WO2015147418A1 - 리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지 - Google Patents

리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지 Download PDF

Info

Publication number
WO2015147418A1
WO2015147418A1 PCT/KR2014/012796 KR2014012796W WO2015147418A1 WO 2015147418 A1 WO2015147418 A1 WO 2015147418A1 KR 2014012796 W KR2014012796 W KR 2014012796W WO 2015147418 A1 WO2015147418 A1 WO 2015147418A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
lithium ion
ion secondary
secondary battery
negative electrode
Prior art date
Application number
PCT/KR2014/012796
Other languages
English (en)
French (fr)
Inventor
임태은
김영준
조용남
김기재
정구진
최수정
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2015147418A1 publication Critical patent/WO2015147418A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • C08L87/005Block or graft polymers not provided for in groups C08L1/00 - C08L85/04
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for a lithium ion secondary battery, a method for manufacturing the same, and a lithium ion secondary battery having the same. More specifically, the present invention prevents peeling due to volume expansion and contraction of a silicon-based negative electrode material of a negative electrode of a lithium ion secondary battery. Alternatively, the present invention relates to a binder for a lithium ion secondary battery, a method for manufacturing the same, and a lithium ion secondary battery having the same, which not only suppresses but improves process characteristics while implementing a uniform electrode density.
  • the lithium ion secondary battery is one of energy storage devices for storing energy.
  • Lithium-ion secondary batteries have a higher energy density than nickel cadmium batteries, have no memory effect, are environmentally friendly, have a long life cycle, can output high voltage, and above all, they can be miniaturized. Recently, it is widely used in small portable electronic products such as mobile phones, tablet PCs and camcorders.
  • Conventional lithium ion secondary batteries include a positive electrode, a negative electrode, a separator and an electrolyte as main components.
  • the positive electrode of a conventional lithium ion secondary battery includes lithium oxide, the negative electrode contains a carbon compound, such as graphite that can store the lithium ion, the separator prevents the positive electrode and the negative electrode directly contact, the electrolyte solution in the positive electrode and the negative electrode It acts as a vehicle to allow lithium ions to move.
  • a carbon compound such as graphite that can store the lithium ion
  • the separator prevents the positive electrode and the negative electrode directly contact, the electrolyte solution in the positive electrode and the negative electrode It acts as a vehicle to allow lithium ions to move.
  • the negative electrode material of the lithium ion secondary battery is changed from the carbon-based material to the silicon-based material as described above, the reversible capacity of the lithium ion secondary battery having the silicon-based negative electrode can be greatly increased. Deterioration of the electrode due to volume expansion and contraction of the material and the binder of the silicon-based material is peeled from the negative electrode has a problem that the battery life is greatly reduced.
  • Korean Patent Publication No. 2007-0110569 published on November 20, 2007, includes a polyacrylic acid in which a polyurethane is physically mixed as a binder.
  • a binder in which a polyurethane is physically mixed with polyacrylic acid is disclosed.
  • Korean Patent Publication No. 2014-0012464 published on February 3, 2014 to solve the problems caused by employing a silicon-based negative electrode of a lithium ion secondary battery, a silicon alloy-based negative electrode active material, a negative electrode active material composition comprising the same and The technique which uses the organic binder containing polyamideimide for the manufacturing method and lithium secondary battery is disclosed.
  • the negative electrode mixture is prepared using a binder having polyacrylic acid, a silicon-based active material, a conductive material, and a solvent as a binder of a silicon-based negative electrode of a lithium ion secondary battery, precipitation of solid content including the silicon-based active material, a binder, and a conductive material in a solvent And a negative electrode mixture having a sedimentation phenomenon are applied to the negative electrode, resulting in a non-uniform electrode density of the negative electrode.
  • the sintering temperature of the negative electrode mixture containing a polyamideimide is polyacrylic acid. It is very high compared to the negative electrode mixture containing a has a problem that the manufacturing process characteristics are greatly reduced.
  • the present invention prevents a decrease in battery life due to delamination due to volume expansion and contraction due to charge and discharge, and prevents sedimentation, thereby uniformly distributing the negative electrode mixture to the negative electrode and reducing the sintering temperature of the negative electrode mixture.
  • the binder for a lithium ion secondary battery is formed by chemically synthesizing a first binder containing a carboxylic acid (-COOH) and a second binder containing an amine (NR3, wherein R is hydrogen, alkyne, alkane) One synthetic binder.
  • the first binder of the binder for a lithium ion secondary battery includes poly (acrylic acid, PAA), and the second binder includes polyamide imide (PAI).
  • the synthetic binder of the binder for a lithium ion secondary battery includes an amide (C (O) —NR) group as a functional group.
  • a method for preparing a binder for a lithium ion secondary battery includes dissolving a first binder including carboxylic acid (-COOH) in a solvent, and an amine (NR 3, R in the solvent in which the first binder is dissolved). Silver hydrogen, alkyne, alkane) and providing a reaction inducing agent for inducing a reaction of the first and second binders to the solvent to synthesize a synthetic binder.
  • the reaction inducing agent includes sulfuric acid
  • the solvent includes water
  • the synthesis of the synthetic binder may include refluxing the first binder, the second binder, and the reaction inducing agent ( reflux) is stirred for 24 hours, and the ratio of the first binder, the second binder and the reaction inducing agent is 1: 1: 0.02.
  • the lithium ion secondary battery includes a cathode coated with a cathode mixture including a cathode active material, a conductive agent, and a binder on a cathode electrode, a cathode spaced apart from the cathode, and coated with a cathode mixture mixed with an anode active material, a conducting agent, and a binder on a cathode electrode, A separator separating the positive electrode and the negative electrode, and an electrolyte solution for ion migration between the positive electrode and the negative electrode, wherein the binder included in the negative electrode mixture includes a first binder and an amine (NR3) including carboxylic acid (-COOH).
  • R comprises a synthetic binder formed by chemically synthesizing a second binder comprising hydrogen, alkyne, and alkane).
  • the first binder of the lithium ion secondary battery includes poly (acrylic acid, PAA), the second binder includes poly (amide imide, PAI), the synthetic binder Includes a amide (C (O) -NR) group as the functional group.
  • the binder for a lithium ion secondary battery according to the present invention suppress the volume expansion and contraction caused by charge and discharge generated by using a negative electrode mixture containing silicon to increase capacity. It prevents the decrease of life and prevents the sedimentation of solids that occurs when using some binders, so that the negative electrode mixture is evenly distributed on the electrode, forming the electrode density uniformly, and reducing the sintering temperature of the negative electrode mixture to improve the manufacturing process characteristics
  • the performance of the lithium ion secondary battery is greatly improved.
  • FIG. 1 is a chemical formula illustrating a synthetic binder obtained by synthesizing a first binder, a second binder, and first and second binders constituting a synthetic binder according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a process of manufacturing the synthetic binder shown in FIG. 1.
  • FIG. 3 is a graph showing functional groups of the synthetic binder by FT-IR analysis of the synthetic binder shown in FIG. 1.
  • FIG. 4 is a graph showing 13 C-NMR (nuclear magnetic resonance) analysis of the synthetic binder shown in FIG. 1.
  • FIG. 5 is a graph showing the binding force of a synthetic binder, a binder including polyacrylic acid, and binders including polyamide imide according to an embodiment of the present invention.
  • 6A is a graph showing the recovery rate and the stiffness after forming a negative electrode mixture including a synthetic binder, a binder including polyacrylic acid (PAA), and a binder including polyamide amide (PAI).
  • PAA polyacrylic acid
  • PAI polyamide amide
  • FIG. 6B is a graph showing the recovery rate for each binder of FIG. 6A.
  • 6C is a graph showing stiffness for each binder.
  • FIG. 7 is a cross-sectional view conceptually illustrating a lithium ion secondary battery including a negative electrode to which a negative electrode mixture including the synthetic binder shown in FIG. 1 is coated.
  • FIG. 8 is a graph illustrating an electrochemical evaluation result of a lithium ion secondary battery including the synthetic binder of FIG. 7.
  • FIG. 1 is a chemical formula illustrating a synthetic binder obtained by synthesizing a first binder, a second binder, and first and second binders constituting a synthetic binder according to an embodiment of the present invention.
  • a synthetic binder (PAA-PAI) 300 is formed by synthesizing a first binder 100 and a second binder 200.
  • Synthetic binder 300 may be included in the negative electrode mixture formed on the negative electrode of the lithium ion secondary battery.
  • the negative electrode mixture may include an active material including silicon and graphite, a conductive agent for increasing the conductivity of the active material, a solvent, and a synthetic binder.
  • the first binder 100 for synthesizing the synthetic binder 300 may be a material including carboxylic acid (-COOH) as shown in FIG. 1, for example, the first binder 100 may be poly It may be acrylic acid (poly (acrylic acid), PAA).
  • Polyacrylic acid which is the first binder 100, suppresses volume expansion and contraction caused by silicon (Si) included in a negative electrode mixture formed on a negative electrode of a lithium ion secondary battery, thereby peeling the negative electrode mixture from the negative electrode and Prevents detachment.
  • the first binder 100 has the advantage of preventing the negative electrode mixture from peeling and detaching from the negative electrode by inhibiting the volume expansion and contraction of the negative electrode mixture and the sintering of the negative electrode mixture at low temperature,
  • the first binder 100 also has a disadvantage in that the active material and the conductive agent included in the negative electrode mixture are easily settled in the solvent, thereby making it difficult to realize uniform electrode density.
  • the second binder 200 for synthesizing the synthetic binder 300 includes an amine (NR 3, wherein R is hydrogen, alkyne, and alkane), as shown in FIG. 1, and in one embodiment of the present invention,
  • the binder 200 may include, for example, polyamide imide (PAI).
  • the second binder 200 for synthesizing the synthetic binder 300 has excellent sedimentation prevention characteristics compared to the polyacrylic acid (PAA), which is the first binder 100, it is possible to implement a uniform electrode density of the negative electrode mixture formed on the negative electrode. Has the advantage.
