloproteinase
  • Catheps in 10 matrix metalloproteinase
  • dihydroatemisinin and atemisinin-glycolipid complex derivatives inhibit bone resorption by inhibiting the activities of the representative matrix metalloproteinases MMP-9 and P-2 which are secreted from osteoclasts.
  • the supernatant from which impurities were removed was obtained by centrifugation of the culture solution collected by the method of Example 6, and subjected to gel at in zymography using 5% to perform gelatin zymography.
  • 10% sodium dodecyl su l fate (SDS) -polyacrylamide gel with gelatin was prepared, and the amount of protein in the supernatant was measured by BSA protein assay method. This query amount was corrected to a 30ug., And loads the common hapaek 20uL prepared after the common sum of the supernatant and the sample dye of the correction value to polyacrylamide gel electrophoresis, which was in 120V. The electrophoresis After finishing, the polyacrylamide gel was washed with a washing buffer, and then immersed in a semi-ungwoong buffer and reacted for 24 hours in a constant temperature water bath at 37 ° C. and 50 rpm, and the polyacrylamide gel was washed again.
  • SDS sodium dodecyl su l fate
  • the positive control group treated with and cultured with RANKL significantly increased the activity of ⁇ P-9 in comparison with the negative control, but did not significantly affect the activity of ⁇ P-2.
  • RANKIN ⁇ was treated with atemisinin or dihydroatemisinin, but the activity of ⁇ P-9 in the culture was not inhibited, but when treated with atemisinin-glycolipid complex derivatives, the activated and inactivated state ⁇ All activity of P-9 was inhibited. From these results, it was confirmed that the secretion of Li-P-9, which is known to play the most important role in bone resorption of osteoclasts, was significantly inhibited by atemisinin-glycolipid complex derivatives.
  • Atemisinin dehydroatemisinin, atemisinin-glycolipid complex derivative
  • the culture solution collected by the method of Example 6 was centrifuged to obtain supernatant from which impurities were removed, and Sensi zyme.
  • Cathepsin K activity was assayed using Cathepsin K act ivi ty assay kit (Sigma—Al dr i ch, USA). After adding the supernatant and cathepsin K standard to the 96-well plate to which the cathepsin K antibody was attached, and reacting at room temperature for 1 hour, the supernatant was thoroughly removed using a washing buffer and a semi-aqueous reagent (eact i on mi xture) was added and reacted for 4 hours at 37 ° C. And
  • the positive control group treated with and cultured with RANKL significantly increased the activity of cathepsin K as compared to the negative control group.
  • mice 4 weeks-old male ICR mice (Nara Biotech) were dislocated from the cervical spine, and the hind limb was removed using a forceps, and the hind limb was cut with surgical scissors to remove serum.
  • the bones in the muscles were separated using tweezers and transferred to a new ⁇ - ⁇ , and 500uL of ⁇ - ⁇ was placed in the central spinal cord of the separated leg bone and sprayed for 2-3 weeks to extract bone marrow cells.
  • the extracted bone marrow cells were centrifuged to remove supernatant and mixed with new ⁇ - ⁇ , and bone marrow macrophages were separated from the bone marrow cells using a separation medium histopark (Histopaque; Sigma, USA). And a 1% antibiotic-antibacterial solution in ⁇ - ⁇ (Antibiotic-Ant imycotic; Gibco, USA), 10% fetal bovine serum (FBS); Gibco, USA), macrophage-colonizing factor (macrophage) Colony .stimulating factor (M-CSF); R & D system Inc, USA) After addition of 30 ng / ml, isolated mouse bone marrow macrophages were cultured.
  • Example 10 Cytotoxicity Measurement Experiment of Lotus Extract
  • lotus leaf extract In order to confirm the cytotoxicity of the lotus leaf extract, lotus petal extract, lotus surgery and perilla extract, lotus leaf extract, lotus stem extract, and lotus root (lotus root) extract were prepared, respectively. To obtain the respective extracts, washed lotuses, flowers, stamens and fruitlets, After dividing the leaves, stems, roots, dried at 50 C, and pulverized to prepare each powder. 120 g of each powder is added to the accelerated solvent extractor SE (Accelerated Solvent).
  • accelerated solvent extractor SE Accelerated Solvent
  • Extractor 300; DI0NEX, USA
  • DMS0 dimethyl sul foxide
  • Lotus root extract was 10, 20, using ⁇ - ⁇ with 10% FBS and 30ng / mL of M-CSF.
  • Dilutions were made at concentrations of 40, 80, and 100 ug / mL, and the remaining extracts were diluted to concentrations of 1, 5, and lOug / mL, respectively. And in each well of a 96-well plate
  • each ⁇ —MEM 1% antibiotic-antibacterial solution, 10% FBS, 30ng / mL M-CSF
  • ⁇ -MEM 1% antibiotic-antibacterial solution, 10% FBS, 30ng / mL M-CSF
  • MTT (3- (4, 5-dimethyhy thi azo 1-2-y 1) -2, 5-di pheny 1 tetrazol ium bromi de; Sigma, USA) solution was added and 37 ° C for 4 hours. After incubation in, washed with PBS to completely remove the supernatant, add 200ul of DMS0 and react for 30 minutes
  • nuciferin showed a cell viability of 80% or more up to 40uM, and showed no significant inhibitory effect on cell viability, and showed a 50% reduction in cell viability at 80uM.
  • Example 12 Confirmation of inhibition of osteoclast formation of lotus leaf extract, liensinin, and nuciferin To determine whether lotus extract, liensinine, and nuciferin inhibit osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL), "Park EK., Et al., Biochem Biophys Res Commun , 325 (4): 1472-1480 (2004) 'experiment was carried out to confirm the inhibition of osteoclast formation, and the lead extract, liensinin, and nuciferin solution were the same as in Examples 10 and 11, respectively.
  • RNKL nuclear factor kappa-B ligand
  • mice bone marrow macrophages prepared by the method of Example 9 were added to each well of a 96-well plate, followed by ⁇ - with the addition of dilute lotus extract, liensinine, and nuciferin.
  • Add 200 ⁇ L of ⁇ 13 ⁇ 4 antibiotic—antibacterial solution, 10% FBS, 30 ng / mL M— CSF, 100 ng / niL RANKL
  • mice bone marrow versus cell incubator at 37 ° C and 5% C0 2 conditions. Phagocytes were incubated, and each of them was diluted lime extract.
  • osteoclast uptake inhibitory activity was confirmed by the method described in each well of a 96-well plate coated with calcium phosphate (cal cium phosphate).
  • cal cium phosphate calcium phosphate
  • ⁇ - ⁇ 1% antibiotic-antibacterial solution, 10% FBS, 30ng / niL Ml CSF, 100ng / mL RANKL addition
  • ⁇ - ⁇ 1% antibiotic-antibacterial solution, 10% FBS, 30ng / niL Ml CSF, 100ng / mL RANKL addition
  • the culture medium collected by the method of Example 13 was centrifuged to obtain a supernatant free of impurities, and Sens i zyme Catheps Cathepsin K activity in the supernatant was measured using an in K act ivi ty assay kit (Sigma-Aldr i ch, USA).
  • the supernatant and cathepsin K standard were added to a 96-well plate with catechsin K antibody and reacted at room temperature for 1 hour.
  • Osteoclasts are known to cause bone resorption by degrading the organic components of the bone matrix by secreting matrix metalloprotease (MMP) and catepsin K (Catheps in K).
  • MMP matrix metalloprotease
  • Catheps in K catepsin K
  • the culture solution collected by the method of Example 13 was centrifuged to obtain a supernatant from which impurities were removed, and gelatin zymography (gelat in zymography).
  • An 8% sodium dodecyl suI fate (SDS) -polyacrylamide gel was prepared to which gelatin zymography was added.
  • the amount of protein was measured by BSA protein assay, and the amount of protein was corrected to 40 ug. After mixing the corrected supernatant and sampl e dye, 20 uL of the prepared mixture was loaded on a polyacrylamide gel and electrophoresed at 120V for 2 hours.
  • the polyacrylamide gel was washed with a washing buffer (Tr i ton X— 100 solut ion), followed by a reaction buffer (50 mM Tr i s-HCKpH 7.5), 5 mM CaCl 2 , 200 mM NaCl, Immersed in 0.02% Br ij -35) and reacted for 24 hours in a constant temperature water bath at 37 ° C, 50 rpm condition, and again washed with polyacrylamide gel and then using coma ie blue R-250 solution. Staining for 1 hour, bleaching twice every 30 minutes using a bleach solution to measure the gelatin degradation activity (white band removed staining) by MMP.
  • FIGS. 16A, 16B and 17 The results are shown in FIGS. 16A, 16B and 17.
  • the positive control group treated with and cultured with RANKL significantly increased the activity of P-9 in comparison with the negative control group, but did not significantly affect the activity of MMP-2. I could confirm it.
  • the lotus extract was treated with RANKL, it was confirmed that the active gray-lied P-9 was reduced, and in particular, the lotus root extract was found to inhibit both the activation and the inactivation of MMP-9.
  • Example 16 Inhibitory Efficacy of Liensinin in Breast Cancer Cell-Induced Bone Injury Animals
  • mice Female Balb's mi / nu mice were divided into six groups of six animals. 30mg / kg
  • mice were anesthetized by intraperitoneal injection of mice.
  • MDA-MB—231 cells (1 ⁇ 10 6 cells /0.1 HBSS) were injected into the bone marrow cavity of the knee arteries of mice using a 27-gauge needle and a Hamilton syringe.
  • Liensinine was administered orally five times a week at doses of 5 mg / kg, 10 mg / kg and / or 20 mg / kg of mouse weight, and zoledronic acid was dosed at 0.1 mg / kg of mouse weight after breast cancer cell inoculation. 3 times per week for 5 weeks subcutaneously.
  • mice inoculated with control and MDA-MB-231 cells were injected with PBS containing ⁇ DMS0 instead of cancer cells and / or liensinin. After 5 weeks, mice were anesthetized for micro-computer computed tomography (micro-CT) analysis, and blood was collected by cardiac puncture to obtain serum. Thereafter, the mice were euthanized and tibias were taken. Analysis of Biochemical Parameters in Blood Serum
  • the bone morphological parameters of the mouse tibia were determined using a micro-CT system (Sky Scan 1076, 100kV, 140 ⁇ A current, rotation step 0.6 " ). SkyScan, Konich, Belgium). The scan was reconstructed in NRecon software (SkyScan) and the results are shown in FIG. 19. In addition, percent quantitative bone volume (BV / TV,%), trabecular thickness (Tb.Th, mm) in the proximal tibia of nude mice was determined using CTAn software (SkyScan) for quantitative analysis of bone histonrarphometry.
  • Fig. 19 shows an X-ray photograph of the tibia of the mouse after each treatment, and severe osteolysis in the tibia of the mice injected with MDA—MB—231 cells. lesions were observed. However, it was found that bone destruction was reduced in mice administered with a specific dose of liensinin.
  • Figure 20a to 20e shows the results of the analysis of the BV / TV, Tb, Th, Tb.N, Tb.Sp, and SMI as the morphological parameters of the bone, compared to the control, Regency In mice treated with nin, the decrease of BV / TV, Tb, Th and Tb.N, and the increase of Tb.Sp and SMI were suppressed.
  • Example 17 Confirmation of Inhibitory Efficacy of Atemisinin-Glycolipid in Breast Cancer Cell-Induced Bone-damaged Animals
  • mice Five week-old female Balbush nude mice were divided into six groups of five animals. 30mg / kg
  • mice were injected into the abdominal cavity of mice to anesthetize the mice.
  • A549 cells (1 ⁇ 10 6 cells /0.5ml HBSS) were injected into the bone marrow cavity of the knee artery of a mouse using a 27-gauge needle and a Hamilton syringe.
  • atemisinin-glycolipids (5 mg / kg, 10 mg / kg and / or 20 mg / kg) and gefitinib (10 mg / kg) were dissolved in PBS and administered orally 6 times a week for 6 weeks. .
  • Control mice received only PBS.
  • micro-computed tomography (micro-CT) analysis of the tibia was performed. After the mice were anesthetized, blood was collected and euthanized. After that, the tibia of the mouse was taken for histological analysis.
  • micro—CT and Structural Analysis were performed at day 42.
  • Morphological parameters of the mouse tibia were analyzed using a micro-CT system (SkyScanl076, SkyScan, Konich, Belgium) using the micro-CT analyzer NRecon software (Skyscan).
  • the scan was performed with a 0 ⁇ s aluminum filter under a 100 kV voltage source and 100 ⁇ A current conditions. Scanning angular rotation was 360 ° and angular increase was 0.5 ° and two-dimensional (2D) and three-dimensional (3D) images were formed using NRecon software (SkyScan).
  • Bone morphological parameters data of the fibroblast separation (Tb.Sp, mm) and structural model index (SMI) were obtained. As a result, the scan copy is shown in FIG. 21 and the morphological parameters are shown in FIGS. 22A to 22E. Histological analysis
  • mice of the mice were placed in 10% buffered formalin solution and left at 41: for 1 week.
  • the tibia was calcined for 2 weeks with 10% EDTA solution (pH 7.5) and then fixed in paraffin.
  • TRAP staining was performed using an Acid Phosphatase Leukocyte Kit (Signia—Aklr ich), and the stained sections were observed at 100 and 200 magnification using a microscope after staining. The results are shown in FIGS. 23 and 24, respectively.
  • the collected blood samples were left at room temperature for 1 hour, and then centrifuged at 900 ⁇ g for 20 minutes to obtain a serum.
  • Serum was stored at -70 ° C prior to analysis of bone metabolism markers. Serum level in serum was performed using QuanU Chrome Calcium Assay Kit (BioAssay Systems, Haywarcl, Calif.), And the amount of C-terminal cross-linked telopeptide of TRAP 5b and type I collagen (CTX) was calculated in mice TRAP assay ⁇ 1 (Immuno). Diagnostic systems, Bo 1 don, UK) and Rat Laps EIA? 1 (Immunno Diagnostic Systems). The results are shown in Figures 27a to 27c. Statistical analysis
  • Atemisinin-glycolipids show very good potential anticancer effects and bone resorption activity in in vitro (/ y? Vitro) experiments. Therefore, to investigate the effects of atemisinin-glycolipids in vivo (/ 72 y / ra), experiments were carried out with mice injected with tibial A549 cells into the tibia.
  • the mouse tibial internal model described above is known to cause similar bone damage in patients.
  • FIG. 21 shows the radiographic and 3D images of the tibia using micro-CT.
  • osteolytic lesions were clearly observed in mice injected with A549 cells, but atomisin-glycolipids were specifically identified. When orally administered in the content can be seen that the osteolysis decreased.
  • FIGS. 22A to 22E show the results of analyzing BV / TV, Tb, Th, Tb.N, Tb.Sp, and SMI using morphological parameters of the bone using microcapsule CT.
  • BV / TV, Tb, Th, Tb.N, Tb.Sp, and SMI were modified in the injected mice.
  • oral administration of atemisinin-glycolipids showed a similar level of control.
  • FIG. 23 is a microscopic photograph of the tibia of the mouse using hemafocillin-eosin (H & E), and a section of the microscope (100-fold magnification) of the invasive tumor cells when orally administered atemisinin-glycolipids. It was found to inhibit growth and severe bone destruction.
  • FIG. 24 is a photograph of a tibia of a mouse stained with an Acid Phosphatase Leukocyte Kit (Sigma-Aldrich), and a section of the microscopic view (200 magnification) shows that the TRAP-positive osteoclasts are purple.
  • 25 and 26 are stained liver and kidney of the mouse using hemafexillin-eosin (H & E), respectively, and the section of the microscopic photograph (100-fold magnification), oral administration of atemisinin-glycolipids It was seen that no damage occurred.
  • 27A to 27C are graphs showing the results of measurement of the amount of bone resorption markers, calcium, TRAP5b and CTX in serum using the respective kits.
  • TRAP5b and CTX levels after oral administration of atemisinin glycolipid It can be seen that a significant decrease, when administered at a dose of 10mg / kg has an effect equivalent to gefitinib, and when administered at a dose of 20mg / k g it can be seen to have a better effect there was.
  • the present invention relates to a composition for the prevention and treatment of bone diseases with less side effects and toxicity, which can effectively prevent bone loss.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명에 따른 골 질환 예방 및 치료용 약학 조성물은 세포 독성이 낮아 안정적이며, 파골 세포의 형성을 효과적으로 억제할 수 있을 뿐만 아니라, 형성된 파골 세포의 골 흡수 기작도 효과적으로 억제할 수 있다.

