WO2015149579A1 - 电流监控式电子灭弧装置 - Google Patents

电流监控式电子灭弧装置 Download PDF

Info

Publication number
WO2015149579A1
WO2015149579A1 PCT/CN2015/071588 CN2015071588W WO2015149579A1 WO 2015149579 A1 WO2015149579 A1 WO 2015149579A1 CN 2015071588 W CN2015071588 W CN 2015071588W WO 2015149579 A1 WO2015149579 A1 WO 2015149579A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
semiconductor device
power semiconductor
mechanical switch
arc extinguishing
Prior art date
Application number
PCT/CN2015/071588
Other languages
English (en)
French (fr)
Inventor
郭桥石
Original Assignee
广州市金矢电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市金矢电子有限公司 filed Critical 广州市金矢电子有限公司
Publication of WO2015149579A1 publication Critical patent/WO2015149579A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts

Definitions

  • the current monitoring type electronic arc extinguishing device of the invention belongs to the field of electricity, in particular to a current monitoring type electronic arc extinguishing device suitable for use as an arc extinguishing application in contactors, relays, circuit breakers and other mechanical switches.
  • an arc extinguishing device for mechanical switch arc extinguishing has appeared, such as the patent number CN01201907.0, the name is “electronic arc extinguisher”; the patent number is CN200910306608.6, and the name is “optical coupling based hybrid communication”.
  • Contactor passive switch drive controller two patents disclose that the thyristor and the contactor mechanical switch are connected in parallel, the two patented control circuits are connected with the thyristor control end, and a thyristor is provided before the contactor mechanical switch is disconnected.
  • the thyristor In order to ensure that the thyristor is turned off after the mechanical switch is broken to ensure reliable arc extinguishing, the thyristor needs to have a long conduction time (generally in a few More than ten milliseconds), this kind of control method that uses the mechanical switch to break the control signal after the delay is turned off, and the thyristor is bound to increase. Excessive conduction time is required, and the conduction time of the thyristor is long, resulting in poor overload capability and low reliability of the entire arc extinguishing device.
  • the operating power of the above two patent control circuits must be provided by the drive circuit of the mechanical switch ( It acts as a synchronization signal for the control circuit, so that there is no mechanical switch for a circuit breaker or the like without a drive circuit.
  • the object of the present invention is to provide a current monitoring type electronic arc extinguishing device with short on-time and high reliability of a power semiconductor device, which avoids the deficiencies of the prior art electronic arc extinguishing device.
  • a current monitoring electronic arc extinguishing device comprising a power semiconductor device connected to a mechanical switch, at least one current sensor connected to a mechanical switch, the current sensor detecting a current through the mechanical switch, for detecting the mechanical switch being disconnected; the current sensor The output end and the control end of the power semiconductor device are connected to the control circuit; the control circuit controls the power semiconductor device to turn off a current monitoring type electronic arc extinguishing device when the current sensor detects that the mechanical switch is turned off, and the current sensor is used to detect the mechanical switch Closing; the control circuit controls the power semiconductor device to conduct when the current sensor detects that the mechanical switch is closed.
  • a current monitoring type electronic arc extinguishing device the current sensor is used for detecting the mechanical switch closing; the control circuit controls the power semiconductor device to be turned on when the current sensor detects the mechanical switch is closed, and is used for mechanical switch closing bounce and arc extinguishing.
  • a current monitoring electronic arc extinguishing device the control circuit has a built-in microcontroller, and the output signal of the current sensor is transmitted to the microcontroller, and the microcontroller has at least one output signal transmitted to the control end of the power semiconductor device.
  • a current monitoring electronic arc extinguishing device is connected with an input component for overload protection current setting.
  • a current monitoring type electronic arc extinguishing device is connected with a display device.
  • a current monitoring type electronic arc extinguishing device wherein a driving signal for driving a power semiconductor device is connected by a main circuit of the power semiconductor device to a control electrode of the power semiconductor device through a capacitor and a resistor, and at least one electronic switch is connected to the circuit of the driving signal. The control end of the electronic switch is connected to the control circuit.
  • a current monitoring type electronic arc extinguishing device wherein the electronic switch is a photocoupler or a photocoupler driving transistor circuit.
  • a current monitoring type electronic arc extinguishing device wherein a capacitor and a resistor form a series circuit, and the driving signal is connected to the control electrode of the power semiconductor device through a series circuit of the main circuit of the power semiconductor device, and the electronic switch is connected to at least one voltage limiting device.
  • a current monitoring type electronic arc extinguishing device wherein a capacitor and a resistor form a series circuit, and the series circuit is connected in parallel to the input and output ends of the main circuit of the power semiconductor device through an electronic switch or a voltage limiting device.
  • a current monitoring type electronic arc extinguishing device wherein the power semiconductor device is a unidirectional thyristor, comprising a first unidirectional thyristor and a second unidirectional thyristor, wherein the first unidirectional thyristor and the second unidirectional thyristor are connected in anti-parallel;
  • the electronic switch includes An electronic switch, a second electronic switch; a capacitor and a resistor form a series circuit, first The control pole of the unidirectional thyristor is connected to one end of the series circuit through the first electronic switch, and the control pole of the second unidirectional thyristor is connected to the other end of the series circuit through the second electronic switch, and the first electronic switch and the second electronic switch are respectively connected
  • a current monitoring electronic arc extinguishing device wherein the first voltage limiting device and the second voltage limiting device are Zener diodes and Zener diode equivalent devices; the cathode of the first voltage limiting device is connected to the voltage input end of the first electronic switch The anode of the first voltage limiting device is connected to the cathode of the first unidirectional thyristor; the cathode of the second voltage limiting device is connected to the voltage input end of the second electronic switch, and the anode of the second voltage limiting device and the second unidirectional thyristor Cathode connection.
  • a current monitoring electronic arc extinguishing device the current sensor is a current transformer.
  • a current monitoring type electronic arc extinguishing device when the current exceeds the protection current of the power semiconductor device, the control circuit turns off the power semiconductor device conduction control signal for protecting the power semiconductor device.
  • a current monitoring type electronic arc extinguishing device wherein the control circuit is connected with an output port for protection, and the output port outputs a control signal when the mechanical switch passes the current exceeding the overload protection current.
  • a current monitoring type electronic arc extinguishing device wherein the power semiconductor device is a fully controlled semiconductor device or a semi-controlled semiconductor device, and the semi-controlled semiconductor device is a thyristor.
  • a current monitoring type electronic arc extinguishing device in which a conducting current of a power semiconductor device does not pass through a current sensor.
