WO2015149608A1 - 多级码本的生成方法和装置、以及码本反馈方法和装置 - Google Patents
多级码本的生成方法和装置、以及码本反馈方法和装置 Download PDFInfo
- Publication number
- WO2015149608A1 WO2015149608A1 PCT/CN2015/074015 CN2015074015W WO2015149608A1 WO 2015149608 A1 WO2015149608 A1 WO 2015149608A1 CN 2015074015 W CN2015074015 W CN 2015074015W WO 2015149608 A1 WO2015149608 A1 WO 2015149608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- codebook
- polar
- vertical
- horizontal
- dimension
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03891—Spatial equalizers
- H04L25/03898—Spatial equalizers codebook-based design
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for generating a multi-level codebook, and a codebook feedback method and apparatus.
- multi-user multiple input and output (MU-MIMO) technology can effectively provide system capacity; multi-input and output (MIMO) is also extended from 2D to 3D (3D, 3Dimensions), each antenna becomes N H ⁇ N V antenna elements, where N H is the horizontal dimension of the antenna element (or the number of antenna columns in the horizontal direction of the antenna element), and N V is the vertical dimension of the antenna element (or antenna element) The number of antenna rows in the vertical direction); and the 3D MIMO system can directly control each antenna oscillator through baseband processing; and the precoding/beamforming technology also implements signals corresponding to N H ⁇ N V antenna elements. Perform weighting processing. Therefore, in order to avoid an increase in the size of the antenna as the number of antenna elements increases, the multi-polarization method (including single polarization, dual polarization, triple polarization) is usually used for array formation.
- MIMO multi-input and output
- the present invention provides a method and apparatus for generating a multi-level codebook, and a codebook feedback method and apparatus.
- a method of generating a multi-level codebook is provided.
- the method for generating the multi-level codebook includes:
- the plurality of dimensions includes at least one of the following:
- Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
- the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
- the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
- the number n V is equal to 1, 2, ... N V .
- a multi-level codebook When a multi-level codebook is generated according to multiple dimensions, a plurality of dimensions may be encoded and configured to generate a codebook set corresponding to the plurality of dimensions; and a multi-level code is generated according to the generated plurality of codebook sets. this.
- the plurality of codebook sets may include at least one of the following: a polar codebook set W Polar , a horizontal codebook set W H , and a vertical codebook set W V .
- the multi-level codebook when generating a multi-level codebook according to the generated multiple codebook sets, the multi-level codebook can be generated by the following formula: Among them, W is a multi-level codebook.
- the polarization codebook set W Polar is used to control orthogonality between different data streams; and, the polarization codebook set W Polar is described by the following formula:
- m Polar is the polarization codebook number
- m Polar is equal to 1, 2, . M Polar.
- the polarization beam codebooks in the codebook W Polar number M Polar polarization may depend on the dimensions and transmission of data layers N polar [upsilon], and the first codebook m Polar A matrix of N Polar ⁇ .
- W Polar polarization codebooks in the codebook is equal to the number M Polar 1, W Polar polarization codebook set equal to ⁇ [1 ] ⁇ ; If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 1, then W Polar polarization codebooks in the codebook number M Polar equals 4, the polarization codebook set equal to W Polar If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 2, the codebook set W Polar polarization in a codebook is equal to the number 2 M Polar polarization codebook set equal to W Polar
- m H is a horizontal codebook number, and m H is equal to 1, 2, ... M H .
- the horizontal codebook set W H may include a horizontal scan codebook set W H, a Scan and a horizontal beam shape codebook set W H, Pattern , and a horizontal codebook set W H and a horizontal scan codebook set W H, Scan
- the relationship between the horizontal beam shape codebook set W H and Pattern can be described by the following formula:
- W H W H,pattern ⁇ W H,Scan ;
- the horizontal scan codebook set W H, Scan is used to control the horizontal scan angle of the 3D beam;
- the horizontal beam shape codebook set W H, the Pattern is used to control the horizontal beam shape of the 3D beam.
- the horizontal scan codebook set W H, Scan may be a matrix of N H ⁇ M H dimensions
- the horizontal scan codebook set WH , Scan may be generated by the following formula:
- n H n H is a base station antenna of the antenna column and, n H is equal to 1,2, ... .N H;
- N H is the first column of the base station antenna in the antenna coordinate reference phase 0 of the coordinate system.
- the horizontal beam shape codebook set W H,Pattern may be a matrix of N H ⁇ M H dimensions, and the horizontal beam shape codebook set W H,Pattern may be generated by the following formula:
- nth H quantity is for Directional beam shape beam shape codebook.
- the vertical codebook set W V is used to control the orthogonality between the different users in the vertical direction space, and the vertical codebook set W V is described by the following formula:
- m V is the vertical codebook number and m V is equal to 1, 2, ... M V .
- the above vertical codebook set W V may include a vertical scan codebook set W V, a Scan and a vertical beam shape codebook set W V, Pattern , and a vertical codebook set W V and a vertical scan codebook set W V, Scan And the relationship between the vertical beam shape codebook set W V and Pattern can be described by the following formula:
- W V W V, pattern ⁇ W V, Scan ;
- the vertical scan codebook set W V, Scan is used to control the vertical scan angle of the 3D beam
- the vertical beam shape codebook set W V, the Pattern is used to control the vertical beam shape of the 3D beam.
- the above vertical scan codebook set W V, Scan may be a matrix of N V ⁇ M H
- the vertical scan codebook set W V, Scan may be generated by the following formula:
- n V n V is a base station antenna of the antenna line, and, n V equals 1,2, ... N V;
- the base station antenna of the antenna coordinate row n V 0 reference phase coordinate system The base station antenna of the antenna coordinate row n V 0 reference phase coordinate system.
- the vertical beam shape codebook set W V,Pattern may also be a matrix of N V ⁇ M V dimensions, and the vertical beam shape codebook set W V,Pattern may be generated by the following formula:
- the beam shape codebook can be acquired by a beam shape genetic algorithm.
- a multilevel codebook generating apparatus is provided.
- the generating device of the multi-level codebook comprises:
- a dimension determining module configured to determine, according to a multi-dimensional feature of the base station antenna, multiple dimensions corresponding to the base station antenna
- a codebook generating module configured to generate a multi-level codebook according to multiple dimensions
- the plurality of dimensions includes at least one of the following:
- Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
- the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
- the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
- the number n V is equal to 1, 2, ... N V .
- the codebook generating module may include: a coding configuration submodule, configured to perform coding configuration on multiple dimensions, and generate a codebook set corresponding to multiple dimensions; and a codebook generation submodule, configured to generate multiple codebooks according to the codebook Set, generate a multi-level codebook.
- the plurality of codebook sets may include at least one of the following: a polar codebook set W Polar , a horizontal codebook set W H , and a vertical codebook set W V .
- the codebook generation sub-module when the codebook generation sub-module generates a multi-level codebook according to the generated multiple codebook sets, the multi-level codebook can be generated by the following formula: Among them, W is a multi-level codebook.
- the polarization codebook set W Polar is used to control orthogonality between different data streams; and, the polarization codebook set W Polar is described by the following formula:
- m Polar is the polarization codebook number
- m Polar is equal to 1, 2, . M Polar .
- the polarization beam codebooks in the codebook W Polar number M Polar polarization may depend on the dimensions and transmission of data layers N polar [upsilon], and the first codebook m Polar A matrix of N Polar ⁇ .
- W Polar polarization codebooks in the codebook is equal to the number M Polar 1, W Polar polarization codebook set equal to ⁇ [1 ] ⁇ ; If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 1, then W Polar polarization codebooks in the codebook number M Polar equals 4, the polarization codebook set equal to W Polar If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 2, the codebook set W Polar polarization in a codebook is equal to the number 2 M Polar polarization codebook set equal to W Polar
- m H is a horizontal codebook number, and m H is equal to 1, 2, ... M H .
- the horizontal codebook set W H may include a horizontal scan codebook set W H, a Scan and a horizontal beam shape codebook set W H, Pattern , and a horizontal codebook set W H and a horizontal scan codebook set W H, Scan
- the relationship between the horizontal beam shape codebook set W H and Pattern can be described by the following formula:
- W H W H,pattern ⁇ W H,Scan ;
- the horizontal scan codebook set W H, Scan is used to control the horizontal scan angle of the 3D beam;
- the horizontal beam shape codebook set W H, the Pattern is used to control the horizontal beam shape of the 3D beam.
- the horizontal scan codebook set W H, Scan may be a matrix of N H ⁇ M H dimensions
- the horizontal scan codebook set W H, Scan may be generated by the following formula:
- n H n H is a base station antenna of the antenna column and, n H is equal to 1,2, ... .N H;
- N H is the first column of the base station antenna in the antenna coordinate reference phase 0 of the coordinate system.
- the horizontal beam shape codebook set W H,Pattern may also be a matrix of N H ⁇ M H dimensions, and the horizontal beam shape codebook set W H,Pattern may be generated by the following formula:
- nth H quantity is for Directional beam shape beam shape codebook.
