WO2015149608A1 - 多级码本的生成方法和装置、以及码本反馈方法和装置 - Google Patents

多级码本的生成方法和装置、以及码本反馈方法和装置 Download PDF

Info

Publication number
WO2015149608A1
WO2015149608A1 PCT/CN2015/074015 CN2015074015W WO2015149608A1 WO 2015149608 A1 WO2015149608 A1 WO 2015149608A1 CN 2015074015 W CN2015074015 W CN 2015074015W WO 2015149608 A1 WO2015149608 A1 WO 2015149608A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
polar
vertical
horizontal
dimension
Prior art date
Application number
PCT/CN2015/074015
Other languages
English (en)
French (fr)
Inventor
李传军
苏昕
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2015149608A1 publication Critical patent/WO2015149608A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for generating a multi-level codebook, and a codebook feedback method and apparatus.
  • multi-user multiple input and output (MU-MIMO) technology can effectively provide system capacity; multi-input and output (MIMO) is also extended from 2D to 3D (3D, 3Dimensions), each antenna becomes N H ⁇ N V antenna elements, where N H is the horizontal dimension of the antenna element (or the number of antenna columns in the horizontal direction of the antenna element), and N V is the vertical dimension of the antenna element (or antenna element) The number of antenna rows in the vertical direction); and the 3D MIMO system can directly control each antenna oscillator through baseband processing; and the precoding/beamforming technology also implements signals corresponding to N H ⁇ N V antenna elements. Perform weighting processing. Therefore, in order to avoid an increase in the size of the antenna as the number of antenna elements increases, the multi-polarization method (including single polarization, dual polarization, triple polarization) is usually used for array formation.
  • MIMO multi-input and output
  • the present invention provides a method and apparatus for generating a multi-level codebook, and a codebook feedback method and apparatus.
  • a method of generating a multi-level codebook is provided.
  • the method for generating the multi-level codebook includes:
  • the plurality of dimensions includes at least one of the following:
  • Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
  • the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
  • the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
  • the number n V is equal to 1, 2, ... N V .
  • a multi-level codebook When a multi-level codebook is generated according to multiple dimensions, a plurality of dimensions may be encoded and configured to generate a codebook set corresponding to the plurality of dimensions; and a multi-level code is generated according to the generated plurality of codebook sets. this.
  • the plurality of codebook sets may include at least one of the following: a polar codebook set W Polar , a horizontal codebook set W H , and a vertical codebook set W V .
  • the multi-level codebook when generating a multi-level codebook according to the generated multiple codebook sets, the multi-level codebook can be generated by the following formula: Among them, W is a multi-level codebook.
  • the polarization codebook set W Polar is used to control orthogonality between different data streams; and, the polarization codebook set W Polar is described by the following formula:
  • m Polar is the polarization codebook number
  • m Polar is equal to 1, 2, . M Polar.
  • the polarization beam codebooks in the codebook W Polar number M Polar polarization may depend on the dimensions and transmission of data layers N polar [upsilon], and the first codebook m Polar A matrix of N Polar ⁇ .
  • W Polar polarization codebooks in the codebook is equal to the number M Polar 1, W Polar polarization codebook set equal to ⁇ [1 ] ⁇ ; If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 1, then W Polar polarization codebooks in the codebook number M Polar equals 4, the polarization codebook set equal to W Polar If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 2, the codebook set W Polar polarization in a codebook is equal to the number 2 M Polar polarization codebook set equal to W Polar
  • m H is a horizontal codebook number, and m H is equal to 1, 2, ... M H .
  • the horizontal codebook set W H may include a horizontal scan codebook set W H, a Scan and a horizontal beam shape codebook set W H, Pattern , and a horizontal codebook set W H and a horizontal scan codebook set W H, Scan
  • the relationship between the horizontal beam shape codebook set W H and Pattern can be described by the following formula:
  • W H W H,pattern ⁇ W H,Scan ;
  • the horizontal scan codebook set W H, Scan is used to control the horizontal scan angle of the 3D beam;
  • the horizontal beam shape codebook set W H, the Pattern is used to control the horizontal beam shape of the 3D beam.
  • the horizontal scan codebook set W H, Scan may be a matrix of N H ⁇ M H dimensions
  • the horizontal scan codebook set WH , Scan may be generated by the following formula:
  • n H n H is a base station antenna of the antenna column and, n H is equal to 1,2, ... .N H;
  • N H is the first column of the base station antenna in the antenna coordinate reference phase 0 of the coordinate system.
  • the horizontal beam shape codebook set W H,Pattern may be a matrix of N H ⁇ M H dimensions, and the horizontal beam shape codebook set W H,Pattern may be generated by the following formula:
  • nth H quantity is for Directional beam shape beam shape codebook.
  • the vertical codebook set W V is used to control the orthogonality between the different users in the vertical direction space, and the vertical codebook set W V is described by the following formula:
  • m V is the vertical codebook number and m V is equal to 1, 2, ... M V .
  • the above vertical codebook set W V may include a vertical scan codebook set W V, a Scan and a vertical beam shape codebook set W V, Pattern , and a vertical codebook set W V and a vertical scan codebook set W V, Scan And the relationship between the vertical beam shape codebook set W V and Pattern can be described by the following formula:
  • W V W V, pattern ⁇ W V, Scan ;
  • the vertical scan codebook set W V, Scan is used to control the vertical scan angle of the 3D beam
  • the vertical beam shape codebook set W V, the Pattern is used to control the vertical beam shape of the 3D beam.
  • the above vertical scan codebook set W V, Scan may be a matrix of N V ⁇ M H
  • the vertical scan codebook set W V, Scan may be generated by the following formula:
  • n V n V is a base station antenna of the antenna line, and, n V equals 1,2, ... N V;
  • the base station antenna of the antenna coordinate row n V 0 reference phase coordinate system The base station antenna of the antenna coordinate row n V 0 reference phase coordinate system.
  • the vertical beam shape codebook set W V,Pattern may also be a matrix of N V ⁇ M V dimensions, and the vertical beam shape codebook set W V,Pattern may be generated by the following formula:
  • the beam shape codebook can be acquired by a beam shape genetic algorithm.
  • a multilevel codebook generating apparatus is provided.
  • the generating device of the multi-level codebook comprises:
  • a dimension determining module configured to determine, according to a multi-dimensional feature of the base station antenna, multiple dimensions corresponding to the base station antenna
  • a codebook generating module configured to generate a multi-level codebook according to multiple dimensions
  • the plurality of dimensions includes at least one of the following:
  • Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
  • the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
  • the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
  • the number n V is equal to 1, 2, ... N V .
  • the codebook generating module may include: a coding configuration submodule, configured to perform coding configuration on multiple dimensions, and generate a codebook set corresponding to multiple dimensions; and a codebook generation submodule, configured to generate multiple codebooks according to the codebook Set, generate a multi-level codebook.
  • the plurality of codebook sets may include at least one of the following: a polar codebook set W Polar , a horizontal codebook set W H , and a vertical codebook set W V .
  • the codebook generation sub-module when the codebook generation sub-module generates a multi-level codebook according to the generated multiple codebook sets, the multi-level codebook can be generated by the following formula: Among them, W is a multi-level codebook.
  • the polarization codebook set W Polar is used to control orthogonality between different data streams; and, the polarization codebook set W Polar is described by the following formula:
  • m Polar is the polarization codebook number
  • m Polar is equal to 1, 2, . M Polar .
  • the polarization beam codebooks in the codebook W Polar number M Polar polarization may depend on the dimensions and transmission of data layers N polar [upsilon], and the first codebook m Polar A matrix of N Polar ⁇ .
  • W Polar polarization codebooks in the codebook is equal to the number M Polar 1, W Polar polarization codebook set equal to ⁇ [1 ] ⁇ ; If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 1, then W Polar polarization codebooks in the codebook number M Polar equals 4, the polarization codebook set equal to W Polar If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 2, the codebook set W Polar polarization in a codebook is equal to the number 2 M Polar polarization codebook set equal to W Polar
  • m H is a horizontal codebook number, and m H is equal to 1, 2, ... M H .
  • the horizontal codebook set W H may include a horizontal scan codebook set W H, a Scan and a horizontal beam shape codebook set W H, Pattern , and a horizontal codebook set W H and a horizontal scan codebook set W H, Scan
  • the relationship between the horizontal beam shape codebook set W H and Pattern can be described by the following formula:
  • W H W H,pattern ⁇ W H,Scan ;
  • the horizontal scan codebook set W H, Scan is used to control the horizontal scan angle of the 3D beam;
  • the horizontal beam shape codebook set W H, the Pattern is used to control the horizontal beam shape of the 3D beam.
  • the horizontal scan codebook set W H, Scan may be a matrix of N H ⁇ M H dimensions
  • the horizontal scan codebook set W H, Scan may be generated by the following formula:
  • n H n H is a base station antenna of the antenna column and, n H is equal to 1,2, ... .N H;
  • N H is the first column of the base station antenna in the antenna coordinate reference phase 0 of the coordinate system.
  • the horizontal beam shape codebook set W H,Pattern may also be a matrix of N H ⁇ M H dimensions, and the horizontal beam shape codebook set W H,Pattern may be generated by the following formula:
  • nth H quantity is for Directional beam shape beam shape codebook.
  • the vertical codebook set W V is used to control the orthogonality between the different users in the vertical direction space, and the vertical codebook set W V is described by the following formula:
  • m V is the vertical codebook number and m V is equal to 1, 2, ... M V .
  • the above vertical codebook set W V may include a vertical scan codebook set W V, a Scan and a vertical beam shape codebook set W V, Pattern , and a vertical codebook set W V and a vertical scan codebook set W V, Scan And the relationship between the vertical beam shape codebook set W V and Pattern can be described by the following formula:
  • W V W V, pattern ⁇ W V, Scan ;
  • the vertical scan codebook set W V, Scan is used to control the vertical scan angle of the 3D beam
  • the vertical beam shape codebook set W V, the Pattern is used to control the vertical beam shape of the 3D beam.
  • the above vertical scan codebook set W V, Scan may be a matrix of N V ⁇ M H
  • the vertical scan codebook set W V, Scan may be generated by the following formula:
  • n V n V is a base station antenna of the antenna line, and, n V equals 1,2, ... N V;
  • the base station antenna of the antenna coordinate row n V 0 reference phase coordinate system The base station antenna of the antenna coordinate row n V 0 reference phase coordinate system.
  • the vertical beam shape codebook set W V,Pattern may also be a matrix of N V ⁇ M V dimensions, and the vertical beam shape codebook set W V,Pattern may be generated by the following formula:
  • the beam shape codebook can be acquired by a beam shape genetic algorithm.
  • a codebook feedback method is provided.
  • the codebook feedback method includes:
  • the plurality of dimensions includes at least one of the following:
  • Polarization dimension N Polar horizontal dimension N H , vertical dimension N V ;
  • N Polar dimension number n Polar 1
  • N H n H 1
  • N V a vertical dimension of dimension N V
  • the number n V is equal to 1, 2, ... N V .
  • the co-polarized antenna elements when grouping the received channels based on multiple dimensions of the base station antenna, may be grouped according to the polarization dimension N polar to form N polar pairs of polarized sub-arrays of the same polarization;
  • the polarized sub-arrays are grouped according to the horizontal dimension N H ; the N H column horizontal sub-groups are formed; and the horizontal sub-arrays are grouped according to the vertical dimension N V ; and the N V- row vertical sub-groups are formed.
  • all channels in the nth polar polarization sub-group can also be obtained by the following formula:
  • the polarization codebook number is determined by a pre-configured polarization precoding selection principle.
  • the vertical codebook number can be determined by the following formula.
  • the horizontal codebook number can be determined by the following formula Optimal level codebook
  • the polarization codebook number may be determined by the following steps:
  • Polar the equivalent matrix R eq corresponding to H eq, Polar is determined by the following formula: Polar :
  • the post-detection signal-to-noise ratio SINR eq, Polar is determined by the following formula:
  • the capacity C Polar of each available codebook is determined by the following formula:
  • the signal-to-noise ratio of the ith transmission data layer is the detected signal-to-noise ratio SINR eq, the ith component of Polar , and
  • SINR eq the signal-to-noise ratio of the ith transmission data layer
  • the relationship with SINR eq, Polar is described by the following formula:
  • a codebook feedback device is provided.
  • the codebook feedback device includes:
  • a channel grouping module configured to group received channels based on multiple dimensions of the base station antenna, and determine channel groups corresponding to multiple dimensions
  • a codebook determining module configured to determine, according to the channel group, a codebook number corresponding to each channel group;
  • Codebook feedback module used for feedback codebook number
  • the plurality of dimensions includes at least one of the following:
  • Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
  • the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
  • the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
  • the number n V is equal to 1, 2, ... N V .
  • the channel grouping module may include: a polarization grouping sub-module, configured to group the co-polarized antenna elements according to the polarization dimension N polar to form N polar polarization sub-arrays of the same polarization; the horizontal grouping sub-module, For grouping polarized sub-arrays according to horizontal dimension N H ; forming N H column horizontal sub-arrays; vertical grouping sub-modules for grouping horizontal sub-arrays according to vertical dimension N V ; forming N V rows vertical Subgroup.
  • the code determination module may present comprises: a first acquiring module, for acquiring all the vertical channels in the sub-array group of subarrays polarizations n polar group of subarrays horizontal row n H group by the following equation:
  • a first determining module configured for an N V ⁇ 1 dimensional equivalent channel vector of a vertical sub-array of the nth H column Determine the vertical codebook number by pre-configured vertical precoding selection principles And with the vertical codebook number Corresponding optimal vertical codebook
  • the codebook determining module may further include: a second acquiring module, configured to acquire all channels in the nth polar polarization sub-group by the following formula:
  • a second determining module configured to calculate an equivalent channel vector of the Nth H ⁇ 1 dimension of the horizontal subgroup in the channel Determine the horizontal codebook number by pre-configured horizontal precoding selection principle And horizontal codebook number Corresponding optimal level codebook
  • the codebook determining module may further include: a third acquiring module, configured to acquire all channels in all the polarized sub-arrays by the following formula:
  • a third determining module configured to determine a polarization codebook number according to a pre-configured polarization precoding selection principle according to an N polar ⁇ 1 dimensional equivalent channel vector H eq, Polar of the polarized sub-array
  • the first determining module may determine the vertical codebook number by using the following formula: And optimal vertical codebook
  • the second determining module may determine the horizontal codebook number by using the following formula Optimal level codebook
  • the third determining module may determine the polarization codebook number by the following steps:
  • Polar the equivalent matrix R eq corresponding to H eq, Polar is determined by the following formula: Polar :
  • the post-detection signal-to-noise ratio SINR eq, Polar is determined by the following formula:
  • the capacity C Polar of each available codebook is determined by the following formula:
  • the signal-to-noise ratio of the ith transmission data layer is the detected signal-to-noise ratio SINR eq, the ith component of Polar , and
  • SINR eq the signal-to-noise ratio of the ith transmission data layer
  • the relationship with SINR eq, Polar is described by the following formula:
  • the invention designs a polarization codebook, a horizontal basic codebook, a horizontal scanning codebook, a vertical basic codebook and a vertical scanning codebook according to an antenna structure, realizes polarization dimension utilization by using a polarization codebook, and realizes horizontal dimension by horizontal scanning codebook Utilize, realize vertical dimension utilization through vertical basic codebook, realize 3D beam horizontal beamwidth control through horizontal basic codebook, realize 3D beam vertical beamwidth control through vertical basic codebook, and fully utilize spatial dimension, which is beneficial to MIMO Performance improvement.
  • the present invention effectively improves the resolution of the 3D horizontal direction and/or the vertical direction by scanning the codebook and the basic codebook design, thereby contributing to the improvement of the MU-MIMO performance.
  • FIG. 1 is a schematic flow chart of a method for generating a multi-level codebook according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a multi-level codebook generating apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart diagram of a codebook feedback method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the result of a codebook feedback apparatus according to an embodiment of the present invention.
  • Fig. 5 is a block diagram showing an exemplary structure of a computer embodying the technical solution of the present invention.
  • a method of generating a multi-level codebook is provided.
  • a method for generating a multi-level codebook includes:
  • Step S101 Determine, according to the multi-dimensional feature of the base station antenna, multiple dimensions corresponding to the base station antenna;
  • Step S103 generating a multi-level codebook according to multiple dimensions
  • the plurality of dimensions includes at least one of the following:
  • Polarization dimension N Polar horizontal dimension N H , vertical dimension N V ;
  • N Polar dimension number n Polar 1
  • N H n H 1
  • N V a vertical dimension of dimension N V
  • the number n V is equal to 1, 2, ... N V .
  • a multi-level codebook When a multi-level codebook is generated according to multiple dimensions, a plurality of dimensions may be encoded and configured to generate a codebook set corresponding to the plurality of dimensions; and a multi-level code is generated according to the generated plurality of codebook sets. this.
  • the plurality of codebook sets may include at least one of the following: a polar codebook set W Polar , a horizontal codebook set W H , and a vertical codebook set W V .
  • the multi-level codebook when generating a multi-level codebook according to the generated multiple codebook sets, the multi-level codebook can be generated by the following formula: Among them, W is a multi-level codebook.
  • the polarization codebook set W Polar is used to control orthogonality between different data streams; and, the polarization codebook set W Polar is described by the following formula:
  • m Polar is the polarization codebook number
  • m Polar is equal to 1, 2, . M Polar.
  • the polarization beam codebooks in the codebook W Polar number M Polar polarization may depend on the dimensions and transmission of data layers N polar [upsilon], and the first codebook m Polar A matrix of N Polar ⁇ .