Description

【명세서】
【발명의 명칭】
골 질환 예방 및 치료용 조성물
【기술분야】
본 발명은 부작용 및 독성이 적고, 뻐 손실을 효과적으로 방지할 수 있는 골 질환의 예방 및 치료용 조성물에 관한 것이다.
【배경기술】
다핵 대형 세포인 파골세포 (osteoclast)는 골 (bone) 조직의 파괴 및 흡수의 기능을 가지고 있어, 골 기질을 파괴하고 뼈의 미네랄을 분해하는 역할을 담당하는 것으로 알려져 있다. 활성화된 파골세포는' 세 개 이상의 핵을 가지고 있는데, 파골세포 전구세포 (precursor cell)로부터 성숙한 다핵의 파골세포로 분화되기 위해서는 다양한 호르몬들과 인자들을 필요로 한다. 그 중 가장 중요한 두 가지 인자는 조골세포 (osteoblast)로부터 생산되는 Mᅳ CSF(macrophage colony stimulating factor)와 RANKL(receptor activator of nuclear factorᅳ kB 11 311(1)이다^이1∑ & A., et al. , Cancer Biol Ther. , 7:1,3ᅳ 9;1 (2008)). M— CSF는 조골세포와 골수 기질 세포 (stromal cell)로부터 발현되는 사이토카인으로 파골세포 형성에 중요한 역할을 하며, 주로 세포의 증식, 생존, 세포골격 형성 (cytoskeletal organization) 등에 중요한 역할을 담당하는 것으로 알려져 있다 (Kim SY. , et al. , J Korean Orthop Assoc. , 44:151-158 (2009)). 또 다른 중요 인자인 RANKL은 조골세포에서 발현되며, 파골세포 전구 세포에 있는 RANK 수용기에 부착되어 파골세포의 성장을 유도하고 분화시키는 역할을 한다 (Mojtaba A. , Cancer biology & Therapy, 7:1,3— 9; 1 (2008)). 또한, RANKL은 c— fos,
NFATcK nuclear factor of activated T cells), NF-kB(Nuclear factor kappa B) 등과 같은 전사인자들을 활성화시켜 파골세포의 분화를 촉진시키고, PI—
3K(phosphatidyl inositol 3-kinase) , ERK(extracel lular signal -regulated kinase)와 같은 신호전달 체계를 활성화시켜 파골세포의 생존 및 기능을 촉진하는 역할도 담당하는 것으로 알려져 있다 (LEE ZH. , et al. , Biochem
Biophys Res C에丽 n. , 305 :211-213 (2003)).
이러한 파골세포는 골 내에서 조골세포 (osteoblast)와의 불균형 (imbalance)으로 인하여 비정상적인 골 조직의 파괴 및 흡수를 유발하고, 이로 인하여 뼈 (bone)의 질량 및 골밀도가 감소하는 골다공증 (osteoporosis), 뼈에서 석회가 탈실되는 골연화증 (osteomalacia), 골수가 섬유화되는 섬유성골염 (fibrous ostitis), 치주염 (periodontitis)으로 인한 치조골 손상 (periodontitis), 류마티스 관절염 (rheumatoid arthritis)으로 인한 관절의 파괴 및 변형을 초래하는 원인이 되는 것으로 알려져 있다. 파골세포와 조골세포와의 불균형은 암 세포의 골 전이, 내분비 장애, 부갑상선 기능 항진증 등 다양한 원인에 의하여 유발될 수 있다. 따라서 파골세포에 의한 골 조직의 파괴 및 흡수를 효과적으로 억제할 수 있다면, 이로 인한 다양한 골 질환을 치료할 수 있을 것이라 예상하고, 파골세포에 대한 다양한 약물들과 치료법들이 활발히 연구되고 있다. 최근에는 골다공증과 같은 파골세포에 의한 골 손상 치료에 포사맥스 (Fosamax, 성분명: aledronate), 악토넬 (Actonel, 성분명: risedronate) , 조메타 (Zometa, 성분명 : zoledronate) 등과 같은 비스포스포네이트 (bisphosphonate) 계열의 치료제가 널리 이용되고 있다. 이러한 비스포스포네이트 제제들은 대부분 뼈를 파괴하는 파골세포의 기능을 약화시키고 파골세포의 사멸을 유도해 뼈의 손실을 지연시키거니- 억제하는 작용을 한다. 그러나 최근 비스포스포네이트 계열의 약제들을 복용하는 환자들에게서 턱뼈 괴사 (osteonecrosis), 중증 심방 세동, 뼈 또는 관절의 무력화, 근골격의 통증 등 다양한 부작용이 발생하는 사례가 해마다 증가하고 있다 (Coleman RE. , Br J Cancer ' 98:1736—1740 (2008)). 또한 유방암, 전립선암 등에서 뼈로 전이된 암세포에 의해서도 파골세포의 형성이 촉진되어 심각한 골 질환들이 발생하는데 이를 치료하기 위한 약물은 개발되어 있지 않은 실정이다. - 이와 같이, 기존의 비스포스포네이트 제제들의 단점을 보완하고, 독성이 없으며, 파골세포에 의한 골 흡수를 효과적으로 억제할 수 있는 약제들의 개발이 요구되고 있는 실정이다.
한편, 개똥쑥 (Artemisia annua Linne)은 국화과 (Asteraceae)에 속하는 식물로써 중국, 한국, 일본, 몽골, 시베리아 등지의 길가, 빈터, 강가 등에서 흔히 볼 수 있는 식물이다. 고대 중국에서는 말라리아와 같은 열대열말라리아원충 (Plasmodium falciparum)의 감염으로 인한 증상을 치료하는데 사용되어 왔으며 (Kooy and Sullivan, J Ethnophamacol . , 150:1—13 (2013)), 한방에서는 발열감기, 학질, 소아경기, 소화불량, 이질 등의 치료에 사용되어 왔다. 또한 최근에는 개똥쑥에 함유되어 있는 성분 중의 하나인 아테미시닌 (artemisinin)의 항암 효능이 알려지면서 개똥쑥에 대한 관심이 높아지고 있다. 현재 식약청 기준에서 개똥쑥은 어린 잎만 식용으로 사용할 수 있게 되어있기 때문에 현재 시판되고 있는 환이나 진액 등은 모두 어린 잎으로만 가공되어 시판되고 있지만, 개똥쑥의 뿌리, 잎, 줄기 또한 약용으로써 효과가 있다고 알려지면서 이에 대한 연구가 활발히 진행되고 있다.
아테미시닌은 개똥쑥으로부터 분리된 세스퀴테르펜 트리옥산 락톤 (sesquiterpene tr ioxane lactone)계 화합물로서 활성산소 (free radicals) 생성을 통하여 말라리아 기생층을 제거하여 말라리아 감염에 탁월한 치료 효과를 나타내는 것으로 알려져 있으며, 경구투여나 근육주사로써 사용되고 있다. 또한 특소포자중 (Toxoplasma gondii). 주혈롭중 (Schistosoma) , 주폐포자충 (Pneumocyst is car ini i ) , 사람 거대세포바이러스 (Human
Cytomegalovirus) , 단순포진 바이러스 (Herpes sim lex viruses) , Β형 간염, C형 간염 등 다른 감염성 질병에도 효과가 있는 것으로 알려져 있다. 이러한 아테미시닌의 효능을 높이기 위하여 디히드로아테미시닌 (Dihydroartemisinin), 아테에테르 (Arteether), 아테메테르 (Artemether ) , 아테수네이트 (Artesunate) 등 다양한 유도체들의 합성에 관한 연구가 시도되었으며, 이 중 디히드로아테미시닌은 아테미시닌 보다 더욱 강한 항말라리아 효능을 가지고 있으며 아테에테르, 아테메테르 및 아테수네이트의 최종 대사산물로써 알려져 있다 (Li QG. , et al. , J Pharw Pharmacol. , 50 :173-182 (1998)). 또한, 최근의 연구에서는 아테미시닌 및 디히드로아테미시닌이 폐암, 유방암, 전립선암 등에서 암의 세포사멸 (apoptosis)를 유도하고 침윤성 (invasion)을 억제시켜 탁월한 항암 효과를 나타낸다는 연구 결과들이 발표되고 있다.
이외에도 아테미시닌의 유도체로서 아테미시닌—당지질 복합유도체 (artemisinin-glycolipid) 등도 개발되었다. 아테미시닌-당지질 복합유도체는 예쁜꼬마선충 (Caenorhabditis elegans)으로부터 분리된 다우몬 (daumone)이라고 하는 당지질과 아테미시닌을 결합시켜 제조한 복합 유도체이다. 다우몬은 꼬마선충을 휴면기로 유도하여 노화를 지연시키는 물질로 알려져 있으며, 암의 혈관 신생을 억제한다는 것이 알려져 있다 (Jung M. , et al. , Eur J Med Chen]. , 44:3120-3129 (2009)). 이러한 아테미시닌-당지질 복합유도체는 아테미시닌이나 다우몬에 비해서 구강암, 폐암, 유방암 등에서 더 높은 항암 효과를 가진다는 것이 보고된 바 있다 (Ricci J. , et al., Chew Pharm Bull. , 59:1471-1475 (2011)).
또한, 연 (Nelumbo iiucifera Gaertn)은 동아시아에서 광범위하게 재배되는 식물로써, 염증, 신경 질환, 고혈압, 부정맥 등의 치료제로 널리 사용되고 있으며, 넬룸빈, 누페린, 이소리엔시닌, 아스파라긴, 로투신, 아르메파빈, 누시페린, 설탕, 메틸 코리팔린연심, 리엔시닌 등의 다양한 성분을 함유하고 있는 것으로 알려져 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명은 상기와 같은 종래 기술상의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 일 목적은 개똥쑥 추출물, 아테미시닌, 또는 이의 유도체를 유효성분으로 함유하는 골 질환 예방 및 치료용 조성물을 제공하는 것을 그 목적으로 한다.
본 발명의 다른 목적은 연' 추출물 성분 중의 하나인 비스벤질이소퀴놀린계 알칼로이드 (bi sbenzyl i soquinol ine alkaloid) 또는 아포핀계 알칼로이드 (aporphine alkaloid)를 유효성분으로 함유하는 골 질환 예방 및 치료용 조성물을 제공하는 것을 그 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물, 및 공정 등이 기재되어 있다. 그러나, 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예' ' 또는 "구체예' '에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예' '의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다. 본 명세서에 있어서, "골 질환 (bone di sease) "은 뼈 내의 파골세포와 조골세포의 블균형에 의해 유발되는 질환을 의미한다. 바람직하게는 암세포의 골 전이에 의해 초래되는 뼈의 손상, 골다공증 (osteoporosis), 골연화증 (osteomalacia), 섬유성골염 (f ibrous ostitis), 치주염 (periodontitis) , 류마티스 관절염 (rheumatoid arthritis), 대사성 골질환 등이 있으나 파골세포의 골 흡수에 의해 유발되는 질환이라면 이에 제한되지 않는다.
본 명세서에 있어서, "아테미시닌 유도체 (Artemisinin der ivat ive) "는 아테미시닌의 일부를 화학적으로 변화시켜서 얻어지는 유사한 화합물을 의미한다. 바람직하게는 디히드로아테미시닌 (Dihydroartemisinin), 아테수네이트 (Artesunate) , 아테메테르 (Artemether ) , 아테에테르 (Arteether), 에스엠 905 ( SM905 ), 아테미시드 ( Ar t em isicle), 아테미존 ( Ar t em i sone ) , 에스엠 934(SM934), 아테미시닌ᅳ당지질 복합유도체 등을 의미한다 (Wanxing EH. , et aJ. , Pharmacology & Therapeutics, 142:126—139 (2014)). 그러나 아테미시닌으로부터 얻어지는 유사한 화합물이라면 이에 제한되지 않는다.
본 명세서에 있어서, "아테미시닌-당지질 복합유도체' '는 아테미시닌과 당지질을 결합시켜 제조한 복힘— 유도체를 의미한다. 바람직하게는 예쁜꼬마선층 (Caenorhabditis elegans)으로부터 분리된 다우몬 (daumone)이라고 하는 당지질과 아테미시닌을 결합시켜 제조한 복합 유도체이다. 그러나 이에 제한되지는 않는다.
본 명세서에 있어서, "연 (Nelumbo nucifera Gaertn)"은 미나리아재비목 수련과의 다년생 수생식물로 쌍떡잎 식물이며, "연 추출물 "은 연으로부터 추출된 성분을 의미하며, 바람직하게는 넬룸빈, 누페린, 이소리엔시닌, 아스파라긴, 로투신, 아르메파빈, 누시페린, 설탕, 메틸 코리팔린연심, 리엔시닌 등이 있으나 , 연으로부터 추출된 성분이라면 이에 제한되지 않는다.