- the vertical codebook set W V is used to control the orthogonality between the different users in the vertical direction space, and the vertical codebook set W V is described by the following formula:
- m V is the vertical codebook number and m V is equal to 1, 2, ... M V .
- the above vertical codebook set W V may include a vertical scan codebook set W V, a Scan and a vertical beam shape codebook set W V, Pattern , and a vertical codebook set W V and a vertical scan codebook set W V, Scan And the relationship between the vertical beam shape codebook set W V and Pattern can be described by the following formula:
- W V W V, pattern ⁇ W V, Scan ;
- the vertical scan codebook set W V, Scan is used to control the vertical scan angle of the 3D beam
- the vertical beam shape codebook set W V, the Pattern is used to control the vertical beam shape of the 3D beam.
- the above vertical scan codebook set W V, Scan may be a matrix of N V ⁇ M H
- the vertical scan codebook set W V, Scan may be generated by the following formula:
- n V n V is a base station antenna of the antenna line, and, n V equals 1,2, ... N V;
- the base station antenna of the antenna coordinate row n V 0 reference phase coordinate system The base station antenna of the antenna coordinate row n V 0 reference phase coordinate system.
- the vertical beam shape codebook set W V,Pattern may also be a matrix of N V ⁇ M V dimensions, and the vertical beam shape codebook set W V,Pattern may be generated by the following formula:
- the beam shape codebook can be acquired by a beam shape genetic algorithm.
- a codebook feedback method is provided.
- the codebook feedback method includes:
- the plurality of dimensions includes at least one of the following:
- Polarization dimension N Polar horizontal dimension N H , vertical dimension N V ;
- N Polar dimension number n Polar 1
- N H n H 1
- N V a vertical dimension of dimension N V
- the number n V is equal to 1, 2, ... N V .
- the co-polarized antenna elements when grouping the received channels based on multiple dimensions of the base station antenna, may be grouped according to the polarization dimension N polar to form N polar pairs of polarized sub-arrays of the same polarization;
- the polarized sub-arrays are grouped according to the horizontal dimension N H ; the N H column horizontal sub-groups are formed; and the horizontal sub-arrays are grouped according to the vertical dimension N V ; and the N V- row vertical sub-groups are formed.
- all channels in the nth polar polarization sub-group can also be obtained by the following formula:
- the polarization codebook number is determined by a pre-configured polarization precoding selection principle.
- the vertical codebook number can be determined by the following formula.
- the horizontal codebook number can be determined by the following formula Optimal level codebook
- the polarization codebook number may be determined by the following steps:
- Polar the equivalent matrix R eq corresponding to H eq, Polar is determined by the following formula: Polar :
- the post-detection signal-to-noise ratio SINR eq, Polar is determined by the following formula:
- the capacity C Polar of each available codebook is determined by the following formula:
- the signal-to-noise ratio of the ith transmission data layer is the detected signal-to-noise ratio SINR eq, the ith component of Polar , and
- SINR eq the signal-to-noise ratio of the ith transmission data layer
- the relationship with SINR eq, Polar is described by the following formula:
- a codebook feedback device is provided.
- the codebook feedback device includes:
- a channel grouping module configured to group received channels based on multiple dimensions of the base station antenna, and determine channel groups corresponding to multiple dimensions
- a codebook determining module configured to determine, according to the channel group, a codebook number corresponding to each channel group;
- Codebook feedback module used for feedback codebook number
- the plurality of dimensions includes at least one of the following:
- Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
- the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
- the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
- the number n V is equal to 1, 2, ... N V .
- the channel grouping module may include: a polarization grouping sub-module, configured to group the co-polarized antenna elements according to the polarization dimension N polar to form N polar polarization sub-arrays of the same polarization; the horizontal grouping sub-module, For grouping polarized sub-arrays according to horizontal dimension N H ; forming N H column horizontal sub-arrays; vertical grouping sub-modules for grouping horizontal sub-arrays according to vertical dimension N V ; forming N V rows vertical Subgroup.
- the code determination module may present comprises: a first acquiring module, for acquiring all the vertical channels in the sub-array group of subarrays polarizations n polar group of subarrays horizontal row n H group by the following equation:
- a first determining module configured for an N V ⁇ 1 dimensional equivalent channel vector of a vertical sub-array of the nth H column Determine the vertical codebook number by pre-configured vertical precoding selection principles And with the vertical codebook number Corresponding optimal vertical codebook
- the codebook determining module may further include: a second acquiring module, configured to acquire all channels in the nth polar polarization sub-group by the following formula:
- a second determining module configured to calculate an equivalent channel vector of the Nth H ⁇ 1 dimension of the horizontal subgroup in the channel Determine the horizontal codebook number by pre-configured horizontal precoding selection principle And horizontal codebook number Corresponding optimal level codebook
- the codebook determining module may further include: a third acquiring module, configured to acquire all channels in all the polarized sub-arrays by the following formula:
- a third determining module configured to determine a polarization codebook number according to a pre-configured polarization precoding selection principle according to an N polar ⁇ 1 dimensional equivalent channel vector H eq, Polar of the polarized sub-array
- the first determining module may determine the vertical codebook number by using the following formula: And optimal vertical codebook
- the second determining module may determine the horizontal codebook number by using the following formula Optimal level codebook
- the third determining module may determine the polarization codebook number by the following steps:
- Polar the equivalent matrix R eq corresponding to H eq, Polar is determined by the following formula: Polar :
- the post-detection signal-to-noise ratio SINR eq, Polar is determined by the following formula:
- the capacity C Polar of each available codebook is determined by the following formula:
- the signal-to-noise ratio of the ith transmission data layer is the detected signal-to-noise ratio SINR eq, the ith component of Polar , and
- SINR eq the signal-to-noise ratio of the ith transmission data layer
- the relationship with SINR eq, Polar is described by the following formula:
- the invention designs a polarization codebook, a horizontal basic codebook, a horizontal scanning codebook, a vertical basic codebook and a vertical scanning codebook according to an antenna structure, realizes polarization dimension utilization by using a polarization codebook, and realizes horizontal dimension by horizontal scanning codebook Utilize, realize vertical dimension utilization through vertical basic codebook, realize 3D beam horizontal beamwidth control through horizontal basic codebook, realize 3D beam vertical beamwidth control through vertical basic codebook, and fully utilize spatial dimension, which is beneficial to MIMO Performance improvement.
- the present invention effectively improves the resolution of the 3D horizontal direction and/or the vertical direction by scanning the codebook and the basic codebook design, thereby contributing to the improvement of the MU-MIMO performance.
- FIG. 1 is a schematic flow chart of a method for generating a multi-level codebook according to an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a multi-level codebook generating apparatus according to an embodiment of the present invention
- FIG. 3 is a schematic flowchart diagram of a codebook feedback method according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram showing the result of a codebook feedback apparatus according to an embodiment of the present invention.
- Fig. 5 is a block diagram showing an exemplary structure of a computer embodying the technical solution of the present invention.
- a method of generating a multi-level codebook is provided.
- a method for generating a multi-level codebook includes:
- Step S101 Determine, according to the multi-dimensional feature of the base station antenna, multiple dimensions corresponding to the base station antenna;
- Step S103 generating a multi-level codebook according to multiple dimensions
- the plurality of dimensions includes at least one of the following:
- Polarization dimension N Polar horizontal dimension N H , vertical dimension N V ;
- N Polar dimension number n Polar 1
- N H n H 1
- N V a vertical dimension of dimension N V
- the number n V is equal to 1, 2, ... N V .
- a multi-level codebook When a multi-level codebook is generated according to multiple dimensions, a plurality of dimensions may be encoded and configured to generate a codebook set corresponding to the plurality of dimensions; and a multi-level code is generated according to the generated plurality of codebook sets. this.
- the plurality of codebook sets may include at least one of the following: a polar codebook set W Polar , a horizontal codebook set W H , and a vertical codebook set W V .
- the multi-level codebook when generating a multi-level codebook according to the generated multiple codebook sets, the multi-level codebook can be generated by the following formula: Among them, W is a multi-level codebook.
- the polarization codebook set W Polar is used to control orthogonality between different data streams; and, the polarization codebook set W Polar is described by the following formula:
- m Polar is the polarization codebook number
- m Polar is equal to 1, 2, . M Polar.
- the polarization beam codebooks in the codebook W Polar number M Polar polarization may depend on the dimensions and transmission of data layers N polar [upsilon], and the first codebook m Polar A matrix of N Polar ⁇ .
- W Polar polarization codebooks in the codebook is equal to the number M Polar 1, W Polar polarization codebook set equal to ⁇ [1 ] ⁇ ; If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 1, then W Polar polarization codebooks in the codebook number M Polar equals 4, the polarization codebook set equal to W Polar If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 2, the codebook set W Polar polarization in a codebook is equal to the number 2 M Polar polarization codebook set equal to W Polar
- m H is a horizontal codebook number, and m H is equal to 1, 2, ... M H .
