WO2015151363A1 - Air-conditioning system and control method for air-conditioning equipment - Google Patents

Air-conditioning system and control method for air-conditioning equipment Download PDF

Info

Publication number
WO2015151363A1
WO2015151363A1 PCT/JP2014/084311 JP2014084311W WO2015151363A1 WO 2015151363 A1 WO2015151363 A1 WO 2015151363A1 JP 2014084311 W JP2014084311 W JP 2014084311W WO 2015151363 A1 WO2015151363 A1 WO 2015151363A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
schedule
air conditioning
unit
concentration
Prior art date
Application number
PCT/JP2014/084311
Other languages
French (fr)
Japanese (ja)
Inventor
隆也 山本
義隆 宇野
理 中島
昌江 澤田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015534703A priority Critical patent/JPWO2015151363A1/en
Publication of WO2015151363A1 publication Critical patent/WO2015151363A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system and a method for controlling an air conditioning facility.
  • a conventional air conditioning system there is one that includes an air conditioning facility having an air conditioner and a ventilation device, and an air conditioning facility control system that controls the operation of the air conditioning facility.
  • an air conditioning system for example, the indoor CO 2 concentration is measured, and outside air is supplied indoors so that the measured value is equal to or less than a reference value (see, for example, Patent Document 1).
  • a reference value see, for example, Patent Document 1
  • the outside air temperature and the room temperature are measured, and the outside air is supplied to the room according to the measured values and the set temperature of the air conditioner (for example, Patent Document 2). See).
  • outside air is supplied into the room according to the result of comparing the room temperature and the intermediate temperature in the comfortable temperature range (see, for example, Patent Document 3).
  • the amount of outside air supplied to the room that is, the ventilation amount is determined according to the result of comparing the outside air temperature and the room temperature (see, for example, Patent Document 4). .
  • JP 2010-71489 A (paragraph [0012] to paragraph [0042]) Japanese Patent No. 3028065 (paragraph [0031] to paragraph [0048]) International Publication No. 2010/016100 (paragraph [0021] to paragraph [0042]) JP 2005-147563 A (paragraph [0033] to paragraph [0073])
  • Patent Literature 1 to Patent Literature 4 the CO 2 concentration is reduced to a reference value or less while achieving energy saving of the air conditioning equipment, and the outside air cooling / heating is performed in order to save energy of the air conditioning equipment, It is difficult to achieve both. In other words, in order to reduce the CO 2 concentration below the reference value while saving energy in the air conditioning equipment, it is necessary to suppress ventilation. On the other hand, in order to perform outdoor air cooling and heating in order to save energy in the air conditioning equipment, Since ventilation needs to be promoted, it is difficult to balance them. For this reason, there is a problem that the energy saving performance of the air conditioning equipment as a whole is insufficient.
  • the ventilation amount is determined at the time of control, that is, energy saving at that time is achieved, so that the energy saving performance in a long period such as one day is insufficient. There was a problem.
  • the present invention has been made against the background of the above problems, and provides an air conditioning system with improved energy saving performance as an entire air conditioning facility. Further, an air conditioning system with improved energy saving performance over a long period such as one day is obtained. Moreover, the control method of the air conditioning equipment used for such an air conditioning system is obtained.
  • An air conditioning system includes an air conditioner having an air conditioner and a ventilator, and an air conditioner control system that controls the operation of the air conditioner. and the CO 2 concentration predicting section for predicting the CO 2 concentration, and the air conditioning load prediction unit for predicting a load of the air conditioner in the time horizon, and ventilation scheduling section that generates a schedule for ventilation operation of the ventilator in the time horizon, planning the period, and a control unit for controlling the ventilation operation of the ventilator based on the schedule, the ventilation scheduling unit, the CO 2 concentration expected in the CO 2 concentration prediction unit of the time horizon of at least a portion
  • a plurality of schedule candidates that are maintained in a state not exceeding the reference value over a period of time are generated, and the room temperature is selected from the plurality of schedule candidates.
  • a schedule candidate that uses a relatively small amount of power consumption or electricity charge of the air-conditioning equipment when is maintained within the reference temperature range is adopted as the schedule.
  • the ventilation scheduling unit generates a plurality of schedule candidates in which the CO 2 concentration is maintained in a state that does not exceed the reference value over at least a part of the planning target period, Among the schedule candidates, a schedule candidate having a relatively small power consumption or electricity rate of the air conditioning equipment when the room temperature is maintained within the reference temperature range is adopted as a schedule of the ventilation operation of the ventilator. Therefore, the method comprising the following reference value of CO 2 concentration while reducing the energy efficiency of the air conditioning equipment, and carrying out the outside air cooling and heating to achieve energy-saving air conditioning, is both energy saving of the whole air-conditioning equipment Be improved. In addition, energy saving performance for a long period such as one day is improved.
  • 1 is an overall configuration diagram of an example of an air conditioning system according to Embodiment 1 of the present invention.
  • 1 is an overall configuration diagram of an example of an air conditioning system according to Embodiment 1 of the present invention. It is a functional block diagram of the air-conditioning equipment control system of the air-conditioning system which concerns on Embodiment 1 of this invention. It is a functional block diagram of the optimal ventilation scheduling part of the air conditioning system which concerns on Embodiment 1 of this invention. It is the whole block diagram of the modification of the air conditioning system which concerns on Embodiment 1 of this invention. It is a functional block diagram of the optimal ventilation scheduling part of the air conditioning system which concerns on Embodiment 2 of this invention.
  • Embodiment 1 of this invention It is a functional block diagram of the air-conditioning equipment control system of the air-conditioning system which concerns on Embodiment 3 of this invention. It is a graph which shows the ventilation schedule of the summer in Embodiment 1 of this invention. It is a graph which shows the power consumption of the summer in Embodiment 1 of this invention. It is a graph which shows the ventilation schedule of the intermediate period in Embodiment 1 of this invention. It is a graph which shows the power consumption of the interim period in Embodiment 1 of this invention. It is a graph which shows the ventilation schedule of the winter season in Embodiment 1 of this invention. It is a graph which shows the power consumption of the winter season in Embodiment 1 of this invention. It is a schematic diagram which shows the execution conditions of the condition setting part 11 in Embodiment 1 of this invention. It is a graph which shows the adjacent ventilation schedule in Embodiment 1 of this invention.
  • FIG. 1 The air conditioning system according to Embodiment 1 will be described below. ⁇ Overall configuration> First, the whole structure of the air conditioning system 100 is demonstrated using FIG.1 and FIG.2.
  • FIG.1 and FIG.2 is a whole block diagram of an example of the air conditioning system which concerns on Embodiment 1 of this invention.
  • the air conditioning system 100 includes an air conditioning equipment control system 1, an air conditioner 2, and a ventilator 3.
  • the air conditioning equipment control system 1 includes an air conditioning controller 1a and a network 1n.
  • the air conditioning controller 1a, the air conditioner 2, and the ventilator 3 are connected via the network 1n, and the air conditioner controller 1a controls the air conditioner 2 and the ventilator 3.
  • FIG. 1 shows a case where the air conditioning controller 1a, the air conditioner 2, and the ventilation device 3 are each one, a plurality of each may be provided.
  • the network 1n connects devices in a state where a plurality of types of networks are mixed according to the type of cable, protocol, and the like.
  • the network 1n includes a dedicated network for measuring and controlling air conditioning equipment (air conditioner 2 and ventilator 3), LAN, and individual dedicated lines that are different for each of the air conditioning equipment (air conditioner 2 and ventilator 3). You may do it.
  • the air conditioner 2 has a heat source unit 2a and an indoor unit 2b.
  • the heat source device 2a cools or heats a heat medium such as a refrigerant and water.
  • the indoor unit 2b performs heat exchange between the heat medium and indoor air to adjust the indoor temperature.
  • a typical example of the air conditioner 2 is a multi air conditioner for buildings. In a building multi-air conditioner, a plurality of indoor units 2b are connected to one heat source unit 2a.
  • the ventilation device 3 includes a fan 3a and a heat exchange unit 3b.
  • the ventilation device 3 has a function of taking air outside the building into the room and discharging the air outside the building.
  • the fan 3a is a device for generating an air flow for that purpose.
  • a fan for taking air outside the building into the room and a fan for discharging indoor air outside the building are separate.
  • the heat exchange unit 3b is a device for exchanging heat between air taken in from outside the building and air discharged from the room to the outside of the building.
  • the structure which can be bypassed without passing through the heat exchange unit 3b according to the temperature of the air outside a building, the temperature of indoor air, etc. may be sufficient.
  • you may comprise so that it may bypass without passing through the heat exchange unit 3b according to humidity, enthalpy, etc. not only in temperature.
  • the ventilator 3 may be configured not to include the heat exchange unit 3b.
  • the air conditioning equipment control system 1 may include an air conditioning controller 1a and an air conditioning control computer 1b connected via a network 1o. Moreover, one or both of the air conditioning controller 1a and the air conditioner 2 and the ventilation device 3 may be connected via the device connection controller 1c.
  • the network 1o is, for example, a LAN or a telephone line.
  • the air-conditioning control computer 1b may be installed inside a building to be air-conditioned, or may be installed in a management center or the like that manages a plurality of buildings within a site or in a remote place.
  • FIG. 3 is a functional block diagram of the air conditioning equipment control system of the air conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning equipment control system 1 includes a condition setting unit 11, an optimal ventilation scheduling unit 12, an input / output unit 13, a measurement control unit 14, and a storage unit 15.
  • the functions of the respective units are performed by the air conditioning controller 1a.
  • the functions of the respective units are carried by the air conditioning controller 1a and the air conditioning control computer 1b.
  • the condition setting unit 11 has a function of setting an execution condition for generating an optimal ventilation schedule.
  • Specific execution conditions to be set for example, best plan period for obtaining the ventilation schedule, the upper limit value of the CO 2 concentration, time zone providing an upper limit to the CO 2 concentration, the time period for controlling the room temperature to the set temperature, These are a reference temperature for determining whether or not to perform outdoor air cooling and heating, an optimization end determination condition, and the like.
  • the air conditioning equipment control system 1 has a processor for performing calculations, and the function of the condition setting unit 11 is realized by the processor.
  • FIG. 11 is a schematic diagram illustrating execution conditions of the condition setting unit 11 according to Embodiment 1 of the present invention.
  • the planning target period for obtaining the ventilation schedule is, for example, 24 hours from 0:00 to 24:00.
  • the time period for setting the upper limit value for the CO 2 concentration is from 6 o'clock just before the office worker leaves the office to 22:00 when the office worker leaves the office.
  • the time period during which the room temperature is controlled to the set temperature is from 7 o'clock when the office worker leaves the office until 22:00 when the office worker leaves the office.
  • execution conditions are only examples, and the execution conditions are set in consideration of the working status of the actual office worker, taking into account, for example, weekdays, Saturdays, Sundays, public holidays, and once-a-week scheduled leave dates. It only has to be done.
  • the upper limit value of the CO 2 concentration is, for example, 1000 ppm, which is a reference value determined by laws and regulations.
  • the set temperature is a temperature set by a building manager or office worker to maintain a comfortable office environment.
  • the set temperature in summer is, for example, 27 ° C. during cooling operation, and the set temperature in winter is, for example, 20 ° C. during heating operation.
  • the set temperature is a condition that is set in accordance with an air conditioning operation policy or the like in each of the target buildings.
  • the set temperature is not changed in order to realize energy saving.
  • the setting temperature is for independent of the change in CO 2 concentration, is not correlation between the set temperature and the CO 2 concentration.
  • the optimum ventilation scheduling unit 12 has a function of generating a ventilation schedule that reduces the evaluation function value in the planning target period according to the conditions set by the condition setting unit 11.
  • the optimal ventilation scheduling unit 12 includes an initial solution generation unit 21, an adjacent ventilation schedule generation unit 22, a CO 2 concentration prediction unit 23, an air conditioning load prediction unit 24, an adjacent ventilation schedule evaluation unit 25, and an optimal ventilation schedule candidate update. Unit 26 and end determination unit 27.
  • the air conditioning equipment control system 1 has a processor for performing calculations, and the functions of the respective units are realized by the processor. The function of each part of the optimal ventilation scheduling part 12 will be described in detail later.
  • the initial solution generation unit 21, the adjacent ventilation schedule generation unit 22, the adjacent ventilation schedule evaluation unit 25, and the optimum ventilation schedule candidate update unit 26 each correspond to a part of the “ventilation schedule generation unit” in the present invention. To do.
  • the input / output unit 13 has a function of accepting an input made by a user such as an administrator, writing information in the storage unit 15, reading out information stored in the storage unit 15, and displaying the information to the user.
  • the information that the input / output unit 13 writes in the storage unit 15 includes, for example, management information of the air conditioning system 100, an optimization execution condition output to the condition setting unit 11, and the like.
  • the information that the input / output unit 13 reads from the storage unit 15 includes, for example, an input result, an optimized ventilation schedule, an operating state of the air conditioner 2 and the ventilation device 3, and the like.
  • the input / output unit 13 includes, for example, an input unit 31 such as a keyboard, a mouse, a touch panel, and a switch, and a display unit 32 such as a display.
  • the measurement control unit 14 collects operation data from the air conditioner 2 and the ventilator 3 and writes control data to the storage unit 15 and a control command to one or both of the air conditioner 2 and the ventilator 3. Is read out from the storage unit 15 and transmitted.
  • the air conditioning system 100 may include various sensors such as a temperature sensor, a humidity sensor, and a CO 2 concentration sensor, and the measurement unit 41 may collect measurement data from these sensors and write it in the storage unit 15.
  • the storage unit 15 has a function of storing information referred to by the condition setting unit 11, the optimal ventilation scheduling unit 12, the input / output unit 13, and the measurement control unit 14.
  • the air conditioning equipment control system 1 includes a storage device such as a memory and a hard disk, and the function of the storage unit 15 is realized by the storage device.
  • FIG. 4 is a functional block diagram of the optimum ventilation scheduling unit of the air conditioning system according to Embodiment 1 of the present invention. First, an outline of the function of each part of the optimum ventilation scheduling unit 12 will be described.
  • the initial solution generation unit 21 has a function of generating an initial solution of the optimal ventilation schedule candidate and calculating an evaluation function value of the initial solution.
  • the adjacent ventilation schedule generation unit 22 has a function of generating an adjacent ventilation schedule in which a part of the schedule of the optimal ventilation schedule candidate is changed.
  • the CO 2 concentration prediction unit 23 has a function of predicting a temporal change in the CO 2 concentration in the planning target period when ventilation is performed according to the adjacent ventilation schedule.
  • the air conditioning load predicting unit 24 has a function of predicting the time change of the air conditioning load in the planning target period when ventilation is performed according to the adjacent ventilation schedule.
  • the air conditioning load refers to the amount of heat processed by the air conditioner 2 in order to maintain the room at a reference temperature, for example, 27 ° C. during cooling operation.
  • the air conditioning load includes the amount of heat generated by ventilation.
  • Adjacent ventilation schedule evaluation unit 25 CO 2 concentration and temperature of the chamber which is predicted by the CO 2 concentration prediction unit 23, thereby determining whether or not the setting constraint condition is satisfied by the condition setting unit 11, the adjacent ventilation schedule It has a function of calculating the evaluation function value.
  • the optimal ventilation schedule candidate update unit 26 compares the evaluation function value of the optimal ventilation schedule candidate with the evaluation function value of the adjacent ventilation schedule, and determines whether or not to update the optimal ventilation schedule candidate to the adjacent ventilation schedule. In addition, it has a function of updating the optimal ventilation schedule candidate according to the determination result.
  • the end determination unit 27 has a function of determining whether or not to end the optimization of the ventilation schedule.
  • the optimization of the ventilation schedule performed by the optimal ventilation scheduling unit 12 is executed at the frequency of once a day and on the previous day, the planning target period is 24 hours on the next day, and the time increment is , 30 minutes is explained. That is, for example, the optimal ventilation scheduling unit 12 performs the following day at 0:00 to 0:30, 0:30 to 1: 0, 10:00 to 1:30, ..., 23:30 to 24:00.
  • the control command to the ventilator 3, that is, the ventilation schedule is determined at 22:00 every day.
  • the optimal ventilation scheduling unit 12 determines a control command for each.
  • the air conditioning system 100 is limited to the case where the optimization of the ventilation schedule is executed once a day and on the previous day, the planning target period is 24 hours the next day, and the time increment is 30 minutes. Not.
  • the optimization of the ventilation schedule may be performed at a frequency of once per hour, the planning target period may be the next two hours, and the time increment may be 15 minutes.
  • control command to the ventilator 3 is a discrete value in four stages (strong, medium, weak, stop) is described.
  • the control command to the ventilator 3 is not limited to the case of four levels of discrete values, but is a discrete value other than the four levels according to the type of the ventilator 3, for example, 10 levels of discrete values. Alternatively, it may be a discrete value of two stages of ON and OFF.
  • the initial solution generation unit 21 reads out the optimization execution condition from the storage unit 15, executes a calculation for generating the initial solution by the processor, and stores the generated initial solution in the storage unit 15 as the optimal ventilation schedule candidate.
  • Examples of the initial solution include a default ventilation schedule set by a user such as an administrator in the input / output unit 13, an optimal ventilation schedule calculated on the previous day, a ventilation schedule actually used on the current day or in the past, the past week, etc.
  • the ventilation schedule and the ventilation schedule that is always strong during the planning period are included.
  • the adjacent ventilation schedule generation unit 22 reads out the optimization execution condition and the optimal ventilation schedule candidate from the storage unit 15, and performs an operation for generating an adjacent ventilation schedule by changing a part of the optimal ventilation schedule candidate schedule by the processor. Execute and store the generated adjacent ventilation schedule in the storage unit 15.
  • the adjacent ventilation schedule generation part 22 calculates
  • the adjacent ventilation schedule is, for example, a case where the control command at 12:00 to 12:30 in the optimum ventilation schedule candidate is weak and is changed to the inside.
  • the adjacent ventilation schedule is obtained by changing the control command in one time zone by only one step, but may be changed by changing the control command in a plurality of time zones. It may be changed only in three stages.
  • FIG. 12 is a graph showing the adjacent ventilation schedule in the first embodiment of the present invention.
  • the optimal ventilation schedule candidate is indicated by a broken line
  • the adjacent ventilation schedule is indicated by a solid line.
  • the ventilation volume is increased by one stage in the time zones (A) and (B), and the ventilation volume is decreased by two stages in the time zone (C).
  • the adjacent ventilation schedule generation unit 22 acquires the outside air temperature of the next day from the storage unit 15, and generates an adjacent ventilation schedule that reduces the ventilation amount in a time zone in which the outside air temperature is higher than the set temperature of the room temperature.
  • the adjacent ventilation schedule generation unit 22 increases the ventilation amount. Generate an adjacent ventilation schedule.
  • the adjacent ventilation schedule generation unit 22 performs ventilation. Create an adjacent ventilation schedule that reduces the amount. In this way, the adjacent ventilation schedule generation unit 22 generates the adjacent ventilation schedule in which the air conditioning load is taken into account, so that the ventilation schedule can perform appropriate outside air cooling while suppressing excessive ventilation. Will be optimized.
  • the adjacent ventilation schedule generation unit 22 acquires the outside air temperature of the next day from the storage unit 15, and generates an adjacent ventilation schedule for reducing the ventilation amount in a time zone in which the outside air temperature is lower than the set temperature of the room temperature.
  • the adjacent ventilation schedule generation unit 22 increases the ventilation amount. Generate an adjacent ventilation schedule.
  • the adjacent ventilation schedule generation unit 22 performs ventilation. Create an adjacent ventilation schedule that reduces the amount. In this way, the adjacent ventilation schedule generation unit 22 generates the adjacent ventilation schedule in which the air conditioning load is taken into account, so the ventilation schedule can be appropriately ventilated while suppressing excessive ventilation. Will be optimized.
  • the adjacent ventilation schedule generation unit 22 may generate an adjacent ventilation schedule that reduces the ventilation amount. For example, such a time zone corresponds to midnight when there is no occupant.
  • the adjacent ventilation schedule generation unit 22 may generate the adjacent ventilation schedule based on the above-described rules only in a part of the air conditioning time zones set by the condition setting unit 11.
  • the partial time zone may be selected based on the air conditioning load or the CO 2 concentration. For example, when generating an adjacent ventilation schedule that increases the ventilation volume, a time zone in which the air conditioning load is large may be selected, and when generating an adjacent ventilation schedule that decreases the ventilation volume, the air conditioning load is A small time zone should be selected.
  • the adjacent ventilation schedule generation unit 22 may generate the adjacent ventilation schedule probabilistically by a generation method in which the ventilation amount changes in the opposite direction to the above-described generation method. In such a case, the drop in the local solution in the optimization is suppressed. Further, by using the relationship between the increase / decrease in the power consumption of the air conditioner 2 and the increase / decrease in the power consumption of the ventilator 3 with respect to the increase / decrease of the ventilation amount, the total power consumption of the air conditioner 2 and the ventilator 3 is further reduced. You may give priority to changes that increase or decrease the ventilation volume.
  • the adjacent ventilation schedule generation unit 22 may generate an adjacent ventilation schedule by a combination of a plurality of generation methods.
  • the adjacent ventilation schedule generation unit 22 may combine a plurality of generation methods by a probabilistic method, or may combine the priorities by weighting or the like.
  • the search process of optimization may be stored, and various combinations may be executed in that order, or combinations that were effective in the past search may be executed preferentially, The optimization search process up to the previous day may be learned, and a more effective generation method or combination may be derived.
  • the outside air temperature is set. You may compare with the external air-conditioning determination temperature set to the temperature different from temperature.
  • the outside air cooling / heating determination temperature is set to a temperature lower by 1 ° C. than the set temperature in the outside air cooling, and is set to a temperature higher by 1 ° C. than the set temperature in the outside air heating.
  • the difference from the set temperature may be 0.5 ° C., 2 ° C. or the like.
  • the outside temperature of the next day may be acquired from the weather forecast on the Internet, or may be acquired as the same temperature as the previous day's measured value by an outside temperature sensor installed in a separate building. It may be acquired as the average temperature for every hour of the measured values for the past week with the outside air temperature sensor installed in the building, and the actual measurement data of the past years in the area where the target building is installed It may be obtained as an average.
  • the acquisition method of the outside temperature on the next day may not be limited to these.
  • CO 2 concentration prediction unit 23 The CO 2 concentration prediction unit 23 reads out the optimization execution condition and the adjacent ventilation schedule generated by the adjacent ventilation schedule generation unit 22 from the storage unit 15, and executes the adjacent ventilation schedule when the planning target period is reached. The calculation for predicting the time change of the indoor CO 2 concentration at is performed by the processor, and the predicted time change of the CO 2 concentration is stored in the storage unit 15.
  • the CO 2 concentration prediction unit 23 uses a CO 2 concentration prediction model that inputs the ventilation amount, the CO 2 concentration of the outside air, and the CO 2 generation amount from the human body, and outputs the indoor CO 2 concentration. , to adjacent ventilation schedule, to predict the time variation of the CO 2 concentration of the following day in the room.
  • the CO 2 concentration prediction model is represented by the following formula (1), for example.
  • [rho Z is a CO 2 concentration in the room [ppm].
  • CO 2 concentration prediction unit 23 calculates the [rho Z.
  • ⁇ O is the CO 2 concentration [ppm] of the outside air.
  • ⁇ O is a standard value, for example, a fixed value such as 350 ppm.
  • the CO 2 concentration of the outside air is measured by a sensor, and ⁇ O may be set as a pattern of a 24-hour time change based on past measurement values.
  • M OCC is the amount of CO 2 generated from the human body [m 3 / h].
  • the m OCC is a value set by a user such as an administrator in the input / output unit 13, a value acquired by learning of entry / exit management data, statistical processing, or the like.
  • m OCC is estimated as a value obtained by multiplying the average number of people in the room every hour by the amount of CO 2 generated per person.
  • the amount of CO 2 generated per person may be set based on literature or the like.
  • the m OCC may be acquired by learning from a past measured value of the CO 2 concentration in the room, a ventilation amount, and the like.
  • Q vent is a ventilation amount [m 3 / h].
  • Q vent is a ventilation amount at each time determined from the adjacent ventilation schedule.
  • Q draft is the clearance air volume [m 3 / h].
  • Q draft is a value set based on design data, literature, and the like. Q draft may be acquired by learning from a past measured value of the CO 2 concentration in the room, a ventilation amount, and the like.
  • V Z is the chamber volume [m 3 ].
  • VZ is a value set based on design data, literature, and the like.
  • V Z is the measured value of the CO 2 concentration in the past room, it may be obtained by learning from ventilation or the like.
  • the CO 2 concentration prediction method formulated by the differential equation is exemplified, but the CO 2 concentration prediction method is not limited to this.
  • a formula formulated by addition / subtraction including at least one of factors affecting the CO 2 concentration may be used, and in this case, the formula can be simplified.
  • the air conditioning load prediction unit 24 reads out the optimization execution condition and the adjacent ventilation schedule generated by the adjacent ventilation schedule generation unit 22 from the storage unit 15, and executes the adjacent ventilation schedule in the planning target period.
  • a calculation for predicting a temporal change in the amount of heat processed by the air conditioner 2 is executed by the processor, and the predicted amount of heat is stored in the storage unit 15 as an air conditioning load.
  • the air conditioning load is the amount of heat processed by the air conditioner 2 to maintain the room at a reference temperature, for example, 27 ° C. during cooling operation, and includes the amount of processing heat generated by ventilation.
  • a temperature range such as a set temperature ⁇ 0.5 ° C. may be provided to predict a plurality of air conditioning loads such as a reference temperature (set temperature maintenance), an upper limit temperature, a lower limit temperature, and the like.
  • the air conditioning load prediction unit 24 is modeled on the basis of a heat transport equation, which is a relational expression of changes over time such as outside air temperature, solar radiation, internal heat generation, air conditioning machine heat, room temperature, and ventilation, for example.
