WO2015151663A1 - 医用画像処理装置及びその作動方法並びに内視鏡システム - Google Patents

医用画像処理装置及びその作動方法並びに内視鏡システム Download PDF

Info

Publication number
WO2015151663A1
WO2015151663A1 PCT/JP2015/055537 JP2015055537W WO2015151663A1 WO 2015151663 A1 WO2015151663 A1 WO 2015151663A1 JP 2015055537 W JP2015055537 W JP 2015055537W WO 2015151663 A1 WO2015151663 A1 WO 2015151663A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
signal
ratio
coordinates
image
Prior art date
Application number
PCT/JP2015/055537
Other languages
English (en)
French (fr)
Inventor
昌之 蔵本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016511452A priority Critical patent/JP6150318B2/ja
Priority to EP15773911.1A priority patent/EP3127467B1/en
Priority to CN201580018139.1A priority patent/CN106163367B/zh
Priority to CN201810347183.2A priority patent/CN108830825B/zh
Publication of WO2015151663A1 publication Critical patent/WO2015151663A1/ja
Priority to US15/279,541 priority patent/US9892512B2/en
Priority to US15/864,324 priority patent/US10186033B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1032Determining colour for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4238Evaluating particular parts, e.g. particular organs stomach
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values

Definitions

  • Patent Document 1 a process in which the blood volume (hemoglobin index) is separated from the reference value is further separated from the reference value so that the color difference between the normal part and the lesioned part becomes clear. ing.
  • the medical image processing apparatus of the present invention includes an image signal input processing unit that performs input processing on a first color image signal, a first signal ratio between two color image signals of the first color image signal, a first signal ratio, A signal ratio calculation unit that calculates a second signal ratio between image signals of two different colors, and a first range in which observation objects in the subject are distributed in a feature space formed by the first signal ratio and the second signal ratio. , A first process that processes the coordinates of the second range of the second range and the third range so as to move to the reference range defined in the feature space, and the second range does not move, A first movement processing unit that performs a second process for moving at least one of the coordinates and the coordinates of the third range.
  • the coordinates of the second range it is preferable to move the coordinates of the second range to the reference range by changing the radius of the coordinates of the second range in the feature space.
  • the angle of the coordinates of the first range and the angle of the coordinates of the third range are changed, and the coordinates of the first range and the coordinates of the third range are moved away from each other.
  • the reference range is preferably a range that includes the origin of the feature space and does not include the first range and the third range.
  • the first range is processed to move the coordinates of the second range to the reference range defined in the feature space, and the third range is moved while maintaining the coordinates of the first range in the feature space. It is preferable to provide the 2nd movement process part which performs the 3rd process processed so. In the third process, it is preferable to move the coordinates of the third range so that the hue of the second special image obtained from the first signal ratio and the second signal ratio after the first and third processes changes.
  • the difference between the first range and the second range when the image signal of at least one color among the first color image signals is a narrowband signal is the difference between the case where the first color image signals are all wideband signals.
  • the difference between the first range and the third range is greater than the difference between the first range and the second range, or when the image signal of at least one color of the first color image signals is a narrowband signal. It is preferable that the difference between the first range and the third range when one color image signal is a broadband signal is larger.
  • the first signal ratio is correlated with the blood vessel depth, and the second signal ratio is correlated with the blood volume.
  • the first signal ratio is preferably a B / G ratio, and the second signal ratio is preferably a G / R ratio.
  • the operation method of the endoscope system is such that the image signal input processing unit inputs the first color image signal, and the signal ratio calculation unit determines whether the image signal between the two colors of the first color image signals.
  • the first signal ratio, the step of calculating the second signal ratio between two color image signals different from the first signal ratio, and the first movement processing unit are formed with the first signal ratio and the second signal ratio.
  • the first range is processed so that the coordinates of the second range among the first range, the second range, and the third range in which the observation target in the subject is distributed are moved to the reference range defined in the feature space. Performing a process and a second process for processing to move at least one of the coordinates of the first range and the coordinates of the third range without moving the second range.
  • the present invention it is possible to generate an image in which the color difference between an abnormal part such as an atrophic part where the gastric mucosa is atrophic and a normal part is emphasized.
  • the endoscope system 10 includes an endoscope 12, a light source device 14, a processor device 16, a monitor 18 (display unit), and a console 19.
  • the endoscope 12 is optically connected to the light source device 14 and electrically connected to the processor device 16.
  • the endoscope 12 includes an insertion portion 12a to be inserted into a subject, an operation portion 12b provided at a proximal end portion of the insertion portion 12a, a bending portion 12c and a distal end portion 12d provided at the distal end side of the insertion portion 12a. have.
  • the angle knob 12e of the operation unit 12b By operating the angle knob 12e of the operation unit 12b, the bending unit 12c performs a bending operation. With this bending operation, the tip 12d is directed in a desired direction.
  • the operation unit 12b is provided with a mode switching SW 13a.
  • the mode switching SW 13a is used for a switching operation among four types of modes: a normal observation mode, a first special observation mode, a second special observation mode, and a simultaneous observation mode.
  • the normal observation mode is a mode for displaying a normal image on the monitor 18.
  • the first special observation mode is a mode in which a first special image is displayed on the monitor 18 and is used for observing a boundary between an atrophic part and a normal part in which gastric mucosa has atrophy due to a lesion such as gastric cancer.
  • the second special observation mode is a mode for displaying the second special image on the monitor 18 and is used for observing the color difference between the atrophy part and the normal part.
  • the simultaneous observation mode is used for simultaneously observing the boundary between the atrophy part and the normal part and observing the color difference between the atrophy part and the normal part.
  • the first special image and the second special image are displayed on the monitor 18. This is a mode for simultaneous display.
  • the processor device 16 is electrically connected to the monitor 18 and the console 19.
  • the monitor 18 outputs and displays image information and the like.
  • the console 19 functions as a UI (User Interface) that receives input operations such as function settings.
  • the processor device 16 may be connected to an external recording unit (not shown) for recording image information and the like.
  • the light source device 14 includes a V-LED (Violet Light Emitting Diode) 20a, a B-LED (Blue Light Light Emitting Diode) 20b, a G-LED (Green Light Light Emitting Diode) 20c, and an R-LED (Red).
  • V-LED Vehicle Light Emitting Diode
  • B-LED Blue Light Light Emitting Diode
  • G-LED Green Light Light Emitting Diode
  • R-LED Red
  • (Light Emitting Diode) 20d the light source control unit 21 for controlling the driving of the four color LEDs 20a to 20d
  • an optical path coupling unit 23 for coupling the optical paths of the four color lights emitted from the four color LEDs 20a to 20d.
  • the light coupled by the optical path coupling unit 23 is irradiated into the subject through the light guide 41 and the illumination lens 45 inserted into the insertion unit 12a.
  • An LD Laser Diode
  • the light source control unit 21 performs the V-LED 20a, the B-LED 20b, the G-LED 20c, and the R-LED 20d in any of the normal observation mode, the first special observation mode, the second special observation mode, and the simultaneous observation mode. Lights up. Accordingly, the observation target is irradiated with light in which four colors of light of purple light V, blue light B, green light G, and red light R are mixed. In the normal observation mode, the light source control unit 21 controls the LEDs 20a to 20d so that the light quantity ratio among the violet light V, blue light B, green light G, and red light R is Vc: Bc: Gc: Rc. Control.
  • the light guide 41 is built in the endoscope 12 and the universal cord (the cord connecting the endoscope 12, the light source device 14, and the processor device 16).
  • the combined light propagates to the distal end portion 12d of the endoscope 12.
  • a multimode fiber can be used as the light guide 41.
  • a thin fiber cable having a core diameter of 105 ⁇ m, a cladding diameter of 125 ⁇ m, and a diameter of ⁇ 0.3 to 0.5 mm including a protective layer serving as an outer shell can be used.
  • the imaging sensor 48 is a color imaging sensor that captures a reflected image of the subject and outputs an image signal.
  • the image sensor 48 is preferably a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like.
  • the image sensor 48 used in the present invention is a color image sensor for obtaining RGB image signals of three colors of R (red), G (green), and B (blue), that is, an R pixel provided with an R filter.
  • a so-called RGB imaging sensor including a G pixel provided with a G filter and a B pixel provided with a B filter.
  • the Log converter 71 performs Log conversion on each of the first RGB image signals (corresponding to the “first color image signal” of the present invention). As a result, an R image signal (logR) after Log conversion, a G image signal (logG) after Log conversion, and a B image signal (logB) after Log conversion are obtained.
  • “B / G ratio” represents a value obtained by omitting “-log” in ⁇ log (B / G).
  • the polar coordinate conversion unit 73 converts the B / G ratio and G / R ratio obtained by the signal ratio calculation unit 72 into a radius r and an angle ⁇ . In the polar coordinate conversion unit 73, conversion to the radius r and the angle ⁇ is performed for all pixels.
  • the radial expansion / compression unit 74 performs a first process of expanding / compressing the radial r based on the radial r and the angle ⁇ converted by the polar coordinate conversion unit 73.
  • the angle expanding / compressing unit 75 performs a second process of expanding and compressing the angle ⁇ based on the moving radius r and the angle ⁇ that have been first processed by the moving radius expanding / compressing unit 74. Details of these first and second processes will be described later.
  • the first range (indicated as “first” in FIG. 10) and the third range (indicated as “third” in FIG. 10)
  • the first range and the third range are close to each other.
  • FIG. 10B while the coordinates of the second range are maintained in the reference range, most of the coordinates of the first range move to the second quadrant of the feature space. Most of the coordinates of the third range move to the fourth quadrant of the feature space. As a result, the coordinates of the first range, the second range, and the third range are completely separated.
  • the boundary between the atrophic mucosa and the atrophic part including a deep blood vessel that is being seen through atrophy under the atrophic mucosa and the normal part where the normal mucosa is present is clarified. Is displayed.
  • the angle ⁇ is changed to an angle E ⁇ that is smaller than the angle ⁇ within the angle change range R3.
  • an expansion process is performed in which the angle change rate is changed at an angle change rate Wx greater than “1”, and the angle of the range R3y exceeding the range R3x
  • a compression process is performed in which the angle change rate is changed at an angle change rate Wy smaller than “1”.
  • the second special image obtained after the third processing is displayed while maintaining the color of the normal part, while the atrophic mucosa is displayed in a fading tone among the atrophic parts where atrophic gastritis has occurred.
  • the color of the deep blood vessel that is seen through due to atrophy under the atrophic mucosa changes from red to a color such as magenta, so that it can be clearly displayed. Therefore, since the second special image is displayed in the original color when atrophic gastritis occurs, the difference in color between the normal part and the atrophic part is clear.
  • the simultaneous display image processing unit 64c generates a simultaneous display special image based on the first special image and the second special image generated by the first special image processing unit 64a and the second special image processing unit 64b.
  • the monitor 18 displays the first special image on one side and the second special image on the other side based on the special image for simultaneous display.
  • the first special image is an image that makes it easy to grasp the position of the atrophic part because the boundary between the normal part and the atrophic part is very clear, but the normal part is not the color of the original stomach mucous membrane Since it is displayed in a pseudo color, the image is uncomfortable for the doctor.
  • the first special observation mode in the feature space formed by the B / G ratio and the G / R ratio, the coordinates of the first range in which the normal mucous membrane is distributed and the atrophic gastritis
  • the second range in which the atrophic mucosa atrophied due to atrophic gastritis is distributed is moved to the reference range in the state where the coordinates of the third range in which the deep blood vessels that are seen with atrophy are distributed are present under the atrophied mucosa.
  • the first process is performed. After this first process, a second process is performed in which the coordinates of the first range and the coordinates of the third range are moved away from each other.
  • a first special image is generated based on the B / G ratio and G / R ratio after the first process and the second process. This first special image is displayed on the monitor 18.
  • the broadband light source 202 is a xenon lamp, a white LED or the like, and emits white light having a wavelength range from blue to red.
  • the rotary filter 204 includes a normal observation mode filter 208 provided inside and a special observation mode filter 209 provided outside (see FIG. 20).
  • the filter switching unit 205 moves the rotary filter 204 in the radial direction, and when the normal switching mode is set by the mode switching SW 13a, the normal observation mode filter 208 of the rotary filter 204 is inserted into the white light path.
  • the special observation mode filter 209 of the rotation filter 204 is inserted into the optical path of white light.
  • the endoscope system 200 in the normal observation mode, the inside of the specimen is imaged by the monochrome imaging sensor 206 every time blue light, green light, and red light are irradiated on the observation target. Thereby, RGB image signals of three colors are obtained. Based on the RGB image signals, a normal image is generated by the same method as in the first embodiment.
  • the transmitting / receiving antenna 304 is affixed to the body of the subject and receives the RGB image signal from the transmitting antenna 302d.
  • the transmission / reception antenna 304 transmits the received RGB image signal to the capsule receiver 306 wirelessly.
  • the capsule receiving device 306 is connected to the receiving unit 53 of the processor device 16 and transmits the RGB image signal from the transmitting / receiving antenna 304 to the receiving unit 53.
  • the B / G ratio and the G / R ratio are converted into the moving radius r and the angle ⁇ by polar coordinate conversion, and the first and second processes are performed based on the converted moving radius r and the angle ⁇ , or The first process and the third process were performed, and then returned to the B / G ratio and the G / R ratio again.
  • the B / G ratio, G / R The R ratio may be directly converted into the B / G ratio or G / R ratio that has been subjected to the first or second processing, or the first and third processing, without performing polar coordinate conversion or the like.
  • the B / G ratio and the G / R ratio are obtained from the first RGB image signal, and the feature space is formed by the obtained B / G ratio and G / R ratio.
  • the wavelength band exceeds a wideband light (for example, having a half-value width of 20 nm).
  • the difference between the first range and the second range on the feature space and the difference between the first range and the third range are larger than in the case of a broadband signal obtained from light.
  • the difference D12n between the average value AXn of “Xn” and the average value AR1 of the first range is larger than the difference D12b between the average value AXb of “Xb” and the average value AR1 of the first range.
  • the difference D13n between the average value AYn of “Yn” and the average value AR1 of the first range is larger than the difference D13b between the average value AXb of “Yb” and the first range AR1.
  • the present invention is not limited to the endoscope system as in the first to third embodiments and the processor device incorporated in the capsule endoscope system as in the fourth embodiment, and various medical image processing apparatuses. It is possible to apply.