- the horizontal codebook set W H may include a horizontal scan codebook set W H, a Scan and a horizontal beam shape codebook set W H, Pattern , and a horizontal codebook set W H and a horizontal scan codebook set W H, Scan
- the relationship between the horizontal beam shape codebook set W H and Pattern can be described by the following formula:
- W H W H,pattern ⁇ W H,Scan ;
- the horizontal scan codebook set W H, Scan is used to control the horizontal scan angle of the 3D beam;
- the horizontal beam shape codebook set W H, the Pattern is used to control the horizontal beam shape of the 3D beam.
- the horizontal scan codebook set W H, Scan may be a matrix of N H ⁇ M H dimensions
- the horizontal scan codebook set WH , Scan may be generated by the following formula:
- n H n H is a base station antenna of the antenna column and, n H is equal to 1,2, ... .N H;
- N H is the first column of the base station antenna in the antenna coordinate reference phase 0 of the coordinate system.
- the horizontal beam shape codebook set W H,Pattern may be a matrix of N H ⁇ M H dimensions, and the horizontal beam shape codebook set W H,Pattern may be generated by the following formula:
- nth H quantity is for Directional beam shape beam shape codebook.
- the vertical codebook set W V is used to control the orthogonality between the different users in the vertical direction space, and the vertical codebook set W V is described by the following formula:
- m V is the vertical codebook number and m V is equal to 1, 2, ... M V .
- the above vertical codebook set W V may include a vertical scan codebook set W V, a Scan and a vertical beam shape codebook set W V, Pattern , and a vertical codebook set W V and a vertical scan codebook set W V, Scan And the relationship between the vertical beam shape codebook set W V and Pattern can be described by the following formula:
- W V W V, pattern ⁇ W V, Scan ;
- the vertical scan codebook set W V, Scan is used to control the vertical scan angle of the 3D beam
- the vertical beam shape codebook set W V, the Pattern is used to control the vertical beam shape of the 3D beam.
- the above vertical scan codebook set W V, Scan may be a matrix of N V ⁇ M H
- the vertical scan codebook set W V, Scan may be generated by the following formula:
- n V n V is a base station antenna of the antenna line, and, n V equals 1,2, ... N V;
- the base station antenna of the antenna coordinate row n V 0 reference phase coordinate system The base station antenna of the antenna coordinate row n V 0 reference phase coordinate system.
- the vertical beam shape codebook set W V,Pattern may also be a matrix of N V ⁇ M V dimensions, and the vertical beam shape codebook set W V,Pattern may be generated by the following formula:
- the beam shape codebook can be acquired by a beam shape genetic algorithm.
- a multi-level codebook generating apparatus is also provided.
- the apparatus for generating a multi-level codebook includes:
- the dimension determining module 21 is configured to determine, according to the multi-dimensional feature of the base station antenna, multiple dimensions corresponding to the base station antenna;
- the codebook generating module 22 is configured to generate a multi-level codebook according to multiple dimensions
- the plurality of dimensions includes at least one of the following:
- Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
- the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
- the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
- the number n V is equal to 1, 2, ... N V .
- the codebook generating module 22 may include: an encoding configuration sub-module (not shown) for encoding and configuring multiple dimensions, generating a codebook set corresponding to multiple dimensions; and a codebook generating sub-module (FIG. Not shown in the figure), for generating a multi-level codebook according to the generated plurality of codebook sets.
- the plurality of codebook sets may include at least one of the following: a polar codebook set W Polar , a horizontal codebook set W H , and a vertical codebook set W V .
- the codebook generation sub-module when the codebook generation sub-module generates a multi-level codebook according to the generated multiple codebook sets, the multi-level codebook can be generated by the following formula: Among them, W is a multi-level codebook.
- the polarization codebook set W Polar is used to control orthogonality between different data streams; and, the polarization codebook set W Polar is described by the following formula:
- m Polar is the polarization codebook number
- m Polar is equal to 1, 2, . M Polar .
- the polarization beam codebooks in the codebook W Polar number M Polar polarization may depend on the dimensions and transmission of data layers N polar [upsilon], and the first codebook m Polar A matrix of N Polar ⁇ .
- W Polar polarization codebooks in the codebook is equal to the number M Polar 1, W Polar polarization codebook set equal to ⁇ [1 ] ⁇ ; If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 1, then W Polar polarization codebooks in the codebook number M Polar equals 4, the polarization codebook set equal to W Polar If the polarization dimension N polar or equal to 2 and the number of layers ⁇ is equal to the transmission data 2, the codebook set W Polar polarization in a codebook is equal to the number 2 M Polar polarization codebook set equal to W Polar
- m H is a horizontal codebook number, and m H is equal to 1, 2, ... M H .
- the horizontal codebook set W H may include a horizontal scan codebook set W H, a Scan and a horizontal beam shape codebook set W H, Pattern , and a horizontal codebook set W H and a horizontal scan codebook set W H, Scan
- the relationship between the horizontal beam shape codebook set W H and Pattern can be described by the following formula:
- W H W H,pattern ⁇ W H,Scan ;
- the horizontal scan codebook set W H, Scan is used to control the horizontal scan angle of the 3D beam;
- the horizontal beam shape codebook set W H, the Pattern is used to control the horizontal beam shape of the 3D beam.
- the horizontal scan codebook set W H, Scan may be a matrix of N H ⁇ M H dimensions
- the horizontal scan codebook set W H, Scan may be generated by the following formula:
- n H n H is a base station antenna of the antenna column and, n H is equal to 1,2, ... .N H;
- N H is the first column of the base station antenna in the antenna coordinate reference phase 0 of the coordinate system.
- the horizontal beam shape codebook set W H,Pattern may also be a matrix of N H ⁇ M H dimensions, and the horizontal beam shape codebook set W H,Pattern may be generated by the following formula:
- nth H quantity is for Directional beam shape beam shape codebook.
- the vertical codebook set W V is used to control the orthogonality between the different users in the vertical direction space, and the vertical codebook set W V is described by the following formula:
- m V is the vertical codebook number and m V is equal to 1, 2, ... M V .
- the above vertical codebook set W V may include a vertical scan codebook set W V, a Scan and a vertical beam shape codebook set W V, Pattern , and a vertical codebook set W V and a vertical scan codebook set W V, Scan And the relationship between the vertical beam shape codebook set W V and Pattern can be described by the following formula:
- W V W V, pattern ⁇ W V, Scan ;
- the vertical scan codebook set W V, Scan is used to control the vertical scan angle of the 3D beam
- the vertical beam shape codebook set W V, the Pattern is used to control the vertical beam shape of the 3D beam.
- the above vertical scan codebook set W V, Scan may be a matrix of N V ⁇ M H
- the vertical scan codebook set W V, Scan may be generated by the following formula:
- n V n V is a base station antenna of the antenna line, and, n V equals 1,2, ... N V;
- the base station antenna of the antenna coordinate row n V 0 reference phase coordinate system The base station antenna of the antenna coordinate row n V 0 reference phase coordinate system.
- the vertical beam shape codebook set W V,Pattern may also be a matrix of N V ⁇ M V dimensions, and the vertical beam shape codebook set W V,Pattern may be generated by the following formula:
- the beam shape codebook can be acquired by a beam shape genetic algorithm.
- a codebook feedback method is also provided.
- a codebook feedback method includes:
- Step S301 grouping received channels according to multiple dimensions of the base station antenna, and determining channel groups corresponding to multiple dimensions;
- Step S303 determining, according to the channel group, a codebook number corresponding to each channel group
- Step S305 feedback codebook number
- the plurality of dimensions includes at least one of the following:
- Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
- the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
- the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
- the number n V is equal to 1, 2, ... N V .
- the co-polarized antenna elements may be grouped according to the polarization dimension N polar to form N polar pairs of polarized sub-arrays of the same polarization;
- the polarized sub-arrays are grouped according to the horizontal dimension N H ; the N H column horizontal sub-groups are formed; and the horizontal sub-arrays are grouped according to the vertical dimension N V ; and the N V- row vertical sub-groups are formed.
- all channels in the nth polar polarization sub-group can also be obtained by the following formula:
- the polarization codebook number is determined by a pre-configured polarization precoding selection principle.
- the vertical codebook number can be determined by the following formula.
- the horizontal codebook number can be determined by the following formula Optimal level codebook
- the polarization codebook number may be determined by the following steps:
- Polar the equivalent matrix R eq corresponding to H eq, Polar is determined by the following formula: Polar :
- the post-detection signal-to-noise ratio SINR eq, Polar is determined by the following formula:
- the capacity C Polar of each available codebook is determined by the following formula:
- the signal-to-noise ratio of the i-th transmission data layer is the detected signal-to-noise ratio SINR eq, the i-th component of Polar , and
- SINR eq the signal-to-noise ratio of the i-th transmission data layer
- the relationship with SINR eq, Polar is described by the following formula:
- a codebook feedback device is also provided.