  • the mechanical switch is connected with a current sensor, the current sensor detects the current through the mechanical switch; the output end of the current sensor and the control end of the power semiconductor device are connected with the control circuit, and the control circuit provides the power semiconductor device when the mechanical switch has a current through Turning on the control signal, turning off the power semiconductor device conduction control signal when the mechanical switch has no current passing; since only the mechanical switch is closed for a moment when the current passes and the mechanical switch is turned off, there is an arc current, which causes When the mechanical switch is closed, the control circuit gives the power semiconductor device conduction control signal for the mechanical switch to close the bounce and arc extinguishing.
  • the control circuit detects that the mechanical switch is disconnected by the current sensor, and the control circuit immediately turns off the power semiconductor device conduction control signal.
  • the invention has reasonable design, and the current sensor is connected with the main circuit of the mechanical switch to detect the mechanical switch closing and breaking process in real time. Once the mechanical switch is turned on, the control circuit immediately provides the power semiconductor device by using the current signal detected by the current sensor connected to the mechanical switch. Turn on the control signal, mechanical switch out At the time of bouncing, the current is bypassed by the power semiconductor device, achieving the purpose of fast arc extinguishing of the power semiconductor device with a very short on-time, without requiring the power semiconductor device to be turned on in advance in the mechanical switch closure, avoiding the large current to power of the instantaneous load.
  • the impact caused by the semiconductor device greatly improves the reliability of the power semiconductor device; during the mechanical switching process, the current through the mechanical switch is bypassed by the power semiconductor device, the mechanical switch has no current, and the control circuit detects the mechanical switch in the current sensor.
  • the power semiconductor device is turned off, the power semiconductor device is turned off, and the power semiconductor device is turned off, so that the power semiconductor device has a very short on-time and fast arc extinguishing.
  • the on-time can be as short as half a cycle (the average value is less than half a cycle); when the current is monitored
  • the power semiconductor device of the electronic arc extinguishing device adopts a fully controlled semiconductor device (such as IGBT, FET, etc.)
  • the on-time of the power semiconductor device in the arc extinguishing process only needs microseconds, so that accurate and reliable arc extinguishing can be achieved.
  • the purpose of this is to greatly improve the power semiconductor device utilization of the electronic arc extinguishing device and the reliability, practicability and economy of the electronic arc extinguishing device; since the current sensor is connected to the main circuit of the mechanical switch, the mechanical switch is closed in real time or In the disconnection state, the power supply of the control circuit does not need to be provided with a synchronization signal by the drive circuit of the mechanical switch, and can be conveniently used in mechanical switches such as circuit breakers without a drive circuit, and is not limited to a mechanical switch with a drive circuit such as a contactor, and has an adaptation range. Wide advantage.
  • Figure 1 is a circuit schematic diagram of an embodiment of the present invention.
  • Figure 2 is a circuit diagram of the second embodiment of the present invention.
  • Figure 3 is a schematic diagram of the circuit of the third embodiment of the present invention.
  • FIG. 4 is a circuit schematic diagram of a fourth embodiment of the present invention.
  • Figure 5 is a circuit diagram of the fifth embodiment of the present invention.
  • a current monitoring type electronic arc extinguishing device applied to an alternating current includes a power semiconductor device TR1 (which is a thyristor and a bidirectional thyristor) connected to the mechanical switch SW1.
  • TR1 which is a thyristor and a bidirectional thyristor
  • the mechanical switch SW1 is connected with a current sensor CT1 (which is a current transformer, the figure can be connected in series, and the working principle is the same), the current sensor CT1 is used to detect the current passing through the mechanical switch SW1; the output of the current sensor CT1 is The control terminal of the power semiconductor device TR1
  • the control circuit (A) is connected, and the mechanical switch connected to the device is a mechanical switch required to extinguish the arc of SW1, and the terminals J1 and J2 are common input and output terminals of the power semiconductor device TR1 and the mechanical switch SW1, and the J3 and J4 terminals are respectively
  • the input power terminal of the control circuit (A) and the output port for protection, the control circuit (A) is connected with an input element RV and a display device LED for overload protection current setting.
  • the mechanical switch SW1 is extinguished as an example.
  • the control circuit (A) is powered, and the display device LED is low-frequency flashing.
  • the mechanical switch SW1 passes through the current, that is, the control circuit (A) detecting (detected by current sensor CT1), when the mechanical switch SW1 is closed, providing a control signal for turning on the power semiconductor device TR1.
  • the control circuit (A) detecting (detected by current sensor CT1), when the mechanical switch SW1 is closed, providing a control signal for turning on the power semiconductor device TR1.
  • the mechanical switch SW1 bounces, the current is bypassed by the power semiconductor device TR1 to achieve closed bounce and arc extinguishing.
  • the purpose of the control circuit (A) is to maintain the power semiconductor device TR1 conduction control signal and drive the display device LED to be constantly lit, because the voltage across the power semiconductor device TR1 is less than the power semiconductor device TR1 conduction voltage.
  • the power semiconductor device TR1 has no conduction current; during the mechanical switch SW1 breaking process, the current is bypassed by the power semiconductor device TR1 when the mechanical switch SW1 is disconnected, the mechanical switch SW1 has no current, and the control circuit (A) is detected (via the current sensor) CT1 detection)
  • the mechanical switch SW1 is turned off, the power semiconductor device TR1 is turned off to turn on the control signal and drive the display
  • the device LED is low-frequency flashing, the power semiconductor device TR1 is turned off, and the purpose of breaking and arc-extinguishing is realized; the current of the control circuit (A) passing through the mechanical switch SW1 in the closed state of the mechanical switch SW1 exceeds the overload protection current preset by the control circuit (A)
  • the input component RV input through the overload protection current setting
  • the power semiconductor device TR1 uses a bidirectional thyristor, and a unidirectional thyristor can also be used in practical applications.
  • the current sensor CT1 (which is a current transformer, the figure can be connected in series, and the working principle is the same) is connected with the main circuit of the mechanical switch SW1 to detect the mechanical switch.
  • the conduction current of SW1 is a mechanical switch required to be connected to the device, and J1 and J2 are the input and output terminals of the main circuit.
  • the control circuit (A) is connected to the drive circuit of the power semiconductor device TR1 (which is a thyristor and a bidirectional thyristor) through an electronic switch OPT1 (for a photocoupler with a thyristor output), power
  • the driving signal of the semiconductor device TR1 is transmitted from the main circuit of the power semiconductor device TR1 to the control electrode of the power semiconductor device TR1 through a series circuit composed of the capacitor C1 and the resistor R1, and the electronic switch OPT1 is connected in series in the driving circuit of the power semiconductor device TR1.