Abstract

 胃粘膜が萎縮した萎縮部などの異常部と、正常部との色の差を強調した画像を生成する医用画像処理装置及びその作動方法並びに内視鏡システムを提供する。 RGB画像信号を入力する。B画像信号とG画像信号からB/G比を求め、G画像信号とR画像信号からG/R比を求める。B/G比、G/R比から形成される特徴空間において、第1及び第3範囲の座標を維持した状態で、第2範囲の座標を、原点を含む基準範囲に移動するように処理する第1処理を行う。第1範囲の座標と第3範囲の座標とを互いには離れさせるために、第1範囲の座標と第3範囲の座標を移動するように処理する第2処理を行う。第1及び第2処理後のB/G比、G/R比に基づいて、第1特殊画像を生成する。

Description

医用画像処理装置及びその作動方法並びに内視鏡システム
 本発明は、正常部と病変部の色の違いを強調した画像を生成する医用画像処理装置及びその作動方法並びに内視鏡システムに関する。
 医療分野においては、光源装置、内視鏡、及びプロセッサ装置を備える内視鏡システムを用いた診断が広く行われている。この内視鏡システムでは、内視鏡から観察対象に照明光を照射し、その照明光で照明中の観察対象を内視鏡の撮像素子で撮像して得られる画像信号に基づいて、観察対象の画像をモニタ上に表示する。ドクターは、モニタに表示された画像を見ながら、病変部の有無を検出する。
 ここで、粘膜表面から大きく突起している病変部など、形状や大きさが正常部と大きく異なる病変部については、容易に検出することが可能である。しかしながら、形状や大きさが正常部とほとんど変わらない病変部については、正常部との色の違いを手かがりに、検出することになる。この場合、病変部がそれほど進行しておらず、正常部との色の違いがほとんどない場合には、検出することは極めて困難になる。
 そこで、特許文献1では、血液量(ヘモグロビンインデックス)が基準値から離れる部分については更に基準値から離れるようにする処理を行うことによって、正常部と病変部の色の差が明確になるようにしている。
特許3228627号公報
 病変部の中でも胃癌については、胃の粘膜に萎縮が生じて、胃の粘膜が退色調に変化することが知られている。そのため、粘膜に萎縮が生じた萎縮部は、萎縮が生じていない正常部に対して、色の違いが生ずるようになる。この正常部との色の違いを内視鏡で観察することによって、胃癌が存在するかどうかを診断している(認定NPO法人 日本胃がん予知・診断・治療研究機構が推奨するABC検診がある)。
 ここで、萎縮が高度に進んだ場合(例えば、ABC検診でC群やD群に含まれる場合)には、正常部と萎縮部の色の違いは明確であるため、萎縮部を容易に検出することが可能である。しかしながら、萎縮進行中の場合(例えば、ABC検診でB群やC群に含まれる場合)には、萎縮部と正常部との色の差は僅かであるため、色の違いだけで、萎縮部を検出することは困難である。したがって、萎縮進行中のように、萎縮部と正常部との色の差が僅かな場合であっても、正常部と萎縮部との色の差を強調して、萎縮部の検出を容易にすることが求められている。
 なお、特許文献1の方法により、萎縮部と正常部との色の差を強調することが考えられる。しかしながら、萎縮部の色は、血液量だけでなく、血液量以外の要素によっても影響を受けるため、特許文献1の方法では、萎縮部と正常部との色の差を強調することは難しい。
 本発明は、胃粘膜が萎縮した萎縮部などの異常部と、正常部との色の差を強調した画像を生成する医用画像処理装置及びその作動方法並びに内視鏡システムを提供することを目的とする。
 本発明の医用画像処理装置は、第1カラー画像信号を入力処理する画像信号入力処理部と、第1カラー画像信号のうち2色の画像信号間の第1信号比と、第1信号比と異なる2色の画像信号間の第2信号比を算出する信号比算出部と、第1信号比と第2信号比で形成される特徴空間において、被検体内の観察対象が分布する第1範囲、第2範囲、及び第3範囲のうち第2範囲の座標を、特徴空間内に定める基準範囲に移動するように処理する第1処理と、第2範囲は移動せずに、第1範囲の座標と第3範囲の座標のうち少なくとも一方を移動するように処理する第2処理とを行う第1移動処理部と、を備える。
 第1処理は、特徴空間において、第2範囲の座標の動径を変更して、第2範囲の座標を基準範囲に移動させることが好ましい。第2処理は、特徴空間において、第1範囲の座標の角度と第3範囲の座標の角度とを変更して、第1範囲の座標と第3範囲の座標とが互いに離れるように移動させることが好ましい。基準範囲は、特徴空間の原点を含み、且つ、第1範囲及び第3範囲を含まない範囲であることが好ましい。
 特徴空間において、第2範囲の座標を、特徴空間内に定める基準範囲に移動するように処理する第1処理と、特徴空間において、第1範囲の座標を維持した状態で、第3範囲を移動するように処理する第3処理を行う第2移動処理部を備えることが好ましい。第3処理では、第1及び第3処理後の第1信号比及び第2信号比から得られる第2特殊画像の色相が変化するように、第3範囲の座標を移動させることが好ましい。
 第1及び第2処理後の第1信号比及び第2信号比を第2カラー画像信号に変換し、又は第1及び第3処理後の第1信号比及び第2信号比を第2カラー画像信号に変換するカラー画像信号変換部と、第1カラー画像信号から得られる第1明るさ情報及び第2カラー画像信号から得られる第2明るさ情報から、第2カラー画像信号の画素値を調整する明るさ調整部とを有することが好ましい。
 特徴空間において、第1カラー画像信号のうち少なくとも1色の画像信号が狭帯域信号である場合の第1範囲と第2範囲との差は、第1カラー画像信号が全て広帯域信号である場合の第1範囲と第2範囲との差よりも大きい、又は、第1カラー画像信号のうち少なくとも1色の画像信号が狭帯域信号である場合の第1範囲と第3範囲との差は、第1カラー画像信号が全て広帯域信号である場合の第1範囲と第3範囲との差よりも大きいことが好ましい。
 第1信号比は血管深さと相関があり、第2信号比は血液量と相関があることが好ましい。第1信号比はB/G比で、第2信号比はG/R比であることが好ましい。
 本発明の内視鏡システムは、上記記載の本発明の医用画像処理装置と、第1及び第2処理後の第1及び第2信号比から得られる第1特殊画像と第1及び第3処理後の第1信号比及び第2信号比から得られる第2特殊画像を表示する表示部と、を備える内視鏡システム。
 本発明の内視鏡システムの作動方法は、画像信号入力処理部が、第1カラー画像信号を入力処理するステップと、信号比算出部が、第1カラー画像信号のうち2色の画像信号間の第1信号比と、第1信号比と異なる2色の画像信号間の第2信号比を算出するステップと、第1移動処理部が、第1信号比と第2信号比で形成される特徴空間において、被検体内の観察対象が分布する第1範囲、第2範囲、及び第3範囲のうち第2範囲の座標を、特徴空間内に定める基準範囲に移動するように処理する第1処理と、第2範囲は移動せずに、第1範囲の座標と第3範囲の座標のうち少なくとも一方を移動するように処理する第2処理とを行うステップと、を有する。
 本発明によれば、胃粘膜が萎縮した萎縮部などの異常部と、正常部との色の差を強調した画像を生成することができる。
第1実施形態の内視鏡システムの外観図である。 第1実施形態の内視鏡システムの機能を示すブロック図である。 紫色光V、青色光B、緑色光G、及び赤色光Rの発光スペクトルを示すグラフである。 第1特殊画像処理部の機能を示すブロック図である。 第1処理を示す説明図である。 動径rと動径Erとの関係を示すグラフである。 第1処理により得られる作用・効果を示す説明図である。 第2処理を示す説明図である。 角度変更範囲R2内の角度θの移動範囲を示すグラフである。 角度θと第2処理後の角度Eθとの関係を示すグラフである。 第2処理により得られる作用・効果を示す説明図である。 第3処理を示す説明図である。 角度変更範囲R3内の角度θの移動範囲を示すグラフである。 角度θと第3処理後の角度Eθとの関係を示すグラフである。 第3処理により得られる作用・効果を示す説明図である。 第1特殊画像と第2特殊画像とを同時表示するモニタの画像図である。 本発明の一連の流れを示すフローチャートである。 第2実施形態の内視鏡システムの機能を示すブロック図である。 白色光の発光スペクトルを示すグラフである。 特殊光の発光スペクトルを示すグラフである。 第3実施形態の内視鏡システムの機能を示すブロック図である。 回転フィルタを示す平面図である。 第4実施形態のカプセル内視鏡システムの機能を示す図である。 図3とは異なる紫色光V、青色光B、緑色光G、赤色光Rの発光スペクトルを示すグラフである。 二次元LUTを用いる場合の第1又は第2特殊画像処理部の機能を示すブロック図である。 第1B画像信号が狭帯域信号である場合における特徴空間上での第2範囲及び第3範囲の位置と第1B画像信号が広帯域信号である場合における特徴空間上での第2範囲及び第3範囲の位置を示す説明図である。
[第1実施形態]
 図1に示すように、第1実施形態の内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16と、モニタ18(表示部)と、コンソール19とを有する。内視鏡12は光源装置14と光学的に接続されるとともに、プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられる湾曲部12c及び先端部12dを有している。操作部12bのアングルノブ12eを操作することにより、湾曲部12cは湾曲動作する。この湾曲動作に伴って、先端部12dが所望の方向に向けられる。
 また、操作部12bには、アングルノブ12eの他、モード切替SW13aが設けられている。モード切替SW13aは、通常観察モードと、第1特殊観察モードと、第2特殊観察モードと、同時観察モードとの4種類のモード間の切り替え操作に用いられる。通常観察モードは、通常画像をモニタ18上に表示するモードである。第1特殊観察モードは、胃癌などの病変によって胃粘膜に萎縮が生じた萎縮部と正常部との境界を観察するために用いられ、第1特殊画像をモニタ18上に表示するモードである。第2特殊観察モードは、萎縮部と正常部の色の違いを観察するために用いられ、第2特殊画像をモニタ18上に表示するモードである。同時観察モードは、萎縮部と正常部の境界の観察と、萎縮部と正常部との色の違いの観察を同時に行うために用いられ、第1特殊画像と第2特殊画像をモニタ18上に同時表示するモードである。