  • a building thermal characteristic model which is a characteristic model
  • a time change in the amount of heat processed by the air conditioner 2 necessary for maintaining the room at a reference temperature that is, a time change in the air conditioning load is predicted.
  • the building thermal characteristic model for example, receives the outside air temperature, the amount of solar radiation, the internal heat generation, the set temperature, the ventilation amount (adjacent ventilation schedule), etc.
  • the building thermal characteristics model such as building thermal resistance, heat capacity, etc., may be set based on design data, is treated as an unknown parameter, and is acquired by learning from the air conditioner 2 operation data, etc. It may be set to a value.
  • the air conditioning load prediction unit 24 uses a black box model to model the input / output relationship of the data by statistical processing from the operation data, weather data, and the like of the air conditioner 2, That is, the time change of the air conditioning load may be predicted.
  • the black box model is, for example, a neural network.
  • the air conditioning load prediction unit 24 uses a pattern of the amount of heat processed per day based on past operation data of the air conditioner 2, etc., to change the amount of heat processed by the air conditioner 2 over time, that is, change over time of the air conditioning load. May be predicted.
  • the amount of heat processed by the air conditioner 2 can be obtained directly from the operation data of the air conditioner 2 or can be calculated using the operation data of the air conditioner 2. Therefore, the next day's air conditioning load is assumed to be the same as the previous day's actual air conditioning load.
  • the amount of increase or decrease of the air conditioning load to be added is predicted as the time change of the heat treatment amount of the air conditioner 2, that is, the time change of the air conditioning load.
  • the ventilator 3 has the heat exchange unit 3b, the increase or decrease of the air conditioning load due to the previous day ventilation and the increase or decrease of the air conditioning load due to the adjacent ventilation schedule of the next day.
  • the heat exchange rate in the heat exchange unit 3b may be taken into account.
  • the average of the past week's actual air conditioning load may be used, or the actual air conditioning load of the same day of the previous week may be used.
  • a weather forecast obtained for the next day may be acquired and the past air conditioning load corrected using the weather forecast information may be used.
  • the actual processing heat of the air conditioner 2 using the measured values of the temperature sensor and the air flow sensor installed at the outlet of the air conditioner 2, the measured values of the temperature sensor and the flow sensor installed in the refrigerant pipe, and the like.
  • the load may be calculated, and the processing heat load may be used for predicting the time change of the processing heat amount of the air conditioner 2, that is, the time change of the air conditioning load.
  • the operation of the ventilator 3 often affects the air conditioning load. For this reason, in each of the above methods, when using the operation data of the actual ventilation device 3, the air conditioning load is preferably calculated in consideration of the influence of the difference from the adjacent ventilation schedule.
  • Adjacent ventilation schedule evaluation unit 25 Adjacent ventilation schedule evaluation unit 25, the execution conditions of the optimization, the CO 2 concentrations predicted in the CO 2 concentration prediction unit 23 reads the air-conditioning load predicted by the air conditioning load prediction unit 24, from the storage unit 15, The calculation of the evaluation function value J shown in the following formula (2) is executed by the processor, and the calculation result is stored in the storage unit 15. By using the air conditioning load in the air conditioning load prediction unit 24, the room is maintained at a reference temperature or temperature range.
  • the power at each time obtained using the relationship is integrated to calculate the amount of power for one day, and the amount of power is calculated.
  • the power consumption of the air conditioner 2 is assumed.
  • the power at each time obtained using the air conditioning efficiency which is a fixed value, the air conditioning efficiency for each outside temperature, etc., is integrated for one day.
  • the amount of power is calculated and the amount of power is set as the power consumption of the air conditioner 2.
  • the ventilator 3 when the relationship between fan speed, stage (strong, medium, weak), etc. and power consumption can be formulated, the power at each time determined using that relationship is integrated for one day. The amount of power is calculated, and the amount of power is set as the power consumption of the ventilator 3. In the ventilator 3, when the relationship between the fan speed, stage (strong, medium, weak), etc. and power consumption cannot be formulated, each time determined using the ventilation efficiency, etc., which is a fixed value tabulated The amount of power is integrated to calculate the amount of power for one day, and the amount of power is used as the amount of power consumed by the ventilator 3.
  • Penalty term with the upper limit value is provided to the CO 2 concentration, a penalty term for the predicted value of the CO 2 concentration is time zone exceeding the upper limit value, the relationship represented by the following formula (3) It is calculated by the formula
  • a penalty term such as equation (3), it is possible to temporarily allow the case where the predicted value of the CO 2 concentration exceeds the upper limit, and the progress of the search for optimization is delayed. It is suppressed.
  • the upper limit value of the CO 2 concentration is set to a smaller value than the true upper limit value such as the legal standard value or the like. Good.
  • the adjacent ventilation schedule evaluation part 25 may calculate the evaluation function value J shown by the following formula
  • the adjacent ventilation schedule evaluation part 25 is the following formula
  • equation (5) or (6) The evaluation function value J shown in FIG. That is, the power consumption amount of the ventilation device 3 does not have to be added to the evaluation function value J. Even in such a case, the ventilation schedule can be optimized.
  • the adjacent ventilation schedule evaluation part 25 is calculating the evaluation function value J using the power consumption in the above, it is not limited to such a case, and the adjacent ventilation schedule evaluation part 25 is classified according to time zone.
  • the evaluation function value J may be calculated using an electricity bill that takes into account the electricity unit price and the like.
  • the optimal ventilation schedule candidate update unit 26 stores, from the storage unit 15, the optimization execution conditions, the evaluation function value J0 obtained from the current optimal ventilation schedule candidate, and the evaluation function value Jx obtained from the adjacent ventilation schedule. Reading, comparing the evaluation function value J0 and the evaluation function value Jx, determining whether or not to update the optimal ventilation schedule candidate to the adjacent ventilation schedule, and calculating the optimal ventilation schedule candidate according to the determination result The calculation is executed by the processor, and the calculation result is stored in the storage unit 15.
  • the optimal ventilation schedule candidate update unit 26 updates the optimal ventilation schedule candidate. That is, the optimal ventilation schedule candidate update unit 26 replaces the optimal ventilation schedule candidate with the adjacent ventilation schedule.
  • the optimal ventilation schedule candidate update unit 26 determines whether or not to update the optimal ventilation schedule candidate constantly or to update the optimal ventilation schedule candidate by a probabilistic method, and the determination Update according to the results.
  • the optimal ventilation schedule candidate update unit 26 updates the optimal ventilation schedule candidate with the probability of P1 (k), and ⁇ x
  • the optimal ventilation schedule candidate is updated with the probability of P2 (k).
  • k is the number of searches
  • Th (k) is a threshold value in the k-th search
  • P1 (k) and P2 (k) are probabilities in the k-th search.
  • Each of Th (k), P1 (k), and P2 (k) may be changed to a different value in the optimization search process.
  • the probability of whether or not to update is not limited to two stages, and may be three or more stages.
  • the optimal ventilation schedule candidate update unit 26 has the probability of P1 (k) and is optimal.
  • the optimal ventilation schedule candidate is updated and ⁇ x ⁇ Th1 (k) and ⁇ x ⁇ Th2 (k)
  • the optimal ventilation schedule candidate is updated with the probability of P2 (k)
  • the optimal ventilation schedule candidate is updated with the probability of P3 (k).
  • Th1 (k) and Th2 (k) are threshold values in the k-th search
  • P1 (k), P2 (k), and P3 (k) are k-th times. Probability in search.
  • Each of Th1 (k), Th2 (k), P1 (k), P2 (k), and P3 (k) may be changed to a different value in the optimization search process.
  • End determination unit 27 The end determination unit 27 reads out the optimization execution condition from the storage unit 15, and executes a calculation for determining whether or not to end the optimization search by the processor.
  • the end determination unit 27 determines whether or not the elapsed time from the start of optimization has exceeded a predetermined reference time, whether or not the evaluation function value J has reached a predetermined target value or less, Whether or not the search for optimization is to be ended is determined based on whether or not the decrease rate has reached a predetermined decrease rate or less.
  • the adjacent ventilation schedule generation unit 22 may generate a plurality of adjacent ventilation schedules.
  • the adjacent ventilation schedule evaluation unit 25 evaluates all of the plurality of generated adjacent ventilation schedules.
  • the optimal ventilation schedule candidate update part 26 compares the any one adjacent ventilation schedule among several adjacent ventilation schedules with the present optimal ventilation schedule candidate, and performs the said process. Any adjacent ventilation schedule of the plurality of adjacent ventilation schedules may be compared with the current optimal ventilation schedule candidate, but the adjacent ventilation schedule with the smallest evaluation function value J, the current optimal ventilation schedule candidate, Are preferably compared.
  • air outside the building taken in by the ventilation device 3 may be mixed with air returned indoors by the air conditioner 2.
  • the control command (strong, medium, weak, stop) to the ventilation device 3 determines the amount of air outside the building that can be taken in, the temperature of the air that is actually taken in, the air that is actually taken in It may be determined in consideration of humidity and the like.
  • FIG. 5 is an overall configuration diagram of a modification of the air conditioning system according to Embodiment 1 of the present invention.
  • the ventilator 3 includes a fan 3a, a heat exchange unit 3b, a heat source unit 3c, a heat exchanger 3d, a humidifier 3e, a dehumidifier 3f, and a heater 3g. At least one of the above may be a constituent element.
  • the heat source unit 3c, the heat exchanger 3d, the humidifier 3e, the dehumidifier 3f, and the heater 3g are for adjusting the temperature and humidity of the air before taking the air outside the building into the room. Used.
  • the heat source device 3c cools or heats a heat medium such as refrigerant and water.
  • the heat exchanger 3d performs heat exchange between the heat medium of the heat source device 3c and air taken in from outside the building.
  • the humidifier 3e is for increasing the humidity of the air before taking the air outside the building into the room.
  • the dehumidifier 3f is for lowering the humidity of the air before taking the air outside the building into the room.
  • the heater 3g is for raising the temperature of the air before taking the air outside the building into the room.
  • the air conditioning load prediction unit 24 predicts the total heat load processed by the air conditioner 2 and the ventilation device 3 as the air conditioning load. Further, the adjacent ventilation schedule evaluation unit 25 calculates the evaluation function value J using the total power consumption or electricity charge of these components as the power consumption or electricity charge of the ventilation device 3.
  • FIG. 8A is a graph showing a ventilation schedule in summer in Embodiment 1 of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents CO 2 concentration and ventilation volume.
  • FIG. 8B is a graph showing the power consumption in summer in Embodiment 1 of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents power consumption. This power consumption is obtained by adding ventilation power to air conditioning power.
  • an optimal ventilation schedule is shown as a continuous line, and constant ventilation (normal ventilation) is shown with a broken line.
  • the added value of the air conditioning power and the ventilation power slightly increases due to the promotion of ventilation in the morning, but the added value of the air conditioning power and the ventilation power is greatly reduced by suppressing the ventilation during the day. The For this reason, the power consumption in 1 day is reduced and the optimal time shift of ventilation is realizable.
  • FIG. 9A is a graph showing a ventilation schedule in an intermediate period in the first embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents CO 2 concentration and ventilation volume.
  • FIG. 9B is a graph showing the power consumption in the intermediate period in the first embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents power consumption. This power consumption is obtained by adding ventilation power to air conditioning power.
  • an optimal ventilation schedule is shown as a continuous line, and constant ventilation (normal ventilation) is shown with a broken line. As shown in FIG.
  • the CO 2 concentration is kept to less than the upper limit value 1000 ppm.
  • the added value of the air conditioning power and the ventilation power is slightly reduced due to the suppression of ventilation in the morning, and the added value of the air conditioning power and the ventilation power is greatly reduced by promoting the ventilation during the day. .
  • the present invention can determine the optimum ventilation volume at each time throughout the day.
  • a ventilation schedule based on it is adopted.
  • FIG. 10A is a graph showing a ventilation schedule in winter in Embodiment 1 of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents CO 2 concentration and ventilation volume.
  • FIG. 10B is a graph showing power consumption in winter in Embodiment 1 of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents power consumption. This power consumption is obtained by adding ventilation power to air conditioning power.
  • an optimal ventilation schedule is shown as a continuous line, and constant ventilation (normal ventilation) is shown with a broken line.
  • FIG. 10A when heating is performed in winter, the outside air temperature is low all day, so that ventilation is suppressed.
  • the CO 2 concentration is kept to less than the upper limit value 1000 ppm.
  • the added value of the air conditioning power and the ventilation power is reduced by the morning ventilation suppression, and the added value of the air conditioning power and the ventilation power is also reduced by the daytime ventilation suppression. Note that the added value of the air conditioning power and the ventilation power slightly increases due to the execution of ventilation in the evening.
  • the increase and decrease of the air conditioning power and the ventilation power are calculated by suppressing and promoting the ventilation, and an optimal ventilation schedule is required. Thereby, the optimal ventilation volume of each time can be determined throughout the whole day.
  • a ventilation schedule is adopted in which ventilation is promoted during the day.
  • the air conditioning load prediction unit 24 determines in which time zone cooling or heating is operated. In addition, during the day, for example, the heating operation may be performed in the morning and the cooling operation may be performed in the afternoon.
  • FIGS. 8 to 10 simply show examples of the ventilation schedule of the present invention, and the ventilation schedule is not limited to these examples.
  • the constant ventilation and the optimal ventilation schedule have the same ventilation volume after the evening, but may be different.
  • the constant ventilation and the optimal ventilation schedule have a constant ventilation volume in the morning, during the day, and after the evening, but actually, for example, every 30 minutes, strong, medium, weak, One of the stops is selected.
  • the optimal ventilation schedule is compared with constant ventilation, but there is also control in which the ventilation volume is sequentially determined while measuring the CO 2 concentration. Note that such control is a part of the solution space for obtaining the optimum ventilation schedule in the present invention, and the optimum ventilation schedule in the present invention realizes further energy saving than such control.
  • the adjacent ventilation schedule evaluation unit 25 maintains an adjacent ventilation schedule (that is, a schedule candidate) in which the CO 2 concentration is maintained in a state that does not exceed the reference value for at least a part of the planning target period.
  • the optimum ventilation schedule candidate update unit 26 is generated, and the power consumption amount or the electricity rate of the air conditioning equipment among the optimum ventilation schedule candidate and the adjacent ventilation schedule (that is, among the plurality of schedule candidates) is relatively small.
  • a ventilation schedule is adopted. Therefore, the method comprising the following reference value of CO 2 concentration while reducing the energy efficiency of the air conditioning equipment, and carrying out the outside air cooling and heating to achieve energy-saving air conditioning, is both energy saving of the whole air-conditioning equipment Be improved. In addition, energy saving performance for a long period such as one day is improved.
  • Embodiment 2 FIG.
  • the air conditioning system according to Embodiment 2 will be described below.
  • the description which overlaps with the air conditioning system which concerns on Embodiment 1 is simplified or abbreviate
  • the air conditioning system according to the second embodiment is different from the air conditioning system according to the first embodiment in that the optimum ventilation scheduling unit 12 optimizes the ventilation schedule using a continuous optimization problem.
  • the control command to the ventilator 3 is a discrete value in four stages (strong, medium, weak, stop), like the air conditioning system according to the first embodiment.
  • the optimal ventilation scheduling part 12 optimizes a ventilation schedule on the assumption that the control command to the ventilation apparatus 3 is a continuous value.
  • the relationship between the air conditioning load and the power consumption may be simply modeled by a quadratic equation. If the control command to the ventilator 3 is a continuous value, such a model may be used. It becomes possible. Therefore, since the optimal ventilation scheduling unit 12 has such a function, the problem solved by the optimal ventilation scheduling unit 12 is formulated as a quadratic programming problem and a general solution can be used. It is possible to speed up the optimization calculation. Note that information such as the upper limit value of the CO 2 concentration and the restricted operation of each device may be used as the constraint condition.
  • FIG. 6 is a functional block diagram of the optimum ventilation scheduling unit of the air conditioning system according to Embodiment 2 of the present invention.
  • the optimal ventilation scheduling unit 12 includes a continuous optimization unit 51 and a continuous optimal ventilation schedule discretization unit 52 instead of the initial solution generation unit 21.
  • the continuous optimization unit 51 generates a ventilation schedule on the assumption that the control command to the ventilator 3 is a continuous value (for example, a value with a rated ratio of 0 to 100%), and the ventilation schedule is set as the continuous optimal ventilation schedule.
  • the continuous optimum ventilation schedule discretization unit 52 reads the continuous optimum ventilation schedule from the storage unit 15 and discretizes control commands to the ventilation device 3 in the continuous optimum ventilation schedule into four stages (strong, medium, weak, and stop). The function of generating a ventilation schedule and storing the ventilation schedule in the storage unit 15 as an initial value of the optimal ventilation schedule candidate is provided.
  • the rating ratio is 100%, when the control command to the ventilator 3 is medium, the rating ratio is 60%, and the control command to the ventilator 3 is weak. If the rating ratio is 40% in some cases and the rating ratio is 0% when the control command to the ventilator 3 is stopped, the output at the time with the continuous optimum ventilation schedule will be 100% to 60% rated ratio When the rating ratio is 60% to 40%, the rating is medium. When the rating ratio is 40% to 10%, the rating is weak. When the rating ratio is 10% to 0%, the rating is stopped. Other discretization methods may be used.
  • the optimum ventilation schedule is acquired by the same procedure as that of the air conditioning system according to the first embodiment.
  • the control command to the ventilator 3 may be a discrete value other than four levels (strong, medium, weak, stop), for example, a discrete value of 10 levels. The effect becomes more pronounced as the number of stages increases.
  • the ventilator 3 may be capable of giving a continuous value as a control command.
  • the continuous optimal ventilation schedule generated by the continuous optimization unit 51 becomes the optimal ventilation schedule candidate.
  • control command that can be given to the ventilator 3 may be a continuous value of 15% to 100%, for example, instead of a continuous value of 0% to 100% of the rated ratio.
  • the adjacent ventilation schedule generation unit 22 generates the adjacent ventilation schedule while calculating differently depending on whether the ventilation device 3 is in the ON state or the OFF state, and the adjacent ventilation schedule evaluation unit. 25, the continuous optimization problem may be solved by obtaining the evaluation function value J for this adjacent ventilation schedule.
  • the optimal ventilation scheduling unit 12 optimizes the ventilation schedule on the assumption that the control command to the ventilation device 3 is a continuous value. Therefore, the time required to obtain the optimal solution is shortened.
  • Embodiment 3 FIG.
  • the air conditioning system according to Embodiment 3 will be described below. In addition, below, the description which overlaps with the air conditioning system which concerns on Embodiment 1 and Embodiment 2 is simplified or abbreviate
  • the air conditioning system according to Embodiment 3 differs from the air conditioning system according to Embodiment 1 in that the air conditioning equipment control system 1 corrects the optimum ventilation schedule.
  • the optimal ventilation schedule generated by the optimal ventilation scheduling unit 12 is based on the prediction of the CO 2 concentration and the like performed on the previous day. Therefore, at the time of control execution, that is, when the optimal ventilation schedule generated by the optimal ventilation scheduling unit 12 is actually operated to control the ventilator 3, by correcting the optimal ventilation schedule by the amount that the prediction is deviated, The energy saving performance of the air conditioning system 100 is further improved.
  • FIG. 7 is a functional block diagram of the air conditioning equipment control system of the air conditioning system according to Embodiment 3 of the present invention.
  • the air conditioning equipment control system 1 includes a schedule correction unit 16 in addition to a condition setting unit 11, an optimal ventilation scheduling unit 12, an input / output unit 13, a measurement control unit 14, and a storage unit 15.
  • the measurement unit 41 has a CO 2 concentration actual measurement unit (not shown).
  • the predicted CO 2 concentration refers to the predicted result of the daily CO 2 concentration change when the optimal ventilation schedule is drawn up on the previous day.
  • the actual measured CO 2 concentration refers to data stored in the storage unit 15 measured by the CO 2 concentration actual measurement unit on the day of control.
  • the schedule correction unit 16 reads the optimal ventilation schedule from the storage unit 15, corrects the optimal ventilation schedule, and outputs it to the measurement control unit 14.
  • the schedule correction unit 16 compares the prediction error Xr ⁇ Xp with the predetermined CO 2 concentration allowable error R set in the condition setting unit 11 and performs correction according to the comparison result.
  • the schedule correction unit 16 performs the comparison and correction, for example, at a cycle of 30 minutes.
  • the schedule correction unit 16 When
  • the schedule correction unit 16 corrects the control command to the ventilation device 3 in the optimal ventilation schedule by one step, and sends it to the measurement control unit 14. Output. For example, when the control command to the ventilator 3 in the optimal ventilation schedule is medium, it is corrected strongly.
  • the schedule correction unit 16 When Xr ⁇ Xp ⁇ R, that is, when the measured CO 2 concentration is low, the schedule correction unit 16 is in the cooling mode, and if the outside air temperature ⁇ the set temperature, The control command is output to the measurement control unit 14 without being corrected.
  • the schedule correction unit 16 When Xr ⁇ Xp ⁇ R, that is, when the measured CO 2 concentration is low, the schedule correction unit 16 is in the cooling mode, and if the outside air temperature ⁇ the set temperature, The control command is corrected by one step and output to the measurement control unit 14. For example, when the control command to the ventilator 3 in the optimal ventilation schedule is medium, it is corrected to be weak.
  • the schedule correction unit 16 When Xr ⁇ Xp ⁇ R, that is, when the measured CO 2 concentration is low, the schedule correction unit 16 is in the heating mode, and if the outside air temperature ⁇ the set temperature, The control command is output to the measurement control unit 14 without being corrected.
  • the schedule correction unit 16 When Xr ⁇ Xp ⁇ R, that is, when the measured CO 2 concentration is low, the schedule correction unit 16 is in the heating mode, and if the outside air temperature ⁇ the set temperature, The control command is corrected by one step and output to the measurement control unit 14. For example, when the control command to the ventilator 3 in the optimal ventilation schedule is medium, it is corrected to be weak.
  • the schedule correction unit 16 may compare the prediction error Xr ⁇ Xp with the plurality of CO 2 concentration allowable errors R set in the condition setting unit 11 and perform correction according to the comparison result.
  • the condition setting unit 11 is set with a first CO 2 concentration allowable error R1 and a second CO 2 concentration allowable error R2 (R1> R2), and the schedule correction unit 16 sets Xr ⁇ Xp> R1. Is corrected to increase the control command to the ventilator 3 in the optimal ventilation schedule by two steps, and when Xr ⁇ Xp ⁇ R2, the control command to the ventilator 3 in the optimal ventilation schedule is corrected to increase by one step. .
  • the subsequent change in the CO 2 concentration over time is corrected based on the predicted CO 2 concentration at the time of planning the optimal ventilation schedule, and at the time of the next schedule correction. It may be used as the predicted CO 2 concentration.
  • schedule correction unit 16 may perform the same correction when the air conditioning load is not predicted or when the outside air temperature is not predicted.
  • the optimal ventilation scheduling unit 12 has an outside air temperature prediction unit (not shown), and the measurement unit 41 has an outside air temperature measurement unit (not shown). These are used, for example, when the outside air temperature is not predicted.
  • the outside air temperature predicting unit predicts the outside air temperature of the next day based on information obtained from outside the system through the Internet or the like or data measured in the past by the outside air temperature measuring unit. Then, the outside air temperature prediction unit stores the prediction result in the storage unit 15 as the predicted outside air temperature.
  • the outside air temperature measurement unit acquires the outside air temperature obtained from the weather forecast service or the like from the Internet, and stores it in the storage unit 15 as it is.
  • the schedule correction unit 16 corrects the ventilation schedule based on the prediction error of the outside temperature, that is, the difference between the predicted outside temperature of the previous day and the actually measured outside temperature of the day. For example, the schedule correction unit 16 increases the ventilation amount by one step when the measured outside air temperature is 1 ° C. or more lower than the predicted outside air temperature during the cooling operation. Further, for example, the schedule correction unit 16 increases the ventilation amount by one step when the measured outside air temperature is 1 ° C. or more higher than the predicted outside air temperature during the heating operation. Thereby, further energy saving can be realized.
  • the temperature threshold value is 1 ° C. and the increase amount of the ventilation amount is one stage is illustrated in the above, it is not limited thereto.
  • the schedule corrector 16 together with the correction by the prediction error of the CO 2 concentration also performs correction to reduce the ventilation.
  • the schedule correction unit 16 performs correction to reduce the ventilation amount within a range in which an increase in the CO 2 concentration in which standards such as laws and regulations exist is allowed.
  • Schedule correction unit 16 similarly to the correction by the prediction error of the CO 2 concentration, according to the result of the scheduling correction, the time variation of the subsequent CO 2 concentration, the correction based on the predicted CO 2 concentration at the time of optimal ventilation schedule planning Then, it may be used as the predicted CO 2 concentration at the next schedule correction.
  • amendment part 16 may acquire the newest predicted outside temperature from the internet etc. regularly, and you may make it perform the schedule correction
  • the optimal ventilation schedule is corrected by an amount that is out of prediction when the control is executed. Therefore, the energy saving performance as the whole air conditioning equipment is further improved. In addition, energy saving performance over a long period such as one day is further improved.
  • Air-conditioning equipment control system 1a Air-conditioning controller, 1b Air-conditioning control computer, 1c Device connection controller, 1n, 1o network, 2 Air-conditioning machine, 2a Heat source machine, 2b Indoor unit, 3 Ventilation device, 3a fan, 3b Heat exchange unit 3c heat source unit, 3d heat exchanger, 3e humidifier, 3f dehumidifier, 3g heater, 11 condition setting unit, 12 optimum ventilation scheduling unit, 13 input / output unit, 14 measurement control unit, 15 storage unit, 16 schedule correction unit , 21 initial solution generation unit, 22 adjacent ventilation schedule generation unit, 23 CO 2 concentration prediction unit, 24 air conditioning load prediction unit, 25 adjacent ventilation schedule evaluation unit, 26 optimum ventilation schedule candidate update unit, 27 end determination unit, 31 input unit 32 display unit 41 measurement unit 42 control unit 51 continuous optimization unit 52 continuous optimal ventilation schedule Discretization unit, 100 air conditioning system.