' 명세서에 있어서, 비스벤질이소퀴놀린계 알칼로이드 (bisbenzylisoquinoline alkaloid)는 연으로부터 추출된 비스벤질이소퀴놀린계 알칼로이드를 의미하며, 바람직하게는 리엔시닌 (Liensinine), 이소리엔시닌 (Isoliensinine) , 네페린 (Nefer ine) , 0ᅳ 메틸네페린 (O-methylneferine), 네룸보페린 (Nelumbof er ine), 네룸보린즈 A(Nelumborines A), 네룸보린즈 B(Nelumbor ines B), (R)-Nᅳ메틸코클라우린 ( (R)- N-methylcoclaurine) 등이나, 이에 제한되지 않는다 (Zhou M., et al . , PLoS One, 8(ll):e81971 (2013); Itoh A. , et al. , Chew Pl rm Bull. , 59(8) :947-951 (2011)).
본 명세서에 있어서, "리엔시닌 유도체 (derivative)'1는 하기 화학식 1로 표시되는 리엔시닌 (C37H42N206)의 일부를 화학적으로 변화시켜서 얻어지는 유사한 화합물을 의미하며, 리엔시닌으로부터 얻어지는 유사한 화합물이라면 이에 제한되지 않는다.
[화학식 1]
Figure imgf000011_0001
본 명세서에 있어서, "아포핀계 알칼로이드 (aporphine alkaloid)"는 연으로부터 추출된 아포핀계 알칼로이드를 의미하며, 바람직하게는 누시페린 (Nuciferine), 프로누시페린 (Pronuciferine), 0—노르누시페린 (0— nornuci ferine), 누시페린 N—옥사이드 (Nuciferine N— oxide), N-노르누시페린 (N- nornuci ferine) , 디하이드로누시페린 (Dehydronuci fer ine), N—메틸아시밀로빈 If— 옥사이드 (N-methylasimilobhie N— oxide), N—메틸아시밀로빈 (N- methylasimi lobine) , 아시밀로빈 (Asimi lobine) , 리리오데닌 (Lir iodenine), (-)一 리리니딘 ((— )— Lirinidine), 2-하이드록시 -1—메톡시 -6a, 7-디하이드로아포핀 (2- Hydr oxy- 1-met hoxy-6a , 7-dehyclr oapor h i ne ) , 리시카민 (Lysicamine) , (+)— 노르아르메파빈 ((+)— Norarmepavine), (-)ᅳ아르메파빈 ((-)ᅳ Armepavine), 레메린 (Roeinerine) , (―) -아노나인 ( (—)—anc)naine) , (-) -카아베린 ((ᅳ )-caaverine) 등이나ᅳ 이에 제한되지 않는다 (Zhou M. , et al. , PLoS One, 8(ll):e81971 (2013); Nakamura S. , et al. , Bioorg Med Chew. , 21(3) :779-787 (2013); Lin RJ. , et al. , Int J Mol Sci. , 15(3) :3624-3639 (2014); Do TC. , et al. , J Chroinatogr A, 1302 : 174-180 (2013) ) .
본 명세서에 있어서, "누시페린 유도체 (der ivat ive) "는 하기 화학식 2로 표시되는 누시페린 (C19H21N02)의 일부를 화학적으로 변화시켜서 얻어지는 유사한 화합물을 의미하며, 누시페린으로부터 얻어지는 유사한 화합물이라면 이에 제한되지 않는다.
[화학식 2]
Figure imgf000012_0001
본 발명은 개똥쑥 추출물, 아테미시닌 또는 이의 유도체를 유효성분으로 함유하는 골 질환 예방 및 치료용 약학 조성물을 제공한다.
본 발명은 연 추출물, 비스벤질이소퀴놀린계 알칼로이드 또는 아포핀계 알칼로이드를 유효성분으로 함유하는 골 질환 예방 및 치료용 약학 조성물을 제공한다.
본 발명에 있어서 상기 약학 조성물은 캡슬, 정제, 과립, 주사제, 연고제, 분말 또는 음료 형태임을 특징으로 할 수 있으며, 상기 약학 조성물은 인간을 대상으로 하는 것을 특징으로 할 수 있다.
본 발명에 따른 약학 조성물의 투여 경로는 이들로 한정되는 것은 아니지만 구깅- , 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 비강내, 장관, 국소, 설하 또는 직장이 포함된다. 경구 또는 비경구 투하가 바람직하다. 본원에 사용된 용어 "비경구"는 피하, 피내, 정맥내, 근육내 관절내, 활액낭내, 흉골내, 경막내, 병소내 및 두개골내 주사 또는 주입기술을 포함한다. 본 발명의 약학 조성물은 또한 직장 투여를 위한 좌제의 형태로 투여될 수 있다.
본 발명의 약학 조성물은 이들로 한정되는 것은 아니지만, 각각 통상의 방법에 따라 산제, 과립제, 캡슐, 정게, 수성 현탁액 등의 경구형 제형, 외용^, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 본 발명의 약학 조성물은 약제적으로 허용 가능한 담체를 포함할 수 있다. 약제학적으로 허용되는 담체는 경구 투여시에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정;하제, 현탁화제, 색소, 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제 등을 흔합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다. 본 발명의 약제학적 조성물의 제형은 상술한 바와 같은 약제학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다 . 예를 들어, 경구 투여시에는 정제, 트로키, 캡술, 엘릭서 (e l i xi r ) , 서스펜션, 시럽, 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다- . 기티-, 용액, 현탁액, 정제, 캡술, 서방형 제제 등으로 제형할 수 있다.
한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비를, 만니를, 자일리를, 에리스리를, 말디를, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슴 포스페이트, 칼슴 실리케이트, 셀를로즈, 메틸 셀를로즈, 미정질 셀롤로즈, 폴리비닐피를리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한 충진제, 항웅집거 1, 윤활제 , 습윤제 , 향료, 유화제 , 방부제 등을 추가로 포함할 수 있다.
본 발명의 약학 조성물은 사용된 특정 화합물의 활성, 연령, 체중, 일반적인 건강, 성별, 정식, 투여시간, 투여경로, 배출율, 약물 배합 및 예방 또는 치료될 특정 질환의 중증을 포함한 여러 요인에 따라 다양하게 변할 수 있고, 싱-기 약학 조성물의 투여량은 환자의 상태, 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만 당업자에 의해 적절하게 선택될 수 있고, 1일
0.0001 내지 50mg/kg 또는 0.001 내지 50mg/kg으로 투여할 수 있다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다. 본 발명에 따른 의약 조성물은 환제, 당의정, 캡술, 액제, 겔, 시럽, 슬러리, 현탁제로 제형될 수 있다. 또한 본 발명은 개똥쑥 추출물, 아테미시닌 또는 이의 유도체를 유효성분으로 함유하는 골 질환 개선 및 완화용 식품 조성물을 제공한다.
또한 본 발명은 연 추출물, 비스벤질이소퀴놀린계 알칼로이드 또는 아포핀계 알칼로이드를 유효성분으로 함유하는 골 질환 개선 및 완화용 식품 조성물을 제공한다ᅳ
본 발명에 있어서 상기 식품 조성물은, 각종 식품류, 예를 들어, 음료, 껌, 차, 비타민 복합제, 건강보조 식품류 등에 사용할 수 있으며, 환제, 분말,. 과립, 침제, 정제, 캡술 또는 음료의 형태로 사용할 수 있다. 이때, 식품 또는 음료 중의 상기 개똥쑥 뿌리 추출물, 아테미시닌 또는 이의 유도체의 양은, 일반적으로 본 발명의 식품 조성물의 경우 전체 식품 중량의 0.01 내지 15 중량 %로 가할 수 있으며, 건강 음료 조성물의 경우 lOOmL를 기준으로 0.02 내지
10g, 바람직하게는 0.3 내지 lg의 비율로 가할 수 있다.
본 발명의 식품 조성물은 당업계에 통상적인 식품첨가제, 예를 들어 향미제ᅳ 풍미제, 착색제, 층진제, 안정화제 등을 포함할 수 있다. 본 발명에 따른 식품 조성물은 필수 성분으로서, 상기 개똥쑥 뿌리 추출물, 아테미시닌 또는 이의 유도체 외에 첨가되는 성분에는 특별한 제한은 없으며 통상의 식품과 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상기 천연 탄수화물의 예로는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린; 등과 같은 통상적인 당 및 자일리를, 소르비를, 에리트리를 등의 당알콜이다. 상술한 것 이외의 향미제로서 천연 향미제 (타우마틴, 스테비아 추출물 (예를 들어 레바우디오시드 A, 글리시르히진 등) ) 및 합성 향미제 (사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 lOOmL당 일반적으로 약 1 내지 20g, 바람직하게는 약 5 내지 12g이다. 상기 외에 본 발명의 식품 조성물은 여러 가지 영양제, 비타민, 광물 (전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이라한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 조성물 100 증량부 당 0 내지 약 20 중.량부의 범위에서 선택되는 것이 일반적이다.
【유리한 효과】
본 발명에 따른 조성물은 세포 독성이 낮아 안정적이며, 파골 세포의 형성을 효과적으로 억제할 뿐만 아니라, 형성된 파골 세포의 골 흡수 기작도 효과적으로 억제할 수 있기 때문에 골 질환 예방 및 치료용 약학 조성물, 골 질환의 개선 및 완화용 식품 조성물 등 다양하게 사용될 수 있을 것으로 기대된다.
【도면의 간단한 설명】
도 1은 본 발명의 일 실시예에 따른 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체 및 졸레드로닉산의 세포 독성 측정 실험 결과를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 개똥쑥 뿌리 추출물과 잎 및 즐기 추출물의 세포 독성 측정 실험 결과를 나타낸 도면이디- .
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 아테미시닌, 디히드로아테미시닌, 아테미시닌—당지질 복합유도체, 졸레드로닉산의 파골세포 형성 억제능 확인 실험 결과를 나타낸 도면이다ᅳ
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 개똥쑥 뿌리 추출물과 잎 및 줄기 추출물의 파골세포 형성 억제능 확인 실험 결과를 나타낸 도면이다. 도 5는 본 발명의 일 실시예에 따른 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체의 파골세포 골 흡수 억제능 확인 실험 결과를 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체의 画 P— 9 및 應 P— 2의 활성 억제능 확인 실험 결과를 나타낸 도면이다.
도 7은 본 발명의 일 실시예에 따른 아테미시닌, 디히드로아테미시닌, 아테미시닌ᅳ당지질 복합유도체의 카텝신 K 활성 억제능 확인 실험 결과를 나타낸 도면이다.
도 8은 본 발명의 일 실시예에 따른 연 추출물의 세포 독성 측정 실험 결과를 나타낸 도면이다.
도 9는 본 발명의 일 실시예에 따른 리엔시닌 및 누시페린의 세포 독성 측정 실험 결과를 나타낸 도면이다.
도 10a 내지 도 10c는 본 발명의 일 실시예에 따른 연 추출물의 파골세포 형성 억제능 확인 실험 결과를 나타낸 도면이다.
도 .11a 및 도 lib는 본 발명의 일 실시예에 따른 리엔시닌 및 누시페린의 파골세포 형성 억제능 확인 실험 결과를 나타낸 도면이다.
도 12는 본 발명의 일 실시예에 따른 연 추출물의 파골세포 골 흡수 억제능 확인 실험 결과를 나타낸 도면이다.
도 13은 본 발명의 일 실시예에 따른 리엔시닌 및 누시페린의 파골세포 골 흡수 억제능 확인 실험 결과를 나타낸 도면이다.
도 14는 본 발명의 일 실시예에 따른 연 추출물의 카텝신 K 활성 억제능 확인 실험 결과를 나타낸 도면이다.
도 15는 본 발명의 일 실시예에 따른 리엔시닌 및 누시페린의 카텝신 K 활성 억제능 확인 실험 결과를 나타낸 도면이다