 プロセッサ装置16は、モニタ18及びコンソール19と電気的に接続される。モニタ18は、画像情報等を出力表示する。コンソール19は、機能設定等の入力操作を受け付けるUI(User Interface:ユーザーインターフェース)として機能する。なお、プロセッサ装置16には、画像情報等を記録する外付けの記録部(図示省略)を接続してもよい。
 図2に示すように、光源装置14は、V-LED(Violet Light Emitting Diode)20a、B-LED(Blue Light Emitting Diode)20b、G-LED(Green Light Emitting Diode)20c、R-LED(Red Light Emitting Diode)20d、これら4色のLED20a~20dの駆動を制御する光源制御部21、及び4色のLED20a~20dから発せられる4色の光の光路を結合する光路結合部23を備えている。光路結合部23で結合された光は、挿入部12a内に挿通されたライトガイド41及び照明レンズ45を介して、被検体内に照射される。なお、LEDの代わりに、LD(Laser Diode)を用いてもよい。
 図3に示すように、V-LED20aは、中心波長405±10nm、波長範囲380~420nmの紫色光Vを発生する。B-LED20bは、中心波長460±10nm、波長範囲420~500nmの青色光Bを発生する。G-LED20cは、波長範囲が480~600nmに及ぶ緑色光Gを発生する。R-LED20dは、中心波長620~630nmで、波長範囲が600~650nmに及ぶ赤色光Rを発生する。なお、各LED20a~20dにおいて、中心波長とピーク波長は同じであっても異なってもよい。
 光源制御部21は、通常観察モード、第1特殊観察モード、第2特殊観察モード、及び同時観察モードのいずれの観察モードにおいても、V-LED20a、B-LED20b、G-LED20c、及びR-LED20dを点灯する。したがって、紫色光V、青色光B、緑色光G、及び赤色光Rの4色の光が混色した光が、観察対象に照射される。また、光源制御部21は、通常観察モード時には、紫色光V、青色光B、緑色光G、赤色光R間の光量比がVc:Bc:Gc:Rcとなるように、各LED20a~20dを制御する。一方、光源制御部21は、第1特殊観察モード、第2特殊観察モード、及び同時観察モード時には、紫色光V、青色光B、緑色光G、赤色光R間の光量比がVs:Bs:Gs:Rsとなるように、各LED20a~20dを制御する。
 図2に示すように、ライトガイド41は、内視鏡12及びユニバーサルコード(内視鏡12と光源装置14及びプロセッサ装置16とを接続するコード)内に内蔵されており、光路結合部23で結合された光を内視鏡12の先端部12dまで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3~0.5mmの細径なファイバケーブルを使用することができる。
 内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ45を有しており、この照明レンズ45を介して、ライトガイド41からの光が観察対象に照射される。撮像光学系30bは、対物レンズ46、撮像センサ48を有している。観察対象からの反射光は、対物レンズ46を介して、撮像センサ48に入射する。これにより、撮像センサ48に観察対象の反射像が結像される。
 撮像センサ48はカラーの撮像センサであり、被検体の反射像を撮像して画像信号を出力する。この撮像センサ48は、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサ等であることが好ましい。本発明で用いられる撮像センサ48は、R(赤)、G(緑)及びB(青)の3色のRGB画像信号を得るためのカラーの撮像センサ、即ち、Rフィルタが設けられたR画素、Gフィルタが設けられたG画素、Bフィルタが設けられたB画素を備えた、いわゆるRGB撮像センサである。
 なお、撮像センサ48としては、RGBのカラーの撮像センサの代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(緑)の補色フィルタを備えた、いわゆる補色撮像センサであっても良い。補色撮像センサを用いる場合には、CMYGの4色の画像信号が出力されるため、補色-原色色変換によって、CMYGの4色の画像信号をRGBの3色の画像信号に変換する必要がある。また、撮像センサ48はカラーフィルタを設けていないモノクロ撮像センサであっても良い。この場合、光源制御部21は青色光B、緑色光G、赤色光Rを時分割で点灯させて、撮像信号の処理では同時化処理を加える必要がある。
 撮像センサ48から出力される画像信号は、CDS・AGC回路50に送信される。CDS・AGC回路50は、アナログ信号である画像信号に相関二重サンプリング(CDS(Correlated Double Sampling))や自動利得制御(AGC(Auto Gain Control))を行う。CDS・AGC回路50を経た画像信号は、A/D変換器(A/D(Analog /Digital)コンバータ)52により、デジタル画像信号に変換される。A/D変換されたデジタル画像信号は、プロセッサ装置16に入力される。
 プロセッサ装置16は、受信部53と、DSP(Digital Signal Processor)56と、ノイズ除去部58と、画像処理切替部60と、通常画像処理部62と、特殊画像処理部64と、映像信号生成部66とを備えている。受信部53は内視鏡12からのデジタルのRGB画像信号を受信する。R画像信号は撮像センサ48のR画素から出力される信号に対応し、G画像信号は撮像センサ48のG画素から出力される信号に対応し、B画像信号は撮像センサ48のB画素から出力される信号に対応している。
 DSP56は、受信した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、デモザイク処理等の各種信号処理を施す。欠陥補正処理では、撮像センサ48の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理が施されたRGB画像信号から暗電流成分が除かれ、正確な零レベルが設定される。ゲイン補正処理では、オフセット処理後のRGB画像信号に特定のゲインを乗じることにより信号レベルが整えられる。ゲイン補正処理後のRGB画像信号には、色再現性を高めるためのリニアマトリクス処理が施される。その後、ガンマ変換処理によって明るさや彩度が整えられる。リニアマトリクス処理後のRGB画像信号には、デモザイク処理(等方化処理、同時化処理とも言う)が施され、各画素で不足した色の信号が補間によって生成される。このデモザイク処理によって、全画素がRGB各色の信号を有するようになる。
 ノイズ除去部58は、DSP56でガンマ補正等が施されたRGB画像信号に対してノイズ除去処理(例えば移動平均法やメディアンフィルタ法等)を施すことによって、RGB画像信号からノイズを除去する。ノイズが除去されたRGB画像信号は、画像処理切替部60に送信される。なお、本発明の「画像信号入力処理部」は、受信部53と、DSP56と、ノイズ除去部58を含む構成に対応する。
 画像処理切替部60は、モード切替SW13aにより、通常観察モードにセットされている場合には、RGB画像信号を通常画像処理部62に送信し、第1特殊観察モード、第2特殊観察モード、同時観察モードにセットされている場合には、RGB画像信号を特殊画像処理部64に送信する。
 通常画像処理部62は、RGB画像信号に対して、色変換処理、色彩強調処理、構造強調処理を行う。色変換処理では、デジタルのRGB画像信号に対しては、3×3のマトリックス処理、階調変換処理、3次元LUT処理などを行い、色変換処理済みのRGB画像信号に変換する。次に、色変換処理済みのRGB画像信号に対して、各種色彩強調処理を施す。この色彩強調処理済みのRGB画像信号に対して、空間周波数強調等の構造強調処理を行う。構造強調処理が施されたRGB画像信号は、通常画像のRGB画像信号として、通常画像処理部62から映像信号生成部66に入力される。
 特殊画像処理部64は、第1特殊観察モード、または第2特殊観察モード、または同時観察モードに設定されている場合に作動する。この特殊画像処理部64は、第1特殊画像を生成する第1特殊画像処理部64aと、第2特殊画像を生成する第2特殊画像処理部64bと、第1特殊画像と第2特殊画像を同時表示するための同時表示用特殊画像を生成する同時表示用画像処理部64cとを備えている。ただし、第1特殊画像処理部64aは第2特殊画像を生成しない。また、第2特殊画像処理部64bは第1特殊画像を生成しない。これら第1特殊画像処理部64a、第2特殊画像処理部64b、同時表示用画像処理部64cの詳細については、後述する。特殊画像処理部64で生成された第1特殊画像、第2特殊画像、同時表示用特殊画像のRGB画像信号は、映像信号生成部66に入力される。
 映像信号生成部66は、通常画像処理部62又は特殊画像処理部64から入力されたRGB画像信号を、モニタ18で表示可能な画像として表示するための映像信号に変換する。この映像信号に基づいて、モニタ18は、通常画像、第1特殊画像、又は第2特殊画像をそれぞれ表示し、または第1特殊画像と第2特殊画像とを同時表示する。
 第1特殊画像処理部64aは、図4に示すように、逆ガンマ変換部70と、Log変換部71と、信号比算出部72と、極座標変換部73と、動径拡張・圧縮部74と、角度拡張・圧縮部75と、直交座標変換部76と、RGB変換部77と、構造強調部78と、逆Log変換部79と、ガンマ変換部80とを備えている。また、第1特殊画像処理部64aは、RGB変換部77と構造強調部78との間に、明るさ調整部81を備えている。なお、本発明の「第1移動処理部」は、第1特殊画像処理部64aにおける動径拡張・圧縮部74と角度拡張・圧縮部75を含む構成に対応している。
 逆ガンマ変換部70は、入力されたRGB画像信号に対して逆ガンマ変換を施す。この逆ガンマ変換後のRGB画像信号は、検体からの反射率に対してリニアな反射率リニアRGB信号であるため、RGB画像信号のうち、検体の各種生体情報に関連する信号が占める割合が多くなる。なお、反射率リニアR画像信号を第1R画像信号とし、反射率リニアG画像信号を第1G画像信号とし、反射率リニアB画像信号を第1B画像信号とする。