  • the voltage input end of the electronic switch OPT1 is connected to the voltage limiting device RV1 for limiting the voltage, and is used for protecting the electronic switch OPT1.
  • the control end of the electronic switch OPT1 and the output end of the current transformer CT1 are connected with the control circuit (A).
  • Control circuit (A) J3 port is used for input working power, input power is supplied to transformer MCU and its related circuit via transformer T1, rectifier circuit BR1 rectification, capacitor C2 and C3 filtering, IC1 voltage regulation, capacitor C4 and C5 filtering
  • the P0.1 port of the microcontroller MCU is connected with an adjustable resistor RV2 as an input component for the overload current protection setting;
  • the P0.3 port of the microcontroller MCU is connected with an LED display device for status display;
  • the microcontroller MCU The output signal of the P0.7 port is transmitted to the control end of the electronic switch OPT1, and the output signal of the current sensor CT1 is reciprocated to the P0.0 port of the microcontroller MCU via the BR2 rectification, and the P0.5 port of the microcontroller MCU outputs a control signal.
  • the electronic circuit OPT2 is outputted to the output port J4 for protection, and the control circuit (A) is connected to the drive circuit of the power semiconductor device TR1 via the electronic switch OPT1.
  • the mechanical switch SW1 is extinguished as an example.
  • the control circuit (A) is energized, and the display device LED is low-frequency flashing.
  • the output signal of the current sensor CT1 is supplied to the microcontroller MCU of the control circuit (A), and the microcontroller MCU of the control circuit (A) gives the control signal of the electronic switch OPT1 for overcoming the advancement of the power semiconductor device TR1 before the mechanical switch SW1 is closed.
  • the electronic switch OPT1 output is turned on.
  • the thyristor TR1 Trigger conduction realize the purpose of mechanical switch SW1 closing bounce and arc extinction, in the state that mechanical switch SW1 is closed, the microcontroller MCU makes the display device LED always bright; mechanical switch SW1 breaks the process, at the moment when the mechanical switch SW1 is disconnected, the power A higher voltage rise rate occurs at both ends of the semiconductor device TR1, and the capacitor C1 passes a higher drive current, and the power semiconductor device TR1 triggers conduction. The flow is bypassed by the thyristor TR1 to realize no arc breaking of the mechanical switch SW1.
  • the mechanical switch SW1 When the current signal transmitted by the P0 port of the microcontroller MCU without the current sensor CT1 is input, the mechanical switch SW1 is detected to be disconnected, and the microcontroller MCU turns off the electronic The switch OPT1 control signal, the display device LED low-frequency flashing, when the mechanical switch SW1 is closed, if it is detected that the current through the mechanical switch SW1 exceeds the set protection current, the P0.5 of the microcontroller MCU outputs a control signal, In order to make the mechanical switch SW1 open or drive other protection switch actions, such as detecting the pass When the current of the mechanical switch SW1 exceeds the protection current of the power semiconductor device TR1, the power semiconductor device TR1 is turned off to turn on the control signal for protecting the power semiconductor device TR1 from being damaged by the overload, and the display device LED is high-frequency flashing in the event of a failure.
  • control circuit (A) adopts a built-in microcontroller circuit to facilitate the simplification of the circuit, facilitate implementation of various control methods, and preset various protection parameters.
  • the current sensor CT1 (which is a current transformer, the figure can be connected in series, and the working principle is the same) is connected with the main circuit of the mechanical switch SW1, and the detecting machine is shown.
  • the on-current of the switch SW1, the mechanical switch SW1 is a mechanical switch connected to the power semiconductor device TR1 (which is a thyristor and a bidirectional thyristor), and J1 and J2 are input and output terminals of the main circuit, and the driving power semiconductor device TR1 is turned on.
  • the driving signal is connected to the control electrode by the series circuit of the current limiting circuit R1 and the capacitor C1 of the main circuit of the power semiconductor device TR1.
  • the power semiconductor device TR1 of the present embodiment is a bidirectional thyristor, and the driving signal thereof is driven by the main circuit of the thyristor TR1.
  • T2 pole provides), the electronic switch OPT1 connected to the drive signal loop (selecting the normally closed output optocoupler such as CPC1117, CPC1219), the control end of the electronic switch OPT1 and the output end of the current sensor CT1 are connected to the control circuit (A).
  • Control circuit (A) J3 port is used for input working power; connected adjustable resistor RV is used as input component for overload current protection setting; connected LED display device is used for status display; output signal of current sensor CT1 is connected to control (A), the J4 port is an output port for protection, and the control circuit (A) is connected to the drive circuit of the power semiconductor device TR1 through the electronic switch OPT1.
  • the mechanical switch SW1 is extinguished as an example.
  • the control circuit (A) is energized, and the display device LED is low-frequency flashing.
  • the output signal of the current sensor CT1 is supplied to the control circuit (A), and the control circuit (A) gives the control signal of the electronic switch OPT1 for overcoming the advancement of the power semiconductor device TR1 before the mechanical switch SW1 is closed, and the output of the electronic switch OPT1 is turned off.
  • the mechanical switch SW1 is closed or bounces, a high voltage rise rate will occur at both ends of the power semiconductor device TR1.
  • the capacitor C1 will pass a higher drive current, and the power semiconductor device TR1 will be turned on to achieve the mechanical switch SW1 closed.
  • the switch SW1 breaks the purpose of arc extinguishing.
  • the control circuit (A) inputs the current signal without CT1 input, it detects that the mechanical switch SW1 is turned off, and the control circuit (A) turns off the electronic switch OPT1 control signal, and the mechanical switch SW1 is closed.
  • the J4 port connected to the control circuit (A) outputs a control signal for causing the mechanical switch SW1 to open or drive other protection switches, such as detecting When the current of the mechanical switch SW1 exceeds the protection current of the power semiconductor device TR1, the power semiconductor device TR1 is turned off to control the signal for protecting the power semiconductor device TR1 from being damaged by the overload.
  • the display device LED is always on.
  • the display device LED is low-frequency flashing, and the display device LED is high-frequency flashing in case of failure.
  • the current limiting resistor R1 is used to limit the instantaneous excessive current through the capacitor C1, and the influence of the instantaneous inrush current on the power semiconductor device TR1 and the electronic switch OPT1 can be reduced.
  • the power semiconductor device is a thyristor and is a unidirectional thyristor including a first unidirectional thyristor SCR1 and a second unidirectional thyristor SCR2 connected in anti-parallel
  • the mechanical switch SW1 is a mechanical switch connected to the first unidirectional thyristor SCR1 and the second unidirectional thyristor SCR2, J1 and J2 are input and output terminals of the main circuit
  • the first unidirectional thyristor SCR1 is controlled by the first electronic switch OPT1 (driven by a photocoupler)
  • the transistor circuit is connected to one end of the series circuit composed of the capacitor C1 through the current limiting resistor R1, and the second unidirectional thyristor SCR2 is controlled to pass through the second electronic switch OPT2 (which is a photocoupler driving transistor circuit) and the other end of the series circuit Connected, the first electronic switch OPT1, the second electronic switch O
  • Control circuit (A) J3 port is used for input working power; connected adjustable resistor RV is used as overload current protection input component; connected LED display device is used for status display; output signal of current sensor CT1 is connected to control circuit ( A), the J4 port is a protection output port, and the control circuit (A) passes the first electronic switch OPT1, the second electronic switch OPT2, and the first unidirectional thyristor SCR1, the second unidirectional crystal The drive circuit of the gate SCR2 is connected.
  • the internal circuit of the control circuit (A) of Fig. 4 can be used as the circuit of the built-in microcontroller of the control circuit (A) of Fig. 2.
  • the mechanical switch SW1 is extinguished as an example.
  • the control circuit (A) is energized.
  • the output signal of the current sensor CT1 is provided as long as the mechanical switch SW1 is closed.
  • the control circuit (A) gives the electronic switch OPT1, OPT2 control signals for overcoming the first thyristor SCR1 and the second unidirectional thyristor SCR2 before the mechanical switch SW1 is closed, in the mechanical When the switch SW1 is closed or bounces, a high voltage rising rate will be generated across the first unidirectional thyristor SCR1 and the second unidirectional thyristor SCR2, and the capacitor C1 will pass a higher driving current according to the current driving current.
  • the first unidirectional thyristor SCR1 and the second unidirectional thyristor SCR2 corresponding to the direction are triggered to conduct, and the mechanical switch SW1 is closed for bounce and arc extinguishing; the mechanical switch SW1 is disconnected, and the mechanical switch SW1 is disconnected, first The unidirectional thyristor SCR1 and the second unidirectional thyristor SCR2 generate a higher voltage rising rate at both ends, and the capacitor C1 passes a higher driving current, the first unidirectional thyristor SCR1 and the second unidirectional thyristor SCR2 root.
  • the current is bypassed by the corresponding first unidirectional thyristor SCR1 and the second unidirectional thyristor SCR2, thereby achieving the purpose of breaking and extinguishing the mechanical switch SW1, and the control circuit (A) has no
  • the current signal transmitted by the current sensor CT1 it is detected that the mechanical switch SW1 is turned off, and the control circuit (A) turns off the control signals of the electronic switches OPT1 and OPT2, and when the mechanical switch SW1 is closed, if the current exceeds the current through the mechanical switch SW1 is detected
  • the J4 port connected to the control circuit (A) outputs a control signal for causing the mechanical switch SW1 to open or drive other protection switches, such as detecting that the current through the mechanical switch SW1 exceeds the first unidirectional thyristor
  • the protection current of the SCR1 and the second unidirectional thyristor SCR2 is turned off, the thyristor SCR1 and
  • the current monitoring type arc extinguishing device of the present invention in the second, third and fourth embodiments has the following advantages:
  • the series circuit composed of capacitor C1 and resistor R1 transmits a driving signal to the thyristor (the thyristor is a unidirectional thyristor or a bidirectional thyristor) during arc extinguishing, and the series circuit passes through a voltage limiting device (such as Embodiments 2 and 4) or an electronic switch ( As in the third embodiment, parallel connection between the input and output of the main circuit of the thyristor, in the off state of the thyristor, it is also possible to absorb the instantaneous overvoltage and protect the thyristor without additional resistance-capacitance absorption circuit, which simplifies the circuit.
  • the power limiting current through the capacitor C1 is bypassed by using a voltage limiting device (see Fig. 2, Fig. 4) or an electronic switch (see Fig. 3). This greatly reduces the voltage withstand requirements of the electronic switch and reduces the dv/dt at both ends of the electronic switch.
  • the rated withstand voltage of the electronic switch can be used less than the working voltage at both ends of the mechanical switch, reducing the cost of the electronic switch and improving the electronic switch. Reliability.
  • the current through the mechanical switch SW1 is detected by the current sensor CT1, and the current change is known in real time.
  • the output is controlled.
  • the signal is beneficial for effectively protecting the load and the grid power supply circuit;
  • the power semiconductor device turn-on control signal is turned off, which is beneficial to the mechanical switch
  • a large overcurrent occurs in the case where the output of the SW1 is short-circuited, etc., the protection power semiconductor device is not damaged when the overcurrent of the power semiconductor device is exceeded.
  • a fifth embodiment of the present invention includes a power semiconductor device Q1 (which is a field effect transistor) connected to the mechanical switch SW1, and a mechanical sensor CT1 is connected to the mechanical switch SW1 (FIG. 5 is a current transformer).
  • CT1 is a through-heart connection or a series connection, and the working principle is the same.
  • the current sensor CT1 is used to detect the current through the mechanical switch SW1; the output of the current sensor CT1 and the control terminal and control circuit of the power semiconductor device Q1 (A) Connected, the mechanical switch connected to the device is a mechanical switch required to extinguish the arc of SW1, and the terminals J1 and J2 are common input and output terminals of the power semiconductor device Q1 and the mechanical switch SW1, wherein the J1 terminal is a positive electric input terminal and a J2 terminal end.
  • the J3 terminal is the input power terminal of the control circuit (A), and the control circuit (A) is connected with the display device LED.
  • the mechanical switch SW1 is extinguished as an example.
  • the control circuit (A) is energized, the mechanical switch SW1 is closed, and when the mechanical switch SW1 has a current, the current sensor CT1 outputs a pulse signal, and the control circuit (A)
  • the power semiconductor device Q1 is provided with a control signal.
  • the control circuit (A) remains provided.
  • the power semiconductor device Q1 turns on the control signal.
  • the power semiconductor device Q1 Since the voltage across the power semiconductor device Q1 is lower than the power-on voltage of the power semiconductor device Q1, the power semiconductor device Q1 has no conduction current; during the mechanical switch SW1 is disconnected, the mechanical switch SW1 is disconnected. The instantaneous current is bypassed by the power semiconductor device Q1, and the mechanical switch SW1 has no current. Because the current through the current sensor CT1 is abrupt, the current sensor CT1 senses a pulse signal, and the control circuit (A) turns off the power semiconductor device Q1. The signal, the power semiconductor device Q1 is cut off, and the purpose of breaking the arc is achieved.
  • the power semiconductor device Q1 adopts a field effect transistor.
  • a fully controlled semiconductor device such as a triode or an IGBT can also be used.
  • the diode can be connected in parallel with the power semiconductor device Q1.
  • the power semiconductor device is protected or a power semiconductor device with a built-in diode is selected.
  • the current sensor CT1 detects the closing and breaking of the direct current by using a common current transformer, and has the advantages of low cost and small volume.
  • the current sensor is used for detecting the mechanical switch closing
  • the control circuit controls the power semiconductor device to be turned on when detecting the mechanical switch is closed, and is used for mechanical switch closing bounce and arc extinguishing, thereby greatly reducing the power semiconductor device for mechanical switch closing and arc extinguishing.
  • the turn-on time overcomes the pre-conduction of the power semiconductor device in the mechanical switch closure, avoiding the impact of the large current of the instantaneous load on the power semiconductor device, and greatly improving the reliability of the power semiconductor device.

Abstract

一种电流监控式电子灭弧装置,适合于对机械开关(SWI)作为灭弧用途的电流监控式电子灭弧装置,其包括与机械开关SW1连接的功率半导体器件(TR1),至少一电流传感器(CT1)与机械开关(SW1)连接,电流传感器(CT1)用于检测机械开关(SW1)断开;电流传感器(CT1)的输出端和功率半导体器件(TR1)的控制端与控制电路(A)连接,控制电路(A)在电流传感器(CT1)检测到机械开关(SW1)断开,控制功率半导体器件(TR1)关断,该电流监控式电子灭弧装置具有晶闸管导通时间短且可靠性高的优点。

Description

电流监控式电子灭弧装置 技术领域
本发明电流监控式电子灭弧装置属于电学领域,特别是一种适合应用于接触器、继电器、断路器及其它机械开关中作为灭弧用途的电流监控式电子灭弧装置。
背景技术
目前在电气控制系统中,广泛使用接触器、继电器等机械开关对负载进行接通分断控制,但由于普通灭弧用途的灭弧栅,需要分断电弧拉到一定长度,才能起作用,存在灭弧效果差,通断负载时电弧大,导致触点容易烧损的缺点。
为此,出现了用于机械开关灭弧的灭弧装置,如专利号为CN01201907.0,名称为“电子灭弧器”;专利号为CN200910306608.6,名称为“基于光耦的混合式交流接触器无源开关驱动控制器”,两个专利所揭示的,采用晶闸管与接触器机械开关并联的方式,两专利的控制电路与晶闸管控制端连接,在接触器机械开关分断前,提供一个晶闸管导通控制信号,在接触器机械开关分断过程中,当机械开关在分断时,通过控制电路的滤波电容放电延时,延时关断晶闸管导通的控制信号,晶闸管截止,完成无电弧分断过程,由于从接触器的控制线圈失电到机械开关分断,有一段不确定延时时间,为确保机械开关分断之后晶闸管才关断以保证可靠灭弧,晶闸管需要导通时间较长(一般在几十毫秒以上),这种采用机械开关分断后延时关闭控制信号的控制方式灭弧,势必增加晶闸管不必要多余的导通工作时间,晶闸管的导通工作时间长,导致整个灭弧装置的过载能力差、可靠性低,同时以上两个专利的控制电路的工作电源必须由机械开关的驱动回路提供(其作为控制电路的同步信号),这样存在对断路器等无驱动回路的机械开关无法适用。
发明内容
本发明的目的在于避免现有电子灭弧装置的不足之处而提供一种功率半导体器件导通时间短且可靠性高的电流监控式电子灭弧装置。
实现本发明的目的是通过以下技术方案来达到的:
一种电流监控式电子灭弧装置,其包括与机械开关连接的功率半导体器件,至少一电流传感器与机械开关连接,电流传感器检测通过机械开关的电流,用于检测机械开关断开;电流传感器的输出端和功率半导体器件的控制端与控制电路连接;控制电路在电流传感器检测到机械开关断开时,控制功率半导体器件关断一种电流监控式电子灭弧装置,电流传感器用于检测机械开关闭合;控制电路在电流传感器检测到机械开关闭合时,控制功率半导体器件导通。
一种电流监控式电子灭弧装置,电流传感器用于检测机械开关闭合;控制电路在电流传感器检测到机械开关闭合时,控制功率半导体器件导通,用于机械开关闭合弹跳灭弧。
一种电流监控式电子灭弧装置,控制电路内置有微控制器,电流传感器的输出信号传递至微控制器,微控制器至少有一输出信号传递至功率半导体器件的控制端。
一种电流监控式电子灭弧装置,微控制器连接有用于过载保护电流设置的输入元件。
一种电流监控式电子灭弧装置,微控制器连接有显示器件。
一种电流监控式电子灭弧装置,驱动功率半导体器件导通的驱动信号由功率半导体器件的主回路通过电容、电阻连接至功率半导体器件的控制极,驱动信号的回路中连接至少一电子开关,电子开关的控制端与控制电路连接。
一种电流监控式电子灭弧装置,电子开关为光电耦合器或光电耦合器驱动晶体管电路。
一种电流监控式电子灭弧装置,电容与电阻组成串联电路,驱动信号由功率半导体器件的主回路通过串联电路、再经电子开关连接到功率半导体器件的控制极,电子开关至少连接一限压器件,用于保护电子开关。
一种电流监控式电子灭弧装置,电容与电阻组成串联电路,串联电路通过电子开关或限压器件并联在功率半导体器件的主回路的输入输出端。
一种电流监控式电子灭弧装置,功率半导体器件为单向晶闸管,包括第一单向晶闸管、第二单向晶闸管,第一单向晶闸管与第二单向晶闸管反向并联;电子开关包括第一电子开关、第二电子开关;电容与电阻组成串联电路,第一 单向晶闸管的控制极通过第一电子开关与串联电路一端相连接,第二单向晶闸管的控制极通过第二电子开关与串联电路另一端相连接,第一电子开关和第二电子开关分别连接有第一限压器件、第二限压器件。
一种电流监控式电子灭弧装置,第一限压器件和第二限压器件为稳压二极管、稳压二极管等效器件;第一限压器件的阴极与第一电子开关的电压输入端连接,第一限压器件的阳极与第一单向晶闸管的阴极连接;第二限压器件的阴极与第二电子开关的电压输入端连接,第二限压器件的阳极与第二单向晶闸管的阴极连接。
一种电流监控式电子灭弧装置,电流传感器为电流互感器。
一种电流监控式电子灭弧装置,当电流超过功率半导体器件保护电流时,控制电路关闭功率半导体器件导通控制信号,用于保护功率半导体器件。
一种电流监控式电子灭弧装置,控制电路连接有用于保护的输出端口,输出端口在机械开关通过电流超过过载保护电流时,输出一控制信号。
一种电流监控式电子灭弧装置,功率半导体器件为全控型半导体器件或半控型半导体器件,半控型半导体器件为晶闸管。
一种电流监控式电子灭弧装置,功率半导体器件的导通电流不经过电流传感器。
其工作原理:机械开关连接有电流传感器,电流传感器检测通过机械开关的电流;电流传感器的输出端和功率半导体器件的控制端与控制电路连接,控制电路在机械开关有电流通过时提供功率半导体器件导通控制信号,在机械开关无电流通过时关闭功率半导体器件导通控制信号;由于只有机械开关闭合瞬间有电流通过时和机械开关分断过程中存在导通电流时才会有电弧产生,这样使得机械开关闭合有电流通过时控制电路给出功率半导体器件导通控制信号,用于机械开关闭合弹跳灭弧,机械开关分断过程中,通过机械开关的电流经功率半导体器件旁路,实现无电弧分断的目的,控制电路通过电流传感器检测到机械开关断开,控制电路马上关闭功率半导体器件导通控制信号。
本发明设计合理,电流传感器与机械开关的主回路连接,实时检测机械开关闭合和分断过程,机械开关一旦接通,利用与机械开关连接的电流传感器检测的电流信号,控制电路立即提供功率半导体器件导通控制信号,机械开关出 现弹跳时,电流通过功率半导体器件旁路,实现功率半导体器件极短的导通时间快速灭弧的目的,无需功率半导体器件在机械开关闭合提前导通,避免接通瞬间负载的大电流对功率半导体器件造成的冲击,大大提升了功率半导体器件的可靠性;机械开关分断过程中,通过机械开关的电流经功率半导体器件旁路,机械开关无电流通过,控制电路在电流传感器检测到机械开关断开时关闭功率半导体器件导通控制信号,功率半导体器件截止,实现功率半导体器件极短的导通时间快速灭弧的目的。本发明电流监控式电子灭弧装置的功率半导体器件采用半控型半导体器件如晶闸管作为灭弧器件时,导通时间可以做到短达半个周波(平均值小于半个周波);当电流监控式电子灭弧装置的功率半导体器件采用全控型半导体器件时(如IGBT、场效应管等晶体管),灭弧过程功率半导体器件导通时间仅需微秒级,即可做到准确可靠灭弧的目的,这极大提高了电子灭弧装置的功率半导体器件利用率及电子灭弧装置的可靠性、实用性和经济性;由于电流传感器与机械开关的主回路连接,实时监控机械开关闭合或分断状态,控制电路的供电电源无需由机械开关的驱动回路提供同步信号,可以方便的应用与无驱动回路的断路器等机械开关中使用,不限于接触器等带驱动回路机械开关,具有适应范围广的优点。
附图说明
图1是本发明的实施例之一电路原理图。
图2是本发明的实施例之二电路原理图。
图3是本发明的实施例之三电路原理图。
图4是本发明的实施例之四电路原理图。
图5是本发明的实施例之五电路原理图。
具体实施方式
如图1所示,本发明实施例之一,一种应用于交流电的电流监控式电子灭弧装置,其包括与机械开关SW1连接的功率半导体器件TR1(为一晶闸管,且为双向晶闸管),机械开关SW1连接有电流传感器CT1(为一电流互感器,图为穿心连接也可以串联连接,工作原理相同),电流传感器CT1用于检测通过机械开关SW1的电流;电流传感器CT1的输出端和功率半导体器件TR1的控制端与 控制电路(A)连接,与本装置连接的机械开关为SW1所需灭弧的机械开关,J1、J2端为功率半导体器件TR1与机械开关SW1连接的共同输入输出端点,J3、J4端分别为控制电路(A)的输入电源端和用于保护的输出端口,控制电路(A)连接有用于过载保护电流设置的输入元件RV和显示器件LED。
工作过程:按本装置用于机械开关SW1灭弧为例,控制电路(A)得电,显示器件LED低频闪亮,在机械开关SW1闭合过程中,机械开关SW1一旦有电流通过,即控制电路(A)检测(通过电流传感器CT1检测)到机械开关SW1闭合时,提供功率半导体器件TR1导通控制信号,当机械开关SW1出现弹跳时,电流通过功率半导体器件TR1旁路,实现闭合弹跳灭弧的目的,在机械开关SW1闭合状态下,控制电路(A)保持提供功率半导体器件TR1导通控制信号并驱动显示器件LED常亮,由于功率半导体器件TR1两端电压小于功率半导体器件TR1导通电压,功率半导体器件TR1无导通电流;机械开关SW1分断过程中,在机械开关SW1分断瞬间电流通过功率半导体器件TR1旁路,机械开关SW1无电流通过,控制电路(A)在检测(通过电流传感器CT1检测)到机械开关SW1断开时,关闭功率半导体器件TR1导通控制信号并驱动显示器件LED低频闪亮,功率半导体器件TR1截止,实现分断灭弧的目的;控制电路(A)在机械开关SW1闭合状态下通过机械开关SW1的电流超过控制电路(A)预设的过载保护电流时(通过过载保护电流设置的输入元件RV输入)通过J4端口输出一控制信号并驱动显示器件LED高频闪亮,当通过机械开关SW1的电流超过控制电路(A)预设的功率半导体器件保护电流时关闭功率半导体器件TR1导通控制信号并驱动显示器件LED高频闪亮。(注:预设的功率半导体器件保护电流参数由控制电路(A)内部预设好。)
此实施例一中,功率半导体器件TR1采用双向晶闸管,实际应用中也可以采用单向晶闸管。
如图2所示,本发明的实施例之二,电流传感器CT1(为一电流互感器,图为穿心连接也可以串联连接,工作原理相同)与机械开关SW1的主回路连接,检测机械开关SW1的导通电流,机械开关SW1为与本装置连接的所需灭弧的机械开关,J1、J2为主回路的输入输出端点,
控制电路(A)通过电子开关OPT1(为一带晶闸管输出的光电耦合器)与功率半导体器件TR1(为一晶闸管,且为双向晶闸管)的驱动回路连接,功率 半导体器件TR1导通的驱动信号由功率半导体器件TR1的主回路通过由电容C1与电阻R1组成的串联电路传递给功率半导体器件TR1的控制极,电子开关OPT1串联在功率半导体器件TR1的驱动回路中,电子开关OPT1的电压输入端连接有限压器件RV1限压,用于保护电子开关OPT1,电子开关OPT1的控制端和电流互感器CT1的输出端与控制电路(A)连接。
控制电路(A):J3端口用于输入工作电源,输入电源经变压器T1、整流电路BR1整流、电容C2和C3滤波、IC1稳压、电容C4和C5滤波给微控制器MCU及其相关电路供电,微控制器MCU的P0.1口连接有可调电阻RV2,作为过载电流保护设置的输入元件;微控制器MCU的P0.3口连接有LED显示器件,用于状态显示;微控制器MCU的P0.7口输出信号传递至电子开关OPT1的控制端,电流传感器CT1的输出信号经BR2整流传递至微控制器MCU的P0.0口,微控制器MCU的P0.5口输出一控制信号通过电子开关OPT2输出至用于保护的输出端口J4,控制电路(A)通过电子开关OPT1与功率半导体器件TR1的驱动回路连接。
工作过程:按本装置用于机械开关SW1灭弧为例,控制电路(A)得电,显示器件LED低频闪亮,在机械开关SW1断开的情况下,只要机械开关SW1出现闭合情况时,电流传感器CT1的输出信号提供给控制电路(A)的微控制器MCU,控制电路(A)的微控制器MCU给出电子开关OPT1控制信号,用于克服机械开关SW1闭合前功率半导体器件TR1提前导通,电子开关OPT1输出导通,在机械开关SW1闭合的瞬间或出现弹跳,将在功率半导体器件TR1两端会产生很高的电压上升速率,电容C1会通过较高的驱动电流,晶闸管TR1触发导通,实现机械开关SW1闭合弹跳灭弧的目的,在机械开关SW1闭合的状态下,微控制器MCU使得显示器件LED常亮;机械开关SW1分断过程,在机械开关SW1分断的瞬间,功率半导体器件TR1两端会产生较高的电压上升速率,电容C1会通过较高的驱动电流,功率半导体器件TR1触发导通,电流通过晶闸管TR1旁路,实现机械开关SW1无电弧分断,微控制器MCU的P0.0口无电流传感器CT1传递的电流信号输入时,即检测到机械开关SW1断开,微控制器MCU关闭电子开关OPT1控制信号,显示器件LED低频闪亮,在机械开关SW1闭合状态下,如检测到通过机械开关SW1电流超过设定的保护电流时,微控制器MCU的P0.5输出一控制信号,用于使得机械开关SW1断开或驱动其他保护开关动作,如检测到通 过机械开关SW1电流超过功率半导体器件TR1的保护电流时,关闭功率半导体器件TR1导通控制信号,用于保护功率半导体器件TR1不被过载损坏,在故障情况下显示器件LED高频闪亮。
此实施例二中,控制电路(A)采用内置微控制器电路有利于简化电路,方便实施各种控制方法及预设各种保护参数。
如图3所示,为本发明的实施例之三,电流传感器CT1(为一电流互感器,图为穿心连接也可以串联连接,工作原理相同)与机械开关SW1的主回路连接,检测机械开关SW1的导通电流,机械开关SW1为与功率半导体器件TR1(为一晶闸管,且为双向晶闸管)连接的机械开关,J1、J2为主回路的输入输出端点,驱动功率半导体器件TR1导通的驱动信号由功率半导体器件TR1的主回路通过限流电阻R1、电容C1组成的串联电路连接到其控制极(注:本实施例功率半导体器件TR1为双向晶闸管,其驱动信号由晶闸管TR1的主回路T2极提供),与驱动信号回路连接的电子开关OPT1(选用CPC1117、CPC1219等常闭输出光电耦合器),电子开关OPT1的控制端和电流传感器CT1的输出端与控制电路(A)连接。
控制电路(A):J3端口用于输入工作电源;连接的可调电阻RV,作为过载电流保护设置的输入元件;连接的LED显示器件,用于状态显示;电流传感器CT1的输出信号连接至控制(A),J4端口为用于保护的输出端口,控制电路(A)通过电子开关OPT1与功率半导体器件TR1的驱动回路连接。
工作过程:按本装置用于机械开关SW1灭弧为例,控制电路(A)得电,显示器件LED低频闪亮,在机械开关SW1断开的情况下,只要机械开关SW1出现闭合情况时,电流传感器CT1的输出信号提供给控制电路(A),控制电路(A)给出电子开关OPT1控制信号,用于克服机械开关SW1闭合前功率半导体器件TR1提前导通,电子开关OPT1输出截止,在机械开关SW1闭合的瞬间或出现弹跳,将在功率半导体器件TR1两端会产生很高的电压上升速率,电容C1会通过较高的驱动电流,功率半导体器件TR1触发导通,实现机械开关SW1闭合弹跳灭弧的目的;机械开关SW1分断过程,在机械开关SW1分断的瞬间,功率半导体器件TR1两端会产生较高的电压上升速率,电容C1会通过较高的驱动电流,功率半导体器件TR1触发导通,电流通过功率半导体器件TR1旁路,实现机械 开关SW1分断灭弧的目的,控制电路(A)在无CT1传递的电流信号输入时,即检测到机械开关SW1断开,控制电路(A)关闭电子开关OPT1控制信号,在机械开关SW1闭合状态下,如检测到通过机械开关SW1电流超过设定的保护电流时,控制电路(A)连接的J4端口输出一控制信号,用于使得机械开关SW1断开或驱动其他保护开关动作,如检测到通过机械开关SW1电流超过功率半导体器件TR1的保护电流时,关闭功率半导体器件TR1导通控制信号,用于保护功率半导体器件TR1不被过载损坏。注:在机械开关SW1闭合状态下,使得显示器件LED常亮,在机械开关SW1断开状态下,使得显示器件LED低频闪亮,故障情况下显示器件LED高频闪亮。
在此实施例中,限流电阻R1用于限制通过电容C1瞬间过大电流,可以减少瞬间冲击电流对功率半导体器件TR1、电子开关OPT1的影响。
如图4所示,为本发明的实施例之四,功率半导体器件为晶闸管,且为单向晶闸管,包括第一单向晶闸管SCR1、第二单向晶闸管SCR2反向并联,机械开关SW1为与第一单向晶闸管SCR1、第二单向晶闸管SCR2连接的机械开关,J1、J2为主回路的输入输出端点,第一单向晶闸管SCR1控制极通过第一电子开关OPT1(为一光电耦合器驱动晶体管电路)通过限流电阻R1与电容C1组成的串联电路一端相连接,第二单向晶闸管SCR2控制极通过第二电子开关OPT2(为一光电耦合器驱动晶体管电路)与串联电路的另一端相连接,第一电子开关OPT1、第二电子开关OPT2的电压输入端分别连接有第一限压器件Z1(稳压二极管)、第二限压器件Z2(稳压二极管),第一限压器件Z1的阴极与第一电子开关OPT1的电压输入端连接,第一限压器件Z1的阳极与第一单向晶闸管SCR1的阴极连接,第二限压器件Z2的阴极与第二电子开关OPT2的电压输入端连接,第二限压器件Z2的阳极与第二单向晶闸管SCR2的阴极连接,限流电阻R1用于限制通过电容C1瞬间过大电流,减少瞬间电流对第一单向晶闸管SCR1、第二单向晶闸管SCR2、第一电子开关OPT1、第二电子开关OPT2的冲击影响,第一电子开关OPT1、第二电子开关OPT2与控制电路(A)连接。
控制电路(A):J3端口用于输入工作电源;连接的可调电阻RV,作为过载电流保护输入元件;连接的LED显示器件,用于状态显示;电流传感器CT1的输出信号连接至控制电路(A),J4端口为保护输出端口,控制电路(A)通过第一电子开关OPT1、第二电子开关OPT2与第一单向晶闸管SCR1、第二单向晶 闸SCR2的驱动回路连接。(注:图4的控制电路(A)的内部电路,可以采用图2控制电路(A)内置微控制器的电路。)
工作过程:按本装置用于机械开关SW1灭弧为例,控制电路(A)得电,在机械开关SW1断开的情况下,只要机械开关SW1出现闭合情况时,电流传感器CT1的输出信号提供给控制电路(A),控制电路(A)给出电子开关OPT1、OPT2控制信号,用于克服机械开关SW1闭合前第一单向晶闸管SCR1、第二单向晶闸SCR2提前导通,在机械开关SW1闭合的瞬间或出现弹跳,将在第一单向晶闸管SCR1、第二单向晶闸SCR2两端会产生很高的电压上升速率,电容C1会通过较高的驱动电流,根据当前驱动电流的方向相对应的第一单向晶闸管SCR1、第二单向晶闸SCR2触发导通,实现机械开关SW1闭合弹跳灭弧的目的;机械开关SW1分断过程,在机械开关SW1分断的瞬间,第一单向晶闸管SCR1、第二单向晶闸SCR2两端会产生较高的电压上升速率,电容C1会通过较高的驱动电流,第一单向晶闸管SCR1、第二单向晶闸SCR2根据当时相对应的电流方向触发导通,电流通过相对应的第一单向晶闸管SCR1、第二单向晶闸SCR2旁路,实现对机械开关SW1分断灭弧的目的,控制电路(A)无电流传感器CT1传递的电流信号输入时,即检测到机械开关SW1断开,控制电路(A)关闭电子开关OPT1、OPT2控制信号,在机械开关SW1闭合状态下,如检测到通过机械开关SW1电流超过设定的保护电流时,控制电路(A)连接的J4端口输出一控制信号,用于使得机械开关SW1断开或驱动其他保护开关动作,如检测到通过机械开关SW1电流超过第一单向晶闸管SCR1、第二单向晶闸SCR2的保护电流时,关闭晶闸管SCR1、SCR2导通控制信号,用于保护第一单向晶闸管SCR1、第二单向晶闸SCR2不被过载损坏,注:在机械开关SW1闭合状态下,使得显示器件LED常亮,在机械开关SW1断开状态下,使得显示器件LED低频闪亮,故障情况下显示器件LED高频闪亮。
在实施例之二、三和四中的本发明电流监控式灭弧装置具有以下优点:
1.电容C1、电阻R1组成的串联电路在灭弧时对晶闸管(晶闸管为单向晶闸管或双向晶闸管)传递驱动信号,该串联电路通过限压器件(如实施例二和四)或电子开关(如实施例三)并联在晶闸管的主回路的输入输出两端,在晶闸管截止状态下,还可以起吸收瞬间过电压作用,保护晶闸管,无需另加阻容吸收电路,简化了电路。
2.由于在工频条件下通过电容C1的工频电流较小,采用限压器件(见图2、图4)或电子开关(见图3)对通过电容C1的工频电流进行旁路,这样大大减轻了对电子开关的耐压要求和降低了电子开关两端的dv/dt,电子开关的额定耐压值可选用小于机械开关两端的工作电压,降低了电子开关的成本和提高了电子开关的可靠性。
3.在机械开关闭合弹跳或分断时,电容C1两端会产生较高dv/dt,电容在其两端出现高的电压上升速率时会产生大的电流通过,设计电容容值可以很小,在机械开关常开的状态下通过电容的电流小于晶闸管的触发电流。
以上实施例中,通过电流传感器CT1对通过机械开关SW1的电流进行检测,实时的了解电流的变化情况,在机械开关SW1的电流超过控制电路(A)预设的过载保护电流时,输出一控制信号,有利于对负载和电网供电电路进行有效保护;当通过机械开关SW1的电流超过控制电路(A)预设的功率半导体器件保护电流时关闭功率半导体器件导通控制信号,有利于在机械开关SW1输出端负载短路等情况下造成很大过流时,防止超出功率半导体器件极限过电流时,保护功率半导体器件不被损坏。
如图5所示,本发明的实施例之五,其包括与机械开关SW1连接的功率半导体器件Q1(为一场效应管),机械开关SW1连接有电流传感器CT1(图5为一电流互感器,CT1为穿心连接,也可以串联连接,工作原理相同),电流传感器CT1用于检测通过机械开关SW1的电流;电流传感器CT1的输出端和功率半导体器件Q1的控制端与控制电路(A)连接,与本装置连接的机械开关为SW1所需灭弧的机械开关,J1、J2端为功率半导体器件Q1与机械开关SW1连接的共同输入输出端点,其中J1端为正电输入端、J2端为输出端,J3端为控制电路(A)的输入电源端,控制电路(A)连接有显示器件LED。
工作过程:按本装置用于机械开关SW1灭弧为例,控制电路(A)得电,机械开关SW1闭合,机械开关SW1有电流通过时,电流传感器CT1输出一脉冲信号,控制电路(A)提供功率半导体器件Q1导通控制信号,当机械开关SW1出现弹跳时,电流通过功率半导体器件Q1旁路,实现闭合弹跳灭弧的目的,在机械开关SW1闭合状态下,控制电路(A)保持提供功率半导体器件Q1导通控制信号,由于功率半导体器件Q1两端电压小于功率半导体器件Q1导通电压,功率半导体器件Q1无导通电流;机械开关SW1分断过程中,在机械开关SW1分断 瞬间电流通过功率半导体器件Q1旁路,机械开关SW1无电流通过,由于通过电流传感器CT1的电流发生了突变,电流传感器CT1感应输出一脉冲信号,控制电路(A)关闭功率半导体器件Q1导通控制信号,功率半导体器件Q1截止,实现分断灭弧的目的。
此实施例五中,功率半导体器件Q1采用场效应管,实际应用中也可以采用三极管、IGBT等全控型半导体器件,在投切带感性的负载时,可以在功率半导体器件Q1反方向并联二极管保护功率半导体器件或选用内置有二极管的功率半导体器件,在此实施例中电流传感器CT1采用普通电流互感器检测直流电流的闭合和分断,具有成本低、体积小的优点。
以上实施例为方便理解本发明的技术方案仅采用了单极机械开关的灭弧进行描述,在多极开关的应用时,只要增加功率半导体器件等相应部件的路数即可,工作原理相同。
以上实施例电流传感器用于检测机械开关闭合,控制电路在检测到机械开关闭合时,控制功率半导体器件导通,用于机械开关闭合弹跳灭弧,大大减少功率半导体器件用于机械开关闭合灭弧的导通时间,克服了功率半导体器件在机械开关闭合提前导通,避免接通瞬间负载的大电流对功率半导体器件造成的冲击,大大提升了功率半导体器件的可靠性。

Claims (17)

  1. 一种电流监控式电子灭弧装置,其包括与机械开关并联的功率半导体器件,其特征是:
    至少一电流传感器与所述机械开关连接,所述电流传感器检测通过所述机械开关的电流,用于检测所述机械开关断开;
    所述电流传感器的输出端和所述功率半导体器件的控制端与控制电路连接;
    所述控制电路在所述电流传感器检测到所述机械开关断开时,控制所述功率半导体器件关断。
  2. 根据权利要求1所述的电流监控式电子灭弧装置,其特征是:所述电流传感器用于检测所述机械开关闭合;
    所述控制电路在所述电流传感器检测到所述机械开关闭合时,控制所述功率半导体器件导通。
  3. 根据权利要求1所述的电流监控式电子灭弧装置,其特征是:所述电流传感器用于检测所述机械开关闭合;
    所述控制电路在所述电流传感器检测到所述机械开关闭合时,控制所述功率半导体器件导通,用于所述机械开关闭合弹跳灭弧。
  4. 根据权利要求1所述的电流监控式电子灭弧装置,其特征是:所述控制电路内置有微控制器,所述电流传感器的输出信号传递至所述微控制器,所述微控制器至少有一输出信号传递至所述功率半导体器件的控制端。
  5. 根据权利要求4所述的电流监控式电子灭弧装置,其特征是:所述微控制器连接有用于过载保护电流设置的输入元件。
  6. 根据权利要求4所述的电流监控式电子灭弧装置,其特征是:所述微控制器连接有显示器件。
  7. 根据权利要求1所述的电流监控式电子灭弧装置,其特征是:驱动所述功率半导体器件导通的驱动信号由所述功率半导体器件的主回路通过电容、电阻连接至所述功率半导体器件的控制极,所述的驱动信号的回路中连接至少一电子 开关,所述电子开关的控制端与所述控制电路连接。
  8. 根据权利要求7所述的电流监控式电子灭弧装置,其特征是:所述电子开关为光电耦合器或光电耦合器驱动晶体管电路。
  9. 根据权利要求7所述的电流监控式电子灭弧装置,其特征是:所述电容与所述电阻组成串联电路,所述驱动信号由所述功率半导体器件的主回路通过所述串联电路、再经所述电子开关连接到所述功率半导体器件的控制极,所述电子开关至少连接一限压器件,用于保护所述电子开关。
  10. 根据权利要求7所述的电流监控式电子灭弧装置,其特征是:所述电容与所述电阻组成串联电路,所述串联电路通过所述电子开关或限压器件并联在所述功率半导体器件的主回路的输入输出端。
  11. 根据权利要求7所述的电流监控式电子灭弧装置,其特征是:所述功率半导体器件为单向晶闸管,包括第一单向晶闸管、第二单向晶闸管,所述第一单向晶闸管与所述第二单向晶闸管反向并联;所述电子开关包括第一电子开关、第二电子开关;所述电容与所述电阻组成串联电路,所述第一单向晶闸管的控制极通过所述第一电子开关与所述串联电路一端相连接,所述第二单向晶闸管的控制极通过所述第二电子开关与所述串联电路另一端相连接,所述第一电子开关和所述第二电子开关分别连接有第一限压器件、第二限压器件。
  12. 根据权利要求11所述的电流监控式电子灭弧装置,其特征是:所述第一限压器件和所述第二限压器件为稳压二极管、稳压二极管等效器件;所述第一限压器件的阴极与所述第一电子开关的电压输入端连接,所述第一限压器件的阳极与所述第一单向晶闸管的阴极连接;所述第二限压器件的阴极与所述第二电子开关的电压输入端连接,所述第二限压器件的阳极与所述第二单向晶闸管的阴极连接。
  13. 根据权利要求1所述的电流监控式电子灭弧装置,其特征是:所述电流传感器为电流互感器。
  14. 根据权利要求1所述的电流监控式电子灭弧装置,其特征是:当所述电流超过所述功率半导体器件保护电流时,所述控制电路关闭所述功率半导体器件导 通控制信号,用于保护所述功率半导体器件。
  15. 根据权利要求1所述的电流监控式电子灭弧装置,其特征是:所述控制电路连接有用于保护的输出端口,所述输出端口在所述机械开关通过电流超过过载保护电流时,输出一控制信号。
  16. 根据权利要求1所述的电流监控式电子灭弧装置,其特征是:所述功率半导体器件为全控型半导体器件或半控型半导体器件,所述半控型半导体器件为晶闸管。
  17. 根据权利要求1所述的电流监控式电子灭弧装置,其特征是:所述功率半导体器件的导通电流不经过所述电流传感器。
PCT/CN2015/071588 2014-04-04 2015-01-27 电流监控式电子灭弧装置 WO2015149579A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201410150333 2014-04-04
CN201420178613 2014-04-04
CN201420178613.X 2014-04-04
CN201410150333.2 2014-04-04
CN201410345533.3 2014-07-12
CN201410345533 2014-07-12

Publications (1)

Publication Number Publication Date
WO2015149579A1 true WO2015149579A1 (zh) 2015-10-08

Family

ID=52662621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071588 WO2015149579A1 (zh) 2014-04-04 2015-01-27 电流监控式电子灭弧装置

Country Status (2)

Country Link
CN (2) CN204204692U (zh)
WO (1) WO2015149579A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107819457A (zh) * 2017-12-06 2018-03-20 昆山安平电气有限公司 一种机械与半导体复合式开关及其使用方法
CN112019198A (zh) * 2020-07-15 2020-12-01 西安交通大学 一种基于集成换流的全控型半导体器件封装结构

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204204692U (zh) * 2014-04-04 2015-03-11 广州市金矢电子有限公司 电流监控式电子灭弧装置
CN105428117B (zh) * 2014-12-11 2017-06-30 广州市金矢电子有限公司 灭弧器件
CN104953546A (zh) * 2015-06-25 2015-09-30 安徽长远绿色能源有限公司 用于光伏组件或电源系统的保护检测装置及其控制方法
US10468207B2 (en) 2016-01-24 2019-11-05 Qiaoshi Guo Arc-extinguishing power device driving apparatus and arc extinguishing apparatus
CN106788365B (zh) * 2016-01-24 2018-02-23 广州市金矢电子有限公司 半控型器件驱动方法及装置、混合式器件
CN206432170U (zh) * 2016-01-24 2017-08-22 广州市金矢电子有限公司 灭弧功率器件驱动装置及灭弧装置
CN109003851B (zh) * 2017-07-24 2020-01-14 广州市金矢电子有限公司 直流灭弧电路及装置
CN112768274B (zh) * 2021-01-15 2021-10-01 常熟开关制造有限公司(原常熟开关厂) 主动灭弧方法、装置及断路器、自动转换开关
CN114121550A (zh) * 2021-10-13 2022-03-01 华为数字能源技术有限公司 电路开关、储能系统、以及相关的控制方法
CN117176121B (zh) * 2023-11-02 2024-02-23 成都沃飞天驭科技有限公司 电子开关驱动电路、控制方法以及电动飞行器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643112B1 (en) * 1999-06-08 2003-11-04 Crouzet Automatismes Semiconductor switch-assisted electromechanical relay
CN101266888B (zh) * 2008-04-30 2010-07-07 哈尔滨工业大学 一种大功率混合直流接触器及其控制方法
CN103021739A (zh) * 2012-11-30 2013-04-03 西安交通大学 混合式直流断路器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2085092U (zh) * 1991-03-01 1991-09-18 赵为政 交流灭弧电子模块
CN2462536Y (zh) * 2001-01-31 2001-11-28 齐齐哈尔电力半导体器件厂 电子灭弧器
CN101645370B (zh) * 2009-09-04 2011-06-22 福州大学 基于光耦的混合式交流接触器无源开关驱动控制器
CN204204692U (zh) * 2014-04-04 2015-03-11 广州市金矢电子有限公司 电流监控式电子灭弧装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643112B1 (en) * 1999-06-08 2003-11-04 Crouzet Automatismes Semiconductor switch-assisted electromechanical relay
CN101266888B (zh) * 2008-04-30 2010-07-07 哈尔滨工业大学 一种大功率混合直流接触器及其控制方法
CN103021739A (zh) * 2012-11-30 2013-04-03 西安交通大学 混合式直流断路器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107819457A (zh) * 2017-12-06 2018-03-20 昆山安平电气有限公司 一种机械与半导体复合式开关及其使用方法
CN112019198A (zh) * 2020-07-15 2020-12-01 西安交通大学 一种基于集成换流的全控型半导体器件封装结构
CN112019198B (zh) * 2020-07-15 2022-12-06 西安交通大学 一种基于集成换流的全控型半导体器件封装结构

Also Published As

Publication number Publication date
CN204204692U (zh) 2015-03-11
CN104465167A (zh) 2015-03-25
CN104465167B (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2015149579A1 (zh) 电流监控式电子灭弧装置
AU2018206761B2 (en) Capacitive coupling-type arc-extinguishing circuit and device
EP3116008B1 (en) Current-feedback electronic arc-extinguishing apparatus
WO2015131718A1 (zh) 电子灭弧装置
WO2019019950A1 (zh) 直流灭弧电路及装置
WO2019019949A1 (zh) 直流灭弧装置
WO2016091178A1 (zh) 灭弧器件
CN102074394B (zh) 灭弧开关及其切换方法
WO2017016501A1 (zh) 无涌流投切装置及其控制方法
WO2017125058A1 (zh) 电子灭弧反馈装置及灭弧装置
WO2016134670A1 (zh) 智能开关及其应用系统
CN103631163B (zh) 一种交流电源的开关电路
CN214956721U (zh) 一种固态直流断路器
CN203747367U (zh) 一种采用双向晶闸管的交流电路分合装置
CN110829360B (zh) 一种硬件集成电路控制高压直流断路器的方法
CN115132544A (zh) 一种固态直流断路器及其控制方法
CN111527575B (zh) 直流灭弧装置
WO2020083179A1 (zh) 灭弧电路及装置、开关系统
KR20190052940A (ko) 직류전원 차단 제어장치
WO2020233151A1 (zh) 灭弧电路及装置
WO2016180345A1 (zh) 二端灭弧装置及混合式开关
WO2019029550A1 (zh) 灭弧方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC. EPO FORM 1205A DATED 14.03.2017.

122 Ep: pct application non-entry in european phase

Ref document number: 15772756

Country of ref document: EP

Kind code of ref document: A1