도 16a 및 도 16b는 본 발명의 일 실시예에 따른 연 추출물의 MMP— 9 및 MMP— 2의 활성 억제능 확인 실험 결과를 나타낸 도면이다.
도 17은 본 발명의 일 실시예에 따른 리엔시닌 및 누시페린의 匪 P-9 및 MMP-2의 활성 억제능 확인 실험 결과를 나타낸 도면이다.
도 18a 및 18b는 본 발명의 일 실시예에 따른 리엔시닌의 투여에 따른 혈액 세럼 내 생화학 파라미터들의 변화를 나타낸 도면이디- .
도 19는 본 발명의 일 실시예에 따른 리엔시닌의 투여 후 생쥐 경골의 X一 레이 사진을 촬영한 도면이다.
도 20a 내지 도 20e는 본 발명의 일 실시예에 따른 리엔시닌의 투여에 따른 골의 형태적 파라미터들의 변화를 나타낸 도면이다.
도 21은 본 발명의 일 실시예에 따른 아테미시닌ᅳ당지질 복합유도체의 투여 후 마이크로— CT를 이용하여 생쥐의 경골을 방사선 및 3D 이미지로 나타낸 도면이다.
도 22a 내지 도 22e는 본 발명의 일 실시예에 따른 아테미시닌—당지질 복합유도체의 투여에 따른 골의 형태적 파라미터들의 변화를 나타낸 도면이다. 도 23은 본 발명의 일 실시예에 따른 아테미시닌—당지질 복합유도체의 투여 후 생쥐 경골을 현미경으로 관찰한 사진을 나타낸 도면이다.
도 24는 본 발명의 일 실시예에 따른 아테미시닌-당지질 복합유도체의 투여 후 생쥐의 경골을 현미경으로 관찰한 사진을 나타낸 도면이다.
도 25는 본 발명의 일 실시예에 따른 아테미시닌—당지질 복합유도체의 투여 후 생쥐의 간장을 현미경으로 관찰한 사진을 나타낸 도면이다.
도 26은 본 발명의 일 실시예에 따른 아테미시닌-당지질의 투여 후 생쥐의 신장을 현미경으로 관찰한 사진을 나타낸 도면이다.
도 27a 내지 도 27c는 본 발명의 일 실시예에 따른 아테미시닌-당지질의 투여에 따른 세럼 내 골 재흡수 마커 , 칼슘, TRAP5b 및 CTX의 양의 변화를 나타낸 도면이다.
【발명의 실시를 위한 형태】
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 실시예 실시예 1: 생쥐 골수 대식세포의 준비
생쥐 골수 대식세포의 준비를 위하여, 3주령의 수컷 ICR 생쥐 (중앙실험동물 (주), 대한민국)를 경추 탈골시킨 뒤에 겸좌를 이용하여 뒷다리의 외피를 벗기고, 수술용 가위로 외피가 벗겨진 뒷다리를 절단하여 혈청이 첨가되지 않은 a-MEM(Minimum Essential medium alpha; Gibco, 미국)에 담가두었다. 그리고 핀셋을 이용하여 근육 속의 뼈를 분리하여 새로운 α— MEM에 옮겨 담고, 주사기에 600uL의 a— MEM을 담아 분리된 다리뼈의 중앙 척수 부분에 꽂고 2~3회 분사하여 골수 세포를 적출하였다. 적출된 골수세포는 원심분리를 통하여 상층액을 제거하고 새로운 α-ΜΕΜ을 섞어 준 후, 분리 배지 히스토파크 (Histopaque; Sigma, 미국)를 사용하여 상기 골수세포로부터 골수 대식세포를 분리하였다ᅳ 그리고 α MEM에 1%의 항생 -항균 용액 (Antibiotic- Anti mycotic; Gibco, 미국), 10%의 우태아혈청 (fetal bovine serum (FBS); Gibco, 미국), 대식세포—집락 자극 인자 (macrophage-colony stimulating factor (M-CSF); R&D system Inc, 미국) 30ng/ml을 첨가한 후, 분리된 생쥐 골수 대식세포를 배양하였다. 실시예 2: 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체 및 졸레드로닉산의 세포 독성 측정 실험
아테미시닌 (화학식 1), 디히드로아테미시닌 (화학식 2), 아테미시닌- 당지질 복합유도체 (화학식 3) 및 졸레드로닉산 (조메타 성분)의 세포 독성을 확인히-기 위하여, 실시예 1의 방법으로 준비된 생쥐 골수 대식세포를 이용하여 MTT assay를 실시하였다. 아테미시닌, 디히드로아테미시닌, 아테미시닌—당지질 복합유도체는 DMSCKdimethyl sulfoxide; Sigma, 미국)에 용해시키고, 졸레드로닉산은 PBS(phosphate buffered saline; Gibco, 미국)에 용해시킨 후, 각각을 1¾의 항생 -항균 용액, 10% FBS, 및 30ng/mL의 M-CSF가 첨가된 α— MEM을 이용하여 희석하였다. 아테미시닌은 0.1, 0.2, 0.3, 0.4, 0.5 및 luM의 농도가 되도록 희석하였고, 디히드로아테미시닌, 아테미시닌ᅳ당지질 복합유도체, 졸레드로닉산은 각각 0.1, 0.2, 0.3, 0.4 및 0.5uM의 농도가 되도록 희석하였다. 그리고 96—웰 플레이트의 각 웰에 5X104개의 생쥐 골수 대식세포를 첨가한 후, 희석된 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체, 졸레드로닉산이 첨가되어 있는 α-ΜΕΜ을 각각 200ul씩 첨가하고 37°C, 5% C02 조건인 세포 배양기에서 생쥐 골수 대식세포를 배양하였다. 그리고 이를마다 아테미시닌, 디히드로아테미시닌, 아테미시닌—당지질 복합유도체, 졸레드로닉산이 포함된 새로운 α MEM(1%의 항생 -항균 용액, 10% FBS, 30ng/mL의 M-CSF 첨가)으로 교환해 주며 5일간 배양하였다. 그리고 각 웰 당 0.5mg/ml의 농도가 되도톡 MTT(3-(4,5— climethythiazol— 2-yl)-2,5— diphenyl tetrazolium bromide; Sigma, 미국) 용액을 첨가하고, 4시간 동안 37°C에서 배양한 후, PBS로 세척하여 상층액을 완전히 제거하고 DMS0 200ul를 첨가하고 30분 동안 반웅시키고 570皿에서 흡광도를 측정하였다. 세포 생존율은 대조군 (배지만 처리한 실험군)의 흡광도에 대한 실험군 (아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체, 졸레드로닉산을 처리한 각각의 웰)의 흡광도의 백분율로 계산하였다. 그 결과는 도 1에 나타내었다. 도 1에 나타난 바와 같이, 아테미시닌, 디히드로아테미시닌, 아테미시닌- 당지질 복합유도체, 졸레드로닉산은 모두 실험 농도에서 90% 이상의 세포 생존율을 나타냈으며, 유의적인 세포 생존율 억제 효과를 보이지 않는 것을 확인하였다. 상기 결과를 통하여, 아테미시닌, 디히드로아테미시닌, 아테미시닌ᅳ 당지질 복합유도체, 졸레드로닉산 모두 실험 농도에서 골수 대식세포에 독성을 나타내지 않는 것을 확인할 수 있었다.
[화학식 1]
Figure imgf000022_0001
[화학식 2]
Figure imgf000022_0002
[화학식 3]
Figure imgf000023_0001
실시예 3: 개똥쑥 뿌리 추출물과 잎 및 줄기 추출물의 세포 독성 측정 실험
개똥쑥 뿌리 추출물과 잎 및 줄기 추출물의 세포 독성을 확인하기 위하여, 개똥쑥 뿌리 추출물과 잎 및 줄기 추출물을 각각 준비하였다. 각각의 추출물을 획득하기 위하여, 세척된 개똥쑥을 잎 및 줄기와 뿌리로 나눈 후, 5(rc에서 건조시키고, 분쇄하여 각각의 분말을 제조하였다ᅳ 각각의 분말 120g을 가속용매추출장치 (ASE(Acce l erated So lvent Extractor )-300; DI0NEX , 미국)를 사용하여 50°C에서 100% 메탄을로 5분간 2회 반복 추출하고, 추출액은 감압농축장치 (SB-1000 ; EYELA , 일본)를 사용하여 50 °C 이하의 온도에서 농축하여 최종적으로 추출물들을 획득하였다. 준비된 개똥쑥 뿌리 추출물과 잎 및 줄기 추출물은 각각 DMS0에 용해시킨 후, 1%의 항생 -항균 용액, 10% FBS 및 30ng/inL의
M— CSF이 첨가된 α -ΜΕΜ을 이용하여 각각 1, 3 , 5ᅳ 7, 및 10ug/ml의 농도가 되도록 희석하였다. 그리고 실시예 2와 동일한 방법으로 MTT assay를 실시하였다. 그 결과는 도 2에 나타내었다.
도 2에 나타난 바와 같이, 개똥쑥 뿌리 추출물은 5, 7 , 및 10ug/mL의 농도로 처리하였을 때 약 15% 이상 유의성 있게 생존율이 증가하였으며, 개똥숙 잎 및 줄기 추출물은 10ug/mL의 농도로 처리한 경우에도 90% 이상의 세포 생존율을 확인할 수 있었다. 상기 결과를 통하여, 개똥쑥 뿌리 추출물과 잎 및 줄기 추출물 모두 실험 농도에서 골수 대식세포에 독성을 나타내지 않는 것을 확인할 수 있었다. 실시예 4: 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체, 졸레드로닉산의 파골세포 형성 억제능 확인 실험
아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체, 졸레드로닉산이 RANKL(Receptor act ivator of nuc l ear factor kappa— B l igand)에 의해 유도된 파골세포 형성을 억제하는지 확인하기 위하여, "Park E . et al. ,
Biochem Biophys Res Co画 un. , 325(4): 1472-1480 (2004) "에 기재된 방법으로 파골세포 형성 억제능 확인 실험을 실시하였다. 그리고 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체, 졸레드로닉산 용액은 각각 실시예 2와 동일한 방법으로 준비하였다. 96-웰 플레이트의 각 웰에 실시예 1의 방법으로 준비된 생쥐 골수 대식세포를 5X104개씩 첨가한 후, 희석된 아테미시닌, 디히드로아테미시닌, 아테미시닌—당지질 복합유도체, 졸레드로닉산이 첨가되어 있는 α -ΜΕΜ( 1%의 항생 -항균 용액, 10% FBS , 30ng/mL의 M-CSF , 100ng/mL의 RANKL 첨가)을 각각 200ui씩 첨가하고 37°C , 5% C02 조건인 세포 배양기에서 생쥐 골수 대식세포를 배양하였다. 그리고 이를마다 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체, 졸레드로닉산이 포함된 새로운 α— MEM( 1%의 항생—항균 용액, 10% FBS , 30ng/mL의 M— CSF , lOOng/mL의 RANRL 첨가)으로 교환해 주며 5일간 배양하였다. 음성 대조군으로는 1%의 항생 -항균 용액, 10% FBS , 및 30ng/mL의 M—CSF가 첨가된 α—ΜΕΜ을 사용하여 세포를 배양하였고, 양성 대조군으로는 )의 항생 -항균 용액, 10% FBS, 30ng/mL의 M-CSF , 및 100ng/mL의 RANKLE] 첨가된 α -ΜΕΜ을 사용하여 세포를 배양하였다. 그리고 TRAP 분석 키트 (tart rate res i stant acid phosphatase assay ki t; Sigma , 미국)를 사용하여 다핵의 파골세포를 염색하였고, 핵이 3개 이상인 파골세포를 광학 현미경을 이용하여 카운탕하였다. 그 결과는 도 3a 및 도 3b에 나타내었다.
도 3a 및 도 3b에 나타난 바와 같이, 100ng/iiiL의 RANKL을 처리한 양성 대조군의 경우에는 파골세포의 수가 확연히 증가되었으며, 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체, 졸레드로닉산을 각각 처리한 경우에는 파골세포의 형성이 농도에 따라 감소되는 것을 확인할 수 있었다. 0.5uM의 아테미시닌을 처리한 경우에는 28%, luM의 아테미시닌을 처리한 경우에는 69%의 파골세포 형성이 억제되었으며, 디히드로아테미시닌은 0.4uM 농도에서 파골세포가 거의 형성이 되지 않았으며, 아테미시닌—당지질 복합유도체는 0.3uM 농도에서 파골세포가 거의 형성이 되지 않은 것을 확인하였다. 졸레드로닉산은 0.3uM을 처리한 경우에 47¾의 파골세포 형성이 억제되었다. 상기 결과를 통하여, 디히드로아테미시닌 및 아테미시닌-당지질 복합유도체는기존의 비스포스포네이트 계열인 졸레트로닉산과 비교하여 더 강한 파골세포 형성 억제능을 가지고 있는 것을 확인하였으며, 이를 통하여 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체를 파골세포 형성에 의해 야기되는 질병에 사용 가능하다는 것을 확인할 수 있었다 실시예 5 : 개똥쑥 뿌리 추출물과 및 줄기 추출물의 파골세포 형성 억제능 확인 실험
개똥쑥 뿌리 추출물과 잎 및 줄기 추출물의 파골세포 형성 억제 효능을 확인하기 위하여, 실시예 3과 동일한 방법으로 개똥쑥 뿌라 추출물과 잎 및 줄기 추출물 용액을 준비하였다. 그리고 실시예 4와 동일한 방법으로 파골세포 형성 억제능 확인 실험을 실시하였다. 그 결과는 도 4a 및 도 4b에 나타내었다.