 Log変換部71は、第1RGB画像信号(本発明の「第1カラー画像信号」に対応する)をそれぞれLog変換する。これにより、Log変換済みのR画像信号(logR)、Log変換済みのG画像信号(logG)、Log変換済みのB画像信号(logB)が得られる。信号比算出部72は、Log変換済みのG画像信号とB画像信号に基づいて差分処理(logG-logB =logG/B=-log(B/G))することにより、B/G比を算出する。ここで、「B/G比」は、-log(B/G)のうち「-log」を省略したものを表している。また、Log変換済みのR画像信号とG画像信号に基づいて差分処理(logR-logG=logR/G=-log(G/R))することにより、G/R比を算出する。G/R比については、B/G比と同様、-log(G/R)のうち「-log」を省略したものを表している。
 なお、B/G比、G/R比は、B画像信号、G画像信号、R画像信号において同じ位置にある画素の画素値から求める。また、B/G比、G/R比は画素毎に求める。また、B/G比は、血管深さ(粘膜表面から特定の血管がある位置までの距離)に相関があることから、血管深さが異なると、それに伴ってB/G比も変動する。また、G/R比は、血液量(ヘモグロビンインデックス)と相関があることから、血液量に変動が有ると、それに伴ってG/R比も変動する。
 極座標変換部73は、信号比算出部72で求めたB/G比、G/R比を、動径rと角度θに変換する。この極座標変換部73において、動径rと角度θへの変換は、全ての画素について行う。動径拡張・圧縮部74は、極座標変換部73で変換済みの動径rと角度θに基づいて、動径rを拡張・圧縮する第1処理を行う。角度拡張・圧縮部75は、動径拡張・圧縮部74で第1処理済みの動径rと角度θに基づいて、角度θを拡張・圧縮する第2処理を行う。これら第1及び第2処理の詳細については後述する。
 直交座標変換部76では、角度拡張・圧縮部75で第2処理済みの角度拡張・圧縮済みの動径r、角度θを、直交座標に変換する。これにより、再度、B/G比、G/R比に変換される。RGB変換部77(本発明の「カラー画像信号変換部」に対応する)では、第1RGB画像信号のうち少なくともいずれか1つの画像信号を用いて、直交座標変換部76を経たB/G比、G/R比を、第2RGB画像信号(本発明の「第2カラー画像信号」に対応する)に変換する。例えば、RGB変換部77は、第1RGB画像信号のうちG画像信号とB/G比とに基づく演算を行うことにより、B/G比を第2B画像信号に変換する。また、RGB変換部77は、第1RGB画像信号のうちG画像信号とG/R比に基づく演算を行うことにより、G/R比を第2R画像信号に変換する。また、RGB変換部77は、第1G画像信号については、特別な変換を施すことなく、第2G画像信号として出力する。
 明るさ調整部81は、第1RGB画像信号と第2RGB画像信号とを用いて、第2RGB画像信号の画素値を調整する。明るさ調整部81で、第2RGB画像信号の画素値を調整するのは、以下の理由による。動径拡張・圧縮部74及び角度拡張・圧縮部75で色領域を拡張・圧縮する処理により得られた第2RGB画像信号は、第1RGB画像信号と明るさが大きく変わってしまう可能性がある。そこで、明るさ調整部81で第2RGB画像信号の画素値を調整することによって、明るさ調整後の第2RGB画像信号が第1RGB画像信号と同じ明るさになるようにする。
 明るさ調整部81は、第1RGB画像信号に基づいて第1明るさ情報Yinを求める第1明るさ情報算出部81aと、第2RGB画像信号に基づいて第2明るさ情報Youtを求める第2明るさ情報算出部81bとを備えている。第1明るさ情報算出部81aは、「kr×第1R画像信号の画素値+kg×第1G画像信号の画素値+kb×第1B画像信号の画素値」の演算式に従って、第1明るさ情報Yinを算出する。第2明るさ情報算出部81bにおいても、第1明るさ情報算出部81aと同様に、上記と同様の演算式に従って、第2明るさ情報Youtを算出する。第1明るさ情報Yinと第2明るさ情報Youtが求まると、明るさ調整部81は、以下の式(E1)~(E3)に基づく演算を行うことにより、第2RGB画像信号の画素値を調整する。
(E1):R*=第2R画像信号の画素値×Yin/Yout
(E2):G*=第2G画像信号の画素値×Yin/Yout
(E3):B*=第2B画像信号の画素値×Yin/Yout
なお、「R*」は明るさ調整後の第2R画像信号を、「G*」は明るさ調整後の第2G画像信号を、「B*」は明るさ調整後の第2B画像信号を表している。また、「kr」、「kg」、「kb」は「0」~「1」の範囲にある任意の定数である。
 構造強調部78では、明るさ調整部81で明るさ調整後の第2RGB画像信号に対して構造強調処理を施す。構造強調処理としては、周波数フィルタリングなどが用いられる。逆Log変換部79は、構造強調部78を経た第2RGB画像信号に対して、逆Log変換を施す。これにより、真数の画素値を有する第2RGB画像信号が得られる。ガンマ変換部80は、逆Log変換部79を経た第2RGB画像信号に対してガンマ変換を施す。これにより、モニタ18などの出力デバイスに適した階調を有する第2RGB画像信号が得られる。ガンマ変換部80を経たRGB画像信号は、第1特殊画像のRGB画像信号として、同時表示用画像処理部64c又は映像信号生成部66に送られる。
 動径拡張・圧縮部74で行われる第1処理の内容について、図5に示すような、縦軸B/G比、横軸G/R比から形成される2次元の色空間である特徴空間を用いて、以下説明する。第1処理では、特徴空間において、動径変更範囲R1内にある座標P1の動径rを変更し、動径変更範囲R1外の座標の動径は変更しない。動径変更範囲R1は、動径rが「rA」から「rB」の範囲内であり、且つ、角度θが「θA」から「θB」の範囲内である(rA<rB、θA<θB)。この動径変更範囲R1は、萎縮性胃炎により萎縮した萎縮粘膜が分布する第2範囲を含む領域であり、正常粘膜が分布する第1範囲と、萎縮性胃炎により萎縮した萎縮粘膜下に存在し、萎縮とともに透見する深層血管が分布する第3範囲とを含まないように設定されている。
 図6に示すように、第1処理では、動径rが「rp」から「rB」の範囲内においては、動径変化率が「1」よりも大きい動径変化率Vxで動径rを変更する拡張処理を行い、動径rが「rA」から「rp」の範囲内においては、動径変化率が「1」よりも小さい動径変化率Vyで動径rを変更する圧縮処理を行う。これら拡張及び圧縮処理を行うことによって、動径変更範囲R1内の動径rは、動径rよりも小さくなる動径Erに変更される。なお、動径変化率が「1」の場合は、動径rを変更する処理を行っても、動径rの大きさは変わらない。一方、第1処理では、動径変更範囲R1の座標の角度θについて変更は行わない。
 ここで、動径変化率は、動径rと動径Erとを関係づける線CV1の接線を示す「直線L1」の傾きで表わされ、「rp」から「rB」の範囲内では直線L1の傾きは「1」よりも大きいのに対して、「rA」から「rp」内では直線L1の傾きは「1」よりも小さくなっている。これに対して、動径変更範囲R1外の動径rは、動径rと大きさが変わらない動径Erに変換される(恒等変換)。また、動径変更範囲R1外においては、直線L1の傾きは「1」になっている。
 図7(A)に示すように、第1処理前には、第1範囲(図7では「第1」と表記)、第2範囲(図7では「第2」と表記)、及び第3範囲(図7では「第3」と表記)は、それぞれ近づいているが、第1処理後には、図7(B)に示すように、第1範囲と第3範囲の座標はそのまま維持した状態で、第2範囲の座標だけ、原点を含む基準範囲に移動する。基準範囲は、第1処理後の第1及び第3範囲を含まない低彩度の範囲である。
 第2処理では、図8Aに示すように、縦軸がB/G比で、横軸がG/R比で形成される特徴空間において、角度変更範囲R2内にある座標P2の角度θを変更する一方で、角度変更範囲R2外の座標については角度θの変更は行わない。角度変更範囲R2は、第1範囲と第3範囲とを含むように設定されている。なお、第2処理では、角度変更範囲R2の座標の動径rについて変更は行わない。
 角度変更範囲R2においては、第1範囲と第3範囲との間に、第1中心線CL1が設定されている。第1中心線CL1は角度θcであり、角度変更範囲R2のうち、第2処理では、角度θc以下の角度θを、時計回り方向A1に回転させるのに対して、角度θc以上の角度θを、反時計回り方向A2に回転させる。なお、第2処理によって、角度変更範囲R2の座標を、第1中心線CL1から±90度の範囲(特徴空間において、「正」の横軸を0°とし、角度を0°から360°で表現した場合には、「270°+θc」から「θc+90°」までの範囲P(図8B参照))内で移動させることが好ましい。なお、角度変化率が「1」の場合は、角度θを変更する処理を行っても、角度θの大きさは変わらない。
 以上の第2処理を行うことによって、図9に示すように、角度変更範囲R2内のうち、角度θc以下の角度θは、角度θよりも小さくなる角度Eθに変更される一方で、角度θc以上の角度θは、角度θよりも大きくなる角度Eθに変更される。その際、第1中心線CL1を含む一定の範囲R2xの角度θについては、角度変化率が「1」よりも大きい角度変化率Wxで変更する拡張処理を行い、範囲R2xを超える範囲R2yの角度θについては、角度変化率が「1」よりも小さい角度変化率Wyで変更する圧縮処理を行う。
 ここで、角度変化率は、角度θと角度Eθとを関係づける線CV2の接線を示す「直線L2」の傾きで表わされ、範囲R2x内では直線L2の傾きは「1」よりも大きいのに対して、範囲R2y内では直線L2の傾きは「1」よりも小さくなっている。これに対して、角度変更範囲R2外の角度θは、角度θと大きさが変わらない角度Eθに変換される(恒等変換)。また、角度変更範囲R2外においては、直線L2の傾きは「1」になっている。
 図10(A)に示すように、第2処理前には、第1範囲(図10では「第1」と表記)と第3範囲(図10では「第3」と表記)は、第2範囲(図10では「第2」と表記)とは離れているものの、第1範囲と第3範囲とは互いに近づいている。第2処理後には、図10(B)に示すように、第2範囲の座標は基準範囲に維持した状態で、第1範囲の座標の大部分が特徴空間の第2象限に移動する一方で、第3範囲の座標の大部分が特徴空間の第4象限に移動する。これにより、第1範囲、第2範囲、及び第3範囲の座標は、完全に離れることになる。この第2処理後に得られる第1特殊画像は、萎縮粘膜や、萎縮粘膜下で萎縮により透見しつつある深層血管などがある萎縮部と、正常粘膜がある正常部との境界が明瞭化して表示される。
 第2特殊画像処理部64bは、第1特殊画像処理部64aと同様の構成を備えている。第2特殊画像処理部64bでは、角度拡張・圧縮部75で行う処理が第1特殊画像処理部64aで行う第2処理と異なっている。それ以外については、同様の処理を行う。なお、本発明の「第2移動処理部」は、第2特殊画像処理部64bにおける動径拡張・圧縮部74と角度拡張・圧縮部75を含む構成に対応している。