  • W Polar polarization codebooks in the codebook is equal to the number M Polar 1, W Polar polarization codebook set equal to ⁇ [1 ] ⁇ ; If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 1, then W Polar polarization codebooks in the codebook number M Polar equals 4, the polarization codebook set equal to W Polar If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 2, the codebook set W Polar polarization in a codebook is equal to the number 2 M Polar polarization codebook set equal to W Polar
  • m H is a horizontal codebook number, and m H is equal to 1, 2, ... M H .
  • the horizontal codebook set W H may include a horizontal scan codebook set W H, a Scan and a horizontal beam shape codebook set W H, Pattern , and a horizontal codebook set W H and a horizontal scan codebook set W H, Scan
  • the relationship between the horizontal beam shape codebook set W H and Pattern can be described by the following formula:
  • W H W H,pattern ⁇ W H,Scan ;
  • the horizontal scan codebook set W H, Scan is used to control the horizontal scan angle of the 3D beam;
  • the horizontal beam shape codebook set W H, the Pattern is used to control the horizontal beam shape of the 3D beam.
  • the horizontal scan codebook set W H, Scan may be a matrix of N H ⁇ M H dimensions
  • the horizontal scan codebook set WH , Scan may be generated by the following formula:
  • n H n H is a base station antenna of the antenna column and, n H is equal to 1,2, ... .N H;
  • N H is the first column of the base station antenna in the antenna coordinate reference phase 0 of the coordinate system.
  • the horizontal beam shape codebook set W H,Pattern may be a matrix of N H ⁇ M H dimensions, and the horizontal beam shape codebook set W H,Pattern may be generated by the following formula:
  • nth H quantity is for Directional beam shape beam shape codebook.
  • the vertical codebook set W V is used to control the orthogonality between the different users in the vertical direction space, and the vertical codebook set W V is described by the following formula:
  • m V is the vertical codebook number and m V is equal to 1, 2, ... M V .
  • the above vertical codebook set W V may include a vertical scan codebook set W V, a Scan and a vertical beam shape codebook set W V, Pattern , and a vertical codebook set W V and a vertical scan codebook set W V, Scan And the relationship between the vertical beam shape codebook set W V and Pattern can be described by the following formula:
  • W V W V, pattern ⁇ W V, Scan ;
  • the vertical scan codebook set W V, Scan is used to control the vertical scan angle of the 3D beam
  • the vertical beam shape codebook set W V, the Pattern is used to control the vertical beam shape of the 3D beam.
  • the above vertical scan codebook set W V, Scan may be a matrix of N V ⁇ M H
  • the vertical scan codebook set W V, Scan may be generated by the following formula:
  • n V n V is a base station antenna of the antenna line, and, n V equals 1,2, ... N V;
  • the base station antenna of the antenna coordinate row n V 0 reference phase coordinate system The base station antenna of the antenna coordinate row n V 0 reference phase coordinate system.
  • the vertical beam shape codebook set W V,Pattern may also be a matrix of N V ⁇ M V dimensions, and the vertical beam shape codebook set W V,Pattern may be generated by the following formula:
  • the beam shape codebook can be acquired by a beam shape genetic algorithm.
  • a multi-level codebook generating apparatus is also provided.
  • the apparatus for generating a multi-level codebook includes:
  • the dimension determining module 21 is configured to determine, according to the multi-dimensional feature of the base station antenna, multiple dimensions corresponding to the base station antenna;
  • the codebook generating module 22 is configured to generate a multi-level codebook according to multiple dimensions
  • the plurality of dimensions includes at least one of the following:
  • Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
  • the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
  • the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
  • the number n V is equal to 1, 2, ... N V .
  • the codebook generating module 22 may include: an encoding configuration sub-module (not shown) for encoding and configuring multiple dimensions, generating a codebook set corresponding to multiple dimensions; and a codebook generating sub-module (FIG. Not shown in the figure), for generating a multi-level codebook according to the generated plurality of codebook sets.
  • the plurality of codebook sets may include at least one of the following: a polar codebook set W Polar , a horizontal codebook set W H , and a vertical codebook set W V .
  • the codebook generation sub-module when the codebook generation sub-module generates a multi-level codebook according to the generated multiple codebook sets, the multi-level codebook can be generated by the following formula: Among them, W is a multi-level codebook.
  • the polarization codebook set W Polar is used to control orthogonality between different data streams; and, the polarization codebook set W Polar is described by the following formula:
  • m Polar is the polarization codebook number
  • m Polar is equal to 1, 2, . M Polar .
  • the polarization beam codebooks in the codebook W Polar number M Polar polarization may depend on the dimensions and transmission of data layers N polar [upsilon], and the first codebook m Polar A matrix of N Polar ⁇ .
  • W Polar polarization codebooks in the codebook is equal to the number M Polar 1, W Polar polarization codebook set equal to ⁇ [1 ] ⁇ ; If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 1, then W Polar polarization codebooks in the codebook number M Polar equals 4, the polarization codebook set equal to W Polar If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 2, the codebook set W Polar polarization in a codebook is equal to the number 2 M Polar polarization codebook set equal to W Polar
  • m H is a horizontal codebook number, and m H is equal to 1, 2, ... M H .
  • the horizontal codebook set W H may include a horizontal scan codebook set W H, a Scan and a horizontal beam shape codebook set W H, Pattern , and a horizontal codebook set W H and a horizontal scan codebook set W H, Scan
  • the relationship between the horizontal beam shape codebook set W H and Pattern can be described by the following formula:
  • W H W H,pattern ⁇ W H,Scan ;
  • the horizontal scan codebook set W H, Scan is used to control the horizontal scan angle of the 3D beam;
  • the horizontal beam shape codebook set W H, the Pattern is used to control the horizontal beam shape of the 3D beam.
  • the horizontal scan codebook set W H, Scan may be a matrix of N H ⁇ M H dimensions
  • the horizontal scan codebook set W H, Scan may be generated by the following formula:
  • n H n H is a base station antenna of the antenna column and, n H is equal to 1,2, ... .N H;
  • N H is the first column of the base station antenna in the antenna coordinate reference phase 0 of the coordinate system.
  • the horizontal beam shape codebook set W H,Pattern may also be a matrix of N H ⁇ M H dimensions, and the horizontal beam shape codebook set W H,Pattern may be generated by the following formula:
  • nth H quantity is for Directional beam shape beam shape codebook.
  • the vertical codebook set W V is used to control the orthogonality between the different users in the vertical direction space, and the vertical codebook set W V is described by the following formula:
  • m V is the vertical codebook number and m V is equal to 1, 2, ... M V .
  • the above vertical codebook set W V may include a vertical scan codebook set W V, a Scan and a vertical beam shape codebook set W V, Pattern , and a vertical codebook set W V and a vertical scan codebook set W V, Scan And the relationship between the vertical beam shape codebook set W V and Pattern can be described by the following formula:
  • W V W V, pattern ⁇ W V, Scan ;
  • the vertical scan codebook set W V, Scan is used to control the vertical scan angle of the 3D beam
  • the vertical beam shape codebook set W V, the Pattern is used to control the vertical beam shape of the 3D beam.
  • the above vertical scan codebook set W V, Scan may be a matrix of N V ⁇ M H
  • the vertical scan codebook set W V, Scan may be generated by the following formula:
  • n V n V is a base station antenna of the antenna line, and, n V equals 1,2, ... N V;
  • the base station antenna of the antenna coordinate row n V 0 reference phase coordinate system The base station antenna of the antenna coordinate row n V 0 reference phase coordinate system.
  • the vertical beam shape codebook set W V,Pattern may also be a matrix of N V ⁇ M V dimensions, and the vertical beam shape codebook set W V,Pattern may be generated by the following formula:
  • the beam shape codebook can be acquired by a beam shape genetic algorithm.
  • a codebook feedback method is also provided.
  • a codebook feedback method includes:
  • Step S301 grouping received channels according to multiple dimensions of the base station antenna, and determining channel groups corresponding to multiple dimensions;
  • Step S303 determining, according to the channel group, a codebook number corresponding to each channel group
  • Step S305 feedback codebook number
  • the plurality of dimensions includes at least one of the following:
  • Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
  • the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
  • the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
  • the number n V is equal to 1, 2, ... N V .
  • the co-polarized antenna elements may be grouped according to the polarization dimension N polar to form N polar pairs of polarized sub-arrays of the same polarization;
  • the polarized sub-arrays are grouped according to the horizontal dimension N H ; the N H column horizontal sub-groups are formed; and the horizontal sub-arrays are grouped according to the vertical dimension N V ; and the N V- row vertical sub-groups are formed.
  • all channels in the nth polar polarization sub-group can also be obtained by the following formula:
  • the polarization codebook number is determined by a pre-configured polarization precoding selection principle.
  • the vertical codebook number can be determined by the following formula.
  • the horizontal codebook number can be determined by the following formula Optimal level codebook
  • the polarization codebook number may be determined by the following steps:
  • Polar the equivalent matrix R eq corresponding to H eq, Polar is determined by the following formula: Polar :
  • the post-detection signal-to-noise ratio SINR eq, Polar is determined by the following formula:
  • the capacity C Polar of each available codebook is determined by the following formula:
  • the signal-to-noise ratio of the i-th transmission data layer is the detected signal-to-noise ratio SINR eq, the i-th component of Polar , and
  • SINR eq the signal-to-noise ratio of the i-th transmission data layer
  • the relationship with SINR eq, Polar is described by the following formula:
  • a codebook feedback device is also provided.
  • a codebook feedback apparatus includes:
  • the channel grouping module 41 is configured to group the received channels according to multiple dimensions of the base station antenna, and determine channel groups corresponding to multiple dimensions;
  • the codebook determining module 42 is configured to determine, according to the channel group, a codebook number corresponding to each channel group;
  • Codebook feedback module 43 used for feedback codebook number
  • the plurality of dimensions includes at least one of the following:
  • Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
  • the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
  • the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
  • the number n V is equal to 1, 2, ... N V .
  • the channel grouping module 41 may include: a polarization grouping sub-module (not shown) for grouping the same-polarized antenna elements according to the polarization dimension N polar to form N polar identical polarization polarons a grouping group; a horizontal grouping sub-module (not shown) for grouping the polarized sub-arrays according to the horizontal dimension N H ; forming an N H column horizontal sub-group; a vertical grouping sub-module (not shown in the figure) ), for grouping the horizontal sub-arrays according to the vertical dimension N V ; forming N V rows of vertical sub-arrays.
  • codebook determination module 42 may include: a first acquisition module (not shown) for acquiring all of the subarrays polarizations n polar group of subarrays horizontal row n H group by the following formula Vertical sub-group channel:
  • a first determining module for using an N V ⁇ 1 dimensional equivalent channel vector of a vertical sub-array of the nth H column Determine the vertical codebook number by pre-configured vertical precoding selection principles And with the vertical codebook number Corresponding optimal vertical codebook
  • codebook determining module 42 may further include: a second acquiring module (not shown) for acquiring all channels in the nth polar polarization sub-group by the following formula:
  • a second determining module for using an Nth H ⁇ 1 dimensional equivalent channel vector of the horizontal subgroup in the channel Determine the horizontal codebook number by pre-configured horizontal precoding selection principle And horizontal codebook number Corresponding optimal level codebook
  • the codebook determining module 42 may further include: a third acquiring module (not shown) for acquiring all channels in all the polarized sub-arrays by the following formula:
  • a third determining module (not shown) for determining a pole according to a pre-configured polarization precoding selection principle according to a N polar ⁇ 1 dimensional equivalent channel vector H eq, Polar of the polar subgroup Codebook number
  • the first determining module may determine the vertical codebook number by using the following formula: And optimal vertical codebook
  • the second determining module may determine the horizontal codebook number by using the following formula Optimal level codebook
  • the third determining module may determine the polarization codebook number by the following steps:
  • Polar the equivalent matrix R eq corresponding to H eq, Polar is determined by the following formula: Polar :
  • the post-detection signal-to-noise ratio SINR eq, Polar is determined by the following formula:
  • the capacity C Polar of each available codebook is determined by the following formula:
  • the signal-to-noise ratio of the ith transmission data layer is the detected signal-to-noise ratio SINR eq, the ith component of Polar , and
  • SINR eq the signal-to-noise ratio of the ith transmission data layer
  • the relationship with SINR eq, Polar is described by the following formula:
  • a polarized codebook, a horizontal basic codebook, a horizontal scanning codebook, a vertical basic codebook, and a vertical scanning codebook are designed according to the antenna structure, and the polar codebook is used to realize the pole.
  • Dimensional use, horizontal dimension codebook for horizontal dimension utilization, vertical basic codebook for vertical dimension utilization, horizontal basic codebook for 3D beam horizontal beamwidth control; vertical vertical codebook for 3D beam vertical beamwidth control Therefore, the spatial dimension is fully utilized, which is beneficial to the improvement of MIMO performance.
  • the resolution of the 3D horizontal direction and/or the vertical direction is effectively improved, thereby contributing to the improvement of the MU-MIMO performance.
  • the objects of the invention can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the object of the present invention can also be achieved by merely providing a program product comprising program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present invention, and a storage medium storing such a program product also constitutes the present invention. It will be apparent that the storage medium may be any known storage medium or any storage medium developed in the future.
  • a storage medium (which may be a ROM, a RAM, a hard disk, a detachable memory, or the like), in which a computer program for resource allocation is embedded, the computer program having a code segment configured to perform the following steps: determining, according to a multi-dimensional feature of the base station antenna, a plurality of dimensions corresponding to the base station antenna; generating a multi-level codebook according to the plurality of dimensions; wherein the plurality of dimensions include at least One: the polarization dimension N polar , the horizontal dimension N H , the vertical dimension N V ; and, the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar , the dimension number n in the horizontal dimension N H H is equal to 1, 2, ... N H , and the dimension number n V in the vertical dimension N V is equal to 1, 2, ... N V .
  • a computer program having a code segment configured to perform a resource allocation step of determining a plurality of dimensions corresponding to a base station antenna based on a multi-dimensional feature of a base station antenna Generating a multi-level codebook according to a plurality of dimensions; wherein the plurality of dimensions includes at least one of: a polarization dimension N polar , a horizontal dimension N H , a vertical dimension N V ; and a dimension number in the polarization dimension N polar n Polar equal to 1,2, ...... N Polar, the horizontal dimension of the dimension number N H n H is equal to 1,2, Hence N H, the vertical dimension of the dimension number N V n V is equal to 1,2, ...... N V.
  • a storage medium (which may be a ROM, a RAM, a hard disk, a detachable memory, or the like), in which a computer program for resource allocation is embedded, the computer program having a code segment configured to perform the steps of: grouping received channels based on a plurality of dimensions of a base station antenna, determining channel groups corresponding to the plurality of dimensions; determining a codebook number corresponding to each channel group according to the channel group a feedback codebook number; wherein, the plurality of dimensions includes at least one of: a polarization dimension N polar , a horizontal dimension N H , a vertical dimension N V ; and a dimension number n Polar in the polarization dimension N polar is equal to 1, 2 , ...... N Polar, the horizontal dimension of the dimension number N H n H is equal to 1,2, ...... N H, the vertical dimension of the dimension number N V n V is equal to 1,2, ...... N V.
  • a computer program having a code segment configured to perform the following resource allocation steps: grouping received channels based on a plurality of dimensions of a base station antenna, determining a plurality of a channel group corresponding to the dimension; determining, according to the channel group, a codebook number corresponding to each channel group; a feedback codebook number; wherein, the plurality of dimensions includes at least one of the following: a polarization dimension N polar , a horizontal dimension N H , and a vertical Dimension N V ; and, dimension number n Polar in polarization dimension N polar is equal to 1, 2, ... N Polar , dimension number n H in horizontal dimension N H is equal to 1, 2, ... N H , vertical dimension N V in the n-dimension number is equal to V 1,2, ...... N V.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose computer 500 shown in FIG.
  • a computer having a dedicated hardware structure such as the general-purpose computer 500 shown in FIG.
  • a central processing module (CPU) 501 executes various processes in accordance with a program stored in a read only memory (ROM) 502 or a program loaded from a storage portion 508 to a random access memory (RAM) 503.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 501 executes various processes and the like is also stored as needed.
  • the CPU 501, the ROM 502, and the RAM 503 are connected to each other via a bus 504.
  • Input/output interface 505 is also coupled to bus 504.
  • the following components are connected to the input/output interface 505: an input portion 506 including a keyboard, a mouse, etc.; an output portion 507 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), and the like, and a speaker and the like;
  • the storage portion 508 includes a hard disk or the like; and the communication portion 509 includes a network interface card such as a LAN card, a modem, and the like.
  • the communication section 509 performs communication processing via a network such as the Internet.
  • the driver 510 is also connected to the input/output interface 505 as needed.
  • a removable medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 510 as needed, so that a computer program read therefrom is installed into the storage portion 508 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 511.
  • such a storage medium is not limited to the removable medium 511 shown in FIG. 5 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 511 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 502, a hard disk included in the storage portion 508, etc., in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种多级码本的生成方法和装置、以及码本反馈方法和装置,其中,该多级码本的生成方法包括:基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;根据多个维度,生成多级码本;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。本发明根据天线结构的多维度特征,设计多级码本,从而完整的利用了空间维度,有益于MIMO和MU-MIMO性能的提升。