도 4a 및 도 4b에 나타난 바와 같이, 개똥쑥 뿌리 추출물을 처리한 경우 농도에 따라 파골세포 형성이 억제되었으며, 7ug/mL의 농도에서는 73%, 10ug/mL의 농도에서는 98%의 파골세포 형성이 억제되었다. 반면 개똥쑥 잎 및 줄기 추출물을 처리한 경우에는 lOug/mL의 농도에서 약 10%의 파골세포 형성만이 억제되었다. 상기 결과를 통하여, 개똥쑥 뿌리 추출물을 파골세포 형성에 의해 야기되는 질병에 사용 가능하다는 것을 확인할 수 있었다. 실시예 6: 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체의 파골세포 골 흡수 억제능 확인 실험
아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체가 파골세포의 골 흡수 기능을 억제하는지 확인하기 위하여, "Myung Hee Kim . J
Cell Physiol. 221 : 618-628 (2009) "에 기재된 방법으로 파골세포 골 흡수 억제능 확인 실험을 실시하였다. 인산칼슘 (calc ium phosphate)으로 코팅되어 있는 96一웰 플레이트의 각 웰에 실시예 1의 방법으로 준비된 생쥐 골수 대식세포를 5X104개씩 첨가한 후, α-ΜΕΜ(1%의 항생—항균 용액, 10% FBS, 30ng/mL의 M-CSF, lOOng/mL의 RANKL 첨가)을 각각 200ul씩 첨가하고 37°C , 5% C02 조건인 세포 배양기에서 생쥐 골수 대식세포를 배양하였다. 그리고 이를마다 새로운 배지로 교환해 주며 6일간 배양하였다. 음성 대조군으로는 1%의 항생—항균 용액, 10% FBS, 및 30ng/mL의 M— CSR가 첨가된 α-ΜΕΜ을 사용하여 세포를 배양하였디ᅳ . 파골세포의 형성을 확인한 후에 실시예 4와 동일한 방법으로 준비된 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체가 첨가된 배지를 이용하여 이를마다 새로운 배지로 교환해 주며 7일간 추가 배양하였다. 그리고 기질금속단백질분해효소 (matrix metal loprotease, MMP) 및 카텝신 K(Cathepsin 10의 활성을 측정하기 위하여 배양액을 따로 수거하고, 세포에는 차아염소산나트륨 (sodium hypochlorite) 용액을 첨가하여 5분간 반웅시킨 후, 첨가된 치아염소산나트륨 용액을 완전히 제거하고 3차 증류수로 두 번 세척하여 파골세포에 의하여 형성된 골 흡수 구멍 (resorption pit)을 광학현미경으로 관찰하였다. 그 결과는 도 5에 나타내었다.
도 5에 나타난 바와 같이, RANKL을 처리하고 배양한 양성 대조군의 경우에는 음성 대조군과 비교하여 흡수 구멍의 생성이 현저히 증가하였으며, 0.5 및 luM의 아테미시닌을 처리한 경우와 디히드로아테미시닌 0.1 및 0.2uM을 처리한 경우에도 흡수 구멍 생성이 거의 억제되지 않았다. 그러나 아테미시닌- 당지질 복합유도체를 처리한 경우에는 0.1 및 0.2uM의 농도에서 흡수 구멍의 생성이 확연히 억제되는 것을 확인하였다. 상기 결과들을 통하여, 아테미시닌, 디히드로아테미시닌, 아테미시닌- 당지질 복합유도체는 모두 파골세포의 형성을 억제하므로 최종적으로는 파골세포에 의한 골 흡수를 억제할 수 있지만, 아테미시닌-당지질 복합 유도체는 파골세포의 형성뿐만 아니라 형성된 파골세포에 의한 골 흡수도 억제하는 것을 확인할 수 있었다. 실시예 7 : 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체의 MMP-9 및 MMP-2의 활성 억제능 확인 실험
파골세포는 기질금속단백질분해효소 (matr ix metal loprot ease , 匪 P) 및 카텝신 K(Catheps in 10를 분비하여 골 기질의 유기성분을 분해함으로써 골 흡수를 야기시키는 것으로 알려져 있다. 따라서, 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체가 파골세포에서 분비하는 대표적인 기질금속단백질분해효소인 MMP-9 및 丽 P-2의 활성을 억제하여 골 흡수를 억제하는지 확인하기 위하여, 실시예 6의 방법으로 수거한 배양액을 원심분리하여 불순물이 제거된 상층액을 획득하고, 이를 이용하여 젤라틴 자이모그래피 (gel at in zymography)를 실시하였다. 젤라틴 자이모그래피를 실시하기 위하여 5% 젤라틴이 첨가된 10% sodium dodecyl su l fate(SDS)- 폴리아크릴아마이드 겔을 준비하였고, 상기 상층액 내의 단백질량을 BSA protein assay 방법을 통해 측정한 후 단백질의 양이 30ug이 되도록 보정하였다. 그리고 보정된 값의 상층액과 sample dye를 흔합한 뒤 준비된 흔합액 20uL를 폴리아크릴아마이드 겔에 로딩하고 120V에서 전기 영동하였다. 전기영동이 종료된 후, 폴리아크릴아마이드 겔을 세척용 버퍼로 세척한 뒤, 반웅용 버퍼에 담가 37 °C , 50rpm 조건하의 항온수조기에서 24시간동안 반웅시키고, 다시 폴리아크릴아마이드 겔을 세척한 뒤 쿠마지 블루 (co誦 ass i e b lue) 용액을 이용하여 1시간 동안 염색하고, 탈색 용액을 이용하여 30분씩 2회 탈색하여 MMP에 의한 젤라틴 분해 활성 (염색이 제거된 하얀색 밴드)을 측정하였다. 그 결과는 도 6에 나타내었다.
도 6에 나타난 바와 같이 , RANKL을 처리하고 배양한 양성 대조군의 경우에는 음성 대조군과 비교하여 醒 P-9의 활성은 현저히 증가하였지만, 醒 P-2의 활성에는 큰 영향을 주지 않는 것을 확인할 수 있었다. 또한, RANKIN} 함께 아테미시닌 또는 디히드로아테미시닌을 처리한 경우에는 배양액 내의 匪 P-9의 활성이 억제되지 않았지만, 아테미시닌-당지질 복합유도체를 함께 처리한 경우에는 활성화 및 비활성화 상태의 醒 P— 9의 활성이 모두 억제되었다. 상기 결과들을 통하여, 파골세포의 골 흡수에서 가장 증요한 역할을 담당하고 있는 것으로 알려져 있는 丽 P-9의 분비가 아테미시닌—당지질 복합유도체에 의하여 현저히 억제되는 것을 확인할 수 있었으며, 이를 통하여 아테미시닌—당지질 복합체는 丽 P— 9의 분비를 억제하여 형성된 파골세포에 의한 골 흡수도 억제하는 것을 확인할 수 있었다. 실시예 8 : 아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체의 카텝신 K 활성 억제능 확인 실험
아테미시닌, 디히드로아테미시닌, 아테미시닌-당지질 복합유도체가 카텝신 K의 활성을 억제하는지 확인하기 위하여, 실시예 6의 방법으로 수거한 배양액을 원심분리하여 불순물이 제거된 상층액을 획득하고, Sensi zyme
Cathepsin K act ivi ty assay ki t (Sigma— Al dr i ch , 미국)를 이용하여 상기 상층액 내의 카텝신 K 활성을 측정하였다. 카텝신 K 항체가 붙어있는 96-웰 플레이트에 상기 상층액과 카텝신 K 스탠다드를 각각 첨가하고 상온에서 1시간 동안 반응시킨 후, 세척용 버퍼를 이용하여 상층액을 깨끗이 제거하고 반웅용 시약 (eact i on mi xture)을 첨가하여 37°C에서 4시간 동안 반웅시켰다. 그리고
405nm에서 흡광도를 측정하여 Catheps in K standard curve를 도출하고 이를 이용하여 카텝신 K의 활성을 측정하였다. 그 결과는 도 7에 나타내었다.
도 7에 나타난 바와 같이 , RANKL을 처리하고 배양한 양성 대조군의 경우에는 음성 대조군과 비교하여 카텝신 K의 활성이 현저히 증가되었으며,
RANKL과 함께 아테미시닌 또는 디히드로아테미시닌을 처리한 경우에는 배양액 내의 카텝신 K 활성에 큰 차이를 보이지 않는 것을 확인하였다. 그러나 RANKL과 함께 아테미시닌-당지질 복합유도체 O . luM을 처리한 경우에는 카템신 K의 활성이 양성 대조군과 비교하여 36% 억제되었으며, 0.2uM을 처리한 경우에는 카텝신 K의 활성이 47% 억제되는 것을 확인하였다. 상기 결과들을 통하여, 아테미시닌- 당지질 복합 유도체는 파골세포의 카텝신 K 분비를 현저히 억제하여 형성된 파골세포에 의한 골 흡수도 억제하는 것을 확인할 수 있었으며, 또한 아테미시닌-당지질 복합 유도체는 파골세포의 형성뿐만 아니라 형성된 파골세포에 의한 골 흡수도 억제할 수 있기 때문에 동일한 농도에서 아테미시닌 또는 디히드로아테미시닌보다 파골세포에 의한 골 흡수를 효과적으로 억제할 수 있다는 것을 확인할 수 있었다. 실시예 9: 생쥐 골수 대식세포의 준비
생쥐 골수 대식세포의 준비를 위하여, 4주령의 수컷 ICR 생쥐 (나라 바이오텍)를 경추 탈골시킨 뒤에 겸좌를 이용하여 뒷다리의 외피를 벗기고, 수술용 가위로 외피가 벗겨진 뒷다리를 절단하여 혈청이 첨가되지 않은 α一 MEMCMinimum Essen ial medium alpha; Gibco, 미국)에 담가두었다. 그리고 핀셋을 이용하여 근육 속의 뼈를 분리하여 새로운 α-ΜΕΜ에 옮겨 담고, 주사기에 500uL의 α-ΜΕΜ을 담아 분리된 다리뼈의 중앙 척수 부분에 꽂고 2~3희 분사하여 골수 세포를 적출하였다. 적출된 골수세포는 원심분리를 통하여 상층액을 제거하고 새로운 α-ΜΕΜ을 섞어 준 후, 분리 배지 히스토파크 (Histopaque; Sigma, 미국)를 사용하여 상기 골수세포로부터 골수 대식세포를 분리하였다. 그리고 α- ΜΕΜ에 1%의 항생ᅳ항균 용액 (Antibiotic-Ant imycotic; Gibco, 미국), 10%의 우태아혈청 (fetal bovine serum(FBS); Gibco, 미국), 대식세포 -집락 자극 인자 (macrophage一 colony .stimulating factor (M-CSF); R&D system Inc, 미국) 30 ng/ml을 첨가한 후, 분리된 생쥐 골수 대식세포를 배양하였다. 실시예 10: 연 추출물의 세포 독성 측정 실험
연 추출물의 세포 독성을 확인하기 위하여, 연 꽃잎 추출물, 연 수술 및 자방 추출물, 연 잎 추출물, 연 줄기 추출물, 및 연 뿌리 (연근) 추출물을 각각 준비하였다. 각각의 추출물을 획득하기 위하여, 세척된 연을 꽃¾, 수술 및 자방, 잎, 줄기, 뿌리로 나눈 후, 50 C에서 건조시키고, 분쇄하여 각각의 분말을 제조하였다. 각각의 분말 120g을 가속용매추출장치 SE(Accelerated Solvent
Extractor )— 300 ; DI0NEX, 미국)를 사용하여 50°C에서 100% 메탄올로 5분간 2회 반복 추출하고, 추출액은 감압농축장치 (SB-1000 ; EYELA , 일본)를 사용하여 50°C 이하의 온도에서 농축하여 최종적으로 추출물들을 획득하였다. 그리고 상기 추출물은 각각 DMS0( dimethyl sul foxide)에 용해시킨 후, 1¾의 항생ᅳ항균 용액,
10% FBS 및 30ng/mL의 M-CSF이 첨가된 α -ΜΕΜ을 이용하여 연근 추출물은 10, 20,
40, 80, 및 100ug/mL의 농도가 되도록 희석하고, 나머지 추출물은 각각 1, 5, 및 lOug/mL의 농도가 되도록 희석하였다. 그리고 96-웰 플레이트의 각 웰에
5X104개의 생쥐 골수 대식세포를 첨가한 후, 희석된 연 추출물이 첨가되어 있는 각각의 α— MEM을 각각 200ul씩 첨가하고 37°C, 5% C02 조건인 세포 배양기에서 생쥐 골수 대식세포를 배양하였다. 그리고 이를마다 각각의 연 추출물이 포함된 새로운 α— MEM( 1%의 항생 -항균 용액, 10% FBS , 30ng/mL의 M— CSF 첨가)으로 교환해 주며 5일간 배양하였다. 그리고 각 웰 당 0 , 5mg/ml의 농도가 되도록
MTT ( 3- ( 4 , 5-d i me t hy t h i azo 1 -2-y 1 ) -2 , 5-d i pheny 1 tetrazol ium bromi de ; Sigma , 미국) 용액을 첨가하고, 4시간 동안 37°C에서 배양한 후, PBS로 세척하여 상층액을 완전히 제거하고 DMS0 200ul를 첨가하고 30분 동안 반웅시키고
570nm에서 흡광도를 측정하였다. 세포 생존율은 대조군 (배지만 처리한 실험군) 흡광도에 대한 실험군 (각각의 연 추출물을 처리한 실험군) 흡광도의 백분율로 계산하였다. 그 결과는 도 8에 나타내었다.
도 8에 나타난 바와 같이 , 연 꽃잎 추출물, 연 수술 및 자방 추출물, 연 잎 추출물, 연 줄기 추출물, 및 연근 추출물 모두 골수 대식세포에서 독성을 나타내지 않는 것을 확인할 수 있었다. 또한, 연 꽃잎 추출물, 연 수술 및 자방 추출물, 및 연근 추출물은 농도에 따라 유의성 있게 생존율이 증가하는 것을 확인할 수 있었다. 실시예 11 : 리엔시닌 및 누시페린의 세포 독성 측정 실험
리엔시닌 및 누시페린의 세포 독성을 확인하기 위하여, 리엔시닌은