 第2特殊画像処理部64bの角度拡張・圧縮部75では、第1処理後の動径rと角度θに基づいて、角度θの変更により、第1範囲の座標を維持した状態で、第3範囲の座標を移動させる第3処理を行う。第3処理では、図11Aに示すように、縦軸がB/G比で、横軸がG/R比で形成される特徴空間において、角度変更範囲R3内にある座標P3の角度θを変更する一方で、角度変更範囲R3外の座標については角度θの変更は行わない。角度変更範囲R3は、第3範囲を含むようにするとともに、第1範囲を含まないように設定されている。なお、第3処理では、角度変更範囲R3の座標の動径rについて変更は行わない。
 角度変更範囲R3においては、第1範囲と第3範囲との間に、第2中心線CL2が設定されている。第2中心線CL2は角度θdであり、角度変更範囲R3のうち、角度θd以下の角度θを、時計回り方向A1に回転させる。また、第3処理によって、角度変更範囲R3の座標を、第2中心線CL2から-90度の範囲(特徴空間において、「正」の横軸を0°とし、角度を0°から360°で表現した場合には、「270°+θd」から「θd」までの範囲Q(図11B参照))内で移動させることが好ましい。なお、角度変化率が「1」の場合は、角度θを変更する処理を行っても、角度θの大きさは変わらない。
 以上の第3処理を行うことによって、図12に示すように、角度変更範囲R3内では、角度θは、角度θよりも小さくなる角度Eθに変更される。その際、第2中心線CL2を含む一定の範囲R3xの角度θについては、角度変化率が「1」よりも大きい角度変化率Wxで変更する拡張処理を行い、範囲R3xを超える範囲R3yの角度θについては、角度変化率が「1」よりも小さい角度変化率Wyで変更する圧縮処理を行う。
 ここで、角度変化率は、角度θと角度Eθとを関係づける線CV3の接線を示す「直線L3」の傾きで表わされ、範囲R3x内では直線L3の傾きは「1」よりも大きいのに対して、範囲R3y内では直線L3の傾きは「1」よりも小さくなっている。これに対して、角度変更範囲R3外の角度θは、角度θと大きさが変わらない角度Eθに変換される(恒等変換)。また、角度変更範囲R3外においては、直線L3の傾きは「1」になっている。
 図13(A)に示すように、第3処理前では、第1範囲(図13では「第1」と表記)と第3範囲(図13では「第3」と表記)は、第2範囲(図13では「第2」と表記)とは離れているものの、第1範囲と第3範囲とは互いに近づいている。第3処理後では、図13(B)に示すように、第2範囲の座標を基準範囲に維持しつつ、第1範囲の座標を変更することなく維持した状態で、第3範囲の座標の大部分が特徴空間の第4象限に移動する。この第3範囲の座標の第1象限から第4象限への移動は、第2特殊画像上で、彩度を維持したまま色相を変化させることに相当する。これにより、第1範囲、第2範囲、及び第3範囲の座標は、完全に離れることになる。
 第3処理後に得られる第2特殊画像は、正常部の色は維持して表示される一方で、萎縮性胃炎が生じた萎縮部のうち、萎縮粘膜は退色調で表示される。また、第2特殊画像上では、萎縮粘膜下で萎縮により透見しつつある深層血管の色が赤からマゼンタなどの色に変化することで明瞭に表示することができる。したがって、第2特殊画像は萎縮性胃炎が生じたときの本来の色で表示されるため、正常部と萎縮部との色の違いが明確となっている。
 同時表示用画像処理部64cは、第1特殊画像処理部64aと第2特殊画像処理部64bで生成された第1特殊画像と第2特殊画像に基づいて、同時表示用特殊画像を生成する。モニタ18は、図14に示すように、同時表示用特殊画像に基づいて、一方側に第1特殊画像を表示し、他方側に第2特殊画像を表示する。第1特殊画像は、正常部と萎縮部との境界が極めて明瞭であるため、萎縮部の位置などを把握することを容易にする画像であるものの、正常部が本来の胃の粘膜の色でない疑似カラーで表示されるため、ドクターにとって違和感のある画像となっている。一方、第2特殊画像は、第1特殊画像と比較すると、正常部と萎縮部との境界はある程度明瞭であって、かつ正常部の色が本来の胃の色で表示されるため、ドクターにとって違和感がない画像となっている。これら2つの第1特殊画像と第2特殊画像を同時に表示することで、正常部の色を把握しつつ、正常部と萎縮部の境界を検出することができるようになる。
 次に、本発明の一連の流れについて、図15のフローチャートに沿って説明する。まず、通常観察モードにセットし、内視鏡12の挿入部12aを検体内に挿入する。挿入部12aの先端部12dが胃に到達したら、モード切替SW13aを操作して、通常観察モードから第1、第2特殊観察モードに切り替える。なお、第1特殊画像と第2特殊画像の両方を観察しながら萎縮性胃炎の診断を行う場合には、同時観察モードに切り替える。
 第1、第2特殊観察モードに切り替えた後に得られるRGB画像信号に基づいて、信号比算出部72により、B/G比、G/R比を算出する。次に、この算出したB/G比、G/R比を、極座標変換により、動径r、角度θに変換する。
 次に、第1特殊観察モードに設定されている場合には、B/G比、G/R比で形成される特徴空間において、正常粘膜が分布する第1範囲の座標と、萎縮性胃炎により萎縮した萎縮粘膜下に存在し、萎縮とともに透見する深層血管が分布する第3範囲の座標を維持した状態で、萎縮性胃炎により萎縮した萎縮粘膜が分布する第2範囲を基準範囲に移動させる第1処理を行う。この第1処理の後に、第1範囲の座標と第3範囲の座標を、互いに離れるように移動させる第2処理を行う。第1処理及び第2処理後のB/G比、G/R比に基づいて、第1特殊画像を生成する。この第1特殊画像はモニタ18に表示される。
 一方、第2特殊観察モードに設定されている場合には、B/G比、G/R比で形成される特徴空間において、上記と同様の第1処理を行う。この第1処理の後に、第1範囲の座標を維持した状態で、第3範囲の座標を移動させる第3処理を行う。第1処理及び第3処理後のB/G比、G/R比に基づいて、第2特殊画像を生成する。この第2特殊画像はモニタ18に表示される。
 なお、同時観察モードは第1特殊画像と第2特殊画像との同時表示に限らず、例えば第1特殊画像と通常画像の同時表示でもよい。また第2特殊画像と通常画像の同時表示でもよい。その場合には通常画像処理部62と特殊画像処理部64の各々で表示画像を生成し、映像信号生成部66を経てモニタ18で表示される。
 また、同時観察モードでは、第1特殊画像と、第1~第3処理のいずれの処理も行わない第3特殊画像とを同時表示するようにしてもよい。この第3特殊画像は、特殊画像処理部64に設けられた第3特殊画像処理部(図示しない)で生成される。この場合の第3特殊画像処理部は、第1、第2特殊画像処理部64a、64bと異なり、第1~第3処理に必要な極座標変換部73と、動径拡張・圧縮部74と、角度拡張・圧縮部75と、直交座標変換部76と、RGB変換部77を備えていない。それ以外は、第1、第2特殊画像処理部64a、64bと同様である。なお、第3特殊画像を生成する際は、紫色光Vの光強度を、青色光B、緑色光G、赤色光Rの光強度よりも大きくして各色の光を発光することが好ましい。このような発光条件の元で得られた第3特殊画像は、画像全体が明るい状態を維持した状態で、表層血管が強調されて表示される画像となっている。
[第2実施形態]
 第2実施形態では、第1実施形態で示した4色のLED20a~20dの代わりに、レーザ光源と蛍光体を用いて観察対象の照明を行う。それ以外については、第1実施形態と同様である。
 図16に示すように、第2実施形態の内視鏡システム100では、光源装置14において、4色のLED20a~20dの代わりに、中心波長445±10nmの青色レーザ光を発する青色レーザ光源(図16では「445LD」と表記)104と、中心波長405±10nmの青紫色レーザ光を発する青紫色レーザ光源(図16では「405LD」と表記)106とが設けられている。これら各光源104、106の半導体発光素子からの発光は、光源制御部108により個別に制御されており、青色レーザ光源104の出射光と、青紫色レーザ光源106の出射光の光量比は変更自在になっている。
 光源制御部108は、通常観察モードの場合には、青色レーザ光源104を駆動させる。これに対して、第1又は第2特殊観察モード、又は同時観察モードの場合には、青色レーザ光源104と青紫色レーザ光源106の両方を駆動させるとともに、青色レーザ光の発光強度を青紫色レーザ光の発光強度よりも大きくなるように制御している。以上の各光源104、106から出射されるレーザ光は、集光レンズ、光ファイバ、合波器などの光学部材(いずれも図示せず)を介して、ライトガイド41に入射する。
 なお、青色レーザ光又は青紫色レーザ光の半値幅は±10nm程度にすることが好ましい。また、青色レーザ光源104及び青紫色レーザ光源106は、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオードを用いることもできる。また、上記光源として、発光ダイオード等の発光体を用いた構成としてもよい。
 照明光学系30aには、照明レンズ45の他に、ライトガイド41からの青色レーザ光又は青紫色レーザ光が入射する蛍光体110が設けられている。蛍光体110に、青色レーザ光が照射されることで、蛍光体110から蛍光が発せられる。また、一部の青色レーザ光は、そのまま蛍光体110を透過する。青紫色レーザ光は、蛍光体110を励起させることなく透過する。蛍光体110を出射した光は、照明レンズ45を介して、検体内に照射される。
 ここで、通常観察モードにおいては、主として青色レーザ光が蛍光体110に入射するため、図17に示すような、青色レーザ光、及び青色レーザ光により蛍光体110から励起発光する蛍光を合波した白色光が、観察対象に照射される。一方、第1又は第2特殊観察モード、又は同時観察モードにおいては、青紫色レーザ光と青色レーザ光の両方が蛍光体110に入射するため、図18に示すような、青紫色レーザ光、青色レーザ光、及び青色レーザ光により蛍光体110から励起発光する蛍光を合波した特殊光が、検体内に照射される。
 なお、蛍光体110は、青色レーザ光の一部を吸収して、緑色~黄色に励起発光する複数種の蛍光体(例えばYAG系蛍光体、或いはBAM(BaMgAl1017)等の蛍光体)を含んで構成されるものを使用することが好ましい。本構成例のように、半導体発光素子を蛍光体110の励起光源として用いれば、高い発光効率で高強度の白色光が得られ、白色光の強度を容易に調整できる上に、白色光の色温度、色度の変化を小さく抑えることができる。