- a codebook feedback apparatus includes:
- the channel grouping module 41 is configured to group the received channels according to multiple dimensions of the base station antenna, and determine channel groups corresponding to multiple dimensions;
- the codebook determining module 42 is configured to determine, according to the channel group, a codebook number corresponding to each channel group;
- Codebook feedback module 43 used for feedback codebook number
- the plurality of dimensions includes at least one of the following:
- Polarization dimension N polar horizontal dimension N H , vertical dimension N V ;
- the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar
- the dimension number n H in the horizontal dimension N H is equal to 1, 2, ... N H
- the number n V is equal to 1, 2, ... N V .
- the channel grouping module 41 may include: a polarization grouping sub-module (not shown) for grouping the same-polarized antenna elements according to the polarization dimension N polar to form N polar identical polarization polarons a grouping group; a horizontal grouping sub-module (not shown) for grouping the polarized sub-arrays according to the horizontal dimension N H ; forming an N H column horizontal sub-group; a vertical grouping sub-module (not shown in the figure) ), for grouping the horizontal sub-arrays according to the vertical dimension N V ; forming N V rows of vertical sub-arrays.
- codebook determination module 42 may include: a first acquisition module (not shown) for acquiring all of the subarrays polarizations n polar group of subarrays horizontal row n H group by the following formula Vertical sub-group channel:
- a first determining module for using an N V ⁇ 1 dimensional equivalent channel vector of a vertical sub-array of the nth H column Determine the vertical codebook number by pre-configured vertical precoding selection principles And with the vertical codebook number Corresponding optimal vertical codebook
- codebook determining module 42 may further include: a second acquiring module (not shown) for acquiring all channels in the nth polar polarization sub-group by the following formula:
- a second determining module for using an Nth H ⁇ 1 dimensional equivalent channel vector of the horizontal subgroup in the channel Determine the horizontal codebook number by pre-configured horizontal precoding selection principle And horizontal codebook number Corresponding optimal level codebook
- the codebook determining module 42 may further include: a third acquiring module (not shown) for acquiring all channels in all the polarized sub-arrays by the following formula:
- a third determining module (not shown) for determining a pole according to a pre-configured polarization precoding selection principle according to a N polar ⁇ 1 dimensional equivalent channel vector H eq, Polar of the polar subgroup Codebook number
- the first determining module may determine the vertical codebook number by using the following formula: And optimal vertical codebook
- the second determining module may determine the horizontal codebook number by using the following formula Optimal level codebook
- the third determining module may determine the polarization codebook number by the following steps:
- Polar the equivalent matrix R eq corresponding to H eq, Polar is determined by the following formula: Polar :
- the post-detection signal-to-noise ratio SINR eq, Polar is determined by the following formula:
- the capacity C Polar of each available codebook is determined by the following formula:
- the signal-to-noise ratio of the ith transmission data layer is the detected signal-to-noise ratio SINR eq, the ith component of Polar , and
- SINR eq the signal-to-noise ratio of the ith transmission data layer
- the relationship with SINR eq, Polar is described by the following formula:
- a polarized codebook, a horizontal basic codebook, a horizontal scanning codebook, a vertical basic codebook, and a vertical scanning codebook are designed according to the antenna structure, and the polar codebook is used to realize the pole.
- Dimensional use, horizontal dimension codebook for horizontal dimension utilization, vertical basic codebook for vertical dimension utilization, horizontal basic codebook for 3D beam horizontal beamwidth control; vertical vertical codebook for 3D beam vertical beamwidth control Therefore, the spatial dimension is fully utilized, which is beneficial to the improvement of MIMO performance.
- the resolution of the 3D horizontal direction and/or the vertical direction is effectively improved, thereby contributing to the improvement of the MU-MIMO performance.
- the objects of the invention can also be achieved by running a program or a set of programs on any computing device.
- the computing device can be a well-known general purpose device.
- the object of the present invention can also be achieved by merely providing a program product comprising program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present invention, and a storage medium storing such a program product also constitutes the present invention. It will be apparent that the storage medium may be any known storage medium or any storage medium developed in the future.
- a storage medium (which may be a ROM, a RAM, a hard disk, a detachable memory, or the like), in which a computer program for resource allocation is embedded, the computer program having a code segment configured to perform the following steps: determining, according to a multi-dimensional feature of the base station antenna, a plurality of dimensions corresponding to the base station antenna; generating a multi-level codebook according to the plurality of dimensions; wherein the plurality of dimensions include at least One: the polarization dimension N polar , the horizontal dimension N H , the vertical dimension N V ; and, the dimension number n Polar in the polarization dimension N polar is equal to 1, 2, ... N Polar , the dimension number n in the horizontal dimension N H H is equal to 1, 2, ... N H , and the dimension number n V in the vertical dimension N V is equal to 1, 2, ... N V .
- a computer program having a code segment configured to perform a resource allocation step of determining a plurality of dimensions corresponding to a base station antenna based on a multi-dimensional feature of a base station antenna Generating a multi-level codebook according to a plurality of dimensions; wherein the plurality of dimensions includes at least one of: a polarization dimension N polar , a horizontal dimension N H , a vertical dimension N V ; and a dimension number in the polarization dimension N polar n Polar equal to 1,2, ...... N Polar, the horizontal dimension of the dimension number N H n H is equal to 1,2, Hence N H, the vertical dimension of the dimension number N V n V is equal to 1,2, ...... N V.
- a storage medium (which may be a ROM, a RAM, a hard disk, a detachable memory, or the like), in which a computer program for resource allocation is embedded, the computer program having a code segment configured to perform the steps of: grouping received channels based on a plurality of dimensions of a base station antenna, determining channel groups corresponding to the plurality of dimensions; determining a codebook number corresponding to each channel group according to the channel group a feedback codebook number; wherein, the plurality of dimensions includes at least one of: a polarization dimension N polar , a horizontal dimension N H , a vertical dimension N V ; and a dimension number n Polar in the polarization dimension N polar is equal to 1, 2 , ...... N Polar, the horizontal dimension of the dimension number N H n H is equal to 1,2, ...... N H, the vertical dimension of the dimension number N V n V is equal to 1,2, ...... N V.
- a computer program having a code segment configured to perform the following resource allocation steps: grouping received channels based on a plurality of dimensions of a base station antenna, determining a plurality of a channel group corresponding to the dimension; determining, according to the channel group, a codebook number corresponding to each channel group; a feedback codebook number; wherein, the plurality of dimensions includes at least one of the following: a polarization dimension N polar , a horizontal dimension N H , and a vertical Dimension N V ; and, dimension number n Polar in polarization dimension N polar is equal to 1, 2, ... N Polar , dimension number n H in horizontal dimension N H is equal to 1, 2, ... N H , vertical dimension N V in the n-dimension number is equal to V 1,2, ...... N V.
- a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose computer 500 shown in FIG.
- a computer having a dedicated hardware structure such as the general-purpose computer 500 shown in FIG.
- a central processing module (CPU) 501 executes various processes in accordance with a program stored in a read only memory (ROM) 502 or a program loaded from a storage portion 508 to a random access memory (RAM) 503.
- ROM read only memory
- RAM random access memory
- data required when the CPU 501 executes various processes and the like is also stored as needed.
- the CPU 501, the ROM 502, and the RAM 503 are connected to each other via a bus 504.
- Input/output interface 505 is also coupled to bus 504.
- the following components are connected to the input/output interface 505: an input portion 506 including a keyboard, a mouse, etc.; an output portion 507 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), and the like, and a speaker and the like;
- the storage portion 508 includes a hard disk or the like; and the communication portion 509 includes a network interface card such as a LAN card, a modem, and the like.
- the communication section 509 performs communication processing via a network such as the Internet.
- the driver 510 is also connected to the input/output interface 505 as needed.
- a removable medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 510 as needed, so that a computer program read therefrom is installed into the storage portion 508 as needed.
- a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 511.
- such a storage medium is not limited to the removable medium 511 shown in FIG. 5 in which a program is stored and distributed separately from the device to provide a program to the user.