DMSO(dimethyl sul foxide ; Sigma , 미국)에 용해시키고, 누시페린은 에탄올에 용해시킨 후, 각각을 1%의 항생—항균 용액, 10% FBS , 및 30ng/mL의 M-CSF가 첨가된 α -ΜΕΜ을 이용하여 희석하였다. 리엔시닌은 1 , 3 , 5, 7, 및 10uM의 농도가 되도록 희석하였고, 누시페린은 5, 10, 20 , 40 , 및 80uM의 농도가 되도록 희석하였다. 그리고 실시예 10과 동일한 방법으로 ΜΊΤ assay를 실시하였다. 그 결과는 도 9에 나타내었다.
도 9에 나타난 바와 같이, 리엔시닌은 5uM에서 33¾>, 7uM에서 62%의 세포 생존율 감소를 나타내는 것을 통하여 5uM 이상의 농도에서 세포 독성을 나타내는 것을 확인할 수'있었다. 반면, 누시페린은 40uM까지 80% 이상의 세포 생존율을 나타냈으며, 유의적인 세포 생존율 억제 효과를 보이지 않는 것을 확안하였고, 80uM에서는 50%의 세포 생존율 감소를 나타내었다. 실시예 12 : 연 추출물, 리엔시닌, 및 누시페린의 파골세포 형성 억제능 확인 실험 연 추출물, 리엔시닌, 및 누시페린이 RANKL (Receptor activator of nuclear factor kappa-B ligand)에 의해 유도된 파골세포 형성을 억제하는지 확인하기 위하여, "Park EK. , et al. , Biochem Biophys Res Commun. , 325(4) :1472-1480 (2004)' '에 기재된 방법으로 파골세포 형성 억제능 확인 실험을 실시하였다. 그리고 연 추출물, 리엔시닌, 및 누시페린 용액은 각각 실시예 10 및 11과 동일한 방법으로 준비하였다. 96-웰 플레이트의 각 웰에 실시예 9의 방법으로 준비된 생쥐 골수 대식세포를 5X104개씩 첨가한 후, 회석된 연 추출물, 리엔시닌, 및 누시페린이 첨가되어 있는 α-ΜΕΜ(1¾의 항생—항균 용액, 10% FBS, 30ng/mL의 M— CSF, 100ng/niL의 RANKL 첨가)을 각각 200ul씩 첨가하고 37 °C, 5% C02 조건인 세포 배양기에서 생쥐 골수 대식세포를 배양하였다. 그리고 이를마다 회석된 연 추출물 리엔시닌, 및 누시페린이 포함된 새로운 α-ΜΕΜ(1%의 항생- 항균 용액 , 1 FBS, 30ng/mL의 M-CSF, lOOng/mL의 RANKL 첨가)으로 교환해 주며 5일간 '배양하였다. 음성 대조군으로는 1%의 항생 -항균 용액, 10% FBS, 및 30ng/mL의 M—CSF가 첨가된 α_ΜΕΜ을 사용하여 세포를 배양하였고, 양성 대조군으로는 1%의 항생ᅳ항균 용액, 10% FBS, 30ng/mL의 M-CSF, 및 100ng/mL의 RANKL이 첨가된 α-ΜΕΜ을 사용하여 세포를 배양하였다ᅳ 그리고 TRAP 분석 키트 (tartrate resistant acid phosphatase assay kit; Sigma, 미국)를 사용하여 다핵의 파골세포를 염색하였고, 핵이 3개 이상인 파골세포를 광학 현미경을 이용하여 카운팅하였다ᅳ 그 결과는 도 10a 내지 도 10c과 도 11a 및 도 lib에 나타내었다.
도 10a 내지 도 10c에 나타난 바와 같이, 100ng/mL의 RANKL을 처리한 양성 대조군의 경우에는 파골세포의 수가 확연히 증가 (p < 0.0001)되었으며, 각 부위의 연 추출물을 처리한 경우에는 파골세포의 형성이 농도에 따라 감소되는 것을 확인할 수 있었다. 연 꽃¾ 추출물, 연 수술 및 자방 추출물, 연 잎 추출물, 및 연 줄기 추출물은 연근 추출물보다 낮은 농도에서도 높은 파골세포 형성 억제능을 나타냈으며, 그 중 연 수술 및 자방 추출물이 가장 높은 파골세포 형성 억제능을 나타내는 것을 확인하였다ᅳ
또한 도 11a 및 도 lib에 나타난 바와 같이, 리엔시닌과 누시페린을 처리한 경우 RAN L에 의해 유도된 파골세포의 형성이 농도 의존적으로 감소하였다. 리엔시닌은 5uM에서 60. 1%, 7uM에서 88. 1%의 파골세포 형성 억제 효과를 나타냈으며, 누시페린은 20uM에서 58.5%의 억제 효과를 나타내었다.
상기 결과들을 통하여, 연 추출물, 리엔시닌 및 누시페린은 모두 파골세포 형성 억제능을 가지고 있는 것을 확인하였으며, 이를 통하여 연 추출물, 리엔시닌 및 누시페린을 파골세포 형성에 의해 야기되는 질병에 사용 가능하다는 것을 확인할 수 있었다. 실시예 13: 연 추출물, 리엔시닌, 및 누시페린의 파골세포 골 흡수 억제능 확인 실험
연 추출물, 리엔시닌, 및 누시페린이 파골세포의 골 흡수 기능을 억제하는지 확인하기 위하여, "Myung Hee Kim . J Cell Physiol. 221 : 618—628
(2009) "에 기재된 방법으로 파골세포 골 흡수 억제능 확인 실험을 실시하였다. 인산칼슘 (cal cium phosphate)으로 코팅되어 있는 96-웰 플레이트의 각 웰에 실시예 9의 방법으로 준비된 생쥐 골수 대식세포를 5X104개씩 첨가한 후, α - ΜΕΜ( 1%의 항생ᅳ항균 용액, 10% FBS , 30ng/niL의 M一 CSF , 100ng/mL의 RANKL 첨가)을 각긱- 200uL씩 첨가하고 37°C , 5% C02 조 인 세포 배양기에서 생쥐 골수 대식세포를 배양하였다. 그리고 이를마다 새로운 배지로 교환해 주며 6일간 배양하였다. 음성 대조군으로는 1%의 항생 -항균 용액, 10% FBS , 및 30ng/mL의 M- CSF가 첨가된 α— MEM을 사용하여 세포를 배양하였다. 파골세포의 형성을 확인한 후에 실시예 12와 동일한 방법으로 준비된 연 추출물, 리엔시닌, 및 누시페린이 첨가된 배지를 이용하여 2일간 추가 배양하였다. 그리고 기질금속단백질분해효소 (mat r ix metal loprot ease , MMP) 및 카텝신 K Catheps in K)의 활성을 측정하기 위하여 배양액을 따로 수거하고, 세포에는 차아염소산나트륨 (sodiura hypochlor i te) 용액을 첨가하여 5분간 반웅시킨 후, 첨가된 치아염소산나트륨 용액을 완전히 제거하고 3차 증류수로 두 번 세척하여 파골세포에 의하여 형성된 골 흡수 구멍 (resorpt ion pi t )을 광학현미경으로 관찰하였다. 그 결과는 도 12 및 도 13에 나타내었다.
도 12에 나타난 바와 같이, RANKL을 처리하고 배양한 양성 대조군의 경우에ᅳ'는 음성 대조군괴― 비교하여 흡수 구멍의 생성이 현저히 증가하였으며, 연 추출물을 함께 처리한 경우에는 흡수 구멍의 생성이 확연히 억제되는 것을 확인하였다. 연 꽃잎 추출물, 연 수술 및 자방 추출물, 연 잎 추출물, 및 연 줄기 추출물은 연근 추출물보다 낮은 농도에서도 높은 골 흡수 억제효과를 나타냈으며 , 그 중 연 수술 및 자방 추출물은 가장 높은 골 흡수 억제효과를 나타내었다. 또한 도 13에 나타난 바와 같이 , 리엔시닌 및 누시페린을 처리한 경우에도 농도에 따라 흡수 구멍의 생성이 억제되는 것을 확인하였다. 누시페린의 경우에는 리엔시닌에 비해 농도가 높지만 세포 독성이 나타나지 않는 농도에서 높은 억제 효과를 나타내는 것을 확인할 수 있었다ᅳ
상기 결과들을 통하여, 연 추출물, 리엔시닌, 및 누시페린은 파골세포의 형성뿐만 아니라 형성된 파골세포에 의한 골 흡수도 억제하는 것을 확인할 수 있었다. 또한 연 추출물의 경우에는 연 수슬 및 자방 추출물이 가장 효과적으로 골 흡수를 억제하는 것을 확인할 수 있었다. 실시예 14 : 연 추출물, 리엔시닌, 및 누시페린의 카텝신 K 활성 억제능 확인 실험
연 추출물, 리엔시닌, 및 누시페린이 카텝신 K의 활성을 억제하는지 확인하기 위하여, 실시예 13의 방법으로 수거한 배양액을 원심분리하여 불순물이 제거된 상중액을 획득하고, Sens i zyme Catheps in K act ivi ty assay ki t (Sigma- Aldr i ch, 미국)를 이용하여 상기 상층액 내의 카텝신 K 활성을 측정하였다. 카템신 K 항체가 붙어있는 96—웰 플레이트에 상기 상층액과 카텝신 K 스탠다드를 각각 첨가하고 상온에서 1시간 동안 반응시킨 후, 세척용 버퍼를 이용하여 상층액을 깨끗이 제거하고 반웅용 시약 (eact i on mixture)을 첨가하여 37°C에서 4시간 동안 반웅시켰다. 그리고 405iim에서 흡광도를 측정하여 Cathepsin K standard curve를 도출하고 이를 이용하여 카텝신 K의 활성을 측정하였다. 그 결과는 도 14 및 도 15에 나타내었다. 도 14에 나타난 바와 같이, RANKL을 처리하고 배양한 양성 대조군의 경우에는 음성 대조군과 비교하여 카텝신 K의 활성이 현저히 증가되었으며, ANKL과 함께 연 추출물을 함께 처리한 경우에 농도에 따라 카텝신 K의 활성이 억제되는 것을 확인하였다.
또한 도 15에 나타난 바와 같이 , 리엔시닌 및 누시페린도 처리 농도에 따라 카텝신 K의 활성이 억제되는 것을 확인하였다.
상기 결과들을 통하여, 연 추출물, 리엔시닌, 및 누시페린은 파골세포의 카텝신 K 분비를 억제하여 형성된 파골세포에 의한 골 흡수도 억제하는 것을 확인할 수 있었다. 、 실시예 15 : 연 추출물, 리엔시닌, 및 누시페린의 MMP-9 및 MMP-2의 활성 억제능 확인 실험
파골세포는 기질금속단백질분해효소 (mat r ix metal loprotease , MMP) 및 카텝신 K(Catheps in K)를 분비하여 골 기질의 유기성분을 분해함으로써 골 흡수를 야기시키는 것으로 알려져 있다. 따라서, 연 추출물, 리엔시닌, 및 누시페린이 파골세포에서 분비하는 대표적인 기질금속단백질분해효소인 丽 Ρ-9 및
ΜΜΡ-2의 활성을 억제하여 골 흡수를 억제하는지 확인하기 위하여, 실시예 13의 방법으로 수거한 배양액을 원심분리하여 불순물이 제거된 상층액을 획득하고, 이를 이용하여 젤라틴 자이모그래피 (gelat in zymography)를 실시하였다. 젤라틴 자이모그래피를 실시하기 위하여 0.2% ί라틴이 첨가된 8% sodium dodecyl suI fate(SDS)—폴리아크릴아마이드 겔을 준비하였고, 상기 상층액 내의 단백질량을 BSA protein assay 방법을 통해 측정한 후 단백질의 양이 40ug이 되도록 보정하였다. 그리고 보정된 값의 상층액과 sampl e dye를 혼합한 뒤 준비된 흔합액 20uL를 폴리아크릴아마이드 겔에 로딩하고 120V에서 2시간 동안 전기 영동하였다. 전기영동이 종료된 후, 폴리아크릴아마이드 겔을 세척용 버퍼 (Tr i ton X— 100 solut ion)로 세척한 뒤, 반웅용 버퍼 (50mM Tr i s-HCKpH 7.5) , 5mM CaCl2 , 200mM NaCl , 0.02% Br i j -35)에 담가 37°C, 50rpm 조건하의 항온수조기에서 24시간 동안 반웅시키고, 다시 폴리아크릴아마이드 겔을 세척한 뒤 쿠마지 블루 (commass i e blue) R-250 용액을 이용하여 1시간 동안 염색하고, 탈색 용액을 이용하여 30분씩 2회 탈색하여 MMP에 의한 젤라틴 분해 활성 (염색이 제거된 하얀색 밴드)을 측정하였다. 그 결과는 도 16a 및 도 16b와 도 17에 나타내었다. - 도 16a 및 도 16b에 나타난 바와 같이, RANKL을 처리하고 배양한 양성 대조군의 경우에는 음성 대조군과 비교하여 匪 P-9의 활성은 현저히 증가하였지만, MMP— 2의 활성에는 큰 영향을 주지 않는 것을 확인할 수 있었다. 또한, RANKL과 함께 연 추출물을 처리한 경우 활성회- 상태의 丽 P-9이 감소하는 것을 확인할 수 있었으며, 특별히 연근 추출물의 경우에는 활성화 및 비활성화 상태의 MMP-9의 활성이 모두 억제되는 것을 확인할 수 있었디- .
또한 도 17에 나타난 바와 같이, 리엔시닌을 처리한 경우에는 비활성화 상태의 匪 P-9이 약하게 감소되는 것을 확인하였으며, 누시페린의 경우에는 활성화 및 비활성회- 상태의 丽 P-9의 활성이 모두 억제되는 것을 확인하였다.
상기 결과들을 통하여, 파골세포의 골 흡수에서 중요한 역할을 담당하고 있는 것으로 알려져 있는 丽 P-9의 분비가 연 추출물, 리엔시닌 및 누시페린에 의하여 현저히 억제되는 것을 확인할 수 있었으며, 이를 통하여 연 추출물, 리엔시닌 및 누시페린은 匿 P-9의 분비를 억제하여 형성된 파골세포에 의한 골 흡수도 억제하는 것을 확인할 수 있었다. 또한 연 추출물, 리엔시닌을 포함하는 비스벤질이소퀴놀린계 알칼로이드 및 누시페린을 포함하는 아포핀계 알칼로이드는 파골세포의 형성뿐만 아니라 형성된 파골세포에 의한 골 흡수도 억제할 수 있기 때문에 파골세포의 골 흡수에 의해 유발되는 골 질환에 효과적으로 사용할 수 있다는 것을 확인할 수 있었으며, 연 추출물 중 연 수술 및 자방 추출물이 골 흡수에 의해 유발되는 골 질환에 가장 효과적으로 사용할 수 있다는 것을 확인할 수 있었다. 실시예 16: 유방암 세포 유도 뼈 손상 동물에서 리엔시닌의 억제 효능