[第3実施形態]
 第3実施形態では、第1実施形態で示した4色のLED20a~20dの代わりに、キセノンランプなどの広帯域光源と回転フィルタを用いて観察対象の照明を行う。また、カラーの撮像センサ48に代えて、モノクロの撮像センサで観察対象の撮像を行う。それ以外については、第1実施形態と同様である。
 図19に示すように、第3実施形態の内視鏡システム200では、光源装置14において、4色のLED20a~20dに代えて、広帯域光源202、回転フィルタ204、フィルタ切替部205が設けられている。また、撮像光学系30bには、カラーの撮像センサ48の代わりに、カラーフィルタが設けられていないモノクロの撮像センサ206が設けられている。
 広帯域光源202はキセノンランプ、白色LEDなどであり、波長域が青色から赤色に及ぶ白色光を発する。回転フィルタ204は、内側に設けられた通常観察モード用フィルタ208と、外側に設けられた特殊観察モード用フィルタ209とを備えている(図20参照)。フィルタ切替部205は、回転フィルタ204を径方向に移動させるものであり、モード切替SW13aにより通常観察モードにセットされたときに、回転フィルタ204の通常観察モード用フィルタ208を白色光の光路に挿入し、第1又は第2特殊観察モードにセットされたときに、回転フィルタ204の特殊観察モード用フィルタ209を白色光の光路に挿入する。
 図20に示すように、通常観察モード用フィルタ208には、周方向に沿って、白色光のうち青色光を透過させるBフィルタ208a、白色光のうち緑色光を透過させるGフィルタ208b、白色光のうち赤色光を透過させるRフィルタ208cが設けられている。したがって、通常観察モード時には、回転フィルタ204が回転することで、青色光、緑色光、赤色光が交互に観察対象に照射される。
 特殊観察モード用フィルタ209には、周方向に沿って、白色光のうち特定波長の青色狭帯域光を透過させるBnフィルタ209aと、白色光のうち緑色光を透過させるGフィルタ209b、白色光のうち赤色光を透過させるRフィルタ209cが設けられている。したがって、特殊観察モード時には、回転フィルタ204が回転することで、青色狭帯域光、緑色光、赤色光が交互に観察対象に照射される。
 内視鏡システム200では、通常観察モード時には、青色光、緑色光、赤色光が観察対象に照射される毎にモノクロの撮像センサ206で検体内を撮像する。これにより、RGBの3色の画像信号が得られる。そして、それらRGBの画像信号に基づいて、上記第1実施形態と同様の方法で、通常画像が生成される。
 一方、第1又は第2特殊観察モード、又は同時観察モード時には、青色狭帯域光、緑色光、赤色光が観察対象に照射される毎にモノクロの撮像センサ206で検体内を撮像する。これにより、Bn画像信号と、G画像信号、R画像信号が得られる。これらBn画像信号と、G画像信号、R画像信号に基づいて、第1又は第2特殊画像の生成が行われる。第1又は第2特殊画像の生成には、B画像信号の代わりに、Bn画像信号が用いられる。それ以外については、第1実施形態と同様の方法で第1又は第2特殊画像の生成が行われる。
[第4実施形態]
 第4実施形態では、挿入型の内視鏡12及び光源装置14に代えて、飲み込み式のカプセル内視鏡を用いて、通常画像、第1又は第2特殊画像の生成に必要なRGB画像信号を取得する。
 図21に示すように、第4実施形態のカプセル内視鏡システム300は、カプセル内視鏡302と、送受信アンテナ304と、カプセル用受信装置306と、プロセッサ装置16と、モニタ18を備えている。カプセル内視鏡302は、LED302aと、撮像センサ302bと、画像処理部302cと、送信アンテナ302dとを備えている。なお、プロセッサ装置16は第1実施形態と同様であるが、第4実施形態では、通常観察モード、第1特殊観察モード、第2特殊観察モードに切り替えるためのモード切替SW308が新たに設けられている。
 LED302aは、白色光を発するものであり、カプセル内視鏡302内に複数設けられている。ここで、LED302aとしては、青色光源と、この青色光源からの光を波長変換して蛍光を発する蛍光体とを備える白色LEDなどを用いることが好ましい。LEDに代えて、LD(Laser Diode)を用いてもよい。LED302aから発せられた白色光は、観察対象に対して照明される。
 撮像センサ302bはカラーの撮像センサであり、白色光で照明された観察対象を撮像して、RGBの画像信号を出力する。ここで、撮像センサ302bとしては、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサを用いることが好ましい。撮像センサ302bから出力されたRGB画像信号は、画像処理部302cで、送信アンテナ302dで送信可能な信号にするための処理が施される。画像処理部302cを経たRGB画像信号は、送信アンテナ302dから、無線で送受信アンテナ304に送信される。
 送受信アンテナ304は被検者の体に貼り付けられており、送信アンテナ302dからのRGB画像信号を受信する。送受信アンテナ304は、受信したRGB画像信号を、無線でカプセル用受信装置306に送信する。カプセル用受信装置306はプロセッサ装置16の受信部53と接続されており、送受信アンテナ304からのRGB画像信号を受信部53に送信する。
 なお、上記実施形態では、図3に示すような発光スペクトルを有する4色の光を用いたが、発光スペクトルはこれに限られない。例えば、図22に示すように、緑色光G及び赤色光Rについては、図3と同様のスペクトルを有する一方で、紫色光Vsについては、中心波長410~420nmで、図3の紫色光Vよりもやや長波長側に波長範囲を有する光にしてもよい。また、青色光Bsについては、中心波長445~460nmで、図3の青色光Bよりもやや短波長側に波長範囲を有する光にしてもよい。
 なお、上記実施形態では、B/G比、G/R比を極座標変換で動径r、角度θに変換し、変換後の動径r、角度θに基づいて第1及び第2処理、又は第1処理及び第3処理を行い、その後に、再度、B/G比、G/R比に戻したが、図23に示すように、二次元LUT400を用いて、B/G比、G/R比から、極座標変換等することなく、直接、第1又は第2処理済みの、又は第1及び第3処理済みのB/G比、G/R比に変換してもよい。
 なお、二次元LUT400には、B/G比、G/R比と、このB/G比、G/R比に基づく第1及び第2処理(又は第1処理及び第3処理)を行って得られる第1及び第2処理済み(又は第1処理及び第3処理済み)のB/G比、G/R比とが対応付けて記憶されている。また、逆ガンマ変換部70から出力された第1RGB画像信号は二次元LUT400に入力される。もしくは、上記実施形態と同様に、RGB変換部77に第1RGB画像信号を入力するようにしてもよい。
 なお、上記実施形態では、第2処理で角度θを変更して、第1範囲と第3範囲とが互いに離れるようにしているが、その他の方法で、第1範囲と第3範囲とが互いに離れるようにしてもよい。例えば、動径rを変更して第1範囲と第3範囲とが互いに離れるようにしてもよく、また、動径rと角度θの両方を変更して、第1範囲と第3範囲とが互いに離れるようにしてもよい。また、第3処理では、第3範囲の座標を維持して、第1範囲の座標が移動するように処理してもよい。
 なお、上記実施形態では、第1RGB画像信号からB/G比、G/R比を求め、この求めたB/G比、G/R比により特徴空間を形成しているが、第1B画像信号が、波長帯域が狭い狭帯域光(例えば、半値幅が20nmの範囲内の光)から得られる狭帯域信号である場合には、波長帯域が広帯域光(例えば、半値幅が20nmの範囲を超える光)から得られる広帯域信号の場合と比較して、特徴空間上での第1範囲と第2範囲との差、及び第1範囲と第3範囲との差が大きくなっている。ここで、狭帯域光としては、第1実施形態の「紫色光V」、「青色光B」が含まれ、第2実施形態の「青色レーザ光」又は「青紫色レーザ光」が含まれ、第3実施形態の「青色狭帯域光」が含まれ、第4実施形態の「青色光源の光」が含まれる。
 図24では、「Xn」は第1B画像信号が狭帯域信号である場合の第2範囲を示しており、「Xb」は第1B画像信号が広帯域信号である場合の第2範囲を示している。「Xn」と「Xb」とを比較すると、「Xn」は特徴空間上で「Xb」の下方に位置する。また、「Yn」は第1B画像信号が狭帯域信号である場合の第3範囲を示しており、「Yb」は第1B画像信号が広帯域信号である場合の第3範囲を示している。「Yn」と「Yb」とを比較すると、「Yn」は特徴空間上で「Yb」の下方に位置する。
 図24に示すように、「Xn」の平均値AXnと第1範囲の平均値AR1との差D12nは、「Xb」の平均値AXbと第1範囲の平均値AR1との差D12bよりも大きくなっており、「Yn」の平均値AYnと第1範囲の平均値AR1との差D13nは、「Yb」の平均値AXbと第1範囲AR1との差D13bよりも大きくなっている。以上のように、第1B画像信号が狭帯域信号の場合であれば、第1範囲と第2及び第3範囲との差が、これらを拡張・圧縮する処理を行う前に既に大きく付いている。このような状態の第1~第3範囲に対して拡張・圧縮する処理を行うことで、正常部と萎縮部との違いを更に明確に表示できるようになる。
 なお、第1G画像信号を狭帯域信号にすることで、上記と同様に、第1範囲と第2範囲との差及び第1範囲と第3範囲との差を、第1G画像信号が広帯域信号の場合よりも、大きくすることができる。更には、上記のように、第1B画像信号又は第1G画像信号を狭帯域信号にすることに限らず、第1RGB画像信号のうち少なくとも1色の画像信号を狭帯域信号にすることで、第1範囲と第2範囲との差及び第1範囲と第3範囲との差を、第1RGB画像信号が全て広帯域信号の場合よりも、大きくすることができる。また、狭帯域信号については、上記のように、狭帯域光から得られる信号の他、特開2003-93336号公報に記載の分光推定処理によって得られる信号も含まれる。
 なお、本発明は、第1~第3実施形態のような内視鏡システムや第4実施形態のようなカプセル内視鏡システムに組み込まれるプロセッサ装置の他、各種の医用画像処理装置に対して適用することが可能である。
10,100,200 内視鏡システム
16 プロセッサ装置(医用画像処理装置)
72 信号比算出部
64a 第1特殊画像処理部
64b 第2特殊画像処理部
74 動径拡張・圧縮部
75 角度拡張・圧縮部
77 RGB変換部(カラー画像信号変換部)
81 明るさ調整部