- the removable medium 511 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
- the storage medium may be a ROM 502, a hard disk included in the storage portion 508, etc., in which programs are stored, and distributed to the user together with the device containing them.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
本发明公开了一种多级码本的生成方法和装置、以及码本反馈方法和装置,其中,该多级码本的生成方法包括:基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;根据多个维度,生成多级码本;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。本发明根据天线结构的多维度特征,设计多级码本,从而完整的利用了空间维度,有益于MIMO和MU-MIMO性能的提升。
Description
本申请要求在2014年3月31日提交中国专利局、申请号为201410127690.7、发明名称为“多级码本的生成方法和装置、以及码本反馈方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及通信技术领域,具体来说,涉及一种多级码本的生成方法和装置、以及码本反馈方法和装置。
目前,随着通信技术的发展,多用户多输入输出(MU-MIMO)技术可以有效提供系统容量;多输入输出(MIMO)也从2D扩展到了三维(3D,3Dimensions),每个天线变为由NH×NV个天线振子组成,其中,NH为天线振子的水平维度(或者说是天线振子的水平方向的天线列数),NV为天线振子的垂直维度(或者说是天线振子的垂直方向的天线行数);;而3D MIMO系统则更是可以通过基带处理直接控制每个天线振子;并且预编码/波束赋型技术也实现了对NH×NV个天线振子对应的信号进行加权处理。因此,为了避免随着天线振子数量的增加,而导致天线体积增加,通常会采用多极化的方式(包括单极化,双极化,三极化)进行组阵。
然而,采用多级化的方式进行组阵后,3D天线的水平列数则由NH变为了NH/NPolar列,其中,NPolar表示极化维度(例如:若单极化天线,则NPolar=1,若双极化天线,则NPolar=2,若三极化天线,则NPolar=3),从而使得天线变小的同时,天线波束变宽了。所以,为了解决该问题,有必要研发出一种与多级化后的3D天线相适应的码本以及反馈设计。
发明内容
针对相关技术中的上述技术问题,本发明提出一种多级码本的生成方法和装置、以及码本反馈方法和装置。
为实现上述技术目的,根据本发明的一个方面,提供了一种多级码本的生成方法。
该多级码本的生成方法包括:
基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;
根据多个维度,生成多级码本;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV;
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
其中,在根据多个维度,生成多级码本时,可对多个维度进行编码配置,生成与该多个维度对应的码本集;并根据生成的多个码本集,生成多级码本。
其中,上述多个码本集可以包括以下至少之一:极化码本集WPolar、水平码本集WH、垂直码本集WV。
在上述技术方案中,极化码本集WPolar用于控制不同数据流之间的正交性;并且,极化码本集WPolar通过以下公式描述:
其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar。
例如,若极化维度Npolar等于1,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于1,极化码本集WPolar等于{[1]};或若极化维度Npolar等于2,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于4,极化码本集WPolar等于 或若极化维度Npolar等于2,且传输数据层数υ等于2,则极化码本集WPolar中的码本个数MPolar等于2,极化码本集WPolar等于
此外,在上述方案中,水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,水平码本集WH通过以下公式描述:
其中,mH为水平码本编号,并且,mH等于1,2,…MH。
同时,上述水平码本集WH可包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与水平扫描码本集WH,Scan以及水平波束形状码本集WH,Pattern之间的关系可通过以下公式描述:
WH=WH,pattern·WH,Scan;
其中,水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
此外,上述水平扫描码本集WH,Scan可为NH×MH维的矩阵,并且,水平扫描码本集WH,Scan可以通过以下公式生成:
其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH;
另外,上述水平波束形状码本集WH,Pattern可为NH×MH维的矩阵,并且,水平波束形状码本集WH,Pattern可通过以下公式生成:
此外,在上述方案中,垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,垂直码本集WV通过以下公式描述:
其中,mV为垂直码本编号,并且,mV等于1,2,…MV。
同时,上述垂直码本集WV可包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,垂直码本集WV与垂直扫描码本集WV,Scan以及垂直波束形状码本集WV,Pattern之间的关系可通过以下公式描述:
WV=WV,pattern·WV,Scan;
其中,垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
另外,上述垂直扫描码本集WV,Scan可为NV×MH的矩阵,并且,垂直扫描码本集
WV,Scan可通过以下公式生成:
其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV;
同时,上述垂直波束形状码本集WV,Pattern也可为NV×MV维的矩阵,并且,垂直波束形状码本集WV,Pattern可通过以下公式生成:
在上述方案中,对于波速形状码本来说,可通过波束形状的遗传算法来获取波束形状码本。
根据本发明的另一个方面,提供了一种多级码本的生成装置。
该多级码本的生成装置包括:
维度确定模块,用于基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;
码本生成模块,用于根据多个维度,生成多级码本;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV;
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
其中,码本生成模块可包括:编码配置子模块,用于对多个维度进行编码配置,生成与多个维度对应的码本集;码本生成子模块,用于根据生成的多个码本集,生成多级码本。
其中,上述多个码本集可包括以下至少之一:极化码本集WPolar、水平码本集WH、
垂直码本集WV。
相应的,码本生成子模块在根据生成的多个码本集,生成多级码本时,可通过以下公式生成多级码本:其中,W为多级码本。
在上述方案中,极化码本集WPolar用于控制不同数据流之间的正交性;并且,极化码本集WPolar通过以下公式描述:
其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar。
例如,若极化维度Npolar等于1,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于1,极化码本集WPolar等于{[1]};或若极化维度Npolar等于2,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于4,极化码本集WPolar等于 或若极化维度Npolar等于2,且传输数据层数υ等于2,则极化码本集WPolar中的码本个数MPolar等于2,极化码本集WPolar等于
此外,在上述方案中,水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,水平码本集WH通过以下公式描述:
其中,mH为水平码本编号,并且,mH等于1,2,…MH。
同时,上述水平码本集WH可包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与水平扫描码本集WH,Scan以及水平波束形状码本集WH,Pattern之间的关系可通过以下公式描述:
WH=WH,pattern·WH,Scan;
其中,水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
此外,上述水平扫描码本集WH,Scan可为NH×MH维的矩阵,并且,水平扫描码本集WH,Scan可通过以下公式生成:
其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH;
另外,上述水平波束形状码本集WH,Pattern也可为NH×MH维的矩阵,并且,水平波束形状码本集WH,Pattern可通过以下公式生成:
此外,在上述方案中,垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,垂直码本集WV通过以下公式描述:
其中,mV为垂直码本编号,并且,mV等于1,2,…MV。
同时,上述垂直码本集WV可包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,垂直码本集WV与垂直扫描码本集WV,Scan以及垂直波束形状码本集WV,Pattern之间的关系可通过以下公式描述:
WV=WV,pattern·WV,Scan;
其中,垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
另外,上述垂直扫描码本集WV,Scan可为NV×MH的矩阵,并且,垂直扫描码本集WV,Scan可通过以下公式生成:
其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV;
同时,上述垂直波束形状码本集WV,Pattern也可为NV×MV维的矩阵,并且,垂直波束形状码本集WV,Pattern可通过以下公式生成:
在上述方案中,对于波速形状码本来说,可通过波束形状的遗传算法来获取波束形状码本。
根据本发明的又一方面,提供了一种码本反馈方法。
该码本反馈方法包括:
基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;
根据信道组,确定与每个信道组对应的码本编号;
反馈码本编号;
其中,多个维度包括以下至少之一:
极化维度NPolar、水平维度NH、垂直维度NV;
其中,极化维度NPolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
其中,在基于基站天线的多个维度,对接收的信道进行分组时,可根据极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;并根据水平维度NH对极化子阵组进行分组;形成NH列水平子阵组;并根据垂直维度NV对水平子阵组进行分组;形成NV行垂直子阵组。
此外,在根据信道组,确定与每个信道组对应的码本编号时,可通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
H(nPolar,nH,nV),where nV=1,2,…,NV;
另外,在根据信道组,确定与每个信道组对应的码本编号时,也可通过以下公式获取第npolar个极化子阵组中的所有信道:
H(nPolar,nH,nV),wherenV=1,2,…,NV,nH=1,2,…,NH;
同时,在根据信道组,确定与每个信道组对应的码本编号时,还通过以下公式获取所有极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar;
根据Heq,Polar,通过以下公式确定与Heq,Polar对应的等效矩阵Req,Polar:
根据Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar:
根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar:
根据本发明的再一方面,提供了一种码本反馈装置。
该码本反馈装置包括:
信道分组模块,用于基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;
码本确定模块;用于基根据信道组,确定与每个信道组对应的码本编号;
码本反馈模块;用于反馈码本编号;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV;
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
其中,信道分组模块可包括:极化分组子模块,用于根据极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;水平分组子模块,用于根据水平维度NH对极化子阵组进行分组;形成NH列水平子阵组;垂直分组子模块,用于根据垂直维度NV对水平子阵组进行分组;形成NV行垂直子阵组。