MDA-MB-231 유방암 유도 골 용해 (breast cancer- induced osteolysis)에 따른 생쥐 경골 내부 (intratibial) 모델
암컷 발브시 mi/nu 생쥐를 6마리씩 6그룹으로 나누었다. 30mg/kg의
Zoleti KVerbac Laboratories, Carros, France)와 lOmg/kg의 Rompun( Bayer
HealthCare Korea, Seoul , Korea)를 생쥐의 복강 내로 주입하여 마취시켰다. 27- 게이지 니들과 해밀턴 시린지 (Hamilton syringe)를 이용하여 생쥐의 슬 동맥의 골수강에 MDA-MB— 231 세포 (1 x 106 세포 /0. 1 HBSS)를 주입하였다. 다음날부터, 리엔시닌을 생쥐 몸무게에 대하여 5mg/kg, 10mg/kg 및 /또는 20mg/kg의 용량으로 주 5회씩 경구 투여하였고, 유방암 세포 접종 후에 졸레드로닉산을 생쥐 몸무게에 대하여 0.1mg/kg의 용량으로 주 3회씩 5주간 피하에 주입하였다. 대조군과 MDA-MB-231 세포만 접종한 생쥐에는 암세포 및 /또는 리엔시닌 대신에 \ DMS0를 포함하는 PBS를 주입하였다. 5주 후, 마이크로 컴퓨터 토모그래피 (micro一 computed tomography, micro— CT) 분석을 위하여 생쥐를 마취시킨 뒤, 세럼을 얻기 위하여 심장 천자 (cardiac puncture)를 통해 혈액을 채취하였다. 그 후, 생쥐를 안락사시키고, 경골 (tibiae)을 채취하였다. 혈액 세럼 내 생화학 파라미터의 분석
수집한 혈액 샘플을 상온에서 2시간 동안 웅고시키고, 세럼을 얻기 위하여 2,000xg에서 20분 동안 원심 분리한 뒤, TRAP 어쎄이 키트 (Immuno Diagnostic Systems , Bo 1 don , UK)와 Rat Laps EIA 키트 (I画 mo Diagnostic Systems)를 이용하여 세럼 내 타르트레이트. 내성 산성 포스파타아제 (serum tartrate-resistant acid phosphatase, TRAP) 5b와 타입 I 콜라겐 (CTX)의 Ο 터미널 가교 텔로펩티드의 양을 측정하여 그 결과를 도 18a 및 도 18b에 나타내었다. 마이크로 -CT분석
생쥐 경골의 골 형태적 파라미터들은 100kV, 140 μ Α 전류, 회전 단계 (rotation step) 0.6" 조건 하에서 마이크로 -CT 시스템 (Sky Scan 1076, SkyScan, Konich, Belgium)을 이용하여 분석하였다. 스캔본은 NRecon 소프트웨어 (SkyScan)에서 재구성하여 그 결과를 도 19에 나타내었다. 또한, 골 조직학 (bone histonrarphometry)의 정량적 분석을 위하여 CTAn 소프트웨어 (SkyScan)을 이용하여 누드 생쥐의 근위 경골에서 퍼센트 골 부피 (BV/TV, %), 섬유주 두께 (trabecular thickness) (Tb.Th, mm) , 섬유주 수 (trabecular number ) (Tb.N, mnf1) , 섬유주 분리 (trabecular separation)(Tb.Sp 謹 i) 및 구조 모델 인덱스 (Structure model index, SMI)를 분석하여, 그 결과를 도 20a 내지 도 20e에 나타내었다. 통계적 분석
데이터는 평균士표준편차 (SE)로 나타내었다ᅳ 통계적 분석은 일원 변량 분석 (one-way analysis of variance, ANOVA)으로 수행하였고, 그룹 사이 차이를 나타내기 위하여 스튜던트 ^—테스트를 이용하였다. PO.05인 경우 통계적 유의성이 있는 것으로 간주하였다. 도 18a 및 18b는 세럼 골 재흡수 표지 (serum bone resroption markers)로서, TRAP5b 및 CTX는 각각의 키트를 사용하여 분석한 결과로, 대조군에서 증가한 TRAP5b와 CTX 세럼 레벨이 리엔시닌을 특정한 용량으로 경구 투아한 생쥐에서는 감소한 것을 볼 수 있었다.
또한, 도 19는 각 처리 후 생쥐 경골의 X-레이 촬영 사진을 나타낸 것으로, MDA— MB— 231 세포를 주입한 생쥐의 경골에서 심각한 골 용해 (osteolytic lesion)가 관찰되었다. 그러나, 리엔시닌을 특정한 용량으로 투여한 생쥐에서는 골 파괴 (bone destruction)가 감소된 것을 볼 수 있었다.
또한, 도 20a 내지 도 20e은 골의 형태적 파라미터들로, BV/TV, Tb, Th, Tb.N, Tb.Sp, 및 SMI을 분석한 결과를 나타낸 것으로, 대조군과 비교하였을 때, 리엔시닌을 투여한 생쥐의 경우 BV/TV, Tb, Th 및 Tb.N의 감소나, Tb.Sp 및 SMI의 증가가 억제된 것을 볼 수 있었다. 실시예 17: 유방암 세포 유도 뼈 손상 동물에서 아테미시닌- 글리코리피드의 억제 효능 확인
A549 세포 유도 골 파괴 (bone destruction) 및 처리 (treatment)에 따른 생쥐 경골 내부 (intratibial) 모델
5주 된 암컷 발브시 누드 생쥐를 5마리씩 6그룹으로 나누었다. 30mg/kg의
Zolet i 1 (Verbac Laboratories , Carros , France)와 lOmg/kg의 Rompun( Bayer
HealthCare Korea, Seoul , Korea)를 생쥐의 복강 내로 주입하여 생쥐를 마취시켰디-. 27-게이지 니들 및 해밀턴 시린지 (Hamilton syringe)를 이용하여 생쥐의 슬 동맥의 골수강에 A549 세포 (1 X 106 세포 /0.5ml HBSS)를 주입하였다. 다음날부터, PBS에 아테미시닌—당지질 (5mg/kg, 10mg/kg 및 /또는 20mg/kg)과 제피티니브 (gefitinib)(10mg/kg)를 각각 용해시킨 뒤 주 6회씩 6주간 경구 투여하였다. 대조군 생쥐에게는 PBS만 투여하였다. 42일째 되었을 때, 경골의 마이크로 컴퓨터 토모그래피 (micro— computed tomography, micro— CT) 분석을 위하여 생쥐를 마취시킨 뒤, 혈액을 채취하고, 안락사시켰다. 이 후, 조직학적 분석을 위하여 생쥐의 경골을 채취하였다. 마이크로— CT 및 구조 분석
마이크로 -CT 어날라이져 NRecon 소프트웨어 (Skyscan)을 이용하여 마이크로 -CT 시스템 (SkyScanl076, SkyScan, Konich, Belgium)을 통해 생쥐 경골의 형태적 파라미터들을 분석하였다. 스캔은 100kV의 전압 소스와 100 μ A 전류 조건 하에서, 0. 誦 알루미늄 필터를 이용해 수행되었다. 스캐닝 각 회전은 360°, 각 증가는 0.5°이고, 2차원적 (two-dimensional, 2D) 및 3차원적 (three- dimensional, 3D) 이미지를 NRecon 소프트웨어 (SkyScan)를 이용하여 형성하였다. 골 파괴의 정량적 분석은, CTAn 소프트웨어 (SkyScan)을 이용하여 수행되었고 , 퍼센트 골 부피 (BV/TV, %), 섬유주 두께 (Tb.Th, mm) , 섬유주 수 (Tb.N, 薩 Γ1), 섬유주 분리 (Tb.Sp, mm) 및 구조 모델 인덱스 (SMI)의 골 형태적 파라미터 자료를 얻었다. 그 결과로 스캔본은 도 21에 나타내었고, 형태적 파라미터는 도 22a 내지 도 22e에 나타내었다. 조직학적 분석
생쥐의 경「골을 10% 버퍼 포르말린 용액에 넣고 1주 동안 41:에서 방치하였다. 경골은 10% EDTA 용액 (pH 7.5)를 이용하여 2주간 석회질을 제거하였고, 그 후 파라핀에 고정시켰다. 이 후, 시리얼 섹션을 3~ πι의 두께로 준비하여 슬라이드에 놓은 뒤, 자일렌을 이용하여 파라핀을 제거하고, 재수화한 뒤, 헤마특실린-에오신 (H&E)을 이용하여 염색하였다. TRAP 염색은 산성 포스파타제 백혈구 키트 (Acid Phosphatase Leukocyte Kit ) (Signia—Aklr ich)를 이용하여 수행되었고, 염색 후 현미경을 이용하여 100배, 200배율로 염색된 섹션을 관찰하였다. 그 결과는 각각 도 23 및 도 24에 나타내었다.
또한, 생쥐의 간장 및 신장을 상기 경골과 같이 동일한 방법으로 실험을 수행하여 염색 후 현미경을 이용해 관찰한 결과를 도 25 및 26에 각각 나타내었다. 세럼 내 생화학 파라미터의 분석
수집한 혈액 샘플을 상온에서 1시간 동안 방치시킨 뒤, 세럼을 얻기 위하여 900xg에서 20분 동안 원심분리하였다. 세럼은 골 대사 마커의 분석에 앞서 -70°C에 저장하였다. 세럼 내 칼슴 레벨은 QuanU Chrome 칼슘 어쎄이 키트 (BioAssay Systems, Haywarcl, CA)를 이용하여 수행되었고, TRAP 5b와 타입 I 콜라겐 (CTX)의 C-터미널 가교 텔로펩티드의 양은 생쥐 TRAP 어째이 ^1트 (Immuno Diagnostic systems, Bo 1 don, UK)와 Rat Laps EIA ?1트 (Immunno Diagnostic Systems)를 이용하여 측정하였다. 그 결과는 도 27a 내지 도 27c에 나타내었다. 통계적 분석
데이터는 평균士표준편차 (SE)로 나타내었다. 통계적 분석은 일원 변량 분석 (one-way analysis of variance, ANOVA)으로 수행하였고, 그룹 사이 차이를 나타내기 위하여 스튜던트 테스트를 이용하였다. ΡΟ.05인 경우 통계적 유의성이 있는 것으로 간주하였다. 아테미시닌-당지질은 인 비트로 (/y? vitro) 실험에서, 매우 우수한 잠재적 항암 효과와 골 재흡수 활성을 보인다. 따라서, 아테미시닌-당지질의 인 비보 (/72 y/ra)에서 효과를 알아보기 위하예 A549 세포를 경골 내부로 주입한 생쥐를 가지고 실험하였다. 상기한 생쥐 경골 내부 모델은 환자들에게서 유사한 골 손상을 유발하는 것으로 알려져 있다ᅳ
도 21은 마이크로 -CT를 이용하여 경골의 방사선 및 3D 이미지를 나타낸 것으로, 대조군과 대비할 때, A549 세포를 주입한 생쥐에서는 골 용해 현상 (osteolytic lesion)이 분명히 관찰되었으나, 아테미시닌-당지질을 특정한 함량으로 경구 투여한 경우 골 용해가 감소한 것을 볼 수 있다.
한편, 도 22a 내지 도 22e는 마이크로ᅳ CT를 이용하여 골의 형태적 파라미터들로 BV/TV, Tb, Th, Tb.N, Tb.Sp, 및 SMI을 분석한 결과를 나타낸 것으로, A549 세포를 주입한 생쥐에서 BV/TV, Tb, Th, Tb.N, Tb.Sp, 및 SMI가 변형되었으나, 아테미시닌—당지질을 경구투여하자 대조군과 비슷한 수준까지 회복된 것을 볼 수 있었다.
도 23은 생쥐의 경골을 헤마특실린-에오신 (H&E)을 이용하여 염색한 뒤, 그 섹션을 현미경으로 관찰한 사진 (100배율)으로 , 아테미시닌-당지질을 경구 투여한 경우 침윤성 종양세포의 성장과 심각한 골 파괴 현상을 억제하는 것을 볼 수 있었다. 또한, 도 24는 생쥐의 경골을 산성 포스파타제 백혈구 키트 (Acid Phosphatase Leukocyte Kit)(Sigma-Aldrich)를 염색한 뒤, 그 섹션을 현미경으로 관찰한 사진 (200배율)으로, TRAP—양성 파골 세포가 보라색으로 염색되었으며 (200배율), A549 세포의 접종으로 인해 종양과 뼈 사이 접점에 TRAP-양성 활성화된 파골 세포가 증가한 것을 볼 수 있었다. 그러나, 아테미시닌—당지질로 처리한 경우 활성화된 파골세포의 형성이 감소한 것을 볼 수 있었다ᅳ
도 25 및 도 26은 각각 생쥐의 간장과 신장을 헤마특실린-에오신 (H&E)을 이용하여 염색한 뒤, 그 섹션을 현미경으로 관찰한 사진 (100배율)으로, 아테미시닌-당지질의 경구 투여로 인해 손상이 발생하지 않은 것을 볼 수 있었다. 도 27a 내지 도 27c는 각각의 키트를 사용하여 세럼 내 골 재흡수 마커 , 칼슘, TRAP5b 및 CTX의 양을 측정한 결과를 그래프로 나타낸 것으로, 아테미시닌-당지질을 경구 투여하자 TRAP5b와 CTX 레밸이 현저히 감소한 것을 볼 수 있었으며, 10mg/kg의 용량으로 투여한 경우 제피티니브와 동등한 수준의 효과를 갖는 것을 볼 수 있고, 20mg/kg의 용량으로 투여한 경우에는 보다 우수한 효과를 갖는 것을 볼 수 있었다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 둥가물에 의하여 정의된다고 할 것이다. 【산업상 이용가능성】
본 발명은 부작용 및 독성이 적고, 뼈 손실을 효과적으로 방지할 수 있는 골 질환의 예방 및 치료용 조성물에 관한 것이다.