Abstract

An air-conditioning system (100) that is provided with: air-conditioning equipment that has an air conditioner (2) and a ventilation device (3); and an air-conditioning equipment control system (1) that controls the operations of the air-conditioning equipment. The air-conditioning equipment control system (1) generates a plurality of candidate schedules wherein CO2 concentration is maintained so as not to exceed a standard value over at least one period of a planned target period, and, from among the plurality of candidate schedules, uses as a schedule for the ventilation operations of the ventilation device (3) the candidate schedule wherein the power consumption or the electricity charges for the air-conditioning equipment when the temperature of a room is maintained within a standard temperature range is relatively small.

Description

空調システム、及び、空調設備の制御方法Air conditioning system and control method for air conditioning equipment
 本発明は、空調システムと、空調設備の制御方法と、に関するものである。 The present invention relates to an air conditioning system and a method for controlling an air conditioning facility.
 従来の空調システムとして、空調機と、換気装置と、を有する空調設備と、空調設備の動作を制御する空調設備制御システムと、を備えたものがある。そのような空調システムでは、例えば、室内のCO濃度が計測され、その計測値が基準値以下になるように、外気が室内に供給される(例えば、特許文献1を参照。)。また、そのような空調システムでは、例えば、外気温と室内の温度とが計測され、それらの計測値と空調機の設定温度とに応じて、外気が室内に供給される(例えば、特許文献2を参照。)。また、そのような空調システムでは、例えば、室内の温度と快適温度域の中間温度とを比較した結果に応じて、外気が室内に供給される(例えば、特許文献3を参照。)。また、そのような空調システムでは、例えば、外気温と室内の温度とを比較した結果に応じて、室内に供給される外気の量、つまり換気量が決定される(例えば、特許文献4を参照。)。 As a conventional air conditioning system, there is one that includes an air conditioning facility having an air conditioner and a ventilation device, and an air conditioning facility control system that controls the operation of the air conditioning facility. In such an air conditioning system, for example, the indoor CO 2 concentration is measured, and outside air is supplied indoors so that the measured value is equal to or less than a reference value (see, for example, Patent Document 1). In such an air conditioning system, for example, the outside air temperature and the room temperature are measured, and the outside air is supplied to the room according to the measured values and the set temperature of the air conditioner (for example, Patent Document 2). See). In such an air conditioning system, for example, outside air is supplied into the room according to the result of comparing the room temperature and the intermediate temperature in the comfortable temperature range (see, for example, Patent Document 3). In such an air conditioning system, for example, the amount of outside air supplied to the room, that is, the ventilation amount is determined according to the result of comparing the outside air temperature and the room temperature (see, for example, Patent Document 4). .)
特開2010-71489号公報(段落[0012]~段落[0042])JP 2010-71489 A (paragraph [0012] to paragraph [0042]) 特許第3028065号公報(段落[0031]~段落[0048])Japanese Patent No. 3028065 (paragraph [0031] to paragraph [0048]) 国際公開第2010/016100号(段落[0021]~段落[0042])International Publication No. 2010/016100 (paragraph [0021] to paragraph [0042]) 特開2005-147563号公報(段落[0033]~段落[0073])JP 2005-147563 A (paragraph [0033] to paragraph [0073])
 従来の空調システム(特許文献1~特許文献4)では、空調設備の省エネ化を図りつつCO濃度を基準値以下にすることと、空調設備の省エネ化を図るべく外気冷暖房を行うことと、の両立が困難である。つまり、空調設備の省エネ化を図りつつCO濃度を基準値以下にするためには、換気が抑制される必要があり、一方、空調設備の省エネ化を図るべく外気冷暖房を行うためには、換気が促進される必要があるため、それらを両立することが困難である。そのため、空調設備全体としての省エネ性が不十分であるという問題点があった。 In the conventional air conditioning system (Patent Literature 1 to Patent Literature 4), the CO 2 concentration is reduced to a reference value or less while achieving energy saving of the air conditioning equipment, and the outside air cooling / heating is performed in order to save energy of the air conditioning equipment, It is difficult to achieve both. In other words, in order to reduce the CO 2 concentration below the reference value while saving energy in the air conditioning equipment, it is necessary to suppress ventilation. On the other hand, in order to perform outdoor air cooling and heating in order to save energy in the air conditioning equipment, Since ventilation needs to be promoted, it is difficult to balance them. For this reason, there is a problem that the energy saving performance of the air conditioning equipment as a whole is insufficient.
また、従来の空調システムでは、換気量が制御の時点で決定される、つまり、その時点における省エネ化が図られるものであるため、例えば1日間等の長い期間での省エネ性が不十分であるという問題点があった。 Further, in the conventional air conditioning system, the ventilation amount is determined at the time of control, that is, energy saving at that time is achieved, so that the energy saving performance in a long period such as one day is insufficient. There was a problem.
 本発明は、上記のような課題を背景としてなされたものであり、空調設備全体としての省エネ性が向上された空調システムを得るものである。また、例えば1日間等の長い期間での省エネ性が向上された空調システムを得るものである。また、そのような空調システムに用いられる空調設備の制御方法を得るものである。 The present invention has been made against the background of the above problems, and provides an air conditioning system with improved energy saving performance as an entire air conditioning facility. Further, an air conditioning system with improved energy saving performance over a long period such as one day is obtained. Moreover, the control method of the air conditioning equipment used for such an air conditioning system is obtained.
 本発明に係る空調システムは、空調機と、換気装置と、を有する空調設備と、空調設備の動作を制御する空調設備制御システムと、を備え、空調設備制御システムは、計画対象期間における室内のCO濃度を予測するCO濃度予測部と、計画対象期間における空調機の負荷を予測する空調負荷予測部と、計画対象期間における換気装置の換気動作のスケジュールを生成する換気スケジューリング部と、計画対象期間に、スケジュールに基づいて換気装置の換気動作を制御する制御部と、を有し、換気スケジューリング部は、CO濃度予測部で予測されるCO濃度が計画対象期間の少なくとも一部の期間に亘って基準値を超えない状態に維持される、複数のスケジュール候補を生成し、複数のスケジュール候補の中から、室内の温度が基準の温度範囲内に維持されるときの空調設備の消費電力量又は電気料金が相対的に小さいスケジュール候補を、スケジュールとして採用するものである。 An air conditioning system according to the present invention includes an air conditioner having an air conditioner and a ventilator, and an air conditioner control system that controls the operation of the air conditioner. and the CO 2 concentration predicting section for predicting the CO 2 concentration, and the air conditioning load prediction unit for predicting a load of the air conditioner in the time horizon, and ventilation scheduling section that generates a schedule for ventilation operation of the ventilator in the time horizon, planning the period, and a control unit for controlling the ventilation operation of the ventilator based on the schedule, the ventilation scheduling unit, the CO 2 concentration expected in the CO 2 concentration prediction unit of the time horizon of at least a portion A plurality of schedule candidates that are maintained in a state not exceeding the reference value over a period of time are generated, and the room temperature is selected from the plurality of schedule candidates. A schedule candidate that uses a relatively small amount of power consumption or electricity charge of the air-conditioning equipment when is maintained within the reference temperature range is adopted as the schedule.
 本発明に係る空調システムでは、換気スケジューリング部が、CO濃度が計画対象期間の少なくとも一部の期間に亘って基準値を超えない状態に維持される、複数のスケジュール候補を生成し、複数のスケジュール候補の中から、室内の温度が基準の温度範囲内に維持されるときの空調設備の消費電力量又は電気料金が相対的に小さいスケジュール候補を、換気装置の換気動作のスケジュールとして採用する。そのため、空調設備の省エネ化を図りつつCO濃度を基準値以下にすることと、空調設備の省エネ化を図るべく外気冷暖房を行うことと、が両立されて、空調設備全体としての省エネ性が向上される。また、例えば1日間等の長い期間での省エネ性が向上される。 In the air conditioning system according to the present invention, the ventilation scheduling unit generates a plurality of schedule candidates in which the CO 2 concentration is maintained in a state that does not exceed the reference value over at least a part of the planning target period, Among the schedule candidates, a schedule candidate having a relatively small power consumption or electricity rate of the air conditioning equipment when the room temperature is maintained within the reference temperature range is adopted as a schedule of the ventilation operation of the ventilator. Therefore, the method comprising the following reference value of CO 2 concentration while reducing the energy efficiency of the air conditioning equipment, and carrying out the outside air cooling and heating to achieve energy-saving air conditioning, is both energy saving of the whole air-conditioning equipment Be improved. In addition, energy saving performance for a long period such as one day is improved.
本発明の実施の形態1に係る空調システムの一例の、全体の構成図である。1 is an overall configuration diagram of an example of an air conditioning system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空調システムの一例の、全体の構成図である。1 is an overall configuration diagram of an example of an air conditioning system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空調システムの、空調設備制御システムの機能ブロック図である。It is a functional block diagram of the air-conditioning equipment control system of the air-conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調システムの、最適換気スケジューリング部の機能ブロック図である。It is a functional block diagram of the optimal ventilation scheduling part of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調システムの変形例の、全体の構成図である。It is the whole block diagram of the modification of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空調システムの、最適換気スケジューリング部の機能ブロック図である。It is a functional block diagram of the optimal ventilation scheduling part of the air conditioning system which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空調システムの、空調設備制御システムの機能ブロック図である。It is a functional block diagram of the air-conditioning equipment control system of the air-conditioning system which concerns on Embodiment 3 of this invention. 本発明の実施の形態1における夏期の換気スケジュールを示すグラフである。It is a graph which shows the ventilation schedule of the summer in Embodiment 1 of this invention. 本発明の実施の形態1における夏期の消費電力を示すグラフである。It is a graph which shows the power consumption of the summer in Embodiment 1 of this invention. 本発明の実施の形態1における中間期の換気スケジュールを示すグラフである。It is a graph which shows the ventilation schedule of the intermediate period in Embodiment 1 of this invention. 本発明の実施の形態1における中間期の消費電力を示すグラフである。It is a graph which shows the power consumption of the interim period in Embodiment 1 of this invention. 本発明の実施の形態1における冬期の換気スケジュールを示すグラフである。It is a graph which shows the ventilation schedule of the winter season in Embodiment 1 of this invention. 本発明の実施の形態1における冬期の消費電力を示すグラフである。It is a graph which shows the power consumption of the winter season in Embodiment 1 of this invention. 本発明の実施の形態1における条件設定部11の実行条件を示す模式図である。It is a schematic diagram which shows the execution conditions of the condition setting part 11 in Embodiment 1 of this invention. 本発明の実施の形態1における隣接換気スケジュールを示すグラフである。It is a graph which shows the adjacent ventilation schedule in Embodiment 1 of this invention.
 以下、本発明に係る空調システムについて、図面を用いて説明する。
 なお、以下で説明する構成、動作等は、一例であり、本発明に係る空調システムは、そのような構成、動作等である場合に限定されない。また、各図において、適宜図示を簡略化又は省略している。また、重複する説明については、適宜簡略化又は省略している。
Hereinafter, an air conditioning system according to the present invention will be described with reference to the drawings.
In addition, the structure, operation | movement, etc. which are demonstrated below are examples, and the air conditioning system which concerns on this invention is not limited to the case where it is such a structure, operation | movement, etc. In each drawing, illustration is simplified or omitted as appropriate. In addition, overlapping descriptions are simplified or omitted as appropriate.
実施の形態1.
 以下に、実施の形態1に係る空調システムを説明する。
<全体構成>
 まず、図1及び図2を用いて、空調システム100の全体構成を説明する。
 図1及び図2は、本発明の実施の形態1に係る空調システムの一例の、全体の構成図である。
Embodiment 1 FIG.
The air conditioning system according to Embodiment 1 will be described below.
<Overall configuration>
First, the whole structure of the air conditioning system 100 is demonstrated using FIG.1 and FIG.2.
FIG.1 and FIG.2 is a whole block diagram of an example of the air conditioning system which concerns on Embodiment 1 of this invention.
 図1に示されるように、空調システム100は、空調設備制御システム1と、空調機2と、換気装置3と、を備える。空調設備制御システム1は、空調コントローラ1aと、ネットワーク1nと、を有する。空調コントローラ1aと、空調機2と、換気装置3と、は、ネットワーク1nを介して接続され、空調コントローラ1aは、空調機2と換気装置3とを制御する。図1では、空調コントローラ1aと、空調機2と、換気装置3と、が、それぞれ1台である場合を示しているが、各々が複数台であってもよい。 As shown in FIG. 1, the air conditioning system 100 includes an air conditioning equipment control system 1, an air conditioner 2, and a ventilator 3. The air conditioning equipment control system 1 includes an air conditioning controller 1a and a network 1n. The air conditioning controller 1a, the air conditioner 2, and the ventilator 3 are connected via the network 1n, and the air conditioner controller 1a controls the air conditioner 2 and the ventilator 3. Although FIG. 1 shows a case where the air conditioning controller 1a, the air conditioner 2, and the ventilation device 3 are each one, a plurality of each may be provided.
 ネットワーク1nは、ケーブルの種類、プロトコル等に応じた、複数の種類のネットワークが混在した状態で、各機器を接続する。例えば、ネットワーク1nに、空調設備(空調機2、換気装置3)を計測制御するための専用ネットワーク、LAN、空調設備(空調機2、換気装置3)の各々で異なる個別専用線、等が混在していてもよい。 The network 1n connects devices in a state where a plurality of types of networks are mixed according to the type of cable, protocol, and the like. For example, the network 1n includes a dedicated network for measuring and controlling air conditioning equipment (air conditioner 2 and ventilator 3), LAN, and individual dedicated lines that are different for each of the air conditioning equipment (air conditioner 2 and ventilator 3). You may do it.
 空調機2は、熱源機2aと、室内機2bと、を有する。熱源機2aは、冷媒、水等の熱媒体を冷却又は加熱する。室内機2bは、熱媒体と室内の空気との間で熱交換を行って、室内の温度を調整する。空調機2の代表例は、ビル用マルチエアコンである。ビル用マルチエアコンでは、1台の熱源機2aに複数台の室内機2bが接続される。 The air conditioner 2 has a heat source unit 2a and an indoor unit 2b. The heat source device 2a cools or heats a heat medium such as a refrigerant and water. The indoor unit 2b performs heat exchange between the heat medium and indoor air to adjust the indoor temperature. A typical example of the air conditioner 2 is a multi air conditioner for buildings. In a building multi-air conditioner, a plurality of indoor units 2b are connected to one heat source unit 2a.
 換気装置3は、ファン3aと、熱交換ユニット3bと、を有する。換気装置3は、建物外の空気を室内に取り入れるとともに、室内の空気を建物外に排出する機能を有する。ファン3aは、そのための空気の流れを生成するための機器である。通常、建物外の空気を室内に取り入れるためのファンと、室内の空気を建物外に排出するファンと、が別個である。熱交換ユニット3bは、建物外から取り入れる空気と、室内から建物外に排出する空気と、の間で熱交換を行うための機器である。例えば、建物外の空気の温度及び室内の空気の温度等に応じて、熱交換ユニット3bを経由せずにバイパスすることが可能な構成であってもよい。なお、温度に限らず、湿度又はエンタルピー等に応じて、熱交換ユニット3bを経由せずにバイパスするように構成されてもよい。また、換気装置3は、熱交換ユニット3bを有しない構成であってもよい。 The ventilation device 3 includes a fan 3a and a heat exchange unit 3b. The ventilation device 3 has a function of taking air outside the building into the room and discharging the air outside the building. The fan 3a is a device for generating an air flow for that purpose. Usually, a fan for taking air outside the building into the room and a fan for discharging indoor air outside the building are separate. The heat exchange unit 3b is a device for exchanging heat between air taken in from outside the building and air discharged from the room to the outside of the building. For example, the structure which can be bypassed without passing through the heat exchange unit 3b according to the temperature of the air outside a building, the temperature of indoor air, etc. may be sufficient. In addition, you may comprise so that it may bypass without passing through the heat exchange unit 3b according to humidity, enthalpy, etc. not only in temperature. The ventilator 3 may be configured not to include the heat exchange unit 3b.
 図2に示されるように、空調設備制御システム1は、ネットワーク1oを介して接続された、空調コントローラ1aと、空調制御用計算機1bと、を有していてもよい。また、空調コントローラ1aと、空調機2と換気装置3とのうちの一方又は両方と、が、機器接続用コントローラ1cを介して接続されていてもよい。ネットワーク1oは、例えば、LAN、電話回線等である。空調制御用計算機1bは、空調対象である建物の内部に設置されてもよく、また、敷地内又は遠隔地で複数の建物を管理する管理センター等に設置されてもよい。 As shown in FIG. 2, the air conditioning equipment control system 1 may include an air conditioning controller 1a and an air conditioning control computer 1b connected via a network 1o. Moreover, one or both of the air conditioning controller 1a and the air conditioner 2 and the ventilation device 3 may be connected via the device connection controller 1c. The network 1o is, for example, a LAN or a telephone line. The air-conditioning control computer 1b may be installed inside a building to be air-conditioned, or may be installed in a management center or the like that manages a plurality of buildings within a site or in a remote place.
<空調設備制御システム1の構成及び機能>
 次に、図3を用いて、空調設備制御システム1の構成及び機能を説明する。
 図3は、本発明の実施の形態1に係る空調システムの、空調設備制御システムの機能ブロック図である。
<Configuration and function of air conditioning equipment control system 1>
Next, the configuration and function of the air conditioning equipment control system 1 will be described with reference to FIG.
FIG. 3 is a functional block diagram of the air conditioning equipment control system of the air conditioning system according to Embodiment 1 of the present invention.
 空調設備制御システム1は、条件設定部11と、最適換気スケジューリング部12と、入出力部13と、計測制御部14と、記憶部15と、を有する。空調システム100が、図1に示されるような構成である場合には、各部の機能が、空調コントローラ1aによって担われる。また、空調システム100が、図2に示されるような構成である場合には、各部の機能が、空調コントローラ1aと空調制御用計算機1bとによって担われる。 The air conditioning equipment control system 1 includes a condition setting unit 11, an optimal ventilation scheduling unit 12, an input / output unit 13, a measurement control unit 14, and a storage unit 15. When the air conditioning system 100 is configured as shown in FIG. 1, the functions of the respective units are performed by the air conditioning controller 1a. When the air conditioning system 100 is configured as shown in FIG. 2, the functions of the respective units are carried by the air conditioning controller 1a and the air conditioning control computer 1b.
 条件設定部11は、最適な換気スケジュールを生成するための実行条件を設定する機能を有する。設定される具体的な実行条件は、例えば、最適な換気スケジュールを求める計画対象期間、CO濃度の上限値、CO濃度に上限値を設ける時間帯、室温を設定温度に制御する時間帯、外気冷暖房を行うか否かを判定するための基準温度、最適化の終了判定条件等である。空調設備制御システム1は、演算を行うためのプロセッサを有し、条件設定部11の機能は、そのプロセッサによって実現される。 The condition setting unit 11 has a function of setting an execution condition for generating an optimal ventilation schedule. Specific execution conditions to be set, for example, best plan period for obtaining the ventilation schedule, the upper limit value of the CO 2 concentration, time zone providing an upper limit to the CO 2 concentration, the time period for controlling the room temperature to the set temperature, These are a reference temperature for determining whether or not to perform outdoor air cooling and heating, an optimization end determination condition, and the like. The air conditioning equipment control system 1 has a processor for performing calculations, and the function of the condition setting unit 11 is realized by the processor.
 次に、図11を用いて、条件設定部11によって設定された実行条件について説明する。図11は、本発明の実施の形態1における条件設定部11の実行条件を示す模式図である。図11に示すように、換気スケジュールを求める計画対象期間は、例えば0時~24時の24時間である。また、CO濃度に上限値を設ける時間帯は、執務者が出社するより少し前の6時から、執務者が退社する22時までである。更に、室温を設定温度に制御する時間帯は、執務者が出社する7時から、執務者が退社する22時までである。なお、上記の実行条件は一例であり、実際の執務者の勤務状況に応じて、例えば、実行条件は、平日,土曜日,日曜日,祝日,週1回の定時退社日等を考慮して、設定されればよい。 Next, the execution conditions set by the condition setting unit 11 will be described with reference to FIG. FIG. 11 is a schematic diagram illustrating execution conditions of the condition setting unit 11 according to Embodiment 1 of the present invention. As shown in FIG. 11, the planning target period for obtaining the ventilation schedule is, for example, 24 hours from 0:00 to 24:00. Further, the time period for setting the upper limit value for the CO 2 concentration is from 6 o'clock just before the office worker leaves the office to 22:00 when the office worker leaves the office. Furthermore, the time period during which the room temperature is controlled to the set temperature is from 7 o'clock when the office worker leaves the office until 22:00 when the office worker leaves the office. Note that the above execution conditions are only examples, and the execution conditions are set in consideration of the working status of the actual office worker, taking into account, for example, weekdays, Saturdays, Sundays, public holidays, and once-a-week scheduled leave dates. It only has to be done.
 CO濃度の上限値は、例えば法令等によって定められる基準値である1000ppm等である。また、設定温度は、執務環境を快適に維持するために、ビル管理者又は執務者等が設定する温度である。夏期の設定温度は、例えば冷房運転時の27℃等であり、冬期の設定温度は、例えば暖房運転時の20℃等である。このように、設定温度は、対象のビル等の夫々において、空調の運用方針等に応じて設定される条件であり、本発明において、設定温度は、省エネを実現するために設定が変更されない。また、設定温度は、CO濃度の変化とは独立するものであり、設定温度とCO濃度との間に相関性はない。 The upper limit value of the CO 2 concentration is, for example, 1000 ppm, which is a reference value determined by laws and regulations. The set temperature is a temperature set by a building manager or office worker to maintain a comfortable office environment. The set temperature in summer is, for example, 27 ° C. during cooling operation, and the set temperature in winter is, for example, 20 ° C. during heating operation. As described above, the set temperature is a condition that is set in accordance with an air conditioning operation policy or the like in each of the target buildings. In the present invention, the set temperature is not changed in order to realize energy saving. The setting temperature is for independent of the change in CO 2 concentration, is not correlation between the set temperature and the CO 2 concentration.
 最適換気スケジューリング部12は、条件設定部11で設定された条件に従って、計画対象期間の評価関数値を削減するような換気スケジュールを生成する機能を有する。最適換気スケジューリング部12は、初期解生成部21と、隣接換気スケジュール生成部22と、CO濃度予測部23と、空調負荷予測部24と、隣接換気スケジュール評価部25と、最適換気スケジュール候補更新部26と、終了判定部27と、を有する。空調設備制御システム1は、演算を行うためのプロセッサを有し、各部の機能は、そのプロセッサによって実現される。最適換気スケジューリング部12の各部の機能は、後に詳述される。初期解生成部21と、隣接換気スケジュール生成部22と、隣接換気スケジュール評価部25と、最適換気スケジュール候補更新部26と、は、それぞれ、本発明における「換気スケジュール生成部」の一部に相当する。 The optimum ventilation scheduling unit 12 has a function of generating a ventilation schedule that reduces the evaluation function value in the planning target period according to the conditions set by the condition setting unit 11. The optimal ventilation scheduling unit 12 includes an initial solution generation unit 21, an adjacent ventilation schedule generation unit 22, a CO 2 concentration prediction unit 23, an air conditioning load prediction unit 24, an adjacent ventilation schedule evaluation unit 25, and an optimal ventilation schedule candidate update. Unit 26 and end determination unit 27. The air conditioning equipment control system 1 has a processor for performing calculations, and the functions of the respective units are realized by the processor. The function of each part of the optimal ventilation scheduling part 12 will be described in detail later. The initial solution generation unit 21, the adjacent ventilation schedule generation unit 22, the adjacent ventilation schedule evaluation unit 25, and the optimum ventilation schedule candidate update unit 26 each correspond to a part of the “ventilation schedule generation unit” in the present invention. To do.
 入出力部13は、管理者等のユーザによって行われた入力を受け入れて、記憶部15に情報を書き込み、記憶部15に保存されている情報を読み出して、ユーザに表示する機能を有する。入出力部13が記憶部15に書き込む情報は、例えば、空調システム100の管理情報、条件設定部11に出力される最適化の実行条件等である。入出力部13が記憶部15から読み出す情報は、例えば、入力結果、最適化された換気スケジュール、空調機2と換気装置3との運転状態等である。入出力部13は、例えば、キーボード、マウス、タッチパネル、スイッチ等の入力部31と、ディスプレイ等の表示部32と、を有する。 The input / output unit 13 has a function of accepting an input made by a user such as an administrator, writing information in the storage unit 15, reading out information stored in the storage unit 15, and displaying the information to the user. The information that the input / output unit 13 writes in the storage unit 15 includes, for example, management information of the air conditioning system 100, an optimization execution condition output to the condition setting unit 11, and the like. The information that the input / output unit 13 reads from the storage unit 15 includes, for example, an input result, an optimized ventilation schedule, an operating state of the air conditioner 2 and the ventilation device 3, and the like. The input / output unit 13 includes, for example, an input unit 31 such as a keyboard, a mouse, a touch panel, and a switch, and a display unit 32 such as a display.
 計測制御部14は、空調機2と換気装置3とから運転データを収集して、記憶部15に書き込む計測部41と、空調機2と換気装置3とのうちの一方又は両方への制御指令を記憶部15から読み出して、送信する制御部42と、を有する。空調システム100が、温度センサ、湿度センサ、CO濃度センサ等の各種センサを有し、計測部41が、それらのセンサにおける計測データを収集して、記憶部15に書き込んでもよい。 The measurement control unit 14 collects operation data from the air conditioner 2 and the ventilator 3 and writes control data to the storage unit 15 and a control command to one or both of the air conditioner 2 and the ventilator 3. Is read out from the storage unit 15 and transmitted. The air conditioning system 100 may include various sensors such as a temperature sensor, a humidity sensor, and a CO 2 concentration sensor, and the measurement unit 41 may collect measurement data from these sensors and write it in the storage unit 15.
 記憶部15は、条件設定部11と、最適換気スケジューリング部12と、入出力部13と、計測制御部14と、によって参照される情報を記憶する機能を有する。空調設備制御システム1は、メモリ、ハードディスク等の記憶装置を有し、記憶部15の機能は、その記憶装置によって実現される。 The storage unit 15 has a function of storing information referred to by the condition setting unit 11, the optimal ventilation scheduling unit 12, the input / output unit 13, and the measurement control unit 14. The air conditioning equipment control system 1 includes a storage device such as a memory and a hard disk, and the function of the storage unit 15 is realized by the storage device.
<最適換気スケジューリング部12の各部の機能>
 次に、図4を用いて、最適換気スケジューリング部12の各部の機能を説明する。
 図4は、本発明の実施の形態1に係る空調システムの、最適換気スケジューリング部の機能ブロック図である。
 まず、最適換気スケジューリング部12の各部の機能の概要を説明する。
<Function of each part of optimal ventilation scheduling part 12>
Next, the function of each part of the optimal ventilation scheduling part 12 is demonstrated using FIG.
FIG. 4 is a functional block diagram of the optimum ventilation scheduling unit of the air conditioning system according to Embodiment 1 of the present invention.
First, an outline of the function of each part of the optimum ventilation scheduling unit 12 will be described.
 初期解生成部21は、最適換気スケジュール候補の初期解を生成し、その初期解の評価関数値を計算する機能を有する。 The initial solution generation unit 21 has a function of generating an initial solution of the optimal ventilation schedule candidate and calculating an evaluation function value of the initial solution.
 隣接換気スケジュール生成部22は、最適換気スケジュール候補のスケジュールの一部を変更した隣接換気スケジュールを生成する機能を有する。 The adjacent ventilation schedule generation unit 22 has a function of generating an adjacent ventilation schedule in which a part of the schedule of the optimal ventilation schedule candidate is changed.
 CO濃度予測部23は、隣接換気スケジュールに従って換気を行った場合の、計画対象期間におけるCO濃度の時間変化を予測する機能を有する。 The CO 2 concentration prediction unit 23 has a function of predicting a temporal change in the CO 2 concentration in the planning target period when ventilation is performed according to the adjacent ventilation schedule.
 空調負荷予測部24は、隣接換気スケジュールに従って換気を行った場合の、計画対象期間における空調負荷の時間変化を予測する機能を有する。ここで、空調負荷とは、室内を、基準の温度、例えば冷房運転時の27℃等に維持するために、空調機2が処理する熱量のことをいう。なお、空調負荷には、換気によって発生する処理熱量も含まれる。 The air conditioning load predicting unit 24 has a function of predicting the time change of the air conditioning load in the planning target period when ventilation is performed according to the adjacent ventilation schedule. Here, the air conditioning load refers to the amount of heat processed by the air conditioner 2 in order to maintain the room at a reference temperature, for example, 27 ° C. during cooling operation. The air conditioning load includes the amount of heat generated by ventilation.
 隣接換気スケジュール評価部25は、CO濃度予測部23で予測されたCO濃度及び室内の温度が、条件設定部11で設定された制約条件を満たすか否かを判定するとともに、隣接換気スケジュールの評価関数値を計算する機能を有する。 Adjacent ventilation schedule evaluation unit 25, CO 2 concentration and temperature of the chamber which is predicted by the CO 2 concentration prediction unit 23, thereby determining whether or not the setting constraint condition is satisfied by the condition setting unit 11, the adjacent ventilation schedule It has a function of calculating the evaluation function value.
 最適換気スケジュール候補更新部26は、最適換気スケジュール候補の評価関数値と、隣接換気スケジュールの評価関数値と、を比較して、最適換気スケジュール候補を隣接換気スケジュールに更新するか否かを判定し、その判定結果に応じて最適換気スケジュール候補を更新する機能を有する。 The optimal ventilation schedule candidate update unit 26 compares the evaluation function value of the optimal ventilation schedule candidate with the evaluation function value of the adjacent ventilation schedule, and determines whether or not to update the optimal ventilation schedule candidate to the adjacent ventilation schedule. In addition, it has a function of updating the optimal ventilation schedule candidate according to the determination result.
 終了判定部27は、換気スケジュールの最適化を終了するか否かを判定する機能を有する。 The end determination unit 27 has a function of determining whether or not to end the optimization of the ventilation schedule.
 次に、最適換気スケジューリング部12の各部の機能の詳細を説明する。
 なお、以下では、最適換気スケジューリング部12で行われる換気スケジュールの最適化が、1日1回の頻度で、且つ、前日に実行され、計画対象期間が、翌日の24時間であり、時間刻みが、30分である場合を説明している。つまり、例えば、最適換気スケジューリング部12は、翌日の0:00~0:30、0:30~1:00、1:00~1:30、・・・、23:30~24:00における、換気装置3への制御指令、つまり、換気スケジュールを、毎日22:00に決定する。換気装置3が複数台存在するときは、最適換気スケジューリング部12は、各々に対する制御指令を決定する。空調システム100は、換気スケジュールの最適化が、1日1回の頻度で、且つ、前日に実行され、計画対象期間が、翌日の24時間であり、時間刻みが、30分である場合に限定されない。例えば、換気スケジュールの最適化が、1時間に1回の頻度で実行され、計画対象期間が、直後の2時間であり、時間刻みが15分であるように構成されてもよい。
Next, the detail of the function of each part of the optimal ventilation scheduling part 12 is demonstrated.
In the following, the optimization of the ventilation schedule performed by the optimal ventilation scheduling unit 12 is executed at the frequency of once a day and on the previous day, the planning target period is 24 hours on the next day, and the time increment is , 30 minutes is explained. That is, for example, the optimal ventilation scheduling unit 12 performs the following day at 0:00 to 0:30, 0:30 to 1: 0, 10:00 to 1:30, ..., 23:30 to 24:00. The control command to the ventilator 3, that is, the ventilation schedule is determined at 22:00 every day. When there are a plurality of ventilation devices 3, the optimal ventilation scheduling unit 12 determines a control command for each. The air conditioning system 100 is limited to the case where the optimization of the ventilation schedule is executed once a day and on the previous day, the planning target period is 24 hours the next day, and the time increment is 30 minutes. Not. For example, the optimization of the ventilation schedule may be performed at a frequency of once per hour, the planning target period may be the next two hours, and the time increment may be 15 minutes.
 また、以下では、換気装置3への制御指令が、4段階(強、中、弱、停止)の離散的な値である場合について説明している。換気装置3への制御指令は、4段階の離散的な値である場合に限定されず、換気装置3の種類に応じた4段階以外の離散的な値、例えば、10段階の離散的な値、又はONとOFFとの2段階の離散的な値等であってもよい。 In the following, a case where the control command to the ventilator 3 is a discrete value in four stages (strong, medium, weak, stop) is described. The control command to the ventilator 3 is not limited to the case of four levels of discrete values, but is a discrete value other than the four levels according to the type of the ventilator 3, for example, 10 levels of discrete values. Alternatively, it may be a discrete value of two stages of ON and OFF.
(初期解生成部21)
 初期解生成部21は、最適化の実行条件を記憶部15から読み出し、初期解を生成する演算をプロセッサで実行し、生成した初期解を最適換気スケジュール候補として記憶部15に記憶させる。
(Initial solution generator 21)
The initial solution generation unit 21 reads out the optimization execution condition from the storage unit 15, executes a calculation for generating the initial solution by the processor, and stores the generated initial solution in the storage unit 15 as the optimal ventilation schedule candidate.
 初期解の例として、入出力部13で管理者等のユーザが設定したデフォルトの換気スケジュール、前日に計算した結果の最適換気スケジュール、当日または過去に実際に用いられた換気スケジュール、過去1週間等の所定の期間または所定の期間のうちの平日に実際に用いられた換気スケジュールの平均、1週間前等の同一曜日を対象に計算した最適換気スケジュール、1週間前等の同一曜日に実際に用いられた換気スケジュール、計画対象期間は常時強とする換気スケジュール等が挙げられる。 Examples of the initial solution include a default ventilation schedule set by a user such as an administrator in the input / output unit 13, an optimal ventilation schedule calculated on the previous day, a ventilation schedule actually used on the current day or in the past, the past week, etc. The average of the ventilation schedule actually used on the weekday of the predetermined period of the specified period or the optimal ventilation schedule calculated for the same day of the week, etc. The ventilation schedule and the ventilation schedule that is always strong during the planning period are included.
(隣接換気スケジュール生成部22)
 隣接換気スケジュール生成部22は、最適化の実行条件と、最適換気スケジュール候補と、を記憶部15から読み出し、最適換気スケジュール候補のスケジュールの一部を変更した隣接換気スケジュールを生成する演算をプロセッサで実行し、生成した隣接換気スケジュールを記憶部15に記憶させる。隣接換気スケジュール生成部22は、30分刻みの換気装置3の強・中・弱・停止を、翌日の24時間分だけ求める。
(Adjacent ventilation schedule generator 22)
The adjacent ventilation schedule generation unit 22 reads out the optimization execution condition and the optimal ventilation schedule candidate from the storage unit 15, and performs an operation for generating an adjacent ventilation schedule by changing a part of the optimal ventilation schedule candidate schedule by the processor. Execute and store the generated adjacent ventilation schedule in the storage unit 15. The adjacent ventilation schedule generation part 22 calculates | requires the strong / medium / weak / stop of the ventilation apparatus 3 for every 30 minutes only for 24 hours on the following day.
 隣接換気スケジュールは、例えば、最適換気スケジュール候補における12:00~12:30での制御指令が弱である場合に、これを中に変更したものである。この例では、隣接換気スケジュールは、1つの時間帯における制御指令を1段階だけ変更したものであるが、複数の時間帯における制御指令を変更したものであってもよく、また、例えば、2段階、3段階等だけ変更したものであってもよい。 The adjacent ventilation schedule is, for example, a case where the control command at 12:00 to 12:30 in the optimum ventilation schedule candidate is weak and is changed to the inside. In this example, the adjacent ventilation schedule is obtained by changing the control command in one time zone by only one step, but may be changed by changing the control command in a plurality of time zones. It may be changed only in three stages.
 次に、図12を用いて、隣接換気スケジュールの生成について例示する。図12は、本発明の実施の形態1における隣接換気スケジュールを示すグラフである。図12において、最適換気スケジュール候補を破線で示し、隣接換気スケジュールを実線で示す。図12に示すように、(A),(B)の時間帯において、換気量が1段階増加されており、(C)の時間帯において、換気量が2段階減少されている。 Next, the generation of the adjacent ventilation schedule will be illustrated with reference to FIG. FIG. 12 is a graph showing the adjacent ventilation schedule in the first embodiment of the present invention. In FIG. 12, the optimal ventilation schedule candidate is indicated by a broken line, and the adjacent ventilation schedule is indicated by a solid line. As shown in FIG. 12, the ventilation volume is increased by one stage in the time zones (A) and (B), and the ventilation volume is decreased by two stages in the time zone (C).
 以下に、具体的な隣接換気スケジュールの生成方法の一例を説明する。なお、空調負荷の符号については、空調負荷がプラス値であるとき、空調機2が冷房を行い、空調負荷がマイナス値であるとき、空調機2が暖房を行う。これにより、室内の温度が、設定温度に保たれる。
 まず、冷房時の隣接換気スケジュールの生成方法のルールについて説明する。
 隣接換気スケジュール生成部22は、翌日の外気温を記憶部15から取得し、外気温が室温の設定温度と比較して高くなる時間帯では、換気量を減少させる隣接換気スケジュールを生成する。
Below, an example of the production | generation method of a specific adjacent ventilation schedule is demonstrated. As for the sign of the air conditioning load, the air conditioner 2 performs cooling when the air conditioning load is a positive value, and the air conditioner 2 performs heating when the air conditioning load is a negative value. As a result, the indoor temperature is maintained at the set temperature.
First, rules for a method for generating an adjacent ventilation schedule during cooling will be described.
The adjacent ventilation schedule generation unit 22 acquires the outside air temperature of the next day from the storage unit 15, and generates an adjacent ventilation schedule that reduces the ventilation amount in a time zone in which the outside air temperature is higher than the set temperature of the room temperature.
 一方、外気温が室温の設定温度と比較して低くなる時間帯では、外気冷房が可能である。そのため、現在の最適換気スケジュール候補におけるその時間帯において、空調負荷がプラス値である場合、つまり、空調機2が冷房している場合には、隣接換気スケジュール生成部22は、換気量を増加させる隣接換気スケジュールを生成する。逆に、現在の最適換気スケジュール候補におけるその時間帯の空調負荷が、マイナス値である場合、つまり、計算上、空調機2が暖房している場合には、隣接換気スケジュール生成部22は、換気量を減少させる隣接換気スケジュールを生成する。このように、隣接換気スケジュール生成部22が、空調負荷が加味された隣接換気スケジュールを生成するため、換気スケジュールが、過剰な換気を抑制しつつ適切な外気冷房を行うことができる換気スケジュールに、最適化されることとなる。 On the other hand, outside air cooling is possible in the time zone when the outside air temperature is lower than the set temperature of the room temperature. Therefore, when the air conditioning load is a positive value in the time zone of the current optimal ventilation schedule candidate, that is, when the air conditioner 2 is cooling, the adjacent ventilation schedule generation unit 22 increases the ventilation amount. Generate an adjacent ventilation schedule. On the other hand, when the air conditioning load in the current optimal ventilation schedule candidate is a negative value, that is, when the air conditioner 2 is heating in calculation, the adjacent ventilation schedule generation unit 22 performs ventilation. Create an adjacent ventilation schedule that reduces the amount. In this way, the adjacent ventilation schedule generation unit 22 generates the adjacent ventilation schedule in which the air conditioning load is taken into account, so that the ventilation schedule can perform appropriate outside air cooling while suppressing excessive ventilation. Will be optimized.
 次に、暖房時の隣接換気スケジュールの生成方法のルールについて説明する。
 隣接換気スケジュール生成部22は、翌日の外気温を記憶部15から取得し、外気温が室温の設定温度と比較して低くなる時間帯では、換気量を減少させる隣接換気スケジュールを生成する。
Next, the rule of the generation method of the adjacent ventilation schedule at the time of heating is demonstrated.
The adjacent ventilation schedule generation unit 22 acquires the outside air temperature of the next day from the storage unit 15, and generates an adjacent ventilation schedule for reducing the ventilation amount in a time zone in which the outside air temperature is lower than the set temperature of the room temperature.
 一方、外気温が室温の設定温度と比較して高くなる時間帯では、外気暖房が可能である。そのため、現在の最適換気スケジュール候補におけるその時間帯において、空調負荷がマイナス値である場合、つまり、空調機2が暖房している場合には、隣接換気スケジュール生成部22は、換気量を増加させる隣接換気スケジュールを生成する。逆に、現在の最適換気スケジュール候補におけるその時間帯の空調負荷が、プラス値である場合、つまり、計算上、空調機2が冷房している場合には、隣接換気スケジュール生成部22は、換気量を減少させる隣接換気スケジュールを生成する。このように、隣接換気スケジュール生成部22が、空調負荷が加味された隣接換気スケジュールを生成するため、換気スケジュールが、過剰な換気を抑制しつつ適切な外気暖房を行うことができる換気スケジュールに、最適化されることとなる。 On the other hand, outside air heating is possible in the time zone when the outside air temperature is higher than the set temperature of the room temperature. Therefore, when the air conditioning load is a negative value in the current optimum ventilation schedule candidate, that is, when the air conditioner 2 is heating, the adjacent ventilation schedule generation unit 22 increases the ventilation amount. Generate an adjacent ventilation schedule. On the other hand, when the air conditioning load in the current optimum ventilation schedule candidate is a positive value, that is, when the air conditioner 2 is cooling in the calculation, the adjacent ventilation schedule generation unit 22 performs ventilation. Create an adjacent ventilation schedule that reduces the amount. In this way, the adjacent ventilation schedule generation unit 22 generates the adjacent ventilation schedule in which the air conditioning load is taken into account, so the ventilation schedule can be appropriately ventilated while suppressing excessive ventilation. Will be optimized.
 そして、冷房時及び暖房時の両方において、条件設定部11で設定された、CO濃度に上限値を設ける時間帯以外では、CO濃度が上限値を超える状態又は上限値に近い状態であるにも関わらず、隣接換気スケジュール生成部22が、換気量を減少させる隣接換気スケジュールを生成するとよい。例えば、在室者がいない深夜等が、そのような時間帯に該当する。 Then, in both the cooling operation and the heating was set by the condition setting unit 11, at other times an upper limit value for the CO 2 concentration, CO 2 concentration is in a state close to the state or the upper limit value exceeds the upper limit value Nevertheless, the adjacent ventilation schedule generation unit 22 may generate an adjacent ventilation schedule that reduces the ventilation amount. For example, such a time zone corresponds to midnight when there is no occupant.
 また、隣接換気スケジュール生成部22が、条件設定部11で設定された空調時間帯のみ、上述のルールに基づいて隣接換気スケジュールを生成するとよい。更に、隣接換気スケジュール生成部22が、条件設定部11で設定された空調時間帯のうちの一部の時間帯においてのみ、上述のルールに基づいて隣接換気スケジュールを生成するとよい。その一部の時間帯は、空調負荷又はCO濃度に基づいて選択されるとよい。例えば、換気量を増加させる隣接換気スケジュールを生成する場合には、空調負荷が大きい時間帯が選択されるとよく、また、換気量を減少させる隣接換気スケジュールを生成する場合には、空調負荷が小さい時間帯が選択されるとよい。また、換気量を増加させる隣接換気スケジュールを生成する場合には、CO濃度が、条件設定部11で設定された上限値を超える状態又は上限値に近い状態になる時間帯が選択されるとよく、また、換気量を減少させる隣接換気スケジュールを生成する場合には、CO濃度が、条件設定部11で設定された上限値に遠い状態になる時間帯が選択されるとよい。それらの時間帯が、確率的な方法等によって選択されてもよい。 Moreover, it is good for the adjacent ventilation schedule production | generation part 22 to produce | generate an adjacent ventilation schedule only based on the above-mentioned rule only in the air-conditioning time zone set by the condition setting part 11. FIG. Further, the adjacent ventilation schedule generation unit 22 may generate the adjacent ventilation schedule based on the above-described rules only in a part of the air conditioning time zones set by the condition setting unit 11. The partial time zone may be selected based on the air conditioning load or the CO 2 concentration. For example, when generating an adjacent ventilation schedule that increases the ventilation volume, a time zone in which the air conditioning load is large may be selected, and when generating an adjacent ventilation schedule that decreases the ventilation volume, the air conditioning load is A small time zone should be selected. In addition, when generating an adjacent ventilation schedule for increasing the ventilation volume, when a time zone in which the CO 2 concentration exceeds or is close to the upper limit set by the condition setting unit 11 is selected. In addition, when an adjacent ventilation schedule for reducing the ventilation amount is generated, a time zone in which the CO 2 concentration is in a state far from the upper limit value set by the condition setting unit 11 may be selected. Those time zones may be selected by a probabilistic method or the like.
 なお、以上は、優先的に実施される隣接換気スケジュールの生成方法を説明したものであり、隣接換気スケジュール生成部22は、上述の生成方法以外の生成方法によって、隣接換気スケジュールを生成してもよい。例えば、隣接換気スケジュール生成部22が、確率的に、上述の生成方法とは逆方向に換気量が変化するような生成方法によって、隣接換気スケジュールを生成してもよい。そのような場合には、最適化における局所解への落ち込みが抑制される。また、換気量の増減に対する、空調機2の消費電力の増減と換気装置3の消費電力の増減の関係を用いて、空調機2と換気装置3の合計の消費電力量がより減少する方向に換気量を増減させるような変更を優先してもよい。 In addition, the above demonstrated the production | generation method of the adjacent ventilation schedule implemented preferentially, and the adjacent ventilation schedule production | generation part 22 produces | generates an adjacent ventilation schedule by production methods other than the above-mentioned production method. Good. For example, the adjacent ventilation schedule generation unit 22 may generate the adjacent ventilation schedule probabilistically by a generation method in which the ventilation amount changes in the opposite direction to the above-described generation method. In such a case, the drop in the local solution in the optimization is suppressed. Further, by using the relationship between the increase / decrease in the power consumption of the air conditioner 2 and the increase / decrease in the power consumption of the ventilator 3 with respect to the increase / decrease of the ventilation amount, the total power consumption of the air conditioner 2 and the ventilator 3 is further reduced. You may give priority to changes that increase or decrease the ventilation volume.
 また、隣接換気スケジュール生成部22が、複数の生成方法の組み合わせによって、隣接換気スケジュールを生成してもよい。隣接換気スケジュール生成部22が、複数の生成方法を、確率的な手法によって組み合わせてもよく、また、重み付け等によって優先順位を付けて組み合わせてもよい。また、最適化の探索過程を記憶しておき、様々な組み合わせをその順番で実行してもよく、また、過去の探索で有効であった組み合わせ方を優先的に実行してもよく、また、前日までの最適化の探索過程を学習し、更に効果的な生成方法又は組み合わせを導出してもよい。 Further, the adjacent ventilation schedule generation unit 22 may generate an adjacent ventilation schedule by a combination of a plurality of generation methods. The adjacent ventilation schedule generation unit 22 may combine a plurality of generation methods by a probabilistic method, or may combine the priorities by weighting or the like. In addition, the search process of optimization may be stored, and various combinations may be executed in that order, or combinations that were effective in the past search may be executed preferentially, The optimization search process up to the previous day may be learned, and a more effective generation method or combination may be derived.
 また、以上では、外気冷暖房の基準として、外気温を設定温度と比較する場合を説明したが、外気温の予測が外れたときの無駄な外気導入を最小限に抑えるために、外気温を設定温度と異なる温度に設定された外気冷暖房判定温度と比較してもよい。例えば、外気冷暖房判定温度は、外気冷房では、設定温度と比較して1℃だけ低い温度と設定され、外気暖房では、設定温度と比較して1℃だけ高い温度と設定される。設定温度との差が、0.5℃、2℃等であってもよい。 In the above, the case where the outside air temperature is compared with the set temperature has been explained as a standard for outside air cooling and heating. However, in order to minimize the introduction of useless outside air when the outside air temperature is not predicted, the outside air temperature is set. You may compare with the external air-conditioning determination temperature set to the temperature different from temperature. For example, the outside air cooling / heating determination temperature is set to a temperature lower by 1 ° C. than the set temperature in the outside air cooling, and is set to a temperature higher by 1 ° C. than the set temperature in the outside air heating. The difference from the set temperature may be 0.5 ° C., 2 ° C. or the like.
 また、翌日の外気温は、インターネットの天気予報から取得されてもよく、また、別途建物に設置された外気温センサでの前日の計測値と同一の温度として取得されてもよく、また、別途建物に設置された外気温センサでの過去1週間分の計測値の1時間毎の平均温度として取得されてもよく、また、対象建物が設置された地域における、過去何年かの実測データの平均として取得されてもよい。翌日の外気温の取得方法はこれらに限定しなくてもよい。 The outside temperature of the next day may be acquired from the weather forecast on the Internet, or may be acquired as the same temperature as the previous day's measured value by an outside temperature sensor installed in a separate building. It may be acquired as the average temperature for every hour of the measured values for the past week with the outside air temperature sensor installed in the building, and the actual measurement data of the past years in the area where the target building is installed It may be obtained as an average. The acquisition method of the outside temperature on the next day may not be limited to these.
(CO濃度予測部23)
 CO濃度予測部23は、最適化の実行条件と、隣接換気スケジュール生成部22で生成された隣接換気スケジュールと、を記憶部15から読み出し、その隣接換気スケジュールを実行したときの、計画対象期間における室内のCO濃度の時間変化を予測する演算をプロセッサで実行し、予測したCO濃度の時間変化を記憶部15に記憶させる。
(CO 2 concentration prediction unit 23)
The CO 2 concentration prediction unit 23 reads out the optimization execution condition and the adjacent ventilation schedule generated by the adjacent ventilation schedule generation unit 22 from the storage unit 15, and executes the adjacent ventilation schedule when the planning target period is reached. The calculation for predicting the time change of the indoor CO 2 concentration at is performed by the processor, and the predicted time change of the CO 2 concentration is stored in the storage unit 15.
 以下に、具体的なCO濃度の予測方法の一例を説明する。
 CO濃度予測部23は、換気量と、外気のCO濃度と、人体からのCO発生量と、を入力とし、室内のCO濃度を出力とする、CO濃度予測モデルを用いて、隣接換気スケジュールに対する、翌日の室内のCO濃度の時間変化を予測する。CO濃度予測モデルは、例えば、以下の式(1)で示される。
Hereinafter, an example of a specific CO 2 concentration prediction method will be described.
The CO 2 concentration prediction unit 23 uses a CO 2 concentration prediction model that inputs the ventilation amount, the CO 2 concentration of the outside air, and the CO 2 generation amount from the human body, and outputs the indoor CO 2 concentration. , to adjacent ventilation schedule, to predict the time variation of the CO 2 concentration of the following day in the room. The CO 2 concentration prediction model is represented by the following formula (1), for example.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、ρは、室内のCO濃度[ppm]である。CO濃度予測部23は、ρを算出する。 Incidentally, [rho Z is a CO 2 concentration in the room [ppm]. CO 2 concentration prediction unit 23 calculates the [rho Z.
 また、ρは、外気のCO濃度[ppm]である。ρは、標準的な値、例えば350ppm等の固定値である。外気のCO濃度がセンサによって計測され、ρとして、過去の計測値に基づいて24時間の時間変化をパターン化したもの等が設定されてもよい。 Further, ρ O is the CO 2 concentration [ppm] of the outside air. ρ O is a standard value, for example, a fixed value such as 350 ppm. The CO 2 concentration of the outside air is measured by a sensor, and ρ O may be set as a pattern of a 24-hour time change based on past measurement values.
 また、mOCCは、人体からのCO発生量[m/h]である。mOCCは、入出力部13で管理者等のユーザが設定した値、入退室管理データの学習、統計処理等によって取得された値等である。例えば、mOCCは、平均的な1時間毎の在室人数に、1人あたりのCO発生量を乗算した値として、推定される。1人あたりのCO発生量は、文献等に基づいて設定されるとよい。mOCCは、過去の室内のCO濃度の計測値、換気量等から学習によって取得されてもよい。 M OCC is the amount of CO 2 generated from the human body [m 3 / h]. The m OCC is a value set by a user such as an administrator in the input / output unit 13, a value acquired by learning of entry / exit management data, statistical processing, or the like. For example, m OCC is estimated as a value obtained by multiplying the average number of people in the room every hour by the amount of CO 2 generated per person. The amount of CO 2 generated per person may be set based on literature or the like. The m OCC may be acquired by learning from a past measured value of the CO 2 concentration in the room, a ventilation amount, and the like.
 また、Qventは、換気量[m/h]である。Qventは、隣接換気スケジュールから定まる、各時刻の換気量である。 Further, Q vent is a ventilation amount [m 3 / h]. Q vent is a ventilation amount at each time determined from the adjacent ventilation schedule.
 また、Qdraftは、隙間風量[m/h]である。Qdraftは、設計データ、文献等に基づいて設定される値である。Qdraftは、過去の室内のCO濃度の計測値、換気量等から学習によって取得されてもよい。 Further, Q draft is the clearance air volume [m 3 / h]. Q draft is a value set based on design data, literature, and the like. Q draft may be acquired by learning from a past measured value of the CO 2 concentration in the room, a ventilation amount, and the like.
 また、Vは、室容積[m]である。Vは、設計データ、文献等に基づいて設定される値である。Vは、過去の室内のCO濃度の計測値、換気量等から学習によって取得されてもよい。上記において、微分方程式によって定式化されたCO濃度の予測方法を例示したが、CO濃度の予測方法は、これに限定されない。例えば、CO濃度に影響を及ぼす因子のうち少なくとも一つを含む加減算等によって定式化されたものを用いてもよく、この場合、式を簡素化することができる。 V Z is the chamber volume [m 3 ]. VZ is a value set based on design data, literature, and the like. V Z is the measured value of the CO 2 concentration in the past room, it may be obtained by learning from ventilation or the like. In the above, the CO 2 concentration prediction method formulated by the differential equation is exemplified, but the CO 2 concentration prediction method is not limited to this. For example, a formula formulated by addition / subtraction including at least one of factors affecting the CO 2 concentration may be used, and in this case, the formula can be simplified.
(空調負荷予測部24)
 空調負荷予測部24は、最適化の実行条件と、隣接換気スケジュール生成部22で生成された隣接換気スケジュールと、を記憶部15から読み出し、その隣接換気スケジュールを実行したときの、計画対象期間における空調機2が処理する熱量の時間変化を予測する演算をプロセッサで実行し、予測した熱量を空調負荷として記憶部15に記憶させる。空調負荷は、前述の如く、室内を、基準の温度、例えば冷房運転時の27℃等に維持するために、空調機2が処理する熱量であり、換気によって発生する処理熱量も含まれる。この場合、設定温度±0.5℃等のように温度範囲を設けて、基準温度(設定温度維持),上限温度,下限温度等、複数の空調負荷を予測するように構成してもよい。
(Air conditioning load prediction unit 24)
The air conditioning load prediction unit 24 reads out the optimization execution condition and the adjacent ventilation schedule generated by the adjacent ventilation schedule generation unit 22 from the storage unit 15, and executes the adjacent ventilation schedule in the planning target period. A calculation for predicting a temporal change in the amount of heat processed by the air conditioner 2 is executed by the processor, and the predicted amount of heat is stored in the storage unit 15 as an air conditioning load. As described above, the air conditioning load is the amount of heat processed by the air conditioner 2 to maintain the room at a reference temperature, for example, 27 ° C. during cooling operation, and includes the amount of processing heat generated by ventilation. In this case, a temperature range such as a set temperature ± 0.5 ° C. may be provided to predict a plurality of air conditioning loads such as a reference temperature (set temperature maintenance), an upper limit temperature, a lower limit temperature, and the like.
 以下に、具体的な空調負荷の予測方法の一例を説明する。
 空調負荷予測部24は、例えば、外気温、日射量、内部発熱、空調機処理熱量、室温、換気量等の時間変化の関係式である熱輸送方程式に基づいてモデル化された、建物の熱特性のモデルである建物熱特性モデルを用いて、室内を基準の温度に維持するために必要な空調機2の処理熱量の時間変化、つまり、空調負荷の時間変化を予測する。建物熱特性モデルは、例えば、翌日における、外気温、日射量、内部発熱、設定温度、換気量(隣接換気スケジュール)等を入力とし、空調機2の処理熱量、つまり、空調負荷を出力とするモデルである。建物熱特性モデルに含まれる建物の熱抵抗、熱容量等の値は、設計データを基に設定されてもよく、また、未知パラメータとして扱われ、空調機2の運転データ等から学習によって取得された値に設定されてもよい。
Hereinafter, an example of a specific method for predicting the air conditioning load will be described.
The air conditioning load prediction unit 24 is modeled on the basis of a heat transport equation, which is a relational expression of changes over time such as outside air temperature, solar radiation, internal heat generation, air conditioning machine heat, room temperature, and ventilation, for example. Using a building thermal characteristic model, which is a characteristic model, a time change in the amount of heat processed by the air conditioner 2 necessary for maintaining the room at a reference temperature, that is, a time change in the air conditioning load is predicted. The building thermal characteristic model, for example, receives the outside air temperature, the amount of solar radiation, the internal heat generation, the set temperature, the ventilation amount (adjacent ventilation schedule), etc. on the next day, and the processing heat amount of the air conditioner 2, that is, the air conditioning load, as an output. It is a model. The building thermal characteristics model, such as building thermal resistance, heat capacity, etc., may be set based on design data, is treated as an unknown parameter, and is acquired by learning from the air conditioner 2 operation data, etc. It may be set to a value.
 なお、空調負荷予測部24は、空調機2の運転データ、気象データ等から統計処理によってデータの入出力関係をモデル化する、ブラックボックスモデルを用いて、空調機2の処理熱量の時間変化、つまり、空調負荷の時間変化を予測してもよい。ブラックボックスモデルは、例えば、ニューラルネットワーク等である。 Note that the air conditioning load prediction unit 24 uses a black box model to model the input / output relationship of the data by statistical processing from the operation data, weather data, and the like of the air conditioner 2, That is, the time change of the air conditioning load may be predicted. The black box model is, for example, a neural network.
 また、空調負荷予測部24は、過去の空調機2の運転データ等から1日の処理熱量をパターン化したものを用いて、空調機2の処理熱量の時間変化、つまり、空調負荷の時間変化を予測してもよい。 In addition, the air conditioning load prediction unit 24 uses a pattern of the amount of heat processed per day based on past operation data of the air conditioner 2, etc., to change the amount of heat processed by the air conditioner 2 over time, that is, change over time of the air conditioning load. May be predicted.
 例えば、通常、空調機2の処理熱量は、空調機2の運転データから直接取得することが可能であるか、又は、空調機2の運転データを用いて計算することが可能である。そこで、翌日の空調負荷は、前日の実績の空調負荷と同一であるとし、その空調負荷に、前日の換気に起因する空調負荷の増加分又は減少分を減算し、翌日の隣接換気スケジュールに起因する空調負荷の増加分又は減少分を加算したものを、空調機2の処理熱量の時間変化、つまり、空調負荷の時間変化として予測する。その際、換気装置3が熱交換ユニット3bを有する場合には、前日の換気に起因する空調負荷の増加分又は減少分、及び、翌日の隣接換気スケジュールに起因する空調負荷の増加分又は減少分に、熱交換ユニット3bにおける熱交換率を加味させるとよい。 For example, normally, the amount of heat processed by the air conditioner 2 can be obtained directly from the operation data of the air conditioner 2 or can be calculated using the operation data of the air conditioner 2. Therefore, the next day's air conditioning load is assumed to be the same as the previous day's actual air conditioning load. The amount of increase or decrease of the air conditioning load to be added is predicted as the time change of the heat treatment amount of the air conditioner 2, that is, the time change of the air conditioning load. At that time, when the ventilator 3 has the heat exchange unit 3b, the increase or decrease of the air conditioning load due to the previous day ventilation and the increase or decrease of the air conditioning load due to the adjacent ventilation schedule of the next day. In addition, the heat exchange rate in the heat exchange unit 3b may be taken into account.
 前日の実績の空調負荷に換えて、過去1週間の平日の実績の空調負荷の平均が用いられてもよく、また、1週間前の同じ曜日の実績の空調負荷が用いられてもよい。翌日の天気予報を取得して、過去の実績の空調負荷をその天気予報の情報を用いて補正したものが用いられてもよい。 Instead of the air conditioning load of the previous day's actual performance, the average of the past week's actual air conditioning load may be used, or the actual air conditioning load of the same day of the previous week may be used. A weather forecast obtained for the next day may be acquired and the past air conditioning load corrected using the weather forecast information may be used.
 また、空調機2の吹き出し口に設置された温度センサ、風量センサ等の計測値、冷媒配管に設置された温度センサ、流量センサ等の計測値等を用いて、空調機2の実績の処理熱負荷が計算され、その処理熱負荷が、空調機2の処理熱量の時間変化、つまり、空調負荷の時間変化の予測に用いられてもよい。なお、換気装置3の運転は、一般的に空調負荷に影響を及ぼすことが多い。このため、上記の各方法において、実績の換気装置3の運転データを利用する場合、空調負荷は、隣接換気スケジュールとの差異による影響を加味して計算されることが好ましい。 In addition, the actual processing heat of the air conditioner 2 using the measured values of the temperature sensor and the air flow sensor installed at the outlet of the air conditioner 2, the measured values of the temperature sensor and the flow sensor installed in the refrigerant pipe, and the like. The load may be calculated, and the processing heat load may be used for predicting the time change of the processing heat amount of the air conditioner 2, that is, the time change of the air conditioning load. In general, the operation of the ventilator 3 often affects the air conditioning load. For this reason, in each of the above methods, when using the operation data of the actual ventilation device 3, the air conditioning load is preferably calculated in consideration of the influence of the difference from the adjacent ventilation schedule.
(隣接換気スケジュール評価部25)
 隣接換気スケジュール評価部25は、最適化の実行条件と、CO濃度予測部23で予測されたCO濃度と、空調負荷予測部24で予測された空調負荷と、を記憶部15から読み出し、以下の式(2)に示される評価関数値Jの計算をプロセッサで実行し、その計算結果を記憶部15に記憶させる。なお、空調負荷予測部24での空調負荷を用いることによって、室内は基準の温度又は温度範囲に維持される。
(Adjacent ventilation schedule evaluation unit 25)
Adjacent ventilation schedule evaluation unit 25, the execution conditions of the optimization, the CO 2 concentrations predicted in the CO 2 concentration prediction unit 23 reads the air-conditioning load predicted by the air conditioning load prediction unit 24, from the storage unit 15, The calculation of the evaluation function value J shown in the following formula (2) is executed by the processor, and the calculation result is stored in the storage unit 15. By using the air conditioning load in the air conditioning load prediction unit 24, the room is maintained at a reference temperature or temperature range.
 空調機2において、空調負荷と消費電力との関係が定式化できる場合は、その関係を用いて求められた各時刻の電力を積算して1日分の電力量を算出し、その電力量を空調機2の消費電力量とする。空調機2において、空調負荷と消費電力との関係が定式化できない場合は、固定値である空調効率、外気温毎の空調効率等を用いて求められた各時刻の電力を積算して1日分の電力量を算出し、その電力量を空調機2の消費電力量とする。 In the air conditioner 2, when the relationship between the air conditioning load and the power consumption can be formulated, the power at each time obtained using the relationship is integrated to calculate the amount of power for one day, and the amount of power is calculated. The power consumption of the air conditioner 2 is assumed. In the air conditioner 2, if the relationship between the air conditioning load and power consumption cannot be formulated, the power at each time obtained using the air conditioning efficiency, which is a fixed value, the air conditioning efficiency for each outside temperature, etc., is integrated for one day. The amount of power is calculated and the amount of power is set as the power consumption of the air conditioner 2.
 換気装置3において、ファン回転数、段階(強、中、弱)等と消費電力との関係が定式化できる場合は、その関係を用いて求められた各時刻の電力を積算して1日分の電力量を算出し、その電力量を換気装置3の消費電力量とする。換気装置3において、ファン回転数、段階(強、中、弱)等と消費電力との関係が定式化できない場合は、テーブル化された固定値である換気効率等を用いて求められた各時刻の電力を積算して1日分の電力量を算出し、その電力量を換気装置3の消費電力量とする。 In the ventilator 3, when the relationship between fan speed, stage (strong, medium, weak), etc. and power consumption can be formulated, the power at each time determined using that relationship is integrated for one day. The amount of power is calculated, and the amount of power is set as the power consumption of the ventilator 3. In the ventilator 3, when the relationship between the fan speed, stage (strong, medium, weak), etc. and power consumption cannot be formulated, each time determined using the ventilation efficiency, etc., which is a fixed value tabulated The amount of power is integrated to calculate the amount of power for one day, and the amount of power is used as the amount of power consumed by the ventilator 3.
 ペナルティ項は、CO濃度に上限値が設けられた状態で、CO濃度の予測値がその上限値を超える時間帯があることに対するペナルティ項であり、以下の式(3)に示される関係式で求められる。式(3)のようなペナルティ項が用いられることで、一時的にCO濃度の予測値が上限値を超えてしまう場合を許容することが可能となって、最適化の探索の進行が滞ることが抑制される。CO濃度の予測値を法令基準値等以下に維持する必要がある場合には、CO濃度の上限値が、法令基準値等の真の上限値と比較して小さい値に設定されるとよい。 Penalty term, with the upper limit value is provided to the CO 2 concentration, a penalty term for the predicted value of the CO 2 concentration is time zone exceeding the upper limit value, the relationship represented by the following formula (3) It is calculated by the formula By using a penalty term such as equation (3), it is possible to temporarily allow the case where the predicted value of the CO 2 concentration exceeds the upper limit, and the progress of the search for optimization is delayed. It is suppressed. When it is necessary to maintain the predicted value of the CO 2 concentration below the legal standard value or the like, the upper limit value of the CO 2 concentration is set to a smaller value than the true upper limit value such as the legal standard value or the like. Good.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、隣接換気スケジュール評価部25が、以下の式(4)に示される評価関数値Jを計算してもよい。つまり、評価関数値Jにペナルティ項が加算されなくてもよく、そのような場合でも、換気スケジュールを最適化することが可能である。評価関数値Jにペナルティ項が加算される場合には、制約条件であるCO濃度が加味された最適化が実現される。 In addition, the adjacent ventilation schedule evaluation part 25 may calculate the evaluation function value J shown by the following formula | equation (4). That is, the penalty term does not have to be added to the evaluation function value J. Even in such a case, the ventilation schedule can be optimized. When a penalty term is added to the evaluation function value J, optimization with the CO 2 concentration as a constraint condition taken into consideration is realized.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、換気装置3の消費電力量が、空調機2の消費電力量と比較して極めて小さいことが明らかな場合等では、隣接換気スケジュール評価部25が、以下の式(5)又は式(6)に示される評価関数値Jを計算してもよい。つまり、評価関数値Jに換気装置3の消費電力量が加算されなくてもよく、そのような場合でも、換気スケジュールを最適化することが可能である。 Moreover, when it is clear that the power consumption of the ventilator 3 is very small compared with the power consumption of the air conditioner 2, the adjacent ventilation schedule evaluation part 25 is the following formula | equation (5) or (6) The evaluation function value J shown in FIG. That is, the power consumption amount of the ventilation device 3 does not have to be added to the evaluation function value J. Even in such a case, the ventilation schedule can be optimized.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また、以上では、隣接換気スケジュール評価部25が、消費電力量を用いて評価関数値Jを計算しているが、そのような場合に限定されず、隣接換気スケジュール評価部25が、時間帯別の電気単価等が加味された電気料金を用いて評価関数値Jを計算してもよい。 Moreover, although the adjacent ventilation schedule evaluation part 25 is calculating the evaluation function value J using the power consumption in the above, it is not limited to such a case, and the adjacent ventilation schedule evaluation part 25 is classified according to time zone. The evaluation function value J may be calculated using an electricity bill that takes into account the electricity unit price and the like.
(最適換気スケジュール候補更新部26)
 最適換気スケジュール候補更新部26は、最適化の実行条件と、現在の最適換気スケジュール候補で求められた評価関数値J0と、隣接換気スケジュールで求められた評価関数値Jxと、を記憶部15から読み出し、評価関数値J0と評価関数値Jxとを比較して、最適換気スケジュール候補を隣接換気スケジュールに更新するか否かを判定し、その判定結果に応じて最適換気スケジュール候補を更新する演算をプロセッサで実行し、その演算結果を記憶部15に記憶させる。
(Optimal ventilation schedule candidate update unit 26)
The optimal ventilation schedule candidate update unit 26 stores, from the storage unit 15, the optimization execution conditions, the evaluation function value J0 obtained from the current optimal ventilation schedule candidate, and the evaluation function value Jx obtained from the adjacent ventilation schedule. Reading, comparing the evaluation function value J0 and the evaluation function value Jx, determining whether or not to update the optimal ventilation schedule candidate to the adjacent ventilation schedule, and calculating the optimal ventilation schedule candidate according to the determination result The calculation is executed by the processor, and the calculation result is stored in the storage unit 15.
 以下に、具体的な、最適換気スケジュール候補を更新するか否かの判定方法の一例を説明する。
 Jx<J0である時、最適換気スケジュール候補更新部26は、最適換気スケジュール候補を更新する。つまり、最適換気スケジュール候補更新部26は、最適換気スケジュール候補を、隣接換気スケジュールに置き換える。
Hereinafter, a specific example of a method for determining whether or not to update the optimal ventilation schedule candidate will be described.
When Jx <J0, the optimal ventilation schedule candidate update unit 26 updates the optimal ventilation schedule candidate. That is, the optimal ventilation schedule candidate update unit 26 replaces the optimal ventilation schedule candidate with the adjacent ventilation schedule.
 一方、Jx≧J0である時、最適換気スケジュール候補更新部26は、最適換気スケジュール候補を常に更新しない、又は、最適換気スケジュール候補を更新するか否かを確率的な方法によって判定し、その判定結果に応じて更新する。 On the other hand, when Jx ≧ J0, the optimal ventilation schedule candidate update unit 26 determines whether or not to update the optimal ventilation schedule candidate constantly or to update the optimal ventilation schedule candidate by a probabilistic method, and the determination Update according to the results.
 例えば、Δxと定義される|Jx-J0|が、Δx≧Th(k)である時、最適換気スケジュール候補更新部26は、P1(k)の確率で、最適換気スケジュール候補を更新し、Δx<Th(k)である時、P2(k)の確率で、最適換気スケジュール候補を更新する。なお、kは、探索の回数であり、Th(k)は、k回目の探索における閾値であり、P1(k)及びP2(k)は、k回目の探索における確率である。Th(k)とP1(k)とP2(k)とのそれぞれが、最適化の探索過程で異なる値に変更されてもよい。 For example, when | Jx−J0 | defined as Δx is Δx ≧ Th (k), the optimal ventilation schedule candidate update unit 26 updates the optimal ventilation schedule candidate with the probability of P1 (k), and Δx When <Th (k), the optimal ventilation schedule candidate is updated with the probability of P2 (k). Note that k is the number of searches, Th (k) is a threshold value in the k-th search, and P1 (k) and P2 (k) are probabilities in the k-th search. Each of Th (k), P1 (k), and P2 (k) may be changed to a different value in the optimization search process.
 なお、更新するか否かの確率は、2段階である場合に限定されず、3段階以上の多段階であってもよい。例えば、3段階である場合には、Δxと定義される|Jx-J0|が、Δx≧Th1(k)である時、最適換気スケジュール候補更新部26は、P1(k)の確率で、最適換気スケジュール候補を更新し、Δx<Th1(k)で且つΔx≧Th2(k)である時、P2(k)の確率で、最適換気スケジュール候補を更新し、Δx<Th2(k)である時、P3(k)の確率で、最適換気スケジュール候補を更新する。なお、kは、探索の回数であり、Th1(k)及びTh2(k)は、k回目の探索における閾値であり、P1(k)、P2(k)及びP3(k)は、k回目の探索における確率である。Th1(k)とTh2(k)とP1(k)とP2(k)とP3(k)とのそれぞれが、最適化の探索過程で異なる値に変更されてもよい。 Note that the probability of whether or not to update is not limited to two stages, and may be three or more stages. For example, in the case of three stages, when | Jx−J0 | defined as Δx is Δx ≧ Th1 (k), the optimal ventilation schedule candidate update unit 26 has the probability of P1 (k) and is optimal. When the ventilation schedule candidate is updated and Δx <Th1 (k) and Δx ≧ Th2 (k), the optimal ventilation schedule candidate is updated with the probability of P2 (k), and Δx <Th2 (k) The optimal ventilation schedule candidate is updated with the probability of P3 (k). Note that k is the number of searches, Th1 (k) and Th2 (k) are threshold values in the k-th search, and P1 (k), P2 (k), and P3 (k) are k-th times. Probability in search. Each of Th1 (k), Th2 (k), P1 (k), P2 (k), and P3 (k) may be changed to a different value in the optimization search process.
(終了判定部27)
 終了判定部27は、最適化の実行条件を記憶部15から読み出し、最適化の探索を終了するか否かを判定する演算をプロセッサで実行する。
(End determination unit 27)
The end determination unit 27 reads out the optimization execution condition from the storage unit 15, and executes a calculation for determining whether or not to end the optimization search by the processor.
 以下に、具体的な、最適化の探索を終了するか否かの判定方法の一例を説明する。
 終了判定部27は、最適化を開始してからの経過時間が所定の基準時間を経過したか否か、評価関数値Jが所定の目標値以下に達したか否か、評価関数値Jの減少率が所定の減少率以下に達した否か等を判定基準として、最適化の探索を終了するか否かを判定する。
A specific example of a method for determining whether or not to end the search for optimization will be described below.
The end determination unit 27 determines whether or not the elapsed time from the start of optimization has exceeded a predetermined reference time, whether or not the evaluation function value J has reached a predetermined target value or less, Whether or not the search for optimization is to be ended is determined based on whether or not the decrease rate has reached a predetermined decrease rate or less.
<変形例>
 隣接換気スケジュール生成部22は、複数の隣接換気スケジュールを生成してもよい。そのような場合には、隣接換気スケジュール評価部25は、生成した複数の隣接換気スケジュールの全てを評価する。また、最適換気スケジュール候補更新部26は、複数の隣接換気スケジュールのうちのいずれか1つの隣接換気スケジュールと、現在の最適換気スケジュール候補とを比較して、上記処理を行う。複数の隣接換気スケジュールのうちのどの隣接換気スケジュールと、現在の最適換気スケジュール候補と、が比較されてもよいが、最も評価関数値Jが小さい隣接換気スケジュールと、現在の最適換気スケジュール候補と、が比較されることが好ましい。
<Modification>
The adjacent ventilation schedule generation unit 22 may generate a plurality of adjacent ventilation schedules. In such a case, the adjacent ventilation schedule evaluation unit 25 evaluates all of the plurality of generated adjacent ventilation schedules. Moreover, the optimal ventilation schedule candidate update part 26 compares the any one adjacent ventilation schedule among several adjacent ventilation schedules with the present optimal ventilation schedule candidate, and performs the said process. Any adjacent ventilation schedule of the plurality of adjacent ventilation schedules may be compared with the current optimal ventilation schedule candidate, but the adjacent ventilation schedule with the smallest evaluation function value J, the current optimal ventilation schedule candidate, Are preferably compared.
 また、空調システム100は、換気装置3によって取り込まれる建物外の空気が、空調機2で、室内に戻される空気と混合されるものであってもよい。そのような場合等では、換気装置3への制御指令(強、中、弱、停止)が、取り込むことができる建物外の空気の量、実際に取り込まれる空気の温度、実際に取り込まれる空気の湿度等を加味して、決定されるとよい。 In the air conditioning system 100, air outside the building taken in by the ventilation device 3 may be mixed with air returned indoors by the air conditioner 2. In such a case, the control command (strong, medium, weak, stop) to the ventilation device 3 determines the amount of air outside the building that can be taken in, the temperature of the air that is actually taken in, the air that is actually taken in It may be determined in consideration of humidity and the like.
 図5は、本発明の実施の形態1に係る空調システムの変形例の、全体の構成図である。
 図5に示されるように、換気装置3は、ファン3aと、熱交換ユニット3bと、熱源機3cと、熱交換器3dと、加湿器3eと、除湿器3fと、ヒータ3gと、のうちの少なくとも1つを構成要素とするものであってもよい。
FIG. 5 is an overall configuration diagram of a modification of the air conditioning system according to Embodiment 1 of the present invention.
As shown in FIG. 5, the ventilator 3 includes a fan 3a, a heat exchange unit 3b, a heat source unit 3c, a heat exchanger 3d, a humidifier 3e, a dehumidifier 3f, and a heater 3g. At least one of the above may be a constituent element.
 熱源機3cと、熱交換器3dと、加湿器3eと、除湿器3fと、ヒータ3gと、は、建物外の空気を室内に取り入れる前に、その空気の温度、湿度等を調整するために用いられる。熱源機3cは、冷媒、水等の熱媒体を冷却または加熱するものである。熱交換器3dは、熱源機3cの熱媒体と、建物外から取り入れる空気と、の間で熱交換を行うものである。加湿器3eは、建物外の空気を室内に取り入れる前に、空気の湿度を上げるためのものである。除湿器3fは、建物外の空気を室内に取り入れる前に、空気の湿度を下げるためのものである。ヒータ3gは、建物外の空気を室内に取り入れる前に、空気の温度を上げるためのものである。 The heat source unit 3c, the heat exchanger 3d, the humidifier 3e, the dehumidifier 3f, and the heater 3g are for adjusting the temperature and humidity of the air before taking the air outside the building into the room. Used. The heat source device 3c cools or heats a heat medium such as refrigerant and water. The heat exchanger 3d performs heat exchange between the heat medium of the heat source device 3c and air taken in from outside the building. The humidifier 3e is for increasing the humidity of the air before taking the air outside the building into the room. The dehumidifier 3f is for lowering the humidity of the air before taking the air outside the building into the room. The heater 3g is for raising the temperature of the air before taking the air outside the building into the room.
 そのような場合には、空調負荷予測部24は、空調機2と換気装置3とで処理する熱負荷の合計を空調負荷として予測する。また、隣接換気スケジュール評価部25は、これらの構成要素の合計の消費電力量又は電気料金を、換気装置3の消費電力量又は電気料金として、評価関数値Jを計算する。 In such a case, the air conditioning load prediction unit 24 predicts the total heat load processed by the air conditioner 2 and the ventilation device 3 as the air conditioning load. Further, the adjacent ventilation schedule evaluation unit 25 calculates the evaluation function value J using the total power consumption or electricity charge of these components as the power consumption or electricity charge of the ventilation device 3.
 ここで、図8~図10を用いて、換気スケジュールによる省エネについて説明する。図8Aは、本発明の実施の形態1における夏期の換気スケジュールを示すグラフである。図8Aにおいて、横軸は時刻、縦軸はCO濃度,換気量である。図8Bは、本発明の実施の形態1における夏期の消費電力を示すグラフである。図8Bにおいて、横軸は時刻、縦軸は消費電力であり、この消費電力は、空調電力に換気電力を加算したものである。また、図8A,図8Bにおいて、最適換気スケジュールを実線で示し、一定換気(通常換気)を破線で示す。 Here, energy saving by the ventilation schedule will be described with reference to FIGS. FIG. 8A is a graph showing a ventilation schedule in summer in Embodiment 1 of the present invention. In FIG. 8A, the horizontal axis represents time, and the vertical axis represents CO 2 concentration and ventilation volume. FIG. 8B is a graph showing the power consumption in summer in Embodiment 1 of the present invention. In FIG. 8B, the horizontal axis represents time, and the vertical axis represents power consumption. This power consumption is obtained by adding ventilation power to air conditioning power. Moreover, in FIG. 8A and FIG. 8B, an optimal ventilation schedule is shown as a continuous line, and constant ventilation (normal ventilation) is shown with a broken line.
 図8Aに示すように、夏期に冷房が行われている場合、日中は外気温が高いため、換気が抑制される。これにより、換気電力を削減するだけでなく、暑い外気の導入が減少されることによる空調電力の削減も実現される。なお、換気が抑制されると、CO濃度が上昇するため、午前中に換気が実行される。これにより、CO濃度が予め下げられる。本発明においては、図8Aに示すように、各時刻の換気量の調整によるCO濃度の時間変化を予測して、CO濃度が上限値1000ppm未満に抑えられる。また、図8Bに示すように、午前中の換気促進により、空調電力及び換気電力の加算値は若干増加するものの、日中の換気抑制により、空調電力及び換気電力の加算値は大幅に削減される。このため、1日における消費電力は削減され、最適な換気の時間シフトを実現することができる。 As shown in FIG. 8A, when cooling is performed in the summer, the outside air temperature is high during the daytime, so that ventilation is suppressed. This not only reduces ventilation power, but also reduces air conditioning power by reducing the introduction of hot outside air. In addition, when the ventilation is suppressed, the CO 2 concentration increases, so ventilation is executed in the morning. Thereby, the CO 2 concentration is lowered in advance. In the present invention, as shown in Figure 8A, by predicting a time change of CO 2 concentration by adjusting the amount of ventilation each time, the CO 2 concentration is kept to less than the upper limit value 1000 ppm. In addition, as shown in FIG. 8B, the added value of the air conditioning power and the ventilation power slightly increases due to the promotion of ventilation in the morning, but the added value of the air conditioning power and the ventilation power is greatly reduced by suppressing the ventilation during the day. The For this reason, the power consumption in 1 day is reduced and the optimal time shift of ventilation is realizable.
 図9Aは、本発明の実施の形態1における中間期の換気スケジュールを示すグラフである。図9Aにおいて、横軸は時刻、縦軸はCO濃度,換気量である。図9Bは、本発明の実施の形態1における中間期の消費電力を示すグラフである。図9Bにおいて、横軸は時刻、縦軸は消費電力であり、この消費電力は、空調電力に換気電力を加算したものである。また、図9A,図9Bにおいて、最適換気スケジュールを実線で示し、一定換気(通常換気)を破線で示す。図9Aに示すように、夏期と冬期との間である中間期の日中に外気冷房が行われている場合、外気温が設定温度よりも低ければ、換気が促進される。これにより、冷房の作用が換気で賄われる分だけ、空調電力を削減することができる。なお、内部発熱等による空調負荷の大小により、適正な外気冷房量が存在し、必ずしも換気量が最大になるまで換気が行われるものではない。例えば、午前中は、人体から発生する熱、機器から発生する熱、又は外部から侵入する熱等が小さく且つ外気温度が極めて低い場合には、換気が若干抑制される。また、日中は、人体から発生する熱、機器から発生する熱、又は外部から侵入する熱等が大きくなった時点で、換気が促進される。 FIG. 9A is a graph showing a ventilation schedule in an intermediate period in the first embodiment of the present invention. In FIG. 9A, the horizontal axis represents time, and the vertical axis represents CO 2 concentration and ventilation volume. FIG. 9B is a graph showing the power consumption in the intermediate period in the first embodiment of the present invention. In FIG. 9B, the horizontal axis represents time, and the vertical axis represents power consumption. This power consumption is obtained by adding ventilation power to air conditioning power. Moreover, in FIG. 9A and FIG. 9B, an optimal ventilation schedule is shown as a continuous line, and constant ventilation (normal ventilation) is shown with a broken line. As shown in FIG. 9A, in the case where the outside air cooling is performed during the intermediate period between summer and winter, ventilation is promoted if the outside air temperature is lower than the set temperature. As a result, the air-conditioning power can be reduced by the amount that the cooling action is covered by ventilation. It should be noted that due to the magnitude of the air conditioning load due to internal heat generation or the like, there is an appropriate outside air cooling amount, and ventilation is not necessarily performed until the ventilation amount becomes maximum. For example, in the morning, when the heat generated from the human body, the heat generated from the equipment, or the heat entering from the outside is small and the outside air temperature is extremely low, the ventilation is slightly suppressed. In addition, ventilation is promoted during the day when heat generated from the human body, heat generated from equipment, or heat entering from outside increases.
 本発明においては、図9Aに示すように、各時刻の換気量の調整によるCO濃度の時間変化を予測して、CO濃度が上限値1000ppm未満に抑えられる。また、図9Bに示すように、午前中の換気抑制により、空調電力及び換気電力の加算値は若干減少し、日中の換気促進により、空調電力及び換気電力の加算値は大幅に削減される。このように、本発明は、一日全体を通して各時刻の最適な換気量を決定することができる。なお、午前中に換気が促進された方が省エネになる場合、それに基づいた換気スケジュールが採用される。 In the present invention, as shown in FIG. 9A, by predicting a time change of CO 2 concentration by adjusting the amount of ventilation each time, the CO 2 concentration is kept to less than the upper limit value 1000 ppm. Moreover, as shown in FIG. 9B, the added value of the air conditioning power and the ventilation power is slightly reduced due to the suppression of ventilation in the morning, and the added value of the air conditioning power and the ventilation power is greatly reduced by promoting the ventilation during the day. . In this way, the present invention can determine the optimum ventilation volume at each time throughout the day. In addition, when ventilation is promoted in the morning to save energy, a ventilation schedule based on it is adopted.
 図10Aは、本発明の実施の形態1における冬期の換気スケジュールを示すグラフである。図10Aにおいて、横軸は時刻、縦軸はCO濃度,換気量である。図10Bは、本発明の実施の形態1における冬期の消費電力を示すグラフである。図10Bにおいて、横軸は時刻、縦軸は消費電力であり、この消費電力は、空調電力に換気電力を加算したものである。また、図10A,図10Bにおいて、最適換気スケジュールを実線で示し、一定換気(通常換気)を破線で示す。図10Aに示すように、冬期に暖房が行われている場合、終日外気温が低いため、換気が抑制される。これにより、換気電力が削減されるだけでなく、寒い外気の導入が減少されることによる空調電力の削減も実現される。なお、換気が抑制されると、CO濃度が上昇するため、一日のうちのいずれかの時間帯において換気が実行される。これにより、CO濃度が下げられる。図10Aにおいては、換気が夕方以降に実施される。 FIG. 10A is a graph showing a ventilation schedule in winter in Embodiment 1 of the present invention. In FIG. 10A, the horizontal axis represents time, and the vertical axis represents CO 2 concentration and ventilation volume. FIG. 10B is a graph showing power consumption in winter in Embodiment 1 of the present invention. In FIG. 10B, the horizontal axis represents time, and the vertical axis represents power consumption. This power consumption is obtained by adding ventilation power to air conditioning power. Moreover, in FIG. 10A and FIG. 10B, an optimal ventilation schedule is shown as a continuous line, and constant ventilation (normal ventilation) is shown with a broken line. As shown in FIG. 10A, when heating is performed in winter, the outside air temperature is low all day, so that ventilation is suppressed. This not only reduces ventilation power, but also reduces air conditioning power by reducing the introduction of cold outside air. Note that when the ventilation is suppressed, the CO 2 concentration increases, and therefore ventilation is executed in any time zone of the day. As a result, the CO 2 concentration is lowered. In FIG. 10A, ventilation is performed after the evening.
 本発明においては、図10Aに示すように、各時刻の換気量の調整によるCO濃度の時間変化を予測して、CO濃度が上限値1000ppm未満に抑えられる。また、図10Bに示すように、午前中の換気抑制により、空調電力及び換気電力の加算値は減少され、日中の換気抑制により、空調電力及び換気電力の加算値も減少される。なお、夕方の換気実行により、空調電力及び換気電力の加算値は若干増加する。このように、本発明は、換気の抑制及び促進によって空調電力及び換気電力の増減が計算され、最適な換気スケジュールが求められる。これにより、一日全体を通して各時刻の最適な換気量を決定することができる。なお、冬期に冷房が行われる建物においては、日中に換気が促進される換気スケジュールが採用される。いずれの時間帯において冷房又は暖房が運転されるかは、空調負荷予測部24によって決定される。なお、一日のうち、例えば午前中に暖房運転が行われ、午後に冷房運転が行われるようにしてもよい。 In the present invention, as shown in FIG. 10A, by predicting a time change of CO 2 concentration by adjusting the amount of ventilation each time, the CO 2 concentration is kept to less than the upper limit value 1000 ppm. Further, as shown in FIG. 10B, the added value of the air conditioning power and the ventilation power is reduced by the morning ventilation suppression, and the added value of the air conditioning power and the ventilation power is also reduced by the daytime ventilation suppression. Note that the added value of the air conditioning power and the ventilation power slightly increases due to the execution of ventilation in the evening. As described above, according to the present invention, the increase and decrease of the air conditioning power and the ventilation power are calculated by suppressing and promoting the ventilation, and an optimal ventilation schedule is required. Thereby, the optimal ventilation volume of each time can be determined throughout the whole day. In buildings where cooling is performed in winter, a ventilation schedule is adopted in which ventilation is promoted during the day. The air conditioning load prediction unit 24 determines in which time zone cooling or heating is operated. In addition, during the day, for example, the heating operation may be performed in the morning and the cooling operation may be performed in the afternoon.
 図8~図10は、いずれも本発明の換気スケジュールの一例を簡易的に示したものであり、換気スケジュールは、これらに限定されない。例えば、図8,図9では、一定換気と最適換気スケジュールとは、夕方以降の換気量が同一であるが、相違してもよい。また、図8~図10では、一定換気及び最適換気スケジュールは、午前中、日中及び夕方以降の換気量が一定であるが、実際には、例えば30分刻みで、強,中,弱,停止のいずれかが選択される。また、図8~図10では、最適換気スケジュールは、一定換気と比較されているが、CO濃度が計測されつつ換気量が逐次決定される制御もある。なお、このような制御は、本発明における最適換気スケジュールを求めるための解空間の一部であり、本発明における最適換気スケジュールは、このような制御よりも更に省エネが実現される。 FIGS. 8 to 10 simply show examples of the ventilation schedule of the present invention, and the ventilation schedule is not limited to these examples. For example, in FIGS. 8 and 9, the constant ventilation and the optimal ventilation schedule have the same ventilation volume after the evening, but may be different. Further, in FIGS. 8 to 10, the constant ventilation and the optimal ventilation schedule have a constant ventilation volume in the morning, during the day, and after the evening, but actually, for example, every 30 minutes, strong, medium, weak, One of the stops is selected. In FIGS. 8 to 10, the optimal ventilation schedule is compared with constant ventilation, but there is also control in which the ventilation volume is sequentially determined while measuring the CO 2 concentration. Note that such control is a part of the solution space for obtaining the optimum ventilation schedule in the present invention, and the optimum ventilation schedule in the present invention realizes further energy saving than such control.
<空調システムの作用>
 空調システム100では、隣接換気スケジュール評価部25によって、CO濃度が計画対象期間の少なくとも一部の期間に亘って基準値を超えない状態に維持される、隣接換気スケジュール(つまり、スケジュール候補)が生成され、最適換気スケジュール候補更新部26によって、最適換気スケジュール候補と隣接換気スケジュールとのうちの(つまり、複数のスケジュール候補のうちの)、空調設備の消費電力量又は電気料金が相対的に小さい換気スケジュールが採用される。そのため、空調設備の省エネ化を図りつつCO濃度を基準値以下にすることと、空調設備の省エネ化を図るべく外気冷暖房を行うことと、が両立されて、空調設備全体としての省エネ性が向上される。また、例えば1日間等の長い期間での省エネ性が向上される。
<Operation of air conditioning system>
In the air conditioning system 100, the adjacent ventilation schedule evaluation unit 25 maintains an adjacent ventilation schedule (that is, a schedule candidate) in which the CO 2 concentration is maintained in a state that does not exceed the reference value for at least a part of the planning target period. The optimum ventilation schedule candidate update unit 26 is generated, and the power consumption amount or the electricity rate of the air conditioning equipment among the optimum ventilation schedule candidate and the adjacent ventilation schedule (that is, among the plurality of schedule candidates) is relatively small. A ventilation schedule is adopted. Therefore, the method comprising the following reference value of CO 2 concentration while reducing the energy efficiency of the air conditioning equipment, and carrying out the outside air cooling and heating to achieve energy-saving air conditioning, is both energy saving of the whole air-conditioning equipment Be improved. In addition, energy saving performance for a long period such as one day is improved.
実施の形態2.
 以下に、実施の形態2に係る空調システムを説明する。
 なお、以下では、実施の形態1に係る空調システムと重複する説明は、適宜簡略化又は省略している。
 実施の形態2に係る空調システムでは、最適換気スケジューリング部12において、換気スケジュールの最適化を、連続最適化問題を利用して行う点で、実施の形態1に係る空調システムと異なる。
Embodiment 2. FIG.
The air conditioning system according to Embodiment 2 will be described below.
In addition, below, the description which overlaps with the air conditioning system which concerns on Embodiment 1 is simplified or abbreviate | omitted suitably.
The air conditioning system according to the second embodiment is different from the air conditioning system according to the first embodiment in that the optimum ventilation scheduling unit 12 optimizes the ventilation schedule using a continuous optimization problem.
 つまり、実施の形態2に係る空調システムは、実施の形態1に係る空調システムのような、換気装置3への制御指令が4段階(強、中、弱、停止)の離散的な値であるものにおいて、最適換気スケジューリング部12が、換気装置3への制御指令が連続的な値であると仮定して、換気スケジュールの最適化を行うものである。空調負荷と消費電力との関係は、簡易的に2次式でモデル化する場合もあり、換気装置3への制御指令が連続的な値である場合には、そのようなモデルを用いることが可能となる。そのため、最適換気スケジューリング部12がそのような機能を有することで、最適換気スケジューリング部12で解かれる問題が二次計画問題として定式化されて、一般的な解法を用いることが可能となるため、最適化の演算を高速化することが可能となる。なお、制約条件として、CO濃度の上限値、各機器の制約される動作等の情報が用いられるとよい。 That is, in the air conditioning system according to the second embodiment, the control command to the ventilator 3 is a discrete value in four stages (strong, medium, weak, stop), like the air conditioning system according to the first embodiment. In the thing, the optimal ventilation scheduling part 12 optimizes a ventilation schedule on the assumption that the control command to the ventilation apparatus 3 is a continuous value. The relationship between the air conditioning load and the power consumption may be simply modeled by a quadratic equation. If the control command to the ventilator 3 is a continuous value, such a model may be used. It becomes possible. Therefore, since the optimal ventilation scheduling unit 12 has such a function, the problem solved by the optimal ventilation scheduling unit 12 is formulated as a quadratic programming problem and a general solution can be used. It is possible to speed up the optimization calculation. Note that information such as the upper limit value of the CO 2 concentration and the restricted operation of each device may be used as the constraint condition.
<最適換気スケジューリング部12の構成及び機能>
 図6を用いて、最適換気スケジューリング部12の構成及び機能を説明する。
 図6は、本発明の実施の形態2に係る空調システムの、最適換気スケジューリング部の機能ブロック図である。
<Configuration and function of optimal ventilation scheduling unit 12>
The configuration and function of the optimal ventilation scheduling unit 12 will be described with reference to FIG.
FIG. 6 is a functional block diagram of the optimum ventilation scheduling unit of the air conditioning system according to Embodiment 2 of the present invention.
 最適換気スケジューリング部12は、初期解生成部21に換えて、連続最適化部51と、連続最適換気スケジュール離散化部52と、を有する。 The optimal ventilation scheduling unit 12 includes a continuous optimization unit 51 and a continuous optimal ventilation schedule discretization unit 52 instead of the initial solution generation unit 21.
(連続最適化部51)
 連続最適化部51は、換気装置3への制御指令が連続的な値(例えば、定格比0~100%の値)であるとして、換気スケジュールを生成し、その換気スケジュールを連続最適換気スケジュールとして、記憶部15に記憶させる機能を有する。
(Continuous optimization unit 51)
The continuous optimization unit 51 generates a ventilation schedule on the assumption that the control command to the ventilator 3 is a continuous value (for example, a value with a rated ratio of 0 to 100%), and the ventilation schedule is set as the continuous optimal ventilation schedule. , Has a function of storing in the storage unit 15.
(連続最適換気スケジュール離散化部52)
 連続最適換気スケジュール離散化部52は、連続最適換気スケジュールを記憶部15から読み出し、その連続最適換気スケジュールにおける換気装置3への制御指令を4段階(強・中・弱・停止)に離散化した、換気スケジュールを生成し、その換気スケジュールを最適換気スケジュール候補の初期値として、記憶部15に記憶させる機能を有する。
(Continuous optimal ventilation schedule discretization unit 52)
The continuous optimum ventilation schedule discretization unit 52 reads the continuous optimum ventilation schedule from the storage unit 15 and discretizes control commands to the ventilation device 3 in the continuous optimum ventilation schedule into four stages (strong, medium, weak, and stop). The function of generating a ventilation schedule and storing the ventilation schedule in the storage unit 15 as an initial value of the optimal ventilation schedule candidate is provided.
 以下に、具体的な連続最適換気スケジュールの離散化の方法の一例を説明する。
 例えば、換気装置3への制御指令が強である場合に定格比100%となり、換気装置3への制御指令が中である場合に定格比60%となり、換気装置3への制御指令が弱である場合に定格比40%となり、換気装置3への制御指令が停止である場合に定格比0%となる場合には、連続最適換気スケジュールのある時刻の出力が、定格比100%~60%である場合に強とし、定格比60%~40%である場合に中とし、定格比40%~10%である場合に弱とし、定格比10%~0%である場合に停止とする。なお、その他の離散化の方法が用いられてもよい。
Hereinafter, an example of a method for discretizing a specific continuous optimum ventilation schedule will be described.
For example, when the control command to the ventilator 3 is strong, the rating ratio is 100%, when the control command to the ventilator 3 is medium, the rating ratio is 60%, and the control command to the ventilator 3 is weak. If the rating ratio is 40% in some cases and the rating ratio is 0% when the control command to the ventilator 3 is stopped, the output at the time with the continuous optimum ventilation schedule will be 100% to 60% rated ratio When the rating ratio is 60% to 40%, the rating is medium. When the rating ratio is 40% to 10%, the rating is weak. When the rating ratio is 10% to 0%, the rating is stopped. Other discretization methods may be used.
 以降は、実施の形態1に係る空調システムと同様の手順によって、最適換気スケジュールを取得する。 Thereafter, the optimum ventilation schedule is acquired by the same procedure as that of the air conditioning system according to the first embodiment.
<変形例>
 換気装置3への制御指令が、4段階(強、中、弱、停止)以外の離散的な値、例えば、10段階の離散的な値であってもよい。段階の数が大きくなる程、効果が顕著となる。
<Modification>
The control command to the ventilator 3 may be a discrete value other than four levels (strong, medium, weak, stop), for example, a discrete value of 10 levels. The effect becomes more pronounced as the number of stages increases.
 また、換気装置3が、連続的な値を制御指令として与えることができるものであってもよい。そのような場合では、連続最適化部51で生成された連続最適換気スケジュールが、最適換気スケジュール候補となる。 Further, the ventilator 3 may be capable of giving a continuous value as a control command. In such a case, the continuous optimal ventilation schedule generated by the continuous optimization unit 51 becomes the optimal ventilation schedule candidate.
 また、換気装置3に与えることができる制御指令が、定格比0%~100%の連続値ではなく、例えば、15%~100%の連続値であってもよい。そのような場合には、隣接換気スケジュール生成部22が、換気装置3がON状態である場合とOFF状態である場合とで演算を異ならせつつ、隣接換気スケジュールを生成し、隣接換気スケジュール評価部25が、この隣接換気スケジュールに対する評価関数値Jを求めることによって、連続最適化問題が解かれるとよい。 Also, the control command that can be given to the ventilator 3 may be a continuous value of 15% to 100%, for example, instead of a continuous value of 0% to 100% of the rated ratio. In such a case, the adjacent ventilation schedule generation unit 22 generates the adjacent ventilation schedule while calculating differently depending on whether the ventilation device 3 is in the ON state or the OFF state, and the adjacent ventilation schedule evaluation unit. 25, the continuous optimization problem may be solved by obtaining the evaluation function value J for this adjacent ventilation schedule.
<空調システムの作用>
 空調システム100では、最適換気スケジューリング部12が、換気装置3への制御指令が連続的な値であると仮定して、換気スケジュールの最適化を行う。そのため、最適解を得るまでに要する時間が短縮される。
<Operation of air conditioning system>
In the air conditioning system 100, the optimal ventilation scheduling unit 12 optimizes the ventilation schedule on the assumption that the control command to the ventilation device 3 is a continuous value. Therefore, the time required to obtain the optimal solution is shortened.
実施の形態3.
 以下に、実施の形態3に係る空調システムを説明する。
 なお、以下では、実施の形態1及び実施の形態2に係る空調システムと重複する説明は、適宜簡略化又は省略している。
 実施の形態3に係る空調システムでは、空調設備制御システム1において、最適換気スケジュールを補正する点で、実施の形態1に係る空調システムと異なる。
Embodiment 3 FIG.
The air conditioning system according to Embodiment 3 will be described below.
In addition, below, the description which overlaps with the air conditioning system which concerns on Embodiment 1 and Embodiment 2 is simplified or abbreviate | omitted suitably.
The air conditioning system according to Embodiment 3 differs from the air conditioning system according to Embodiment 1 in that the air conditioning equipment control system 1 corrects the optimum ventilation schedule.
 つまり、最適換気スケジューリング部12で生成された最適換気スケジュールは、前日に行われたCO濃度等の予測に基づくものである。そのため、制御実行時、つまり、最適換気スケジューリング部12で生成された最適換気スケジュールを実際に運用して換気装置3を制御する時に、その予測が外れた分だけ最適換気スケジュールを補正することで、空調システム100の省エネ性が更に向上される。 That is, the optimal ventilation schedule generated by the optimal ventilation scheduling unit 12 is based on the prediction of the CO 2 concentration and the like performed on the previous day. Therefore, at the time of control execution, that is, when the optimal ventilation schedule generated by the optimal ventilation scheduling unit 12 is actually operated to control the ventilator 3, by correcting the optimal ventilation schedule by the amount that the prediction is deviated, The energy saving performance of the air conditioning system 100 is further improved.
<空調設備制御システム1の構成及び機能>
 次に、図7を用いて、空調設備制御システム1の構成及び機能を説明する。
 図7は、本発明の実施の形態3に係る空調システムの、空調設備制御システムの機能ブロック図である。
<Configuration and function of air conditioning equipment control system 1>
Next, the configuration and function of the air conditioning equipment control system 1 will be described with reference to FIG.
FIG. 7 is a functional block diagram of the air conditioning equipment control system of the air conditioning system according to Embodiment 3 of the present invention.
 空調設備制御システム1は、条件設定部11と、最適換気スケジューリング部12と、入出力部13と、計測制御部14と、記憶部15と、に加えて、スケジュール補正部16を有する。また、計測部41は、CO濃度実測部(図示せず)を有している。以下の説明において、予測CO濃度とは、前日に最適換気スケジュールが立案されたときの1日のCO濃度変化の予測結果をいう。また、実測CO濃度とは、制御当日にCO濃度実測部によって計測されたデータを記憶部15に記憶したものをいう。 The air conditioning equipment control system 1 includes a schedule correction unit 16 in addition to a condition setting unit 11, an optimal ventilation scheduling unit 12, an input / output unit 13, a measurement control unit 14, and a storage unit 15. The measurement unit 41 has a CO 2 concentration actual measurement unit (not shown). In the following description, the predicted CO 2 concentration refers to the predicted result of the daily CO 2 concentration change when the optimal ventilation schedule is drawn up on the previous day. The actual measured CO 2 concentration refers to data stored in the storage unit 15 measured by the CO 2 concentration actual measurement unit on the day of control.
(スケジュール補正部16)
 スケジュール補正部16は、記憶部15から最適換気スケジュールを読み込み、その最適換気スケジュールを補正して、計測制御部14に出力する。
(Schedule correction unit 16)
The schedule correction unit 16 reads the optimal ventilation schedule from the storage unit 15, corrects the optimal ventilation schedule, and outputs it to the measurement control unit 14.
 以下に、最適換気スケジュールの補正方法の一例を説明する。
 ある時刻での、最適換気スケジュールにおける予測CO濃度をXp、実測CO濃度をXrとする。スケジュール補正部16は、予測誤差であるXr-Xpと、条件設定部11に設定された所定のCO濃度許容誤差Rと、を比較して、その比較結果に応じて補正を行う。スケジュール補正部16は、その比較と補正とを、例えば、30分周期で行う。
Below, an example of the correction | amendment method of an optimal ventilation schedule is demonstrated.
Assume that the predicted CO 2 concentration in the optimal ventilation schedule at a certain time is Xp, and the measured CO 2 concentration is Xr. The schedule correction unit 16 compares the prediction error Xr−Xp with the predetermined CO 2 concentration allowable error R set in the condition setting unit 11 and performs correction according to the comparison result. The schedule correction unit 16 performs the comparison and correction, for example, at a cycle of 30 minutes.
 |Xr-Xp|≦Rである時、つまり、予測誤差が小さい時は、スケジュール補正部16は、最適換気スケジュールにおける換気装置3への制御指令を補正せずに、計測制御部14に出力する。 When | Xr−Xp | ≦ R, that is, when the prediction error is small, the schedule correction unit 16 outputs to the measurement control unit 14 without correcting the control command to the ventilation device 3 in the optimal ventilation schedule. .
 Xr-Xp>Rである時、つまり、実測CO濃度が高い時、スケジュール補正部16は、最適換気スケジュールにおける換気装置3への制御指令を1段階上げる補正をして、計測制御部14に出力する。例えば、最適換気スケジュールにおける換気装置3への制御指令が中である場合には、強に補正する。 When Xr−Xp> R, that is, when the measured CO 2 concentration is high, the schedule correction unit 16 corrects the control command to the ventilation device 3 in the optimal ventilation schedule by one step, and sends it to the measurement control unit 14. Output. For example, when the control command to the ventilator 3 in the optimal ventilation schedule is medium, it is corrected strongly.
 Xr-Xp<-Rである時、つまり、実測CO濃度が低い時、スケジュール補正部16は、冷房時で、且つ、外気温<設定温度であれば、最適換気スケジュールにおける換気装置3への制御指令を補正せずに、計測制御部14に出力する。なお、換気量が増加した場合の換気装置3の消費電力の増加量よりも、空調機2の消費電力の減少量の方が大きい場合、換気量が増加するように補正してもよい。 When Xr−Xp <−R, that is, when the measured CO 2 concentration is low, the schedule correction unit 16 is in the cooling mode, and if the outside air temperature <the set temperature, The control command is output to the measurement control unit 14 without being corrected. In addition, you may correct | amend so that a ventilation amount may increase, when the reduction amount of the power consumption of the air conditioner 2 is larger than the increase amount of the power consumption of the ventilation apparatus 3 when a ventilation amount increases.
 Xr-Xp<-Rである時、つまり、実測CO濃度が低い時、スケジュール補正部16は、冷房時で、且つ、外気温≧設定温度であれば、最適換気スケジュールにおける換気装置3への制御指令を1段階下げる補正をして、計測制御部14に出力する。例えば、最適換気スケジュールにおける換気装置3への制御指令が中である場合には、弱に補正する。 When Xr−Xp <−R, that is, when the measured CO 2 concentration is low, the schedule correction unit 16 is in the cooling mode, and if the outside air temperature ≧ the set temperature, The control command is corrected by one step and output to the measurement control unit 14. For example, when the control command to the ventilator 3 in the optimal ventilation schedule is medium, it is corrected to be weak.
 Xr-Xp<-Rである時、つまり、実測CO濃度が低い時、スケジュール補正部16は、暖房時で、且つ、外気温≧設定温度であれば、最適換気スケジュールにおける換気装置3への制御指令を補正せずに、計測制御部14に出力する。 When Xr−Xp <−R, that is, when the measured CO 2 concentration is low, the schedule correction unit 16 is in the heating mode, and if the outside air temperature ≧ the set temperature, The control command is output to the measurement control unit 14 without being corrected.
 Xr-Xp<-Rである時、つまり、実測CO濃度が低い時、スケジュール補正部16は、暖房時で、且つ、外気温<設定温度であれば、最適換気スケジュールにおける換気装置3への制御指令を1段階下げる補正をして、計測制御部14に出力する。例えば、最適換気スケジュールにおける換気装置3への制御指令が中である場合には、弱に補正する。 When Xr−Xp <−R, that is, when the measured CO 2 concentration is low, the schedule correction unit 16 is in the heating mode, and if the outside air temperature <the set temperature, The control command is corrected by one step and output to the measurement control unit 14. For example, when the control command to the ventilator 3 in the optimal ventilation schedule is medium, it is corrected to be weak.
<変形例>
 スケジュール補正部16が、予測誤差であるXr-Xpと、条件設定部11に設定された複数のCO濃度許容誤差Rと、を比較して、その比較結果に応じて補正を行ってもよい。例えば、条件設定部11に、第1のCO濃度許容誤差R1と、第2のCO濃度許容誤差R2(R1>R2)と、が設定され、スケジュール補正部16が、Xr-Xp>R1である時、最適換気スケジュールにおける換気装置3への制御指令を2段階上げる補正をし、Xr-Xp≧R2である時、最適換気スケジュールにおける換気装置3への制御指令を1段階上げる補正をする。
<Modification>
The schedule correction unit 16 may compare the prediction error Xr−Xp with the plurality of CO 2 concentration allowable errors R set in the condition setting unit 11 and perform correction according to the comparison result. . For example, the condition setting unit 11 is set with a first CO 2 concentration allowable error R1 and a second CO 2 concentration allowable error R2 (R1> R2), and the schedule correction unit 16 sets Xr−Xp> R1. Is corrected to increase the control command to the ventilator 3 in the optimal ventilation schedule by two steps, and when Xr−Xp ≧ R2, the control command to the ventilator 3 in the optimal ventilation schedule is corrected to increase by one step. .
 また、CO濃度の予測誤差又はスケジュール補正の結果等に応じて、その後のCO濃度の時間変化を、最適換気スケジュール立案時の予測CO濃度に基づいて補正し、次のスケジュール補正時の予測CO濃度として用いてもよい。 Further, according to the prediction error of the CO 2 concentration or the result of the schedule correction, the subsequent change in the CO 2 concentration over time is corrected based on the predicted CO 2 concentration at the time of planning the optimal ventilation schedule, and at the time of the next schedule correction. It may be used as the predicted CO 2 concentration.
 また、スケジュール補正部16が、空調負荷の予測が外れた場合、外気温の予測が外れた場合等において、同様の補正を行ってもよい。 Further, the schedule correction unit 16 may perform the same correction when the air conditioning load is not predicted or when the outside air temperature is not predicted.
 なお、最適換気スケジューリング部12は、外気温予測部(図示せず)を有しており、また、計測部41は、外気温実測部(図示せず)を有している。これらは、例えば外気温の予測が外れた場合に使用されるものである。外気温予測部は、インターネット等により本システムの外部から入手した情報、又は外気温実測部で過去に実測されたデータ等に基づいて、翌日の外気温を予測する。そして、外気温予測部は、その予測結果を、予測外気温として記憶部15に記憶する。例えば、外気温実測部は、気象予報サービス等から得られる外気温をインターネットから取得し、それをそのまま記憶部15に記憶する。外気温実測部において過去に実測されたデータの利用方法としては、例えば、前日の1時間毎の外気温変化を翌日の予測外気温とする方法、又は過去1週間の1時間毎の平均外気温の時間変化を翌日の予測外気温とする方法等が挙げられる。 The optimal ventilation scheduling unit 12 has an outside air temperature prediction unit (not shown), and the measurement unit 41 has an outside air temperature measurement unit (not shown). These are used, for example, when the outside air temperature is not predicted. The outside air temperature predicting unit predicts the outside air temperature of the next day based on information obtained from outside the system through the Internet or the like or data measured in the past by the outside air temperature measuring unit. Then, the outside air temperature prediction unit stores the prediction result in the storage unit 15 as the predicted outside air temperature. For example, the outside air temperature measurement unit acquires the outside air temperature obtained from the weather forecast service or the like from the Internet, and stores it in the storage unit 15 as it is. As a method of using data measured in the past in the outside air temperature measurement section, for example, a method of setting the outside air temperature change every hour on the previous day as the predicted outside air temperature on the next day, or the average outside air temperature per hour in the past week The method of making the time change of this into the predicted outside temperature of the next day, etc. are mentioned.
 スケジュール補正部16は、外気温の予測誤差、即ち前日の予測外気温と当日の実測外気温との差に基づいて、換気スケジュールを補正する。例えば、スケジュール補正部16は、冷房運転時に、実測外気温が予測外気温よりも1℃以上低いときに、換気量を1段階増加させる。また、例えば、スケジュール補正部16は、暖房運転時に、実測外気温が予測外気温よりも1℃以上高いときに、換気量を1段階増加させる。これにより、更に省エネを実現することができる。なお、上記において、温度閾値を1℃、換気量の増加幅を1段階とした場合について例示しているが、これに限定されない。 The schedule correction unit 16 corrects the ventilation schedule based on the prediction error of the outside temperature, that is, the difference between the predicted outside temperature of the previous day and the actually measured outside temperature of the day. For example, the schedule correction unit 16 increases the ventilation amount by one step when the measured outside air temperature is 1 ° C. or more lower than the predicted outside air temperature during the cooling operation. Further, for example, the schedule correction unit 16 increases the ventilation amount by one step when the measured outside air temperature is 1 ° C. or more higher than the predicted outside air temperature during the heating operation. Thereby, further energy saving can be realized. In addition, although the case where the temperature threshold value is 1 ° C. and the increase amount of the ventilation amount is one stage is illustrated in the above, it is not limited thereto.
 なお、スケジュール補正部16は、CO濃度の予測誤差による補正と共に、換気量を減少させる補正も行う。この場合、スケジュール補正部16は、法令等の基準が存在するCO濃度の増加が許容される範囲で、換気量を減少させる補正を行う。スケジュール補正部16は、CO濃度の予測誤差による補正と同様に、スケジュール補正の結果に応じて、その後のCO濃度の時間変化を、最適換気スケジュール立案時の予測CO濃度に基づいて補正し、次のスケジュール補正時の予測CO濃度として用いてもよい。また、スケジュール補正部16は、インターネット等から最新の予測外気温を定期的に取得して、その後の外気温変化も加味されたスケジュール補正を行うようにしてもよい。 Incidentally, the schedule corrector 16, together with the correction by the prediction error of the CO 2 concentration also performs correction to reduce the ventilation. In this case, the schedule correction unit 16 performs correction to reduce the ventilation amount within a range in which an increase in the CO 2 concentration in which standards such as laws and regulations exist is allowed. Schedule correction unit 16, similarly to the correction by the prediction error of the CO 2 concentration, according to the result of the scheduling correction, the time variation of the subsequent CO 2 concentration, the correction based on the predicted CO 2 concentration at the time of optimal ventilation schedule planning Then, it may be used as the predicted CO 2 concentration at the next schedule correction. Moreover, the schedule correction | amendment part 16 may acquire the newest predicted outside temperature from the internet etc. regularly, and you may make it perform the schedule correction | amendment which also considered the outside temperature change after that.
<空調システムの作用>
 空調システム100では、制御実行時に、予測が外れた分だけ最適換気スケジュールが補正される。そのため、空調設備全体としての省エネ性が更に向上される。また、例えば1日間等の長い期間での省エネ性が更に向上される。
<Operation of air conditioning system>
In the air conditioning system 100, the optimal ventilation schedule is corrected by an amount that is out of prediction when the control is executed. Therefore, the energy saving performance as the whole air conditioning equipment is further improved. In addition, energy saving performance over a long period such as one day is further improved.
 以上、実施の形態1~実施の形態3について説明したが、本発明は各実施の形態の説明に限定されない。例えば、実施の形態の全て又は一部、変形例等を組み合わせることも可能である。 Although the first to third embodiments have been described above, the present invention is not limited to the description of each embodiment. For example, it is possible to combine all or part of the embodiments, modification examples, and the like.
 1 空調設備制御システム、1a 空調コントローラ、1b 空調制御用計算機、1c 機器接続用コントローラ、1n、1o ネットワーク、2 空調機、2a 熱源機、2b 室内機、3 換気装置、3a ファン、3b 熱交換ユニット、3c 熱源機、3d 熱交換器、3e 加湿器、3f 除湿器、3g ヒータ、11 条件設定部、12 最適換気スケジューリング部、13 入出力部、14 計測制御部、15 記憶部、16 スケジュール補正部、21 初期解生成部、22 隣接換気スケジュール生成部、23 CO濃度予測部、24 空調負荷予測部、25 隣接換気スケジュール評価部、26 最適換気スケジュール候補更新部、27 終了判定部、31 入力部、32 表示部、41 計測部、42 制御部、51 連続最適化部、52 連続最適換気スケジュール離散化部、100 空調システム。 DESCRIPTION OF SYMBOLS 1 Air-conditioning equipment control system, 1a Air-conditioning controller, 1b Air-conditioning control computer, 1c Device connection controller, 1n, 1o network, 2 Air-conditioning machine, 2a Heat source machine, 2b Indoor unit, 3 Ventilation device, 3a fan, 3b Heat exchange unit 3c heat source unit, 3d heat exchanger, 3e humidifier, 3f dehumidifier, 3g heater, 11 condition setting unit, 12 optimum ventilation scheduling unit, 13 input / output unit, 14 measurement control unit, 15 storage unit, 16 schedule correction unit , 21 initial solution generation unit, 22 adjacent ventilation schedule generation unit, 23 CO 2 concentration prediction unit, 24 air conditioning load prediction unit, 25 adjacent ventilation schedule evaluation unit, 26 optimum ventilation schedule candidate update unit, 27 end determination unit, 31 input unit 32 display unit 41 measurement unit 42 control unit 51 continuous optimization unit 52 continuous optimal ventilation schedule Discretization unit, 100 air conditioning system.

Claims (4)

  1.  空調機と、換気装置と、を有する空調設備と、
     前記空調設備の動作を制御する空調設備制御システムと、を備え、
     前記空調設備制御システムは、
     計画対象期間における室内のCO濃度を予測するCO濃度予測部と、
     前記計画対象期間における前記空調機の負荷を予測する空調負荷予測部と、
     前記計画対象期間における前記換気装置の換気動作のスケジュールを生成する換気スケジューリング部と、
     前記計画対象期間に、前記スケジュールに基づいて前記換気装置の換気動作を制御する制御部と、を有し、
     前記換気スケジューリング部は、
     前記CO濃度予測部で予測されるCO濃度が前記計画対象期間の少なくとも一部の期間に亘って基準値を超えない状態に維持される、複数のスケジュール候補を生成し、
     前記複数のスケジュール候補の中から、前記室内の温度が基準の温度範囲内に維持されるときの前記空調設備の消費電力量又は電気料金が相対的に小さいスケジュール候補を、前記スケジュールとして採用する、
     ことを特徴とする空調システム。
    An air conditioner having an air conditioner and a ventilator;
    An air conditioning equipment control system for controlling the operation of the air conditioning equipment,
    The air conditioning equipment control system includes:
    A CO 2 concentration prediction unit for predicting the indoor CO 2 concentration in the planning target period;
    An air conditioning load prediction unit for predicting a load of the air conditioner in the planning target period;
    A ventilation scheduling unit for generating a schedule of ventilation operations of the ventilation device in the planning target period;
    A control unit that controls the ventilation operation of the ventilator based on the schedule in the planning target period;
    The ventilation scheduling unit
    The CO 2 concentration CO 2 concentration predicted by the prediction unit is maintained in a state that does not exceed the reference value over at least a portion of the period of the plan period, generating a plurality of schedules candidates,
    Among the plurality of schedule candidates, a schedule candidate having a relatively small power consumption or electricity rate of the air conditioning equipment when the indoor temperature is maintained within a reference temperature range is adopted as the schedule.
    An air conditioning system characterized by that.
  2.  前記空調設備制御システムは、
     室内のCO濃度を実測するCO濃度実測部を有し、
     前記制御部は、
     前記CO濃度予測部で予測されたCO濃度と、前記CO濃度実測部で実測されたCO濃度と、の差に基づいて補正された前記スケジュールに基づいて、前記換気装置の換気動作を制御する、
     ことを特徴とする請求項1に記載の空調システム。
    The air conditioning equipment control system includes:
    It has a CO 2 concentration measurement unit that measures the indoor CO 2 concentration,
    The controller is
    And predicted the CO 2 concentration in the CO 2 concentration prediction unit, based on the corrected the schedule based on the difference, and the CO 2 concentration which is measured by the CO 2 concentration measuring unit, the ventilation operation of the ventilator To control the
    The air conditioning system according to claim 1.
  3.  前記空調設備制御システムは、
     外気温を予測する外気温予測部と、
     外気温を実測する外気温実測部と、を有し、
     前記制御部は、
     前記外気温予測部で予測された外気温と、前記外気温実測部で実測された外気温と、の差に基づいて補正された前記スケジュールに基づいて、前記換気装置の換気動作を制御する、
     ことを特徴とする請求項1又は2に記載の空調システム。
    The air conditioning equipment control system includes:
    An outside air temperature prediction unit for predicting the outside air temperature,
    An outside air temperature measurement unit for actually measuring the outside air temperature,
    The controller is
    Based on the schedule corrected based on the difference between the outside air temperature predicted by the outside air temperature predicting unit and the outside air temperature actually measured by the outside air temperature measuring unit, the ventilation operation of the ventilator is controlled.
    The air conditioning system according to claim 1 or 2.
  4.  空調機と、換気装置と、を有する空調設備の制御方法であって、
     計画対象期間における室内のCO濃度を予測するCO濃度予測ステップと、
     前記計画対象期間における前記空調機の負荷を予測する空調負荷予測ステップと、
     前記計画対象期間における前記換気装置の換気動作のスケジュールを生成する換気スケジューリングステップと、
     前記計画対象期間に、前記スケジュールに基づいて前記換気装置の換気動作を制御する制御ステップと、を備え、
     前記換気スケジューリングステップは、
     前記CO濃度予測ステップで予測されるCO濃度が前記計画対象期間の少なくとも一部の期間に亘って基準値を超えない状態に維持される、複数のスケジュール候補を生成し、
     前記複数のスケジュール候補の中から、前記室内の温度が基準の温度範囲内に維持されるときの前記空調設備の消費電力量又は電気料金が相対的に小さいスケジュール候補を、前記スケジュールとして採用する、
     ことを特徴とする空調設備の制御方法。
    A control method for air conditioning equipment having an air conditioner and a ventilator,
    A CO 2 concentration prediction step for predicting the indoor CO 2 concentration in the planning target period;
    An air conditioning load prediction step for predicting the load of the air conditioner in the planning target period;
    A ventilation scheduling step for generating a schedule of ventilation operations of the ventilator during the planning period;
    A control step for controlling the ventilation operation of the ventilator based on the schedule in the planning target period, and
    The ventilation scheduling step includes:
    The CO 2 concentration CO 2 concentration predicted by the prediction step is maintained in a state that does not exceed the reference value over at least a portion of the period of the plan period, generating a plurality of schedules candidates,
    Among the plurality of schedule candidates, a schedule candidate having a relatively small power consumption or electricity rate of the air conditioning equipment when the indoor temperature is maintained within a reference temperature range is adopted as the schedule.
    The control method of the air-conditioning equipment characterized by the above-mentioned.
PCT/JP2014/084311 2014-03-31 2014-12-25 Air-conditioning system and control method for air-conditioning equipment WO2015151363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534703A JPWO2015151363A1 (en) 2014-03-31 2014-12-25 Air conditioning system and control method for air conditioning equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-071626 2014-03-31
JP2014071626 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151363A1 true WO2015151363A1 (en) 2015-10-08

Family

ID=54239720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084311 WO2015151363A1 (en) 2014-03-31 2014-12-25 Air-conditioning system and control method for air-conditioning equipment

Country Status (2)

Country Link
JP (1) JPWO2015151363A1 (en)
WO (1) WO2015151363A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679099A (en) * 2016-12-28 2017-05-17 杭州裕达自动化科技有限公司 Intelligent electricity-saving control method for terminal fresh air system in central air conditioner monitoring system
JPWO2017002245A1 (en) * 2015-07-01 2018-02-22 三菱電機株式会社 Air conditioning system control device and air conditioning system
CN109724226A (en) * 2018-12-13 2019-05-07 青岛海尔空调器有限总公司 The control method of air conditioner
US20190264940A1 (en) * 2018-02-28 2019-08-29 Samsung Electronics Co., Ltd. Compound control apparatus and method thereof in air conditioning system
WO2020070794A1 (en) * 2018-10-02 2020-04-09 三菱電機株式会社 Information processing device and air-conditioning system provided with same
KR20200057831A (en) * 2018-11-14 2020-05-27 신성민 Control system for smart farm
CN111397152A (en) * 2020-03-30 2020-07-10 广东美的制冷设备有限公司 Air conditioning equipment and control method and device thereof
WO2020235077A1 (en) * 2019-05-23 2020-11-26 三菱電機株式会社 Air-conditioner control device and air-conditioner
CN113685914A (en) * 2021-07-30 2021-11-23 重庆海尔空调器有限公司 Air conditioner linkage dust removal system and dust removal method
WO2022269761A1 (en) * 2021-06-22 2022-12-29 東芝キヤリア株式会社 Refrigeration cycle device, refrigerant leak detection system, and information processing device
JP2023031247A (en) * 2021-08-23 2023-03-08 旭化成エレクトロニクス株式会社 Carbon dioxide concentration prediction system, carbon dioxide concentration prediction method and carbon dioxide concentration prediction program
JP7450141B2 (en) 2019-02-27 2024-03-15 パナソニックIpマネジメント株式会社 Air conditioning system, air conditioning control program, and storage medium that stores the air conditioning control program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108518811A (en) * 2018-03-07 2018-09-11 青岛海尔空调器有限总公司 Method and apparatus, air treatment system and computer readable storage medium for controlling air device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145070A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Air conditioning system and air conditioning system control method
US20100025483A1 (en) * 2008-07-31 2010-02-04 Michael Hoeynck Sensor-Based Occupancy and Behavior Prediction Method for Intelligently Controlling Energy Consumption Within a Building
US20120064818A1 (en) * 2010-08-26 2012-03-15 Kurelowech Richard S Heat recovery and demand ventilationsystem
JP2013053836A (en) * 2011-09-06 2013-03-21 Kimura Kohki Co Ltd Outdoor arrangement with air-conditioning function
US20130158722A1 (en) * 2011-12-14 2013-06-20 Industrial Technology Research Institute Air conditioning control device and method thereof
US20130231792A1 (en) * 2012-03-05 2013-09-05 Siemens Corporation System and Method of Energy Management Control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030181158A1 (en) * 2002-01-31 2003-09-25 Edwards Systems Technology, Inc. Economizer control
JP2012094077A (en) * 2010-10-28 2012-05-17 Toshiba Corp Household energy management system
US10373082B2 (en) * 2011-02-24 2019-08-06 Qcoefficient, Inc. Integration of commercial building operations with electric system operations and markets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145070A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Air conditioning system and air conditioning system control method
US20100025483A1 (en) * 2008-07-31 2010-02-04 Michael Hoeynck Sensor-Based Occupancy and Behavior Prediction Method for Intelligently Controlling Energy Consumption Within a Building
US20120064818A1 (en) * 2010-08-26 2012-03-15 Kurelowech Richard S Heat recovery and demand ventilationsystem
JP2013053836A (en) * 2011-09-06 2013-03-21 Kimura Kohki Co Ltd Outdoor arrangement with air-conditioning function
US20130158722A1 (en) * 2011-12-14 2013-06-20 Industrial Technology Research Institute Air conditioning control device and method thereof
US20130231792A1 (en) * 2012-03-05 2013-09-05 Siemens Corporation System and Method of Energy Management Control

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017002245A1 (en) * 2015-07-01 2018-02-22 三菱電機株式会社 Air conditioning system control device and air conditioning system
CN106679099A (en) * 2016-12-28 2017-05-17 杭州裕达自动化科技有限公司 Intelligent electricity-saving control method for terminal fresh air system in central air conditioner monitoring system
KR102472214B1 (en) * 2018-02-28 2022-11-30 삼성전자주식회사 Compound control apparatus and method thereof in air conditioning system
US10890349B2 (en) 2018-02-28 2021-01-12 Samsung Electronics Co., Ltd Compound control apparatus and method thereof in air conditioning system
KR20190103890A (en) * 2018-02-28 2019-09-05 삼성전자주식회사 Compound control apparatus and method thereof in air conditioning system
WO2019168349A1 (en) 2018-02-28 2019-09-06 Samsung Electronics Co., Ltd. Compound control apparatus and method thereof in air conditioning system
CN111788435B (en) * 2018-02-28 2022-07-19 三星电子株式会社 Composite control device and method in air conditioning system
US20190264940A1 (en) * 2018-02-28 2019-08-29 Samsung Electronics Co., Ltd. Compound control apparatus and method thereof in air conditioning system
CN111788435A (en) * 2018-02-28 2020-10-16 三星电子株式会社 Composite control device and method in air conditioning system
EP3682170A4 (en) * 2018-02-28 2020-08-26 Samsung Electronics Co., Ltd. Compound control apparatus and method thereof in air conditioning system
EP3862644A4 (en) * 2018-10-02 2021-10-13 Mitsubishi Electric Corporation Information processing device and air-conditioning system provided with same
JP7170740B2 (en) 2018-10-02 2022-11-14 三菱電機株式会社 Information processing device and air conditioning system equipped with the same
US11578889B2 (en) 2018-10-02 2023-02-14 Mitsubishi Electric Corporation Information processing apparatus and air-conditioning system provided with the same
JPWO2020070794A1 (en) * 2018-10-02 2021-05-13 三菱電機株式会社 Information processing device and air conditioning system equipped with it
WO2020070794A1 (en) * 2018-10-02 2020-04-09 三菱電機株式会社 Information processing device and air-conditioning system provided with same
US20210302044A1 (en) * 2018-10-02 2021-09-30 Mitsubishi Electric Corporation Information processing apparatus and air-conditioning system provided with the same
KR20200057831A (en) * 2018-11-14 2020-05-27 신성민 Control system for smart farm
KR102366075B1 (en) * 2018-11-14 2022-02-22 신성민 Control system for smart farm
CN109724226B (en) * 2018-12-13 2021-05-25 青岛海尔空调器有限总公司 Control method of air conditioner
CN109724226A (en) * 2018-12-13 2019-05-07 青岛海尔空调器有限总公司 The control method of air conditioner
JP7450141B2 (en) 2019-02-27 2024-03-15 パナソニックIpマネジメント株式会社 Air conditioning system, air conditioning control program, and storage medium that stores the air conditioning control program
WO2020235077A1 (en) * 2019-05-23 2020-11-26 三菱電機株式会社 Air-conditioner control device and air-conditioner
JP7112054B2 (en) 2019-05-23 2022-08-03 三菱電機株式会社 Control device for air conditioner, and air conditioner
JPWO2020235077A1 (en) * 2019-05-23 2021-10-21 三菱電機株式会社 Air conditioner control device and air conditioner
CN111397152A (en) * 2020-03-30 2020-07-10 广东美的制冷设备有限公司 Air conditioning equipment and control method and device thereof
CN111397152B (en) * 2020-03-30 2022-05-10 广东美的制冷设备有限公司 Air conditioning equipment and control method and device thereof
WO2022269761A1 (en) * 2021-06-22 2022-12-29 東芝キヤリア株式会社 Refrigeration cycle device, refrigerant leak detection system, and information processing device
CN113685914A (en) * 2021-07-30 2021-11-23 重庆海尔空调器有限公司 Air conditioner linkage dust removal system and dust removal method
JP2023031247A (en) * 2021-08-23 2023-03-08 旭化成エレクトロニクス株式会社 Carbon dioxide concentration prediction system, carbon dioxide concentration prediction method and carbon dioxide concentration prediction program
JP7367134B2 (en) 2021-08-23 2023-10-23 旭化成エレクトロニクス株式会社 Carbon dioxide concentration prediction system, carbon dioxide concentration prediction method, and carbon dioxide concentration prediction program

Also Published As

Publication number Publication date
JPWO2015151363A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2015151363A1 (en) Air-conditioning system and control method for air-conditioning equipment
US10908578B2 (en) Temperature control system and methods for operating same
EP3497377B1 (en) Temperature control system and methods for operating same
JP5668970B2 (en) Operation management device, operation management method, and operation management program
JP5696877B2 (en) Operation management device, operation management method, and operation management program
JP4363244B2 (en) Energy management equipment
CN109312951B (en) Air conditioner management device, heat source equipment management device, air conditioner management method, and heat source equipment management method
CA2795424C (en) Energy saving unit and system for buildings by mutual learning
JP6252673B2 (en) Parameter learning apparatus and parameter learning method
Sun et al. An integrated control of shading blinds, natural ventilation, and HVAC systems for energy saving and human comfort
JP6108333B2 (en) Operation management device, operation management method, operation management program
CN103221755A (en) Air conditioning information estimation device, control method of air conditioning information estimation device, and control program
JP6605181B2 (en) Operation control device, air conditioning system, operation control method, and operation control program
JP2004301505A (en) Air-conditioning controller
Lachhab et al. A state-feedback approach for controlling ventilation systems in energy efficient buildings
JP6389599B2 (en) Operation plan creation device and operation plan creation method
JP5725364B2 (en) Operation management device, operation management method, and operation management program
TW202014648A (en) Ice storage amount adjusting system and adjusting method for the same
Weng et al. RNN-based forecasting of indoor temperature in a naturally ventilated residential building
JP6198953B2 (en) Management device, management system, management method, and program
JP2019143909A (en) Control device, air conditioning control system, control method and program
JP4917866B2 (en) Season judgment method
Ren et al. Predictive optimal control of fabric thermal storage systems
KR20240018816A (en) Optimal control method of HVAC systems based on machine learning models
JP2020101357A (en) Air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015534703

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887909

Country of ref document: EP

Kind code of ref document: A1