此外,码本确定模块可包括:第一获取模块,用于通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
H(nPolar,nH,nV),where nV=1,2,…,NV;
另外,码本确定模块还可包括:第二获取模块,用于通过以下公式获取第npolar个极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH;
同时,码本确定模块也可包括:第三获取模块,用于通过以下公式获取所有极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar;
根据Heq,Polar,通过以下公式确定与Heq,Polar对应的等效矩阵Req,Polar:
根据Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar:
根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar:
本发明根据天线结构设计极化码本、水平基本码本、水平扫描码本、垂直基本码本和垂直扫描码本,通过极化码本实现极化维度利用,通过水平扫描码本实现水平维度利用,通过垂直基本码本实现垂直维度利用,通过水平基本码本实现3D波束水平波束宽度的控制;通过垂直基本码本实现3D波束垂直波束宽度控制,从而完整的利用了空间维度,有益于MIMO性能的提升。
此外,本发明通过扫描码本与基本码本的设计,有效的提高了3D水平方向和/或垂直方向的分辨度,进而有益于MU-MIMO性能的提升。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的多级码本的生成方法的流程示意图;
图2是根据本发明实施例的多级码本的生成装置的结构示意图;
图3是根据本发明实施例的码本反馈方法的流程示意图;
图4是根据本发明实施例的码本反馈装置的结果示意图;
图5是实现本发明技术方案的计算机的示例性结构框图。
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公
开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的装置结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
根据本发明的实施例,提供了一种多级码本的生成方法。
如图1所示,根据本发明实施例的多级码本的生成方法包括:
步骤S101,基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;
步骤S103,根据多个维度,生成多级码本;
其中,多个维度包括以下至少之一:
极化维度NPolar、水平维度NH、垂直维度NV;
其中,极化维度NPolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
其中,在根据多个维度,生成多级码本时,可对多个维度进行编码配置,生成与该多个维度对应的码本集;并根据生成的多个码本集,生成多级码本。
其中,上述多个码本集可以包括以下至少之一:极化码本集WPolar、水平码本集WH、垂直码本集WV。
在上述技术方案中,极化码本集WPolar用于控制不同数据流之间的正交性;并且,极化码本集WPolar通过以下公式描述:
其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar。
例如,若极化维度Npolar等于1,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于1,极化码本集WPolar等于{[1]};或若极化维度Npolar等于2,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于4,极化码本集WPolar等于 或若极化维度Npolar等于2,且传输数据层数υ等于2,则极化码本集WPolar中的码本个数MPolar等于2,极化码本集WPolar等于
此外,在上述方案中,水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,水平码本集WH通过以下公式描述:
其中,mH为水平码本编号,并且,mH等于1,2,…MH。
同时,上述水平码本集WH可包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与水平扫描码本集WH,Scan以及水平波束形状码本集WH,Pattern之间的关系可通过以下公式描述:
WH=WH,pattern·WH,Scan;
其中,水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
此外,上述水平扫描码本集WH,Scan可为NH×MH维的矩阵,并且,水平扫描码本集WH,Scan可以通过以下公式生成:
其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH;
另外,上述水平波束形状码本集WH,Pattern可为NH×MH维的矩阵,并且,水平波束形状码本集WH,Pattern可通过以下公式生成:
此外,在上述方案中,垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,垂直码本集WV通过以下公式描述:
其中,mV为垂直码本编号,并且,mV等于1,2,…MV。
同时,上述垂直码本集WV可包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,垂直码本集WV与垂直扫描码本集WV,Scan以及垂直波束形状码本集WV,Pattern之间的关系可通过以下公式描述:
WV=WV,pattern·WV,Scan;
其中,垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
另外,上述垂直扫描码本集WV,Scan可为NV×MH的矩阵,并且,垂直扫描码本集WV,Scan可通过以下公式生成:
其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV;
同时,上述垂直波束形状码本集WV,Pattern也可为NV×MV维的矩阵,并且,垂直波束形状码本集WV,Pattern可通过以下公式生成:
在上述方案中,对于波速形状码本来说,可通过波束形状的遗传算法来获取波束形状码本。
根据本发明的实施例,还提供了一种多级码本的生成装置。
如图2所示,根据本发明实施例的多级码本的生成装置包括:
维度确定模块21,用于基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;
码本生成模块22,用于根据多个维度,生成多级码本;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV;
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
其中,码本生成模块22可包括:编码配置子模块(图中未示出),用于对多个维度进行编码配置,生成与多个维度对应的码本集;码本生成子模块(图中未示出),用于根据生成的多个码本集,生成多级码本。
其中,上述多个码本集可包括以下至少之一:极化码本集WPolar、水平码本集WH、垂直码本集WV。
在上述方案中,极化码本集WPolar用于控制不同数据流之间的正交性;并且,极化码本集WPolar通过以下公式描述:
其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar。
例如,若极化维度Npolar等于1,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于1,极化码本集WPolar等于{[1]};或若极化维度Npolar等于2,且传输数据层数υ等于1,则极化码本集WPolar中的码本个数MPolar等于4,极化码本集WPolar等于 或若极化维度Npolar等于2,且传输数据层数υ等于2,则极化码本集WPolar中的码本个数MPolar等于2,极化码本集WPolar等于
此外,在上述方案中,水平码本集WH用于控制不同用户之间在水平方向空间的正交性;并且,水平码本集WH通过以下公式描述:
其中,mH为水平码本编号,并且,mH等于1,2,…MH。
同时,上述水平码本集WH可包括水平扫描码本集WH,Scan和水平波束形状码本集
WH,Pattern,并且,水平码本集WH与水平扫描码本集WH,Scan以及水平波束形状码本集WH,Pattern之间的关系可通过以下公式描述:
WH=WH,pattern·WH,Scan;
其中,水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
此外,上述水平扫描码本集WH,Scan可为NH×MH维的矩阵,并且,水平扫描码本集WH,Scan可通过以下公式生成:
其中,nH为基站天线第nH列天线,并且,nH等于1,2,….NH;
另外,上述水平波束形状码本集WH,Pattern也可为NH×MH维的矩阵,并且,水平波束形状码本集WH,Pattern可通过以下公式生成:
此外,在上述方案中,垂直码本集WV用于控制不同用户之间在垂直方向空间的正交性,并且,垂直码本集WV通过以下公式描述:
其中,mV为垂直码本编号,并且,mV等于1,2,…MV。
同时,上述垂直码本集WV可包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,垂直码本集WV与垂直扫描码本集WV,Scan以及垂直波束形状码本集WV,Pattern之间的关系可通过以下公式描述:
WV=WV,pattern·WV,Scan;
其中,垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;垂直波束形状
码本集WV,Pattern用于控制3D波束的垂直波束形状。
另外,上述垂直扫描码本集WV,Scan可为NV×MH的矩阵,并且,垂直扫描码本集WV,Scan可通过以下公式生成:
其中,nV为基站天线第nV行天线,并且,nV等于1,2,…NV;
同时,上述垂直波束形状码本集WV,Pattern也可为NV×MV维的矩阵,并且,垂直波束形状码本集WV,Pattern可通过以下公式生成:
在上述方案中,对于波速形状码本来说,可通过波束形状的遗传算法来获取波束形状码本。
根据本发明的实施例,还提供了一种码本反馈方法。
如图3所示,根据本发明实施例的码本反馈方法包括:
步骤S301,基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;
步骤S303,根据信道组,确定与每个信道组对应的码本编号;
步骤S305,反馈码本编号;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV;
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
其中,在基于基站天线的多个维度,对接收的信道进行分组时,可根据极化维度
Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;并根据水平维度NH对极化子阵组进行分组;形成NH列水平子阵组;并根据垂直维度NV对水平子阵组进行分组;形成NV行垂直子阵组。
此外,在根据信道组,确定与每个信道组对应的码本编号时,可通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
H(nPolar,nH,nV),where nV=1,2,…,NV;
另外,在根据信道组,确定与每个信道组对应的码本编号时,也可通过以下公式获取第npolar个极化子阵组中的所有信道:
H(nPolar,nH,nV),wherenV=1,2,…,NV,nH=1,2,…,NH;
同时,在根据信道组,确定与每个信道组对应的码本编号时,还通过以下公式获取所有极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar;
根据Heq,Polar,通过以下公式确定与Heq,Polar对应的等效矩阵Req,Polar:
根据Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar:
根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar:
根据本发明的实施例,还提供了一种码本反馈装置。
如图4所示,根据本发明实施例的码本反馈装置包括:
信道分组模块41,用于基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;
码本确定模块42;用于基根据信道组,确定与每个信道组对应的码本编号;
码本反馈模块43;用于反馈码本编号;
其中,多个维度包括以下至少之一:
极化维度Npolar、水平维度NH、垂直维度NV;
其中,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
其中,信道分组模块41可包括:极化分组子模块(图中未示出),用于根据极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;水平分组子模块(图中未示出),用于根据水平维度NH对极化子阵组进行分组;形成NH列水平子阵组;垂直分组子模块(图中未示出),用于根据垂直维度NV对水平子阵组进行分组;形成NV行垂直子阵组。
此外,码本确定模块42可包括:第一获取模块(图中未示出),用于通过以下公式获取第npolar个极化子阵组中的第nH列水平子阵组内的所有垂直子阵组的信道:
H(nPolar,nH,nV),where nV=1,2,…,NV;
另外,码本确定模块42还可包括:第二获取模块(图中未示出),用于通过以下公式获取第npolar个极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH;