Description

多级码本的生成方法和装置、以及码本反馈方法和装置
本申请要求在2014年3月31日提交中国专利局、申请号为201410127690.7、发明名称为“多级码本的生成方法和装置、以及码本反馈方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体来说,涉及一种多级码本的生成方法和装置、以及码本反馈方法和装置。
背景技术
目前,随着通信技术的发展,多用户多输入输出(MU-MIMO)技术可以有效提供系统容量;多输入输出(MIMO)也从2D扩展到了三维(3D,3Dimensions),每个天线变为由NH×NV个天线振子组成,其中,NH为天线振子的水平维度(或者说是天线振子的水平方向的天线列数),NV为天线振子的垂直维度(或者说是天线振子的垂直方向的天线行数);;而3D MIMO系统则更是可以通过基带处理直接控制每个天线振子;并且预编码/波束赋型技术也实现了对NH×NV个天线振子对应的信号进行加权处理。因此,为了避免随着天线振子数量的增加,而导致天线体积增加,通常会采用多极化的方式(包括单极化,双极化,三极化)进行组阵。
然而,采用多级化的方式进行组阵后,3D天线的水平列数则由NH变为了NH/NPolar列,其中,NPolar表示极化维度(例如:若单极化天线,则NPolar=1,若双极化天线,则NPolar=2,若三极化天线,则NPolar=3),从而使得天线变小的同时,天线波束变宽了。所以,为了解决该问题,有必要研发出一种与多级化后的3D天线相适应的码本以及反馈设计。
发明内容
针对相关技术中的上述技术问题,本发明提出一种多级码本的生成方法和装置、以及码本反馈方法和装置。
为实现上述技术目的,根据本发明的一个方面,提供了一种多级码本的生成方法。
该多级码本的生成方法包括:
基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;
根据多个维度,生成多级码本;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
其中,在根据多个维度,生成多级码本时,可对多个维度进行编码配置,生成与该多个维度对应的码本集;并根据生成的多个码本集,生成多级码本。
其中,上述多个码本集可以包括以下至少之一:极化码本集WPolar、水平码本集WH、垂直码本集WV
相应的,在根据生成的多个码本集,生成多级码本时,可通过以下公式生成多级码本:
Figure PCTCN2015074015-appb-000001
其中,W为多级码本。
在上述技术方案中,极化码本集WPolar用于控制不同数据流之间的正交性;并且,极化码本集WPolar通过以下公式描述:
Figure PCTCN2015074015-appb-000002
其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar。
此外,上述极化码本集WPolar中的码本个数MPolar可取决于极化维度Npolar和传输数据层数υ,并且,第mPolar个码本
Figure PCTCN2015074015-appb-000003
为NPolar×υ的矩阵。
例如,若极化维度Npolar等于1,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于1,极化码本集WPolar等于{[1]};或若极化维度Npolar等于2,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于4,极化码本集WPolar等于
Figure PCTCN2015074015-appb-000004
或若极化维度Npolar等于2,且传输数据层数υ等于2,则极化码本集WPolar中的码本个数MPolar等于2,极化码本集WPolar等于
Figure PCTCN2015074015-appb-000005
此外,在上述方案中,水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,水平码本集WH通过以下公式描述:
Figure PCTCN2015074015-appb-000006
其中,mH为水平码本编号,并且,mH等于1,2,…MH
同时,上述水平码本集WH可包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与水平扫描码本集WH,Scan以及水平波束形状码本集WH,Pattern之间的关系可通过以下公式描述:
WH=WH,pattern·WH,Scan
其中,水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
此外,上述水平扫描码本集WH,Scan可为NH×MH维的矩阵,并且,水平扫描码本集WH,Scan可以通过以下公式生成:
Figure PCTCN2015074015-appb-000007
其中,
Figure PCTCN2015074015-appb-000008
为NH×1的矢量,并且,其中第nH个量通过以下公式描述:
Figure PCTCN2015074015-appb-000009
其中,
Figure PCTCN2015074015-appb-000010
为对基站天线水平方向覆盖角度范围内
Figure PCTCN2015074015-appb-000011
的第mH个指向角,并且,
Figure PCTCN2015074015-appb-000012
通过以下公式描述:
Figure PCTCN2015074015-appb-000013
其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH
其中,
Figure PCTCN2015074015-appb-000014
为基站天线第nH列天线在0参考相位坐标系中的坐标。
另外,上述水平波束形状码本集WH,Pattern可为NH×MH维的矩阵,并且,水平波束形状码本集WH,Pattern可通过以下公式生成:
Figure PCTCN2015074015-appb-000015
其中,
Figure PCTCN2015074015-appb-000016
为NH×1的矢量,并且,其中第nH个量为
Figure PCTCN2015074015-appb-000017
Figure PCTCN2015074015-appb-000018
方向水平波束形状的波束形状码本。
此外,在上述方案中,垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,垂直码本集WV通过以下公式描述:
Figure PCTCN2015074015-appb-000019
其中,mV为垂直码本编号,并且,mV等于1,2,…MV
同时,上述垂直码本集WV可包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,垂直码本集WV与垂直扫描码本集WV,Scan以及垂直波束形状码本集WV,Pattern之间的关系可通过以下公式描述:
WV=WV,pattern·WV,Scan
其中,垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
另外,上述垂直扫描码本集WV,Scan可为NV×MH的矩阵,并且,垂直扫描码本集 WV,Scan可通过以下公式生成:
Figure PCTCN2015074015-appb-000020
其中,
Figure PCTCN2015074015-appb-000021
为NV×1的矢量,并且,其中第nV个量通过以下公式描述:
Figure PCTCN2015074015-appb-000022
其中,
Figure PCTCN2015074015-appb-000023
为对基站天线覆盖角度范围内
Figure PCTCN2015074015-appb-000024
的第mV个指向角,并且,
Figure PCTCN2015074015-appb-000025
通过以下公式描述:
Figure PCTCN2015074015-appb-000026
其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV
其中,
Figure PCTCN2015074015-appb-000027
为基站天线中的第nV行天线在0参考相位坐标系中的坐标。
同时,上述垂直波束形状码本集WV,Pattern也可为NV×MV维的矩阵,并且,垂直波束形状码本集WV,Pattern可通过以下公式生成:
Figure PCTCN2015074015-appb-000028
其中,
Figure PCTCN2015074015-appb-000029
为NV×1的矢量,并且,其中第nV个量为
Figure PCTCN2015074015-appb-000030
Figure PCTCN2015074015-appb-000031
方向垂直波束形状的优化波束形状码本。
在上述方案中,对于波速形状码本来说,可通过波束形状的遗传算法来获取波束形状码本。
根据本发明的另一个方面,提供了一种多级码本的生成装置。
该多级码本的生成装置包括:
维度确定模块,用于基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;
码本生成模块,用于根据多个维度,生成多级码本;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
其中,码本生成模块可包括:编码配置子模块,用于对多个维度进行编码配置,生成与多个维度对应的码本集;码本生成子模块,用于根据生成的多个码本集,生成多级码本。
其中,上述多个码本集可包括以下至少之一:极化码本集WPolar、水平码本集WH、 垂直码本集WV
相应的,码本生成子模块在根据生成的多个码本集,生成多级码本时,可通过以下公式生成多级码本:其中,W为多级码本。
在上述方案中,极化码本集WPolar用于控制不同数据流之间的正交性;并且,极化码本集WPolar通过以下公式描述:
Figure PCTCN2015074015-appb-000033
其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar
此外,上述极化码本集WPolar中的码本个数MPolar可取决于极化维度Npolar和传输数据层数υ,并且,第mPolar个码本
Figure PCTCN2015074015-appb-000034
为NPolar×υ的矩阵。
例如,若极化维度Npolar等于1,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于1,极化码本集WPolar等于{[1]};或若极化维度Npolar等于2,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于4,极化码本集WPolar等于
Figure PCTCN2015074015-appb-000035
或若极化维度Npolar等于2,且传输数据层数υ等于2,则极化码本集WPolar中的码本个数MPolar等于2,极化码本集WPolar等于
Figure PCTCN2015074015-appb-000036
此外,在上述方案中,水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,水平码本集WH通过以下公式描述:
Figure PCTCN2015074015-appb-000037
其中,mH为水平码本编号,并且,mH等于1,2,…MH
同时,上述水平码本集WH可包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与水平扫描码本集WH,Scan以及水平波束形状码本集WH,Pattern之间的关系可通过以下公式描述:
WH=WH,pattern·WH,Scan
其中,水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
此外,上述水平扫描码本集WH,Scan可为NH×MH维的矩阵,并且,水平扫描码本集WH,Scan可通过以下公式生成:
Figure PCTCN2015074015-appb-000038
其中,
Figure PCTCN2015074015-appb-000039
为NH×1的矢量,并且,其中第nH个量通过以下公式描述:
Figure PCTCN2015074015-appb-000040
其中,
Figure PCTCN2015074015-appb-000041
为对基站天线水平方向覆盖角度范围内
Figure PCTCN2015074015-appb-000042
的第mH个指向角,并且,
Figure PCTCN2015074015-appb-000043
通过以下公式描述:
Figure PCTCN2015074015-appb-000044
其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH
其中,
Figure PCTCN2015074015-appb-000045
为基站天线第nH列天线在0参考相位坐标系中的坐标。
另外,上述水平波束形状码本集WH,Pattern也可为NH×MH维的矩阵,并且,水平波束形状码本集WH,Pattern可通过以下公式生成:
Figure PCTCN2015074015-appb-000046
其中,
Figure PCTCN2015074015-appb-000047
为NH×1的矢量,并且,其中第nH个量为
Figure PCTCN2015074015-appb-000048
Figure PCTCN2015074015-appb-000049
方向水平波束形状的波束形状码本。
此外,在上述方案中,垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,垂直码本集WV通过以下公式描述:
Figure PCTCN2015074015-appb-000050
其中,mV为垂直码本编号,并且,mV等于1,2,…MV
同时,上述垂直码本集WV可包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,垂直码本集WV与垂直扫描码本集WV,Scan以及垂直波束形状码本集WV,Pattern之间的关系可通过以下公式描述:
WV=WV,pattern·WV,Scan
其中,垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
另外,上述垂直扫描码本集WV,Scan可为NV×MH的矩阵,并且,垂直扫描码本集WV,Scan可通过以下公式生成:
Figure PCTCN2015074015-appb-000051
其中,
Figure PCTCN2015074015-appb-000052
为NV×1的矢量,并且,其中第nV个量通过以下公式描述:
Figure PCTCN2015074015-appb-000053
其中,
Figure PCTCN2015074015-appb-000054
为对基站天线覆盖角度范围内
Figure PCTCN2015074015-appb-000055
的第mV个指向角,并且,
Figure PCTCN2015074015-appb-000056
通过以下公式描述:
Figure PCTCN2015074015-appb-000057
其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV
其中,
Figure PCTCN2015074015-appb-000058
为基站天线中的第nV行天线在0参考相位坐标系中的坐标。
同时,上述垂直波束形状码本集WV,Pattern也可为NV×MV维的矩阵,并且,垂直波束形状码本集WV,Pattern可通过以下公式生成:
Figure PCTCN2015074015-appb-000059
其中,
Figure PCTCN2015074015-appb-000060
为NV×1的矢量,并且,其中第nV个量为
Figure PCTCN2015074015-appb-000061
Figure PCTCN2015074015-appb-000062
方向垂直波束形状的波束形状码本。
在上述方案中,对于波速形状码本来说,可通过波束形状的遗传算法来获取波束形状码本。
根据本发明的又一方面,提供了一种码本反馈方法。
该码本反馈方法包括:
基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;
根据信道组,确定与每个信道组对应的码本编号;
反馈码本编号;
其中,多个维度包括以下至少之一:
极化维度NPolar、水平维度NH、垂直维度NV
其中,极化维度NPolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
其中,在基于基站天线的多个维度,对接收的信道进行分组时,可根据极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;并根据水平维度NH对极化子阵组进行分组;形成NH列水平子阵组;并根据垂直维度NV对水平子阵组进行分组;形成NV行垂直子阵组。
此外,在根据信道组,确定与每个信道组对应的码本编号时,可通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
H(nPolar,nH,nV),where nV=1,2,…,NV
并根据所有垂直子阵组的信道,确定第nH列的垂直子阵的NV×1维的等效信道矢量
Figure PCTCN2015074015-appb-000063
其中,
Figure PCTCN2015074015-appb-000064
并根据第nH列的垂直子阵的NV×1维的等效信道矢量
Figure PCTCN2015074015-appb-000065
通过预先配置的 垂直预编码选取原则,确定垂直码本编号
Figure PCTCN2015074015-appb-000066
和与垂直码本编号
Figure PCTCN2015074015-appb-000067
对应的最优垂直码本
Figure PCTCN2015074015-appb-000068
另外,在根据信道组,确定与每个信道组对应的码本编号时,也可通过以下公式获取第npolar个极化子阵组中的所有信道:
H(nPolar,nH,nV),wherenV=1,2,…,NV,nH=1,2,…,NH
并根据最优垂直码本
Figure PCTCN2015074015-appb-000069
确定信道中水平子阵组的第NH×1维的等效信道矢量
Figure PCTCN2015074015-appb-000070
其中,
Figure PCTCN2015074015-appb-000071
并根据信道中水平子阵组的第NH×1维的等效信道矢量
Figure PCTCN2015074015-appb-000072
通过预先配置的水平预编码选取原则,确定水平码本编号
Figure PCTCN2015074015-appb-000073
和与水平码本编号
Figure PCTCN2015074015-appb-000074
对应的最优水平码本
Figure PCTCN2015074015-appb-000075
同时,在根据信道组,确定与每个信道组对应的码本编号时,还通过以下公式获取所有极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar
并根据最优水平码本
Figure PCTCN2015074015-appb-000076
确定极化子阵组的Npolar×1维的等效信道矢量Heq,Polar,其中,
Figure PCTCN2015074015-appb-000077
并根据述极化子阵组的Npolar×1维的等效信道矢量Heq,Polar,通过预先配置的极化预编码选取原则,确定极化码本编号
Figure PCTCN2015074015-appb-000078
在上述方案中,在预先配置的垂直预编码选取原则为最大信道干噪比选取原则的情况下,可通过以下公式确定垂直码本编号
Figure PCTCN2015074015-appb-000079
和最优垂直码本
Figure PCTCN2015074015-appb-000080
Figure PCTCN2015074015-appb-000081
其中,
Figure PCTCN2015074015-appb-000082
为第npolar极化组第nH水平组的所有垂直组的天线形成的NV×1等效信道;
Figure PCTCN2015074015-appb-000083
为垂直码本集中的第mv个码本。
同时,在上述方案中,在预先配置的水平预编码选取原则为最大信道干噪比选取原则的情况下,可通过以下公式确定水平码本编号
Figure PCTCN2015074015-appb-000084
和最优水平码本
Figure PCTCN2015074015-appb-000085
Figure PCTCN2015074015-appb-000086
其中,
Figure PCTCN2015074015-appb-000087
为第npolar极化组所有水平组的天线形成的NH×1维的等效信道矢量;
Figure PCTCN2015074015-appb-000088
为水平码本集中的第mH个码本。
另外,在上述方案中,在预先配置的极化预编码选取原则为最大信道容量选取原则的情况下,可通过以下步骤确定极化码本编号
Figure PCTCN2015074015-appb-000089
根据Heq,Polar,通过以下公式确定与Heq,Polar对应的等效矩阵Req,Polar
