WO2019019949A1 - 直流灭弧装置 - Google Patents

直流灭弧装置 Download PDF

Info

Publication number
WO2019019949A1
WO2019019949A1 PCT/CN2018/096225 CN2018096225W WO2019019949A1 WO 2019019949 A1 WO2019019949 A1 WO 2019019949A1 CN 2018096225 W CN2018096225 W CN 2018096225W WO 2019019949 A1 WO2019019949 A1 WO 2019019949A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
arc extinguishing
mechanical switch
extinguishing device
charging
Prior art date
Application number
PCT/CN2018/096225
Other languages
English (en)
French (fr)
Inventor
郭桥石
Original Assignee
广州市金矢电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市金矢电子有限公司 filed Critical 广州市金矢电子有限公司
Priority to AU2018308486A priority Critical patent/AU2018308486B2/en
Priority to EP18837767.5A priority patent/EP3644336B1/en
Priority to KR1020207004708A priority patent/KR20200029024A/ko
Priority to US16/633,128 priority patent/US20200203093A1/en
Priority to JP2020502694A priority patent/JP6901811B2/ja
Publication of WO2019019949A1 publication Critical patent/WO2019019949A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/548Electromechanical and static switch connected in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/546Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/547Combinations of mechanical switches and static switches, the latter being controlled by the former

Definitions

  • the invention relates to a DC arc extinguishing device, in particular to a DC arc extinguishing device suitable for rapidly extinguishing a mechanical contact such as a mechanical switch, and can also be used for other breakpoints (such as a fuse of a fuse, a plug and a socket) The arc of the breakpoint, the wire breakpoint.
  • the object of the present invention is to solve the problem that the electrical life of the mechanical switch in the prior DC electric control system is short, and to provide a DC arc extinguishing device with good arc extinguishing effect, reduced mechanical switch breaking voltage (arc breaking voltage) and fast arc extinguishing speed.
  • a DC arc extinguishing device wherein the mechanical switch required to extinguish the arc is connected in series with the load, and includes a voltage detecting switch and a capacitor, wherein the voltage detecting switch is connected to the capacitor, and the capacitor passes through the mechanical switch
  • the voltage detecting switch and the load form a discharge circuit for breaking and extinguishing the mechanical switch.
  • a DC arc extinguishing device wherein the voltage detecting switch is turned on at a potential difference between the two ends of the mechanical switch greater than 5 volts and less than or equal to 20 volts; or greater than 20 volts is less than a working voltage interval of the mechanical switch .
  • a DC arc extinguishing device wherein a potential difference between the capacitor and the load is not less than 5 volts during the breaking of the mechanical switch, and the voltage detecting switch is turned on.
  • a DC arc extinguishing device wherein the voltage detecting switch is turned on after the mechanical switch is arced.
  • a DC arc extinguishing device wherein the voltage detecting switch is turned on when a breakdown voltage of an opening distance between contacts of the mechanical switch is greater than an operating voltage of the mechanical switch.
  • a DC arc extinguishing device wherein the voltage detecting switch is a semi-controlled switch.
  • a DC arc extinguishing device wherein the voltage detecting switch is a two-terminal circuit.
  • a DC arc extinguishing device further comprising a charging unit for charging the capacitor, the charging unit being connected in parallel with the voltage detecting switch.
  • a DC arc extinguishing device the charging unit is composed of a first diode, or is composed of a first current limiting element, or is composed of a first diode and a first current limiting element connected in series.
  • a DC arc extinguishing device further includes a first current limiting component, wherein the capacitor is connected to a power input end of the mechanical switch through the first current limiting component, the voltage detecting switch is a three-terminal circuit, the voltage The detection end of the detection switch is connected to the power input or the contact bridge of the mechanical switch.
  • a DC arc extinguishing device includes a thyristor, a trigger pole of the thyristor is connected to an anode of the thyristor, or a trigger pole of the thyristor is connected to a second anode of the thyristor.
  • a DC arc extinguishing device further comprising a first semiconductor device, the first semiconductor device having a turn-on voltage greater than 3 volts, the trigger pole of the thyristor being connected to the anode or the second anode through the first semiconductor device .
  • a DC arc extinguishing device wherein the first semiconductor device is a Zener diode, or a transient diode, or a trigger diode, or a varistor.
  • a DC arc extinguishing device further includes a second diode, wherein the second diode, the first semiconductor device, and the trigger pole of the thyristor are connected in series.
  • a DC arc extinguishing device is provided with a non-insulating isolation between a detecting end of the voltage detecting switch and an output end of the voltage detecting switch.
  • a DC arc extinguishing device wherein the voltage detecting switch is a time delay semiconductor switch.
  • a DC arc extinguishing device is packaged as a device by using an insulating material.
  • a DC arc extinguishing device is packaged as a device with a charging unit for charging the capacitor.
  • a DC arc extinguishing device the voltage detecting switch is composed of a control unit and a power semiconductor device, and a voltage signal of a connection between the mechanical switch and the load is transmitted to the control unit; the power semiconductor device and the device The control unit is connected; during the mechanical switch breaking, the power semiconductor device is turned on, and the capacitor discharges the load through the power semiconductor device.
  • a DC arc extinguishing device in which the control unit detects that the contact of the mechanical switch is disconnected, and delays controlling the power semiconductor device to be turned on, the delay is greater than 100 microseconds .
  • a DC arc extinguishing device the control unit performs A/D acquisition on the voltage signal.
  • a DC arc extinguishing device further comprising a charging unit for charging the capacitor, the charging unit being connected in parallel with the power semiconductor device, wherein a connection end of the mechanical switch and the load passes through the charging unit The capacitor is charged, and the voltage signal is the voltage of the load.
  • a DC arc extinguishing device the charging unit is composed of a first diode and a first current limiting element connected in series, and a voltage signal of the capacitor is transmitted to the control unit for detecting the capacity of the capacitor.
  • a DC arc extinguishing device the voltage signal being a voltage of the load, or a voltage relative to the other end of the power semiconductor device, or a voltage relative to a voltage input of the mechanical switch.
  • a DC arc extinguishing device the power semiconductor device being a semi-controlled device.
  • a DC arc extinguishing device a control signal of the mechanical switch is transmitted to the control unit, or a control signal of the control unit is transmitted to the mechanical switch.
  • a DC arc extinguishing device wherein the control unit stores an adaptive control program for optimizing arc extinguishing control by using the voltage signal or a change of a voltage signal of the power semiconductor device relative to another end of the load connection end parameter.
  • a DC arc extinguishing device further includes a charging unit for charging the capacitor, the charging unit including at least one charging switch, and a control signal of the control unit is transmitted to the charging switch.
  • a DC arc extinguishing device wherein a main loop power supply of the mechanical switch charges the capacitor through the charging switch.
  • a DC arc extinguishing device is a first semiconductor switch, or a fourth mechanical switch, or a fourth mechanical switch is connected in series with a first semiconductor switch, the first semiconductor switch being a semi-controlled device.
  • a DC arc extinguishing device further includes a first current limiting element, the charging switch being in series with the first current limiting element.
  • control unit controls the charging switch, the power semiconductor device to be turned on, and then the mechanical switch is closed; during the mechanical switch breaking operation, The charging switch is in an off state.
  • a DC arc extinguishing device further includes a fourth semiconductor switch, wherein the fourth semiconductor switch is a half-controlled device, a control end of the fourth semiconductor switch is connected to the control unit, and the capacitor and the fourth The semiconductor switch constitutes a second series circuit that forms a discharge loop through the fourth semiconductor switch, the power semiconductor device, and the load.
  • a DC arc extinguishing device further includes a third diode, wherein a main loop power supply of the mechanical switch charges the capacitor through the charging switch and the third diode.
  • a DC arc extinguishing device further includes a fifth semiconductor device, an input power terminal of the mechanical switch is connected to a battery, and the battery is connected with a charging mechanical switch, and the capacitor passes through the charging mechanical switch a fourth semiconductor switch, the fifth semiconductor device discharging the battery, the charging mechanical switch is used to interrupt arc extinguishing, the fifth semiconductor device is a fifth diode, or is connected to the control unit The fifth unidirectional thyristor.
  • a DC arc extinguishing device wherein the charging switch and the power semiconductor device are both semi-controlled switches, and a voltage signal of a common terminal of the second series circuit, the charging switch, and the power semiconductor device is connected to the Said control unit.
  • a DC arc extinguishing device for detecting an operating state of the power semiconductor device.
  • a DC arc extinguishing device is configured to detect a capacity of the capacitor, the capacitor is connected in series with a first current limiting component, and the first current limiting component is a resistor.
  • a DC arc extinguishing device is configured to detect an operating state of the charging switch.
  • a DC arc extinguishing device is configured to detect an operating state of the fourth semiconductor switch.
  • a DC arc extinguishing device a control signal of the mechanical switch is transmitted to the control unit, or a control signal of the control unit is transmitted to the mechanical switch.
  • a DC arc extinguishing device wherein the control unit controls the power semiconductor device to be turned on when an arc is detected in a state in which the mechanical switch is disconnected.
  • a DC arc extinguishing device further includes a fifth unidirectional thyristor, the fifth unidirectional thyristor is connected to the control unit, a power source of the mechanical switch is connected with a battery, and the battery is connected with a charging mechanical switch. During the breaking of the charging mechanical switch, the capacitor discharges the battery through the fifth unidirectional thyristor for the charging mechanical switch to break the arc.
  • a DC arc extinguishing device wherein the number of the mechanical switches is at least two, respectively a first mechanical switch and a second mechanical switch; the load is at least two, respectively being a first load and a second load; and the power semiconductor
  • the number of devices is at least two, which are a first power semiconductor device and a second power semiconductor device, respectively.
  • a DC arc extinguishing device the number of the mechanical switches is three; the number of loads is three; and the number of the power semiconductor devices is three.
  • a DC arc extinguishing device wherein the first load and the second load are loads of the first mechanical switch.
  • a DC arc extinguishing device comprising a fourth mechanical switch, the charging switch further connecting a first current limiting element, and a control signal of the control unit is connected to a control end of the fourth mechanical switch.
  • a DC arc extinguishing device in which the control unit detects that the contact of the mechanical switch is disconnected, and delays controlling the power semiconductor device to be turned on, the delay is greater than 100 microseconds
  • the control unit stores a parameter related to the current of the load, or inputs a parameter related to the current of the load, the greater the current of the load during the mechanical switch breaking operation, the delayed The longer the time.
  • a DC arc extinguishing device wherein the control unit stores a parameter related to a current of the load, or inputs a parameter related to a current of the load, wherein a current of the load during the mechanical switch breaking operation is larger, The greater the voltage difference between the capacitor and the load, the power semiconductor device is turned on.
  • a DC arc extinguishing device wherein the control unit stores an adaptive control program for optimizing arc extinguishing control by using the voltage signal or a change of a voltage signal of the power semiconductor device relative to another end of the load connection end parameter.
  • the invention has reasonable design, good arc extinguishing effect, low mechanical switch breaking voltage and fast arc extinguishing speed.
  • FIG. 1 is a graph showing the electrical life curve of the breaking voltage of a brand high voltage contactor of the background art.
  • Embodiment 1 of the DC arc extinguishing device of the present invention.
  • FIG. 3 is a schematic circuit diagram of a second embodiment of the DC arc extinguishing device of the present invention.
  • FIG. 4 is a schematic circuit diagram of a third embodiment of the DC arc extinguishing device of the present invention.
  • Fig. 5 is a circuit diagram showing the fourth embodiment of the DC arc extinguishing device of the present invention.
  • Fig. 6 is a timing circuit diagram of a voltage detecting switch of the DC arc extinguishing device of the present invention.
  • FIG. 7 is one of the package schematic diagrams of the DC arc extinguishing device of the present invention.
  • FIG. 8 is a second schematic diagram of the package of the DC arc extinguishing device of the present invention.
  • Figure 9 is a circuit diagram of the fifth embodiment of the DC arc extinguishing device of the present invention.
  • Fig. 10 is a circuit diagram showing the sixth embodiment of the DC arc extinguishing device of the present invention.
  • Embodiment 1 of the DC arc extinguishing device of the present invention is as shown in FIG. 2:
  • a DC arc extinguishing device the mechanical switch K1 required to extinguish the arc is connected in series with the load RL1, including the voltage detecting switch A and the capacitor C1, the voltage detecting switch A is connected with the capacitor C1, and the capacitor C1 passes the voltage detection during the mechanical switch K1 breaking process.
  • the switch K1 and the load RL1 form a discharge circuit for the mechanical switch K1 to break the arc.
  • Voltage detecting switch A for detecting a potential difference between the capacitor C1 and the load RL1; comprising a thyristor TR1 (bidirectional thyristor), a first semiconductor device Z1 (stabilizing diode), and a trigger pole of the thyristor TR1 passes through the first semiconductor device Z1 Connected to the second anode of the thyristor TR1.
  • the mechanical switch K1 is closed, the voltage detecting switch A is triggered to charge the capacitor C1, and the mechanical switch K1 is disconnected, when the potential difference of the capacitor C1 end to the load RL1 is greater than the opening voltage of the voltage detecting switch A (the potential difference) It is approximately equal to the potential difference between the two ends of the mechanical switch K1, the turn-on voltage is determined by the first semiconductor device Z1), the thyristor TR1 is triggered to conduct, the capacitor C1 is rapidly discharged to the load RL1 through the thyristor TR1, and the voltage across the load RL1 rises, the mechanical switch K1 The electric field strength between the contacts decreases rapidly, achieving the purpose of quickly extinguishing the arc of the mechanical switch K1.
  • the voltage detecting switch A adopts a bidirectional thyristor, which can be used as both charging and discharging, and has the advantages of simple circuit and low cost.
  • Embodiment 2 of the DC arc extinguishing device of the present invention is as shown in FIG. 3:
  • a DC arc extinguishing device includes a voltage detecting switch A, a capacitor C1, a charging unit B, and a charging unit B connected in parallel with the voltage detecting switch A.
  • Voltage detecting switch A for detecting a potential difference between the capacitor C1 and the load RL1; comprising a thyristor SCR1 (unidirectional thyristor), a first semiconductor device Z1 (stabilizing diode), a second diode D2, and a thyristor SCR1
  • the trigger electrode is connected to the anode of the thyristor SCR1 through the second diode D2 (to prevent the reverse voltage from affecting the circuit).
  • the charging unit B is composed of a first diode D1 and a first current limiting element R1 (resistance) connected in series, and may be composed of the first current limiting element R1 or the first diode D1 according to actual conditions.
  • the mechanical switch K1 is closed, the main circuit power supply of the mechanical switch K1 charges the capacitor C1 through the charging unit B, and the mechanical switch K1 is disconnected, when the potential difference of the capacitor C1 end to the load RL1 is greater than the opening voltage of the voltage detecting switch A
  • the thyristor SCR1 triggers conduction, the capacitor C1 rapidly discharges the load RL1 through the thyristor SCR1, the voltage across the load RL1 rises, and the electric field strength between the contacts of the mechanical switch K1 rapidly decreases, achieving the purpose of rapidly extinguishing the mechanical switch K1.
  • the voltage detecting switch A adopts a unidirectional thyristor, and has the advantages of high current rising rate tolerance and good reliability, and adopts the charging unit B, and has the advantage that the mechanical switch K1 closes the current impact.
  • the voltage detecting switch A is a two-terminal circuit and is a semi-controlled switch, which is composed of a semiconductor device, and has the advantages of simple circuit and low cost; the charging power source of the capacitor C1 is provided by the connection end of the mechanical switch K1 and the load RL1. It has the advantages of not affecting the insulation withstand voltage at both ends of the mechanical switch K1, and the mechanical switch K1 is normally open without leakage current.
  • Embodiment 3 of the DC arc extinguishing device of the present invention is a diagrammatic representation of Embodiment 3 of the DC arc extinguishing device of the present invention.
  • Embodiment 4 of the DC arc extinguishing device of the present invention is as shown in FIG. 5:
  • a DC arc extinguishing device includes a voltage detecting switch A, a capacitor C1, a first current limiting component R1 (a resistor, a charging unit B), and a capacitor C1 is connected to a power input end of the mechanical switch K1 through a first current limiting component R1
  • the detection end of the voltage detecting switch A and the power input end of the mechanical switch K1 (when the mechanical switch K1 is a bridge structure, it can be the contact bridge of the mechanical switch K1, and the second capacitor C2 can be selected as needed).
  • Voltage detection switch A is a three-terminal circuit, and is a semi-controlled switch, which uses a capacitively coupled input signal, and is composed of a thyristor TR1 (a triac or a unidirectional thyristor), and a first semiconductor device Z1 (which is a Zener diode). And a second capacitor C2 for detecting the potential difference between the two ends of the mechanical switch K1 (when it is a bridge structure, that is, a double break point structure, which can be between the contact bridge and the static contact).
  • the thyristor TR1 triggers conduction, and the capacitor C1 discharges the load RL1 through the thyristor TR1 to achieve the purpose of bounce and extinguish the arc of the mechanical switch K1; when the mechanical switch K1 is disconnected, when the mechanical switch K1 is at both ends
  • the potential difference is greater than the turn-on voltage of the voltage detecting switch A
  • the thyristor TR1 is triggered to conduct, the capacitor C1 is rapidly discharged to the load RL1 through the thyristor TR1, the voltage across the load RL1 rises, and the electric field strength between the contacts of the mechanical switch K1 drops rapidly, reaching The purpose of the mechanical switch K1 to quickly extinguish the arc.
  • the capacitor C1 can be an electrolytic capacitor, and the capacitor C1 is connected to the power input end of the mechanical switch K1 through the first current limiting element R1, and the detecting end of the voltage detecting switch A and the power input end (or the touch bridge) of the mechanical switch K1.
  • the connection can close the arc-extinguishing effect of the mechanical switch K1, and has the advantage of no power consumption after the capacitor C1 is fully charged.
  • the turn-on voltage of the first semiconductor device Z1 needs to be greater than 3 volts (much greater than the peak-to-peak value of the system ripple voltage), and a transient diode, or a trigger diode, or a varistor may be used.
  • the turn-on voltage of the thyristor is greater than 5 volts, the first semiconductor device Z1 is selected according to the use conditions.
  • the triggering pole of the thyristor does not need series resistor current limiting, which can increase the trigger speed of the thyristor, reduce the charge of the capacitor before the thyristor is turned on, and improve the capacity utilization of the capacitor.
  • the detection of the voltage detecting switch A in the above embodiment The output terminal of the voltage detecting switch A is non-isolated, and the charging power source of the capacitor is provided by the main circuit power supply of the mechanical switch, which is not electrically isolated (current limiting), and has the advantages of low cost.
  • the first semiconductor device Z1 of the voltage detecting switch A can also adopt a delay circuit as shown in FIG. 6 or a delay circuit similar to that shown in FIG. 6.
  • the voltage detecting switch is a delay-on switch, which can ensure The mechanical switch K1 is disconnected with sufficient opening distance to extinguish the arc to prevent re-ignition after the arc is extinguished.
  • the delay conduction time of the delay conduction switch is preferably controlled to be greater than 100 microseconds.
  • the above embodiment may be packaged as a device by using an insulating material, and may be in a two-port or three-port form, and the charging unit (or the first current limiting element) may be
  • the situation can be external (three ports for external use, one of which is the end point where the capacitor is connected to the power semiconductor device), or it can be built in. It can be a circular structure (as shown in Figure 7) or a square structure ( Figure 8). ).
  • Embodiment 5 of the DC arc extinguishing device of the present invention is as shown in FIG. 9:
  • a DC arc extinguishing device includes a voltage detecting switch A, a capacitor C1, and a charging unit B.
  • Voltage detection switch A consists of control unit C, power semiconductor device SCR1 (for semi-controlled device, unidirectional thyristor), the voltage signal of the connection between mechanical switch K1 and load RL1 is transmitted to control unit C; power semiconductor device SCR1 and control The unit C is connected; during the mechanical switch K1 breaking process, the power semiconductor device SCR1 is turned on, the capacitor C1 is discharged to the load RL1 through the power semiconductor device SCR1, the J1 port is the control power terminal; the J2 port is the communication port for receiving the control command and data. , transfer the device and external status information (such as mechanical switches, load status, etc.), J1, J2 are selected as needed.
  • Control unit C Built-in programmable device (microcontroller), A/D acquisition of the voltage of the load RL1, the voltage signal of the capacitor C1 is transmitted to the control unit C for detecting the capacity of the capacitor C1, the control signal of the mechanical switch K1 Passed to the control unit C (selected as needed), the control signal provided by the control unit C can also be used as the control signal of the mechanical switch K1 (selected as needed), which stores the parameters related to the current of the load RL1, or the input and load RL1
  • the current-related parameters the mechanical switch K1 is disconnected during operation, the contact of the mechanical switch K1 is detected to be disconnected, the delay control power semiconductor SCR1 is turned on, the current of the load RL1 is larger, the delay time is longer, the delay The time is proportional to the current of the load RL1; during the breaking process of the mechanical switch K1, the larger the current of the load RL1 is, the larger the voltage difference between the capacitor C1 and the load RL1 is, and the power semiconductor device SCR1 is turned
  • Charging unit B in parallel with the power semiconductor device SCR1, the connection end of the mechanical switch K1 and the load RL1 charges the capacitor C1 through the charging unit B, which is composed of the first diode D1 and the first current limiting element R1 connected in series, or may be separately It is composed of the first diode D1 or composed of the first current limiting element R1; when the power semiconductor device SCR1 uses a bidirectional thyristor, the charging unit B can be selected as needed.
  • the mechanical switch K1 is closed, the main circuit power supply of the mechanical switch K1 charges the capacitor C1 through the charging unit B, and the control unit C knows the capacity of the capacitor C1 according to the charging speed of the capacitor C1 (for judging whether the capacity of the capacitor is normal, And corresponding to the collected voltage signal data, optimizing the arc extinguishing control program), during the mechanical switch K1 breaking process, the control unit C detects that the mechanical switch K1 is disconnected, and the delay control power semiconductor device SCR1 is turned on (the delay is greater than 100) Microsecond, or at the same time, the voltage value set by the control unit C, the time value of the delay is related to the breaking speed of the mechanical switch K1), or when the voltage signal of the mechanical switch K1 and the load RL1 is detected to reach the set voltage value (or at the same time meet the time value set by the control unit C, the time value is related to the breaking speed of the mechanical switch K1), the control power semiconductor device SCR1 is turned on, the capacitor C1 is rapidly discharged to the
  • the voltage signal at the connection end of the mechanical switch K1 and the load RL1 may be a voltage signal at both ends of the load RL1, or may be a potential difference between the capacitor C1 and the load RL1 (ie, between the two ends of the power semiconductor device SCR1) Potential difference); voltage detection switch A adopts one-way thyristor, which has the advantages of high current rising rate tolerance and good reliability.
  • charging unit B is adopted, which has the advantage of small closing current impulse of mechanical switch K1, charging of capacitor C1.
  • the power supply is provided by the connection end of the mechanical switch K1 and the load RL1, and has the advantages of not affecting the insulation withstand voltage at both ends of the mechanical switch K1, the mechanical switch K1 is normally open, and has no leakage current, and the control unit C stores the adaptive control program, the mechanical switch During the K1 breaking process, the voltage signal at the connection end of the mechanical switch K1 and the load RL1 or the voltage signal of the other end of the connection end between the power semiconductor device SCR1 and the load RL1 (ie, the connection end of the capacitor C1 and the power semiconductor device SCR1) is optimized.
  • Arc control parameters ie, adjusting the time difference between the control of the power semiconductor device and the contact of the mechanical switch
  • the control unit adopts an intelligent unit including a programmable device and built-in control program, which can complete timing, A/D acquisition, voltage comparison, logic processing, etc., which is beneficial to simplify the circuit and can be used for different conditions of the load.
  • Voltage change adjust the control mode, improve the arc extinguishing effect, effectively improve the electrical life of the mechanical switch, calculate the electrical life of the mechanical switch according to the arcing condition and the number of operations, without the need for auxiliary contacts, can detect the touch of the mechanical switch K1 in real time. Point status (on state, off state, arcing state) and transmit related information.
  • Embodiment 6 of the DC arc extinguishing device of the present invention is as shown in FIG. 10:
  • a DC arc extinguishing device (that is, a DC arc management system) suitable for a multi-channel mechanical switch electronic control system of a new energy vehicle, comprising a voltage detecting switch A, a capacitor C1, a charging unit B, and a third diode D3
  • the fourth semiconductor switch SCR4 (half-controlled device, unidirectional thyristor, PA and PB can be disconnected as needed, but it is not recommended, when the PA and PB are disconnected, the control unit C should collect the PA and PB terminal voltage
  • the third diode D3 is connected in parallel with the fourth semiconductor switch SCR4, the control end of the fourth semiconductor switch SCR4 is connected to the control unit C, the second series circuit composed of the capacitor C1 and the fourth semiconductor switch SCR4, and the second unit of the charging unit B
  • a semiconductor switch S1 (half-controlled device, unidirectional thyristor, charging switch), power semiconductor device (SCR1, SCR2, SCR3, half-controlled device, unidirectional thyristor) connected to
  • Voltage detection switch A consists of control unit C, power semiconductor devices (SCR1, SCR2, SCR3), voltage signal transmission at the connection of mechanical switches (K1, K2, K3, K5) and loads (RL1, RL2, RL3, BT) To the control unit C; the power semiconductor devices (SCR1, SCR2, SCR3) are connected to the control unit C.
  • Control unit C Built-in programmable device (microcontroller), the voltage of the load (RL1, RL2, RL3) and the voltage signal A/D of the common terminal PB are collected, and the voltage signal of the input power terminal of the mechanical switch K1 is connected to the control unit C (A/D acquisition).
  • the control unit C A/D acquisition.
  • the delay control power semiconductor device SCR1, SCR2, SCR3 is turned on, due to control
  • the mechanical characteristics of the mechanical switches (K1, K2, K3) and (RL1, RL2, RL3) connected to the unit C are not necessarily the same.
  • the control unit C needs to store and load (RL1, RL2, RL3).
  • Current-related parameters, or parameters related to the current of the load (RL1, RL2, RL3), or the operating time parameters of the mechanical switches (K1, K2, K3); mechanical switching (K1, K2, K3) during the breaking process The larger the current of the load (RL1, RL2, RL3), the longer the delay time, and the delay time is proportional to the current of the load (RL1, RL2, RL3); the time parameter of the delay control can be controlled by the control unit C.
  • the built-in microcontroller is completed; the control signals of the mechanical switches (K1, K2, K3, K5, K6) are transmitted to the control unit C (helping to improve the accuracy of arc extinguishing, real-time, as needed), or mechanical switches
  • the control signals of (K1, K2, K3, K5, K6) are controlled by the control unit C (more Each logic operation to the mechanical switch, the control logic optimization interrupter control, select) according to;
  • the charging unit B includes a fourth mechanical switch K4, a first current limiting element R1 (resistance, when the third diode D3 is connected in series with the current limiting element and the load is a non-capacitive load, may be omitted), and the first semiconductor switch S1 (
  • the semi-controlled device, the unidirectional thyristor, the fourth mechanical switch K4 and the first semiconductor switch S1 are charging switches, and the control signal of the control unit C is transmitted to the fourth mechanical switch K4, the first semiconductor switch S1, and the fourth mechanical switch K4 Used in series with the first semiconductor switch S1, the first semiconductor switch S1 is used to overcome the closed arc of the fourth mechanical switch K4, and the fourth mechanical switch K4 is used to improve the safety of the system.
  • the fourth mechanical switch K4, the first A semiconductor switch S1 can also be selected as one, and the main circuit power supply of the mechanical switch K1 (the main circuit power supply end of the mechanical switch K1) passes through the fourth mechanical switch K4, the first current limiting element R1, the first semiconductor switch S1, the third Diode D3 (when the fourth semiconductor switch SCR4 uses a triac, it can be selected as needed) charges capacitor C1.
  • the control unit C provides a pulse signal to trigger the first semiconductor switch S1 and the power semiconductor device (SCR1, SCR2, SCR3, any one) to be turned on, Power supply to the load (RL1, RL2, RL3, etc.) (such as for motor controllers, DC converters, etc.), can effectively overcome the capacitive load on the mechanical switches (K1, K2, K3)
  • the control unit C can detect whether the first semiconductor switch S1 and the power semiconductor device (SCR1, SCR2, SCR3) are turned off by detecting the voltage of the common terminal PB point, and if it is cut off, it indicates the mechanical switch (K1,
  • the breaking of the mechanical switch (K1, K2, K3), the first semiconductor switch S1 is in an off state, the control unit C detects that the mechanical switch (K1, K2, K3) is open, and the fourth semiconductor switch SCR4 is delayed.
  • the power semiconductor devices (SCR1, SCR2, SCR3) are turned on (delay is greater than 100 microseconds, can be completed by the built-in microcontroller, or at the same time meet the voltage value set by the control unit C, the time value of the delay and the corresponding machine
  • the breaking speed of the switch is related to), or when the voltage signal at the connection of the mechanical switch (K1, K2, K3) and the load (RL1, RL2, RL3) reaches the set voltage value (or at the same time as the time set by the control unit C)
  • the value which is related to the breaking speed of the corresponding mechanical switch, controls the fourth semiconductor switch SCR4, the power semiconductor devices (SCR1, SCR2, SCR3) to be turned on, and the control unit C can detect the voltage at the common terminal PB point.
  • the fourth semiconductor switch SCR4 the power semiconductor device (SCR1, SCR2, SCR3) is in an on state, and the capacitor C1 passes the fourth semiconductor switch SCR4 and the power semiconductor device (SCR1, SCR2, SCR3) to the load (RL1, RL2, RL3) fast
  • the voltage across the electric and load (RL1, RL2, RL3) rises, and the electric field strength between the contacts of the mechanical switch (K1, K2, K3) drops rapidly, achieving the purpose of quickly extinguishing the mechanical switch (K1, K2, K3).
  • the control unit C detects whether the fourth semiconductor switch SCR4 and the power semiconductor device (SCR1, SCR2, SCR3) are in an off state by detecting the voltage of the common terminal PB point, to determine whether the capacitor C1 is completely discharged, and to charge the capacitor C1 next time. prepare for.
  • the control unit C controls the fourth semiconductor switch SCR4 to be turned on, and the capacitor C1 discharges the battery BT through the fourth semiconductor switch SCR4, the fifth semiconductor device D5, and the fourth mechanical switch K4 for charging the mechanical switch.
  • K5 breaks the arc.
  • the control unit C performs A/D acquisition (or high and low level acquisition) on the voltage signal of the common terminal PB, and has the following advantages:
  • the fourth semiconductor switch SCR4, the fifth semiconductor device D5, the first semiconductor switch S1, the power semiconductor device (SCR1, SCR2, SCR3) can be quickly and accurately detected by using a single end point without high-resolution A/D acquisition.
  • the on state, the off state (whether charging or discharging is completed), and the breakdown state ensure the response speed and safety of the system.
  • the load (RL1, RL2, RL3) can be a load such as a motor controller, a DC/DC converter, a motor, a resistor, or the like.
  • the voltage signal at the connection end of the mechanical switch (K1, K2, K3) and the load (RL1, RL2, RL3) described above is the voltage across the load (RL1, RL2, RL3) (when the control unit C is used to perform voltage signal A) /D acquisition, has the advantage of not affecting the insulation withstand voltage of the mechanical switch K1, mechanical switch K1 normally open state, no leakage current), the voltage signal can also be between the capacitor C1 and the load (RL1, RL2, RL3)
  • the potential difference ie the voltage at the other end of the power semiconductor device (SCR1, SCR2, SCR3), or the voltage at the power supply input relative to the mechanical switches (K1, K2, K3).
  • the control unit C when the voltage signal change speed is lower than the change speed set by the control unit C, the control unit C does not provide the relevant power semiconductor device turn-on control signal to prevent the capacitor C1 from being discharged too slowly, and the power semiconductor device (SCR1, SCR2) , SCR3) very slow cutoff, affecting the response speed of other mechanical switches arc extinguishing; when the control unit C stores parameters related to the residual voltage change of the load, which is beneficial to improve the accuracy of the mechanical switch breaking detection, the control unit C stores adaptive control During the breaking process of the mechanical switch (K1, K2, K3), the voltage signal at the connection of the mechanical switch (K1, K2, K3, K5) and the load (RL1, RL2, RL3) or relative to the power semiconductor device (SCR1, SCR2) , SCR3) and the load (RL1, RL2, RL3) at the other end (PB) of the voltage signal changes, optimize the arc extinguishing control parameters (ie adjust the time difference between the control power semiconductor device conduction and the mechanical
  • the mechanical switch K1, the mechanical switch K2, and the mechanical switch K3 are respectively defined as a first mechanical switch, a second mechanical switch, and a third mechanical switch;
  • the load RL1, the load RL2, and the load RL3 are respectively defined as a first load, a second load, and a third load;
  • the power semiconductor device SCR1, the power semiconductor device SCR2, and the power semiconductor device SCR3 are defined as a first power semiconductor device, a second power semiconductor device, and a third power semiconductor device, respectively.
  • the second load and the third load are the same as the load of the first mechanical switch (mechanical switch K1).
  • the fourth mechanical switch K4 When used in the case of multi-circuit mechanical switch such as new energy vehicle, the fourth mechanical switch K4 is a pre-charging contactor, the first current limiting element R1 is a pre-charging resistor, and the first mechanical switch (mechanical switch K1) is The main positive contactor, the sixth mechanical switch K6 is a main negative contactor, and when the arc extinguishing fails, the sixth mechanical switch K6 is controlled to be disconnected; when the control unit C detects an abnormality (such as the first semiconductor switch breakdown or misdirected, the power semiconductor The device is broken or mis-conducted, and the fourth mechanical switch K4 is controlled to be disconnected; except for the sixth mechanical switch K6 and the fourth mechanical switch K4, the mechanical switches (K1, K2, K3, K5) of the DC extinguishing device of the present invention are extinguished.
  • the mechanical switch (K1, K2, K3) may be accidentally closed and disconnected in the normally open state, or the opening distance becomes smaller, or the impact voltage appears at both ends of the mechanical switch (K1, K2, K3), which may occur Arcing, when control unit C is on board
  • the control unit C controls the power semiconductor devices (SCR1, SCR2, SCR3) to be turned on, and the capacitor passes through the power semiconductor devices (SCR1, SCR2, SCR3) and the load (RL1). , RL2, RL3) form a discharge loop to perform arc extinguishing; when the control unit C detects that the arc extinguishing fails, a signal is output to control the mechanical switch K6 to be
  • control unit adopts an intelligent unit including a programmable device and a built-in control program, which can adjust the control mode to different conditions of the load (RL1, RL2, RL3), improve the arc extinguishing effect, and effectively improve the mechanical switch.
  • the capacitor C1 and the fourth semiconductor switch can also be multiple, which can improve the response speed, and can adopt the multi-pulse arc extinguishing mode (two or more capacitors, two or more pulses to the mechanical switch) Arc extinguishing), charging unit B can also charge capacitor C1 with switching power supply.
  • the control unit C recommends using a transformer to trigger the power semiconductor device; the control unit C stores the adaptive control program, and the control unit C uses the mechanical switch to divide the voltage, and the voltage change rate of the voltage signal of the mechanical switch and the load connection is adjusted.
  • the change rate is small, which means that the breaking current is large, and the time difference needs to be increased, so that the mechanical switch has a relatively large opening distance between the contacts, and the mechanical switch has the arc breaking capability. Stronger, combined with capacitor discharge arc extinguishing, can achieve the purpose of stable and reliable arc extinguishing.
  • the electrical parameters of the voltage detecting switch can be selected by referring to the following requirements:
  • the voltage detection switch can be designed to have a potential difference greater than 5 volts and less than or equal to 20 volts at both ends of the mechanical switch. Conduction (when the capacitance is large enough, the voltage value can be appropriately lowered);
  • the working voltage of the mechanical switch is high (more than 200 volts), or the capacity of the capacitor is small, or the internal resistance of the discharge circuit is large, it can be designed as a mechanical switch breaking process, the voltage at both ends is greater than 20 volts and less than The working voltage range of the mechanical switch, the voltage detecting switch (power semiconductor device) is turned on, because the voltage of the mechanical switch is between 0 and 20 volts during the mechanical switch breaking period, and the voltage rise rate is high, and the mechanical switch contacts are opened. The distance is small, and it is recommended to be less than 1/2 of the working voltage of the mechanical switch.
  • the potential difference between the capacitor and the load is not less than 5 volts, and the voltage detecting switch is turned on for obtaining a large mechanical switch.
  • the open distance and large discharge current improve the reliability of arc extinguishing.
  • the voltage detection switch is turned on after the mechanical switch is arced. Because the mechanical switch is broken, the voltage change rate of the mechanical switch is large before the mechanical switch is arced. The opening distance between the contacts of the mechanical switch is very small, and the capacitor is needed. The large capacity can stabilize the arc extinguishing and achieve the purpose of no arc breaking. The arc is extinguished within 100 microseconds after the voltage detecting switch is turned on (if the time is too long, the capacitor needs a large capacity, and the arc extinguishing stability is poor).
  • the voltage detection switch is turned on when the breakdown voltage of the opening distance between the contacts of the mechanical switch is greater than the working voltage of the mechanical switch, and the voltage detection switch can be turned on to achieve the purpose, and the delay can be
  • the voltage detecting switch is used to delay the control of the power semiconductor device by the delay circuit of the voltage detecting switch (such as the microcontroller of the control unit or the delay circuit of the resistor-capacitor transistor) when the contact of the mechanical switch is detected to be disconnected, or
  • the voltage detection switch detects that there is a high voltage conduction at both ends of the mechanical switch to solve (ie, a voltage detection switch with a high turn-on voltage), which has the advantages of effectively preventing arc re-ignition after arc extinguishing and minimizing the capacity requirement of the capacitor; It can be adjusted according to the breaking speed of the mechanical switch, the capacity of the capacitor, the working voltage of the mechanical switch, and the characteristics of the load.
  • the inductance and the internal resistance of the discharge circuit are reduced as much as possible within the range of the current rising rate of the power semiconductor device, and the rising rate of the discharge current of the capacitor is increased, and the capacity requirement of the capacitor can be reduced, and the power semiconductor device can be larger than
  • the 180A microsecond unidirectional thyristor (which can be used in parallel) utilizes the internal resistance of the discharge circuit to make the power semiconductor device operate within a safe range, improving the arc extinguishing speed and the reliability of arc extinguishing.
  • the mechanical switch is a contactor (relay).
  • any mechanical breakpoint as an arc extinguishing target can also be defined as a mechanical switch, such as a fuse body, a connector, or the like.
  • the present invention has the following advantages:
  • the circuit Due to the voltage detection switch, the circuit is simple, a large potential difference is formed between the capacitor and the load, and the voltage detection switch is turned on, which is beneficial to overcome the influence of the internal resistance of the capacitor discharge circuit, and improve the instantaneous discharge current of the capacitor, and the capacitance capacity requirement.
  • the power required by the first current limiting component is small and the response speed is fast (ie, the charging and discharging speed is fast, which is crucial for the arc-extinguishing response speed of the multi-way mechanical switch, when the capacitance design is 30 micro
  • the first current limiting component is designed to arc-extinguish the mechanical switch of 33 ohms to tens of amperes to several hundred amperes, and the entire arc extinguishing process of the capacitor charging and discharging can be completed within ten milliseconds, according to the technical scheme shown in FIG. In one second, the arc extinguishing is completed for dozens or even hundreds of mechanical switches.
  • the cost is low, the volume is small, and the reliability is high.
  • the semi-controlled device has the advantages of large overload capacity, short conduction time, low cost, and zero-crossing of the current without breaking the overvoltage, and economically solving the load above 100 amps.
  • Arc-extinguishing problem 25 amp unidirectional thyristor with rated operating current, arc extinguishing for several hundred amps or more).

Abstract

一种直流灭弧装置,特别是一种适合于对机械开关等机械触点快速灭弧的直流灭弧装置,所需灭弧的机械开关(K1)与负载(RL1)串联,其特征是:包括一电压检测开关(A)、一电容(C1),电压检测开关(A)与电容(C1)连接,机械开关(K1)分断过程中,电容(C1)通过电压检测开关(A)、负载(RL1)形成放电回路,用于机械开关(K1)分断灭弧,技术方案设计合理,具有成本低,灭弧速度快的优点。

Description

直流灭弧装置 技术领域
本发明涉及一种直流灭弧装置特别是一种适合于对机械开关等机械触点快速灭弧的直流灭弧装置,也可以用于其它断点(如熔断体的熔断、插头与插座之间的断点、导线断点)的灭弧。
背景技术
目前在新能源汽车、轨道交通、舰船等直流电控系统中,普遍使用接触器(继电器)等机械开关对负载进行接通和分断控制,由于直流电没有零点,其分断电弧大,存在机械开关成本高(高压接触器)、电寿命短的缺点,随着机械开关的分断电压越大,其电寿命将大幅度降低,如图1所示,为某品牌高压接触器的分断电压(即断弧电压)对应电寿命曲线图。
发明内容
本发明的目的在于解决现有直流电控系统中机械开关的电寿命短的问题,提供一种灭弧效果好、降低机械开关分断电压(断弧电压)、灭弧速度快的直流灭弧装置。
实现本发明的目的是通过以下技术方案来达到的:
一种直流灭弧装置,所需灭弧的机械开关与负载串联,包括一电压检测开关、一电容,所述电压检测开关与所述电容连接,所述机械开关分断过程中,所述电容通过所述电压检测开关、所述负载形成放电回路,用于所述机械开关分断灭弧。
一种直流灭弧装置,所述电压检测开关在所述机械开关的两端电位差大于5伏特且小于或等于20伏特区间导通;或大于20伏特小于所述机械开关的工作电压区间导通。
一种直流灭弧装置,所述机械开关分断过程中,所述电容与所述负载之间电位差不小于5伏特,所述电压检测开关导通。
一种直流灭弧装置,所述电压检测开关在所述机械开关燃弧后导通。
一种直流灭弧装置,所述机械开关分断过程中,所述电压检测开关在所述机械开关的触点间开距的击穿电压大于所述机械开关的工作电压时导通。
一种直流灭弧装置,所述电压检测开关为半控型开关。
一种直流灭弧装置,所述电压检测开关为二端电路。
一种直流灭弧装置,还包括一用于对所述电容充电的充电单元,所述充电单元与所述电 压检测开关并联。
一种直流灭弧装置,所述充电单元由第一二极管组成,或由第一限流元件组成,或由第一二极管与第一限流元件串联组成。
一种直流灭弧装置,还包括第一限流元件,所述电容通过所述第一限流元件与所述机械开关的电源输入端连接,所述电压检测开关为三端电路,所述电压检测开关的检测端与所述机械开关的电源输入端或触桥连接。
一种直流灭弧装置,所述半控型开关包括一晶闸管,所述晶闸管的触发极与所述晶闸管的阳极连接,或所述晶闸管的触发极与所述晶闸管的第二阳极连接。
一种直流灭弧装置,还包括第一半导体器件,所述第一半导体器件开启电压大于3伏特,所述晶闸管的触发极通过所述第一半导体器件与所述阳极或所述第二阳极连接。
一种直流灭弧装置,所述第一半导体器件为稳压二极管,或为瞬态二极管,或为触发二极管,或为压敏电阻。
一种直流灭弧装置,还包括第二二极管,所述第二二极管、所述第一半导体器件、所述晶闸管的触发极串联。
一种直流灭弧装置,所述电压检测开关的检测端、所述电压检测开关的输出端之间非绝缘隔离。
一种直流灭弧装置,所述电压检测开关为一延时半导体开关。
一种直流灭弧装置,采用绝缘材料封装为一器件。
一种直流灭弧装置,与一用于对所述电容充电的充电单元采用绝缘材料封装为一器件。
一种直流灭弧装置,所述电压检测开关由一控制单元、一功率半导体器件组成,所述机械开关与所述负载的连接端的电压信号传递至所述控制单元;所述功率半导体器件与所述控制单元连接;所述机械开关分断过程中,所述功率半导体器件导通,所述电容通过所述功率半导体器件对所述负载放电。
一种直流灭弧装置,所述机械开关分断过程中,所述控制单元检测到所述机械开关的触点断开,延时控制所述功率半导体器件导通,所述延时大于100微秒。
一种直流灭弧装置,所述控制单元对所述电压信号进行A/D采集。
一种直流灭弧装置,还包括用于对所述电容充电的充电单元,所述充电单元与所述功率半导体器件并联,所述机械开关与所述负载的连接端通过所述充电单元对所述电容充电,所述电压信号为所述负载的电压。
一种直流灭弧装置,所述充电单元由第一二极管与第一限流元件串联组成,所述电容的 电压信号传递至所述控制单元,用于检测所述电容的容量。
一种直流灭弧装置,所述电压信号为所述负载的电压,或相对于所述功率半导体器件的另一端的电压,或相对于所述机械开关的电压输入端的电压。
一种直流灭弧装置,所述功率半导体器件为半控型器件。
一种直流灭弧装置,所述机械开关的控制信号传递至所述控制单元,或所述控制单元的控制信号传递至所述机械开关。
一种直流灭弧装置,所述控制单元储存有自适应控制程序,利用所述电压信号或所述功率半导体器件的相对于与所述负载连接端的另一端的电压信号的变化,优化灭弧控制参数。
一种直流灭弧装置,还包括用于对所述电容充电的充电单元,所述充电单元至少包括一充电开关,所述控制单元的控制信号传递至所述充电开关。
一种直流灭弧装置,所述机械开关的主回路电源通过所述充电开关对所述电容充电。
一种直流灭弧装置,所述充电开关为第一半导体开关,或为第四机械开关,或由第四机械开关与第一半导体开关串联组成,所述第一半导体开关为半控型器件。
一种直流灭弧装置,还包括第一限流元件,所述充电开关与所述第一限流元件串联。
一种直流灭弧装置,所述机械开关闭合工作过程中,所述控制单元控制所述充电开关、所述功率半导体器件导通,然后所述机械开关闭合;所述机械开关分断工作过程中,所述充电开关处于截止状态。
一种直流灭弧装置,还包括第四半导体开关,所述第四半导体开关为半控型器件,所述第四半导体开关的控制端与所述控制单元连接,所述电容与所述第四半导体开关组成第二串联电路,所述电容通过所述第四半导体开关、所述功率半导体器件、所述负载形成放电回路。
一种直流灭弧装置,还包括第三二极管,所述机械开关的主回路电源通过所述充电开关、所述第三二极管对所述电容充电。
一种直流灭弧装置,还包括第五半导体器件,所述机械开关的输入电源端连接有电池,所述电池连接有充电机械开关,所述充电机械开关分断过程中,所述电容通过所述第四半导体开关、所述第五半导体器件对所述电池放电,用于所述充电机械开关分断灭弧,所述第五半导体器件为第五二极管,或为与所述控制单元连接的第五单向晶闸管。
一种直流灭弧装置,所述充电开关、所述功率半导体器件均为半控型开关,所述第二串联电路、所述充电开关、所述功率半导体器件连接的共同端的电压信号连接至所述控制单元。
一种直流灭弧装置,用于检测所述功率半导体器件的工作状态。
一种直流灭弧装置,用于检测所述电容的容量,所述电容串联第一限流元件,所述第一 限流元件为一电阻。
一种直流灭弧装置,用于检测所述充电开关的工作状态。
一种直流灭弧装置,用于检测所述第四半导体开关的工作状态。
一种直流灭弧装置,所述机械开关的控制信号传递至所述控制单元,或所述控制单元的控制信号传递至所述机械开关。
一种直流灭弧装置,所述控制单元在所述机械开关分断状态下检测到燃弧时,所述控制单元控制所述功率半导体器件导通。
一种直流灭弧装置,还包括第五单向晶闸管,所述第五单向晶闸管与所述控制单元连接,所述机械开关的输入电源端连接有电池,所述电池连接有充电机械开关,所述充电机械开关分断过程中,所述电容通过所述第五单向晶闸管对所述电池放电,用于所述充电机械开关分断灭弧。
一种直流灭弧装置,所述机械开关数量至少为二,分别为第一机械开关、第二机械开关;所述负载数量至少为二,分别为第一负载、第二负载;所述功率半导体器件数量至少为二,分别为第一功率半导体器件、第二功率半导体器件。
一种直流灭弧装置,所述机械开关数量为三;所述负载数量为三;所述功率半导体器件数量为三。
一种直流灭弧装置,所述第一负载、所述第二负载为所述第一机械开关的负载。
一种直流灭弧装置,所述充电开关包括第四机械开关,所述充电开关还串联第一限流元件,所述控制单元的控制信号连接至所述第四机械开关的控制端。
一种直流灭弧装置,所述机械开关分断过程中,所述控制单元检测到所述机械开关的触点断开,延时控制所述功率半导体器件导通,所述延时大于100微秒,所述控制单元储存与所述负载的电流相关的参数,或输入与所述负载的电流相关的参数,所述机械开关分断工作过程中,所述负载的电流越大,所述延时的时间越长。
一种直流灭弧装置,所述控制单元储存与所述负载的电流相关的参数,或输入与所述负载的电流相关的参数,所述机械开关分断工作过程中所述负载的电流越大,所述电容与所述负载之间电压差越大,所述功率半导体器件导通。
一种直流灭弧装置,所述控制单元储存有自适应控制程序,利用所述电压信号或所述功率半导体器件的相对于与所述负载连接端的另一端的电压信号的变化,优化灭弧控制参数。
工作原理:机械开关分断过程中,电容通过电压检测开关、负载形成放电回路,负载两端电压上升,机械开关的触点间电场强度快速下降,达到对机械开关快速灭弧的目的(即达 到无电弧分断,或燃弧时间极短分断的目的)。
本发明设计合理,具有灭弧效果好、降低机械开关分断电压、灭弧速度快的优点。
附图说明
图1是背景技术某品牌高压接触器的分断电压对应电寿命曲线图。
图2是本发明直流灭弧装置实施例一电路原理图。
图3是本发明直流灭弧装置实施例二电路原理图。
图4是本发明直流灭弧装置实施例三电路原理图。
图5是本发明直流灭弧装置实施例四电路原理图。
图6是本发明直流灭弧装置的电压检测开关的延时电路图。
图7是本发明直流灭弧装置的封装示意图之一。
图8是本发明直流灭弧装置的封装示意图之二。
图9是本发明直流灭弧装置实施例五电路原理图。
图10是本发明直流灭弧装置实施例六电路原理图。
具体实施方式
本发明直流灭弧装置的实施例一,如图2所示:
一种直流灭弧装置,所需灭弧的机械开关K1与负载RL1串联,包括电压检测开关A与电容C1,电压检测开关A与电容C1连接,机械开关K1分断过程中,电容C1通过电压检测开关K1、负载RL1形成放电回路,用于机械开关K1分断灭弧。
电压检测开关A:用于检测电容C1与负载RL1之间的电位差;其包括晶闸管TR1(双向晶闸管)、第一半导体器件Z1(稳压二极管),晶闸管TR1的触发极通过第一半导体器件Z1与晶闸管TR1的第二阳极连接。
工作原理:机械开关K1闭合,电压检测开关A触发导通对电容C1充电,机械开关K1分断过程中,当电容C1端对负载RL1的电位差大于电压检测开关A的开启电压时(该电位差约等于机械开关K1的两端的电位差,开启电压由第一半导体器件Z1决定),晶闸管TR1触发导通,电容C1通过晶闸管TR1对负载RL1快速放电,负载RL1两端电压上升,机械开关K1的触点间电场强度快速下降,达到对机械开关K1快速灭弧的目的。
本实施例,电压检测开关A采用双向晶闸管,其同时可以作为充电和放电使用,具有电路简单、成本低的优点。
本发明直流灭弧装置的实施例二,如图3所示:
一种直流灭弧装置,其包括电压检测开关A、电容C1、充电单元B,充电单元B与电压检测开关A并联。电压检测开关A:用于检测电容C1与负载RL1之间的电位差;其包括晶闸管SCR1(单向晶闸管)、第一半导体器件Z1(稳压二极管)、第二二极管D2,晶闸管SCR1的触发极通过第二二极管D2(用于防止反向电压对电路的影响)、第一半导体器件Z1与晶闸管SCR1的阳极连接。
充电单元B:由第一二极管D1与第一限流元件R1(电阻)串联组成,根据实际情况也可单独由第一限流元件R1组成,或第一二极管D1组成。
工作原理:机械开关K1闭合,机械开关K1的主回路电源通过充电单元B对电容C1充电,机械开关K1分断过程中,当电容C1端对负载RL1的电位差大于电压检测开关A的开启电压时,晶闸管SCR1触发导通,电容C1通过晶闸管SCR1对负载RL1快速放电,负载RL1两端电压上升,机械开关K1的触点间电场强度快速下降,达到对机械开关K1快速灭弧的目的。
本实施例,电压检测开关A采用单向晶闸管,具有电流上升速率耐受力高、可靠性好的优点,同时采用了充电单元B,具有机械开关K1闭合电流冲击小的优点。
以上二实施例,电压检测开关A为二端电路,且为半控型开关,由半导体器件组成,具有电路简单、成本低优点;电容C1的充电电源由机械开关K1与负载RL1的连接端提供,具有不影响机械开关K1两端的绝缘耐压,机械开关K1常开状态下,无泄漏电流的优点。
本发明直流灭弧装置的实施例三:
当需要对直流电机正反转灭弧控制时,如图4所示,只是适当增加相关元件数量和使能端即可,工作原理相同,就不再赘述。
本发明直流灭弧装置的实施例四,如图5所示:
一种直流灭弧装置,其包括电压检测开关A、电容C1、第一限流元件R1(一电阻,充电单元B),电容C1通过第一限流元件R1与机械开关K1的电源输入端连接,电压检测开关A的检测端与机械开关K1的电源输入端(当机械开关K1为桥式结构时,可以为机械开关K1的触桥,第二电容C2可以根据需要选用)连接。
电压检测开关A:为三端电路,且为半控型开关,采用电容耦合式输入信号,由晶闸管TR1(双向晶闸管,也可以采用单向晶闸管)、第一半导体器件Z1(为一稳压二极管)、第二电容C2组成,用于检测机械开关K1的两端(当为桥式结构,即双断点结构,可以为触桥与静触点之间)的电位差。
工作原理:机械开关K1的电源输入端上电后,直流电源通过第一限流元件R1对电容 C1充满电,机械开关K1闭合,电容C2通过第一半导体器件Z1、机械开关K1形成放电回路,当机械开关K1出现弹跳时,晶闸管TR1触发导通,电容C1通过晶闸管TR1对负载RL1放电,达到对机械开关K1闭合弹跳灭弧的目的;机械开关K1分断过程中,当机械开关K1的两端的电位差大于电压检测开关A的开启电压时,晶闸管TR1触发导通,电容C1通过晶闸管TR1对负载RL1快速放电,负载RL1两端电压上升,机械开关K1的触点间电场强度快速下降,达到对机械开关K1快速灭弧的目的。
实施例四,电容C1可以采用电解电容,电容C1通过第一限流元件R1与机械开关K1的电源输入端连接,电压检测开关A的检测端与机械开关K1的电源输入端(或触桥)连接,可以对机械开关K1闭合弹跳起灭弧作用,同时在电容C1充满电后,具有无功耗的优点。
以上实施例一、二、三、四,第一半导体器件Z1的开启电压需大于3伏特(要大于系统纹波电压的峰峰值),可以采用瞬态二极管,或触发二极管,或压敏电阻等等同器件,采用晶闸管的开启电压大于5伏特时,第一半导体器件Z1根据使用工况需要选用。
机械开关K1分断过程中,晶闸管的触发极无需串联电阻限流,可以提高晶闸管触发速度,减少电容的电荷在晶闸管导通前损失,提升电容的容量利用率,以上实施例电压检测开关A的检测端、电压检测开关A的输出端之间非绝缘隔离,电容的充电电源由机械开关的主回路电源非电气隔离(限流)提供,具有成本低的优点。
实际使用时也可以在电压检测开关A的第一半导体器件Z1采用如图6的延时电路或类似于如图6的延时电路,此时电压检测开关为一延时导通开关,可以保证机械开关K1断开有足够的开距,进行灭弧,防止电弧灭弧后重燃,延时导通开关的延时导通时间最好控制大于100微秒。
为方便普及推广使用,有利于标准化、批量化,成为通用器件,对以上实施例可采用绝缘材料封装为一器件,可以采用两端口或三端口形式,充电单元(或第一限流元件)根据情况可以外置(外置时为三端口,其中一端口为电容与功率半导体器件连接的端点),也可以内置,可以采用圆型结构(图7所示),或方形结构(图8所示)。
本发明直流灭弧装置的实施例五,如图9所示:
一种直流灭弧装置,其包括电压检测开关A、电容C1、充电单元B。
电压检测开关A:由控制单元C、功率半导体器件SCR1(为半控型器件,单向晶闸管)组成,机械开关K1与负载RL1的连接端的电压信号传递至控制单元C;功率半导体器件SCR1与控制单元C连接;机械开关K1分断过程中,功率半导体器件SCR1导通,电容C1通过功率半导体器件SCR1对负载RL1放电,J1端口为控制电源端;J2端口为通信口,用 于接受控制指令及数据、传送本装置及外部状态信息(如机械开关、负载状态等),J1、J2根据需要选用。
控制单元C:内置可编程器件(微控制器),对负载RL1的电压进行A/D采集,电容C1的电压信号传递至控制单元C,用于检测电容C1的容量,机械开关K1的控制信号传递至控制单元C(根据需要选择),也可以采用机械开关K1的控制信号由控制单元C提供的控制方式(根据需要选择),其储存与负载RL1的电流相关的参数,或输入与负载RL1的电流相关的参数,机械开关K1分断工作过程中,检测到机械开关K1的触点断开,延时控制功率半导体SCR1导通,负载RL1的电流越大,延时的时间越长,延时的时间与负载RL1的电流成正比;机械开关K1分断工作过程中,负载RL1的电流越大,电容C1与负载RL1之间电压差越大,功率半导体器件SCR1导通,用于提高电容C1的放电的电流,提升灭弧效果。
充电单元B:与功率半导体器件SCR1并联,机械开关K1与负载RL1的连接端通过充电单元B对电容C1充电,其由第一二极管D1与第一限流元件R1串联组成,也可以单独采用第一二极管D1组成,或由第一限流元件R1组成;当功率半导体器件SCR1采用双向晶闸管,充电单元B可根据需要选用。
工作原理:机械开关K1闭合,机械开关K1的主回路电源通过充电单元B对电容C1充电,控制单元C根据电容C1充电的速度,得知电容C1的容量(用于判断电容的容量是否正常,及对应采集的电压信号数据,优化灭弧控制程序),机械开关K1分断过程中,控制单元C检测到机械开关K1的触点断开,延时控制功率半导体器件SCR1导通(延时大于100微秒,或同时符合控制单元C设定的电压值,延时的时间值与机械开关K1的分断速度有关),或检测到机械开关K1与负载RL1连接端的电压信号达到设定的电压值时(或同时符合控制单元C设定的时间值,该时间值与机械开关K1的分断速度有关),控制功率半导体器件SCR1导通,电容C1通过功率半导体器件SCR1对负载RL1快速放电,负载RL1两端电压快速上升,机械开关K1的触点间电场强度快速下降,达到对机械开关K1快速灭弧的目的。
实施例五,机械开关K1与负载RL1的连接端的电压信号可以为负载RL1的两端的电压信号,也可以为电容C1与负载RL1之间的电位差(即功率半导体器件SCR1的两端之间的电位差);电压检测开关A采用单向晶闸管,具有电流上升速率耐受力高、可靠性好的优点,同时采用了充电单元B,具有机械开关K1闭合电流冲击小的优点,电容C1的充电电源采用机械开关K1与负载RL1的连接端提供,具有不影响机械开关K1两端的绝缘耐压, 机械开关K1常开状态下,无泄漏电流的优点,控制单元C储存自适应控制程序,机械开关K1分断过程中,利用机械开关K1与负载RL1连接端的电压信号或相对于功率半导体器件SCR1与负载RL1连接端的另一端(即电容C1与功率半导体器件SCR1连接端)的电压信号的变化,优化灭弧控制参数(即调整控制功率半导体器件导通与机械开关的触点断开的时间差),达到最佳的灭弧效果,控制单元采用包括一可编程器件,其内置控制程序的智能化单元,可以完成定时、A/D采集、电压比较、逻辑处理等,有利简化电路,可以对负载的不同状况(电压变化),调整控制方式,提高灭弧效果,有效提升机械开关的电寿命,根据燃弧情况及操作次数对机械开关电寿命计算,无需辅助触点,能实时检测到机械开关K1的触点状态(接通状态、断开状态、燃弧状态),并传输相关信息。
本发明直流灭弧装置的实施例六,如图10所示:
一种适用于新能源汽车等多路机械开关电控系统的直流灭弧装置(即为一直流电弧管理系统),其包括电压检测开关A、电容C1、充电单元B、第三二极管D3、第四半导体开关SCR4(半控型器件,单向晶闸管,PA与PB之间根据需要可断开,但不推荐,当PA与PB之间断开时,控制单元C要采集PA和PB端点电压),第三二极管D3与第四半导体开关SCR4并联,第四半导体开关SCR4的控制端与控制单元C连接,电容C1与第四半导体开关SCR4组成的第二串联电路、充电单元B的第一半导体开关S1(半控型器件,单向晶闸管,充电开关)、功率半导体器件(SCR1、SCR2、SCR3,半控型器件,单向晶闸管)连接的共同端PB的电压信号连接至控制单元C,机械开关K1(主正接触器)的输入电源端连接有电池BT,电池BT连接有充电机械开关K5,电池BT的负极通过第六机械开关K6(主负接触器)与工作地连接,还包括第五半导体器件D5(第五二极管;也可以替换为一与控制单元C连接的第五单向晶闸管,当采用第五单向晶闸管时,第四半导体开关SCR4根据需要选用,充电机械开关K5分断过程中,电容C1通过第五单向晶闸管对电池BT放电,用于充电机械开关K5分断灭弧)。J1端口为控制电源端;J2端口为通信口,用于接受控制指令及数据、传送本装置及外部状态信息(如机械开关、负载状态等),J1、J2根据需要选用。
电压检测开关A:由控制单元C、功率半导体器件(SCR1、SCR2、SCR3)组成,机械开关(K1、K2、K3、K5)与负载(RL1、RL2、RL3、BT)的连接端的电压信号传递至控制单元C;功率半导体器件(SCR1、SCR2、SCR3)与控制单元C连接。
控制单元C:内置可编程器件(微控制器),对负载(RL1、RL2、RL3)的电压及共同端PB的电压信号A/D采集,机械开关K1的输入电源端的电压信号连接至控制单元C (A/D采集)。机械开关(K1、K2、K3)分断工作过程中,检测到机械开关(K1、K2、K3)的触点断开,延时控制功率半导体器件(SCR1、SCR2、SCR3)导通,由于与控制单元C连接的机械开关(K1、K2、K3)及(RL1、RL2、RL3)负载电特性未必一致,为达到最佳灭弧效果,控制单元C需储存与负载(RL1、RL2、RL3)的电流相关的参数,或输入与负载(RL1、RL2、RL3)的电流相关的参数,或机械开关(K1、K2、K3)的动作时间参数;机械开关(K1、K2、K3)分断工作过程中,负载(RL1、RL2、RL3)的电流越大,延时的时间越长,延时的时间与负载(RL1、RL2、RL3)的电流成正比;延时控制的时间参数可以由控制单元C内置的微控制器完成;机械开关(K1、K2、K3、K5、K6)的控制信号传递至控制单元C(有利于提高灭弧准确性,实时性,根据需要选择),也可以采用机械开关(K1、K2、K3、K5、K6)的控制信号由控制单元C提供的控制方式(更有利于对各个机械开关的动作逻辑、灭弧控制逻辑优化控制,根据需要选择);
机械开关(K1、K2、K3)分断工作过程中负载(RL1、RL2、RL3)的电流越大,电容C1与负载(RL1、RL2、RL3)之间电压差越大,功率半导体器件(SCR1、SCR2、SCR3)导通,用于提高电容C1的放电的电流;
充电单元B:包括第四机械开关K4、第一限流元件R1(电阻,当第三二极管D3串联有限流元件及负载为非容性负载时,可省略)、第一半导体开关S1(半控型器件,单向晶闸管),第四机械开关K4与第一半导体开关S1为充电开关,控制单元C的控制信号传递至第四机械开关K4、第一半导体开关S1,第四机械开关K4与第一半导体开关S1串联使用,第一半导体开关S1用于克服第四机械开关K4的闭合电弧,第四机械开关K4用于提高系统的安全性,实际工程应用中第四机械开关K4、第一半导体开关S1也可以二者选一,机械开关K1的主回路电源(机械开关K1的主回路电源端)通过第四机械开关K4、第一限流元件R1、第一半导体开关S1、第三二极管D3(当第四半导体开关SCR4采用双向晶闸管时,可根据需要选用)对电容C1充电。
工作原理:机械开关K6闭合,机械开关K1的电源输入端上电后(接通电池BT),控制单元C先控制第四机械开关K4闭合,然后控制单元C提供一脉冲信号触发第一半导体开关S1导通,对电容C1充电,当充电电流小于第一半导体开关S1最小保持导通电流时,第一半导体开关S1自行截止,整个电容C1充电过程,控制单元C通过检测共同端PB点的电压,可得知第一半导体开关S1为导通或截止状态、判断电容C1充电是否完成,并可得知电容C1的容量(用于判断电容的容量是否正常,及对应采集的电压信号数据,优化灭弧控制程序),机械开关(K1、K2、K3)闭合工作过程中,控制单元C提供一脉冲信号触发第 一半导体开关S1及功率半导体器件(SCR1、SCR2、SCR3,任一)导通,对负载(RL1、RL2、RL3,任一)供电(如对电机控制器,直流变换器等),可有效克服容性负载对机械开关(K1、K2、K3)的电流冲击和闭合电弧,控制单元C通过检测共同端PB点的电压,可得知第一半导体开关S1及功率半导体器件(SCR1、SCR2、SCR3)是否截止,如截止,则表示机械开关(K1、K2、K3)完成闭合。
机械开关(K1、K2、K3)分断过程中,第一半导体开关S1处于截止状态,控制单元C检测到机械开关(K1、K2、K3)的触点断开,延时控制第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)导通(延时大于100微秒,可由内置的微控制器完成,或同时符合控制单元C设定的电压值,延时的时间值与对应的机械开关的分断速度有关),或检测到机械开关(K1、K2、K3)与负载(RL1、RL2、RL3)连接端的电压信号达到设定的电压值时(或同时符合控制单元C设定的时间值,该时间值与对应机械开关的分断速度有关),控制第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)导通,控制单元C通过检测共同端PB点的电压,可以得知第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)是否处于导通状态,电容C1通过第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)对负载(RL1、RL2、RL3)快速放电,负载(RL1、RL2、RL3)两端电压上升,机械开关(K1、K2、K3)的触点间电场强度快速下降,达到对机械开关(K1、K2、K3)快速灭弧的目的,控制单元C通过检测共同端PB点的电压,得知第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)是否处于截止状态,来判断电容C1是否完成放电,为对电容C1下次充电做准备。
充电机械开关K5分断过程中,控制单元C控制第四半导体开关SCR4导通,电容C1通过第四半导体开关SCR4、第五半导体器件D5、第四机械开关K4对电池BT放电,用于充电机械开关K5分断灭弧。
控制单元C对共同端PB的电压信号进行A/D采集(或高低电平采集),具有以下优点:
1、利用单一个端点且无需高分辨率A/D采集就可以快速准确检测出第四半导体开关SCR4、第五半导体器件D5、第一半导体开关S1、功率半导体器件(SCR1、SCR2、SCR3)在导通状态、截止状态(充电或放电是否完成)、击穿状态,保证系统的响应速度和安全性。
2、不消耗电容C1的电能的条件下检测电容C1的容量,无需频繁对电容C1充电,间接得知电容C1两端的电压,提升系统的响应速度和安全性。
负载(RL1、RL2、RL3)可以为电机控制器、DC/DC变换器、电机、电阻等负载。
以上所述的机械开关(K1、K2、K3)与负载(RL1、RL2、RL3)连接端的电压信号为 负载(RL1、RL2、RL3)的两端的电压(当采用控制单元C对电压信号进行A/D采集,具有不影响机械开关K1两端的绝缘耐压,机械开关K1常开状态下,无泄漏电流的优点),电压信号也可以为电容C1与负载(RL1、RL2、RL3)之间的电位差,即相对于功率半导体器件(SCR1、SCR2、SCR3)的另一端的电压,或相对于机械开关(K1、K2、K3)的电源输入端电压。
机械开关分断过程中,电压信号变化速度小于控制单元C设定的变化速度时,控制单元C不提供相关的功率半导体器件导通控制信号,防止电容C1放电过慢,功率半导体器件(SCR1、SCR2、SCR3)很慢截止,影响其它机械开关灭弧的响应速度;当控制单元C存储与负载的残压变化有关参数,有利于提高对机械开关分断检测的准确性,控制单元C储存自适应控制程序,机械开关(K1、K2、K3)分断过程中,利用机械开关(K1、K2、K3、K5)与负载(RL1、RL2、RL3)连接端的电压信号或相对于功率半导体器件(SCR1、SCR2、SCR3)与负载(RL1、RL2、RL3)连接端的另一端(PB)的电压信号的变化,优化灭弧控制参数(即调整控制功率半导体器件导通与机械开关的触点断开的时间差),达到最佳的灭弧效果。
机械开关K1、机械开关K2、机械开关K3分别定义为第一机械开关、第二机械开关、第三机械开关;
负载RL1、负载RL2、负载RL3分别定义为第一负载、第二负载、第三负载;
功率半导体器件SCR1、功率半导体器件SCR2、功率半导体器件SCR3,分别定义为第一功率半导体器件、第二功率半导体器件、第三功率半导体器件。
在本实施例中,第二负载、第三负载同为第一机械开关(机械开关K1)的负载。
当在新能源汽车等多路机械开关灭弧的场合上使用时,第四机械开关K4为预充电接触器,第一限流元件R1为预充电阻,第一机械开关(机械开关K1)为主正接触器,第六机械开关K6为主负接触器,灭弧失败时,控制第六机械开关K6分断;控制单元C检测到异常时(如第一半导体开关击穿或误导通、功率半导体器件击穿或误导通),控制第四机械开关K4分断;除第六机械开关K6、第四机械开关K4外,其余本发明直流灭弧装置灭弧的机械开关(K1、K2、K3、K5)可以采用在普通(非密封式高压)接触器,可以大幅度减低成本,提高安全性(无漏气风险),特别是应用在汽车等运动并可能出现意外机械冲击(如碰撞、翻车等)的工况下,机械开关(K1、K2、K3)常开状态下可能意外闭合又分断,或开距变小,或机械开关(K1、K2、K3)两端出现冲击电压,这时可能出现燃弧,当控制单元C在机械开关(K1、K2、K3)分断状态下检测到燃弧时,控制单元C控制功率半导体器件 (SCR1、SCR2、SCR3)导通,电容通过功率半导体器件(SCR1、SCR2、SCR3)、负载(RL1、RL2、RL3)形成放电回路,进行灭弧;控制单元C在检测到灭弧失败时,输出一信号,控制机械开关K6分断。
本实施例,控制单元采用包括一可编程器件,其内置控制程序的智能化单元,可以对负载(RL1、RL2、RL3)各自的不同状况,调整控制方式,提高灭弧效果,有效提升机械开关的电寿命,可以完成定时(延时控制功率半导体器件)、A/D采集、电压比较、逻辑处理等,有利简化电路;共用电容、控制单元、充电开关对多路机械开关(机械开关可以互为串联关系)进行灭弧控制、预充电(或闭合灭弧)和检测(接通状态、断开状态、燃弧状态),根据燃弧情况及操作次数对机械开关电寿命计算,并传输相关信息(故障代码等),有利于提高电控系统的整体安全性,具有更高性价比的特点,可广泛应用于新能源汽车、轨道交通、舰船、航空、自动化控制等领域,作为一种具备电弧管理及灭弧职能的直流灭弧装置(直流电弧管理系统)。
根据实际工况,电容C1与第四半导体开关也可以多个,可以提升响应速度,并可以采用多脉冲灭弧方式(2个或2个以上电容,分2个或2个以上脉冲对机械开关灭弧),充电单元B也可以采用开关电源对电容C1充电。
实施例五、六,控制单元C建议采用变压器触发功率半导体器件;控制单元C储存自适应控制程序,控制单元C利用机械开关的分断过程中,机械开关与负载连接端的电压信号的电压变化速率调整功率半导体器件导通与机械开关的触点断开的时间差,变化速率小则意味分断电流大,需加大时间差,使得机械开关的触点间有比较大的开距,机械开关断弧能力也比较强,再结合电容放电灭弧,可达到稳定可靠灭弧的目的。
以上实施例,电压检测开关的电参数可以参考以下要求选取:
1、当机械开关的工作电压不高(小于或等于200伏特)时,或电容的容量较大时可设计为电压检测开关在机械开关的两端电位差大于5伏特且小于或等于20伏特区间导通(当电容容量足够大时,可适当放低电压值);
2、当机械开关的工作电压高(大于200伏特)时,或电容的容量较小,或放电回路內阻较大时,可设计为机械开关分断过程中,其两端电压大于20伏特且小于机械开关的工作电压区间,电压检测开关(功率半导体器件)导通,因为机械开关分断期间,机械开关的两端电压在0到20伏特区间电压上升速率很高,机械开关的触点之间开距小,且推荐小于机械开关的工作电压的1/2为佳,同时机械开关分断过程中,电容与负载之间电位差不小于5伏特,电压检测开关导通,用于获得机械开关较大的开距及较大的放电电流,提高灭弧的可靠 性。
3、电压检测开关在机械开关燃弧后导通,因为机械开关分断过程中,机械开关燃弧前,机械开关两端的电压变化速率大,机械开关的触点之间开距极小,需要电容的容量大才能稳定灭弧,达到无电弧分断的目的,电压检测开关导通后100微秒内电弧熄灭(如果时间过长,电容需极大容量,灭弧稳定性差)。
4、机械开关分断过程中,电压检测开关在机械开关的触点间开距的击穿电压大于机械开关的工作电压时导通,可通过电压检测开关延时导通来达到目的,延时可以采用电压检测开关在检测到机械开关的触点断开时由电压检测开关的延时电路(如控制单元的微控制器,或电阻电容晶体管延时电路)完成对功率半导体器件延时控制,或电压检测开关检测到机械开关两端存在较高的电压导通来解决(即采用高开启电压的电压检测开关),具有有效防止灭弧后电弧重燃、电容的容量要求极小的优点;参数可根据机械开关的分断速度、电容的容量、机械开关的工作电压、负载的特性调整。
以上实施例,在不超出功率半导体器件电流上升速率承受范围内,尽可能减少放电回路的电感量及内阻,提升电容放电电流的上升速率,可减少电容的容量要求,功率半导体器件可采用大于180A每微秒的单向晶闸管(可多个并联使用),利用放电回路的内阻,使得功率半导体器件的工作在安全范围内,提高灭弧速度和灭弧的可靠性。
以上实施例中机械开关为接触器(继电器),本发明中,任何作为灭弧目标的机械断点也可定义为机械开关,如熔断体、接插件等。
综上所述,本发明具有以下优点:
1、由于采用电压检测开关,电路简单,在电容与负载之间形成较大的电位差,电压检测开关导通,有利于克服电容放电回路内阻的影响,提高电容瞬间放电流,电容容量要求小,由于电容容量小,具有第一限流元件所需功率小及响应速度快(即充放电速度快,这对多路机械开关的灭弧提升响应速度至关重要,当电容设计为30微法,第一限流元件设计为33欧姆对几十安培至几百安培负载的机械开关灭弧,可以在十毫秒内完成电容充放电整个灭弧过程,按图10所示的技术方案,可在1秒钟内对数十个甚至超百个机械开关完成灭弧)、成本低、体积小、可靠性高的优点,对800伏特,500安培负载,只要几十微法的电容,即可满足在几微秒到几十微秒时间内(不能超100微秒)快速灭弧。
2、采用半控型器件(开关)与全控型器件相比具有过载能力大、导通时间短、成本低、电流过零截止不产生分断过电压的优点,经济地解决百安培以上负载的灭弧问题(可采用额定工作电流为25安培单向晶闸管,对几百安培以上电流灭弧)。
3、与负载并联灭弧方式,使用更为灵活方便,采用电容放电的方式灭弧,能有效克服切除负载过电压现象。
4、电压波动时,电压检测开关不导通,电压检测开关无温升,电容电寿命长。
5、可以对没有控制线圈的手动控制的开关、行程开关等机械开关进行灭弧,适用范围广。
6、降低机械开关的分断电压(断弧电压),大幅度提升机械开关电寿命(如图1所示,当机械开关的两端工作电压为600V时,做300A的负载电流分断,电寿命约为150次,当采用机械开关配合本发明直流灭弧装置,且把电压检测开关开启值设计为90V,相当于机械开关分断90V/300A的直流,则机械开关电寿命可以达2万次以上)。

Claims (50)

  1. 一种直流灭弧装置,所需灭弧的机械开关与负载串联,其特征是:包括一电压检测开关、一电容,所述电压检测开关与所述电容连接,所述机械开关分断过程中,所述电容通过所述电压检测开关、所述负载形成放电回路,用于所述机械开关分断灭弧。
  2. 根据权利要求1所述的直流灭弧装置,其特征是:所述电压检测开关在所述机械开关的两端电位差大于5伏特且小于或等于20伏特区间导通;或大于20伏特小于所述机械开关的工作电压区间导通。
  3. 根据权利要求2所述的直流灭弧装置,其特征是:所述机械开关分断过程中,所述电容与所述负载之间电位差不小于5伏特,所述电压检测开关导通。
  4. 根据权利要求1所述的直流灭弧装置,其特征是:所述电压检测开关在所述机械开关燃弧后导通。
  5. 根据权利要求1所述的直流灭弧装置,其特征是:所述机械开关分断过程中,所述电压检测开关在所述机械开关的触点间开距的击穿电压大于所述机械开关的工作电压时导通。
  6. 根据权利要求1至5任一项所述的直流灭弧装置,其特征是:所述电压检测开关为半控型开关。
  7. 根据权利要求6所述的直流灭弧装置,其特征是:所述电压检测开关为二端电路。
  8. 根据权利要求7所述的直流灭弧装置,其特征是:还包括一用于对所述电容充电的充电单元,所述充电单元与所述电压检测开关并联。
  9. 根据权利要求8所述的直流灭弧装置,其特征是:所述充电单元由第一二极管组成,或由第一限流元件组成,或由第一二极管与第一限流元件串联组成。
  10. 根据权利要求6所述的直流灭弧装置,其特征是:还包括第一限流元件,所述电容通过所述第一限流元件与所述机械开关的电源输入端连接,所述电压检测开关为三端电路,所述电压检测开关的检测端与所述机械开关的电源输入端或触桥连接。
  11. 根据权利要求6所述的直流灭弧装置,其特征是:所述半控型开关包括一晶闸管,所述晶闸管的触发极与所述晶闸管的阳极连接,或所述晶闸管的触发极与所述晶闸管的第二阳极连接。
  12. 根据权利要求11所述的直流灭弧装置,其特征是:还包括第一半导体器件,所述第一半导体器件开启电压大于3伏特,所述晶闸管的触发极通过所述第一半导体器件与所述阳极或所述第二阳极连接。
  13. 根据权利要求12所述的直流灭弧装置,其特征是:所述第一半导体器件为稳压二极管,或为瞬态二极管,或为触发二极管,或为压敏电阻。
  14. 根据权利要求13所述的直流灭弧装置,其特征是:还包括第二二极管,所述第二二极管、所述第一半导体器件、所述晶闸管的触发极串联。
  15. 根据权利要求6所述的直流灭弧装置,其特征是:所述电压检测开关的检测端、所述电压检测开关的输出端之间非绝缘隔离。
  16. 根据权利要求6所述的直流灭弧装置,其特征是:所述电压检测开关为一延时半导体开关。
  17. 根据权利要求6所述的直流灭弧装置,其特征是:采用绝缘材料封装为一器件。
  18. 根据权利要求6所述的直流灭弧装置,其特征是:与一用于对所述电容充电的充电单元采用绝缘材料封装为一器件。
  19. 根据权利要求1至5任一项所述的直流灭弧装置,其特征是:所述电压检测开关由一控制单元、一功率半导体器件组成,所述机械开关与所述负载的连接端的电压信号传递至所述控制单元;所述功率半导体器件与所述控制单元连接;所述机械开关分断过程中,所述功率半导体器件导通,所述电容通过所述功率半导体器件对所述负载放电。
  20. 根据权利要求19所述的直流灭弧装置,其特征是:所述机械开关分断过程中,所述控制单元检测到所述机械开关的触点断开,延时控制所述功率半导体器件导通,所述延时大于100微秒。
  21. 根据权利要求19所述的直流灭弧装置,其特征是:所述控制单元对所述电压信号进行A/D采集。
  22. 根据权利要求21所述的直流灭弧装置,其特征是:还包括用于对所述电容充电的充电单元,所述充电单元与所述功率半导体器件并联,所述机械开关与所述负载的连接端通过所述充电单元对所述电容充电,所述电压信号为所述负载的电压。
  23. 根据权利要求22所述的直流灭弧装置,其特征是:所述充电单元由第一二极管与第一限流元件串联组成,所述电容的电压信号传递至所述控制单元,用于检测所述电容的容量。
  24. 根据权利要求19所述的直流灭弧装置,其特征是:所述电压信号为所述负载的电压,或相对于所述功率半导体器件的另一端的电压,或相对于所述机械开关的电源输入端的电压。
  25. 根据权利要求19所述的直流灭弧装置,其特征是:所述功率半导体器件为半控型器件。
  26. 根据权利要求19所述的直流灭弧装置,其特征是:所述机械开关的控制信号传递至所述控制单元,或所述控制单元的控制信号传递至所述机械开关。
  27. 根据权利要求19所述的直流灭弧装置,其特征是:所述控制单元储存有自适应控制程序,利用所述电压信号或所述功率半导体器件的相对于与所述负载连接端的另一端的电压信号的 变化,优化灭弧控制参数。
  28. 根据权利要求19所述的直流灭弧装置,其特征是:还包括用于对所述电容充电的充电单元,所述充电单元至少包括一充电开关,所述控制单元的控制信号传递至所述充电开关。
  29. 根据权利要求28所述的直流灭弧装置,其特征是:所述机械开关的主回路电源通过所述充电开关对所述电容充电。
  30. 根据权利要求29所述的直流灭弧装置,其特征是:所述充电开关为第一半导体开关,或为第四机械开关,或由第四机械开关与第一半导体开关串联组成,所述第一半导体开关为半控型器件。
  31. 根据权利要求30所述的直流灭弧装置,其特征是:还包括第一限流元件,所述充电开关与所述第一限流元件串联。
  32. 根据权利要求28所述的直流灭弧装置,其特征是:所述机械开关闭合工作过程中,所述控制单元控制所述充电开关、所述功率半导体器件导通,然后所述机械开关闭合;所述机械开关分断工作过程中,所述充电开关处于截止状态。
  33. 根据权利要求28所述的直流灭弧装置,其特征是:还包括第四半导体开关,所述第四半导体开关为半控型器件,所述第四半导体开关的控制端与所述控制单元连接,所述电容与所述第四半导体开关组成第二串联电路,所述电容通过所述第四半导体开关、所述功率半导体器件、所述负载形成放电回路。
  34. 根据权利要求33所述的直流灭弧装置,其特征是:还包括第三二极管,所述机械开关的主回路电源通过所述充电开关、所述第三二极管对所述电容充电。
  35. 根据权利要求33所述的直流灭弧装置,其特征是:还包括第五半导体器件,所述机械开关的输入电源端连接有电池,所述电池连接有充电机械开关,所述充电机械开关分断过程中,所述电容通过所述第四半导体开关、所述第五半导体器件对所述电池放电,用于所述充电机械开关分断灭弧,所述第五半导体器件为第五二极管,或为与所述控制单元连接的第五单向晶闸管。
  36. 根据权利要求33所述的直流灭弧装置,其特征是:所述充电开关、所述功率半导体器件均为半控型开关,所述第二串联电路、所述充电开关、所述功率半导体器件连接的共同端的电压信号连接至所述控制单元。
  37. 根据权利要求36所述的直流灭弧装置,其特征是:用于检测所述功率半导体器件的工作状态。
  38. 根据权利要求36所述的直流灭弧装置,其特征是:用于检测所述电容的容量,所述电容 串联第一限流元件,所述第一限流元件为一电阻。
  39. 根据权利要求36所述的直流灭弧装置,其特征是:用于检测所述充电开关的工作状态。
  40. 根据权利要求36所述的直流灭弧装置,其特征是:用于检测所述第四半导体开关的工作状态。
  41. 根据权利要求28所述的直流灭弧装置,其特征是:所述机械开关的控制信号传递至所述控制单元,或所述控制单元的控制信号传递至所述机械开关。
  42. 根据权利要求28所述的直流灭弧装置,其特征是:所述控制单元在所述机械开关分断状态下检测到燃弧时,所述控制单元控制所述功率半导体器件导通。
  43. 根据权利要求28所述的直流灭弧装置,其特征是:还包括第五单向晶闸管,所述第五单向晶闸管与所述控制单元连接,所述机械开关的输入电源端连接有电池,所述电池连接有充电机械开关,所述充电机械开关分断过程中,所述电容通过所述第五单向晶闸管对所述电池放电,用于所述充电机械开关分断灭弧。
  44. 根据权利要求28所述的直流灭弧装置,其特征是:所述机械开关数量至少为二,分别为第一机械开关、第二机械开关;
    所述负载数量至少为二,分别为第一负载、第二负载;
    所述功率半导体器件数量至少为二,分别为第一功率半导体器件、第二功率半导体器件。
  45. 根据权利要求44所述的直流灭弧装置,其特征是:所述机械开关数量为三;
    所述负载数量为三;
    所述功率半导体器件数量为三。
  46. 根据权利要求44所述的直流灭弧装置,其特征是:所述第一负载、所述第二负载为所述第一机械开关的负载。
  47. 根据权利要求44所述的直流灭弧装置,其特征是:所述充电开关包括第四机械开关,所述充电开关还串联第一限流元件,所述控制单元的控制信号连接至所述第四机械开关的控制端。
  48. 根据权利要求44所述的直流灭弧装置,其特征是:所述机械开关分断过程中,所述控制单元检测到所述机械开关的触点断开,延时控制所述功率半导体器件导通,所述延时大于100微秒,所述控制单元储存与所述负载的电流相关的参数,或输入与所述负载的电流相关的参数,所述机械开关分断工作过程中,所述负载的电流越大,所述延时的时间越长。
  49. 根据权利要求44所述的直流灭弧装置,其特征是:所述控制单元储存与所述负载的电流相关的参数,或输入与所述负载的电流相关的参数,所述机械开关分断工作过程中所述负载 的电流越大,所述电容与所述负载之间电压差越大,所述功率半导体器件导通。
  50. 根据权利要求44所述的直流灭弧装置,其特征是:所述控制单元储存有自适应控制程序,利用所述电压信号或所述功率半导体器件的相对于与所述负载连接端的另一端的电压信号的变化,优化灭弧控制参数。
PCT/CN2018/096225 2017-07-24 2018-07-19 直流灭弧装置 WO2019019949A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2018308486A AU2018308486B2 (en) 2017-07-24 2018-07-19 Direct current arc extinguishing apparatus
EP18837767.5A EP3644336B1 (en) 2017-07-24 2018-07-19 Direct-current arc-extinguishing device
KR1020207004708A KR20200029024A (ko) 2017-07-24 2018-07-19 직류 소호 장치
US16/633,128 US20200203093A1 (en) 2017-07-24 2018-07-19 Direct current arc extinguishing apparatus
JP2020502694A JP6901811B2 (ja) 2017-07-24 2018-07-19 直流消弧装置

Applications Claiming Priority (34)

Application Number Priority Date Filing Date Title
CN201710608043.1 2017-07-24
CN201710608043 2017-07-24
CN201710681425 2017-08-10
CN201710681425.7 2017-08-10
CN201710752610.0 2017-08-28
CN201710752610 2017-08-28
CN201710828462.6 2017-09-14
CN201710828462 2017-09-14
CN201710987367.0 2017-10-20
CN201710987367 2017-10-20
CN201711028608.5 2017-10-29
CN201711028608 2017-10-29
CN201711071590.7 2017-11-03
CN201711071590 2017-11-03
CN201711279281 2017-12-06
CN201711279281.9 2017-12-06
CN201711360342 2017-12-18
CN201711360342.4 2017-12-18
CN201711419656.7 2017-12-25
CN201711419656 2017-12-25
CN201810026942.5 2018-01-11
CN201810026942 2018-01-11
CN201810334791.X 2018-04-15
CN201810334791 2018-04-15
CN201810384250 2018-04-26
CN201810384250.8 2018-04-26
CN201810518236.2 2018-05-27
CN201810518236 2018-05-27
CN201810664507.5 2018-06-25
CN201810664507 2018-06-25
CN201810723029.0 2018-07-04
CN201810723029 2018-07-04
CN201810792433.3A CN108962647B (zh) 2017-07-24 2018-07-18 直流灭弧装置
CN201810792433.3 2018-07-18

Publications (1)

Publication Number Publication Date
WO2019019949A1 true WO2019019949A1 (zh) 2019-01-31

Family

ID=64481625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096225 WO2019019949A1 (zh) 2017-07-24 2018-07-19 直流灭弧装置

Country Status (7)

Country Link
US (1) US20200203093A1 (zh)
EP (1) EP3644336B1 (zh)
JP (1) JP6901811B2 (zh)
KR (1) KR20200029024A (zh)
CN (2) CN113345741B (zh)
AU (1) AU2018308486B2 (zh)
WO (1) WO2019019949A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003851B (zh) * 2017-07-24 2020-01-14 广州市金矢电子有限公司 直流灭弧电路及装置
CN112673442B (zh) * 2018-09-19 2023-06-20 广州市金矢电子有限公司 灭弧电路及装置
CN113016112A (zh) * 2018-12-08 2021-06-22 郭桥石 瞬态电压抑制装置
CN114830277A (zh) * 2019-12-23 2022-07-29 郭桥石 灭弧开关及其使用方法
WO2021151281A1 (zh) * 2020-01-31 2021-08-05 郭桥石 节能电路及启动装置
CN115428108A (zh) * 2020-05-10 2022-12-02 郭桥石 灭弧电路
WO2021190672A1 (zh) * 2020-05-20 2021-09-30 郭桥石 直流继电器
CN115398582A (zh) * 2020-05-20 2022-11-25 郭桥石 灭弧方法
CN112768274B (zh) * 2021-01-15 2021-10-01 常熟开关制造有限公司(原常熟开关厂) 主动灭弧方法、装置及断路器、自动转换开关

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723700A (zh) * 2012-04-24 2012-10-10 上海诺雅克电气有限公司 一种直流触点开关分断保护电路和接触器
CN103325592A (zh) * 2013-05-28 2013-09-25 北京联动天翼科技有限公司 直流机械开关的灭弧装置及灭弧方法
US20150022928A1 (en) * 2011-12-22 2015-01-22 Siemens Aktiengesellschaft Hybrid dc circuit breaking device
CN105185623A (zh) * 2014-07-30 2015-12-23 广州市金矢电子有限公司 直流电子灭弧装置
CN106783297A (zh) * 2016-01-24 2017-05-31 广州市金矢电子有限公司 直流灭弧功率器件驱动装置及灭弧装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082247A (zh) * 1993-04-08 1994-02-16 陈光冶 几种直流开关灭弧电路
JP2011147299A (ja) * 2010-01-15 2011-07-28 Merstech Inc 保護機能付電力変換装置及び制御方法
EP2523204B1 (en) * 2011-05-12 2019-09-04 ABB Schweiz AG Circuit arrangement and method for interrupting a current flow in a DC current path
WO2013098906A1 (ja) * 2011-12-26 2013-07-04 エヌ・ティ・ティ・データ先端技術株式会社 アーク放電阻止回路及びアーク放電阻止装置
JP6186144B2 (ja) * 2013-03-14 2017-08-23 昇 若月 直流電流遮断装置
KR101688921B1 (ko) * 2015-06-22 2017-01-02 주식회사 효성 Dc 차단기
JP6024801B1 (ja) * 2015-09-04 2016-11-16 ソニー株式会社 スイッチング装置、移動体、電力供給システム及びスイッチング方法
CN206432170U (zh) * 2016-01-24 2017-08-22 广州市金矢电子有限公司 灭弧功率器件驱动装置及灭弧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150022928A1 (en) * 2011-12-22 2015-01-22 Siemens Aktiengesellschaft Hybrid dc circuit breaking device
CN102723700A (zh) * 2012-04-24 2012-10-10 上海诺雅克电气有限公司 一种直流触点开关分断保护电路和接触器
CN103325592A (zh) * 2013-05-28 2013-09-25 北京联动天翼科技有限公司 直流机械开关的灭弧装置及灭弧方法
CN105185623A (zh) * 2014-07-30 2015-12-23 广州市金矢电子有限公司 直流电子灭弧装置
CN106783297A (zh) * 2016-01-24 2017-05-31 广州市金矢电子有限公司 直流灭弧功率器件驱动装置及灭弧装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3644336A4 *

Also Published As

Publication number Publication date
JP6901811B2 (ja) 2021-07-14
KR20200029024A (ko) 2020-03-17
CN113345741A (zh) 2021-09-03
AU2018308486B2 (en) 2021-03-11
US20200203093A1 (en) 2020-06-25
EP3644336A1 (en) 2020-04-29
JP2020527845A (ja) 2020-09-10
CN108962647A (zh) 2018-12-07
CN108962647B (zh) 2021-08-27
AU2018308486A1 (en) 2020-01-30
EP3644336A4 (en) 2020-06-17
EP3644336B1 (en) 2022-02-09
CN113345741B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
US11373817B2 (en) Direct current arc extinguishing circuit and apparatus
EP3644336B1 (en) Direct-current arc-extinguishing device
WO2015149579A1 (zh) 电流监控式电子灭弧装置
AU2019341286B2 (en) Arc-extinguishing circuit and apparatus
CN112740352B (zh) 灭弧电路及装置、开关系统
CN112753084B (zh) 交流灭弧电路及装置、开关系统
WO2020233151A1 (zh) 灭弧电路及装置
WO2019052458A1 (zh) 直流灭弧装置
WO2019029550A1 (zh) 灭弧方法及装置
WO2021189732A1 (zh) 消弧装置
WO2020083323A1 (zh) 灭弧装置
CN115210834A (zh) 灭弧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018308486

Country of ref document: AU

Date of ref document: 20180719

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018837767

Country of ref document: EP

Effective date: 20200122

ENP Entry into the national phase

Ref document number: 20207004708

Country of ref document: KR

Kind code of ref document: A