Claims (12)

  1.  第1カラー画像信号を入力処理する画像信号入力処理部と、
     前記第1カラー画像信号のうち2色の画像信号間の第1信号比と、前記第1信号比と異なる2色の画像信号間の第2信号比を算出する信号比算出部と、
     前記第1信号比と前記第2信号比で形成される特徴空間において、被検体内の観察対象が分布する第1範囲、第2範囲、及び第3範囲のうち第2範囲の座標を、前記特徴空間内に定める基準範囲に移動するように処理する第1処理と、前記第2範囲は移動せずに、前記第1範囲の座標と前記第3範囲の座標のうち少なくとも一方を移動するように処理する第2処理とを行う第1移動処理部と、
    を備える医用画像処理装置。
  2.  前記第1処理は、前記特徴空間において、前記第2範囲の座標の動径を変更して、前記第2範囲の座標を前記基準範囲に移動させる請求項1記載の医用画像処理装置。
  3.  前記第2処理は、前記特徴空間において、前記第1範囲の座標の角度と前記第3範囲の座標の角度とを変更して、前記第1範囲の座標と前記第3範囲の座標とが互いに離れるように移動させる請求項1または2記載の医用画像処理装置。
  4.  前記基準範囲は、前記特徴空間の原点を含み、且つ、前記第1範囲及び前記第3範囲を含まない範囲である請求項1ないし3いずれか1項記載の医用画像処理装置。
  5.  前記特徴空間において、前記第2範囲の座標を、前記特徴空間内に定める基準範囲に移動するように処理する第1処理と、前記特徴空間において、前記第1範囲の座標を維持した状態で、前記第3範囲を移動するように処理する第3処理を行う第2移動処理部を備える請求項1ないし4いずれか1項記載の医用画像処理装置。
  6.  前記第3処理では、前記第1及び第3処理後の第1信号比及び第2信号比から得られる第2特殊画像の色相が変化するように、前記第3範囲の座標を移動させる請求項5記載の医用画像処理装置。
  7.  前記第1及び第2処理後の第1信号比及び第2信号比を第2カラー画像信号に変換し、又は前記第1及び第3処理後の第1信号比及び第2信号比を第2カラー画像信号に変換するカラー画像信号変換部と、
     前記第1カラー画像信号から得られる第1明るさ情報及び前記第2カラー画像信号から得られる第2明るさ情報から、前記第2カラー画像信号の画素値を調整する明るさ調整部とを有する請求項5または6記載の医用画像処理装置。
  8.  前記特徴空間において、前記第1カラー画像信号のうち少なくとも1色の画像信号が狭帯域信号である場合の前記第1範囲と前記第2範囲との差は、前記第1カラー画像信号が全て広帯域信号である場合の前記第1範囲と前記第2範囲との差よりも大きい、又は、前記第1カラー画像信号のうち少なくとも1色の画像信号が狭帯域信号である場合の前記第1範囲と前記第3範囲との差は、前記第1カラー画像信号が全て広帯域信号である場合の前記第1範囲と前記第3範囲との差よりも大きい請求項1ないし7いずれか1項記載の医用画像処理装置。
  9.  前記第1信号比は血管深さと相関があり、前記第2信号比は血液量と相関がある請求項1ないし8いずれか1項記載の医用画像処理装置。
  10.  前記第1信号比はB/G比で、前記第2信号比はG/R比である請求項9記載の医用画像処理装置。
  11.  請求項5記載の医用画像処理装置と、
     前記第1及び第2処理後の第1及び第2信号比から得られる第1特殊画像と前記第1及び第3処理後の第1信号比及び第2信号比から得られる第2特殊画像を表示する表示部と、
    を備える内視鏡システム。
  12.  画像信号入力処理部が、第1カラー画像信号を入力処理するステップと、
     信号比算出部が、前記第1カラー画像信号のうち2色の画像信号間の第1信号比と、前記第1信号比と異なる2色の画像信号間の第2信号比を算出するステップと、
     第1移動処理部が、前記第1信号比と前記第2信号比で形成される特徴空間において、被検体内の観察対象が分布する第1範囲、第2範囲、及び第3範囲のうち第2範囲の座標を、前記特徴空間内に定める基準範囲に移動するように処理する第1処理と、前記第2範囲は移動せずに、前記第1範囲の座標と前記第3範囲の座標のうち少なくとも一方を移動するように処理する第2処理とを行うステップと、
    を有する医用画像処理装置の作動方法。
PCT/JP2015/055537 2014-03-31 2015-02-26 医用画像処理装置及びその作動方法並びに内視鏡システム WO2015151663A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016511452A JP6150318B2 (ja) 2014-03-31 2015-02-26 医用画像処理装置及びその作動方法並びに内視鏡システム
EP15773911.1A EP3127467B1 (en) 2014-03-31 2015-02-26 Medical image processing device, operation method thereof, and endoscope system
CN201580018139.1A CN106163367B (zh) 2014-03-31 2015-02-26 医用图像处理装置及其工作方法以及内窥镜系统
CN201810347183.2A CN108830825B (zh) 2014-03-31 2015-02-26 内窥镜系统及其工作方法
US15/279,541 US9892512B2 (en) 2014-03-31 2016-09-29 Medical image processing device, operation method therefor, and endoscope system
US15/864,324 US10186033B2 (en) 2014-03-31 2018-01-08 Medical image processing device, operation method therefor, and endoscope system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-074273 2014-03-31
JP2014074273 2014-03-31
JP2014133388 2014-06-27
JP2014-133388 2014-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/279,541 Continuation US9892512B2 (en) 2014-03-31 2016-09-29 Medical image processing device, operation method therefor, and endoscope system