Claims

【청구의 범위】
【청구항 1】
개똥쑥 (Artemisia annua Linne) 추출물을 유효성분으로 함유하는, 골 질환 예방 및 치료용 약학 조성물.
【청구항 2]
제 1 항에 있어서,
상기 골 질환은 파골세포의 골 흡수에 의해 유발되는 것을 특징으로 하는, 약학 조성물.
【청구항 3】
제 1 항에 있어서,
싱-기 골 질환은 골다공증 (osteoporosis), 골연화증 (osteomalacia), 섬유성골염 (fibrous ostitis), 치주염 (periodontitis) , 류마티스 관절염 (rheumatoid arthritis) 및 대사성 골질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는 약학 조성물.
ί청구항 4]
제 1 항에 있어서,
상기 골 질환은 암세포의 골전이에 의해 유발되는 것을 특징으로 하는, 약학 조성물.
【청구항 53
하기의 화학식 1로 표시되는 아테미시닌 (Arteiiiisinin) 또는 이의 유도체를 유효성분으로 함유하는, 골 질환 예방 및 치료용 약학 조성물. [화학식 1]
Figure imgf000050_0001
【청구항 6】
제 5 항에 있어서,
상기 유도체는 디히드로아테미시닌 (Dihydroartemisinin), 아테수네이트 (Artesunate) , 아테메테르 (Artemether ) , 아테에테르 (Arteether) , 에스엠 905(SM905), 아테미시드 (Artemisicle), 아테미존 (Ar.temisone), 및 에스엠 934(SM934)로 구성된 군으로부터 선택되는 것을 특징으로 하는, 약학 조성물.
【청구항 7】
제 5 항에 있어서,
상기 유도체는 하기의 화학식 3으로 표시되는 아테미시닌—당지질 복합유도체인 것을 특징으로 하는, 약학 조성물ᅳ
[화학식 3]
Figure imgf000051_0001
【청구항 8)
제 5 항에 있어서,
상기 골 질환은 파골세포의 골 흡수에 의해 유발되는 것을 특징으로 하는, 약학 조성물.
【청구항 9】
제 5 항에 있어서,
싱-기 골 질환은 골다공증 (osteoporosis), 골연화증 (osteomalacia), 섬유성골염 (fibrous ostitis), 치주염 (periodontitis), 류마티스 관절염 (rheumatoid arthritis) 및 대사성 골질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 약학 조성물.
【청구힝- 10】
제 5 항에 있어서,
상기 골 질환은 암세포의 골전이에 의해 유발되는 것을 특징으로 하는, 약학 조성물.
【청구항 111 비스벤질이소퀴놀린계 알칼로이드 (bisbenzylisoquinoline alkaloid)를 유효성분으로 함유하는, 골 질환 예방 및 치료용 약학 조성물.
【청구항 12】
제 11 항에 있어서,
상기 비스벤질이소퀴놀린계 알칼로이드는 리엔시닌 (Liensinine), 이소리엔시닌 (Isoliensinine), 네페린 (Neferine) , 0-메틸네페린 (0一 me thylne ferine) , 네룸보페린 (Nelumbofer hie), 네룸보린즈 A(Nelumbor ines A), 네룸보린즈 B(Nelumborines B), 및 (R)-N—메틸코클라우린 ((R)一 N— methylcoclaurine)으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 약학 조성물.
【청구항 13]
제 11 항에 있어서,
싱-기 골 질환은 파골세포의 골 흡수에 의해 유발되는 것을 특징으로 하는, 약학 조성물.
【청구항 14]
제 11 항에 있어서,
싱-기 골 질환은 골다공증 (osteoporosis), 골연화증 (osteomalacia) , 섬유성골염 (fibrous ostitis), 치주염 (per iodont it is) , 류마티스 관절염 (rheumatoid arthritis) 및 대사성 골질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 약학 조성물.
【청구항 15】 제 11 항에 있어서,
상기 골 질환은 암세포의 골전이에 의해 유발되는 것을 특징으로 하는, 약학 조성물.
【청구항 16]
아포핀계 알칼로이드 (aporphine alkaloid)를 유효성분으로 함유하는, 골 질환 예방 및 치료용 약학 조성물.
【청구항 17】
거 116 항에 있어서,
상기 아포핀계 알칼로이드는 누시페린 (Nuci ferine), 프로누시페린 (Pror ci ferine), 으노르누시페린 (0—nornuci ferine), 누시페린 N- 옥사이드 (Nuciferine N— oxide), N-노르누시페린 (N—nornuci ferine) 디하이드로누시페린 (Dehydronuci ferine), N_메틸아시밀로빈 N-옥사이드 (N— methyl as i mi lobine Nᅳ oxide) N-메틸아시밀로빈 (N-methylasimilobine) , 아시밀로빈 (Asii ilobine), 리리오데닌 (Liriodenine) , (-)—리리니딘 ( (-)- Lirinidine) , 2-하이드록시 -1-메톡시 -6a , 7-디하이드로아포핀 (2ᅳ Hydroxy-1- met hoxy-6a , 7-de ydr oaporph i ne ) , ^ }^\^1 (Lys i cam i ne ) , (+)— 노르아르메파빈 ((+)-Norarmepavine), (―)—아르메파빈 ( (―) -Armepavine) , 레메린 (Roemer ine), ' (-)—아노나인 ((-)-anonaine), 및 (―) -카아베린 ((- ) - caaverine)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 약학 조성물. 【청구항 18]
제 16 항에 있어서, 상기 골 질환은 파골세포의 골 흡수에 의해 유발되는 것을 특징으로 하는, 약학 조성물.
【청구항 19】
제 16 항에 있어서,
상기 골 질환은 골다공증 (osteoporosis), 골연화증 (osteomalacia), 섬유성골염 (fibrous ostitis), 치주염 (periodontitis) , 류마티스 관절염 (rheumatoid arthritis) 및 대사성 골질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 약학 조성물.
【청구항 20】
제 16 함에 있어서,
상기 골 질환은 암세포의 골전이에 의해 유발되는 것을 특징으로 하는, 약학 조성물.
【청구항 21]
개똥쑥 (Artemisia a皿 ua Linne) 추출물을 유효성분으로 함유하는, 골 질환 개선 및 완화용 식품 조성물.
【청구항 22】
제 21 항에 있어서,
상기 골 질환은 파골세포의 골 흡수에 의해 유발되는 것을 특징으로 하는, 식품 조성물ᅳ
【청구항 233
제 21 항에 있어서, 상기 골 질환은 골다공증 (osteoporosis), 골연화증 (osteomalacia), 섬유성골염 (fibrous ostitis), 치주염 (periodontitis) , 류마티스 관절염 (rheumatoid arthritis) 및 대사성 골질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 식품 조성물.
【청구항 24]
제 21 항에 있어서,
싱-기 골 질환은 암세포의 골전이에 의해 유발되는 것을 특징으로 하는, 식품 조성물.
【청구항 253
하기의 화학식 1로 표시되는 아테미시닌 (Artemisinin) 또는 이의 유도체를 유효성분으로 함유하는, 골 질환 개선 및 완화용 식품 조성물.
[화학식 1]
Figure imgf000055_0001
【청구항 26]
제 25 항에 있어서,
상기 유도체는 디히드로아테미시닌 (Dihydroartemisinin), 아테수네이트 (Artesunate), 아테메테르 (Artemether), 아테에테르 (Arteether ), 에스엠 905(SM905), 아테미시드 (Artemiside), 아테미존 (Artemisone), 및 에스엠 934(SM934)로 구성된 군으로부터 선택되는 것을 특징으로 하는, 식품 조성물.
【청구항 27】
제 25 항에 있어서,
상기 유도체는 하기의 화학식 3으로 표시되는 아테미시닌—당지질 복합유도체인 것을 특징으로 하는, 식품 조성물.
[화학식 3]
Figure imgf000056_0001
【청구항 28]
제 25 항에 있어서,
상기 골 질환은 파골세포의 골 흡수에 의해 유발되는 것을 특징으로 하는, 식품 조성물.
【청구항 29】
제 25 항에 있어서,
상기 골 질환은 골다공증 (osteoporosis), 골연화증 (osteomalacia) , 섬유성골염 (fibrous ostitis), 치주염 (periodontitis) , 류마티스 관절염 (rheumatoid arthritis) 및 대사성 골질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 식품 조성물.
【청구항 30]
제 25 항에 있어서,
상기 골 질환은 암세포의 골전이에 의해 유발되는 것을 특징으로 하는, 식품 조성물. '
【청구항 31】
비스벤질이소퀴놀린계 알칼로이드 (bisbenzylisoquinoline alkaloid)를 유효성분으로 함유하는, 골 질환 개선 및 완화용 식품 조성물.
ί청구항 32】 ■
제 31 항에 있어서,
상기 비스벤질이소퀴놀린계 알칼로이드는 리엔시닌 (Liensinine), 이소리엔시닌 (Isoliensinine), 네페린 (Neferine), 0—메틸네페린 (0- methylnefer ine) , 네룸보페린 (Nelumbofer ine), 네룸보린즈 A(Nelumbor ines A), 네룸보린즈 B(Nelumborines B), 및 (R)— N—메틸코클라우린 ((R)_N- methylcoclaurine)으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 식품 조성물ᅳ
【청구항 33】 '
제 31 항에 있어서,
상기 골 질환은 파골세포의 골 흡수에 의해 유발되는 것을 특징으로 하는, 식품 조성물. I:청구항 343
제 31 항에 있어서,
상기 골 질환은 골다공증 (osteoporosis), 골연화증 (osteomalacia), 섬유성골염 (fibrous ostitis), 치주염 (periodontitis) , 류마티스 관절염 (rheumatoid arthritis) 및 대사성 골질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 식품 조성물.
【청구항 353
제 31 항에 있어서,
상기 골 질환은 암세포의 골전이에 의해 유발되는 것을 특징으로 하는, 식품 조성물.
【청구항 36]
아포핀계 알칼로이드 (aporphine alkaloid)를 유효성분으로 함유하는, 골 질환 개선 및 완화용 식품 조성물.
【청구항 37]
제 36 항에 있어서,
상기 아포핀계 알칼로이드는 누시페린 (Nuci ferine), 프로누시페린 (Pronuci ferine), ◦—노르누시페린 (Onornuci ferine), 누시페린 N一 옥사이드 (Nuci ferine N— oxide), N—노르누시페린 (N— nornuci fer ine), 디하이드로누시페린 (Dehydronuci ferine), N—메틸아시밀로빈 N-옥사이드 (N- methylasimi lobine N-oxide), N—메틸아시밀로빈 (N-methy lasimi lobine) , 아시밀로빈 (Asimilobine)ᅳ 리리오데닌 (Liriodenine) , (ᅳ) -리리니딘 ((― ) - Lirinicline), 2—하이드특시 -1-메특시 -6a , 7-디하이드로아포핀 (2— Hydroxy-l— methoxy-6a,7-clehydroaporphine) , 리시카민 (Lysicamine) , (+)— 노르아르메파빈 ((+)ᅳ Norarmepavine), (ᅳ)—아르메파빈 ((- )— Armepavine), 레메린 (Roemerine), (ᅳ)—아노나인 ((-)— anonaine), 및 (―)—카아베린 ((- ) - caaverine)으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 식품 조성물. 【청구항 38】
제 36 항에 있어서,
상기 골 질환은 파골세포의 골 흡수에 의해 유발되는 것을 특징으로 하는, 식품 조성물.
【청구항 39]
제 36 항에 있어서,
상기 골 질환은 골다공증 (osteoporosis), 골연화증 (osteomalacia) , 섬유성골염 (fibrous ostitis), 치주염 (periodont i t is), 류마티스 관절염 (rheumatoid arthritis) 및 대사성 골질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 식품 조성물.
【청구항 40]
제 36 항에 있어서,
상기 골 질환은 암세포의 골전이에 의해 유발되는 것을 특징으로 하는, 식품 조성물.
【청구항 41】
골 질환을 예방 및 치료하기 위하여, 치료를 필요로 하는 대상에 청구항 제 1항 내지 제 20항 중 어느 한 항의 약학 조성물을 투여하는 단계를 포함하는, 골 질환의 예방 또는 치료 방법 .
【청구항 42】
골 질환을 예방 및 치료하기 위한 청구항 제 1항 내지 제 20항 중 어느 한 항의 약학 조성물의 용도.
PCT/KR2015/003081 2014-04-02 2015-03-30 골 질환 예방 및 치료용 조성물 WO2015152577A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140039550A KR101656306B1 (ko) 2014-04-02 2014-04-02 개똥쑥 추출물을 유효성분으로 함유하는 골 질환 예방 및 치료용 조성물
KR10-2014-0039550 2014-04-02
KR1020140039551A KR101606494B1 (ko) 2014-04-02 2014-04-02 비스벤질이소퀴놀린계 알칼로이드를 유효성분으로 함유하는 골 질환 예방 및 치료용 조성물
KR10-2014-0039551 2014-04-02

Publications (2)

Publication Number Publication Date
WO2015152577A2 true WO2015152577A2 (ko) 2015-10-08
WO2015152577A3 WO2015152577A3 (ko) 2015-11-26

Family

ID=54241405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003081 WO2015152577A2 (ko) 2014-04-02 2015-03-30 골 질환 예방 및 치료용 조성물

Country Status (1)

Country Link
WO (1) WO2015152577A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020992A (zh) * 2017-06-09 2018-12-18 华东理工大学 一种立体选择性制备β型单/双青蒿烷基醚胺马来酸盐的方法
CN113827595A (zh) * 2021-11-23 2021-12-24 济南市中心医院 盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929036A (zh) * 2016-04-15 2016-09-07 广西壮族自治区梧州食品药品检验所 一种从荷叶中提取荷叶碱的方法
CN105911174A (zh) * 2016-04-15 2016-08-31 广西壮族自治区梧州食品药品检验所 一种荷叶中荷叶碱的测定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727887B1 (ko) * 2006-11-22 2007-06-14 주식회사 케이엠에스아이 골다공증 예방 및 치료효과를 갖는 애엽 추출물
KR20090079608A (ko) * 2008-01-18 2009-07-22 대전대학교 산학협력단 쑥추출물을 유효성분으로 함유하는 만성염증질환 치료제
KR20130091160A (ko) * 2012-02-07 2013-08-16 덕성여자대학교 산학협력단 사철쑥 추출물을 유효성분으로 포함하는 골다공증 치료 및 예방용 조성물

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020992A (zh) * 2017-06-09 2018-12-18 华东理工大学 一种立体选择性制备β型单/双青蒿烷基醚胺马来酸盐的方法
CN109020992B (zh) * 2017-06-09 2024-04-12 华东理工大学 一种立体选择性制备β型单/双青蒿烷基醚胺马来酸盐的方法
CN113827595A (zh) * 2021-11-23 2021-12-24 济南市中心医院 盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用
CN113827595B (zh) * 2021-11-23 2022-02-08 济南市中心医院 盐酸去甲乌药碱在制备治疗骨质疏松症的药物中的应用

Also Published As

Publication number Publication date
WO2015152577A3 (ko) 2015-11-26

Similar Documents

Publication Publication Date Title
JP6657296B2 (ja) 骨障害、軟骨障害又はその両方の管理又は改善用組成物及び方法
KR101952416B1 (ko) 관절 건강을 위한 조성물 및 방법
JP5080284B2 (ja) 骨疾患の予防及び/又は治療用医薬組成物、その組成物を含有する機能性食品、健康食品及び医薬製剤、並びに歯根−歯周組織形成促進剤
KR101656306B1 (ko) 개똥쑥 추출물을 유효성분으로 함유하는 골 질환 예방 및 치료용 조성물
WO2015152577A2 (ko) 골 질환 예방 및 치료용 조성물
US10583161B2 (en) Compositions and methods for managing or improving bone disorders, joint disorders, cartilage disorders, or a combination thereof
US7803844B2 (en) Composition for preventing and/or treating bone disease, physiologically functional or health food containing thereof, and pharmaceutical containing thereof as active ingredients
CN1582159A (zh) 增加了溶解度的黄烷醇木脂体制备物
KR101656834B1 (ko) 콜포신 다로페이트를 포함하는 골 질환의 예방 또는 치료용 조성물
CN102198195A (zh) 一种具有抗氧化功能的药物组合物
WO2015068940A1 (ko) 아르테미시닌을 유효성분으로 포함하는 골다공증 예방 및 치료용 약학적 조성물
KR20130049672A (ko) 아젤라신 d를 유효성분으로 함유하는 골질환 예방 또는 치료용 약학적 조성물
KR101305555B1 (ko) 신이 활성 화합물들을 유효성분으로 함유하는 골질환 예방 및 치료용 조성물
KR101320975B1 (ko) 신이 활성 화합물들을 유효성분으로 함유하는 골질환 예방 및 치료용 조성물
CN108096239B (zh) 一种治疗脑胶质瘤和肝癌的药物组合物
KR101320974B1 (ko) 신이 추출물을 유효성분으로 함유하는 골 질환 예방 및 치료용 조성물
NZ539141A (en) Control of cancer with annonaceous extracts
KR101606494B1 (ko) 비스벤질이소퀴놀린계 알칼로이드를 유효성분으로 함유하는 골 질환 예방 및 치료용 조성물
CN104173354B (zh) 可治疗癌症的药学组合物
CN107898785A (zh) 氧化苦参碱在制备抗破骨细胞介导的骨丢失药物中的应用
KR20150134300A (ko) 아포핀계 알칼로이드를 유효성분으로 함유하는 골 질환 예방 및 치료용 조성물
CN100584352C (zh) 五味子及其提取物在制备治疗肿瘤多药耐药药物中的用途
KR101869595B1 (ko) 성게 유래 칼시토닌 유사 펩타이드를 유효성분으로 포함하는 골 질환 예방 또는 치료용 조성물
US20130078311A1 (en) Composition for treating and/or preventing osteoporosis
KR20140142515A (ko) 꽈리 추출물을 유효성분으로 함유하는 우울증의 예방 및 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773463

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15773463

Country of ref document: EP

Kind code of ref document: A2