同时,码本确定模块42也可包括:第三获取模块(图中未示出),用于通过以下公式获取所有极化子阵组中的所有信道:
H(nPolar,nH,nV),where nV=1,2,…,NV,nH=1,2,…,NH,nPolar=1,2,…,NPolar;
根据Heq,Polar,通过以下公式确定与Heq,Polar对应的等效矩阵Req,Polar:
根据Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar:
根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar:
综上所述,借助于本发明的上述技术方案,根据天线结构设计极化码本、水平基本码本、水平扫描码本、垂直基本码本和垂直扫描码本,通过极化码本实现极化维度利用,通过水平扫描码本实现水平维度利用,通过垂直基本码本实现垂直维度利用,通过水平基本码本实现3D波束水平波束宽度的控制;通过垂直基本码本实现3D波束垂直波束宽度控制,从而完整的利用了空间维度,有益于MIMO性能的提升。
此外,借助于本发明的上述技术方案,通过扫描码本与基本码本的设计,有效的提高了3D水平方向和/或垂直方向的分辨度,进而有益于MU-MIMO性能的提升。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的普通技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或
者它们的组合加以实现,这是本领域普通技术人员在阅读了本发明的说明的情况下运用它们的基本编程技能就能实现的。
因此,本发明的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本发明的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本发明,并且存储有这样的程序产品的存储介质也构成本发明。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。
根据本发明的实施例,还提供了一种存储介质(该存储介质可以是ROM、RAM、硬盘、可拆卸存储器等),该存储介质中嵌入有用于进行资源分配的计算机程序,该计算机程序具有被配置用于执行以下步骤的代码段:基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;根据多个维度,生成多级码本;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
根据本发明的实施例,还提供了一种计算机程序,该计算机程序具有被配置用于执行以下资源分配步骤的代码段:基于基站天线的多维度特征,确定关于基站天线所对应的多个维度;根据多个维度,生成多级码本;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
根据本发明的实施例,还提供了一种存储介质(该存储介质可以是ROM、RAM、硬盘、可拆卸存储器等),该存储介质中嵌入有用于进行资源分配的计算机程序,该计算机程序具有被配置用于执行以下步骤的代码段:基于基站天线的多个维度,对接收的信道进行分组,确定多个维度对应的信道组;根据信道组,确定与每个信道组对应的码本编号;反馈码本编号;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
根据本发明的实施例,还提供了一种计算机程序,该计算机程序具有被配置用于执行以下资源分配步骤的代码段:基于基站天线的多个维度,对接收的信道进行分组,确定
多个维度对应的信道组;根据信道组,确定与每个信道组对应的码本编号;反馈码本编号;其中,多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;并且,极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,水平维度NH中的维度编号nH等于1,2,……NH,垂直维度NV中的维度编号nV等于1,2,……NV。
在通过软件和/或固件实现本发明的实施例的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图5所示的通用计算机500安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。
在图5中,中央处理模块(CPU)501根据只读存储器(ROM)502中存储的程序或从存储部分508加载到随机存取存储器(RAM)503的程序执行各种处理。在RAM 503中,也根据需要存储当CPU 501执行各种处理等等时所需的数据。CPU 501、ROM 502和RAM 503经由总线504彼此连接。输入/输出接口505也连接到总线504。
下述部件连接到输入/输出接口505:输入部分506,包括键盘、鼠标等等;输出部分507,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等等,和扬声器等等;存储部分508,包括硬盘等等;和通信部分509,包括网络接口卡比如LAN卡、调制解调器等等。通信部分509经由网络比如因特网执行通信处理。
根据需要,驱动器510也连接到输入/输出接口505。可拆卸介质511比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器510上,使得从中读出的计算机程序根据需要被安装到存储部分508中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质511安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图5所示的其中存储有程序、与装置相分离地分发以向用户提供程序的可拆卸介质511。可拆卸介质511的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 502、存储部分508中包含的硬盘等等,其中存有程序,并且与包含它们的装置一起被分发给用户。
还需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
虽然已经详细说明了本发明及其优点,但是应当理解在不脱离由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本申请的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者装置中还存在另外的相同要素。
Claims (48)
- 一种多级码本的生成方法,其特征在于,包括:基于基站天线的多维度特征,确定关于所述基站天线所对应的多个维度;根据所述多个维度,生成多级码本;其中,所述多个维度包括以下至少之一:极化维度NPolar、水平维度NH、垂直维度NV;其中,所述极化维度NPolar中的维度编号nPolar等于1,2,……NPolar,所述水平维度NH中的维度编号nH等于1,2,……NH,所述垂直维度NV中的维度编号nV等于1,2,……NV。
- 根据权利要求1所述的生成方法,其特征在于,根据所述多个维度,生成多级码本包括:对所述多个维度进行编码配置,生成与所述多个维度对应的码本集;根据生成的所述多个码本集,生成所述多级码本。
- 根据权利要求2所述的生成方法,其特征在于,所述多个码本集包括以下至少之一:极化码本集WPolar、水平码本集WH、垂直码本集WV。
- 根据权利要求8所述的生成方法,其特征在于,所述水平码本集WH包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与所述水平扫描码本集WH,Scan以及所述水平波束形状码本集WH,Pattern之间的关系通过以下公式描述:WH=WH,pattern·WH,Scan;其中,所述水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;所述水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
- 根据权利要求12所述的生成方法,其特征在于,所述垂直码本集WV包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,所述垂直码本集WV与所述垂直扫描码本集WV,Scan以及所述垂直波束形状码本集WV,Pattern之间的关系通过以下公式描述:WV=WV,pattern·WV,Scan;其中,所述垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;所述垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
- 根据权利要求11或15所述的生成方法,其特征在于,通过波束形状的遗传算法获取所述波束形状码本。
- 一种多级码本的生成装置,其特征在于,包括:维度确定模块,用于基于基站天线的多维度特征,确定关于所述基站天线所对应的多个维度;码本生成模块,用于根据所述多个维度,生成多级码本;其中,所述多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;其中,所述极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,所述水平维度NH中的维度编号nH等于1,2,……NH,所述垂直维度NV中的维度编号nV等于1,2,……NV。
- 根据权利要求17所述的生成装置,其特征在于,所述码本生成模块进一步包括:编码配置子模块,用于对所述多个维度进行编码配置,生成与所述多个维度对应的码本集;码本生成子模块,用于根据生成的所述多个码本集,生成所述多级码本。
- 根据权利要求18所述的生成装置,其特征在于,所述多个码本集包括以下至少之一:极化码本集WPolar、水平码本集WH、垂直码本集WV。
- 根据权利要求19所述的生成装置,其特征在于,所述极化码本集WPolar用于控制不同数据流之间的正交性;并且,所述极化码本集WPolar通过以下公式描述:其中,mPolar为极化码本编号,并且,mPolar等于1,2,…..MPolar。
- 根据权利要求24所述的生成装置,其特征在于,所述水平码本集WH包括水平扫描码本集WH,Scan和水平波束形状码本集WH,Pattern,并且,水平码本集WH与所述水平扫描码本集WH,Scan以及所述水平波束形状码本集WH,Pattern之间的关系通过以下公式描述:WH=WH,pattern·WH,Scan;其中,所述水平扫描码本集WH,Scan用于控制3D波束的水平扫描角度;所述水平波束形状码本集WH,Pattern用于控制3D波束的水平波束形状。
- 根据权利要求28所述的生成装置,其特征在于,所述垂直码本集WV包括垂直扫描码本集WV,Scan和垂直波束形状码本集WV,Pattern,并且,所述垂直码本集WV与所述垂直扫描码本集WV,Scan以及所述垂直波束形状码本集WV,Pattern之间的关系通过以下公式描述:WV=WV,pattern·WV,Scan;其中,所述垂直扫描码本集WV,Scan用于控制3D波束的垂直扫描角度;所述垂直波束形状码本集WV,Pattern用于控制3D波束的垂直波束形状。
- 根据权利要求27或31所述的生成装置,其特征在于,通过波束形状的遗传算法获取所述波束形状码本。
- 一种码本反馈方法,其特征在于,包括:基于基站天线的多个维度,对接收的信道进行分组,确定所述多个维度对应的信道组;根据所述信道组,确定与每个信道组对应的码本编号;反馈所述码本编号;其中,所述多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;其中,所述极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,所述水平维度NH中的维度编号nH等于1,2,……NH,所述垂直维度NV中的维度编号nV等于1,2,……NV。
- 根据权利要求33所述的码本反馈方法,其特征在于,基于基站天线的多个维度,对接收的信道进行分组包括:根据所述极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;根据所述水平维度NH对所述极化子阵组进行分组;形成NH列水平子阵组;根据所述垂直维度NV对所述水平子阵组进行分组;形成NV行垂直子阵组。
- 根据所述Heq,Polar,通过以下公式确定与所述Heq,Polar对应的等效矩阵Req,Polar:根据所述Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar:根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar:
- 一种码本反馈装置,其特征在于,包括:信道分组模块,用于基于基站天线的多个维度,对接收的信道进行分组,确定所述多个维度对应的信道组;码本确定模块;用于根据所述信道组,确定与每个信道组对应的码本编号;码本反馈模块;用于反馈所述码本编号;其中,所述多个维度包括以下至少之一:极化维度Npolar、水平维度NH、垂直维度NV;其中,所述极化维度Npolar中的维度编号nPolar等于1,2,……NPolar,所述水平维度NH中的维度编号nH等于1,2,……NH,所述垂直维度NV中的维度编号nV等于1,2,……NV。
- 根据权利要求41所述的码本反馈装置,其特征在于,所述信道分组模块进一步包括:极化分组子模块,用于根据所述极化维度Npolar对同极化天线振子进行分组,形成Npolar个相同极化的极化子阵组;水平分组子模块,用于根据所述水平维度NH对所述极化子阵组进行分组;形成NH列水平子阵组;垂直分组子模块,用于根据所述垂直维度NV对所述水平子阵组进行分组;形成NV行垂直子阵组。
- 根据所述Heq,Polar,通过以下公式确定与所述Heq,Polar对应的等效矩阵Req,Polar:根据所述Req,Polar和最小均方误差算法MMSE,通过以下公式确定检测后信噪比SINReq,Polar:根据检测后的信噪比SINReq,Polar,通过以下公式确定每个可用码本的容量CPolar:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410127690.7 | 2014-03-31 | ||
CN201410127690.7A CN103929280B (zh) | 2014-03-31 | 2014-03-31 | 多级码本的生成方法和装置、以及码本反馈方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015149608A1 true WO2015149608A1 (zh) | 2015-10-08 |
Family
ID=51147372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/074015 WO2015149608A1 (zh) | 2014-03-31 | 2015-03-11 | 多级码本的生成方法和装置、以及码本反馈方法和装置 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN103929280B (zh) |
TW (1) | TWI580212B (zh) |
WO (1) | WO2015149608A1 (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY179581A (en) * | 2014-09-25 | 2020-11-11 | Ericsson Telefon Ab L M | Network node, user equipment and methods therein to enable the ue to determine a precoder codebook |
CN106716859A (zh) * | 2014-09-25 | 2017-05-24 | 株式会社Ntt都科摩 | 用户装置和基站 |
CN104539330B (zh) * | 2014-12-26 | 2017-08-29 | 江苏中兴微通信息科技有限公司 | 一种三维多输入多输出垂直码本设计方法 |
CN106160824A (zh) * | 2015-04-08 | 2016-11-23 | 中国移动通信集团公司 | 一种信道信息反馈方法及装置 |
EP3327950A4 (en) * | 2015-07-23 | 2019-03-27 | LG Electronics Inc. | METHOD OF TRANSMITTING / RECEIVING SIGNAL BASED ON A CODEBOOK IN A MULTI-ANTENNA WIRELESS COMMUNICATION SYSTEM, AND DEVICE THEREOF |
CN106487434B (zh) * | 2015-08-24 | 2020-01-24 | 电信科学技术研究院 | 一种预编码矩阵确定方法及装置 |
TWI587638B (zh) * | 2015-10-15 | 2017-06-11 | 旺宏電子股份有限公司 | 極化碼通道感知之執行方法與裝置 |
WO2017067466A1 (zh) * | 2015-10-21 | 2017-04-27 | 电信科学技术研究院 | 码本生成方法、预编码矩阵确定方法及相关装置 |
CN106612137B (zh) * | 2015-10-21 | 2020-02-28 | 电信科学技术研究院 | 码本生成方法、预编码矩阵确定方法及相关装置 |
CN108352870B (zh) * | 2015-11-04 | 2021-07-27 | 瑞典爱立信有限公司 | 对从天线阵列的传输进行预编码的方法和发送无线电节点 |
CN107370694A (zh) * | 2016-05-11 | 2017-11-21 | 北京信威通信技术股份有限公司 | 一种预编码码本生成方法和装置 |
CN109075892B (zh) * | 2016-05-12 | 2021-08-17 | 苹果公司 | 构造、表示和编码极化码 |
CN108347272B (zh) * | 2017-01-25 | 2020-12-15 | 华为技术有限公司 | 一种基于波束组进行通信的方法及设备 |
GB2563473B (en) * | 2017-06-15 | 2019-10-02 | Accelercomm Ltd | Polar coder with logical three-dimensional memory, communication unit, integrated circuit and method therefor |
CN108988924B (zh) * | 2018-07-30 | 2020-07-10 | 北京科技大学 | 一种非正交多址码本优化方法 |
CN112260735B (zh) * | 2020-10-09 | 2022-01-28 | 哲库科技(北京)有限公司 | 一种码本确定方法、终端及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102412885A (zh) * | 2011-11-25 | 2012-04-11 | 西安电子科技大学 | Lte中的三维波束赋形方法 |
WO2013091526A1 (zh) * | 2011-12-23 | 2013-06-27 | 华为技术有限公司 | 一种反馈信道状态信息的方法及装置 |
CN103939280A (zh) * | 2014-03-20 | 2014-07-23 | 陈晓通 | 立轴巨能风电机组及海上浮动巨能风电机组 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8055192B2 (en) * | 2007-06-25 | 2011-11-08 | Samsung Electronics Co., Ltd. | Method of feeding back channel information and receiver for feeding back channel information |
US9100068B2 (en) * | 2008-03-17 | 2015-08-04 | Qualcomm, Incorporated | Multi-resolution beamforming in MIMO systems |
EP2514181B1 (en) * | 2009-12-17 | 2018-10-03 | Marvell World Trade Ltd. | Mimo feedback schemes for cross-polarized antennas |
CN101867461B (zh) * | 2010-04-30 | 2015-06-03 | 中兴通讯股份有限公司 | 信道信息获取方法及装置、码本构造方法 |
US9270359B2 (en) * | 2010-10-05 | 2016-02-23 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for polarization control in a communication system |
CN102122983B (zh) * | 2011-04-18 | 2014-08-06 | 电信科学技术研究院 | 一种码本的生成、信息的发送、反馈方法及设备 |
CN102916260B (zh) * | 2011-08-04 | 2015-05-13 | 中国电信股份有限公司 | 天线与基站 |
CN103684700B (zh) * | 2013-12-31 | 2017-05-24 | 重庆邮电大学 | 一种基于正交联合码本集的3d mu‑mimo预编码方法 |
-
2014
- 2014-03-31 CN CN201410127690.7A patent/CN103929280B/zh active Active
-
2015
- 2015-03-11 WO PCT/CN2015/074015 patent/WO2015149608A1/zh active Application Filing
- 2015-03-24 TW TW104109299A patent/TWI580212B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102412885A (zh) * | 2011-11-25 | 2012-04-11 | 西安电子科技大学 | Lte中的三维波束赋形方法 |
WO2013091526A1 (zh) * | 2011-12-23 | 2013-06-27 | 华为技术有限公司 | 一种反馈信道状态信息的方法及装置 |
CN103939280A (zh) * | 2014-03-20 | 2014-07-23 | 陈晓通 | 立轴巨能风电机组及海上浮动巨能风电机组 |
Also Published As
Publication number | Publication date |
---|---|
TW201537908A (zh) | 2015-10-01 |
CN103929280A (zh) | 2014-07-16 |
CN103929280B (zh) | 2017-06-23 |
TWI580212B (zh) | 2017-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015149608A1 (zh) | 多级码本的生成方法和装置、以及码本反馈方法和装置 | |
Shlezinger et al. | Dynamic metasurface antennas for uplink massive MIMO systems | |
KR101460657B1 (ko) | 다중 편파 다중 입출력 시스템을 위한 코드북 생성 방법 및 그 장치 | |
JP2016511566A (ja) | チャネル状態情報のフィードバック方法、チャネル状態情報参照信号の伝送方法、ユーザ装置及び基地局 | |
US20140219375A1 (en) | Method and device for feeding back channel information | |
Noh et al. | Multi-resolution codebook based beamforming sequence design in millimeter-wave systems | |
CN102624496A (zh) | 预编码处理方法、基站和通信系统 | |
Yang et al. | Optimization of subarray partition for large planar phased array radar based on weighted K-means clustering method | |
CN103858359B (zh) | 一种天线阵列、信号映射的方法及基站 | |
WO2017032181A1 (zh) | 一种传输编码指示信息和确定预编码矩阵的方法和装置 | |
CN103973351B (zh) | 一种无线通信系统中使用码本进行通信的方法及基站 | |
WO2016065557A1 (zh) | 码书确定方法、装置以及通信系统 | |
US10693538B2 (en) | Apparatus, method and computer program for generating broadcast beams | |
CN114205005A (zh) | 基于轨道角动量的发送、接收方法及装置 | |
WO2022017325A1 (zh) | 一种通信方法及装置 | |
WO2014063653A1 (zh) | 利用三维波束码本进行通信的方法、装置及基站 | |
CN106982088B (zh) | 3d mimo系统中一种基于csi-rs端口的多流传输方法 | |
Song et al. | The precoding scheme based on domain selective interference cancellation in 3-D massive MIMO | |
Islam et al. | Performance analysis of massive MIMO for 5G wireless communication systems | |
CN114553275B (zh) | 一种适用于非均匀线/面阵mimo系统的改进型码本设计方法及装置 | |
Xue et al. | An efficient beam-training scheme for the optimally designed subarray structure in mmWave LoS MIMO systems | |
Castanheira et al. | Multi-User linear equalizer and precoder scheme for hybrid sub-connected wideband systems | |
CN108370265A (zh) | 一种确定预编码矩阵的方法及装置 | |
CN106160776A (zh) | 收发单元与天线阵元映射方法及装置 | |
JP2017507503A (ja) | パターン/偏波アンテナ装置とこれを用いたビーム形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15772862 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15772862 Country of ref document: EP Kind code of ref document: A1 |