Figure PCTCN2015074015-appb-000090
其中,
Figure PCTCN2015074015-appb-000091
为极化码本集中的第mPolar个码本;
根据Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar
Figure PCTCN2015074015-appb-000092
根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar
Figure PCTCN2015074015-appb-000093
其中,
Figure PCTCN2015074015-appb-000094
为第i个传输数据层的信噪比,是检测后的信噪比SINReq,Polar的第i个分量,并且,
Figure PCTCN2015074015-appb-000095
与SINReq,Polar之间的关系通过以下公式描述:
Figure PCTCN2015074015-appb-000096
遍历极化码本集WPolar中的所有码本,确定容量最大的码本,并根据确定的该码本,获取极化码本编号
Figure PCTCN2015074015-appb-000097
根据本发明的再一方面,提供了一种码本反馈装置。
该码本反馈装置包括:
信道分组模块,用于基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;
码本确定模块;用于基根据信道组,确定与每个信道组对应的码本编号;
码本反馈模块;用于反馈码本编号;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
其中,信道分组模块可包括:极化分组子模块,用于根据极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;水平分组子模块,用于根据水平维度NH对极化子阵组进行分组;形成NH列水平子阵组;垂直分组子模块,用于根据垂直维度NV对水平子阵组进行分组;形成NV行垂直子阵组。
此外,码本确定模块可包括:第一获取模块,用于通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
H(nPolar,nH,nV),where nV=1,2,…,NV
并且,还用于根据所有垂直子阵组的信道,确定第nH列的垂直子阵的NV×1维的等效信道矢量
Figure PCTCN2015074015-appb-000098
其中,
Figure PCTCN2015074015-appb-000099
第一确定模块,用于根据第nH列的垂直子阵的NV×1维的等效信道矢量
Figure PCTCN2015074015-appb-000100
通过预先配置的垂直预编码选取原则,确定垂直码本编号
Figure PCTCN2015074015-appb-000101
和与垂直码本编号
Figure PCTCN2015074015-appb-000102
对应的最优垂直码本
Figure PCTCN2015074015-appb-000103
另外,码本确定模块还可包括:第二获取模块,用于通过以下公式获取第npolar个极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH
并且,还用于根据最优垂直码本
Figure PCTCN2015074015-appb-000104
确定信道中水平子阵组的第NH×1维的等效信道矢量
Figure PCTCN2015074015-appb-000105
其中,
Figure PCTCN2015074015-appb-000106
第二确定模块,用于根据信道中水平子阵组的第NH×1维的等效信道矢量
Figure PCTCN2015074015-appb-000107
通过预先配置的水平预编码选取原则,确定水平码本编号
Figure PCTCN2015074015-appb-000108
和与水平码本编号
Figure PCTCN2015074015-appb-000109
对应的最优水平码本
Figure PCTCN2015074015-appb-000110
同时,码本确定模块也可包括:第三获取模块,用于通过以下公式获取所有极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar
并且,还用于根据最优水平码本
Figure PCTCN2015074015-appb-000111
确定极化子阵组的Npolar×1维的等效信 道矢量Heq,Polar,其中,
Figure PCTCN2015074015-appb-000112
第三确定模块,用于根据述极化子阵组的Npolar×1维的等效信道矢量Heq,Polar,通过预先配置的极化预编码选取原则,确定极化码本编号
Figure PCTCN2015074015-appb-000113
在上述方案中,在预先配置的垂直预编码选取原则为最大信道干噪比选取原则的情况下,第一确定模块可通过以下公式确定垂直码本编号
Figure PCTCN2015074015-appb-000114
和最优垂直码本
Figure PCTCN2015074015-appb-000115
Figure PCTCN2015074015-appb-000116
其中,
Figure PCTCN2015074015-appb-000117
为第npolar极化组第nH水平组的所有垂直组的天线形成的NV×1等效信道;
Figure PCTCN2015074015-appb-000118
为垂直码本集中的第mv个码本。
同时,在上述方案中,在预先配置的水平预编码选取原则为最大信道干噪比选取原则的情况下,第二确定模块可通过以下公式确定水平码本编号
Figure PCTCN2015074015-appb-000119
和最优水平码本
Figure PCTCN2015074015-appb-000120
Figure PCTCN2015074015-appb-000121
其中,
Figure PCTCN2015074015-appb-000122
为第npolar极化组所有水平组的天线形成的NH×1维的等效信道矢量;
Figure PCTCN2015074015-appb-000123
为水平码本集中的第mH个码本。
另外,在上述方案中,在预先配置的极化预编码选取原则为最大信道容量选取原则的情况下,第三确定模块可通过以下步骤确定极化码本编号
Figure PCTCN2015074015-appb-000124
根据Heq,Polar,通过以下公式确定与Heq,Polar对应的等效矩阵Req,Polar
Figure PCTCN2015074015-appb-000125
其中,
Figure PCTCN2015074015-appb-000126
为极化码本集中的第mPolar个码本;
根据Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar
Figure PCTCN2015074015-appb-000127
根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar
Figure PCTCN2015074015-appb-000128
其中,
Figure PCTCN2015074015-appb-000129
为第i个传输数据层的信噪比,是检测后的信噪比SINReq,Polar的第i个分量,并且,
Figure PCTCN2015074015-appb-000130
与SINReq,Polar之间的关系通过以下公式描述:
Figure PCTCN2015074015-appb-000131
遍历极化码本集WPolar中的所有码本,确定容量最大的码本,并根据确定的该码本,获取极化码本编号
Figure PCTCN2015074015-appb-000132
本发明根据天线结构设计极化码本、水平基本码本、水平扫描码本、垂直基本码本和垂直扫描码本,通过极化码本实现极化维度利用,通过水平扫描码本实现水平维度利用,通过垂直基本码本实现垂直维度利用,通过水平基本码本实现3D波束水平波束宽度的控制;通过垂直基本码本实现3D波束垂直波束宽度控制,从而完整的利用了空间维度,有益于MIMO性能的提升。
此外,本发明通过扫描码本与基本码本的设计,有效的提高了3D水平方向和/或垂直方向的分辨度,进而有益于MU-MIMO性能的提升。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的多级码本的生成方法的流程示意图;
图2是根据本发明实施例的多级码本的生成装置的结构示意图;
图3是根据本发明实施例的码本反馈方法的流程示意图;
图4是根据本发明实施例的码本反馈装置的结果示意图;
图5是实现本发明技术方案的计算机的示例性结构框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公 开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的装置结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
根据本发明的实施例,提供了一种多级码本的生成方法。
如图1所示,根据本发明实施例的多级码本的生成方法包括:
步骤S101,基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;
步骤S103,根据多个维度,生成多级码本;
其中,多个维度包括以下至少之一:
极化维度NPolar、水平维度NH、垂直维度NV
其中,极化维度NPolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
其中,在根据多个维度,生成多级码本时,可对多个维度进行编码配置,生成与该多个维度对应的码本集;并根据生成的多个码本集,生成多级码本。
其中,上述多个码本集可以包括以下至少之一:极化码本集WPolar、水平码本集WH、垂直码本集WV
相应的,在根据生成的多个码本集,生成多级码本时,可通过以下公式生成多级码本:
Figure PCTCN2015074015-appb-000133
其中,W为多级码本。
在上述技术方案中,极化码本集WPolar用于控制不同数据流之间的正交性;并且,极化码本集WPolar通过以下公式描述:
Figure PCTCN2015074015-appb-000134
其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar。
此外,上述极化码本集WPolar中的码本个数MPolar可取决于极化维度Npolar和传输数据层数υ,并且,第mPolar个码本
Figure PCTCN2015074015-appb-000135
为NPolar×υ的矩阵。
例如,若极化维度Npolar等于1,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于1,极化码本集WPolar等于{[1]};或若极化维度Npolar等于2,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于4,极化码本集WPolar等于
Figure PCTCN2015074015-appb-000136
或若极化维度Npolar等于2,且传输数据层数υ等于2,则极化码本集WPolar中的码本个数MPolar等于2,极化码本集WPolar等于
Figure PCTCN2015074015-appb-000137
此外,在上述方案中,水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,水平码本集WH通过以下公式描述:
Figure PCTCN2015074015-appb-000138
其中,mH为水平码本编号,并且,mH等于1,2,…MH
同时,上述水平码本集WH可包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与水平扫描码本集WH,Scan以及水平波束形状码本集WH,Pattern之间的关系可通过以下公式描述:
WH=WH,pattern·WH,Scan
其中,水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
此外,上述水平扫描码本集WH,Scan可为NH×MH维的矩阵,并且,水平扫描码本集WH,Scan可以通过以下公式生成:
Figure PCTCN2015074015-appb-000139
其中,
Figure PCTCN2015074015-appb-000140
为NH×1的矢量,并且,其中第nH个量通过以下公式描述:
Figure PCTCN2015074015-appb-000141
其中,
Figure PCTCN2015074015-appb-000142
为对基站天线水平方向覆盖角度范围内
Figure PCTCN2015074015-appb-000143
的第mH个指向角,并且,
Figure PCTCN2015074015-appb-000144
通过以下公式描述:
Figure PCTCN2015074015-appb-000145
其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH
其中,
Figure PCTCN2015074015-appb-000146
为基站天线第nH列天线在0参考相位坐标系中的坐标。
另外,上述水平波束形状码本集WH,Pattern可为NH×MH维的矩阵,并且,水平波束形状码本集WH,Pattern可通过以下公式生成:
Figure PCTCN2015074015-appb-000147
其中,
Figure PCTCN2015074015-appb-000148
为NH×1的矢量,并且,其中第nH个量为
Figure PCTCN2015074015-appb-000149
Figure PCTCN2015074015-appb-000150
方向水平波束形状的波束形状码本。
此外,在上述方案中,垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,垂直码本集WV通过以下公式描述:
Figure PCTCN2015074015-appb-000151
其中,mV为垂直码本编号,并且,mV等于1,2,…MV
同时,上述垂直码本集WV可包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,垂直码本集WV与垂直扫描码本集WV,Scan以及垂直波束形状码本集WV,Pattern之间的关系可通过以下公式描述:
WV=WV,pattern·WV,Scan
其中,垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
另外,上述垂直扫描码本集WV,Scan可为NV×MH的矩阵,并且,垂直扫描码本集WV,Scan可通过以下公式生成:
Figure PCTCN2015074015-appb-000152
其中,
Figure PCTCN2015074015-appb-000153
为NV×1的矢量,并且,其中第nV个量通过以下公式描述:
Figure PCTCN2015074015-appb-000154
其中,
Figure PCTCN2015074015-appb-000155
为对基站天线覆盖角度范围内
Figure PCTCN2015074015-appb-000156
的第mV个指向角,并且,
Figure PCTCN2015074015-appb-000157
通过以下公式描述:
Figure PCTCN2015074015-appb-000158
其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV
其中,
Figure PCTCN2015074015-appb-000159
为基站天线中的第nV行天线在0参考相位坐标系中的坐标。
同时,上述垂直波束形状码本集WV,Pattern也可为NV×MV维的矩阵,并且,垂直波束形状码本集WV,Pattern可通过以下公式生成:
Figure PCTCN2015074015-appb-000160
其中,
Figure PCTCN2015074015-appb-000161
为NV×1的矢量,并且,其中第nV个量为
Figure PCTCN2015074015-appb-000162
Figure PCTCN2015074015-appb-000163
方向垂直波束形状的优化波束形状码本。
在上述方案中,对于波速形状码本来说,可通过波束形状的遗传算法来获取波束形状码本。
根据本发明的实施例,还提供了一种多级码本的生成装置。
如图2所示,根据本发明实施例的多级码本的生成装置包括:
维度确定模块21,用于基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;
码本生成模块22,用于根据多个维度,生成多级码本;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
其中,码本生成模块22可包括:编码配置子模块(图中未示出),用于对多个维度进行编码配置,生成与多个维度对应的码本集;码本生成子模块(图中未示出),用于根据生成的多个码本集,生成多级码本。
其中,上述多个码本集可包括以下至少之一:极化码本集WPolar、水平码本集WH、垂直码本集WV
相应的,码本生成子模块在根据生成的多个码本集,生成多级码本时,可通过以下公式生成多级码本:
Figure PCTCN2015074015-appb-000164
其中,W为多级码本。
在上述方案中,极化码本集WPolar用于控制不同数据流之间的正交性;并且,极化码本集WPolar通过以下公式描述:
Figure PCTCN2015074015-appb-000165
其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar
此外,上述极化码本集WPolar中的码本个数MPolar可取决于极化维度Npolar和传输数据层数υ,并且,第mPolar个码本
Figure PCTCN2015074015-appb-000166
为NPolar×υ的矩阵。
例如,若极化维度Npolar等于1,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于1,极化码本集WPolar等于{[1]};或若极化维度Npolar等于2,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于4,极化码本集WPolar等于
Figure PCTCN2015074015-appb-000167
或若极化维度Npolar等于2,且传输数据层数υ等于2,则极化码本集WPolar中的码本个数MPolar等于2,极化码本集WPolar等于
Figure PCTCN2015074015-appb-000168
此外,在上述方案中,水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,水平码本集WH通过以下公式描述:
Figure PCTCN2015074015-appb-000169
其中,mH为水平码本编号,并且,mH等于1,2,…MH
同时,上述水平码本集WH可包括水平扫描码本集WH,Scan和水平波束形状码本集 WH,Pattern,并且,水平码本集WH与水平扫描码本集WH,Scan以及水平波束形状码本集WH,Pattern之间的关系可通过以下公式描述:
WH=WH,pattern·WH,Scan
其中,水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
此外,上述水平扫描码本集WH,Scan可为NH×MH维的矩阵,并且,水平扫描码本集WH,Scan可通过以下公式生成:
Figure PCTCN2015074015-appb-000170
其中,
Figure PCTCN2015074015-appb-000171
为NH×1的矢量,并且,其中第nH个量通过以下公式描述:
Figure PCTCN2015074015-appb-000172
其中,
Figure PCTCN2015074015-appb-000173
为对基站天线水平方向覆盖角度范围内
Figure PCTCN2015074015-appb-000174
的第mH个指向角,并且,
Figure PCTCN2015074015-appb-000175
通过以下公式描述:
Figure PCTCN2015074015-appb-000176
其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH
其中,
Figure PCTCN2015074015-appb-000177
为基站天线第nH列天线在0参考相位坐标系中的坐标。
另外,上述水平波束形状码本集WH,Pattern也可为NH×MH维的矩阵,并且,水平波束形状码本集WH,Pattern可通过以下公式生成:
Figure PCTCN2015074015-appb-000178
其中,
Figure PCTCN2015074015-appb-000179
为NH×1的矢量,并且,其中第nH个量为
Figure PCTCN2015074015-appb-000180
Figure PCTCN2015074015-appb-000181
方向水平波束形状的波束形状码本。
此外,在上述方案中,垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,垂直码本集WV通过以下公式描述:
Figure PCTCN2015074015-appb-000182
其中,mV为垂直码本编号,并且,mV等于1,2,…MV
同时,上述垂直码本集WV可包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,垂直码本集WV与垂直扫描码本集WV,Scan以及垂直波束形状码本集WV,Pattern之间的关系可通过以下公式描述:
WV=WV,pattern·WV,Scan
其中,垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;垂直波束形状 码本集WV,Pattern用于控制3D波束的垂直波束形状。
另外,上述垂直扫描码本集WV,Scan可为NV×MH的矩阵,并且,垂直扫描码本集WV,Scan可通过以下公式生成:
Figure PCTCN2015074015-appb-000183
其中,
Figure PCTCN2015074015-appb-000184
为NV×1的矢量,并且,其中第nV个量通过以下公式描述:
Figure PCTCN2015074015-appb-000185
其中,
Figure PCTCN2015074015-appb-000186
为对基站天线覆盖角度范围内
Figure PCTCN2015074015-appb-000187
的第mV个指向角,并且,
Figure PCTCN2015074015-appb-000188
通过以下公式描述:
Figure PCTCN2015074015-appb-000189
其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV
其中,
Figure PCTCN2015074015-appb-000190
为基站天线中的第nV行天线在0参考相位坐标系中的坐标。
同时,上述垂直波束形状码本集WV,Pattern也可为NV×MV维的矩阵,并且,垂直波束形状码本集WV,Pattern可通过以下公式生成:
Figure PCTCN2015074015-appb-000191
其中,
Figure PCTCN2015074015-appb-000192
为NV×1的矢量,并且,其中第nV个量为
Figure PCTCN2015074015-appb-000193
Figure PCTCN2015074015-appb-000194
方向垂直波束形状的波束形状码本。
在上述方案中,对于波速形状码本来说,可通过波束形状的遗传算法来获取波束形状码本。
根据本发明的实施例,还提供了一种码本反馈方法。
如图3所示,根据本发明实施例的码本反馈方法包括:
步骤S301,基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;
步骤S303,根据信道组,确定与每个信道组对应的码本编号;
步骤S305,反馈码本编号;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
其中,在基于基站天线的多个维度,对接收的信道进行分组时,可根据极化维度 Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;并根据水平维度NH对极化子阵组进行分组;形成NH列水平子阵组;并根据垂直维度NV对水平子阵组进行分组;形成NV行垂直子阵组。
此外,在根据信道组,确定与每个信道组对应的码本编号时,可通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
H(nPolar,nH,nV),where nV=1,2,…,NV
并根据所有垂直子阵组的信道,确定第nH列的垂直子阵的NV×1维的等效信道矢量
Figure PCTCN2015074015-appb-000195
其中,
Figure PCTCN2015074015-appb-000196
并根据第nH列的垂直子阵的NV×1维的等效信道矢量
Figure PCTCN2015074015-appb-000197
通过预先配置的垂直预编码选取原则,确定垂直码本编号
Figure PCTCN2015074015-appb-000198
和与垂直码本编号
Figure PCTCN2015074015-appb-000199
对应的最优垂直码本
Figure PCTCN2015074015-appb-000200
另外,在根据信道组,确定与每个信道组对应的码本编号时,也可通过以下公式获取第npolar个极化子阵组中的所有信道:
H(nPolar,nH,nV),wherenV=1,2,…,NV,nH=1,2,…,NH
并根据最优垂直码本
Figure PCTCN2015074015-appb-000201
确定信道中水平子阵组的第NH×1维的等效信道矢量
Figure PCTCN2015074015-appb-000202
其中,
Figure PCTCN2015074015-appb-000203
并根据信道中水平子阵组的第NH×1维的等效信道矢量
Figure PCTCN2015074015-appb-000204
通过预先配置的水平预编码选取原则,确定水平码本编号
Figure PCTCN2015074015-appb-000205
和与水平码本编号
Figure PCTCN2015074015-appb-000206
对应的最优水平码本
Figure PCTCN2015074015-appb-000207
同时,在根据信道组,确定与每个信道组对应的码本编号时,还通过以下公式获取所有极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar
并根据最优水平码本
Figure PCTCN2015074015-appb-000208
确定极化子阵组的Npolar×1维的等效信道矢量 Heq,Polar,其中,
Figure PCTCN2015074015-appb-000209
并根据述极化子阵组的Npolar×1维的等效信道矢量Heq,Polar,通过预先配置的极化预编码选取原则,确定极化码本编号
Figure PCTCN2015074015-appb-000210
在上述方案中,在预先配置的垂直预编码选取原则为最大信道干噪比选取原则的情况下,可通过以下公式确定垂直码本编号
Figure PCTCN2015074015-appb-000211
和最优垂直码本
Figure PCTCN2015074015-appb-000212
Figure PCTCN2015074015-appb-000213
其中,
Figure PCTCN2015074015-appb-000214
为第npolar极化组第nH水平组的所有垂直组的天线形成的NV×1等效信道;
Figure PCTCN2015074015-appb-000215
为垂直码本集中的第mv个码本。
同时,在上述方案中,在预先配置的水平预编码选取原则为最大信道干噪比选取原则的情况下,可通过以下公式确定水平码本编号
Figure PCTCN2015074015-appb-000216
和最优水平码本
Figure PCTCN2015074015-appb-000217
Figure PCTCN2015074015-appb-000218
其中,
Figure PCTCN2015074015-appb-000219
为第npolar极化组所有水平组的天线形成的NH×1维的等效信道矢量;
Figure PCTCN2015074015-appb-000220
为水平码本集中的第mH个码本。
另外,在上述方案中,在预先配置的极化预编码选取原则为最大信道容量选取原则的情况下,可通过以下步骤确定极化码本编号
Figure PCTCN2015074015-appb-000221
根据Heq,Polar,通过以下公式确定与Heq,Polar对应的等效矩阵Req,Polar
Figure PCTCN2015074015-appb-000222
其中,
Figure PCTCN2015074015-appb-000223
为极化码本集中的第mPolar个码本;
根据Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar
Figure PCTCN2015074015-appb-000224
根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar
Figure PCTCN2015074015-appb-000225
其中,
Figure PCTCN2015074015-appb-000226
为第i个传输数据层的信噪比,是检测后的信噪比SINReq,Polar的 第i个分量,并且,
Figure PCTCN2015074015-appb-000227
与SINReq,Polar之间的关系通过以下公式描述:
Figure PCTCN2015074015-appb-000228
遍历极化码本集WPolar中的所有码本,确定容量最大的码本,并根据确定的该码本,获取极化码本编号
Figure PCTCN2015074015-appb-000229
根据本发明的实施例,还提供了一种码本反馈装置。
如图4所示,根据本发明实施例的码本反馈装置包括:
信道分组模块41,用于基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;
码本确定模块42;用于基根据信道组,确定与每个信道组对应的码本编号;
码本反馈模块43;用于反馈码本编号;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
其中,信道分组模块41可包括:极化分组子模块(图中未示出),用于根据极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;水平分组子模块(图中未示出),用于根据水平维度NH对极化子阵组进行分组;形成NH列水平子阵组;垂直分组子模块(图中未示出),用于根据垂直维度NV对水平子阵组进行分组;形成NV行垂直子阵组。
此外,码本确定模块42可包括:第一获取模块(图中未示出),用于通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
H(nPolar,nH,nV),where nV=1,2,…,NV
并且,还用于根据所有垂直子阵组的信道,确定第nH列的垂直子阵的NV×1维的等效信道矢量
Figure PCTCN2015074015-appb-000230
其中,
Figure PCTCN2015074015-appb-000231
第一确定模块(图中未示出),用于根据第nH列的垂直子阵的NV×1维的等效信道矢量
Figure PCTCN2015074015-appb-000232
通过预先配置的垂直预编码选取原则,确定垂直码本编号
Figure PCTCN2015074015-appb-000233
和与垂直码本编号
Figure PCTCN2015074015-appb-000234
对应的最优垂直码本
Figure PCTCN2015074015-appb-000235
另外,码本确定模块42还可包括:第二获取模块(图中未示出),用于通过以下公式获取第npolar个极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH
并且,还用于根据最优垂直码本
Figure PCTCN2015074015-appb-000236
确定信道中水平子阵组的第NH×1维的等效信道矢量
Figure PCTCN2015074015-appb-000237
其中,
Figure PCTCN2015074015-appb-000238
第二确定模块(图中未示出),用于根据信道中水平子阵组的第NH×1维的等效信道矢量
Figure PCTCN2015074015-appb-000239
通过预先配置的水平预编码选取原则,确定水平码本编号
Figure PCTCN2015074015-appb-000240
和与水平码本编号
Figure PCTCN2015074015-appb-000241
对应的最优水平码本
Figure PCTCN2015074015-appb-000242
同时,码本确定模块42也可包括:第三获取模块(图中未示出),用于通过以下公式获取所有极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar
并且,还用于根据最优水平码本
Figure PCTCN2015074015-appb-000243
确定极化子阵组的Npolar×1维的等效信道矢量Heq,Polar,其中,
Figure PCTCN2015074015-appb-000244
第三确定模块(图中未示出),用于根据述极化子阵组的Npolar×1维的等效信道矢量Heq,Polar,通过预先配置的极化预编码选取原则,确定极化码本编号
Figure PCTCN2015074015-appb-000245
在上述方案中,在预先配置的垂直预编码选取原则为最大信道干噪比选取原则的情况下,第一确定模块可通过以下公式确定垂直码本编号
Figure PCTCN2015074015-appb-000246
和最优垂直码本
Figure PCTCN2015074015-appb-000247
Figure PCTCN2015074015-appb-000248
其中,
Figure PCTCN2015074015-appb-000249
为第npolar极化组第nH水平组的所有垂直组的天线形成的NV×1等效信道;
Figure PCTCN2015074015-appb-000250
为垂直码本集中的第mv个码本。
同时,在上述方案中,在预先配置的水平预编码选取原则为最大信道干噪比选取原则的情况下,第二确定模块可通过以下公式确定水平码本编号
Figure PCTCN2015074015-appb-000251
和最优水平码本
Figure PCTCN2015074015-appb-000252
Figure PCTCN2015074015-appb-000253
其中,
Figure PCTCN2015074015-appb-000254
为第npolar极化组所有水平组的天线形成的NH×1维的等效信道矢量;
Figure PCTCN2015074015-appb-000255
为水平码本集中的第mH个码本。
另外,在上述方案中,在预先配置的极化预编码选取原则为最大信道容量选取原则的情况下,第三确定模块可通过以下步骤确定极化码本编号
Figure PCTCN2015074015-appb-000256
根据Heq,Polar,通过以下公式确定与Heq,Polar对应的等效矩阵Req,Polar
Figure PCTCN2015074015-appb-000257
其中,
Figure PCTCN2015074015-appb-000258
为极化码本集中的第mPolar个码本;
根据Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar
Figure PCTCN2015074015-appb-000259
根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar
Figure PCTCN2015074015-appb-000260
其中,
Figure PCTCN2015074015-appb-000261
为第i个传输数据层的信噪比,是检测后的信噪比SINReq,Polar的第i个分量,并且,
Figure PCTCN2015074015-appb-000262
与SINReq,Polar之间的关系通过以下公式描述:
Figure PCTCN2015074015-appb-000263
遍历极化码本集WPolar中的所有码本,确定容量最大的码本,并根据确定的该码本,获取极化码本编号
Figure PCTCN2015074015-appb-000264
综上所述,借助于本发明的上述技术方案,根据天线结构设计极化码本、水平基本码本、水平扫描码本、垂直基本码本和垂直扫描码本,通过极化码本实现极化维度利用,通过水平扫描码本实现水平维度利用,通过垂直基本码本实现垂直维度利用,通过水平基本码本实现3D波束水平波束宽度的控制;通过垂直基本码本实现3D波束垂直波束宽度控制,从而完整的利用了空间维度,有益于MIMO性能的提升。
此外,借助于本发明的上述技术方案,通过扫描码本与基本码本的设计,有效的提高了3D水平方向和/或垂直方向的分辨度,进而有益于MU-MIMO性能的提升。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的普通技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或 者它们的组合加以实现,这是本领域普通技术人员在阅读了本发明的说明的情况下运用它们的基本编程技能就能实现的。
因此,本发明的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本发明的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本发明,并且存储有这样的程序产品的存储介质也构成本发明。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。
根据本发明的实施例,还提供了一种存储介质(该存储介质可以是ROM、RAM、硬盘、可拆卸存储器等),该存储介质中嵌入有用于进行资源分配的计算机程序,该计算机程序具有被配置用于执行以下步骤的代码段:基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;根据多个维度,生成多级码本;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
根据本发明的实施例,还提供了一种计算机程序,该计算机程序具有被配置用于执行以下资源分配步骤的代码段:基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;根据多个维度,生成多级码本;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
根据本发明的实施例,还提供了一种存储介质(该存储介质可以是ROM、RAM、硬盘、可拆卸存储器等),该存储介质中嵌入有用于进行资源分配的计算机程序,该计算机程序具有被配置用于执行以下步骤的代码段:基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;根据信道组,确定与每个信道组对应的码本编号;反馈码本编号;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
根据本发明的实施例,还提供了一种计算机程序,该计算机程序具有被配置用于执行以下资源分配步骤的代码段:基于基站天线的多个维度,对接收的信道进行分组,确定 多个维度对应的信道组;根据信道组,确定与每个信道组对应的码本编号;反馈码本编号;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV
在通过软件和/或固件实现本发明的实施例的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图5所示的通用计算机500安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。
在图5中,中央处理模块(CPU)501根据只读存储器(ROM)502中存储的程序或从存储部分508加载到随机存取存储器(RAM)503的程序执行各种处理。在RAM 503中,也根据需要存储当CPU 501执行各种处理等等时所需的数据。CPU 501、ROM 502和RAM 503经由总线504彼此连接。输入/输出接口505也连接到总线504。
下述部件连接到输入/输出接口505:输入部分506,包括键盘、鼠标等等;输出部分507,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等等,和扬声器等等;存储部分508,包括硬盘等等;和通信部分509,包括网络接口卡比如LAN卡、调制解调器等等。通信部分509经由网络比如因特网执行通信处理。
根据需要,驱动器510也连接到输入/输出接口505。可拆卸介质511比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器510上,使得从中读出的计算机程序根据需要被安装到存储部分508中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质511安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图5所示的其中存储有程序、与装置相分离地分发以向用户提供程序的可拆卸介质511。可拆卸介质511的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 502、存储部分508中包含的硬盘等等,其中存有程序,并且与包含它们的装置一起被分发给用户。
还需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
虽然已经详细说明了本发明及其优点,但是应当理解在不脱离由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本申请的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者装置中还存在另外的相同要素。

Claims (48)

  1. 一种多级码本的生成方法,其特征在于,包括:
    基于基站天线的多维度特征,确定关于所述基站天线所对应的多个维度;
    根据所述多个维度,生成多级码本;
    其中,所述多个维度包括以下至少之一:
    极化维度NPolar、水平维度NH、垂直维度NV
    其中,所述极化维度NPolar中的维度编号nPolar等于1,2,……NPolar,所述水平维度NH中的维度编号nH等于1,2,……NH,所述垂直维度NV中的维度编号nV等于1,2,……NV
  2. 根据权利要求1所述的生成方法,其特征在于,根据所述多个维度,生成多级码本包括:
    对所述多个维度进行编码配置,生成与所述多个维度对应的码本集;
    根据生成的所述多个码本集,生成所述多级码本。
  3. 根据权利要求2所述的生成方法,其特征在于,所述多个码本集包括以下至少之一:
    极化码本集WPolar、水平码本集WH、垂直码本集WV
  4. 根据权利要求3所述的生成方法,其特征在于,在根据生成的所述多个码本集,生成所述多级码本时,通过以下公式生成所述多级码本:
    Figure PCTCN2015074015-appb-100001
    其中,W为所述多级码本。
  5. 根据权利要求3所述的生成方法,其特征在于,所述极化码本集WPolar用于控制不同数据流之间的正交性;并且,所述极化码本集WPolar通过以下公式描述:
    Figure PCTCN2015074015-appb-100002
    其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar
  6. 根据权利要求5所述的生成方法,其特征在于,所述极化码本集WPolar中的码本个数MPolar取决于极化维度Npolar和传输数据层数υ,并且,第mPolar个码本
    Figure PCTCN2015074015-appb-100003
    为NPolar×υ的矩阵。
  7. 根据权利要求6所述的生成方法,其特征在于,若所述极化维度Npolar等于1,且所述传输数据层数υ等于1,则所述极化码本集WPolar中的码本个数MPolar等于1,所述极化码本集WPolar等于{[1]};或
    若所述极化维度Npolar等于2,且所述传输数据层数υ等于1,则所述极化码本集WPolar中的码本个数MPolar等于4,所述极化码本集WPolar等于
    Figure PCTCN2015074015-appb-100004
    若所述极化维度Npolar等于2,且所述传输数据层数υ等于2,则所述极化码本集WPolar中的码本个数MPolar等于2,所述极化码本集WPolar等于
    Figure PCTCN2015074015-appb-100005
  8. 根据权利要求3所述的生成方法,其特征在于,所述水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,所述水平码本集WH通过以下公式描述:
    Figure PCTCN2015074015-appb-100006
    其中,mH为水平码本编号,并且,mH等于1,2,…MH
  9. 根据权利要求8所述的生成方法,其特征在于,所述水平码本集WH包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与所述水平扫描码本集WH,Scan以及所述水平波束形状码本集WH,Pattern之间的关系通过以下公式描述:
    WH=WH,pattern·WH,Scan
    其中,所述水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;所述水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
  10. 根据权利要求9所述的生成方法,其特征在于,所述水平扫描码本集WH,Scan为NH×MH维的矩阵,并且,所述水平扫描码本集WH,Scan通过以下公式生成:
    Figure PCTCN2015074015-appb-100007
    其中,
    Figure PCTCN2015074015-appb-100008
    为NH×1的矢量,并且,其中第nH个量通过以下公式描述:
    Figure PCTCN2015074015-appb-100009
    其中,
    Figure PCTCN2015074015-appb-100010
    为对基站天线水平方向覆盖角度范围内
    Figure PCTCN2015074015-appb-100011
    的第mH个指向角,并且,
    Figure PCTCN2015074015-appb-100012
    通过以下公式描述:
    Figure PCTCN2015074015-appb-100013
    其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH
    其中,
    Figure PCTCN2015074015-appb-100014
    为基站天线第nH列天线在0参考相位坐标系中的坐标。
  11. 根据权利要求10所述的生成方法,其特征在于,所述水平波束形状码本集 WH,Pattern为NH×MH维的矩阵,并且,所述水平波束形状码本集WH,Pattern通过以下公式生成:
    Figure PCTCN2015074015-appb-100015
    其中,
    Figure PCTCN2015074015-appb-100016
    为NH×1的矢量,并且,其中第nH个量为
    Figure PCTCN2015074015-appb-100017
    Figure PCTCN2015074015-appb-100018
    方向水平波束形状的波束形状码本。
  12. 根据权利要求3所述的生成方法,其特征在于,所述垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,所述垂直码本集WV通过以下公式描述:
    Figure PCTCN2015074015-appb-100019
    其中,mV为垂直码本编号,并且,mV等于1,2,…MV
  13. 根据权利要求12所述的生成方法,其特征在于,所述垂直码本集WV包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,所述垂直码本集WV与所述垂直扫描码本集WV,Scan以及所述垂直波束形状码本集WV,Pattern之间的关系通过以下公式描述:
    WV=WV,pattern·WV,Scan
    其中,所述垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;所述垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
  14. 根据权利要求13所述的生成方法,其特征在于,所述垂直扫描码本集WV,Scan为NV×MH的矩阵,并且,所述垂直扫描码本集WV,Scan通过以下公式生成:
    Figure PCTCN2015074015-appb-100020
    其中,
    Figure PCTCN2015074015-appb-100021
    为NV×1的矢量,并且,其中第nV个量通过以下公式描述:
    Figure PCTCN2015074015-appb-100022
    其中,
    Figure PCTCN2015074015-appb-100023
    为对基站天线覆盖角度范围内
    Figure PCTCN2015074015-appb-100024
    的第mV个指向角,并且,
    Figure PCTCN2015074015-appb-100025
    通过以下公式描述:
    Figure PCTCN2015074015-appb-100026
    其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV
    其中,
    Figure PCTCN2015074015-appb-100027
    为基站天线中的第nV行天线在0参考相位坐标系中的坐标。
  15. 根据权利要求14所述的生成方法,其特征在于,所述垂直波束形状码本集WV,Pattern为NV×MV维的矩阵,并且,所述垂直波束形状码本集WV,Pattern通过以下公式 生成:
    Figure PCTCN2015074015-appb-100028
    其中,
    Figure PCTCN2015074015-appb-100029
    为NV×1的矢量,并且,其中第nV个量为
    Figure PCTCN2015074015-appb-100030
    Figure PCTCN2015074015-appb-100031
    方向垂直波束形状的优化波束形状码本。
  16. 根据权利要求11或15所述的生成方法,其特征在于,通过波束形状的遗传算法获取所述波束形状码本。
  17. 一种多级码本的生成装置,其特征在于,包括:
    维度确定模块,用于基于基站天线的多维度特征,确定关于所述基站天线所对应的多个维度;
    码本生成模块,用于根据所述多个维度,生成多级码本;
    其中,所述多个维度包括以下至少之一:
    极化维度Npolar、水平维度NH、垂直维度NV
    其中,所述极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,所述水平维度NH中的维度编号nH等于1,2,……NH,所述垂直维度NV中的维度编号nV等于1,2,……NV
  18. 根据权利要求17所述的生成装置,其特征在于,所述码本生成模块进一步包括:
    编码配置子模块,用于对所述多个维度进行编码配置,生成与所述多个维度对应的码本集;
    码本生成子模块,用于根据生成的所述多个码本集,生成所述多级码本。
  19. 根据权利要求18所述的生成装置,其特征在于,所述多个码本集包括以下至少之一:
    极化码本集WPolar、水平码本集WH、垂直码本集WV
  20. 根据权利要求19所述的生成装置,其特征在于,所述码本生成子模块在根据生成的所述多个码本集,生成所述多级码本时,通过以下公式生成所述多级码本:
    Figure PCTCN2015074015-appb-100032
    其中,W为所述多级码本。
  21. 根据权利要求19所述的生成装置,其特征在于,所述极化码本集WPolar用于控制不同数据流之间的正交性;并且,所述极化码本集WPolar通过以下公式描述:
    其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar
  22. 根据权利要求21所述的生成装置,其特征在于,所述极化码本集WPolar中的码本个数MPolar取决于极化维度Npolar和传输数据层数υ,并且,第mPolar个码本
    Figure PCTCN2015074015-appb-100034
    为NPolar×υ的矩阵。
  23. 根据权利要求22所述的生成装置,其特征在于,若所述极化维度Npolar等于1,且所述传输数据层数υ等于1,则所述极化码本集WPolar中的码本个数MPolar等于1,所述极化码本集WPolar等于{[1]};或
    若所述极化维度Npolar等于2,且所述传输数据层数υ等于1,则所述极化码本集WPolar中的码本个数MPolar等于4,所述极化码本集WPolar等于
    Figure PCTCN2015074015-appb-100035
    若所述极化维度Npolar等于2,且所述传输数据层数υ等于2,则所述极化码本集WPolar中的码本个数MPolar等于2,所述极化码本集WPolar等于
    Figure PCTCN2015074015-appb-100036
  24. 根据权利要求19所述的生成装置,其特征在于,所述水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,所述水平码本集WH通过以下公式描述:
    Figure PCTCN2015074015-appb-100037
    其中,mH为水平码本编号,并且,mH等于1,2,…MH
  25. 根据权利要求24所述的生成装置,其特征在于,所述水平码本集WH包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与所述水平扫描码本集WH,Scan以及所述水平波束形状码本集WH,Pattern之间的关系通过以下公式描述:
    WH=WH,pattern·WH,Scan
    其中,所述水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;所述水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
  26. 根据权利要求25所述的生成装置,其特征在于,所述水平扫描码本集WH,Scan为NH×MH维的矩阵,并且,所述水平扫描码本集WH,Scan通过以下公式生成:
    Figure PCTCN2015074015-appb-100038
    其中,
    Figure PCTCN2015074015-appb-100039
    为NH×1的矢量,并且,其中第nH个量通过以下公式描述:
    Figure PCTCN2015074015-appb-100040
    其中,
    Figure PCTCN2015074015-appb-100041
    为对基站天线水平方向覆盖角度范围内
    Figure PCTCN2015074015-appb-100042
    的第mH个指向角,并且,
    Figure PCTCN2015074015-appb-100043
    通过以下公式描述:
    Figure PCTCN2015074015-appb-100044
    其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH
    其中,
    Figure PCTCN2015074015-appb-100045
    为基站天线第nH列天线在0参考相位坐标系中的坐标。
  27. 根据权利要求26所述的生成装置,其特征在于,所述水平波束形状码本集WH,Pattern为NH×MH维的矩阵,并且,所述水平波束形状码本集WH,Pattern通过以下公式生成:
    Figure PCTCN2015074015-appb-100046
    其中,
    Figure PCTCN2015074015-appb-100047
    为NH×1的矢量,并且,其中第nH个量为
    Figure PCTCN2015074015-appb-100048
    Figure PCTCN2015074015-appb-100049
    方向水平波束形状的波束形状码本。
  28. 根据权利要求19所述的生成装置,其特征在于,所述垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,所述垂直码本集WV通过以下公式描述:
    Figure PCTCN2015074015-appb-100050
    其中,mV为垂直码本编号,并且,mV等于1,2,…MV
  29. 根据权利要求28所述的生成装置,其特征在于,所述垂直码本集WV包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,所述垂直码本集WV与所述垂直扫描码本集WV,Scan以及所述垂直波束形状码本集WV,Pattern之间的关系通过以下公式描述:
    WV=WV,pattern·WV,Scan
    其中,所述垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;所述垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
  30. 根据权利要求29所述的生成装置,其特征在于,所述垂直扫描码本集WV,Scan为NV×MH的矩阵,并且,所述垂直扫描码本集WV,Scan通过以下公式生成:
    Figure PCTCN2015074015-appb-100051
    其中,
    Figure PCTCN2015074015-appb-100052
    为NV×1的矢量,并且,其中第nV个量通过以下公式描述:
    Figure PCTCN2015074015-appb-100053
    其中,
    Figure PCTCN2015074015-appb-100054
    为对基站天线覆盖角度范围内
    Figure PCTCN2015074015-appb-100055
    的第mV个指向角,并且,
    Figure PCTCN2015074015-appb-100056
    通过以 下公式描述:
    Figure PCTCN2015074015-appb-100057
    其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV
    其中,
    Figure PCTCN2015074015-appb-100058
    为基站天线中的第nV行天线在0参考相位坐标系中的坐标。
  31. 根据权利要求30所述的生成装置,其特征在于,所述垂直波束形状码本集WV,Pattern为NV×MV维的矩阵,并且,所述垂直波束形状码本集WV,Pattern通过以下公式生成:
    Figure PCTCN2015074015-appb-100059
    其中,
    Figure PCTCN2015074015-appb-100060
    为NV×1的矢量,并且,其中第nV个量为
    Figure PCTCN2015074015-appb-100061
    Figure PCTCN2015074015-appb-100062
    方向垂直波束形状的波束形状码本。
  32. 根据权利要求27或31所述的生成装置,其特征在于,通过波束形状的遗传算法获取所述波束形状码本。
  33. 一种码本反馈方法,其特征在于,包括:
    基于基站天线的多个维度,对接收的信道进行分组,确定所述多个维度对应的信道组;
    根据所述信道组,确定与每个信道组对应的码本编号;
    反馈所述码本编号;
    其中,所述多个维度包括以下至少之一:
    极化维度Npolar、水平维度NH、垂直维度NV
    其中,所述极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,所述水平维度NH中的维度编号nH等于1,2,……NH,所述垂直维度NV中的维度编号nV等于1,2,……NV
  34. 根据权利要求33所述的码本反馈方法,其特征在于,基于基站天线的多个维度,对接收的信道进行分组包括:
    根据所述极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;
    根据所述水平维度NH对所述极化子阵组进行分组;形成NH列水平子阵组;
    根据所述垂直维度NV对所述水平子阵组进行分组;形成NV行垂直子阵组。
  35. 根据权利要求34所述的码本反馈方法,其特征在于,根据所述信道组,确定与每个信道组对应的码本编号包括:
    通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
    H(nPolar,nH,nV),wherenV=1,2,…,NV
    根据所述所有垂直子阵组的信道,确定第nH列的垂直子阵的NV×1维的等效信道矢量
    Figure PCTCN2015074015-appb-100063
    其中,
    Figure PCTCN2015074015-appb-100064
    根据所述第nH列的垂直子阵的NV×1维的等效信道矢量
    Figure PCTCN2015074015-appb-100065
    通过预先配置的垂直预编码选取原则,确定垂直码本编号
    Figure PCTCN2015074015-appb-100066
    和与所述垂直码本编号
    Figure PCTCN2015074015-appb-100067
    对应的最优垂直码本
    Figure PCTCN2015074015-appb-100068
  36. 根据权利要求35所述的码本反馈方法,其特征在于,根据所述信道组,确定与每个信道组对应的码本编号包括:
    通过以下公式获取第npolar个极化子阵组中的所有信道:
    H(nPolar,nH,nV),wherenV=1,2,…,NV,nH=1,2,…,NH
    根据所述最优垂直码本
    Figure PCTCN2015074015-appb-100069
    确定所述信道中水平子阵组的第NH×1维的等效信道矢量
    Figure PCTCN2015074015-appb-100070
    其中,
    Figure PCTCN2015074015-appb-100071
    根据所述信道中水平子阵组的第NH×1维的等效信道矢量
    Figure PCTCN2015074015-appb-100072
    通过预先配置的水平预编码选取原则,确定水平码本编号
    Figure PCTCN2015074015-appb-100073
    和与所述水平码本编号
    Figure PCTCN2015074015-appb-100074
    对应的最优水平码本
    Figure PCTCN2015074015-appb-100075
  37. 根据权利要求36所述的码本反馈方法,其特征在于,根据所述信道组,确定与每个信道组对应的码本编号包括:
    通过以下公式获取所有极化子阵组中的所有信道:
    H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar
    根据所述最优水平码本
    Figure PCTCN2015074015-appb-100076
    确定所述极化子阵组的Npolar×1维的等效信道矢 量Heq,Polar,其中,
    Figure PCTCN2015074015-appb-100077
    根据所述述极化子阵组的Npolar×1维的等效信道矢量Heq,Polar,通过预先配置的极化预编码选取原则,确定极化码本编号
    Figure PCTCN2015074015-appb-100078
  38. 根据权利要求35所述的码本反馈方法,其特征在于,在所述预先配置的垂直预编码选取原则为最大信道干噪比选取原则的情况下,通过以下公式确定所述垂直码本编号
    Figure PCTCN2015074015-appb-100079
    和所述最优垂直码本
    Figure PCTCN2015074015-appb-100080
    Figure PCTCN2015074015-appb-100081
    其中,
    Figure PCTCN2015074015-appb-100082
    为第npolar极化组第nH水平组的所有垂直组的天线形成的NV×1等效信道;
    Figure PCTCN2015074015-appb-100083
    为垂直码本集中的第mv个码本。
  39. 根据权利要求36所述的码本反馈方法,其特征在于,在所述预先配置的水平预编码选取原则为最大信道干噪比选取原则的情况下,通过以下公式确定所述水平码本编号
    Figure PCTCN2015074015-appb-100084
    和所述最优水平码本
    Figure PCTCN2015074015-appb-100085
    Figure PCTCN2015074015-appb-100086
    其中,
    Figure PCTCN2015074015-appb-100087
    为第npolar极化组所有水平组的天线形成的NH×1维的等效信道矢量;
    Figure PCTCN2015074015-appb-100088
    为水平码本集中的第mH个码本。
  40. 根据权利要求37所述的码本反馈方法,其特征在于,在所述预先配置的极化预编码选取原则为最大信道容量选取原则的情况下,通过以下步骤确定所述极化码本编号
    Figure PCTCN2015074015-appb-100089
    根据所述Heq,Polar,通过以下公式确定与所述Heq,Polar对应的等效矩阵Req,Polar
    Figure PCTCN2015074015-appb-100090
    其中,
    Figure PCTCN2015074015-appb-100091
    为极化码本集中的第mPolar个码本;
    根据所述Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar
    Figure PCTCN2015074015-appb-100092
    根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar
    Figure PCTCN2015074015-appb-100093
    其中,
    Figure PCTCN2015074015-appb-100094
    为第i个传输数据层的信噪比,是检测后的信噪比SINReq,Polar的第i个分量,并且,所述
    Figure PCTCN2015074015-appb-100095
    与SINReq,Polar之间的关系通过以下公式描述:
    Figure PCTCN2015074015-appb-100096
    遍历极化码本集WPolar中的所有码本,确定容量最大的码本,并根据确定的该码本,获取极化码本编号
    Figure PCTCN2015074015-appb-100097
  41. 一种码本反馈装置,其特征在于,包括:
    信道分组模块,用于基于基站天线的多个维度,对接收的信道进行分组,确定所述多个维度对应的信道组;
    码本确定模块;用于根据所述信道组,确定与每个信道组对应的码本编号;
    码本反馈模块;用于反馈所述码本编号;
    其中,所述多个维度包括以下至少之一:
    极化维度Npolar、水平维度NH、垂直维度NV
    其中,所述极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,所述水平维度NH中的维度编号nH等于1,2,……NH,所述垂直维度NV中的维度编号nV等于1,2,……NV
  42. 根据权利要求41所述的码本反馈装置,其特征在于,所述信道分组模块进一步包括:
    极化分组子模块,用于根据所述极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;
    水平分组子模块,用于根据所述水平维度NH对所述极化子阵组进行分组;形成NH列水平子阵组;
    垂直分组子模块,用于根据所述垂直维度NV对所述水平子阵组进行分组;形成NV行垂直子阵组。
  43. 根据权利要求42所述的码本反馈装置,其特征在于,所述码本确定模块进一步包括:
    第一获取模块,用于通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
    H(nPolar,nH,nV),where nV=1,2,…,NV
    并且,还用于根据所述所有垂直子阵组的信道,确定第nH列的垂直子阵的NV×1维的等效信道矢量
    Figure PCTCN2015074015-appb-100098
    其中,
    Figure PCTCN2015074015-appb-100099
    第一确定模块,用于根据所述第nH列的垂直子阵的NV×1维的等效信道矢量
    Figure PCTCN2015074015-appb-100100
    通过预先配置的垂直预编码选取原则,确定垂直码本编号
    Figure PCTCN2015074015-appb-100101
    和与所述垂直码本编号对应的最优垂直码本
  44. 根据权利要求43所述的码本反馈装置,其特征在于,所述码本确定模块进一步包括:
    第二获取模块,用于通过以下公式获取第npolar个极化子阵组中的所有信道:
    H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH
    并且,还用于根据所述最优垂直码本
    Figure PCTCN2015074015-appb-100104
    确定所述信道中水平子阵组的第NH×1维的等效信道矢量
    Figure PCTCN2015074015-appb-100105
    其中,
    Figure PCTCN2015074015-appb-100106
    第二确定模块,用于根据所述信道中水平子阵组的第NH×1维的等效信道矢量
    Figure PCTCN2015074015-appb-100107
    通过预先配置的水平预编码选取原则,确定水平码本编号
    Figure PCTCN2015074015-appb-100108
    和与所述水平码本编号
    Figure PCTCN2015074015-appb-100109
    对应的最优水平码本
    Figure PCTCN2015074015-appb-100110
  45. 根据权利要求44所述的码本反馈装置,其特征在于,所述码本确定模块进一步包括:
    第三获取模块,用于通过以下公式获取所有极化子阵组中的所有信道:
    H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar
    并且,还用于根据所述最优水平码本
    Figure PCTCN2015074015-appb-100111
    确定所述极化子阵组的Npolar×1维的等效信道矢量Heq,Polar,其中,
    Figure PCTCN2015074015-appb-100112
    第三确定模块,用于根据所述述极化子阵组的Npolar×1维的等效信道矢量Heq,Polar,通过预先配置的极化预编码选取原则,确定极化码本编号
    Figure PCTCN2015074015-appb-100113
  46. 根据权利要求43所述的码本反馈装置,其特征在于,在所述预先配置的垂直预编码选取原则为最大信道干噪比选取原则的情况下,所述第一确定模块通过以下公式确定所述垂直码本编号
    Figure PCTCN2015074015-appb-100114
    和所述最优垂直码本
    Figure PCTCN2015074015-appb-100115
    Figure PCTCN2015074015-appb-100116
    其中,
    Figure PCTCN2015074015-appb-100117
    为第npolar极化组第nH水平组的所有垂直组的天线形成的NV×1等效信道;
    Figure PCTCN2015074015-appb-100118
    为垂直码本集中的第mv个码本。
  47. 根据权利要求44所述的码本反馈装置,其特征在于,在所述预先配置的水平预编码选取原则为最大信道干噪比选取原则的情况下,所述第二确定模块通过以下公式确定所述水平码本编号
    Figure PCTCN2015074015-appb-100119
    和所述最优水平码本
    Figure PCTCN2015074015-appb-100120
    Figure PCTCN2015074015-appb-100121
    其中,
    Figure PCTCN2015074015-appb-100122
    为第npolar极化组所有水平组的天线形成的NH×1维的等效信道矢量;
    Figure PCTCN2015074015-appb-100123
    为水平码本集中的第mH个码本。
  48. 根据权利要求45所述的码本反馈装置,其特征在于,在所述预先配置的极化预编码选取原则为最大信道容量选取原则的情况下,所述第三确定模块通过以下步骤确定所述极化码本编号
    Figure PCTCN2015074015-appb-100124
    根据所述Heq,Polar,通过以下公式确定与所述Heq,Polar对应的等效矩阵Req,Polar
    Figure PCTCN2015074015-appb-100125
    其中,
    Figure PCTCN2015074015-appb-100126
    为极化码本集中的第mPolar个码本;
    根据所述Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar
    Figure PCTCN2015074015-appb-100127
    根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar
    Figure PCTCN2015074015-appb-100128
    其中,
    Figure PCTCN2015074015-appb-100129
    为第i个传输数据层的信噪比,是检测后的信噪比SINReq,Polar的第i个分量,并且,所述
    Figure PCTCN2015074015-appb-100130
    与SINReq,Polar之间的关系通过以下公式描述:
    Figure PCTCN2015074015-appb-100131
    遍历极化码本集WPolar中的所有码本,确定容量最大的码本,并根据确定的该码本,获取极化码本编号
    Figure PCTCN2015074015-appb-100132
PCT/CN2015/074015 2014-03-31 2015-03-11 多级码本的生成方法和装置、以及码本反馈方法和装置 WO2015149608A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410127690.7 2014-03-31
CN201410127690.7A CN103929280B (zh) 2014-03-31 2014-03-31 多级码本的生成方法和装置、以及码本反馈方法和装置

Publications (1)

Publication Number Publication Date
WO2015149608A1 true WO2015149608A1 (zh) 2015-10-08

Family

ID=51147372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074015 WO2015149608A1 (zh) 2014-03-31 2015-03-11 多级码本的生成方法和装置、以及码本反馈方法和装置

Country Status (3)

Country Link
CN (1) CN103929280B (zh)
TW (1) TWI580212B (zh)
WO (1) WO2015149608A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY179581A (en) * 2014-09-25 2020-11-11 Ericsson Telefon Ab L M Network node, user equipment and methods therein to enable the ue to determine a precoder codebook
CN106716859A (zh) * 2014-09-25 2017-05-24 株式会社Ntt都科摩 用户装置和基站
CN104539330B (zh) * 2014-12-26 2017-08-29 江苏中兴微通信息科技有限公司 一种三维多输入多输出垂直码本设计方法
CN106160824A (zh) * 2015-04-08 2016-11-23 中国移动通信集团公司 一种信道信息反馈方法及装置
EP3327950A4 (en) * 2015-07-23 2019-03-27 LG Electronics Inc. METHOD OF TRANSMITTING / RECEIVING SIGNAL BASED ON A CODEBOOK IN A MULTI-ANTENNA WIRELESS COMMUNICATION SYSTEM, AND DEVICE THEREOF
CN106487434B (zh) * 2015-08-24 2020-01-24 电信科学技术研究院 一种预编码矩阵确定方法及装置
TWI587638B (zh) * 2015-10-15 2017-06-11 旺宏電子股份有限公司 極化碼通道感知之執行方法與裝置
WO2017067466A1 (zh) * 2015-10-21 2017-04-27 电信科学技术研究院 码本生成方法、预编码矩阵确定方法及相关装置
CN106612137B (zh) * 2015-10-21 2020-02-28 电信科学技术研究院 码本生成方法、预编码矩阵确定方法及相关装置
CN108352870B (zh) * 2015-11-04 2021-07-27 瑞典爱立信有限公司 对从天线阵列的传输进行预编码的方法和发送无线电节点
CN107370694A (zh) * 2016-05-11 2017-11-21 北京信威通信技术股份有限公司 一种预编码码本生成方法和装置
CN109075892B (zh) * 2016-05-12 2021-08-17 苹果公司 构造、表示和编码极化码
CN108347272B (zh) * 2017-01-25 2020-12-15 华为技术有限公司 一种基于波束组进行通信的方法及设备
GB2563473B (en) * 2017-06-15 2019-10-02 Accelercomm Ltd Polar coder with logical three-dimensional memory, communication unit, integrated circuit and method therefor
CN108988924B (zh) * 2018-07-30 2020-07-10 北京科技大学 一种非正交多址码本优化方法
CN112260735B (zh) * 2020-10-09 2022-01-28 哲库科技(北京)有限公司 一种码本确定方法、终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412885A (zh) * 2011-11-25 2012-04-11 西安电子科技大学 Lte中的三维波束赋形方法
WO2013091526A1 (zh) * 2011-12-23 2013-06-27 华为技术有限公司 一种反馈信道状态信息的方法及装置
CN103939280A (zh) * 2014-03-20 2014-07-23 陈晓通 立轴巨能风电机组及海上浮动巨能风电机组

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8055192B2 (en) * 2007-06-25 2011-11-08 Samsung Electronics Co., Ltd. Method of feeding back channel information and receiver for feeding back channel information
US9100068B2 (en) * 2008-03-17 2015-08-04 Qualcomm, Incorporated Multi-resolution beamforming in MIMO systems
EP2514181B1 (en) * 2009-12-17 2018-10-03 Marvell World Trade Ltd. Mimo feedback schemes for cross-polarized antennas
CN101867461B (zh) * 2010-04-30 2015-06-03 中兴通讯股份有限公司 信道信息获取方法及装置、码本构造方法
US9270359B2 (en) * 2010-10-05 2016-02-23 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for polarization control in a communication system
CN102122983B (zh) * 2011-04-18 2014-08-06 电信科学技术研究院 一种码本的生成、信息的发送、反馈方法及设备
CN102916260B (zh) * 2011-08-04 2015-05-13 中国电信股份有限公司 天线与基站
CN103684700B (zh) * 2013-12-31 2017-05-24 重庆邮电大学 一种基于正交联合码本集的3d mu‑mimo预编码方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412885A (zh) * 2011-11-25 2012-04-11 西安电子科技大学 Lte中的三维波束赋形方法
WO2013091526A1 (zh) * 2011-12-23 2013-06-27 华为技术有限公司 一种反馈信道状态信息的方法及装置
CN103939280A (zh) * 2014-03-20 2014-07-23 陈晓通 立轴巨能风电机组及海上浮动巨能风电机组

Also Published As

Publication number Publication date
TW201537908A (zh) 2015-10-01
CN103929280A (zh) 2014-07-16
CN103929280B (zh) 2017-06-23
TWI580212B (zh) 2017-04-21

Similar Documents

Publication Publication Date Title
WO2015149608A1 (zh) 多级码本的生成方法和装置、以及码本反馈方法和装置
Shlezinger et al. Dynamic metasurface antennas for uplink massive MIMO systems
KR101460657B1 (ko) 다중 편파 다중 입출력 시스템을 위한 코드북 생성 방법 및 그 장치
JP2016511566A (ja) チャネル状態情報のフィードバック方法、チャネル状態情報参照信号の伝送方法、ユーザ装置及び基地局
US20140219375A1 (en) Method and device for feeding back channel information
Noh et al. Multi-resolution codebook based beamforming sequence design in millimeter-wave systems
CN102624496A (zh) 预编码处理方法、基站和通信系统
Yang et al. Optimization of subarray partition for large planar phased array radar based on weighted K-means clustering method
CN103858359B (zh) 一种天线阵列、信号映射的方法及基站
WO2017032181A1 (zh) 一种传输编码指示信息和确定预编码矩阵的方法和装置
CN103973351B (zh) 一种无线通信系统中使用码本进行通信的方法及基站
WO2016065557A1 (zh) 码书确定方法、装置以及通信系统
US10693538B2 (en) Apparatus, method and computer program for generating broadcast beams
CN114205005A (zh) 基于轨道角动量的发送、接收方法及装置
WO2022017325A1 (zh) 一种通信方法及装置
WO2014063653A1 (zh) 利用三维波束码本进行通信的方法、装置及基站
CN106982088B (zh) 3d mimo系统中一种基于csi-rs端口的多流传输方法
Song et al. The precoding scheme based on domain selective interference cancellation in 3-D massive MIMO
Islam et al. Performance analysis of massive MIMO for 5G wireless communication systems
CN114553275B (zh) 一种适用于非均匀线/面阵mimo系统的改进型码本设计方法及装置
Xue et al. An efficient beam-training scheme for the optimally designed subarray structure in mmWave LoS MIMO systems
Castanheira et al. Multi-User linear equalizer and precoder scheme for hybrid sub-connected wideband systems
CN108370265A (zh) 一种确定预编码矩阵的方法及装置
CN106160776A (zh) 收发单元与天线阵元映射方法及装置
JP2017507503A (ja) パターン/偏波アンテナ装置とこれを用いたビーム形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15772862

Country of ref document: EP

Kind code of ref document: A1