WO2015147349A1 - 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법 - Google Patents

동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법 Download PDF

Info

Publication number
WO2015147349A1
WO2015147349A1 PCT/KR2014/002583 KR2014002583W WO2015147349A1 WO 2015147349 A1 WO2015147349 A1 WO 2015147349A1 KR 2014002583 W KR2014002583 W KR 2014002583W WO 2015147349 A1 WO2015147349 A1 WO 2015147349A1
Authority
WO
WIPO (PCT)
Prior art keywords
water quality
sewage treatment
sewage
treatment plant
load
Prior art date
Application number
PCT/KR2014/002583
Other languages
English (en)
French (fr)
Inventor
김창원
김효수
김민수
박문화
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2015147349A1 publication Critical patent/WO2015147349A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage

Definitions

  • the present invention relates to an integrated operation management apparatus and method of a plurality of sewage treatment plants.
  • the inflow water quality of the sewage treatment plant of the sewage treatment plant for a certain period of time from that point in time is Integrated operation of multiple sewage treatment plants that share the same discharge system to form the desired discharge water quality by using appropriate situation judgment and prediction technology based on data, operation data of sewage treatment plant and runoff quality of sewage treatment plant It relates to a management device and a method thereof.
  • the determinants of water quality depend largely on artificial factors such as pollutant loads due to point sources and nonpoint sources entering the water system, rather than natural factors such as meteorological factors and hydraulics.
  • the influx of pollutants by nonpoint sources among these pollutants is artificially controlled because the area of occurrence is large and depends on social factors such as land use patterns in waterfront areas and natural factors such as rainfall, rainfall duration, and rainfall days. Difficult to do
  • the pollutant load caused by the sewage treatment water flowing out from the point source, ie, the sewage treatment plant is smaller than the pollutant load of the nonpoint source, but the load can be reduced by controlling the effluent quality of the sewage treatment water.
  • the flow rate of water system shows a sharp difference between the dry season and the rainfall. Therefore, the inflow of pollutants from the point source in the dry season where the low flow rate is maintained can be regarded as the main pollution load inflow path. In order to manage deteriorated water quality, it is essential to manage the water quality of the treated water from the sewage treatment plant.
  • the present invention has been made to solve such a problem, when the sewage treated in a plurality of sewage treatment plant is discharged to the same discharge water system, the discharge water system is in an undesired water quality state, a period of time in the past in the past Based on the inflow water quality data of the sewage treatment plant, the operation data of the sewage treatment plant, and the outflow water quality of the sewage treatment plant, the same discharge system is used to form the desired quality of the discharge system by using appropriate situation determination and prediction techniques.
  • the purpose is to provide an integrated operation management device and method of a plurality of sewage treatment plants.
  • an inflow water quality diagnosis unit for diagnosing the degree of pollution load of inflow water quality flowing into a plurality of sewage treatment plants, and a sewage treatment plant outflow diagnosing whether the outflow water quality of the sewage treatment plant falls within the standard range of the sewage treatment plant
  • a sewer integrated water quality diagnosis unit including a water quality diagnosis unit and a water quality diagnosis unit that determines whether the water quality data of the discharge water system falls within a prescribed water quality range;
  • Inflow sewage load prediction unit that predicts the load of inflow sewage up to a few days in the future based on the state of inflow water quality in the past few days based on the point in time, and the load of the inflow sewage or the inflow sewage load at the point in time which entered the sewage treatment plant
  • the sewage treatment plant performance prediction unit predicts the load of the sewage treatment plant in the sewage treatment plant by the load of the inflow sewage predicted by the prediction unit, and utilizes the estimated discharge load and the state of water quality for a certain time in the past.
  • Integrated sewerage water quality prediction unit including a water quality prediction unit for predicting the water quality state of the discharge water system in the future; And a final decision support unit providing diagnosis and predicted results through the sewer integrated water quality diagnosis unit and the sewer integrated water quality prediction unit to determine the optimal operation plan of the sewage treatment plant.
  • the inflow water quality diagnosis unit measures the inflow water quality data stored in the database of the sewage treatment plant, the flow rate of the sewage flowing into the sewage treatment plant, and the concentration of at least one pollutant selected from BOD, COD, SS, TN, TP Based on the statistical distribution, the range corresponding to the mean value ⁇ (1 * standard deviation) in the normalized distribution is "normal load” and the range outside the normal load is lower than the "low load” and higher than the normal load. It is characterized by diagnosing the degree of contamination load of the inflow water quality of the sewage flowing into the sewage treatment plant with the deviation range as "high load".
  • the sewage treatment plant water quality diagnosis unit uses a K-average clustering method to cluster data for each item of BOD, COD, SS, TN, and TP, and has a high average and a low average group.
  • the group is divided into "normal”, and it is characterized by diagnosing which condition is "high” and "normal” in the range of the quality of the sewage discharged from the sewage treatment plant.
  • the water quality range defined in advance in the water quality diagnosis part is to identify a group of items that can accurately reflect the characteristics of the water points of the discharge system by factor analysis for a certain water quality items of the water discharge system. "High” by performing a K-means clustering method by invoking measurements that are cumulative for each group of items.
  • the water quality range is classified into three groups of "normal” and "low”, and the water quality diagnosis unit diagnoses the water quality of the discharge water system by determining which of the three groups the water quality data of the discharge water system belongs to. It features.
  • the loads of the inflow sewage and the outflow sewage of the inflow sewage load prediction unit and the sewage treatment plant performance prediction unit are predicted by one value unit per day based on at least one concentration selected from BOD, COD, SS, TN, and TP. This is characterized by possible.
  • the water quality prediction unit for a predetermined time or the past for a predetermined time for the concentration of at least one pollutant selected from the BOD, COD, SS, TN, TP contained in the sewage treated by the sewage treatment plant It is characterized in that the prediction of the water quality of the discharge water system up to a certain point in the future by using the measured value of the unit of day value unit per day.
  • the final decision support unit calls a scenario database unit in which a plurality of operation methods of the sewage treatment plant are mounted, and the operation plan of the sewage treatment plant corresponding to the result predicted by the sewer integrated water quality prediction unit from the scenario database unit.
  • the inflow water quality diagnosis unit diagnoses the degree of contamination load of the inflow water quality introduced into the plurality of sewage treatment plants, and the outflow water quality of the sewage treatment plant is within the standard range of the sewage treatment plant by the sewage treatment plant outflow water quality diagnosis unit.
  • the load of the discharged sewage can be predicted by one value unit per day based on at least one concentration selected from BOD, COD, SS, TN, and TP, and the prediction of the water quality of the discharge system in the sewage integrated water quality prediction step.
  • Is BOD, COD, SS, TN, TP contained in sewage discharged from sewage treatment plant Predicting the water quality of the discharge water system up to a certain point in the future by using the measured value for the concentration of at least one pollutant selected at the time or the past for a certain time in the unit of 1 value per day It provides an integrated operation management method of a plurality of sewage treatment plants sharing the same discharge water system.
  • the diagnosis of the pollution load degree of the influent water quality flowing into the plurality of sewage treatment plant is the data of the influent water quality stored in the database of the sewage treatment plant, the flow rate of the sewage flowing into the sewage treatment plant, BOD, COD, SS, TN
  • the range corresponding to the mean value ⁇ (1 * standard deviation) is “normal load” and a range that deviates in a lower direction than the normal load.
  • Low load characterized in that it is carried out with a range of deviations higher than the normal load as " high load.
  • the K-average clustering method to cluster the data for each item of BOD, COD, SS, TN, TP Use the "High” and “Normal” groups to divide the groups with high averages into “Normal” to diagnose the condition of "high” and “normal” ranges of sewage effluent from the sewage treatment plant. It is characterized by.
  • the determination of whether or not the water quality data of the discharge water system falls within the prescribed water quality range is an item that can reflect the characteristics of the corresponding water point of the discharge water well with respect to a certain water quality item of the water quality of the discharge water system. Identify the groups of factors by factor analysis, and call K-Means clustering method by accumulating the accumulated values by each item existing in each group, and "high". The water quality data of the discharge system based on the water quality range classified into three groups of "normal” and "low” is determined by determining which group among the three groups.
  • the effect of reducing the pollutant load caused by the effluent from the sewage treatment plant is small when the flow rate generated by rainfall is small for a plurality of sewage treatment plants which discharge the sewage treated by one discharge system. There is.
  • the present invention when the sewage treated in a plurality of sewage treatment plants are discharged to the same discharge water system, the discharge water system is in an undesired water quality state, the data of the inflow water quality of the sewage treatment plant in the past for a certain period from this point in time, Based on the operation data of the sewage treatment plant and the effluent quality data of the sewage treatment plant, it is effective to form a desirable discharge water quality by using appropriate situation judgment and prediction technology.
  • FIG. 1 is a block diagram showing an integrated operation management apparatus of a plurality of sewage treatment plants according to an embodiment of the present invention.
  • Figure 2 is a flow chart illustrating a method for integrated operation management of a plurality of sewage treatment plants according to an embodiment of the present invention.
  • Figure 3 is a flow chart illustrating in detail the integrated operation management method of the sewage treatment plant of FIG.
  • an inflow water quality diagnosis unit for diagnosing the degree of pollution load of inflow water quality flowing into a plurality of sewage treatment plants, and a sewage treatment plant outflow diagnosing whether the outflow water quality of the sewage treatment plant falls within the standard range of the sewage treatment plant
  • a sewer integrated water quality diagnosis unit including a water quality diagnosis unit and a water quality diagnosis unit that determines whether the water quality data of the discharge water system falls within a prescribed water quality range;
  • Inflow sewage load prediction unit that predicts the load of inflow sewage up to a few days in the future based on the state of inflow water quality in the past few days based on the point in time, and the load of the inflow sewage or the inflow sewage load at the point in time which entered the sewage treatment plant
  • the sewage treatment plant performance prediction unit predicts the load of the sewage treatment plant in the sewage treatment plant by the load of the inflow sewage predicted by the prediction unit, and utilizes the estimated discharge load and the state of water quality for a certain time in the past.
  • Integrated sewerage water quality prediction unit including a water quality prediction unit for predicting the water quality state of the discharge water system in the future; And a final decision support unit providing diagnosis and predicted results through the sewer integrated water quality diagnosis unit and the sewer integrated water quality prediction unit to determine the optimal operation plan of the sewage treatment plant.
  • FIG. 1 is a block diagram showing an integrated operation management apparatus of a plurality of sewage treatment plants according to an embodiment of the present invention
  • Figure 2 is a flow chart showing an integrated operation management method of a plurality of sewage treatment plants according to an embodiment of the present invention
  • Figure 3 is a flowchart illustrating the integrated operation management method of the sewage treatment plant of FIG.
  • the integrated operation management apparatus 10 of a plurality of sewage treatment plants includes a sewage integrated water quality diagnosis unit 100, a sewage integrated water quality prediction unit 200, and a final decision support unit 300. do.
  • the sewage integrated water quality diagnosis unit 100 is an inflow water quality diagnosis unit 110 for diagnosing the pollution load degree of inflow water quality introduced into a plurality of sewage treatment plants, and the outflow water quality of the sewage treatment plant is the standard of the sewage treatment plant.
  • Sewage treatment plant outflow water quality diagnosis unit 120 for diagnosing whether the water quality within the range, and water quality diagnosis unit 130 for determining whether the water quality data of the discharge system falls within the prescribed water quality range. do.
  • the inflow water quality diagnosis unit 110 includes inflow water quality data stored in a database of a sewage treatment plant, a flow rate of sewage flowing into a sewage treatment plant, and at least one contaminant selected from BOD, COD, SS, TN, and TP. Based on the statistical distribution based on the concentration distribution, the range corresponding to the mean value ⁇ (1 * standard deviation) in the normalized distribution is "normal load", and the range out of the direction lower than the normal load is "low load” and higher than the normal load. Diagnosis of the degree of pollution load of the inflow water quality of the sewage flowing into the sewage treatment plant is made with the "high load” range out of the direction.
  • the database of the sewage treatment plant includes an influent sewage database that stores measurements of water quality of the influent sewage over time, a discharge system database that stores the water quality of the effluent system and meteorological data measured in the vicinity of the water system, and a sewage treatment plant every day. It is preferable for the present invention to consist of a sewage treatment plant database which stores the effluent quality produced by the operating variable at the same time as the value of the given operating variable.
  • the sewage treatment plant effluent quality diagnosis unit 120 uses a K-average clustering method to cluster data for each item of BOD, COD, SS, TN, and TP, and uses the K-average clustering method to “high” and low average. Divide the group with "Normal” to diagnose the condition of the "High” and “Normal” ranges of the sewage discharged from the sewage treatment plant.
  • the water quality range defined in advance of the water quality diagnosis unit 130 is for a certain water quality item of the water quality of the discharge water system, by factor analysis of a group of items that can well reflect the characteristics of the corresponding water point of the water discharge water system. "High” by performing a K-means clustering method by grasping and quantifying existing metrics that exist for each group.
  • the water quality range is classified into three groups of "normal” and "low”, and the water quality diagnosis unit 130 determines which group among the three groups the water quality data of the discharge water system belongs to. Diagnose
  • the operation priority of the three diagnostic units constituting the sewer integrated water quality diagnosis unit 100 is set to the inflow water quality diagnosis unit 110, the water quality diagnosis unit 130, the sewage treatment plant outflow water quality diagnosis unit 120. It is preferable for the purpose of preventing the deterioration of the discharge water quality in advance and detecting the abnormality of the current water quality quickly, or in the water system where the urgent need of the water quality situation of the water is more important, the water quality diagnosis unit 130, the sewage treatment plant Effluent water quality diagnosis unit 120, inflow water quality diagnosis unit 110 is set in order to operate.
  • the sewage integrated water quality prediction unit 200 is an inflow sewage load prediction unit 210 for predicting the load of inflow sewage up to a few days in the future through the state of inflow water quality in the past several days, based on the time point and the inflow to the sewage treatment plant
  • the sewage treatment plant performance prediction unit 220 for predicting the load of the sewage treatment plant in the sewage treatment plant by the load of the inflow sewage at the corresponding time point or the load of the inflow sewage estimated by the inflow sewage load prediction unit 210 and the prediction It includes a water quality prediction unit 230 for predicting the water quality state of the discharge water in the future by utilizing the load of the discharged sewage and the water quality of the past for a predetermined time.
  • the load of the inflow sewage and the outflow sewage of the inflow sewage load prediction unit 210 and the sewage treatment plant performance prediction unit 220 is one day per day based on at least one concentration selected from BOD, COD, SS, TN, and TP. It is desirable to be able to predict the value by.
  • the water quality prediction unit 230 is a corresponding time point for a concentration of at least one or more pollutants selected from BOD, COD, SS, TN, and TP included in the sewage treated and discharged from the sewage treatment plant, or the schedule of the past It is preferable to estimate the water quality of the discharge water system up to a certain point in the future by using the measured value during the time in the unit of 1 value per day.
  • the final decision support unit 300 provides the driver of the sewage treatment plant with the result of diagnosis and predicted through the sewer integrated water quality diagnosis unit 100 and the sewer integrated water quality prediction unit 200 to optimize the operation plan of the sewage treatment plant. Plays a role in determining.
  • the final decision support unit 300 is a result of the scenario database 310 is installed with a plurality of operating methods of the sewage treatment plant and the predicted result from the scenario database unit 310 through the sewer integrated water quality prediction unit 200
  • FIG. 2 and Figure 3 describes the integrated operation management method of a plurality of sewage treatment plants according to the present invention.
  • the inflow water quality diagnosis unit 110 diagnoses the degree of contamination load of the inflow water quality introduced into the plurality of sewage treatment plants, and the outflow water quality of the sewage treatment plant is determined by the sewage treatment plant outflow water quality diagnosis unit 120. It is the first sewage integrated water quality diagnosis step of diagnosing whether the water quality range within the standard range is included, and determining whether the water quality data of the discharge water system falls within a predetermined water quality range by the water quality diagnosis unit 130 ( S110).
  • Diagnosis of the degree of pollution load of the inflow water quality introduced into the plurality of sewage treatment plants is the data of the inflow water quality stored in the database of the sewage treatment plant, the flow rate of the sewage flowing into the sewage treatment plant, and BOD, COD, SS, TN, TP Based on the statistical distribution of the concentration of at least one contaminant selected from among the normalized distribution in the range corresponding to the average value ⁇ (1 * standard deviation) "normal load”, the range outside the direction lower than the normal load "low” Load ", preferably in a range that deviates in a higher direction than the normal load as " high load ".
  • the diagnosis of whether the effluent quality of the sewage treatment plant falls within the standard range of the sewage treatment plant is performed by using a K-average clustering method to cluster data for each item of BOD, COD, SS, TN, and TP.
  • the determination of whether the water quality data of the discharge water system falls within a predetermined water quality range is an item capable of well reflecting the characteristics of the corresponding water point of the discharge water system with respect to a certain water quality item of the water quality of the discharge water system.
  • the water quality data of the discharge system based on the water quality range classified into three groups of "normal” and “low” is preferably performed by determining which group among the three groups.
  • the inflow water quality diagnosis unit 110, the sewage treatment plant outflow water quality diagnosis unit 120, and the water quality diagnosis unit 130, which are components of the integrated sewage water quality diagnosis unit 100, are operated in what order. Without, any part of the three is divided into abnormal state results of "high load” of the inflow and sewage diagnosis unit 110, and "high” in the sewage treatment plant effluent quality diagnosis unit 120, and water quality diagnosis As the result of "high” in the unit 130 is derived, the sewage integrated water quality prediction unit 200 is operated according to the set route as shown in FIG.
  • the second step when at least one or more of the pollution load of the inflow water quality, the water quality range of the outflow water quality, and the water quality range of the discharge water system are diagnosed as an abnormal state through the first sewage integrated water quality diagnosis step (S110), Based on the inflow water quality of the past few days, forecast the inflow of sewage up to several days in the future, or the outflow of the sewage treatment plant by the inflow of sewage at the relevant point of time into the sewage treatment plant or the estimated inflow of sewage. It is a sewer integrated water quality prediction step of predicting the load of the sewage or predicting the water quality of the discharge system in the future by using the estimated discharge load and the water quality of the discharge system in the past for a predetermined time (S120).
  • the inflow sewage load prediction unit 210 and the sewage treatment plant performance prediction unit 220 in the sewage integrated water quality prediction step (S120) is an artificial neural network model or time series for predicting the sewage characteristics of the sewage treatment facility previously developed
  • the methodology is not limited, but the influent sewage load prediction unit 210 is only tomorrow or It is advisable to forecast the future inflow and sewage water quality (BOD, COD, SS, TN, TP) up to three days in daily units.
  • the sewage treatment plant performance prediction unit 220 changes the sewage treatment plant effluent quality (BOD, COD, SS, TN, TP) caused by fluctuations in inflow sewage and changes in air temperature. It is desirable to perform the prediction in value units.
  • the mathematical model that predicts the shape and diffusion of water and the mixing and mixing of materials as a means of performing the prediction, and the statistical model that learns the statistical distribution and performs the prediction as a series of simple polynomials. You may select it.
  • the sewage integrated water quality prediction step (S120) is applied to the estimated sewage load or the discharged sewage load or the water quality state of the discharge water system to the sewer integrated water quality diagnosis step (S110) to discharge for a future time point.
  • the fourth step calls the operation plan of the sewage treatment plant corresponding to the result predicted through the sewage integrated water quality prediction step (S120) from the scenario database 310 in which a plurality of operation plans of the sewage treatment plant are mounted. It is a final decision support step of applying the scenario priority procedure for the operating variables of the sewage treatment plant from the operation plan of the sewage treatment plant to the sewage integrated water quality prediction step (S120) to predict the runoff quality of the sewage treatment plant and provide it to the driver (S140). ).
  • the sewage treatment plant effluent quality diagnosis unit 120 is operated with respect to the derived sewage treatment plant effluent quality, and if the expected effluent quality is not an abnormal category of "high” again, the first stage (S110). Return to) to drive the water quality diagnosis unit 130.
  • the final decision support unit 300 is to be operated to provide the driver by searching for the operation plan of the sewage treatment plant to adjust the water quality as the final fourth step (S140). (See FIG. 3).
  • the water quality diagnosis unit 130 when the water quality diagnosis unit 130 is driven as part of the first step S110, when a result indicating abnormal water quality of “high” is derived, the water quality is adjusted.
  • the final decision support unit 300 for driving the sewage treatment plant operation plan to provide the driver is immediately driven.
  • the final decision support unit 300 adjusts the water quality of the sewage treatment plant effluent through the previously established paths by the results of each individual diagnosis unit and the prediction unit. If it is determined that it is inevitable, and in the case of calling the effluent water quality control scenario, and then using the sewage treatment plant performance prediction unit 220 to perform the simulation and determine the most desirable scenario to provide the driver.
  • the treatment capacity of the sewage treatment plant target were selected for B during the sewage treatment plant N 340,000m 3 / day.
  • the point in time was analyzed as of December 31, 2010.
  • the inflow water quality, the outflow water quality and the water quality of the N sewage treatment plant are shown in [Table 1] below.
  • the flow rate and concentration of contaminants (BOD, COD, SS, TN, TP) was confirmed statistical distribution. According to the analysis of the influent sewage cluster and discriminant function equation, “low load”, “medium load”, “heavy load”, and “high load” pollutant loads were found. It was found to appear as a "high load” contaminant load in the range.
  • the water quality diagnosis unit 130 was confirmed.
  • the group of items that can reflect the characteristics of the relevant water points is divided into organic, nitrogen and phosphorus contamination loads, organic and suspended solids contamination loads, and coliform bacteria contamination loads by factor analysis.
  • Each pollutant load was then classified into three groups of "high”, "normal”, and "low” by performing the K-means clustering method.
  • data from the last December data was called from the database. All of the results of the water quality diagnosis unit 130 in the corresponding period was diagnosed as "normal", so that the amount of the pollutant load of the water quality falls within the normal range.
  • the sewage treatment plant effluent quality diagnosis unit 120 which is the second priority of the sewage integrated water quality diagnosis unit 100, was confirmed.
  • the removal rate of each item was analyzed on the basis of BOD, COD, SS, TN, TP and inflow flow. .
  • the K-means clustering method was divided into two groups.
  • the range of BOD, SS appeared to be "high”
  • other items such as COD, T-N, T-P appeared to be "normal".
  • the inflow water quality diagnosis unit 110 corresponds to an abnormality according to the set route as shown in FIG. 3, the inflow sewage load prediction unit 210 and the sewage treatment plant performance prediction unit 220 from the sewage integrated water quality prediction unit 200 are included. Is performed. The results of applying the time series modeling method to the water quality of the future influent sewage up to 3 days from the 31st of this time are shown in [Table 2] below. The predicted data is then used as input data for the performance of the sewage treatment plant performance forecasting unit, and the activated sludge modeling method is used to predict future runoff quality up to three days as shown in Table 3 below.
  • the sewage treatment plant effluent quality diagnosis unit 120 After the execution of the inflow sewage load prediction unit 210 and the sewage treatment plant performance prediction unit 220 is completed, it is determined by the sewage treatment plant effluent quality diagnosis unit 120 according to the route of FIG. Check it. During the period, as a result of the diagnosis of inflow sewage quality from January 1 to January 3 and the outflow quality of sewage treatment plant from January 1 to January 3, "high" is abnormal for BOD and TN. appear. Therefore, as a result of the sewage treatment plant effluent quality diagnosis unit 120 according to the route of FIG. 3, the final decision support unit 300 is performed by indicating the abnormal water quality.
  • the final decision support unit 300 is the current operation for the control parameters from the scenario database 320 is equipped with the sewage treatment plant operation plan for the BOD and TN belonging to the abnormal range of the target sewage treatment plant through the identification unit 320 Contrast adjustment ratio (%) Call as shown in [Table 4] below. Therefore, the effluent quality is predicted through the activated sludge modeling method according to the scenario priority procedure by applying the current increase / decrease ratio to 100% of the conditions of the December 31 control period. Afterwards, as a result of the sewage treatment plant outflow water quality diagnosis unit 120 for the next three days, a driving plan showing the least abnormal range is derived.
  • [Table 5] shows the results of the future runoff quality before the application of the scenario of the sewage treatment plant performance prediction unit 220 of the target sewage treatment plant and the result of the runoff quality after the application of the scenario derived as the optimal operation alternative.
  • the plan for sewage treatment plant derived from the scenario data analysis raises the return sludge amount by 125% and lowers the amount of waste sludge to 20%. BOD and T-N were found to be "low" corresponding to the normal range, as a result of the sewage treatment plant quality diagnosis unit 120 of the derived operation plan. Therefore, the route of FIG. 3 is terminated by providing the driver with a sewage treatment plant operation plan derived from the final decision support unit 300.
  • the present invention is applied to all of the processes described above to a plurality of sewage treatment plants that share the same water system to create a desirable water quality of one shared water system, which can be divided into groups by a certain administrative area or area of the water system
  • the sewage treatment plant is applied first. If the discharge flow rate of a large sewage treatment plant does not occupy more than half of the total discharge flow rate, the principle is to apply to the sewage treatment plant that takes up more than half when calculating the discharge flow rate of the sewage treatment plant in order of increasing discharge flow rate. It is done. This is to prevent frequent changes in the operating conditions of the sewage treatment plant, which may deteriorate the stability of the process and thus adversely affect the management of the treatment plant.
  • the watershed (discharge water system) manager operates the sewage treatment plant by objective water quality judgment based on statistical facts based on data analysis in the operation of the sewage treatment plant included in the watershed in order to maintain the water quality stable. By doing so, you can perform more objective decision support.
  • the present invention relates to an apparatus and method for integrating and managing a plurality of sewage treatment plants that share the same discharge water system, the present invention can be widely used in water treatment facilities including sewage treatment plants.

Abstract

본 발명은 다수의 하수처리장에서 처리된 하수가 동일한 방류수계로 방류되어 상기 방류수계가 바람직하지 못한 수계수질의 상태가 될 경우, 해당시점으로부터 최근과거의 일정기간 동안의 하수처리장의 유입수질의 자료, 하수처리장의 운전자료 및 하수처리장의 유출수질의 자료 등을 바탕으로 적절한 상황판단과 예측기술을 활용하여 바람직한 방류수계의 수질을 형성하기 위한 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법에 관한 것이다. 본 발명에 의하면, 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도를 진단하는 유입수질 진단부와, 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지를 진단하는 하수처리장 유출수질 진단부와, 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부를 판단하는 수계수질 진단부를 포함하는 하수도통합 수질진단부; 해당시점을 기준으로 과거 며칠 전의 유입수질의 상태를 통해 미래 며칠 후까지의 유입하수의 부하를 예측하는 유입하수 부하예측부와, 하수처리장으로 유입된 해당시점의 유입하수의 부하나 상기 유입하수 부하예측부에 의해 예측된 유입하수의 부하에 의해 하수처리장의 유출하수의 부하를 예측하는 하수처리장 성능예측부와, 상기 예측된 유출하수의 부하와 방류수계의 과거 일정시간 동안의 수질의 상태를 활용하여 미래시점의 방류수계의 수질상태를 예측하는 수계수질 예측부를 포함하는 하수도통합 수질예측부; 및 상기 하수도통합 수질진단부와 상기 하수도통합 수질예측부를 통해 진단 및 예측된 결과를 하수처리장의 운전자에게 제공하여 최적의 하수처리장의 운전방안을 결정하도록 하는 최종의사결정지원부;를 포함하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치를 제공한다.

Description

동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법
본 발명은 다수의 하수처리장의 통합운영관리장치 및 그 방법에 관한 것이다. 보다 상세하게 설명하면, 다수의 하수처리장에서 처리된 하수가 동일한 방류수계로 방류되어 상기 방류수계가 바람직하지 못한 수계수질의 상태가 될 경우, 해당시점으로부터 최근과거의 일정기간 동안의 하수처리장의 유입수질의 자료, 하수처리장의 운전자료 및 하수처리장의 유출수질의 자료 등을 바탕으로 적절한 상황판단과 예측기술을 활용하여 바람직한 방류수계의 수질을 형성하기 위한 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법에 관한 것이다.
수계수질을 결정하는 인자는 기상인자 및 수리학적인자와 같은 자연적인 인자보다는 수계로 유입되는 점오염원과 비점오염원에 기인하는 오염부하량이라는 인공적인 인자에 크게 의존한다고 볼 수 있다. 이들 오염원들 중 비점오염원에 의한 오염물질의 유입은 그 발생면적이 광범위하고 수변지역의 토지이용형태와 같은 사회적 인자와 강우량 및 강우지속시간, 비강우일수 등과 같은 자연적 인자에 크게 의존하므로 인위적으로 제어하기 어렵다. 이에 비하여 점오염원, 즉 주로 하수처리장 등에서 유출되는 하수처리수에 의해 초래되는 오염부하량은 비점오염원의 오염부하량에 비하여 작은 규모이나, 하수처리수의 유출수질을 조절함으로 인해 부하량의 감축이 가능하다는 특징을 가진다.
또한, 우리나라의 기후 특성상 수계의 유량은 갈수기와 강우기에 극명한 차이를 보이므로, 적은 유량이 유지되는 갈수기에 이러한 점오염원으로부터의 오염물질의 유입은 주된 오염부하 유입경로로 간주될 만하므로, 갈수기에 악화되는 수계 수질을 관리하기 위해서는 하수처리장으로부터의 처리수의 수질을 관리하는 것이 필수적이다.
특히, 기후변화로 인해 강우의 편중이 더 심화되어 갈수기와 강우기 사이의 수계의 수량의 차이가 더욱 심화되고 있다. 하나의 수계의 상류, 중류, 하류 각각에서 일정 수준 이상의 도시가 존재하여 그 수계를 상수원수로 그리고 처리된 하수의 방류수계로 활용하고 있는 경우에는 수계수질의 관리는 매우 첨예한 갈등을 불러일으킬 수 있는 중요한 과업이 된다. 이러한 목적 아래 환경부에서는 수계단위로 오염부하량을 관리하기 위한 오염총량제를 실시하여 운영하고 있으며, 각 하수처리장 및 지역의 배출주체별로 배출가능한 오염부하의 양을 산정하여 할당함으로써 수계로 흘러들어가는 오염부하량을 제어하려고 하고 있다.
그러나, 이러한 환경부의 규제는 매우 거시적이어서, 항시적으로 수계의 수질을 일정하게 유지하기 위함이 아니라, 장기적으로 수계수질의 수준을 일정 수준으로 유지하기 위함이므로, 실시간으로 수계수질이 첨예한 문제가 되는 국소지역에서의 수질은 그 나름의 변동을 가지며 유지되게 마련이다.
특히 낚시나 수상레저 등으로 지역주민의 삶과 밀접한 연관을 가지는 국소지역에서의 수질관리의 차원에서는 항시적으로 일정수준의 수질을 유지하는 것이 매우 중요하며, 이러한 소규모 수계로 방류하는 지역의 하수처리장이 다수 존재할 경우, 수계의 수질을 고려하여 해당수계로 유출수질을 배출하는 다수의 하수처리장의 유출수질을 조절하는 것은 매우 중요하다고 할 수 있다.
따라서 동일한 방류수계를 공유하는 다수의 하수처리장을 중심으로 유입하수의 변동과 하수처리장 운영방법에 따른 유출수질의 변동, 그리고 최종적으로 어떠한 수질의 유출수질이 배출되었을 때 방류수계 자체가 가지는 수질과 함께 어떠한 일련의 방류수계 수질을 형성하는지를 총괄적으로 연계하여 상황을 파악하고, 바람직한 수계 수질을 형성하기 위한 하수처리장의 운영방법을 자동적으로 생성하여 알려주는 시스템 및 방법이 필요한 실정이다.
본 발명은 이와 같은 문제점을 해결하기 위해 안출된 것으로서, 다수의 하수처리장에서 처리된 하수가 동일한 방류수계로 방류되어 상기 방류수계가 바람직하지 못한 수계수질의 상태가 될 경우, 해당시점으로부터 최근과거의 일정기간 동안의 하수처리장의 유입수질의 자료, 하수처리장의 운전자료 및 하수처리장의 유출수질의 자료 등을 바탕으로 적절한 상황판단과 예측기술을 활용하여 바람직한 방류수계의 수질을 형성하기 위한 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법을 제공하는데 그 목적이 있다.
본 발명에 의하면, 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도를 진단하는 유입수질 진단부와, 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지를 진단하는 하수처리장 유출수질 진단부와, 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부를 판단하는 수계수질 진단부를 포함하는 하수도통합 수질진단부; 해당시점을 기준으로 과거 며칠 전의 유입수질의 상태를 통해 미래 며칠 후까지의 유입하수의 부하를 예측하는 유입하수 부하예측부와, 하수처리장으로 유입된 해당시점의 유입하수의 부하나 상기 유입하수 부하예측부에 의해 예측된 유입하수의 부하에 의해 하수처리장의 유출하수의 부하를 예측하는 하수처리장 성능예측부와, 상기 예측된 유출하수의 부하와 방류수계의 과거 일정시간 동안의 수질의 상태를 활용하여 미래시점의 방류수계의 수질상태를 예측하는 수계수질 예측부를 포함하는 하수도통합 수질예측부; 및 상기 하수도통합 수질진단부와 상기 하수도통합 수질예측부를 통해 진단 및 예측된 결과를 하수처리장의 운전자에게 제공하여 최적의 하수처리장의 운전방안을 결정하도록 하는 최종의사결정지원부;를 포함하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치를 제공한다.
한편, 상기 유입수질 진단부는 하수처리장의 데이터베이스에 저장되어 있는 유입수질의 데이터와, 하수처리장으로 유입되는 하수의 유량과, BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물의 농도를 통계학적 분포를 바탕으로 정규화된 분포에서 평균값±(1*표준편차)에 해당하는 범위를 "정상 부하", 상기 정상 부하보다 낮은 방향으로 벗어나는 범위를 "낮은 부하", 상기 정상 부하보다 높은 방향으로 벗어나는 범위를 "높은 부하"로 하여 하수처리장으로 유입되는 하수의 유입수질의 오염부하정도를 진단하는 것을 특징으로 한다.
한편, 상기 하수처리장 유출수질 진단부는 BOD, COD, SS, TN, TP의 각 항목에 대하여 데이터를 군집화하기 위해 K-평균 군집화 방법을 사용하여 높은 평균을 가진 그룹을 "높음"과 낮은 평균을 가진 그룹을 "정상"으로 나누어 하수처리장으로부터 유출되는 하수의 유출수질의 범위가 "높음"과 "정상"의 어느 상태에 해당하는지를 진단하는 것을 특징으로 한다.
한편, 상기 수계수질 진단부의 사전에 규정되어 있는 수질범위는 방류수계의 수질의 일정 수질항목에 대하여, 방류수계의 해당 수계지점의 특성을 잘 반영할 수 있는 항목의 그룹을 요인분석에 의해 파악하여 각 그룹별로 존재하는 항목별로 누적되어 존재하는 측정치를 호출하여 K-평균 군집화 방법을 수행하여 "높음". "보통", "낮음"의 세 그룹으로 분류되어 있는 수질범위이며, 상기 수계수질 진단부는 방류수계의 수질 데이터가 상기 세 그룹 중에 어떤 그룹에 속하는지를 판단하여 방류수계의 수질의 상태를 진단하는 것을 특징으로 한다.
한편, 상기 유입하수 부하예측부와 상기 하수처리장 성능예측부의 유입하수 및 유출하수의 부하는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 농도를 기준으로 하루에 하나의 값 단위로 예측이 가능한 것을 특징으로 한다.
한편, 상기 수계수질 예측부는 하수처리장에서 처리하여 방류되는 하수에 포함되어 있는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물질의 농도에 대한 해당시점 또는 해당시점의 과거 일정시간 동안의 측정치를 활용하여 해당시점의 미래 일정시점까지의 방류수계의 수질을 1일 1값 단위로 예측을 수행하는 것을 특징으로 한다.
한편, 상기 최종의사결정지원부는 하수처리장의 운전방안이 다수 개 탑재되어 있는 시나리오데이터베이스부와, 상기 시나리오데이터베이스부로부터 상기 하수도통합 수질예측부를 통해 예측된 결과에 해당하는 하수처리장의 운전방안을 호출하는 식별부와, 상기 식별부를 통해 호출된 하수처리장의 운전방안으로부터 하수처리장의 운전변수에 대한 시나리오 우선순위 절차를 상기 하수처리장 성능예측부에 적용하여 하수처리장의 유출수질을 예측하여 운전자에게 제공하는 의사결정지원부를 포함하는 것을 특징으로 한다.
또한 본 발명에 의하면, 유입수질 진단부에 의해 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도를 진단하고, 하수처리장 유출수질 진단부에 의해 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지를 진단하고, 수계수질 진단부에 의해 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부를 판단하는 제 1하수도통합 수질진단단계; 상기 제 1하수도통합 수질진단단계를 통해 유입수질의 오염부하정도, 유출수질의 수질범위 및 방류수계의 수질범위 중 적어도 하나 이상이 비정상상태로 진단될 경우, 해당시점을 기준으로 과거 며칠 전의 유입수질의 상태를 통해 미래 며칠 후까지의 유입하수의 부하를 예측하거나, 하수처리장으로 유입된 해당시점의 유입하수의 부하나 상기 예측된 유입하수의 부하에 의해 하수처리장의 유출하수의 부하를 예측하거나, 상기 예측된 유출하수의 부하와 방류수계의 과거 일정시간 동안의 수질의 상태를 활용하여 미래시점의 방류수계의 수질상태를 예측하는 하수도통합 수질예측단계; 상기 하수도통합 수질예측단계를 통해 예측된 유입하수의 부하 또는 유출하수의 부하 또는 방류수계의 수질상태를 상기 하수도통합 수질진단단계에 적용하여 미래시점에 대한 유출수질의 수질범위 또는 방류수계의 수질범위를 진단하는 제 2하수도통합 수질진단단계; 및 하수처리장의 운전방안이 다수 개 탑재되어 있는 시나리오데이터베이스부로부터 상기 하수도통합 수질예측단계를 통해 예측된 결과에 해당하는 하수처리장의 운전방안을 호출하여 상기 호출된 하수처리장의 운전방안으로부터 하수처리장의 운전변수에 대한 시나리오 우선순위 절차를 상기 하수도통합 수질예측단계에 적용하여 하수처리장의 유출수질을 예측하여 운전자에게 제공하는 최종의사결정지원단계;를 포함하되, 상기 하수도통합 수질예측단계의 유입하수 및 유출하수의 부하는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 농도를 기준으로 하루에 하나의 값 단위로 예측이 가능하며, 상기 하수도통합 수질예측단계의 방류수계의 수질상태의 예측은 하수처리장에서 처리하여 방류되는 하수에 포함되어 있는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물질의 농도에 대한 해당시점 또는 해당시점의 과거 일정시간 동안의 측정치를 활용하여 해당시점의 미래 일정시점까지의 방류수계의 수질을 1일 1값 단위로 예측을 수행하는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리방법을 제공한다.
한편, 상기 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도의 진단은 하수처리장의 데이터베이스에 저장되어 있는 유입수질의 데이터와, 하수처리장으로 유입되는 하수의 유량과, BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물의 농도를 통계학적 분포를 바탕으로 정규화된 분포에서 평균값±(1*표준편차)에 해당하는 범위를 "정상 부하", 상기 정상 부하보다 낮은 방향으로 벗어나는 범위를 "낮은 부하", 상기 정상 부하보다 높은 방향으로 벗어나는 범위를 "높은 부하"로 하여 수행되는 것을 특징으로 한다.
한편, 상기 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지에 대한 진단은 BOD, COD, SS, TN, TP의 각 항목에 대하여 데이터를 군집화하기 위해 K-평균 군집화 방법을 사용하여 높은 평균을 가진 그룹을 "높음"과 낮은 평균을 가진 그룹을 "정상"으로 나누어 하수처리장으로부터 유출되는 하수의 유출수질의 범위가 "높음"과 "정상"의 어느 상태에 해당하는지를 진단하는 것을 특징으로 한다.
한편, 상기 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부에 대한 판단은 방류수계의 수질의 일정 수질항목에 대하여, 방류수계의 해당 수계지점의 특성을 잘 반영할 수 있는 항목의 그룹을 요인분석에 의해 파악하여 각 그룹별로 존재하는 항목별로 누적되어 존재하는 측정치를 호출하여 K-평균 군집화 방법을 수행하여 "높음". "보통", "낮음"의 세 그룹으로 분류되어 있는 수질범위를 기준으로 방류수계의 수질 데이터가 상기 세 그룹 중에 어떤 그룹에 속하는지를 판단하여 수행되는 것을 특징으로 한다.
본 발명에 의한 통합운영관리장치 및 방법을 이용할 경우, 하나의 방류수계로 처리된 하수를 방류하는 다수의 하수처리장에 대해 강우량에 의해 조성되는 유량이 적을 경우 하수처리장의 유출수에 의한 오염부하량을 줄이는 효과가 있다.
또한 본 발명은 다수의 하수처리장에서 처리된 하수가 동일한 방류수계로 방류되어 상기 방류수계가 바람직하지 못한 수계수질의 상태가 될 경우, 해당시점으로부터 최근과거의 일정기간 동안의 하수처리장의 유입수질의 자료, 하수처리장의 운전자료 및 하수처리장의 유출수질의 자료 등을 바탕으로 적절한 상황판단과 예측기술을 활용하여 바람직한 방류수계의 수질을 형성할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 다수의 하수처리장의 통합운영관리장치를 나타내는 구성도이다.
도 2는 본 발명의 실시예에 따른 다수의 하수처리장의 통합운영관리방법을 나타내는 순서도이다.
도 3은 도 2의 하수처리장의 통합운영관리방법을 상세히 설명하는 순서도이다.
본 발명에 의하면, 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도를 진단하는 유입수질 진단부와, 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지를 진단하는 하수처리장 유출수질 진단부와, 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부를 판단하는 수계수질 진단부를 포함하는 하수도통합 수질진단부; 해당시점을 기준으로 과거 며칠 전의 유입수질의 상태를 통해 미래 며칠 후까지의 유입하수의 부하를 예측하는 유입하수 부하예측부와, 하수처리장으로 유입된 해당시점의 유입하수의 부하나 상기 유입하수 부하예측부에 의해 예측된 유입하수의 부하에 의해 하수처리장의 유출하수의 부하를 예측하는 하수처리장 성능예측부와, 상기 예측된 유출하수의 부하와 방류수계의 과거 일정시간 동안의 수질의 상태를 활용하여 미래시점의 방류수계의 수질상태를 예측하는 수계수질 예측부를 포함하는 하수도통합 수질예측부; 및 상기 하수도통합 수질진단부와 상기 하수도통합 수질예측부를 통해 진단 및 예측된 결과를 하수처리장의 운전자에게 제공하여 최적의 하수처리장의 운전방안을 결정하도록 하는 최종의사결정지원부;를 포함하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치를 제공한다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 발명의 실시예에 따른 다수의 하수처리장의 통합운영관리장치를 나타내는 구성도이고, 도 2는 본 발명의 실시예에 따른 다수의 하수처리장의 통합운영관리방법을 나타내는 순서도이고, 도 3은 도 2의 하수처리장의 통합운영관리방법을 상세히 설명하는 순서도이다.
도 1을 참조하면, 본 발명에 의한 다수의 하수처리장의 통합운영관리장치(10)는 하수도통합 수질진단부(100), 하수도통합 수질예측부(200) 및 최종의사결정지원부(300)를 포함한다.
좀 더 상세히 살펴보면, 상기 하수도통합 수질진단부(100)는 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도를 진단하는 유입수질 진단부(110)와, 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지를 진단하는 하수처리장 유출수질 진단부(120)와, 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부를 판단하는 수계수질 진단부(130)를 포함한다.
상기 유입수질 진단부(110)는 하수처리장의 데이터베이스에 저장되어 있는 유입수질의 데이터와, 하수처리장으로 유입되는 하수의 유량과, BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물의 농도를 통계학적 분포를 바탕으로 정규화된 분포에서 평균값±(1*표준편차)에 해당하는 범위를 "정상 부하", 상기 정상 부하보다 낮은 방향으로 벗어나는 범위를 "낮은 부하", 상기 정상 부하보다 높은 방향으로 벗어나는 범위를 "높은 부하"로 하여 하수처리장으로 유입되는 하수의 유입수질의 오염부하정도를 진단한다. 이때, 하수처리장의 데이터베이스는 유입하수의 수질에 관한 측정치를 시간에 따라 저장하는 유입하수 데이터베이스와, 방류수계의 수질과 해당 수계의 인근에서 측정된 기상자료를 저장하는 방류수계 데이터베이스, 하수처리장에 매일 주어지는 운전 변수의 값과 동일 시점에서 운전변수에 의해 생산된 유출수질을 저장하는 하수처리장 데이터베이스로 구성되는 것이 본 발명을 위해 바람직하다.
상기 하수처리장 유출수질 진단부(120)는 BOD, COD, SS, TN, TP의 각 항목에 대하여 데이터를 군집화하기 위해 K-평균 군집화 방법을 사용하여 높은 평균을 가진 그룹을 "높음"과 낮은 평균을 가진 그룹을 "정상"으로 나누어 하수처리장으로부터 유출되는 하수의 유출수질의 범위가 "높음"과 "정상"의 어느 상태에 해당하는지를 진단한다.
상기 수계수질 진단부(130)의 사전에 규정되어 있는 수질범위는 방류수계의 수질의 일정 수질항목에 대하여, 방류수계의 해당 수계지점의 특성을 잘 반영할 수 있는 항목의 그룹을 요인분석에 의해 파악하여 각 그룹별로 존재하는 항목별로 누적되어 존재하는 측정치를 호출하여 K-평균 군집화 방법을 수행하여 "높음". "보통", "낮음"의 세 그룹으로 분류되어 있는 수질범위이며, 상기 수계수질 진단부(130)는 방류수계의 수질 데이터가 상기 세 그룹 중에 어떤 그룹에 속하는지를 판단하여 방류수계의 수질의 상태를 진단한다.
이때, 하수도통합 수질진단부(100)를 구성하는 세 가지 진단부의 작동 우선순위는 유입수질 진단부(110), 수계수질 진단부(130), 하수처리장 유출수질 진단부(120)로 설정되는 것이 방류수계 수질 악화를 미연에 방지하고 현재 수계수질의 비정상을 빨리 감지하고자 하는 목적에서 바람직하며, 혹은 수계의 수질 상황의 시급성을 좀 더 중요시해야 하는 수계에서는, 수계수질 진단부(130), 하수처리장 유출수질 진단부(120), 유입수질 진단부(110)의 순서로 설정되어 작동하는 것이 바람직하다.
상기 하수도통합 수질예측부(200)는 해당시점을 기준으로 과거 며칠 전의 유입수질의 상태를 통해 미래 며칠 후까지의 유입하수의 부하를 예측하는 유입하수 부하예측부(210)와, 하수처리장으로 유입된 해당시점의 유입하수의 부하나 상기 유입하수 부하예측부(210)에 의해 예측된 유입하수의 부하에 의해 하수처리장의 유출하수의 부하를 예측하는 하수처리장 성능예측부(220)와, 상기 예측된 유출하수의 부하와 방류수계의 과거 일정시간 동안의 수질의 상태를 활용하여 미래시점의 방류수계의 수질상태를 예측하는 수계수질 예측부(230)를 포함한다.
상기 유입하수 부하예측부(210)와 상기 하수처리장 성능예측부(220)의 유입하수 및 유출하수의 부하는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 농도를 기준으로 하루에 하나의 값 단위로 예측이 가능한 것이 바람직하다.
상기 수계수질 예측부(230)는 하수처리장에서 처리하여 방류되는 하수에 포함되어 있는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물질의 농도에 대한 해당시점 또는 해당시점의 과거 일정시간 동안의 측정치를 활용하여 해당시점의 미래 일정시점까지의 방류수계의 수질을 1일 1값 단위로 예측을 수행하는 것이 바람직하다.
상기 최종의사결정지원부(300)는 상기 하수도통합 수질진단부(100)와 상기 하수도통합 수질예측부(200)를 통해 진단 및 예측된 결과를 하수처리장의 운전자에게 제공하여 최적의 하수처리장의 운전방안을 결정하는 역할을 한다.
상기 최종의사결정지원부(300)는 하수처리장의 운전방안이 다수 개 탑재되어 있는 시나리오데이터베이스부(310)와, 상기 시나리오데이터베이스부(310)로부터 상기 하수도통합 수질예측부(200)를 통해 예측된 결과에 해당하는 하수처리장의 운전방안을 호출하는 식별부(320)와, 상기 식별부(320)를 통해 호출된 하수처리장의 운전방안으로부터 하수처리장의 운전변수에 대한 시나리오 우선순위 절차를 상기 하수처리장 성능예측부(220)에 적용하여 하수처리장의 유출수질을 예측하여 운전자에게 제공하는 의사결정지원부(330)를 포함한다.
도 2 및 도 3을 참조하여 본 발명에 의한 다수의 하수처리장의 통합운영관리방법을 설명하면 다음과 같다.
제 1단계는 유입수질 진단부(110)에 의해 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도를 진단하고, 하수처리장 유출수질 진단부(120)에 의해 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지를 진단하고, 수계수질 진단부(130)에 의해 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부를 판단하는 제 1하수도통합 수질진단단계이다(S110). 상기 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도의 진단은 하수처리장의 데이터베이스에 저장되어 있는 유입수질의 데이터와, 하수처리장으로 유입되는 하수의 유량과, BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물의 농도를 통계학적 분포를 바탕으로 정규화된 분포에서 평균값±(1*표준편차)에 해당하는 범위를 "정상 부하", 상기 정상 부하보다 낮은 방향으로 벗어나는 범위를 "낮은 부하", 상기 정상 부하보다 높은 방향으로 벗어나는 범위를 "높은 부하"로 하여 수행되는 것이 바람직하다. 또한, 상기 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지에 대한 진단은 BOD, COD, SS, TN, TP의 각 항목에 대하여 데이터를 군집화하기 위해 K-평균 군집화 방법을 사용하여 높은 평균을 가진 그룹을 "높음"과 낮은 평균을 가진 그룹을 "정상"으로 나누어 하수처리장으로부터 유출되는 하수의 유출수질의 범위가 "높음"과 "정상"의 어느 상태에 해당하는지를 진단하는 것이 바람직하다. 또한, 상기 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부에 대한 판단은 방류수계의 수질의 일정 수질항목에 대하여, 방류수계의 해당 수계지점의 특성을 잘 반영할 수 있는 항목의 그룹을 요인분석에 의해 파악하여 각 그룹별로 존재하는 항목별로 누적되어 존재하는 측정치를 호출하여 K-평균 군집화 방법을 수행하여 "높음". "보통", "낮음"의 세 그룹으로 분류되어 있는 수질범위를 기준으로 방류수계의 수질 데이터가 상기 세 그룹 중에 어떤 그룹에 속하는지를 판단하여 수행되는 것이 바람직하다.
특히 제 1단계에서 하수도통합 수질진단부(100)의 구성요소인 유입수질 진단부(110), 하수처리장 유출수질 진단부(120), 수계수질 진단부(130)가 어떠한 순서로 작동되는지에 상관없이, 셋 중 어느 한 부분에서라도 비정상 상태로 구분되어 유입하수 진단부(110)의 "높은 부하"라는 결과와, 하수처리장 유출수질 진단부(120)에서의 "높음"이라는 결과와, 수계수질 진단부(130)에서의 "높음"이라는 결과가 도출됨에 따라, 도 3에 도시된 바와 같이 설정된 루트에 따라 하수도통합 수질예측부(200)를 가동하게 되는 것이다.
제 2단계는 상기 제 1하수도통합 수질진단단계(S110)를 통해 유입수질의 오염부하정도, 유출수질의 수질범위 및 방류수계의 수질범위 중 적어도 하나 이상이 비정상상태로 진단될 경우, 해당시점을 기준으로 과거 며칠 전의 유입수질의 상태를 통해 미래 며칠 후까지의 유입하수의 부하를 예측하거나, 하수처리장으로 유입된 해당시점의 유입하수의 부하나 상기 예측된 유입하수의 부하에 의해 하수처리장의 유출하수의 부하를 예측하거나, 상기 예측된 유출하수의 부하와 방류수계의 과거 일정시간 동안의 수질의 상태를 활용하여 미래시점의 방류수계의 수질상태를 예측하는 하수도통합 수질예측단계이다(S120).
이때, 상기 하수도통합 수질예측단계(S120)에서 상기 유입하수 부하예측부(210) 및 하수처리장 성능예측부(220)는 기존에 개발되었던 하수처리시설 유입하수 성상을 예측하기 위한 인공신경망 모델이나 시계열 모델링 방법 등 그리고 하수처리의 성능을 예측하기 위하여 기존에 적용되었던 활성슬러지모델링 방법과 인공신경망 등 어느 모델을 사용하든지 그 방법론에 제약을 두지 않으나, 상기 유입하수 부하 예측부(210)는 오로지 내일 혹은 모레 혹은 최대 3일까지의 미래 유입하수 수질(BOD, COD, SS, T-N, T-P)을 1일 1값 단위로 예측을 수행하는 것이 바람직하다. 또한, 상기 하수처리장 성능예측부(220)는 유입하수의 변동과 기온의 변화에 의해 초래되는 하수처리장 유출수질(BOD, COD, SS, T-N, T-P)의 변화를 향후 최대 3일까지 1일 1값 단위로 예측을 수행하는 것이 바람직하다. 또한 상기 하수도통합 수질예측단계(S120)에서 상기 수계수질 예측부(230)는 하수처리장에서 처리하여 방류되는 하수에 포함되어 있는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물질의 농도에 대한 해당시점 또는 해당시점의 과거 일정시간 동안의 측정치를 활용하여 해당시점의 미래 일정시점까지의 방류수계의 수질을 1일 1값 단위로 예측을 수행하는 것이 바람직하다. 특히 예측을 수행하는 수단으로서 수계의 형상과 물질의 확산 및 혼합을 수학적인 식으로 표현하여 예측하는 수학적 모델과, 통계적인 분포를 학습하여 일련의 간단한 다항식의 형태로서 예측을 수행하는 통계적 모델 중 어떤 것을 선택하여도 무방하다.
제 3단계는 상기 하수도통합 수질예측단계(S120)를 통해 예측된 유입하수의 부하 또는 유출하수의 부하 또는 방류수계의 수질상태를 상기 하수도통합 수질진단단계(S110)에 적용하여 미래시점에 대한 유출수질의 수질범위 또는 방류수계의 수질범위를 진단하는 제 2하수도통합 수질진단단계이다(S130).
제 4단계는 하수처리장의 운전방안이 다수 개 탑재되어 있는 시나리오데이터베이스부(310)로부터 상기 하수도통합 수질예측단계(S120)를 통해 예측된 결과에 해당하는 하수처리장의 운전방안을 호출하여 상기 호출된 하수처리장의 운전방안으로부터 하수처리장의 운전변수에 대한 시나리오 우선순위 절차를 상기 하수도통합 수질예측단계(S120)에 적용하여 하수처리장의 유출수질을 예측하여 운전자에게 제공하는 최종의사결정지원단계이다(S140).
따라서, 도 3에 나타나 있듯이, 유입수질 진단부(110)에서 비정상에 해당하는 "높은 부하"의 결과가 도출되었을 경우, 향후 최대 3일간의 미래 유입하수 수질(BOD, COD, SS, T-N, T-P)을 예측하여 예측된 유입수질을 하수처리장 성능예측부(220)로 전송하여 예측된 유입수질이 유입되었을 경우 현재의 운전조건을 유지한다는 조건하에 생산될 하수처리장의 유출수질을 도출하게 된다. 여기까지가 앞서 기술된 제 2단계(S120)에 해당한다.
뒤이어 제 3단계(S130)로서, 도출된 하수처리장 유출수질에 대하여 하수처리장 유출수질 진단부(120)가 가동되며, 향후 예상되는 유출수질이 비정상의 범주인 "높음"이 아니라면 다시 첫 단계(S110)로 돌아가 수계수질 진단부(130)를 구동하게 된다. 그러나 비정상의 범주인 "높음"이라는 결론이 도출되었을 경우 마지막 제4단계(S140)로서 수계수질을 조정하기 위한 하수처리장 운영방안을 탐색하여 운전자에게 제공하기 위해 최종의사결정지원부(300)가 가동될 것이다(도 3 참조).
여기서, 도 3에 나타나 있듯이, 제 1단계(S110)의 한 부분으로서 수계수질 진단부(130)를 구동하였을 때, "높음"이라는 비정상 수질을 의미하는 결과가 도출되었을 경우에는, 수계수질을 조정하기 위한 하수처리장 운영방안을 탐색하여 운전자에게 제공하기 위한 최종의사결정지원부(300)가 곧바로 구동되게 된다.
또한, 도 3에 나타나 있듯이, 제 1단계(S110)의 한 부분으로서 하수처리장 성능예측부(220)을 구동하였을 때, 유출수질이 "높음"이라는 결과가 도출될 경우에, 해당 수질을 가진 하수처리수가 방류수계로 방류됨에 따라 형성될 방류수계 수질을 수계수질 예측부(230)에 의해 예측하게 되며, 뒤이어 도 3에서의 제 3단계로서, 예측된 방류수계의 수질을 입력으로 하여 수계수질 진단부(130)에 의해 도출된결과가 바람직하지 않은 높은 수질을 가진 항목들이 있다는 비정상의 의미의 "높음"일 때, 하수처리장 운영방안을 탐색하여 운전자에게 제공하기 위한 최종의사결정지원부(300)가 구동되게 된다.
도 2 및 도 3에 언급되어 있는 모든 경로의 최종적인 단계로서, 최종의사결정지원부(300)는 각각의 개별 진단부와 예측부의 결과에 의하여 기존에 설정된 경로를 통해 하수처리장 유출수의 수질의 조정이 불가피하다고 판단하고, 당면한 경우에 합당한 유출수질 조절 시나리오를 호출한 후 하수처리장 성능예측부(220)를 활용하여 시뮬레이션을 수행하고 가장 바람직한 시나리오를 결정하여 운전자에게 제공하게 되는 것이다.
이하, 실시예를 기준으로 본 발명에서 언급하는 다수의 하수처리장의 통합운영관리방법을 설명하기로 한다.
먼저, 대상 하수처리장의 처리장 용량이 340,000m3/day인 B시 N하수처리장을 선정하였다. 해당시점은 2010년 12월 31일을 기준으로 분석을 하였으며, N하수처리장의 유입수 수질, 유출수 수질 및 수계 수질은 아래 [표 1]과 같다.
표 1
대상 BOD(mg/l) COD(mg/l) SS(mg/l) T-N(mg/l) T-P(mg/l)
유입수 수질 104.2 58.2 90.0 31.6 3.1
유출수 수질 7.3 9.3 4.6 12.7 1.9
수계 수질 2.9 7.8 93.5 6.6 0.6
상기 하수도통합 수질진단부(100)의 첫 우선순위인 유입수질 진단부(110)를 수행하기 위해, 데이터베이스에 누적되어 있는 해당 하수처리장의 유입하수의 유량과 오염물의 농도(BOD, COD, SS, T-N, T-P)의 통계학적 분포를 확인하였다. 해당 유입하수의 군집 및 판별함수식에 따른 분석결과 "저부하", "중저부하", "중고부하", "고부하" 오염부하로 나타났으며, 12월 31일을 기준으로 현재 유입하수 진단결과 비정상 범위인 "고부하" 오염부하로 나타나는 것으로 확인되었다.
상기 하수도통합 수질진단부(100)의 작동 우선순위에 따라 수계수질 진단부(130)를 확인하였다. 해당 수계지점의 특성을 잘 반영할 수 있는 항목의 그룹을 요인분석에 의하여 유기물질, 질소 및 인 오염부하와 유기물질 및 부유물질 오염부하, 대장균군수 오염부하로 구분하였다. 이후 각 오염부하를 K-평균 군집화 방법을 수행하여 "높음", "보통", "낮음"의 세 그룹으로 분류하였다. 각 항목별 데이터가 어떤 그룹에 속하였는지 진단하기 위해, 최근 12월 자료의 데이터를 데이터베이스로부터 호출하였다. 해당 기간에서의 수계수질 진단부(130)의 결과 모두 "보통"으로 진단되어 수계수질의 오염부하의 양이 정상 범위에 속하는 것으로 나타났다.
상기 하수도통합 수질진단부(100)의 두 번째 우선순위인 하수처리장 유출수질 진단부(120)를 확인하였다. 해당 N하수처리장을 대상으로 과거 데이터의 유출수질의 범위를 "높음"과 "정상"으로 구분하기 위해, BOD, COD, SS, T-N, T-P 그리고 유입유량을 기준으로 각 항목에 대한 제거율을 분석하였다. 이를 기반으로 K-평균군집화 방법을 통해 두 개의 그룹으로 나누었다. 해당 기간인 12월 31일에 대한 하수처리장 유출수질 진단부(120)의 결과 BOD, SS의 범위가 "높음"으로 나타났으며, 다른 항목인 COD, T-N, T-P의 경우 "정상"으로 나타났다.
따라서 하수도통합 수질진단부(100)의 결과, 우선순위에 따라 유입수질 진단부(110)에서 비정상에 해당하는 "높은 부하"가 나타났으며, 방류수계는 정상범위, 하수처리장 유출수질 진단은 두 개의 항목이 비정상에 해당하는 "높음"이 나타나 상기 하수도통합 수질예측부(200)의 수행이 요구되는 것으로 나타났다.
도 3에 나타난 바와 같이 설정된 루트에 따라 유입수질 진단부(110)가 비정상에 해당되므로, 하수도통합 수질예측부(200)에서 유입하수 부하예측부(210)와 하수처리장 성능예측부(220)가 수행된다. 해당 시간인 12월 31일을 기준으로 3일까지의 미래 유입하수의 수질을 시계열 모델링 방법을 적용한 결과는 아래 [표 2]와 같다. 이후 예측된 데이터는 하수처리장 성능예측부의 수행을 위한 입력데이터로 활용이 되며, 활성슬러지모델링 방법을 적용하여 아래 [표 3]과 같은 3일까지의 미래의 유출수질을 예측하게 된다.
표 2
일자 유입수 수질
BOD COD SS T-N T-P
1월1일 111.4 69.2 108.6 33.0 3.1
1월2일 108.8 73.9 105.8 31.0 3.2
1월3일 93.1 68.2 109.5 34.8 3.0
표 3
일자 유출수 수질
BOD COD SS T-N T-P
1월1일 6.2 8.3 3.4 17.9 1.0
1월2일 13.2 13.0 3.4 21.9 0.6
1월3일 9.3 11.2 3.5 20.5 0.6
상기 유입하수 부하예측부(210)와 하수처리장 성능예측부(220)의 수행이 완료된 후, 도 3의 루트에 따라 하수처리장 유출수질 진단부(120)에 의해 정상상태 범위인지 비정상상태 범위인지를 확인한다. 해당 기간동안 12월 31일을 기준으로 1월 1일부터 1월 3일까지의 유입하수 수질과 하수처리장 유출수질을 통한 하수처리장 유출수질 진단 결과 BOD와 T-N에 대하여 비정상에 해당하는 "높음"이 나타났다. 따라서 도 3의 루트에 따라 하수처리장 유출수질 진단부(120)의 결과 비정상 범위의 수질을 나타내어 최종의사결정지원부(300)를 수행하게 된다.
상기 최종의사결정지원부(300)는 식별부(320)를 통해 대상 하수처리장의 비정상 범위에 속한 BOD와 T-N에 대한 하수처리장 운전방안이 탑재된 시나리오데이터베이스부(320)로부터 조절변수들에 대한 현재 운영대비 조절비율(%) 아래 [표 4]와 같이 호출한다. 따라서 해당 기간인 12월 31일의 조절변수들에 대한 조건을 100%로 두고 현재의 증감비를 적용하여 시나리오 우선순위 절차에 따른 활성슬러지모델링 방법을 통해 유출수질을 예측한다. 이후 미래 3일간의 하수처리장 유출수질 진단부(120)의 결과 가장 적은 비정상 범위를 보이는 운전안을 도출한다. [표 5]는 대상 하수처리장의 하수처리장 성능예측부(220)의 시나리오 적용 전 미래 유출수질 결과와 최적 운전대안으로 도출된 시나리오 적용 후 유출수질의 결과를 도시하였다. 시나리오데이터 분석을 통해 도출된 하수처리장 운전안은 12월 31일의 운전대비 반송슬러지량을 125% 상향조정하고, 폐슬러지량을 20%로 하향조정하는 것으로 나타났다. 도출된 운전안의 하수처리장 유출수질 진단부(120)의 결과 BOD과 T-N의 경우 정상범위에 해당하는 "낮음"으로 나타났다. 따라서 최종의사결정지원부(300)에서 도출된 하수처리장 운영방안을 운전자에게 제공함으로써 상기 도 3의 루트는 종료된다.
표 4
시나리오 우선순위 송풍량 반송슬러지량 폐슬러지량
범위 증감비(%) 범위 증감비(%) 범위 증감비(%)
1 75 - 100 - 80 ~ 20 - 20
2 75 - 125 ~ 225 + 50 80 ~ 20 - 20
3 50 ~ 25 25 100 - 80 ~ 20 - 20
표 5
일자 BOD COD SS T-N T-P
1월 1일 6.2 6.3 8.3 8.5 3.4 3.4 18.0 17.1 1.0 1.2
1월 2일 13.2 6.7 13.0 10.3 3.4 3.5 22.0 15.3 0.6 0.6
1월 3일 9.3 6.9 11.2 10.4 3.5 3.7 20.5 10.9 0.6 0.8
본 발명은 상기에 기술한 모든 과정을 동일 수계를 공유하는 다수의 하수처리장에 적용하여 하나의 공유된 수계의 바람직한 수질을 조성하기 위하여, 일정 행정구역 혹은 수계의 영역별로 구분되어 그룹지어질 수 있는 다수의 하수처리장에 대하여 상기의 과정을 적용할 때 해당 수계로의 처리수 배출량을 합산한 값인 총 배출량의 반 이상을 차지하는 하수처리장이 존재하는 경우 해당 하수처리장을 우선적으로 적용하며, 해당 유역에서 가장 큰 하수처리장의 배출유량이 총 배출유량의 반 이상을 차지하지 않는 크기일 경우, 배출유량이 큰 순서대로 하수처리장의 배출유량을 누적하여 계산할 경우 반 이상을 차지하게 되는 하수처리장까지 적용하는 것을 원칙으로 한다. 이는 하수처리장의 빈번한 운전조건의 변경은 공정의 안정성을 해쳐 처리시설의 관리에 오히려 나쁜 영향을 미칠 수 있어 이를 방지하기 위함이다.
또한 본 발명으로 인해, 해당 유역(방류수계) 관리자는 수계수질을 안정하게 유지하기 위하여 유역에 포함되는 하수처리장의 운영에 있어 데이터 분석에 기반한 통계적 사실에 근거한 객관적인 수질 상황 판단에 의해 하수처리장 운영을 지원하게 됨으로써 보다 객관적 의사결정지원을 수행할 수 있다. 또한, 유역에 존재하는 하수처리장의 정보를 한 곳에서 관리하고, 적절한 예측기능을 통하여 다수 하수처리장의 운영을 통합적으로 관리할 수 있게 되는 부가적인 효과를 얻게 된다. 또한 본 발명에 의해 기존에 각 하수처리장별로 주어지던 유출수질 이하로 처리하여 내보내야 하는 단순한 업무기준을 탈피하여 공유하는 수계의 수질을 바람직한 수준으로 유지하기 위해 다수 하수처리장의 영향을 함께 고려하는 방식을 선택함으로써 수계수질을 보다 통합적으로 관리하고 유지할 수 있다는 장점을 가지게 된다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 동일한 방류수계를 공유하는 다수의 하수처리장을 통합하여 관리하는 장치 및 방법에 관한 것이기 때문에 하수처리장을 포함한 수처리시설에 널리 사용될 수 있다.

Claims (11)

  1. 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도를 진단하는 유입수질 진단부와, 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지를 진단하는 하수처리장 유출수질 진단부와, 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부를 판단하는 수계수질 진단부를 포함하는 하수도통합 수질진단부;
    해당시점을 기준으로 과거 며칠 전의 유입수질의 상태를 통해 미래 며칠 후까지의 유입하수의 부하를 예측하는 유입하수 부하예측부와, 하수처리장으로 유입된 해당시점의 유입하수의 부하나 상기 유입하수 부하예측부에 의해 예측된 유입하수의 부하에 의해 하수처리장의 유출하수의 부하를 예측하는 하수처리장 성능예측부와, 상기 예측된 유출하수의 부하와 방류수계의 과거 일정시간 동안의 수질의 상태를 활용하여 미래시점의 방류수계의 수질상태를 예측하는 수계수질 예측부를 포함하는 하수도통합 수질예측부; 및
    상기 하수도통합 수질진단부와 상기 하수도통합 수질예측부를 통해 진단 및 예측된 결과를 하수처리장의 운전자에게 제공하여 최적의 하수처리장의 운전방안을 결정하도록 하는 최종의사결정지원부;를 포함하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치.
  2. 제 1항에 있어서,
    상기 유입수질 진단부는 하수처리장의 데이터베이스에 저장되어 있는 유입수질의 데이터와, 하수처리장으로 유입되는 하수의 유량과, BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물의 농도를 통계학적 분포를 바탕으로 정규화된 분포에서 평균값±(1*표준편차)에 해당하는 범위를 "정상 부하", 상기 정상 부하보다 낮은 방향으로 벗어나는 범위를 "낮은 부하", 상기 정상 부하보다 높은 방향으로 벗어나는 범위를 "높은 부하"로 하여 하수처리장으로 유입되는 하수의 유입수질의 오염부하정도를 진단하는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치.
  3. 제 1항에 있어서,
    상기 하수처리장 유출수질 진단부는 BOD, COD, SS, TN, TP의 각 항목에 대하여 데이터를 군집화하기 위해 K-평균 군집화 방법을 사용하여 높은 평균을 가진 그룹을 "높음"과 낮은 평균을 가진 그룹을 "정상"으로 나누어 하수처리장으로부터 유출되는 하수의 유출수질의 범위가 "높음"과 "정상"의 어느 상태에 해당하는지를 진단하는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치.
  4. 제 1항에 있어서,
    상기 수계수질 진단부의 사전에 규정되어 있는 수질범위는 방류수계의 수질의 일정 수질항목에 대하여, 방류수계의 해당 수계지점의 특성을 잘 반영할 수 있는 항목의 그룹을 요인분석에 의해 파악하여 각 그룹별로 존재하는 항목별로 누적되어 존재하는 측정치를 호출하여 K-평균 군집화 방법을 수행하여 "높음". "보통", "낮음"의 세 그룹으로 분류되어 있는 수질범위이며, 상기 수계수질 진단부는 방류수계의 수질 데이터가 상기 세 그룹 중에 어떤 그룹에 속하는지를 판단하여 방류수계의 수질의 상태를 진단하는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치.
  5. 제 1항에 있어서,
    상기 유입하수 부하예측부와 상기 하수처리장 성능예측부의 유입하수 및 유출하수의 부하는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 농도를 기준으로 하루에 하나의 값 단위로 예측이 가능한 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치.
  6. 제 1항에 있어서,
    상기 수계수질 예측부는 하수처리장에서 처리하여 방류되는 하수에 포함되어 있는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물질의 농도에 대한 해당시점 또는 해당시점의 과거 일정시간 동안의 측정치를 활용하여 해당시점의 미래 일정시점까지의 방류수계의 수질을 1일 1값 단위로 예측을 수행하는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치.
  7. 제 1항에 있어서,
    상기 최종의사결정지원부는 하수처리장의 운전방안이 다수 개 탑재되어 있는 시나리오데이터베이스부와, 상기 시나리오데이터베이스부로부터 상기 하수도통합 수질예측부를 통해 예측된 결과에 해당하는 하수처리장의 운전방안을 호출하는 식별부와, 상기 식별부를 통해 호출된 하수처리장의 운전방안으로부터 하수처리장의 운전변수에 대한 시나리오 우선순위 절차를 상기 하수처리장 성능예측부에 적용하여 하수처리장의 유출수질을 예측하여 운전자에게 제공하는 의사결정지원부를 포함하는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치.
  8. 유입수질 진단부에 의해 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도를 진단하고, 하수처리장 유출수질 진단부에 의해 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지를 진단하고, 수계수질 진단부에 의해 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부를 판단하는 제 1하수도통합 수질진단단계;
    상기 제 1하수도통합 수질진단단계를 통해 유입수질의 오염부하정도, 유출수질의 수질범위 및 방류수계의 수질범위 중 적어도 하나 이상이 비정상상태로 진단될 경우, 해당시점을 기준으로 과거 며칠 전의 유입수질의 상태를 통해 미래 며칠 후까지의 유입하수의 부하를 예측하거나, 하수처리장으로 유입된 해당시점의 유입하수의 부하나 상기 예측된 유입하수의 부하에 의해 하수처리장의 유출하수의 부하를 예측하거나, 상기 예측된 유출하수의 부하와 방류수계의 과거 일정시간 동안의 수질의 상태를 활용하여 미래시점의 방류수계의 수질상태를 예측하는 하수도통합 수질예측단계;
    상기 하수도통합 수질예측단계를 통해 예측된 유입하수의 부하 또는 유출하수의 부하 또는 방류수계의 수질상태를 상기 하수도통합 수질진단단계에 적용하여 미래시점에 대한 유출수질의 수질범위 또는 방류수계의 수질범위를 진단하는 제 2하수도통합 수질진단단계; 및
    하수처리장의 운전방안이 다수 개 탑재되어 있는 시나리오데이터베이스부로부터 상기 하수도통합 수질예측단계를 통해 예측된 결과에 해당하는 하수처리장의 운전방안을 호출하여 상기 호출된 하수처리장의 운전방안으로부터 하수처리장의 운전변수에 대한 시나리오 우선순위 절차를 상기 하수도통합 수질예측단계에 적용하여 하수처리장의 유출수질을 예측하여 운전자에게 제공하는 최종의사결정지원단계;를 포함하되,
    상기 하수도통합 수질예측단계의 유입하수 및 유출하수의 부하는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 농도를 기준으로 하루에 하나의 값 단위로 예측이 가능하며, 상기 하수도통합 수질예측단계의 방류수계의 수질상태의 예측은 하수처리장에서 처리하여 방류되는 하수에 포함되어 있는 BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물질의 농도에 대한 해당시점 또는 해당시점의 과거 일정시간 동안의 측정치를 활용하여 해당시점의 미래 일정시점까지의 방류수계의 수질을 1일 1값 단위로 예측을 수행하는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리방법.
  9. 제 8항에 있어서,
    상기 다수의 하수처리장으로 유입되는 유입수질의 오염부하정도의 진단은 하수처리장의 데이터베이스에 저장되어 있는 유입수질의 데이터와, 하수처리장으로 유입되는 하수의 유량과, BOD, COD, SS, TN, TP 중에서 선택된 적어도 어느 하나 이상의 오염물의 농도를 통계학적 분포를 바탕으로 정규화된 분포에서 평균값±(1*표준편차)에 해당하는 범위를 "정상 부하", 상기 정상 부하보다 낮은 방향으로 벗어나는 범위를 "낮은 부하", 상기 정상 부하보다 높은 방향으로 벗어나는 범위를 "높은 부하"로 하여 수행되는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리방법.
  10. 제 8항에 있어서,
    상기 하수처리장의 유출수질이 하수처리장의 기준범위 이내의 수질범위에 해당하는지에 대한 진단은 BOD, COD, SS, TN, TP의 각 항목에 대하여 데이터를 군집화하기 위해 K-평균 군집화 방법을 사용하여 높은 평균을 가진 그룹을 "높음"과 낮은 평균을 가진 그룹을 "정상"으로 나누어 하수처리장으로부터 유출되는 하수의 유출수질의 범위가 "높음"과 "정상"의 어느 상태에 해당하는지를 진단하는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리방법.
  11. 제 8항에 있어서,
    상기 방류수계의 수질 데이터가 사전에 규정되어 있는 수질범위에 해당하는지 여부에 대한 판단은 방류수계의 수질의 일정 수질항목에 대하여, 방류수계의 해당 수계지점의 특성을 잘 반영할 수 있는 항목의 그룹을 요인분석에 의해 파악하여 각 그룹별로 존재하는 항목별로 누적되어 존재하는 측정치를 호출하여 K-평균 군집화 방법을 수행하여 "높음". "보통", "낮음"의 세 그룹으로 분류되어 있는 수질범위를 기준으로 방류수계의 수질 데이터가 상기 세 그룹 중에 어떤 그룹에 속하는지를 판단하여 수행되는 것을 특징으로 하는 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리방법.
PCT/KR2014/002583 2014-03-26 2014-03-27 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법 WO2015147349A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140035309A KR20150111672A (ko) 2014-03-26 2014-03-26 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법
KR10-2014-0035309 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015147349A1 true WO2015147349A1 (ko) 2015-10-01

Family

ID=54195846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002583 WO2015147349A1 (ko) 2014-03-26 2014-03-27 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법

Country Status (2)

Country Link
KR (1) KR20150111672A (ko)
WO (1) WO2015147349A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109242367A (zh) * 2018-11-07 2019-01-18 山东建筑大学 一种城区污水处理率评估计算方法
US10458969B2 (en) 2016-03-22 2019-10-29 International Business Machines Corporation Dynamic water quality prediction
CN110807174A (zh) * 2019-10-23 2020-02-18 西安建筑科技大学 一种基于统计分布的污水厂厂群出水分析及异常识别方法
CN111339499A (zh) * 2020-03-31 2020-06-26 西安建筑科技大学 一种基于时间轨迹相似度的污水处理厂运行状态评估方法
CN113033917A (zh) * 2021-04-19 2021-06-25 重庆工商大学 一种基于外围数据的污水处理厂预测规划运行管理方法
CN113608477A (zh) * 2021-08-06 2021-11-05 张佳 一种一体化污水管控平台
CN114455715A (zh) * 2022-03-03 2022-05-10 四川省建筑设计研究院有限公司 一种基于“药方式”的水体生态治理方法及系统
CN114620790A (zh) * 2022-04-01 2022-06-14 黄河水利职业技术学院 一种污水厂电气自动化控制系统
CN115174859A (zh) * 2022-07-05 2022-10-11 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种城镇生活污水处理厂运营监控的预警装置和方法
CN115403226A (zh) * 2022-09-30 2022-11-29 北控水务(中国)投资有限公司 一种平衡系统内碳源的厂网联调控制方法、系统及装置
CN117114372A (zh) * 2023-10-24 2023-11-24 明洋(山东)环境科技有限公司 一种基于物联网的污泥处理进度实时管理系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119961B1 (ko) * 2018-10-22 2020-06-08 주식회사 프라이머리넷 IoT 센서 데이터를 활용한 오폐수 처리 시스템의 장애 탐지 시스템 및 그 탐지 방법
KR102440372B1 (ko) * 2022-01-07 2022-09-05 니브스코리아 주식회사 빅데이터 및 인공지능 기반의 하수처리시설의 유입수 환경 정보 관리 방법, 장치 및 컴퓨터-판독가능 기록매체
CN116090678B (zh) * 2023-04-11 2023-06-02 北京埃睿迪硬科技有限公司 一种数据处理方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136866A (ja) * 2004-11-15 2006-06-01 Toshiba Corp 下水処理場の制御装置
JP2007002474A (ja) * 2005-06-22 2007-01-11 Mitsubishi Electric Corp 下水処理場の統合運用管理方法
KR20100069397A (ko) * 2008-12-16 2010-06-24 한화에스앤씨주식회사 유역의 물 순환관리 시스템
KR101046198B1 (ko) * 2011-03-22 2011-07-04 주식회사 차임이엔지 수처리 원격제어 감시 시스템
KR20120117429A (ko) * 2011-04-15 2012-10-24 한국환경공단 수질 원격감시시스템과 이를 이용한 원격감시방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136866A (ja) * 2004-11-15 2006-06-01 Toshiba Corp 下水処理場の制御装置
JP2007002474A (ja) * 2005-06-22 2007-01-11 Mitsubishi Electric Corp 下水処理場の統合運用管理方法
KR20100069397A (ko) * 2008-12-16 2010-06-24 한화에스앤씨주식회사 유역의 물 순환관리 시스템
KR101046198B1 (ko) * 2011-03-22 2011-07-04 주식회사 차임이엔지 수처리 원격제어 감시 시스템
KR20120117429A (ko) * 2011-04-15 2012-10-24 한국환경공단 수질 원격감시시스템과 이를 이용한 원격감시방법

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458969B2 (en) 2016-03-22 2019-10-29 International Business Machines Corporation Dynamic water quality prediction
CN109242367A (zh) * 2018-11-07 2019-01-18 山东建筑大学 一种城区污水处理率评估计算方法
CN109242367B (zh) * 2018-11-07 2024-02-02 山东建筑大学 一种城区污水处理率评估计算方法
CN110807174A (zh) * 2019-10-23 2020-02-18 西安建筑科技大学 一种基于统计分布的污水厂厂群出水分析及异常识别方法
CN111339499A (zh) * 2020-03-31 2020-06-26 西安建筑科技大学 一种基于时间轨迹相似度的污水处理厂运行状态评估方法
CN113033917A (zh) * 2021-04-19 2021-06-25 重庆工商大学 一种基于外围数据的污水处理厂预测规划运行管理方法
CN113033917B (zh) * 2021-04-19 2022-04-12 重庆工商大学 一种基于外围数据的污水处理厂预测规划运行管理方法
CN113608477A (zh) * 2021-08-06 2021-11-05 张佳 一种一体化污水管控平台
CN114455715B (zh) * 2022-03-03 2023-04-25 四川省建筑设计研究院有限公司 一种基于“药方式”的水体生态治理方法及系统
CN114455715A (zh) * 2022-03-03 2022-05-10 四川省建筑设计研究院有限公司 一种基于“药方式”的水体生态治理方法及系统
CN114620790A (zh) * 2022-04-01 2022-06-14 黄河水利职业技术学院 一种污水厂电气自动化控制系统
CN114620790B (zh) * 2022-04-01 2023-08-22 黄河水利职业技术学院 一种污水厂电气自动化控制系统
CN115174859A (zh) * 2022-07-05 2022-10-11 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种城镇生活污水处理厂运营监控的预警装置和方法
CN115403226A (zh) * 2022-09-30 2022-11-29 北控水务(中国)投资有限公司 一种平衡系统内碳源的厂网联调控制方法、系统及装置
CN115403226B (zh) * 2022-09-30 2023-11-10 北控水务(中国)投资有限公司 一种平衡系统内碳源的厂网联调控制方法、系统及装置
CN117114372A (zh) * 2023-10-24 2023-11-24 明洋(山东)环境科技有限公司 一种基于物联网的污泥处理进度实时管理系统
CN117114372B (zh) * 2023-10-24 2024-01-26 明洋(山东)环境科技有限公司 一种基于物联网的污泥处理进度实时管理系统

Also Published As

Publication number Publication date
KR20150111672A (ko) 2015-10-06

Similar Documents

Publication Publication Date Title
WO2015147349A1 (ko) 동일한 방류수계를 공유하는 다수의 하수처리장의 통합운영관리장치 및 그 방법
Singh et al. Water quality management of a stretch of river Yamuna: an interactive fuzzy multi-objective approach
KR101470617B1 (ko) 환기 제어에 의한 대기오염 수집 및 감소 시스템 및 방법
KR101987897B1 (ko) 하수처리 시설의 공정 성능 모니터링 시스템
AU2017254356A1 (en) System and method for wastewater treatment process control
WO2014157748A1 (ko) 최근린기법을 이용한 하수처리장의 유입유량과 유입성분농도의 예측 장치 및 방법
Christodoulou et al. Proactive risk-based integrity assessment of water distribution networks
Torija et al. Use of back-propagation neural networks to predict both level and temporal-spectral composition of sound pressure in urban sound environments
WO2012002713A2 (ko) 하폐수 처리장의 공정진단 시스템 및 방법
JP4010514B2 (ja) 水道水の水質管理方法及び水質管理システム
Sen et al. An Artificial Intelligence Platform for Asset Management Contributes to Better Decision‐making Tools for Operations, Maintenance, and Utility Management: Sen et al.
Ren et al. Sustainability assessment framework for the prioritization of urban sewage treatment technologies
CN109840870A (zh) 一种排水系统网格化管理模式分析方法及储存其的介质
KR20140117959A (ko) 하수처리장 유출수질의 상태에 대한 원인인자 제공장치 및 방법
CN114580980B (zh) 面向城市社区空间应急响应的动态更新预案系统及方法
JP6896391B2 (ja) 取水計画装置、取水システム及び取水計画方法
Comas et al. Extension of the IWA/COST simulation benchmark to include expert reasoning for system performance evaluation
WO2014157751A1 (ko) 하수처리장 에너지소비상태 진단에 따른 에너지 절감 예측시스템 및 방법
Sen et al. Integration of asset management with real time simulation to improve reliability, preventive and corrective maintenance and reduce life cycle cost in wastewater treatment for reuse
US11781306B2 (en) Systems and methods using probabilistic forecast for agent-based control of sewers
KR20180076454A (ko) 에너지 절감을 위한 하수 처리장에서의 에너지 제어 방법
CN117853271A (zh) 一种基于图论的城镇供水自动管控系统
Maul et al. Bacterial distribution and sampling strategies for drinking water networks
Foor et al. Reducing Septic-Reliant Households: How a Comprehensive Legal Scheme Could Improve Water Quality, Environmental, and Human Health
CN111914204A (zh) 基于河网上下游考核断面水质目标差异的水质处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887470

Country of ref document: EP

Kind code of ref document: A1