  • PAA polyacrylic acid
  • the negative electrode mixture including the polyamide imide (PAI), which is the second binder 200 for synthesizing the synthetic binder 300, to the negative electrode of the lithium ion secondary battery may maintain a constant strength. Since the second binder 200 containing polyamide imide (PAI) requires a high sintering temperature of about 300 ° C. or more, the electrode density of the negative electrode mixture including the second binder 200 is formed very uniformly. In spite of the advantages that can be achieved, there is a disadvantage in that fairness is not very good.
  • PAI polyamide imide
  • PAA polyacrylic acid
  • amine which is a first binder 100 containing carboxylic acid
  • the synthetic binder 300 formed by synthesizing the first binder 100 and the second binder 200 includes an amide (C (O) -NR) group as a functional group.
  • the amide (C (O) -NR) group which is a functional group formed on the synthetic binder 300, includes a first binder 100 containing polyacrylic acid (PAA) and a polyamide imide (PAI). Excellent binding force, recovery rate, stiffness, improved settling characteristics and improved physical properties can be expressed compared to the second binder 200.
  • PAA polyacrylic acid
  • PAI polyamide imide
  • FIG. 2 is a flowchart illustrating a process of manufacturing the synthetic binder shown in FIG. 1.
  • Step S10 in order to manufacture the synthetic binder 300, first, a step of dissolving the first binder 100 in water as a solvent is performed.
  • PAA polyacrylic acid
  • a second binder 200 of B [g] is provided in a solution in which the first binder 100 is dissolved (step S20).
  • reaction inducing agent may be, for example, sulfuric acid.
  • the ratio of the first binder 100, the second binder 200 and the reaction inducing agent may be 1: 1: 0.02.
  • the first binder 100 is about 5 [g]
  • the second binder 200 may be about 5 [g]
  • the reaction inducing agent may be about 0.1 [g].
  • step S40 After dissolving the first binder 100, the second binder 200 and the reaction inducing agent in water and stirring to generate a synthetic binder 300, unreacted first and The second binder (100,200) is filtered by filtration (filtration) to remove from the synthetic binder 300 (step S40), the remaining water is also removed using a pressure distillation apparatus.
  • the unreacted first and second binders 100 and 200, the synthetic binder remaining after the water and impurities are removed, are dried under vacuum for 24 hours to prepare the synthetic binder 300 (step S60).
  • FIG. 3 is a graph showing functional groups of the synthetic binder by FT-IR analysis of the synthetic binder shown in FIG. 1.
  • a synthetic binder 300 obtained by synthesizing polyacrylic acid (PAA) as the first binder 100 and polyamide imide (PAi) as the second binder 200 by the manufacturing method of FIG. 2.
  • PAA polyacrylic acid
  • PAi polyamide imide
  • the synthetic binder 300 is a polyacrylic acid (PAA) and a second binder (included in the first binder 100 as a starting material). It is confirmed that a specific absorption peak appears at about 1705 cm ⁇ 1 relative to the polyimide amide (PAI) included in 200), and thus observed at about 1705 cm ⁇ 1 in the analysis graph of the synthetic binder 300.
  • Absorption peaks are absorption peaks that are not observed in the first binder 100 and the second binder 200, and the absorption peaks are formed by amide (C (O) -NR), which is a functional group generated in the synthetic binder 300. Is generated.
  • FIG. 4 is a graph showing 13 C-NMR (nuclear magnetic resonance) analysis of the synthetic binder shown in FIG. 1.
  • amide (C (O) -NR) which is a newly introduced functional group in the synthetic binder 300, was At about 178 ppm, it refers to carbon of amide formed through polymerization of polyacrylic acid (PAA), which is the first binder 100, and polyamide imide (PAI), which is the second binder 200, Through this, it can be seen that the amide (C (O) -NR) functional group was successfully formed in the synthetic binder 300 synthesized by polymerizing the first binder 100 and the second binder 200.
  • PAA polyacrylic acid
  • PAI polyamide imide
  • FIG. 5 is a graph showing the binding force of a synthetic binder, a binder including polyacrylic acid, and binders including polyamide imide according to an embodiment of the present invention.
  • a synthetic binder 300 a binder including polyacrylic acid (PAA) and a binder including polyamide imide (PAI) are prepared, and then an active material and a conductive agent are mixed in each binder.
  • an active material and a conductive agent are mixed in each binder.
  • the negative electrode mixture was fixed on the slide glass, and then a double-sided tape was placed on the upper surface of the negative electrode mixture, and tensile strength was measured. It was observed that the binding strength of the negative electrode mixture including the binder was superior to the negative electrode mixture including the polyacrylic acid (PAA) and the negative electrode mixture including the polyamide imide (PAI).
  • FIG. 6A is a graph showing the recovery rate and the stiffness after forming a negative electrode mixture including a synthetic binder, a binder including polyacrylic acid (PAA), and a binder including polyamide amide (PAI).
  • FIG. 6B is a graph showing the recovery rate for each binder of FIG. 6A.
  • 6C is a graph showing stiffness for each binder.
  • a negative electrode mixture was applied by applying a force of about 10 mN to the electrode including the negative electrode mixture. Measure the stiffness, the depth that is pressed down.
  • the binder containing polyacrylic acid has the advantage of relatively low stiffness in which the electrode is pressed, but has a disadvantage of low recovery rate, and polyamide imide (PAI) has a relatively low stiffness and excellent recovery rate.
  • Synthetic binder 300 having the characteristics of both binders has a higher recovery rate of about 35.1% than binders containing conventional polyacrylic acid (PAA) or polyamide imide (PAI). It was found to be superior to the binder containing (PAI), which indicates that the stiffness characteristics of the binder containing polyamide imide (PAI) were improved due to the excellent physical properties compared to the binder containing polyacrylic acid (PAA). do.
  • PAA polyacrylic acid
  • PAI polyamide imide
  • the settling characteristics of the active material, the binder, and the conductive material which are solid in the negative electrode mixture including the binder, the active material, the conductive material, and the solvent, are very important factors in determining the electrode density. If the sedimentation is not performed, the uniform electrode density is not obtained, and thus the performance of the lithium ion secondary battery is greatly reduced, and the mass production of the binder is greatly influenced, and the sedimentation characteristics of the negative electrode mixture are determined by the characteristics of the binder.
  • the settling solid content is 20%, and in the case of the polyacrylic acid binder, the solid content is severely settled in the material, so that it is difficult to realize a uniform electrode density.
  • the negative electrode mixture containing the polyamide imide (PAI) binder has a sedimentation solid content of 1.3%, and the polyamide imide (PAI) binder has a property of causing very low sedimentation in the solvent.
  • the settling solid content is 3.5%, which is settled somewhat higher than polyamide imide (PAI), but polyacrylic acid (PAA) Low settling occurs in the solvent compared to the binder.
  • FIG. 7 is a cross-sectional view conceptually illustrating a lithium ion secondary battery including a negative electrode to which a negative electrode mixture including the synthetic binder shown in FIG. 1 is coated.
  • the lithium ion secondary battery 500 includes a positive electrode 510, a negative electrode 520, a separator 530, and an electrolyte 540.
  • the anode 510 includes an anode electrode 511 and a cathode mixture 515.
  • the positive electrode mixture 515 includes a positive electrode active material including lithium oxide, a conductive agent and a binder for improving the conductivity of the positive electrode active material, and the positive electrode mixture 515 is applied or formed on the surface of the positive electrode 511.
  • the negative electrode 520 includes a negative electrode 521 and a negative electrode mixture 525.
  • the negative electrode 521 is spaced apart from the positive electrode 511, and the negative electrode mixture 525 is a negative electrode active material in which silicon and graphite are mixed at a ratio of 3: 7, a conductive agent and a synthetic binder to improve conductivity of the negative electrode active material. It includes.
  • the active material, the synthetic binder and the conductive agent included in the negative electrode mixture 525 is prepared in a ratio of 8: 1: 1.
  • the negative electrode mixture 525 is applied and formed on the surface of the negative electrode 511.
  • the separator 530 has a structure having pores through which the electrolyte passes, and for example, PE (poly (ethylene)) is used.
  • PE poly (ethylene)
  • the electrolyte 540 includes EC: EMC in a ratio of 1: 2, and the electrolyte 540 includes 1 M of LiPF 6 and 10% of F-EC.
  • the synthetic binder included in the negative electrode mixture 525 chemically synthesizes the first binder 100 including carboxylic acid and the second binder including amine, as shown in FIG. 1. Is formed.
  • the first binder 100 includes, for example, polyacrylic acid (PAA), and the second binder 200 includes, for example, polyamide imide (PAI), and the synthetic binder contains amide ( C (O) -NR) groups.
  • PAA polyacrylic acid
  • PAI polyamide imide
  • the synthetic binder contains amide ( C (O) -NR) groups.
  • FIG. 8 is a graph illustrating an electrochemical evaluation result of a lithium ion secondary battery including the synthetic binder of FIG. 7.
  • the configuration of the lithium ion secondary battery is manufactured in the same form as in FIG. 7, and the evaluation voltage condition is 1.5 [V] to 0.01 [V], and is charged and discharged at a current density of 5C. The evaluation was performed about 300 times.
  • the lithium ion secondary battery including the synthesized synthetic binder exhibited a capacity of 1120.9 [mAh / g] at the first charge in terms of maintenance capacity, and the lithium ion secondary battery including a binder using polyacrylic acid (PAA)
  • PAA polyacrylic acid
  • the lithium ion secondary battery including the binder has the highest capacity.
  • a capacity retention rate of about 47% is obtained for a lithium ion secondary battery including a synthetic binder, and a capacity retention rate of about 38.2% for a lithium ion secondary battery including polyacrylic acid (PAA).
  • PAA polyacrylic acid
  • the negative electrode mixture is uniformly distributed on the electrodes to uniformly form the electrode density, and the sintering temperature of the negative electrode mixture is reduced to improve the manufacturing process characteristics, and excellent binding force, excellent recovery rate, and excellent rigidity compared to conventional binders. By having it, the performance of a lithium ion secondary battery is greatly improved.
  • the present invention can be used in the field of lithium ion secondary battery technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬이온 이차전지용 바인더는 카르복실산(-COOH)을 포함하는 제1 바인더 및 아민(NR3, 단 R은 수소, 알킨, 알칸)을 포함하는 제2 바인더를 화학적으로 합성하여 형성한 합성 바인더를 포함하고, 본 발명에 의하면 용량을 증가시키기 위해 실리콘을 포함하는 음극 합제를 사용함에 따라 발생되는 충방전에 따른 부피 팽창 및 수축을 억제하여 전지 수명 감소를 방지하고, 일부 바인더를 사용할 때 발생되는 고형분의 침강 현상을 방지하여 음극 합제를 전극에 균일하게 분포시켜 전극 밀도를 균일하게 형성하며 음극 합제의 소결 온도를 감소시켜 제조 공정 특성을 향상시키고, 종래 바인더 대비 우수한 결착력, 우수한 회복률, 우수한 강성을 갖도록 함으로써 리튬 이온 이차 전지의 성능을 크게 향상시킨다.

Description

리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지
본 발명은 리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지에 관한 것으로, 보다 구체적으로, 본 발명은 리튬이온 이차전지의 음극의 실리콘계 음극 소재의 부피 팽창 및 수축에 의한 박리를 방지 또는 억제 할 뿐만 아니라 균일한 전극 밀도를 구현하면서 공정 특성을 개선한 리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지에 관한 것이다.
리튬이온 이차전지는 에너지를 저장하는 에너지 저장 장치의 하나이다.
리튬이온 이차전지는 니켈 카드뮴 전지 등에 비해 높은 에너지 밀도를 가지면서 비메모리(no memory effect) 특성을 갖고, 친환경적이며, 수명 주기가 길고, 높은 전압을 출력할 수 있으며, 무엇보다도 소형화가 가능하기 때문에 최근 휴대폰, 태블릿 PC 및 캠코더와 같은 소형 휴대용 전자 제품에 널리 사용되고 있다.
종래 리튬이온 이차전지는 주요 구성 요소로서 양극, 음극, 분리막 및 전해액을 포함한다.
종래 리튬이온 이차전지의 양극은 리튬산화물을 포함하며, 음극은 리튬이온을 저장할 수 있는 흑연과 같은 탄소화합물을 포함하며, 분리막은 양극과 음극이 직접 접촉되는 것을 방지하며, 전해액은 양극과 음극에서 리튬 이온이 이동할 수 있도록 하는 매개체로서 역할한다.
최근에는 리튬이온 이차전지의 음극 소재를 탄소계 소재로부터 실리콘계 소재로 변경하여 리튬이온 이차전지의 가역 용량을 증가시키는 기술이 연구되고 있다.
그러나, 이와 같이 리튬이온 이차전지의 음극 소재를 탄소계 소재로부터 실리콘계 소재로 변경할 경우, 실리콘계 음극을 갖는 리튬이온 이차전지의 가역 용량을 크게 증가시킬 수 있는 반면, 리튬이온 이차전지의 충방전시 실리콘계 소재의 부피 팽창 및 수축에 따른 전극 열화 및 실리콘계 소재의 바인더가 음극으로부터 박리되어 전지 수명이 크게 감소되는 문제점을 갖는다.
이와 같은 리튬이온 이차전지의 실리콘계 음극을 채용함에 따라 발생되는 문제점을 해결하기 위하여 2007년 11월 20일 공개된 한국공개특허 제2007-0110569호, 바인더로서 폴리우레탄을 물리적으로 혼합한 폴리아크릴산이 포함되어 있는 전극 합제 및 이를 기반으로 하는 리튬 이차전지에는 폴리아크릴산에 폴리우레탄을 물리적으로 혼합한 바인더가 개시되어 있다.
또한, 리튬이온 이차전지의 실리콘계 음극을 채용함에 따라 발생되는 문제점을 해결하기 위하여 2014년 2월 3일 공개된 한국공개특허 제2014-0012464호, 실리콘 합금계 음극활물질, 이를 포함하는 음극 활물질조성물 및 그 제조 방법과 리튬 이차 전지에는 폴리아미드이미드를 포함하는 유기계 바인더가 사용되는 기술이 개시되어 있다.
리튬이온 이차전지의 실리콘계 음극의 바인더로서 폴리아크릴산을 갖는 바인더, 실리콘계 활물질, 도전재 및 용매를 이용하여 음극 합제를 제조할 경우, 용매 내에서 실리콘계 활물질, 바인더 및 도전재를 포함하는 고형분의 침강 현상이 발생되고 침강 현상이 발생된 음극 합제를 음극에 도포할 경우 음극의 전극 밀도가 불균일해지는 문제점을 갖는다.
한편, 리튬이온 이차전지의 실리콘계 음극의 바인더로서 폴리아미드이미드를 포함하는 바인더, 실리콘계 활물질, 도전재 및 용매를 포함하는 음극 합제를 사용할 경우, 폴리아미드이미드를 포함하는 음극 합제의 소결 온도가 폴리아크릴산을 포함하는 음극 합제에 비하여 매우 높아 제조 공정 특성이 크게 저하되는 문제점을 갖는다.
본 발명은 실리콘계 음극 합제를 사용하면서 충방전에 따른 부피 팽창 및 수축에 의한 박리에 따른 전지 수명의 감소를 방지, 침강 현상을 방지하여 음극 합제를 음극에 균일하게 분포 및 음극 합제의 소결 온도를 감소시켜 제조 공정 특성을 향상시키며, 종래 바인더 대비 우수한 결착력, 우수한 회복률, 우수한 강성을 갖는 리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지를 제공한다.
일실시예로서, 리튬이온 이차전지용 바인더는 카르복실산(-COOH)을 포함하는 제1 바인더 및 아민(NR3, 단 R은 수소, 알킨, 알칸)을 포함하는 제2 바인더를 화학적으로 합성하여 형성한 합성 바인더를 포함한다.
리튬이온 이차전지용 바인더의 상기 제1 바인더는 폴리아크릴산(poly(acrylic acid), PAA)을 포함하고, 상기 제2 바인더는 폴리 아미드 이미드(poly(amide imide), PAI)를 포함한다.
리튬이온 이차전지용 바인더의 상기 합성 바인더는 작용기로서 amide(C(O)-NR)기를 포함한다.
일실시예로서, 리튬이온 이차전지용 바인더의 제조 방법으로는 카르복실산(-COOH)을 포함하는 제1 바인더를 용매에 용해시키는 단계,제1 바인더가 용해된 상기 용매에 아민(NR3, 단 R은 수소, 알킨, 알칸)을 포함하는 제2 바인더를 제공하는 단계 및 상기 제1 및 제2 바인더들의 반응을 유도하기 위한 반응유도제를 상기 용매에 제공하여 합성 바인더를 합성하는 단계를 포함한다.
리튬이온 이차전지용 바인더의 제조 방법에서 상기 반응유도제는 황산을 포함하며, 상기 용매는 물을 포함하며, 상기 합성 바인더를 합성하는 단계는 상기 제1 바인더, 상기 제2 바인더 및 상기 반응유도제를 환류(reflux) 조건 하에서 24시간 동안 교반되며, 상기 제1 바인더, 제2 바인더 및 상기 반응유도제의 비율은 1:1:0.02이다.
리튬이온 이차전지는 양극 전극에 양극 활물질과 도전제 및 바인더를 포함하는 양극 합제가 도포된 양극, 상기 양극과 이격되며 음극 전극에 음극 활물질, 도전제 및 바인더가 혼합된 음극 합제가 도포된 음극, 상기 양극 및 음극을 분리하는 분리막 및 상기 양극 및 음극 사이에서 이온 이동을 위한 전해액을 포함하며, 상기 음극 합체에 포함된 상기 바인더는 카르복실산(-COOH)을 포함하는 제1 바인더 및 아민(NR3, 단 R은 수소, 알킨, 알칸)을 포함하는 제2 바인더를 화학적으로 합성하여 형성한 합성 바인더를 포함한다.
리튬이온 이차전지의 상기 제1 바인더는 폴리아크릴산(poly(acrylic acid), PAA)을 포함하고, 상기 제2 바인더는 폴리 아미드 이미드(poly(amide imide), PAI)를 포함하며, 상기 합성 바인더는 작용기로서 amide(C(O)-NR)기를 포함한다.
본 발명에 따른 리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지는 용량을 증가시키기 위해 실리콘을 포함하는 음극 합제를 사용함에 따라 발생되는 충방전에 따른 부피 팽창 및 수축을 억제하여 전지 수명 감소를 방지하고, 일부 바인더를 사용할 때 발생되는 고형분의 침강 현상을 방지하여 음극 합제를 전극에 균일하게 분포시켜 전극 밀도를 균일하게 형성하며 음극 합제의 소결 온도를 감소시켜 제조 공정 특성을 향상시키고, 종래 바인더 대비 우수한 결착력, 우수한 회복률, 우수한 강성을 갖도록 함으로써 리튬 이온 이차 전지의 성능을 크게 향상시킨다.
도 1은 본 발명의 일실시예에 따른 합성 바인더를 이루는 제1 바인더, 제2 바인더 및 제1 및 제2 바인더를 합성한 합성 바인더를 도시한 화학식이다.
도 2는 도 1에 도시된 합성 바인더를 제조하는 과정을 도시한 순서도이다.
도 3은 도 1에 도시된 합성 바인더의 FT-IR 분석에 의하여 합성 바인더의 작용기를 도시한 그래프이다.
도 4는 도 1에 도시된 합성 바인더의 13C-NMR(핵자기공명) 분석을 도시한 그래프이다.
도 5는 본 발명의 일실시예에 따른 합성 바인더, 폴리아크릴산을 포함하는 바인더, 폴리 아미드 이미드를 포함하는 바인더들의 결착력을 도시한 그래프이다.
도 6a는 합성 바인더, 폴리아크릴산(PAA)을 포함하는 바인더, 폴리 아미드 아미드(PAI)를 포함하는 바인더를 포함하는 음극 합제를 전극에 형성한 후 회복률 및 강성을 도시한 그래프이다.
도 6b는 도 6a의 바인더 별 회복률을 도시한 그래프이다.
도 6c는 바인더 별 강성을 도시한 그래프이다.
도 7은 도 1에 도시된 합성 바인더를 포함하는 음극 합제가 도포된 음극을 포함하는 리튬 이온 이차전지를 개념적으로 도시한 단면도이다.
도 8은 도 7의 합성 바인더를 포함하는 리튬 이온 이차 전지의 전기화학 평가 결과를 나타낸 그래프이다.
하기의 설명에서는 본 발명의 실시 예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일실시예에 따른 합성 바인더를 이루는 제1 바인더, 제2 바인더 및 제1 및 제2 바인더를 합성한 합성 바인더를 도시한 화학식이다.
도 1을 참조하면, 합성 바인더(PAA-PAI;300)는 제1 바인더(100) 및 제2 바인더(200)를 합성하여 형성된다.
본 발명의 일실시예에 따른 합성 바인더(300)는, 예를 들어, 리튬이온 이차전지의 음극에 형성되는 음극 합제에 포함될 수 있다.
음극 합제는 실리콘 및 흑연을 포함하는 활물질, 활물질의 도전성을 증가시키는 도전제, 용제 및 합성 바인더를 포함할 수 있다.
합성 바인더(300)를 합성하기 위한 제1 바인더(100)는 도 1에 도시된 바와 같이 카르복실산(-COOH)을 포함하는 물질일 수 있으며, 예를 들어, 제1 바인더(100)는 폴리아크릴산(poly(acrylic acid), PAA)일 수 있다.
제1 바인더(100)인 폴리아크릴산(PAA)은 리튬이온 이차전지의 음극에 형성되는 음극 합제에 포함된 실리콘(silicon,Si)에 의한 부피 팽창 및 수축을 억제하여 음극 합제가 음극 전극으로부터 박리 및 탈리되는 것을 방지한다.
한편, 제1 바인더(100)는 음극 합제의 부피 팽창 및 수축을 억제하여 음극 합제가 음극 전극으로부터 박리 및 탈리되는 것을 방지할 수 있는 장점 및 음극 합제를 저온에서 소결할 수 있는 장점을 갖는 반면 제1 바인더(100)는 음극 합제에 포함된 활물질 및 도전제가 용제 내에서 쉽게 침강되어 균일한 전극밀도를 구현하기 어려운 단점도 갖는다.
합성 바인더(300)를 합성하기 위한 제2 바인더(200)는 도 1에 도시된 바와 같이 아민(NR3, 단 R은 수소, 알킨, 알칸)을 포함하며, 본 발명의 일실시예에서, 제2 바인더(200)는, 예를 들어, 폴리 아미드 이미드(poly(amide imide), PAI)를 포함할 수 있다.
합성 바인더(300)를 합성하기 위한 제2 바인더(200)는 제1 바인더(100)인 폴리아크릴산(PAA)에 비하여 우수한 침강 방지 특성을 갖기 때문에 음극 전극에 형성된 음극 합제의 균일한 전극 밀도를 구현할 수 있는 장점을 갖는다.
그러나, 합성 바인더(300)를 합성하기 위한 제2 바인더(200)인 폴리 아미드 이미드(PAI)를 포함하는 음극 합제를 리튬 이온 이차전지의 음극 전극에 도포하기 위해서는 음극 합제가 일정 강도를 유지하도록 소결해야 하는데 폴리 아미드 이미드(PAI)를 포함하는 제2 바인더(200)는 약 300℃ 이상의 높은 소결 온도를 요구하기 때문에 제2 바인더(200)를 포함하는 음극 합제의 전극 밀도를 매우 균일하게 형성할 수 있는 장점에도 불구하고 공정성이 매우 좋지 않은 단점을 갖는다.
본 발명의 일실시예에서는 카르복실산을 포함하는 제1 바인더(100)인 폴리아크릴산(PAA) 및 아민을 포함하는 제2 바인더(200)인 폴리 아미드 이미드(PAI)를 합성한 합성 바인더(300)를 통해 제1 바인더(100) 및 제2 바인더(200)들이 갖는 장점들은 유지하고, 제1 및 제2 바인더(100,200)들의 단점들은 상호 보완한 합성 바인더(PAI-PAA)를 리튬 이온 이차전지의 음극 전극에 적용하여 충전 및 방전에 의한 부피 팽창 및 수축에 따라 음극 합제가 음극 전극으로부터 분리 및 탈리되는 것을 방지, 음극 합제에 균일하게 활물질 및 도전제가 분포되도록 하여 전극밀도를 보다 균일하게 형성하며, 소결 온도를 감소시켜 공정성을 개선한다.
특히 본 발명의 일실시예에서는 제1 바인더(100) 및 제2 바인더(200)를 합성하여 형성된 합성 바인더(300)는 작용기로서 amide(C(O)-NR)기를 포함한다.
합성 바인더(300)에 형성된 작용기인 amide(C(O)-NR)기는 합성 바인더(300)가 폴리아크릴산(PAA)을 포함하는 제1 바인더(100) 및 폴리 아미드 이미드(PAI)를 포함하는 제2 바인더(200) 대비 우수한 결착력, 회복률, 강성, 개선된 침강특성 및 향상된 물리적 특성이 발현될 수 있도록 한다.
도 2는 도 1에 도시된 합성 바인더를 제조하는 과정을 도시한 순서도이다.
도 1 및 도 2를 참조하면, 합성 바인더(300)를 제조하기 위해서는 먼저 제1 바인더(100)를 용매인 물에 용해하는 단계가 수행된다.(단계 S10)
예를 들어, 합성 바인더(300)를 제조하기 위해서는 예를 들어 A[g]의 제1 바인더(100)인 폴리아크릴산(PAA)을 용매인 물에 용해시킨다.
A[g]의 제1 바인더(100)를 용매인 물에 용해시킨 후, 제1 바인더(100)가 용해된 용액에 B[g]의 제2 바인더(200)를 제공한다.(단계 S20)
또한, 제1 바인더(100) 및 제2 바인더(200)의 작용기간 반응 유도를 위해 바능 유도제를 C[g] 첨가한 환류(reflux) 조건 하에서 24시간 동안 교반을 실시한다.(단계 S30) 본 발명의 일실시예에서, 반응 유도제는, 예를 들어, 황산일 수 있다.
본 발명의 일실시예에서, 제1 바인더(100), 제2 바인더(200) 및 반응 유도제의 비율은 1:1:0.02일 수 있다. 예를 들어, 제1 바인더(100)가 약 5[g]일 경우, 제2 바인더(200)는 약 5[g]이고, 반응 유도제는 약 0.1[g]일 수 있다.
제1 바인더(100), 제2 바인더(200) 및 반응 유도제를 물에 용해시킨 후 교반하여 합성 바인더(300)를 생성한 후, 합성 바인더(300)를 생성하는데 참여하지 못한 미반응 제1 및 제2 바인더(100,200)를 여과 방식(filtration)으로 여과하여 합성 바인더(300)로부터 제거하고,(단계 S40) 잔류되어 있는 물 역시 가압증류장치를 이용하여 제거한다.
이어서, 제1 및 제2 바인더(100,200)를 합성하는 도중 형성 가능한 미량의 불순물은 에틸 아세테이트(ethyl acetate) 및 디에틸 에테르(diethyl ether)로 복수번 디캔테이션(decantation)을 수행하여 제거한다.(단계 S50)
이후, 미반응 제1 및 제2 바인더(100,200), 물 및 불순물이 제거된 후 남은 합성 바인더를 진공하에서 24시간 건조시켜 합성 바인더(300)를 제조한다.(단계 S60)
도 3은 도 1에 도시된 합성 바인더의 FT-IR 분석에 의하여 합성 바인더의 작용기를 도시한 그래프이다.
도 1 및 도 3을 참조하면, 제1 바인더(100)인 폴리아크릴산(PAA) 및 제2 바인더(200)인 폴리 아미드 이미드(PAi)를 도 2의 제조 방법에 의하여 합성한 합성 바인더(300)의 FT-IR 분석에 의하여 합성 바인더(300)의 화학적 구조분석을 수행한 결과, 합성 바인더(300)는 출발 물질인 제1 바인더(100)에 포함된 폴리아크릴산(PAA) 및 제2 바인더(200)에 포함된 폴리 이미드 아미드(PAI) 대비 약 1705 cm-1에서 특이한 흡광 피크(absorbance peak)가 나타나는 것이 확인되며, 이와 같이 합성 바인더(300)의 분석 그래프 중 약 1705 cm-1에서 관찰되는 흡광 피크는 제1 바인더(100) 및 제2 바인더(200)에서 관찰되지 않는 흡광 피크로서, 이 흡광 피크는 합성 바인더(300)에 생성된 작용기인 amide(C(O)-NR)에 의하여 생성된다.
도 4는 도 1에 도시된 합성 바인더의 13C-NMR(핵자기공명) 분석을 도시한 그래프이다.
도 1 및 도 4를 참조하면, 합성 바인더(300)를 13C-NMR(핵자기공명) 분석을 수행한 바, 합성 바인더(300)에 새롭게 도입된 작용기인 amide(C(O)-NR)는 약 178ppm에서 관찬되는데, 이는 제1 바인더(100)인 폴리아크릴산(PAA) 및 제2 바인더(200)인 폴리 아미드 이미드(PAI)의 중합반응을 통하여 성성된 아미드(amide)의 탄소를 의미하며, 이를 통해 제1 바인더(100) 및 제2 바인더(200)를 중합하여 합성된 합성 바인더(300)에 amide(C(O)-NR) 작용기가 성공적으로 형성된 것을 확인할 수 있다.
도 5는 본 발명의 일실시예에 따른 합성 바인더, 폴리아크릴산을 포함하는 바인더, 폴리 아미드 이미드를 포함하는 바인더들의 결착력을 도시한 그래프이다.
도 1 및 도 5를 참조하면, 본 발명의 일실시예에 따라 제1 및 제2 바인더(100,200)을 중합하여 합성한 합성 바인더(300), 폴리아크릴산(PAA)을 포함하는 바인더 및 폴리 아미드 이미드(PAI)를 포함하는 바인더의 결착력을 실험한 결과는 다음과 같다.
먼저, 본 발명의 일실시예에 따른 합성 바인더(300), 폴리아크릴산(PAA)을 포함하는 바인더 및 폴리 아미드 이미드(PAI)를 포함하는 바인더를 마련한 후, 각 바인더에 활물질 및 도전제를 혼합한 음극 합제(활물질:바인더:도전제=8:1:1)를 마련한 후, 음극 합제를 슬라이드 글라스에 고착시킨 후 음극 합제의 상면에 양면 테이브를 배치한 후 인장 강도를 측정한 결과, 합성 바인더를 포함하는 음극 합제의 결착력이 폴리아크릴산(PAA)을 포함하는 음극 합제 및 폴리 아미드 이미드(PAI)를 포함하는 음극 합제 대비 우수한 전극 결착력이 관찰되었다.
도 6a는 합성 바인더, 폴리아크릴산(PAA)을 포함하는 바인더, 폴리 아미드 아미드(PAI)를 포함하는 바인더를 포함하는 음극 합제를 전극에 형성한 후 회복률 및 강성을 도시한 그래프이다. 도 6b는 도 6a의 바인더 별 회복률을 도시한 그래프이다. 도 6c는 바인더 별 강성을 도시한 그래프이다.
도 1, 도 6a 내지 도 6c를 참조하면, 바인더에 따른 전극 제조 후 microindentor를 이용한 음극 합제의 회복률 및 강성 평가를 진행한 결과, 음극 합제를 포함하는 전극에 약 10mN의 힘을 인가하여 음극 합제가 눌려 들어가는 깊이인 강성을 측정한다.
이후, 약 10mN의 힘을 제거 한 다음 음극 합제의 회복되는 정도인 회복률을 측정하여 바인더에 따른 음극 합제의 회복률 및 강성을 분석한다.
폴리아크릴산(PAA)을 포함하는 바인더는 전극이 눌려들어가는 깊이가 상대적으로 적은 강성의 장점을 나타내나 회복률이 낮은 단점을 지니고 있으며, 폴리 아미드 이미드(PAI)는 상대적으로 강성이 낮고 회복률이 우수한 특성을 갖는다.
두 바인더의 특징을 동시에 지닌 합성 바인더(300)의 경우 종래 폴리아크릴산(PAA) 또는 폴리 아미드 이미드(PAI)를 포함하는 바인더 대비 약 35.1%의 높은 회복률을 가지고 있으며, 강성의 경우도 폴리 아미드 아미드(PAI)를 포함하는 바인더 대비 우수한 것으로 나타났는데 이는 폴리 아미드 이미드(PAI)를 포함하는 바인더의 강성 특성이 폴리아크릴산(PAA)을 포함하는 바인더 대비 우수한 물리적 특성으로 인하여 전체적인 전극 특성이 향상된 것으로 해석된다.
이하, [표 1]을 통해 바인더별 상온 저장 실험 후 고형분 변화율 측정 결과를 설명하기로 한다.
표 1
폴리아크릴산 바인더 폴리 아미드 이미드 바인더 합성 바인더
침강고형분(%) 20.0 1.3 3.5
일반적으로 바인더, 활물질, 도전재 및 용매를 포함하는 음극 합제에서 고형분인 활물질, 바인더 및 도전재의 침강 특성은 전극 밀도를 결정하는 매우 중요한 요소로서, 용매 내에 고형분인 활물질, 바인더 및 도전재가 균일하게 분산되지 않고 침강될 경우 균일한 전극 밀도를 얻지 못하여 리튬 이온 이차 전지의 성능이 크게 저하되며, 바인더의 양산성에 큰 영향을 미치며, 음극 합제의 침강 특성은 바인더의 특성에 의하여 결정된다.
[표 1]을 참조하면 폴리아크릴산 바인더를 포함하는 음극 합제에 있어서 침강 고형분은 20%로서 폴리아크릴산 바인더의 경우 고형분이 용재 내에서 심하게 침강되기 때문에 균일한 전극 밀도를 구현하기 어렵다.
폴리 아미드 이미드(PAI) 바인더를 포함하는 음극 합제는 침강 고형분이 1.3%로서 폴리 아미드 이미드(PAI) 바인더는 용제 내에서 침강이 매우 낮게 발생되는 특성을 갖는다.
한편, 폴리아크릴산(PAA) 및 폴리 아미드 이미드(PAI)를 중합하여 형성된 합성 바인더(300)의 경우 침강고형분이 3.5%로서 폴리 아미드 이미드(PAI) 대비 다소 높게 침강되지만, 폴리아크릴산(PAA) 바인더 대비 용제 내에서 침강이 낮게 발생된다.
도 7은 도 1에 도시된 합성 바인더를 포함하는 음극 합제가 도포된 음극을 포함하는 리튬 이온 이차전지를 개념적으로 도시한 단면도이다.
리튬 이온 이차전지(500)는 양극(510), 음극(520), 분리막(530) 및 전해액(540)을 포함한다.
양극(510)은 양극 전극(511) 및 양극 합제(515)를 포함한다.
양극 합제(515)는 리튬 산화물을 포함하는 양극 활물질, 양극 활물질의 도전성을 향상시키는 도전제 및 바인더를 포함하며, 양극 합제(515)는 양극 전극(511)의 표면에 도포 또는 형성된다.
음극(520)은 음극 전극(521) 및 음극 합제(525)를 포함한다.
음극 전극(521)은 양극 전극(511)과 이격되어 배치되며, 음극 합제(525)는 실리콘 및 흑연이 3:7의 비율로 혼합된 음극 활물질, 음극 활물질의 도전성을 향상시키는 도전제 및 합성 바인더를 포함한다.
본 발명의 일실시예에서, 음극 합제(525)에 포함되는 활물질, 합성 바인더 및 도전제는 8:1:1의 비율로 제조된다. 음극 합제(525)는 음극 전극(511)의 표면에 도포 및 형성된다.
분리막(530)은 전해액이 통과하는 다공을 갖는 구조를 가지며, 분리막은, 예를 들어, PE(poly(ethylene)이 사용된다.
전해액(540)은 EC:EMC가 1:2의 비율로 포함되며, 전해액(540)은 1M의 LiPF6 및 10%의 F-EC를 포함한다.
본 발명의 일실시예에서, 음극 합제(525)에 포함된 합성 바인더는 도 1에 도시된 바와 같이 카르복실산을 포함하는 제1 바인더(100), 아민을 포함하는 제2 바인더를 화학적으로 합성하여 형성된다.
제1 바인더(100)는, 예를 들어, 폴리아크릴산(PAA)를 포함하며, 제2 바인더(200)는, 예를 들어 폴리 아미드 이미드(PAI)를 포함하며, 합성 바인더는 작용기로서 amide(C(O)-NR)기를 포함한다.
도 8은 도 7의 합성 바인더를 포함하는 리튬 이온 이차 전지의 전기화학 평가 결과를 나타낸 그래프이다.
표 2
PAA 1st 50th 100th 150th 200th 250th 300th
용량 (mAh/g) 974.1 675.0 598.2 518.6 451.8 397.6 372.3
유지율 (%) 100 69.3 61.4 53.2 46.4 40.8 38.2
PAI 1st 50th 100th 150th 200th 250th 300th
용량 (mAh/g) 871.7 640.5 530.8 369.2 299.2 277.6 262.5
유지율 (%) 100 73.5 60.9 42.4 34.3 31.8 30.1
PAA-PAI 1st 50th 100th 150th 200th 250th 300th
용량 (mAh/g) 1120.9 84.56 742.4 665.2 620.9 574.0 527.1
유지율 (%) 100 75.4 66.2 59.3 55.4 51.2 47.0
도 8 및 [표 2]를 참조하면, 리튬 이온 이차 전지의 구성은 도 7과 동일한 형태로 제조되며, 평가 전압 조건은 1.5[V] 내지 0.01[V]이며, 5C의 전류밀도로 충전 및 방전을 약 300회 수행하여 평가를 하였다.
평가 결과 합성된 합성 바인더를 포함하는 리튬 이온 이차 전지의 경우 유지 용량 측면에서 첫 번째 충전시 1120.9[mAh/g]의 용량을 나타냈으며, 폴리아크릴산(PAA)를 이용한 바인더를 포함하는 리튬 이온 이차 전지의 경우 974[mAh/g]의 용량을 나타내었으며, 폴리 아미드 이미드(PAI)를 이용한 바인더를 포함하는 리튬 이온 이차 전지의 경우 871.7[mAh/g]의 용량을 나타내었으며, 본 발명에 따른 합성 바인더를 포함하는 리튬 이온 이차 전지의 경우 가장 높은 용량을 가진다.
300번 충전 및 방전을 수행한 후, 합성 바인더를 포함하는 리튬 이온 이차 전지의 경우 약 47%의 용량 유지율을 갖고, 폴리아크릴산(PAA)을 포함하는 리튬 이온 이차 전지의 경우 약 38.2%의 용량 유지율을 가지며, 폴리 아미드 이미드를 포함하는 합성 바인더를 포함하는 리튬 이온 이차 전지의 경우 약 30.1%의 용량 유지율을 가지며, 결과적으로 합성 바인더를 포함하는 리튬 이온 이차 전지의 경우 가장 높은 용량 유지율을 갖는다.
이상에서 상세하게 설명한 바에 의하면, 용량을 증가시키기 위해 실리콘을 포함하는 음극 합제를 사용함에 따라 발생되는 충방전에 따른 부피 팽창 및 수축을 억제하여 전지 수명 감소를 방지하고, 일부 바인더를 사용할 때 발생되는 고형분의 침강 현상을 방지하여 음극 합제를 전극에 균일하게 분포시켜 전극 밀도를 균일하게 형성하며 음극 합제의 소결 온도를 감소시켜 제조 공정 특성을 향상시키고, 종래 바인더 대비 우수한 결착력, 우수한 회복률, 우수한 강성을 갖도록 함으로써 리튬 이온 이차 전지의 성능을 크게 향상시킨다.
한편, 본 도면에 개시된 실시예는 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.
본 발명은 리튬이온 이차전지 기술 분야에 이용할 수 있다.

Claims (8)

  1. 카르복실산(-COOH)을 포함하는 제1 바인더 및 아민(NR3, 단 R은 수소, 알킨, 알칸)을 포함하는 제2 바인더를 화학적으로 합성하여 형성한 합성 바인더를 포함하는 리튬이온 이차전지용 바인더.
  2. 제1항에 있어서,
    상기 제1 바인더는 폴리아크릴산(poly(acrylic acid), PAA)을 포함하고, 상기 제2 바인더는 폴리 아미드 이미드(poly(amide imide), PAI)를 포함하는 리튬이온 이차전지용 바인더.
  3. 제1항에 있어서,
    상기 합성 바인더는 작용기로서 amide(C(O)-NR)기를 포함하는 리튬이온 이차전지용 바인더.
  4. 카르복실산(-COOH)을 포함하는 제1 바인더를 용매에 용해시키는 단계;
    제1 바인더가 용해된 상기 용매에 아민(NR3, 단 R은 수소, 알킨, 알칸)을 포함하는 제2 바인더를 제공하는 단계; 및
    상기 제1 및 제2 바인더들의 반응을 유도하기 위한 반응유도제를 상기 용매에 제공하여 합성 바인더를 합성하는 단계를 포함하는 리튬이온 이차전지용 바인더의 제조 방법.
  5. 제4항에 있어서,
    상기 제1 바인더는 폴리아크릴산(poly(acrylic acid), PAA)을 포함하고, 상기 제2 바인더는 폴리 아미드 이미드(poly(amide imide), PAI)를 포함하며, 상기 합성 바인더는 작용기로서 amide(C(O)-NR)기를 포함하는 리튬이온 이차전지용 바인더의 제조 방법.
  6. 제4항에 있어서,
    상기 반응유도제는 황산을 포함하며, 상기 용매는 물을 포함하며, 상기 합성 바인더를 합성하는 단계에서 상기 제1 바인더, 상기 제2 바인더 및 상기 반응유도제는 환류(reflux) 조건 하에서 24시간 동안 교반되며, 상기 제1 바인더, 상기 제2 바인더 및 상기 반응유도제의 비율은 1:1:0.02인 리튬이온 이차전지용 바인더의 제조 방법.
  7. 양극 전극에 양극 활물질과 도전제 및 바인더를 포함하는 양극 합제가 도포된 양극;
    상기 양극과 이격되며 음극 전극에 음극 활물질, 도전제 및 바인더가 혼합된 음극 합제가 도포된 음극;
    상기 양극 및 음극을 분리하는 분리막; 및
    상기 양극 및 음극 사이에서 이온 이동을 위한 전해액을 포함하며,
    상기 음극 합체에 포함된 상기 바인더는 카르복실산(-COOH)을 포함하는 제1 바인더 및 아민(NR3, 단 R은 수소, 알킨, 알칸)을 포함하는 제2 바인더를 화학적으로 합성하여 형성한 합성 바인더를 포함하는 리튬이온 이차전지.
  8. 제7항에 있어서,
    상기 제1 바인더는 폴리아크릴산(poly(acrylic acid), PAA)을 포함하고, 상기 제2 바인더는 폴리 아미드 이미드(poly(amide imide), PAI)를 포함하며, 상기 합성 바인더는 작용기로서 amide(C(O)-NR)기를 포함하는 리튬이온 이차전지.
PCT/KR2014/012796 2014-03-25 2014-12-24 리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지 WO2015147418A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140034703A KR101631847B1 (ko) 2014-03-25 2014-03-25 리튬이온 이차전지용 음극합제 및 이의 제조 방법
KR10-2014-0034703 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015147418A1 true WO2015147418A1 (ko) 2015-10-01

Family

ID=54195890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012796 WO2015147418A1 (ko) 2014-03-25 2014-12-24 리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지

Country Status (2)

Country Link
KR (1) KR101631847B1 (ko)
WO (1) WO2015147418A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631754B (zh) * 2017-07-07 2018-08-01 聚和國際股份有限公司 具三維結構的鋰電池黏著劑及含其的鋰電池負極材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230033489A (ko) * 2021-09-01 2023-03-08 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070088523A (ko) * 2005-12-13 2007-08-29 마쯔시다덴기산교 가부시키가이샤 비수 전해질 이차 전지용 부극과 그를 이용한 비수 전해질이차 전지
JP2007287570A (ja) * 2006-04-19 2007-11-01 Iwate Univ リチウムイオン二次電池
KR20120019932A (ko) * 2010-08-27 2012-03-07 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 이의 제조 방법 및 이를 이용하여 제조된 리튬 이차 전지
KR20140026856A (ko) * 2012-08-23 2014-03-06 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863733B1 (ko) 2006-05-15 2008-10-16 주식회사 엘지화학 바인더로서 폴리우레탄을 물리적으로 혼합한폴리아크릴산이 포함되어 있는 전극 합제 및 이를 기반으로하는 리튬 이차전지
JP5505480B2 (ja) * 2011-10-24 2014-05-28 株式会社豊田自動織機 リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP2013127873A (ja) * 2011-12-16 2013-06-27 Samsung Yokohama Research Institute Co Ltd 固体電池用負極、及び固体電池
EP2615674B1 (en) * 2012-01-10 2017-05-10 Samsung SDI Co., Ltd. Binder for electrode of lithium battery and lithium battery containing the binder
KR20140012464A (ko) 2012-07-20 2014-02-03 삼성에스디아이 주식회사 실리콘 합금계 음극활물질, 이를 포함하는 음극 활물질 조성물 및 그 제조 방법과 리튬 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070088523A (ko) * 2005-12-13 2007-08-29 마쯔시다덴기산교 가부시키가이샤 비수 전해질 이차 전지용 부극과 그를 이용한 비수 전해질이차 전지
JP2007287570A (ja) * 2006-04-19 2007-11-01 Iwate Univ リチウムイオン二次電池
KR20120019932A (ko) * 2010-08-27 2012-03-07 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 이의 제조 방법 및 이를 이용하여 제조된 리튬 이차 전지
KR20140026856A (ko) * 2012-08-23 2014-03-06 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631754B (zh) * 2017-07-07 2018-08-01 聚和國際股份有限公司 具三維結構的鋰電池黏著劑及含其的鋰電池負極材料

Also Published As

Publication number Publication date
KR20150111509A (ko) 2015-10-06
KR101631847B1 (ko) 2016-06-27

Similar Documents

Publication Publication Date Title
KR101771320B1 (ko) 리튬 전극 및 이를 포함하는 리튬 전지
WO2019103465A1 (ko) 리튬 이차전지용 음극 및 이의 제조 방법
WO2010080009A2 (ko) 공융혼합물과 니트릴 화합물을 포함하는 전해질 및 이를 구비한 전기화학소자
US8137838B2 (en) Battery electrode paste composition containing modified maleimides
WO2011159083A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2017171274A2 (ko) 리튬 이차전지용 전극 슬러리 제조방법
WO2011087334A2 (ko) 아미드 화합물을 포함하는 전해질 및 이를 구비한 전기화학소자
WO2011145871A2 (ko) 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2015147419A1 (ko) 리튬이온 이차전지용 음극 합제, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지
WO2020149682A1 (ko) 음극 및 이를 포함하는 리튬 이차 전지
WO2019013557A2 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
KR101227152B1 (ko) 전극의 도전성 접착층 형성용 조성물, 이를 사용한 전극의 제조 방법 및 전극
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN113851656B (zh) 一种负极极片及包括该负极极片的锂离子电池
WO2015147418A1 (ko) 리튬이온 이차전지용 바인더, 이의 제조 방법 및 이를 갖는 리튬이온 이차 전지
JP5126570B2 (ja) リチウム二次電池の製造方法
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
CN113871699A (zh) 一种固态电解质及包括该固态电解质的锂离子电池
WO2023096206A1 (ko) 우레탄계 프리폴리머의 제조 방법
KR20170103053A (ko) 리튬이온 이차전지의 실리콘계 음극 소재용 바인더 및 이의 제조 방법
WO2016143977A1 (ko) 리튬이온 이차전지용 바인더 및 이를 갖는 리튬이온 이차 전지
KR100779311B1 (ko) 2차 전지용 음극재 및 이를 이용한 2차 전지
KR101746927B1 (ko) 리튬 전극 및 이를 포함하는 리튬 전지
WO2019125024A1 (ko) 리튬이차전지용 음극, 이의 제조방법 및 이를 포함한 리튬이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886921

Country of ref document: EP

Kind code of ref document: A1