Publications (1)

Publication Number Publication Date
WO2015151663A1 true WO2015151663A1 (ja) 2015-10-08

Family

ID=54239998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055537 WO2015151663A1 (ja) 2014-03-31 2015-02-26 医用画像処理装置及びその作動方法並びに内視鏡システム

Country Status (5)

Country Link
US (2) US9892512B2 (ja)
EP (1) EP3127467B1 (ja)
JP (2) JP6150318B2 (ja)
CN (2) CN106163367B (ja)
WO (1) WO2015151663A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442397B1 (en) * 2016-04-13 2021-06-09 Inspektor Research Systems B.V. Bi-frequency dental examination

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196900B2 (ja) * 2013-12-18 2017-09-13 オリンパス株式会社 内視鏡装置
CN105828693B (zh) * 2013-12-20 2018-11-06 奥林巴斯株式会社 内窥镜装置
JP5972312B2 (ja) * 2014-03-24 2016-08-17 富士フイルム株式会社 医用画像処理装置及びその作動方法
CN109310301B (zh) * 2016-08-31 2021-07-20 Hoya株式会社 电子内窥镜用处理器以及电子内窥镜系统
WO2018180249A1 (ja) * 2017-03-28 2018-10-04 富士フイルム株式会社 計測支援装置、内視鏡システム、及びプロセッサ
CN110461204B (zh) 2017-03-28 2021-05-18 富士胶片株式会社 测量辅助装置、内窥镜系统及处理器
WO2019208011A1 (ja) * 2018-04-24 2019-10-31 オリンパス株式会社 内視鏡システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307395A (ja) * 2003-04-25 2007-11-29 Olympus Corp 画像表示装置、画像表示方法および画像表示プログラム

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687592B2 (ja) * 1986-12-18 1994-11-02 オリンパス光学工業株式会社 画像処理装置
US4814859A (en) * 1986-11-28 1989-03-21 Olympus Optical Co., Ltd. Video image processing apparatus for emphasizing color of an image by expanding hue and saturation
JPS63173182A (ja) * 1987-01-13 1988-07-16 Olympus Optical Co Ltd 色彩画像処理方式
JPH01113018A (ja) * 1987-10-26 1989-05-01 Olympus Optical Co Ltd 内視鏡色彩強調装置
JPH01138876A (ja) * 1987-11-26 1989-05-31 Toshiba Corp カラー画像処理装置
US5550582A (en) 1993-03-19 1996-08-27 Olympus Optical Co., Ltd. Endoscope-image processing apparatus for performing image processing of emphasis in endoscope image by pigment concentration distribution
CN101264001B (zh) * 2003-04-25 2010-11-10 奥林巴斯株式会社 图像显示装置
ES2425568T3 (es) * 2005-01-21 2013-10-16 Verisante Technology, Inc. Método y aparato para la medición de cambios cancerosos a partir de mediciones espectrales de reflectancia obtenidas durante la toma de imágenes endoscópicas
KR20090011071A (ko) * 2007-07-25 2009-02-02 삼성전자주식회사 디스플레이장치 및 그 제어방법
JP5380973B2 (ja) * 2008-09-25 2014-01-08 株式会社ニコン 画像処理装置及び画像処理プログラム
JP5393554B2 (ja) * 2010-03-23 2014-01-22 富士フイルム株式会社 電子内視鏡システム
JP5405373B2 (ja) * 2010-03-26 2014-02-05 富士フイルム株式会社 電子内視鏡システム
JP5133386B2 (ja) * 2010-10-12 2013-01-30 富士フイルム株式会社 内視鏡装置
JP5244164B2 (ja) * 2010-10-18 2013-07-24 富士フイルム株式会社 内視鏡装置
JP5231511B2 (ja) * 2010-11-09 2013-07-10 富士フイルム株式会社 内視鏡診断装置
JP5405445B2 (ja) * 2010-12-17 2014-02-05 富士フイルム株式会社 内視鏡装置
JP5550574B2 (ja) * 2011-01-27 2014-07-16 富士フイルム株式会社 電子内視鏡システム
JP5451802B2 (ja) * 2011-04-01 2014-03-26 富士フイルム株式会社 電子内視鏡システム及び電子内視鏡システムの校正方法
JP5331904B2 (ja) * 2011-04-15 2013-10-30 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
JP5419931B2 (ja) * 2011-07-04 2014-02-19 富士フイルム株式会社 内視鏡システム、光源装置、及び内視鏡システムの作動方法
EP2564760A1 (en) * 2011-08-29 2013-03-06 Fujifilm Corporation Endoscopic diagnosis system
US9208750B2 (en) * 2013-05-13 2015-12-08 Asustek Computer Inc. Color temperature adjusting method of display device
CN105705075B (zh) * 2013-10-28 2018-02-02 富士胶片株式会社 图像处理装置及其工作方法
JP5972312B2 (ja) * 2014-03-24 2016-08-17 富士フイルム株式会社 医用画像処理装置及びその作動方法
US9977232B2 (en) * 2015-01-29 2018-05-22 Fujifilm Corporation Light source device for endoscope, endoscope system, and method for operating light source device for endoscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307395A (ja) * 2003-04-25 2007-11-29 Olympus Corp 画像表示装置、画像表示方法および画像表示プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442397B1 (en) * 2016-04-13 2021-06-09 Inspektor Research Systems B.V. Bi-frequency dental examination

Also Published As

Publication number Publication date
US9892512B2 (en) 2018-02-13
US20170018083A1 (en) 2017-01-19
EP3127467B1 (en) 2018-03-28
JP2017185249A (ja) 2017-10-12
CN108830825A (zh) 2018-11-16
EP3127467A4 (en) 2017-04-12
CN108830825B (zh) 2022-03-25
JP6150318B2 (ja) 2017-06-21
JP6313884B2 (ja) 2018-04-18
US20180130208A1 (en) 2018-05-10
CN106163367B (zh) 2018-05-08
JPWO2015151663A1 (ja) 2017-04-13
US10186033B2 (en) 2019-01-22
EP3127467A1 (en) 2017-02-08
CN106163367A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6461739B2 (ja) 画像処理装置及び内視鏡システム並びに画像処理装置の作動方法
JP6121368B2 (ja) 医用画像処理装置及びその作動方法並びに内視鏡システム
JP6313884B2 (ja) 内視鏡システム及びその作動方法
JP6099603B2 (ja) 医用画像処理装置及びその作動方法並びに内視鏡システム
JP6050286B2 (ja) 医用画像処理装置及びその作動方法並びに内視鏡システム
JP5932894B2 (ja) 医用画像処理装置及びその作動方法
WO2018230396A1 (ja) 医用画像処理装置及び内視鏡システム並びに医用画像処理装置の作動方法
JP5972312B2 (ja) 医用画像処理装置及びその作動方法
JP2016107003A (ja) 医用画像処理装置及びその作動方法
JP6047536B2 (ja) 医用画像処理装置及びその作動方法
JP6113116B2 (ja) 医用画像処理装置及びその作動方法並びに内視鏡システム
JP6247784B2 (ja) 医用画像処理装置及び内視鏡システム
JP6456459B2 (ja) 医用画像処理装置
JP6383829B2 (ja) 医用画像処理装置及びその作動方法並びに内視鏡システム
JP6659817B2 (ja) 医用画像処理装置
JP7177897B2 (ja) 医用画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511452

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015773911

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015773911

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE