JP2013053836A - Outdoor arrangement with air-conditioning function - Google Patents

Outdoor arrangement with air-conditioning function Download PDF

Info

Publication number
JP2013053836A
JP2013053836A JP2011194343A JP2011194343A JP2013053836A JP 2013053836 A JP2013053836 A JP 2013053836A JP 2011194343 A JP2011194343 A JP 2011194343A JP 2011194343 A JP2011194343 A JP 2011194343A JP 2013053836 A JP2013053836 A JP 2013053836A
Authority
JP
Japan
Prior art keywords
air
heat exchange
exchange coil
temperature
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011194343A
Other languages
Japanese (ja)
Other versions
JP5518812B2 (en
Inventor
Keiichi Kimura
恵一 木村
Takayuki Ishida
貴之 石田
Kazuya Goto
和也 後藤
Original Assignee
Kimura Kohki Co Ltd
木村工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kohki Co Ltd, 木村工機株式会社 filed Critical Kimura Kohki Co Ltd
Priority to JP2011194343A priority Critical patent/JP5518812B2/en
Publication of JP2013053836A publication Critical patent/JP2013053836A/en
Application granted granted Critical
Publication of JP5518812B2 publication Critical patent/JP5518812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an outdoor arrangement with air conditioning functions featuring both comfortability and energy conservation.SOLUTION: A casing 1 is internally provided with a heat exchange coil 9, through which hot and cold water for heat exchange flows for the purpose of heating and cooling air-conditioning air; and a fan 10, which sends air to the inside of a room by letting air-conditioning air pass through the heat exchange coil 9. There are also included an air quantity adjustment mechanism D that freely adjusts the mixture ratio between the outside air and return air, a gate operating mechanism V that freely adjusts the hot and cold water of the heat exchange coil 9, and a control unit 3. The control unit 3 includes a COcontrol means 22 for controlling the mixture ratio of air-conditioning air by the air quantity adjustment mechanism D so that indoor carbon dioxide concentration may be a set concentration, and a water quantity control means 23 that controls hot and cold water quantity by the gate operating mechanism V so that the supply air temperature of air passing through the heat exchange coil may be a set supply air temperature and controls hot and cold water quantity by the gate operating mechanism V so that the temperature difference of hot and cold water outlet/inlet water of the heat exchange coil may be a set temperature difference of water.

Description

本発明は空調機能付外調機に関するものである。   The present invention relates to an external air conditioner with an air conditioning function.
冷温水式の空調システムは、冷温水の温度を調整する熱源機、冷温水を受けて熱交換コイルで室内空気の温湿度を調整して室内の空調を行う空調機と、冷温水を受けて熱交換コイルと加湿器で外気の温湿度を調整して室内へ供給する外気処理空調機(外調機)と、空調機、外調機、熱源機に冷温水を循環させる配管および送水ポンプと、空調機、外調機から室内へ送風するダクトと、で構成されているが、空調機や外調機を設置する専用の機械室が必要で施工が面倒となりコストが掛かる問題があった。   The cold / hot water type air conditioning system has a heat source device that adjusts the temperature of the cold / hot water, an air conditioner that receives the cold / hot water and adjusts the temperature / humidity of the indoor air with a heat exchange coil, and a cold / hot water An outside air processing air conditioner (outside air conditioner) that adjusts the temperature and humidity of the outside air with a heat exchange coil and a humidifier, and supplies piping to the air conditioner, external air conditioner, and heat source equipment, The air conditioner and the duct that blows air from the external air conditioner to the room are required. However, a dedicated machine room for installing the air conditioner and the external air conditioner is required, which causes troublesome construction and high costs.
特開平9−243141号公報JP-A-9-243141
また、冷温水式空調システムでエネルギーを消費するのは、熱源機、空調機及び外調機のファン、送水ポンプである。
熱源機には、ヒートポンプ式チラー、ターボ冷凍機および吸収式冷凍機などがあり、空調機及び外調機の熱交換コイルで吸熱または放熱して還ってきた水を冷却または加熱し、所定温度に調整する。
なお、所定の延べ面積以上のビルに対しては、室内の二酸化炭素(CO2)濃度が1000ppm以下になるように外気を取入れることが定められており、外調機等のファンで外気を取り入れている。
これらのエネルギー消費量を、いかに削減するかが省エネのポイントとなる。この熱源機、ファンおよび送水ポンプのエネルギー消費量には次のような関係があることがわかっている。
(1)熱源機のエネルギー消費量は、空調機及び外調機の熱交換コイル冷温水入口温度(熱源機冷温水出口温度)の変化にともなって増減する。
(2)送水ポンプのエネルギー消費量は、空調機及び外調機の熱交換コイル冷温水出入口温度差(熱源機冷温水出入口水温度差)の変化にともなって増減する。
(3)ファンのエネルギー消費量は、空調機及び外調機の給気温度(給気風量)の変化にともなって増減する。
ところが、従来では、これらを考慮せずに空調機、外調機等を設計、運転制御しており、無駄なエネルギー消費量が増加する状況にあった。
In the cold / hot water type air conditioning system, energy is consumed by the heat source unit, the air conditioner, the fan of the air conditioner, and the water pump.
Heat source equipment includes heat pump chillers, turbo chillers, absorption chillers, etc., and cools or heats the water that has been absorbed or dissipated by the heat exchange coils of the air conditioner and external air conditioner to a predetermined temperature. adjust.
In addition, it is stipulated that the outside air is taken in so that the carbon dioxide (CO2) concentration in the room is 1000 ppm or less for a building with a predetermined total area or more, and the outside air is taken in by a fan such as an air conditioner. ing.
The point of energy saving is how to reduce these energy consumptions. It is known that the energy consumption of the heat source machine, fan and water pump has the following relationship.
(1) The energy consumption of the heat source device increases or decreases with changes in the heat exchange coil cold / hot water inlet temperature (heat source device cold / hot water outlet temperature) of the air conditioner and the external air conditioner.
(2) The energy consumption of the water pump increases and decreases with changes in the heat exchange coil cold / hot water inlet / outlet temperature difference (heat source machine cold / hot water inlet / outlet water temperature difference) of the air conditioner and the external air conditioner.
(3) The energy consumption of the fan increases and decreases with changes in the supply air temperature (supply air volume) of the air conditioner and the external air conditioner.
However, conventionally, air conditioners, external air conditioners, and the like are designed and controlled without taking these into consideration, and wasteful energy consumption has increased.
本発明は上記課題を解決するため、天井裏又は室内の一部に設けた閉空間に、空調用空気として屋外からの外気と室内からの還気とを混合比率調整自在に導入する風量調整機構を設け、
前記閉空間内の前記空調用空気を取入れる空気取入口を有すると共に給気ダクトを連通連結したケーシングを、前記閉空間内に設置し、
前記ケーシング内に、前記空調用空気が通る熱交換コイルと、前記空調用空気を前記熱交換コイルに通過させて前記給気ダクトから前記室内へ送風するファンと、を設け、
熱交換コイル通過空気に加湿用の蒸気を放出する蒸気式加湿器と、前記室内の二酸化炭素濃度が設定濃度になるように前記風量調整機構で前記空調用空気の混合比率を制御するCO2制御手段と、を備えたことを最も主要な特徴とする。
また、ケーシング内に、空調用空気を冷却・加熱するための熱交換用冷温水が流れる熱交換コイルと、前記空調用空気を前記熱交換コイルに通過させて室内へ送風するファンと、を設け、
前記空調用空気として屋外からの外気と室内からの還気との混合比率を調整自在な風量調整機構と、前記熱交換コイルの冷温水流量を調整自在な水量調整機構と、制御装置と、を備え、
前記制御装置が、
前記室内の二酸化炭素濃度が設定濃度になるように前記風量調整機構で前記空調用空気の混合比率を制御するCO2制御手段と、
熱交換コイル通過空気の給気温度が設定給気温度に熱交換コイル冷温水出入口水温度差が設定水温度差に各々なるように前記水量調整機構で前記冷温水流量を制御する水量制御手段と、を備えたことを最も主要な特徴とする。
In order to solve the above problems, the present invention provides an air volume adjusting mechanism for introducing outside air from the outside and return air from the room as air-conditioning air into the closed space provided in the back of the ceiling or part of the room so that the mixing ratio can be adjusted. Provided,
A casing having an air intake for taking in the air for air conditioning in the closed space and having an air supply duct connected thereto is installed in the closed space;
In the casing, a heat exchange coil through which the air-conditioning air passes, and a fan that passes the air-conditioning air through the heat exchange coil and blows air from the air supply duct into the room, are provided.
A steam humidifier that releases steam for humidification to the air passing through the heat exchange coil, and CO2 control means for controlling the air-conditioning air mixing ratio by the air volume adjustment mechanism so that the carbon dioxide concentration in the room becomes a set concentration The main feature is that
In addition, a heat exchange coil through which cool / warm water for heat exchange for cooling and heating the air-conditioning air flows and a fan for passing the air-conditioning air through the heat-exchange coil and blowing the air into the room are provided in the casing. ,
As the air conditioning air, an air volume adjustment mechanism capable of adjusting a mixing ratio of outdoor air from the outside and return air from the room, a water quantity adjustment mechanism capable of adjusting a flow rate of the cold / hot water of the heat exchange coil, and a control device, Prepared,
The control device is
CO2 control means for controlling the mixing ratio of the air for air conditioning by the air volume adjusting mechanism so that the carbon dioxide concentration in the room becomes a set concentration;
Water amount control means for controlling the flow rate of the cold / hot water by the water amount adjustment mechanism so that the supply air temperature of the air passing through the heat exchange coil becomes the set supply air temperature and the heat exchange coil cold / hot water inlet / outlet water temperature difference becomes the set water temperature difference; The most important feature is that
請求項1の発明によれば、
(1)天井裏又は室内の一部にパーティションなどで閉空間を作って空調機能付外調機を設置すればよく、風量調整機構とケーシングとを連結するダクトが不要なので、施工が容易で、工期短縮、コストダウンを図れる。閉空間を空気取入チャンバに兼用できるので送風ダクトの部材が不要となり、コスト低減を図れる。
(2)ダクトが給気用だけで済むのでケーシング周りに障害物が少なくメンテナンスが容易で、余分な送風ダクトがない分、圧力損失が少なく、省エネとなる。
(3)閉空間内で外気と還気が混ざるので混合ムラがなく均一な熱交換ができ、蒸気加湿なので室内の温湿度制御の精度向上を図れる。
(4)外気と還気を混合して熱交換するので中間期など空調負荷が少ない場合、外気処理と還気処理を空調機能付外調機単独で行うことができ、空調機能付外調機以外の空調機を停止または間欠運転できるため省エネとなる。
(5)多機能で冷却運転・加熱運転・送風運転・全外気冷却運転・冬期冷却・低温加湿ができて幅広い空調ニーズに対応し得る。
(6)外気負荷が大きい場合、在室人数減少等により二酸化炭素濃度が低くなると、CO2制御手段によって外気量を減らして空調エネルギー消費量の低減を図ることができる。
According to the invention of claim 1,
(1) It is only necessary to create a closed space in the back of the ceiling or part of the room with a partition, etc., and install an air conditioner with an air conditioning function. Since there is no need for a duct to connect the air volume adjustment mechanism and the casing, construction is easy. The construction period can be shortened and the cost can be reduced. Since the closed space can also be used as an air intake chamber, a member for the air duct is not necessary, and the cost can be reduced.
(2) Since the duct is only used for supplying air, there are few obstacles around the casing, maintenance is easy, and since there is no extra air duct, there is little pressure loss and energy saving.
(3) Since the outside air and the return air are mixed in the closed space, there is no uneven mixing and uniform heat exchange can be achieved, and steam humidification can improve the accuracy of indoor temperature and humidity control.
(4) Since the outside air and the return air are mixed and heat exchanged, when the air conditioning load is small, such as in the intermediate period, the outside air treatment and the return air treatment can be performed independently by the air conditioner external air conditioner. It can save energy because other air conditioners can be stopped or intermittently operated.
(5) Multifunctional cooling operation, heating operation, air blowing operation, all outside air cooling operation, winter cooling, and low temperature humidification can meet a wide range of air conditioning needs.
(6) When the outside air load is large and the carbon dioxide concentration is lowered due to a decrease in the number of people in the room, the amount of outside air can be reduced by the CO2 control means to reduce the air conditioning energy consumption.
請求項2の発明によれば、
(1)CO2制御手段では、外気負荷が大きい場合、在室人数減少等により二酸化炭素濃度が低くなると外気量を減らして空調エネルギー消費量の低減を図ることができる。
(2)空調負荷が変動しても熱交換コイル通過空気の給気温度と熱交換コイル冷温水出入口水温度差が共に設定値になるように制御するので、空調用空気の少風量化によるファンエネルギー消費量削減と、冷温水の少水量化による送水ポンプエネルギー消費量削減と、冷温水の大温度差化による熱源機エネルギー消費量削減と、を同時に(設計屋内・屋外条件だけでなく)広範囲の空気条件で行うことができ大幅な省エネを図れる。
たとえば、熱交換コイルの冷却・加熱によって空調用空気がもつ熱エネルギーは、熱交換コイル入口空気と熱交換コイル出口空気のエンタルピ差と熱交換コイル通過風量の積なので、熱エネルギーが不変であるとエンタルピ差が大きくなるにつれて室内へ送る風量は少なくなる。
したがって、熱交換コイル出入口空気エンタルピ差を大きく、すなわち空調用空気冷却時は設定給気温度を低く、空調用空気加熱時は設定給気温度を高くすればファンエネルギー消費量を削減できる。
また、熱交換コイルによる冷温水の熱交換量(貫流熱量)は、熱交換コイル冷温水流量と熱交換コイル冷温水出入口水温度差の積なので、熱交換コイル貫流熱量が不変であると熱交換コイル冷温水出入口水温度差が大きくなるにつれて熱交換コイル冷温水出入口水温度差すなわち熱源機と空調機能付外調機との間で循環する冷温水量が少なくなる。
したがって、熱交換コイル冷温水出入口の設定水温度差を大きくすれば冷温水の送水ポンプエネルギー消費量を削減できる。
さらに、熱源機冷温水出口温度が不変であるとコイル冷温水出入口の設定水温度差が大きくなるにつれて冷却運転時に平均冷水温度が上がり、加熱運転時に平均温水温度が下がるため、熱源機エネルギー消費量を削減できる。
(3)空調機能付外調機側だけで冷温水温度差と冷温水流量を制御でき、空調機能付外調機側以外の熱源機側等での制御が不要となり設備の簡略化を図れる。
(4)従来と同能力で大幅なエネルギー消費量削減が図れるので、快適性と省エネ性を両立できる。。
According to the invention of claim 2,
(1) When the outside air load is large, the CO2 control means can reduce the amount of outside air and reduce the amount of air-conditioning energy consumption when the concentration of carbon dioxide decreases due to a decrease in the number of people in the room.
(2) Even if the air conditioning load fluctuates, the fan is controlled by reducing the air flow for air conditioning air because the difference between the supply air temperature of the heat exchange coil passing air and the heat exchange coil cold / hot water inlet / outlet water temperature becomes the set value. A wide range of energy consumption reduction, water pump energy consumption reduction by reducing the amount of cold / hot water, and heat source machine energy consumption reduction by increasing the temperature difference of the cold / hot water (in addition to design indoor / outdoor conditions) It can be performed under the air conditions of the above, and significant energy saving can be achieved.
For example, the heat energy that air conditioning air has by cooling and heating the heat exchange coil is the product of the enthalpy difference between the heat exchange coil inlet air and the heat exchange coil outlet air and the air flow through the heat exchange coil. As the enthalpy difference increases, the amount of air sent into the room decreases.
Therefore, fan energy consumption can be reduced by increasing the heat exchange coil inlet / outlet air enthalpy difference, that is, lowering the set supply air temperature during air-conditioning air cooling and increasing the set supply air temperature during air-conditioning air heating.
In addition, the heat exchange amount (through-flow heat amount) of the cold / hot water by the heat exchange coil is the product of the heat exchange coil cold / hot water flow rate and the heat exchange coil cold / hot water inlet / outlet water temperature difference. As the coil cold / hot water inlet / outlet water temperature difference increases, the heat exchange coil cold / hot water inlet / outlet water temperature difference, that is, the amount of cold / hot water circulating between the heat source unit and the external air conditioner with air conditioning function decreases.
Therefore, if the set water temperature difference at the heat exchange coil cold / hot water inlet / outlet is increased, the energy consumption of the cold / hot water water pump can be reduced.
Furthermore, if the temperature of the heat source cold / hot water outlet is unchanged, the average cold water temperature increases during cooling operation and the average hot water temperature decreases during heating operation as the set water temperature difference at the coil cold / hot water inlet / outlet increases. Can be reduced.
(3) The chilled / hot water temperature difference and the chilled / hot water flow rate can be controlled only on the external air conditioner side with air conditioning function, and the control on the heat source side other than the external air conditioner side with air conditioning function becomes unnecessary, and the equipment can be simplified.
(4) Since the energy consumption can be greatly reduced with the same capacity as before, both comfort and energy saving can be achieved. .
請求項3の発明によれば、
(1)ヒートポンプ式チラー等の熱源機は、冷却運転時に冷水出口温度が高くなるとエネルギー消費量が減り、加熱運時に温水出口温度が低くなるとエネルギー消費量が減る。
そのため、空調用空気冷却時の熱交換コイルの設定冷温水入口温度(熱源機の設定冷温水出口温度)は10〜12℃(従来7℃)、空調用空気冷却時の熱交換コイル冷温水入口温度は、バイパス空気などによる熱交換コイルの熱貫流能力の上限から給気温度より3℃以上低い冷水が必要となるので熱源機のエネルギー消費量削減のために10℃に設定するのが最適となる。
空調用空気加熱時の熱交換コイルの設定冷温水入口温度は35〜40℃(従来45℃)が望ましいが、空調用空気加熱時のコイル冷温水入口温度は、熱交換コイルの熱貫流能力の上限から給気温度より3℃以上高い温水が必要となるので熱源機のエネルギー消費量削減のために40℃に設定するのが最適となる。
また、空調用空気冷却時の設定給気温度は、室内で人体などから発生する潜熱除去も考慮すると12〜14℃(従来16℃)が望ましいが、ファンエネルギー消費量削減と、室内吹出口の結露とコールドドラフトを最小限に抑えるために13℃に設定するのが最適となる。
空調用空気加熱時の設定給気温度は30〜35℃(従来28℃)が望ましいが、熱交換コイル入口冷温水温度と給気温度の差を小さくすれば熱源機エネルギー消費量が減少することを考慮すると30℃に設定するのが最適となる。
熱交換コイル冷温水出入口の設定水温度差は送水ポンプ及び熱源機のエネルギー消費量削減のため8〜12℃(従来5℃)が望ましいが、一般的な熱源機で対応可能なコイル冷温水出入口水温度差から10℃に設定するのが最適となる。
According to the invention of claim 3,
(1) In a heat source device such as a heat pump chiller, the energy consumption decreases when the temperature of the cold water outlet increases during the cooling operation, and the energy consumption decreases when the temperature of the hot water outlet decreases during the heating operation.
Therefore, the set cold / hot water inlet temperature of the heat exchange coil during air-conditioning air cooling (the set cold / hot water outlet temperature of the heat source unit) is 10 to 12 ° C. (7 ° C. in the past), and the heat exchange coil cold / hot water inlet during air-conditioning air cooling The temperature is optimally set to 10 ° C in order to reduce the energy consumption of the heat source unit because cold water lower than the supply air temperature by 3 ° C or more is required from the upper limit of the heat exchange capacity of the heat exchange coil by bypass air or the like. Become.
Setting of heat exchange coil when heating air for air conditioning The cold / hot water inlet temperature is preferably 35 to 40 ° C. (45 ° C. in the past), but the coil cold / hot water inlet temperature when heating air-conditioning air is a function of the heat exchange capacity of the heat exchange coil. Since warm water higher than the upper limit by 3 ° C. from the upper limit is required, it is optimal to set it to 40 ° C. in order to reduce the energy consumption of the heat source machine.
In addition, the set air supply temperature at the time of air-conditioning air cooling is preferably 12 to 14 ° C. (16 ° C. in the past) considering the removal of latent heat generated from the human body in the room. A setting of 13 ° C. is optimal to minimize condensation and cold draft.
The set supply air temperature for air heating for air conditioning is preferably 30 to 35 ° C (conventional 28 ° C). However, if the difference between the heat exchange coil inlet cold / hot water temperature and the supply air temperature is reduced, the energy consumption of the heat source machine will be reduced. Considering the above, it is optimal to set the temperature to 30 ° C.
The set water temperature difference at the heat exchange coil cold / hot water inlet / outlet is preferably 8-12 ° C (conventional 5 ° C) in order to reduce the energy consumption of the water pump and heat source machine. It is optimal to set to 10 ° C. from the water temperature difference.
請求項4の発明によれば、
(1)送風制御手段では、外気を熱交換せずに室内に送風するだけで空調できるので熱源機のエネルギー消費量を削減でき省エネとなる。
(2)全外気冷却制御手段では、室内空気よりもエンタルピーが低い外気のみを冷却して空調するので還気や外気・還気混合空気を冷却するよりも熱源機のエネルギー消費量を削減でき省エネとなる。
(3)冬期冷却制御手段では、冬期に室内が暑くなった場合に外気を熱交換せずに風量調整機構で低温外気に高温還気を混ぜて設定給気温度に調整しながら空調できるので熱源機のエネルギー消費量を削減でき省エネとなる。しかも、空調用空気の冷却用冷水と再熱用温水を同時に流す4管式配管が不要となる。
(4)多機能で冷却運転・加熱運転・送風運転・全外気冷却運転・冬期冷却運転ができて幅広い空調ニーズに対応し得る。
(5)風量調整機構を、CO2制御、送風運転・全外気冷却運転・冬期冷却運転に共用でき、コストダウンを図れる。
According to the invention of claim 4,
(1) In the air blowing control means, air conditioning can be performed by simply blowing the outside air into the room without exchanging heat, so the energy consumption of the heat source machine can be reduced and energy saving is achieved.
(2) Since all outside air cooling control means only cools the outside air, which has a lower enthalpy than room air, and air-conditions it, the energy consumption of the heat source machine can be reduced compared to cooling the return air or outside air / return air mixed air. It becomes.
(3) In the winter cooling control means, when the room gets hot in the winter, the air flow can be adjusted while adjusting the set supply air temperature by mixing the high temperature return air with the low temperature outside air without the heat exchange of the outside air. The energy consumption of the machine can be reduced, resulting in energy saving. In addition, a four-pipe pipe that allows the cooling air for the air-conditioning air and the warm water for reheating to flow simultaneously becomes unnecessary.
(4) Multi-functional cooling operation, heating operation, air blowing operation, all outside air cooling operation, and winter cooling operation can meet a wide range of air conditioning needs.
(5) The air volume adjusting mechanism can be commonly used for CO2 control, air blowing operation, all outside air cooling operation, and winter cooling operation, and cost reduction can be achieved.
請求項5の発明によれば、
(1)空調負荷が少ない場合などに、室内還気温度が設定還気温度よりも下がりすぎてしまうのを、給気風量を少なくすることで防止でき快適性が向上する。
According to the invention of claim 5,
(1) When the air-conditioning load is small, the indoor return air temperature can be prevented from dropping too lower than the set return air temperature by reducing the supply air volume, and comfort is improved.
請求項6の発明によれば、
(1)熱交換コイル通過空気が低温の場合や短い蒸発吸収距離の場合でも結露を防止しながら加湿ができ、結露水除去のエリミネータなどが不要となり、コストダウンとコンパクト化を図れる。
(2)還気絶対湿度で加湿するので、加湿量が成り行きとならず高精度な室内温湿度制御ができる。
According to the invention of claim 6,
(1) Even when the air passing through the heat exchange coil is at a low temperature or has a short evaporation absorption distance, it is possible to humidify while preventing dew condensation, eliminating the need for an eliminator for removing dew condensation water, and reducing costs and downsizing.
(2) Since humidification is performed at the absolute absolute humidity of the return air, the humidification amount is not achieved, and highly accurate indoor temperature and humidity control can be performed.
請求項7の発明によれば、
(1)楕円管で圧力損失が少ないので、熱交換コイルの列数(熱貫流量)を増やし、熱交換コイルの設定冷温水入口温度(熱源機の設定冷温水出口温度)を冷却時は上げ、加熱時は下げることで熱源機のエネルギー消費量を(ファンのエネルギー消費量を増やさずに)減らすことができる。
さらに、熱交換コイル通過風速を下げて熱交換コイル通風断面積を増やして、給気風量と冷却・加熱能力を維持しつつ、コイル内の冷温水の流れ方(フロー)を変更することで送水距離を長くして水速低下を防止し、水速低下に伴う貫流熱量減少(能力低下)を防止し、コイル冷温水出入口温度差を大きくし送水ポンプ及び熱源機のエネルギー消費量が減らすことができる。
なお、熱交換コイルの伝熱管が丸管の場合、上記設定温度とするためにコイルの列数を増やすとファンのエネルギー消費量が大幅に増え、省エネとならない。
According to the invention of claim 7,
(1) Since the pressure loss with an elliptical tube is small, increase the number of heat exchange coils (heat flow rate) and raise the set cold / hot water inlet temperature of the heat exchange coil (set cold / hot water outlet temperature of the heat source unit) when cooling. By lowering during heating, the energy consumption of the heat source machine can be reduced (without increasing the energy consumption of the fan).
In addition, the heat exchange coil passage air velocity is decreased to increase the heat exchange coil ventilation cross-sectional area, and the water flow is changed by changing the flow of cold / hot water in the coil while maintaining the supply air volume and cooling / heating capacity. Prolong the distance to prevent the water speed from decreasing, prevent the reduction of through-flow heat amount (capacity deterioration) due to the water speed decrease, increase the coil cold / hot water inlet / outlet temperature difference and reduce the energy consumption of the water pump and heat source machine. it can.
When the heat transfer tube of the heat exchange coil is a round tube, increasing the number of coil rows to achieve the above set temperature significantly increases the energy consumption of the fan and does not save energy.
図1と図2は、本発明の空調機能付外調機の一実施例を示しており、この空調機能付外調機は、ケーシング1と、蒸気式加湿器2と、風量調整機構Dと、水量調整機構Vと、制御装置3と、を備えている。建物の天井裏の一部に設けられた閉空間には、空調用空気として屋外からの外気と室内からの還気との混合比率を調整自在な風量調整機構Dを、設け、閉空間を簡易の機械室として使用しその内部に横長のケーシング1を設置する。閉空間を成す壁部と天井板には、風量調整自在な比例式の外気ダンパ4及び還気ダンパ5を設けて、風量調整機構Dを構成する。図例では、閉空間は、壁部、床部、天井板、仕切部にて構成しているが、その構成変更は自由である。   1 and 2 show an embodiment of an external air conditioner with air conditioning function according to the present invention. The external air conditioner with air conditioning function includes a casing 1, a steam humidifier 2, an air volume adjusting mechanism D, and the like. The water amount adjusting mechanism V and the control device 3 are provided. An air volume adjustment mechanism D that can adjust the mixing ratio of outdoor air from the outside and return air from the room as air-conditioning air is provided in a closed space provided in a part of the ceiling of the building to simplify the closed space A horizontally long casing 1 is installed inside the machine room. The wall portion and the ceiling plate that form the closed space are provided with a proportional outside air damper 4 and a return air damper 5 that are capable of adjusting the air volume to constitute an air volume adjusting mechanism D. In the illustrated example, the closed space is configured by a wall, a floor, a ceiling board, and a partition, but the configuration can be changed freely.
ケーシング1は、閉空間内の空調用空気を取入れる空気取入口6と、空気取入口6と連通する空気出口7と、を有しており、空気出口7には給気ダクト8を連通連結する。ケーシング1内には、空調用空気を冷却・加熱するための熱交換用冷温水が流れる熱交換コイル9と、空調用空気を熱交換コイル9に通過させて給気ダクト8から室内へ送風するファン10と、熱交換コイル通過空気に加湿用の蒸気を放出する蒸気式加湿器2の加湿ノズル11と、フィルタ12と、ドレンパン13と、を設ける。   The casing 1 has an air intake 6 for taking in air for air conditioning in a closed space, and an air outlet 7 communicating with the air intake 6, and an air supply duct 8 is connected to the air outlet 7. To do. In the casing 1, heat exchange coil 9 through which cold / hot water for heat exchange for cooling and heating air-conditioning air flows, and air-conditioning air is passed through the heat exchange coil 9 and blown into the room from the air supply duct 8. A fan 10, a humidifying nozzle 11 of the steam humidifier 2 that releases humidifying steam to the air passing through the heat exchange coil, a filter 12, and a drain pan 13 are provided.
ファン10には、熱交換コイル通過空気の給気風量を調整自在なインバータなどから成る変風量機構Eを、設ける。なお、蒸気式加湿器2としては、公知の電極式や電熱式、蒸気噴霧式など各種のものに変更したり、加湿器を気化式とするも自由である。図例では、ケーシング1内に加湿ノズル11のみを配置した場合を例示しているが、ケーシング1内に、加湿ノズル11へ蒸気を供給する蒸気発生器等の機器を、設けてもよい。   The fan 10 is provided with a variable air volume mechanism E composed of an inverter or the like that can adjust the supply air volume of the air passing through the heat exchange coil. The steam humidifier 2 can be changed to various types such as a known electrode type, electric heating type, and steam spray type, or the humidifier can be a vaporization type. Although the case where only the humidification nozzle 11 is arranged in the casing 1 is illustrated in the example of the figure, a device such as a steam generator for supplying steam to the humidification nozzle 11 may be provided in the casing 1.
図例の実線及び点線の白抜き矢印は送風方向を示し、ファン10により吸い込まれた空調用空気は、熱交換コイル9を通過して給気ダクト8及び図示省略の吹出口を介して室内に給気される。熱交換コイル9は、通風自在に設けられた多数の伝熱板14に多数の伝熱管15を挿着して成り、伝熱管15内を流れる冷温水と通過空気が伝熱管15及び伝熱板14を介して熱交換する。この伝熱管15は楕円管にするのが好ましいが円形管でもよい。熱交換コイル9の冷温水出入口と冷温水配管16を配管接続して比例式の水量調整バルブ17を設け、熱交換コイル9の冷温水流量を調整自在な水量調整機構Vを構成する。熱交換コイル9は、冷温水配管16を介して図示省略の熱源機と送水ポンプに接続され、この熱源機で所定温度に調整した冷水又は温水が熱交換コイル9と前記熱源機を循環する。なお、冷温水配管16は、冷水と温水を切換えて流す2管式、冷水と温水を同時に流す4管式の何れとするも自由である。   The solid and dotted white arrows in the figure indicate the blowing direction, and the air-conditioning air sucked in by the fan 10 passes through the heat exchange coil 9 and enters the room through the air supply duct 8 and an unillustrated air outlet. It is aired. The heat exchange coil 9 is formed by inserting a large number of heat transfer tubes 15 into a large number of heat transfer plates 14 provided to allow ventilation, and cold and hot water and passing air flowing through the heat transfer tubes 15 are transferred to the heat transfer tubes 15 and the heat transfer plates. 14 to exchange heat. The heat transfer tube 15 is preferably an elliptical tube, but may be a circular tube. A proportional water volume adjustment valve 17 is provided by connecting the cold / hot water inlet / outlet of the heat exchange coil 9 and the cold / hot water pipe 16, thereby constituting a water quantity adjustment mechanism V that can adjust the cold / hot water flow rate of the heat exchange coil 9. The heat exchange coil 9 is connected to a heat source machine (not shown) and a water supply pump via a cold / hot water pipe 16, and cold water or hot water adjusted to a predetermined temperature by the heat source machine circulates between the heat exchange coil 9 and the heat source machine. The cold / hot water pipe 16 can be either a two-pipe type that switches between cold water and hot water or a four-pipe type that allows cold water and hot water to flow simultaneously.
制御装置3は、外気の温湿度を検出する外気温湿度検出器18と、還気の温湿度を検出する還気温湿度検出器19と、熱交換コイル通過空気(給気)の温湿度を検出する給気温湿度検出器31と、熱交換コイル9の冷温水出入口水温度差を検出する水温度差検出器20と、還気(室内)の二酸化炭素濃度を検出するCO2検出器21と、CO2制御手段22と、水量制御手段23と、送風制御手段24と、全外気冷却制御手段25と、冬期冷却制御手段26と、過冷却防止制御手段27と、飽和防止加湿制御手段28と、設定手段29と、モード判断手段30と、を備え、センサやアクチュエータ、マイコン等にて構成される。   The control device 3 detects the temperature and humidity of the outside air temperature and humidity detector 18 that detects the temperature and humidity of the outside air, the temperature and humidity detector 19 that detects the temperature and humidity of the return air, and the temperature and humidity of the air passing through the heat exchange coil (supply air). A temperature / humidity detector 31 that performs the heating, a water temperature difference detector 20 that detects the temperature difference between the cold / hot water inlet and outlet of the heat exchange coil 9, a CO2 detector 21 that detects the carbon dioxide concentration in the return air (indoor), and CO2 Control means 22, water amount control means 23, blower control means 24, all outside air cooling control means 25, winter cooling control means 26, supercooling prevention control means 27, saturation prevention humidification control means 28, setting means 29 and mode judging means 30 and is constituted by a sensor, an actuator, a microcomputer or the like.
図3は冷水モード運転、図4は温水モード運転、図5はモード判断処理のフローチャートである。CO2制御手段22は、CO2検出器21で検出した室内の二酸化炭素濃度が設定濃度になるように風量調整機構Dで空調用空気の混合比率を制御する。たとえば、在室人数の増減等により設定濃度よりも二酸化炭素濃度が低くなると還気ダンパ5と外気ダンパ4により空調用空気の外気比率を減らして二酸化炭素濃度を上げ、設定濃度よりも二酸化炭素濃度が高くなると還気ダンパ5と外気ダンパ4により空調用空気の外気比率を増やして二酸化炭素濃度を下げるように制御する。   FIG. 3 is a cold water mode operation, FIG. 4 is a hot water mode operation, and FIG. 5 is a flowchart of a mode determination process. The CO2 control means 22 controls the air-conditioning air mixing ratio by the air volume adjusting mechanism D so that the indoor carbon dioxide concentration detected by the CO2 detector 21 becomes the set concentration. For example, if the carbon dioxide concentration becomes lower than the set concentration due to increase or decrease in the number of people in the room, the return air damper 5 and the outside air damper 4 reduce the outside air ratio of the air for air conditioning to increase the carbon dioxide concentration, and the carbon dioxide concentration is higher than the set concentration. Is increased, the return air damper 5 and the outside air damper 4 are used to increase the outside air ratio of the air-conditioning air so as to lower the carbon dioxide concentration.
水量制御手段23は、給気温湿度検出器31で検出した熱交換コイル通過空気の給気温度が設定給気温度になるように水量調整機構Vで冷温水流量を制御すると共に水温度差検出器20で検出した熱交換コイル冷温水出入口水温度差が設定水温度差になるように水量調整機構Vで冷温水流量を制御する。たとえば、冷却運転の場合には設定給気温度よりも給気温度が低くなると水量調整バルブ17で冷温水流量を減らして給気温度を高くし、設定給気温度よりも給気温度が高くなると水量調整バルブ17で冷温水流量を増やして給気温度を低くするように制御する。給気温度が設定給気温度になると、水温度差が小さいときには水量調整バルブ17で冷温水流量を減らして水温度差を大きくし、設定水温度差よりも水温度差が大きいときには水量調整バルブ17で冷温水流量を増やして水温度差を小さくするように制御する。また、加熱運転の場合には設定給気温度よりも給気温度が低くなると水量調整バルブ17で冷温水流量を増やして給気温度を高くし、設定給気温度よりも給気温度が高くなると水量調整バルブ17で冷温水流量を減らして給気温度を低くするように制御する。給気温度が設定給気温度になると、水温度差が小さいときには水量調整バルブ17で冷温水流量を減らして水温度差を大きくし、設定水温度差よりも水温度差が大きいときには水量調整バルブ17で冷温水流量を増やして水温度差を小さくするように制御する。これにより、熱交換コイル通過空気の給気温度と熱交換コイル冷温水出入口水温度差が共に設定値になるように制御する。   The water amount control means 23 controls the cold / hot water flow rate with the water amount adjusting mechanism V so that the supply air temperature of the air passing through the heat exchange coil detected by the supply air temperature / humidity detector 31 becomes the set supply air temperature, and the water temperature difference detector. The flow rate of the cold / hot water is controlled by the water amount adjusting mechanism V so that the water temperature difference between the heat exchange coil cold / hot water inlet / outlet detected at 20 becomes the set water temperature difference. For example, in the case of cooling operation, when the supply air temperature becomes lower than the set supply air temperature, the cooling water flow rate is reduced by the water amount adjusting valve 17 to increase the supply air temperature, and the supply air temperature becomes higher than the set supply air temperature. Control is made to increase the cold / hot water flow rate with the water amount adjusting valve 17 to lower the supply air temperature. When the supply air temperature reaches the set supply air temperature, when the water temperature difference is small, the flow rate of cold / hot water is reduced by the water amount adjustment valve 17 to increase the water temperature difference, and when the water temperature difference is larger than the set water temperature difference, the water amount adjustment valve. At 17, control is performed to increase the cold / hot water flow rate to reduce the water temperature difference. Further, in the case of heating operation, when the supply air temperature becomes lower than the set supply air temperature, the supply amount of the cold / hot water is increased by the water amount adjusting valve 17 to increase the supply air temperature, and the supply air temperature becomes higher than the set supply air temperature. Control is performed by the water amount adjusting valve 17 so as to reduce the flow rate of the cold / hot water to lower the supply air temperature. When the supply air temperature reaches the set supply air temperature, when the water temperature difference is small, the flow rate of cold / hot water is reduced by the water amount adjustment valve 17 to increase the water temperature difference, and when the water temperature difference is larger than the set water temperature difference, the water amount adjustment valve. At 17, control is performed to increase the cold / hot water flow rate to reduce the water temperature difference. Thereby, it controls so that the supply air temperature of the heat exchange coil passage air and the heat exchange coil cold / hot water inlet / outlet water temperature difference are both set values.
上述の設定値は、空調用空気を熱交換コイル9で冷却する場合、熱交換コイル9の冷温水入口水温度を10〜12℃(好ましくは10℃)、熱交換コイル9の冷温水出入口水温度差を8〜12℃(好ましくは10℃)、熱交換コイル通過空気の給気温度を12〜14℃(好ましくは13℃)に設定すると共に、空調用空気を熱交換コイル9で加熱する場合、熱交換コイル9の冷温水入口水温度を35〜40℃(好ましくは40℃)、熱交換コイル9の冷温水出入口水温度差を8〜12℃(好ましくは10℃)、熱交換コイル通過空気の給気温度を30〜35℃(好ましくは30℃)、に設定する。   When the air-conditioning air is cooled by the heat exchange coil 9, the above set values are 10 to 12 ° C. (preferably 10 ° C.) at the cold / hot water inlet water temperature of the heat exchange coil 9, and the cold / hot water inlet / outlet water of the heat exchange coil 9. The temperature difference is set to 8 to 12 ° C. (preferably 10 ° C.), the supply temperature of the air passing through the heat exchange coil is set to 12 to 14 ° C. (preferably 13 ° C.), and the air-conditioning air is heated by the heat exchange coil 9. In this case, the cold / hot water inlet water temperature of the heat exchange coil 9 is 35-40 ° C. (preferably 40 ° C.), the cold hot water inlet / outlet water temperature difference of the heat exchange coil 9 is 8-12 ° C. (preferably 10 ° C.), and the heat exchange coil The supply air temperature of the passing air is set to 30 to 35 ° C (preferably 30 ° C).
送風制御手段24は、外気温湿度検出器18で検出した外気温度が熱交換コイル通過空気の設定給気温度になった場合に、水量調整機構Vで熱交換コイル9に冷温水が流れるのを停止しかつ風量調整機構Dで空調用空気を全て外気にするように制御する。たとえば、空調負荷が少ない場合に、給気温度が設定給気温度になると水量調整バルブ17で冷温水流量をゼロにして還気ダンパ5と外気ダンパ4により空調用空気の外気比率を100%に制御する。これはいわゆる夏期における外気冷房である。   When the outside air temperature detected by the outside air temperature / humidity detector 18 reaches the set supply air temperature of the air passing through the heat exchange coil, the air blowing control unit 24 causes the cold water to flow through the heat exchange coil 9 by the water amount adjusting mechanism V. Control is performed so that the air-conditioning mechanism D is stopped and all the air-conditioning air is turned to outside air. For example, when the air-conditioning load is small and the supply air temperature reaches the set supply air temperature, the flow rate of cold / hot water is made zero by the water amount adjusting valve 17 and the outside air ratio of the air-conditioning air is set to 100% by the return air damper 5 and the outside air damper 4. Control. This is so-called outdoor air cooling in summer.
全外気冷却制御手段25は、外気温湿度検出器18で検出した外気温度が設定給気温度を超えかつ屋外の外気エンタルピーが室内の還気エンタルピー未満の場合に、風量調整機構Dで空調用空気を全て外気にすると共に熱交換コイル通過空気の給気温度が設定給気温度になるように水量調整機構Vで冷温水流量を制御する。たとえば、夏期に外気が室内還気より低くて設定給気温度よりも高い場合に、還気ダンパ5と外気ダンパ4により空調用空気の外気比率を100%にして、熱交換コイル通過空気の給気温度が設定給気温度になるように水量調整バルブ17で冷温水流量を制御する。前記外気エンタルピーは、外気温湿度検出器18で検出した外気温湿度から演算し、上記還気エンタルピーは還気温湿度検出器19で検出した還気温湿度から演算する。   When the outside air temperature detected by the outside air temperature / humidity detector 18 exceeds the set supply air temperature and the outdoor outside air enthalpy is less than the indoor return air enthalpy, the all outside air cooling control means 25 uses the air volume adjustment mechanism D to control the air conditioning air. And the flow rate of cold / hot water is controlled by the water amount adjusting mechanism V so that the supply air temperature of the air passing through the heat exchange coil becomes the set supply air temperature. For example, when the outside air is lower than the indoor return air and higher than the set supply air temperature in summer, the return air damper 5 and the outside air damper 4 set the outside air ratio of the air conditioning air to 100% and supply the heat exchange coil passing air. The cold / hot water flow rate is controlled by the water amount adjusting valve 17 so that the air temperature becomes the set supply air temperature. The outside air enthalpy is calculated from the outside air temperature humidity detected by the outside air temperature / humidity detector 18, and the above return air enthalpy is calculated from the return air temperature / humidity detected by the return air temperature / humidity detector 19.
冬期冷却制御手段26は、還気温湿度検出器19で検出した還気温度が設定還気温度を超えかつ外気温湿度検出器18で検出した外気温度が設定給気温度未満でCO2検出器21で検出した室内の二酸化炭素濃度が設定濃度未満の場合に、水量調整機構Vで熱交換コイル9に冷温水が流れるのを停止しかつ給気温湿度検出器30で検出した熱交換コイル通過空気の給気温度が設定給気温度になるように風量調整機構Dで空調用空気の還気比率を制御する。たとえば、冬期に室内還気温度が設定還気温度を超え、外気が設定給気温度より低い場合に、水量調整バルブ17で冷温水流量をゼロにして還気ダンパ5と外気ダンパ4により空調用空気の還気比率を増やして温度を上げ、熱交換コイル通過空気の給気温度が設定給気温度になるように制御する。CO2検出器21で検出した室内の二酸化炭素濃度が設定濃度となるまで還気比率を増やしても給気温度が設定給気温度未満となる場合は、熱交換コイル9の温水で空調用空気を加熱して給気温度が設定給気温度となるように制御する。   The winter cooling control means 26 uses the CO2 detector 21 when the return air temperature detected by the return air temperature / humidity detector 19 exceeds the set return air temperature and the outside air temperature detected by the outside air temperature / humidity detector 18 is less than the set supply air temperature. When the detected indoor carbon dioxide concentration is lower than the set concentration, the water amount adjusting mechanism V stops the flow of cold / hot water through the heat exchange coil 9 and supplies the air passing through the heat exchange coil detected by the air temperature / humidity detector 30. The return ratio of the air for air conditioning is controlled by the air volume adjusting mechanism D so that the air temperature becomes the set supply air temperature. For example, when the indoor return air temperature exceeds the set return air temperature in winter and the outside air is lower than the set supply air temperature, the flow rate of the cool / warm water is made zero by the water amount adjusting valve 17 and the return air damper 5 and the outside air damper 4 are used for air conditioning. The air return ratio is increased to increase the temperature, and the supply air temperature of the air passing through the heat exchange coil is controlled to be the set supply air temperature. If the supply air temperature is lower than the set supply air temperature even if the return air ratio is increased until the indoor carbon dioxide concentration detected by the CO2 detector 21 reaches the set concentration, the air for air conditioning is heated with the hot water of the heat exchange coil 9. Heating is performed so that the supply air temperature becomes the set supply air temperature.
過冷却防止制御手段27は、還気温湿度検出器19で検出した還気温度が設定還気温度未満でCO2検出器21で検出した室内の二酸化炭素濃度が設定濃度未満の場合に、設定還気温度になるように変風量機構Eで給気風量を制御する。たとえば、各種モードの運転中に、室内還気温度が設定還気温度未満となった場合に、水量調整バルブ17で冷温水流量を最少にし、変風量機構Eによりファン10の給気風量を減らして還気温度を上げ、設定還気温度になるように制御する。   The supercooling prevention control unit 27 sets the return air when the return air temperature detected by the return air temperature / humidity detector 19 is lower than the set return air temperature and the indoor carbon dioxide concentration detected by the CO2 detector 21 is lower than the set concentration. The supply air volume is controlled by the variable air volume mechanism E so that the temperature is reached. For example, when the indoor return air temperature becomes lower than the set return air temperature during operation in various modes, the cold / hot water flow rate is minimized by the water amount adjustment valve 17, and the supply air amount of the fan 10 is reduced by the variable air amount mechanism E. The return air temperature is raised to control the set return air temperature.
飽和防止加湿制御手段28は、還気温湿度検出器19で検出した室内の還気絶対湿度が設定還気絶対湿度未満の場合に還気絶対湿度が熱交換コイル通過空気の給気上限絶対湿度を超えないように蒸気式加湿器2の蒸気放出量を制御する。たとえば、室内の設定還気絶対湿度が給気上限絶対湿度以下の場合は、設定還気絶対湿度を目標にして蒸気式加湿器2で加湿し、室内の設定還気絶対湿度が給気上限絶対湿度を超える場合には、給気上限絶対湿度を目標にして加湿し制御する。給気上限絶対湿度は、熱交換コイル通過空気が設定給気温度のときに飽和湿り空気となって凝縮(結露)する手前の絶対湿度で演算等により設定された値である。   The saturation prevention humidification control means 28 determines the supply upper limit absolute humidity of the air passing through the heat exchange coil when the indoor return air absolute humidity detected by the return temperature humidity detector 19 is less than the set return air absolute humidity. The steam discharge amount of the steam humidifier 2 is controlled so as not to exceed. For example, if the indoor set return absolute humidity is less than the upper limit absolute humidity, humidify with the steam humidifier 2 with the target return absolute humidity as the target, and the indoor set return absolute humidity is the absolute upper limit of supply air If it exceeds the humidity, it is humidified and controlled with the target absolute upper limit of supply air humidity. The air supply upper limit absolute humidity is a value set by calculation or the like with the absolute humidity before condensation (condensation) becomes saturated humid air when the air passing through the heat exchange coil is at the set supply air temperature.
設定手段29は、熱交換コイル通過空気の設定給気温度と、室内の設定還気温度と、室内の設定還気絶対湿度と、室内の二酸化炭素の設定濃度と、熱交換コイル9の冷温水出入口設定水温度差と、給気上限絶対湿度と、の各々の設定を行う。これらの設定値は、単一の数値の場合と、しきい値を含んだ所定範囲の数値の場合があり、何れを選択するかは自由である。   The setting means 29 includes a set supply temperature of air passing through the heat exchange coil, a set return air temperature in the room, an absolute set return air humidity in the room, a set concentration of carbon dioxide in the room, and cold / hot water in the heat exchange coil 9. Each of the inlet / outlet set water temperature difference and the supply air upper limit absolute humidity is set. These set values may be a single numerical value or a numerical value within a predetermined range including a threshold value, and any of them can be selected freely.
図5に示すように、モード判断手段30は、冷温水配管16に冷水が流れている場合に、外気温度が設定給気温度であれば送風運転、外気温度が設定給気温度を超えかつ屋外外気エンタルピーが室内還気エンタルピー未満であれば全外気冷却運転、外気温度が設定給気温度を超えかつ還気温度が設定還気温度以上であれば冷却運転、と判断する。また、冷温水配管16に温水が流れている場合に、外気温度が設定給気温度であれば送風運転、外気温度が設定給気温度未満でかつ還気温度が設定還気温度を超えれば冬期冷却運転、外気温度が設定給気温度未満でかつ還気温度が設定還気温度未満であれば加熱運転、と判断する。   As shown in FIG. 5, when the cold water is flowing through the cold / hot water pipe 16, the mode determination means 30 is operated when the outside air temperature is the set supply air temperature and the outside air temperature exceeds the set supply air temperature and is outdoors. If the outside air enthalpy is less than the indoor return air enthalpy, it is determined that the entire outside air cooling operation is performed, and if the outside air temperature exceeds the set supply air temperature and the return air temperature is equal to or higher than the set return air temperature, the cooling operation is determined. Also, when hot water is flowing through the cold / hot water pipe 16, if the outside air temperature is the set supply air temperature, the fan is operated. If the outside air temperature is lower than the set supply air temperature and the return air temperature exceeds the set return air temperature, the winter season If the cooling operation and the outside air temperature are lower than the set supply air temperature and the return air temperature is lower than the set return air temperature, it is determined as the heating operation.
図3は冷水モード運転の一例で、運転開始時は、熱交換コイル9に冷水を所定水量流し、空調用空気の外気比率を100%にして室内へ一定風量給気する。次に、送風運転の場合は、冷水を止めて空調用空気を全て外気にする。全外気冷却運転の場合は、空調用空気を全て外気にし給気温度と熱交換コイル冷温水出入口水温度差が設定値になるように冷水流量を制御する。冷却運転の場合は、空調用空気の二酸化炭素濃度が設定値になるように外気比率を制御し給気温度と熱交換コイル冷温水出入口水温度差が設定値になるように冷水流量を制御する。送風運転、全外気冷却運転及び冷却運転中に還気温度が設定値を下回ると二酸化炭素濃度が設定値を超えない範囲で給気風量を少なくして還気温度が設定値になるように制御する。   FIG. 3 shows an example of the cold water mode operation. At the start of the operation, a predetermined amount of cold water is passed through the heat exchange coil 9, and the outside air ratio of the air-conditioning air is set to 100% to supply a constant amount of air into the room. Next, in the case of the air blowing operation, the cold water is stopped and all the air for air conditioning is turned to the outside air. In the case of the all outside air cooling operation, the cooling water flow rate is controlled so that the air conditioning air is all outside and the difference between the supply air temperature and the heat exchange coil cold / hot water inlet / outlet water temperature becomes a set value. In the case of cooling operation, the outside air ratio is controlled so that the carbon dioxide concentration of the air-conditioning air becomes the set value, and the chilled water flow rate is controlled so that the difference between the supply air temperature and the heat exchange coil cold / hot water inlet / outlet water temperature becomes the set value. . If the return air temperature falls below the set value during the air blowing operation, all-outer air cooling operation, and cooling operation, the return air temperature is controlled so that the supply air volume is reduced and the return air temperature becomes the set value within the range where the carbon dioxide concentration does not exceed the set value. To do.
図4は温水モード運転の一例で、運転開始時は、熱交換コイル9に温水を所定水量流し、空調用空気の外気比率を100%にして室内へ一定風量給気し、室内の湿度を設定値になるように制御する。次に、送風運転の場合は、温水を止めて空調用空気を全て外気にする。冬期冷却運転の場合は、温水を止めて空調用空気を一旦全て外気にし二酸化炭素濃度が設定値を超えない範囲で給気温度が設定値になるように空調用空気の還気比率を制御する。加熱運転の場合は、空調用空気の二酸化炭素濃度が設定値になるように外気比率を制御し給気温度と熱交換コイル冷温水出入口水温度差が設定値になるように温水流量を制御する。送風運転、冬期冷却運転及び加熱運転中に還気温度が設定値を下回ると二酸化炭素濃度が設定値を超えない範囲で給気風量を少なくして還気温度が設定値になるように制御する。   Fig. 4 shows an example of warm water mode operation. At the start of operation, a predetermined amount of warm water is passed through the heat exchange coil 9, the outside air ratio of the air for air conditioning is set to 100%, a constant air volume is supplied to the room, and the indoor humidity is set. Control to be a value. Next, in the case of the air blowing operation, the hot water is stopped and all air for air conditioning is turned to the outside air. In the case of winter cooling operation, stop the warm water and once all the air for air conditioning is outside air, control the return air ratio of the air for air conditioning so that the supply air temperature becomes the set value within the range where the carbon dioxide concentration does not exceed the set value . In the case of heating operation, the outside air ratio is controlled so that the carbon dioxide concentration of the air-conditioning air becomes the set value, and the hot water flow rate is controlled so that the difference between the supply air temperature and the heat exchange coil cold / hot water inlet / outlet water temperature becomes the set value. . If the return air temperature falls below the set value during the air blow operation, winter cooling operation, and heating operation, the supply air volume is reduced within the range where the carbon dioxide concentration does not exceed the set value, and the return air temperature is controlled to the set value. .
図6は他の実施例で、簡易の機械室として天井裏以外の室内の一部に設けた閉空間に縦長のケーシング1を設置した場合を示している。閉空間を成す壁部には、風量調整自在な外気ダンパ4及び還気ダンパ5を設ける。図例では、閉空間は、壁部、床部、仕切部にて構成しているが、その構成変更は自由である。仕切部はパーティションなどを利用することができる。   FIG. 6 shows another embodiment in which a vertically long casing 1 is installed as a simple machine room in a closed space provided in a part of a room other than the back of the ceiling. An outside air damper 4 and a return air damper 5 with adjustable air volume are provided on the wall portion forming the closed space. In the illustrated example, the closed space is configured by a wall portion, a floor portion, and a partition portion, but the configuration can be freely changed. A partition etc. can be utilized for a partition part.
本発明は上述の実施例に限定されず、本発明の要旨を逸脱しない範囲で設計変更自由で、たとえば、熱交換コイル9は、ヒートポンプの冷媒で空調用空気を冷却・加熱切換自在に熱交換する方式とするも自由である。また、制御装置3の各検出器及び各制御手段のうちで必要なものだけ選択して組合わせて用いても良く、その構成変更は自由である。たとえば、水量制御手段23において熱交換コイル冷温水出入口水温度差制御を省略して給気温度制御のみにしたり、もしくは、過冷却防止制御手段27を省略して還気温度制御しないようにするも自由である。また、冷水モード運転及び温水モード運転の順序や処理内容の変更は自由である。たとえば、冷水モード運転及び温水モード運転の開始直後に空調用空気を全て外気にしているが、CO2制御手段22で二酸化炭素濃度が設定濃度になるように空調用空気の混合比を調整する処理に変更するも自由である。   The present invention is not limited to the above-described embodiments, and can be freely changed in design without departing from the gist of the present invention. For example, the heat exchange coil 9 is a heat pump refrigerant that heat-exchanges air-conditioning air so that it can be switched between cooling and heating. It is also free to use a method. Further, only necessary ones of the detectors and control means of the control device 3 may be selected and used in combination, and the configuration can be freely changed. For example, in the water amount control unit 23, the heat exchange coil cold / hot water inlet / outlet water temperature difference control is omitted and only the supply air temperature control is performed, or the supercooling prevention control unit 27 is omitted and the return air temperature control is not performed. Be free. Further, the order of the cold water mode operation and the hot water mode operation and the change of processing contents are free. For example, immediately after the start of the cold water mode operation and the hot water mode operation, all the air-conditioning air is set to the outside air. You are free to change.
空調機能付外調機の設置状態を示す側面図である。It is a side view which shows the installation state of an external air conditioner with an air conditioning function. 空調機能付外調機の全体構成を示す簡略説明図である。It is a simplified explanatory drawing which shows the whole structure of the external air conditioner with an air conditioning function. 冷水モード運転のフローチャートである。It is a flowchart of cold water mode operation. 温水モード運転のフローチャートである。It is a flowchart of a warm water mode driving | operation. モード判断のフローチャートである。It is a flowchart of mode judgment. 他の実施例を示す側面図である。It is a side view which shows another Example.
1 ケーシング
2 蒸気式加湿器
3 制御装置
6 空気取入口
8 給気ダクト
9 熱交換コイル
10 ファン
15 伝熱管
22 CO2制御手段
23 水量制御手段
24 送風制御手段
25 全外気冷却制御手段
26 冬期冷却制御手段
27 過冷却防止制御手段
28 飽和防止加湿制御手段
D 風量調整機構
E 変風量機構
V 水量調整機構
DESCRIPTION OF SYMBOLS 1 Casing 2 Steam-type humidifier 3 Control apparatus 6 Air intake 8 Air supply duct 9 Heat exchange coil 10 Fan 15 Heat exchanger tube 22 CO2 control means 23 Water quantity control means 24 Air blow control means 25 Whole outside air cooling control means 26 Winter cooling control means 27 Overcooling prevention control means 28 Saturation prevention humidification control means D Air volume adjustment mechanism E Ventilation air volume mechanism V Water quantity adjustment mechanism

Claims (7)

  1. 天井裏又は室内の一部に設けた閉空間に、空調用空気として屋外からの外気と室内からの還気とを混合比率調整自在に導入する風量調整機構Dを設け、
    前記閉空間内の前記空調用空気を取入れる空気取入口6を有すると共に給気ダクト8を連通連結したケーシング1を、前記閉空間内に設置し、
    前記ケーシング1内に、前記空調用空気が通る熱交換コイル9と、前記空調用空気を前記熱交換コイル9に通過させて前記給気ダクト8から前記室内へ送風するファン10と、を設け、
    熱交換コイル通過空気に加湿用の蒸気を放出する蒸気式加湿器2と、前記室内の二酸化炭素濃度が設定濃度になるように前記風量調整機構Dで前記空調用空気の混合比率を制御するCO2制御手段22と、
    を備えたことを特徴とする空調機能付外調機。
    An air volume adjustment mechanism D that introduces outdoor air from the outside and return air from the room as air-conditioning air so that the mixing ratio can be adjusted is provided in a closed space provided in the back of the ceiling or part of the room,
    A casing 1 having an air intake 6 for taking in the air for air conditioning in the closed space and having an air supply duct 8 connected in communication is installed in the closed space,
    In the casing 1, a heat exchange coil 9 through which the air-conditioning air passes, and a fan 10 that passes the air-conditioning air through the heat exchange coil 9 and blows air from the air supply duct 8 into the room, are provided.
    A steam humidifier 2 that discharges steam for humidification to the air passing through the heat exchange coil, and CO2 that controls the mixing ratio of the air conditioning air by the air volume adjustment mechanism D so that the indoor carbon dioxide concentration becomes a set concentration. Control means 22;
    An external air conditioner with an air conditioning function.
  2. ケーシング1内に、空調用空気を冷却・加熱するための熱交換用冷温水が流れる熱交換コイル9と、前記空調用空気を前記熱交換コイル9に通過させて室内へ送風するファン10と、を設け、
    前記空調用空気として屋外からの外気と室内からの還気との混合比率を調整自在な風量調整機構Dと、前記熱交換コイル9の冷温水流量を調整自在な水量調整機構Vと、制御装置3と、を備え、
    前記制御装置3が、
    前記室内の二酸化炭素濃度が設定濃度になるように前記風量調整機構Dで前記空調用空気の混合比率を制御するCO2制御手段22と、
    熱交換コイル通過空気の給気温度が設定給気温度になるように前記水量調整機構Vで前記冷温水流量を制御すると共に前記熱交換コイル冷温水出入口水温度差が設定水温度差になるように前記水量調整機構Vで前記冷温水流量を制御する水量制御手段23と、
    を備えたことを特徴とする空調機能付外調機。
    A heat exchange coil 9 through which cool / warm water for heat exchange for cooling and heating air-conditioning air flows in the casing 1; a fan 10 for passing the air-conditioning air through the heat-exchange coil 9 and blowing air into the room; Provided,
    As the air-conditioning air, an air volume adjusting mechanism D capable of adjusting a mixing ratio of outdoor air from outside and return air from indoors, a water quantity adjusting mechanism V capable of adjusting a flow rate of cold / hot water of the heat exchange coil 9, and a control device 3 and
    The control device 3 is
    CO2 control means 22 for controlling a mixing ratio of the air for air conditioning by the air volume adjusting mechanism D so that the indoor carbon dioxide concentration becomes a set concentration;
    The flow rate of the cold / hot water is controlled by the water amount adjusting mechanism V so that the supply air temperature of the air passing through the heat exchange coil becomes the set supply air temperature, and the water temperature difference between the heat exchange coil cold / hot water inlet / outlet becomes the set water temperature difference. A water amount control means 23 for controlling the cold / hot water flow rate by the water amount adjusting mechanism V;
    An external air conditioner with an air conditioning function.
  3. 空調用空気を熱交換コイル9で冷却する場合は、熱交換コイル冷温水入口水温度を10〜12℃、熱交換コイル冷温水出入口水温度差を8〜12℃、熱交換コイル通過空気の給気温度を12〜14℃に設定すると共に、
    前記空調用空気を前記熱交換コイルで加熱する場合は、前記熱交換コイル冷温水入口水温度を35〜40℃、前記熱交換コイル冷温水出入口水温度差を8〜12℃、前記熱交換コイル通過空気の給気温度を30〜35℃、
    に設定した請求項2記載の空調機能付外調機。
    When the air for air conditioning is cooled by the heat exchange coil 9, the heat exchange coil cold / hot water inlet water temperature is 10-12 ° C., the heat exchange coil cold / hot water inlet / outlet water temperature difference is 8-12 ° C., and the heat exchange coil passing air is supplied. While setting the air temperature to 12-14 ° C,
    When the air-conditioning air is heated by the heat exchange coil, the heat exchange coil cold / hot water inlet water temperature is 35-40 ° C., the heat exchange coil cold / hot water inlet / outlet water temperature difference is 8-12 ° C., and the heat exchange coil The supply air temperature of the passing air is 30 to 35 ° C,
    The external air conditioner with an air conditioning function according to claim 2, wherein
  4. 制御装置3が、
    外気温度が熱交換コイル通過空気の設定給気温度になった場合に水量調整機構Vで熱交換コイル9に冷温水が流れるのを停止しかつ風量調整機構Dで空調用空気を全て外気にする送風制御手段24と、
    前記外気温度が前記設定給気温度を超えかつ外気エンタルピーが還気エンタルピー未満の場合に前記風量調整機構Dで前記空調用空気を全て外気にすると共に前記熱交換コイル通過空気の給気温度が前記設定給気温度になるように前記水量調整機構Vで冷温水流量を制御する全外気冷却制御手段25と、
    前記外気温度が前記設定給気温度未満でかつ還気温度が設定還気温度を超える場合に前記熱交換コイル通過空気の給気温度が前記設定給気温度になるように前記風量調整機構Dで前記空調用空気の還気比率を制御する冬期冷却制御手段26と、
    を備えた請求項2又は3記載の空調機能付外調機。
    The control device 3 is
    When the outside air temperature reaches the set supply air temperature of the heat exchange coil passing air, the water amount adjusting mechanism V stops the flow of cold / hot water to the heat exchange coil 9 and the air amount adjusting mechanism D makes all the air for air conditioning outside. Air blowing control means 24;
    When the outside air temperature exceeds the set supply air temperature and the outside air enthalpy is less than the return air enthalpy, all the air-conditioning air is made outside by the air volume adjusting mechanism D, and the supply air temperature of the air passing through the heat exchange coil is All outside air cooling control means 25 for controlling the flow rate of the cold / hot water by the water amount adjusting mechanism V so as to reach the set supply air temperature;
    When the outside air temperature is lower than the set supply air temperature and the return air temperature exceeds the set return air temperature, the air flow rate adjusting mechanism D adjusts the supply air temperature of the air passing through the heat exchange coil to the set supply air temperature. Winter cooling control means 26 for controlling the return air ratio of the air-conditioning air;
    An external air conditioner with an air conditioning function according to claim 2 or 3.
  5. ファン10により室内へ送られる熱交換コイル通過空気の給気風量を調整自在な変風量機構Eを、備え、
    制御装置3が、還気温度が設定還気温度未満の場合に設定還気温度になるように前記変風量機構Eで熱交換コイル通過空気の給気風量を制御する過冷却防止制御手段27を、備えた請求項2、3又は4記載の空調機能付外調機。
    A variable air volume mechanism E capable of adjusting the supply air volume of the air passing through the heat exchange coil sent into the room by the fan 10;
    The control device 3 includes a supercooling prevention control means 27 for controlling the supply air volume of the air passing through the heat exchange coil by the variable air volume mechanism E so that the return air temperature becomes the set return air temperature when the return air temperature is lower than the set return air temperature. The external air conditioner with an air conditioning function according to claim 2, 3 or 4.
  6. 熱交換コイル通過空気に加湿用の蒸気を放出する蒸気式加湿器2を、備え、
    制御装置3が、還気絶対湿度が設定還気絶対湿度未満の場合に前記還気絶対湿度が熱交換コイル通過空気の給気上限絶対湿度を超えないように蒸気式加湿器2の蒸気放出量を制御する飽和防止加湿制御手段28を、備えた請求項2、3、4又は5記載の空調機能付外調機。
    A steam humidifier 2 that discharges steam for humidification to the air passing through the heat exchange coil;
    The amount of steam discharged from the steam humidifier 2 so that the controller 3 does not exceed the upper limit absolute humidity of the air passing through the heat exchange coil when the return air absolute humidity is less than the set return air absolute humidity. The external air conditioner equipped with an air conditioning function according to claim 2, further comprising a saturation prevention humidification control means 28 for controlling
  7. 熱交換コイル9の伝熱管15を楕円管にした請求項1、2、3、4、5又は6記載の空調機能付外調機。   The external air conditioner with an air conditioning function according to claim 1, 2, 3, 4, 5 or 6, wherein the heat transfer tube 15 of the heat exchange coil 9 is an elliptical tube.
JP2011194343A 2011-09-06 2011-09-06 External air conditioner with air conditioning function Active JP5518812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194343A JP5518812B2 (en) 2011-09-06 2011-09-06 External air conditioner with air conditioning function

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011194343A JP5518812B2 (en) 2011-09-06 2011-09-06 External air conditioner with air conditioning function
CN201210301844.0A CN102980248B (en) 2011-09-06 2012-08-23 Outer air-conditioner with air conditioning function
CN2012204203567U CN202792258U (en) 2011-09-06 2012-08-23 Outer air-conditioner with air-conditioning function

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013047185A Division JP5554431B2 (en) 2013-03-08 2013-03-08 External air conditioner with air conditioning function

Publications (2)

Publication Number Publication Date
JP2013053836A true JP2013053836A (en) 2013-03-21
JP5518812B2 JP5518812B2 (en) 2014-06-11

Family

ID=47819513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194343A Active JP5518812B2 (en) 2011-09-06 2011-09-06 External air conditioner with air conditioning function

Country Status (2)

Country Link
JP (1) JP5518812B2 (en)
CN (2) CN202792258U (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822306A (en) * 2014-03-03 2014-05-28 安阳振动器有限责任公司 Split type air-purifying fresh-air draught fan
WO2015151363A1 (en) * 2014-03-31 2015-10-08 三菱電機株式会社 Air-conditioning system and control method for air-conditioning equipment
JP5869648B1 (en) * 2014-10-29 2016-02-24 木村工機株式会社 Air conditioning system
JP6084737B1 (en) * 2015-10-06 2017-02-22 木村工機株式会社 Air conditioning system
JP6284134B1 (en) * 2016-11-29 2018-02-28 株式会社 エコファクトリー Outside air conditioner and ventilation system
JP2018185109A (en) * 2017-04-26 2018-11-22 木村工機株式会社 Air heat source Heat pump type air conditioner
RU2674291C2 (en) * 2013-04-24 2018-12-06 Дюрр Системс Аг Air conditioning method and air conditioning plant
US20190360608A1 (en) * 2018-05-25 2019-11-28 Qualitek Precision Industrial Co., Ltd. Energy saving system utliizing temperature sensing flow control valve to realizing chilled water loop
CN111795427A (en) * 2019-04-09 2020-10-20 恒泽节能有限公司 Regulating system for regulating air temperature, humidity and water temperature by using outdoor air heat exchanger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518812B2 (en) * 2011-09-06 2014-06-11 木村工機株式会社 External air conditioner with air conditioning function
CN107621049B (en) * 2017-09-04 2020-02-04 青岛海尔空调器有限总公司 Method and device for controlling air conditioner and air conditioner
KR102053125B1 (en) * 2018-03-16 2020-01-08 엘지전자 주식회사 Indoor unit for air conditioner
CN111868452A (en) * 2018-03-16 2020-10-30 Lg电子株式会社 Indoor unit of air conditioning equipment

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153034A (en) * 1982-03-08 1983-09-10 Matsushita Electric Ind Co Ltd Air conditioning equipment
JPS6438546A (en) * 1987-08-04 1989-02-08 Hitachi Plant Eng & Constr Co Operation method for air conditioning device
JPH04283343A (en) * 1991-03-13 1992-10-08 Matsushita Seiko Co Ltd Controller for air handling unit
JPH0510566A (en) * 1991-07-03 1993-01-19 Matsushita Seiko Co Ltd Controller for air conditioner
JPH06272940A (en) * 1993-03-17 1994-09-27 Ebara Corp Control method of air conditioning apparatus
JPH0719574A (en) * 1993-07-02 1995-01-20 Fujita Corp Controlling equipment of quantity of airflow of air-conditioning system
JPH07113542A (en) * 1993-10-18 1995-05-02 Maisutaa Eng:Kk Controlling method for air conditioner
JPH0828935A (en) * 1994-07-18 1996-02-02 Kubota Corp Humidifier
JP2001056146A (en) * 1999-08-18 2001-02-27 Mitsubishi Estate Co Ltd Air conditioning apparatus
JP2005069554A (en) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd Water heat source air conditioning system
JP2006145070A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Air conditioning system and air conditioning system control method
JP2007290690A (en) * 2006-03-28 2007-11-08 Denso Corp Air-conditioning system
JP2008020168A (en) * 2006-07-14 2008-01-31 Kenchiku Setsubi Sekkei Kenkyusho:Kk Air conditioning system
JP2010071489A (en) * 2008-09-16 2010-04-02 Toshiba Corp Air conditioning control device and air conditioning control method
JP2010071587A (en) * 2008-09-19 2010-04-02 East Japan Railway Co Air conditioning system
JP2010190480A (en) * 2009-02-18 2010-09-02 Toshiba Corp Air conditioning control system, air supply switching controller used for the same and air conditioning control method
JP2011080758A (en) * 2010-12-17 2011-04-21 Mitsubishi Electric Corp Control method of air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703692B2 (en) * 2008-07-11 2011-06-15 株式会社東芝 Air conditioning control system, air supply switching controller used therefor, and air conditioning control method
JP5518812B2 (en) * 2011-09-06 2014-06-11 木村工機株式会社 External air conditioner with air conditioning function

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153034A (en) * 1982-03-08 1983-09-10 Matsushita Electric Ind Co Ltd Air conditioning equipment
JPS6438546A (en) * 1987-08-04 1989-02-08 Hitachi Plant Eng & Constr Co Operation method for air conditioning device
JPH04283343A (en) * 1991-03-13 1992-10-08 Matsushita Seiko Co Ltd Controller for air handling unit
JPH0510566A (en) * 1991-07-03 1993-01-19 Matsushita Seiko Co Ltd Controller for air conditioner
JPH06272940A (en) * 1993-03-17 1994-09-27 Ebara Corp Control method of air conditioning apparatus
JPH0719574A (en) * 1993-07-02 1995-01-20 Fujita Corp Controlling equipment of quantity of airflow of air-conditioning system
JPH07113542A (en) * 1993-10-18 1995-05-02 Maisutaa Eng:Kk Controlling method for air conditioner
JPH0828935A (en) * 1994-07-18 1996-02-02 Kubota Corp Humidifier
JP2001056146A (en) * 1999-08-18 2001-02-27 Mitsubishi Estate Co Ltd Air conditioning apparatus
JP2005069554A (en) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd Water heat source air conditioning system
JP2006145070A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Air conditioning system and air conditioning system control method
JP2007290690A (en) * 2006-03-28 2007-11-08 Denso Corp Air-conditioning system
JP2008020168A (en) * 2006-07-14 2008-01-31 Kenchiku Setsubi Sekkei Kenkyusho:Kk Air conditioning system
JP2010071489A (en) * 2008-09-16 2010-04-02 Toshiba Corp Air conditioning control device and air conditioning control method
JP2010071587A (en) * 2008-09-19 2010-04-02 East Japan Railway Co Air conditioning system
JP2010190480A (en) * 2009-02-18 2010-09-02 Toshiba Corp Air conditioning control system, air supply switching controller used for the same and air conditioning control method
JP2011080758A (en) * 2010-12-17 2011-04-21 Mitsubishi Electric Corp Control method of air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"エアハンドリングユニット(低エクセルギー空調機)とINV制御による省エネ", ヒートポンプ進化論 PART2 省エネに向けたインバータ技術, JPN6013000247, 24 February 2011 (2011-02-24), JP, pages 25 - 34, ISSN: 0002428000 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674291C2 (en) * 2013-04-24 2018-12-06 Дюрр Системс Аг Air conditioning method and air conditioning plant
CN103822306A (en) * 2014-03-03 2014-05-28 安阳振动器有限责任公司 Split type air-purifying fresh-air draught fan
JPWO2015151363A1 (en) * 2014-03-31 2017-04-13 三菱電機株式会社 Air conditioning system and control method for air conditioning equipment
WO2015151363A1 (en) * 2014-03-31 2015-10-08 三菱電機株式会社 Air-conditioning system and control method for air-conditioning equipment
JP5869648B1 (en) * 2014-10-29 2016-02-24 木村工機株式会社 Air conditioning system
JP6084737B1 (en) * 2015-10-06 2017-02-22 木村工機株式会社 Air conditioning system
JP6284134B1 (en) * 2016-11-29 2018-02-28 株式会社 エコファクトリー Outside air conditioner and ventilation system
JP2018185109A (en) * 2017-04-26 2018-11-22 木村工機株式会社 Air heat source Heat pump type air conditioner
US10309676B2 (en) 2017-04-26 2019-06-04 Kimura Kohki Co., Ltd. Air-source heat pump air conditioner
US20190360608A1 (en) * 2018-05-25 2019-11-28 Qualitek Precision Industrial Co., Ltd. Energy saving system utliizing temperature sensing flow control valve to realizing chilled water loop
US10801636B2 (en) * 2018-05-25 2020-10-13 Qualitek Precision Industrial Co., Ltd. Energy saving system utilizing temperature sensing flow control valve to control chilled water circulation
CN111795427A (en) * 2019-04-09 2020-10-20 恒泽节能有限公司 Regulating system for regulating air temperature, humidity and water temperature by using outdoor air heat exchanger

Also Published As

Publication number Publication date
CN102980248A (en) 2013-03-20
JP5518812B2 (en) 2014-06-11
CN102980248B (en) 2015-05-06
CN202792258U (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5518812B2 (en) External air conditioner with air conditioning function
WO2016002071A1 (en) Air-conditioning and ventilation apparatus
KR20040102566A (en) air-conditioner system with ventilation
US20130048267A1 (en) Ventilation and air-conditioning apparatus and method for controlling the same
WO2016179884A1 (en) Variable-refrigerant-flow radiant air-conditioning system
CN108534319B (en) Air conditioner and air conditioning system provided with same
CN108800375B (en) Air heat source heat pump type air conditioner
JP4651460B2 (en) Air conditioner and outside air cooling operation method
KR20150020049A (en) Air conditioner with outdoor air cooling function
KR101454995B1 (en) Outdoor air conditioner having air conditioning function
JP2005214608A (en) Method for improving energy saving for air-conditioning facility
JP5554431B2 (en) External air conditioner with air conditioning function
KR101422197B1 (en) Terminal reheating of Air conditioning unit
JP6084737B1 (en) Air conditioning system
KR100581276B1 (en) an instrument of use for constant temperature and humidity
CN210014517U (en) Air conditioning apparatus
CN102878634A (en) Energy-conservation control method of dehumidifying machine special for swimming pool
JP3614775B2 (en) Heat pump air conditioner
JP6825875B2 (en) Air conditioning system
KR101628152B1 (en) Dedicated Outdoor Air Handling Unit(DOAHU) with dehumidifier Heat Pipes for energy conservation and air conditioning system compound DOAHU and chilled beam units
JP6253459B2 (en) Ventilator for air conditioning
JP2015038395A (en) Outside air treatment air conditioner
JP2021018000A (en) Separately installed air conditioning system
JP2021017999A (en) Air conditioning apparatus
KR101851372B1 (en) Energy saving air handling unit and control method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250