WO2015147235A1 - エポキシ樹脂硬化物発泡体、及び、その製造方法 - Google Patents

エポキシ樹脂硬化物発泡体、及び、その製造方法 Download PDF

Info

Publication number
WO2015147235A1
WO2015147235A1 PCT/JP2015/059529 JP2015059529W WO2015147235A1 WO 2015147235 A1 WO2015147235 A1 WO 2015147235A1 JP 2015059529 W JP2015059529 W JP 2015059529W WO 2015147235 A1 WO2015147235 A1 WO 2015147235A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
cured
weight
foam
foaming
Prior art date
Application number
PCT/JP2015/059529
Other languages
English (en)
French (fr)
Inventor
将義 中村
林 直人
賢輔 谷
陽介 巻幡
大山 高輝
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015147235A1 publication Critical patent/WO2015147235A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to a cured epoxy resin foam and a method for producing the same.
  • the epoxy resin is a curable resin having an epoxy group in the molecule and cured by a curing reaction. By curing the mixture of the epoxy resin and the curing agent (curing catalyst), a cured epoxy resin is obtained. Epoxy resin cured products are used in various fields.
  • a foam of cured epoxy resin it is made of a cured epoxy resin used as a separation medium for chromatography, a porous body for blood separation, a sample concentration medium for environmental analysis, etc., and has a three-dimensional network structure skeleton and voids.
  • the porous body which has is known (refer patent document 1).
  • This porous body is produced using an extraction method. In other words, this porous body is obtained by curing an epoxy resin composition containing an organic polymer as an additive to obtain a cured product, and then washing the obtained cured product to remove an organic as an additive from the cured product. It is produced by forming a pore structure by removing a polymer.
  • the extraction method When producing the cured epoxy resin foam, the extraction method has a problem that it is difficult to obtain a high expansion ratio, and it is difficult to produce continuously, and there is a problem in terms of productivity. Furthermore, in the extraction method, an organic polymer as an additive may remain, which easily causes a problem of contamination.
  • an object of the present invention is to provide a cured epoxy resin foam having a high expansion ratio. Furthermore, another object of the present invention is to provide a method capable of efficiently producing a cured epoxy resin foam having a high expansion ratio.
  • the curing agent of the epoxy resin is an imidazole group-containing curing agent. It has been found that a cured epoxy resin foam having a cell structure with a high expansion ratio can be efficiently obtained without any inhibition.
  • the present invention has been completed based on these findings.
  • the present invention provides a cured epoxy resin foam obtained by foaming and curing a resin composition containing a curable resin containing 50% by weight or more of an epoxy resin and an imidazole group-containing curing agent.
  • the expansion ratio is preferably 2 times or more.
  • the solvent insoluble content in methyl ethyl ketone is preferably 60% by weight or more.
  • the apparent density is preferably 0.020 to 0.8 g / cm 3 .
  • the resin composition In the cured epoxy resin foam, it is preferable to foam the resin composition with an inert gas.
  • the inert gas is preferably carbon dioxide.
  • the inert gas is preferably in a supercritical state.
  • the present invention relates to a method for producing a cured epoxy resin foam characterized by foaming and curing a resin composition containing a curable resin containing 50 wt% or more of an epoxy resin and an imidazole group-containing curing agent. provide.
  • the cured epoxy resin foam of the present invention has a cell structure with a high expansion ratio because the curing agent is an imidazole group-containing curing agent. Moreover, since the hardening
  • the cured epoxy resin foam of the present invention is obtained by foaming and curing a resin composition containing a curable resin containing 50% by weight or more of an epoxy resin and an imidazole group-containing curing agent.
  • a curable resin containing 50% by weight or more of an epoxy resin and a resin composition containing an imidazole group-containing curing agent may be referred to as “epoxy resin composition A”. May be referred to as an “epoxy curable resin”.
  • Epoxy resin composition A The cured epoxy resin foam of the present invention is obtained by foaming and curing the epoxy resin composition A.
  • the epoxy resin composition A is a composition used for forming the cured epoxy resin foam of the present invention, and contains at least an epoxy curable resin and an imidazole group-containing curing agent.
  • the content of the epoxy curable resin in the epoxy resin composition A is not particularly limited, but since the epoxy curable resin is a main component, it is based on the total amount of the epoxy resin composition A (total weight, 100% by weight). It is preferably 60% by weight or more, more preferably 70% by weight, still more preferably 80% by weight or more.
  • the epoxy curable resin is a curable resin containing 50% by weight or more of an epoxy resin.
  • the epoxy-based curable resin may be composed only of an epoxy resin, or an “epoxy resin” and a “resin other than an epoxy resin” (sometimes referred to as “other resins”) are used in combination. Also good. That is, the epoxy curable resin is a mixture of an epoxy resin and another resin, and may be a mixture in which the ratio of the epoxy resin is 50% by weight or more.
  • the other resin may be a curable resin or a non-curable resin.
  • the above-mentioned epoxy resin refers to a curable resin having an epoxy group in the molecule and cured by a curing reaction. Although it does not specifically limit as said epoxy resin, An aromatic epoxy resin, a non-aromatic epoxy resin, etc. are mentioned.
  • aromatic epoxy resins include bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, stilbene type epoxy resins, biphenyl type epoxy resins, and bisphenol A novolac type epoxies.
  • cresol novolac type epoxy resin diaminodiphenylmethane type epoxy resin
  • polyphenyl base epoxy resin such as tetrakis (hydroxyphenyl) ethane base
  • fluorene-containing epoxy resin fluorene-containing epoxy resin
  • triglycidyl isocyanurate heteroaromatic ring (for example, triazine ring)
  • heteroaromatic ring for example, triazine ring
  • examples thereof include an epoxy resin.
  • non-aromatic epoxy resins include aliphatic glycidyl ether type epoxy resins, aliphatic glycidyl ester type epoxy resins, alicyclic glycidyl ether type epoxy resins, and alicyclic glycidyl ester type epoxy resins.
  • an epoxy resin can be used individually or in combination of 2 or more types.
  • the epoxy resin is preferably a glycidyl ether type epoxy resin such as a bisphenol A type epoxy resin from the viewpoint of easily obtaining a viscosity suitable for foaming in the epoxy resin composition A, fluidity, and moldability.
  • the epoxy equivalent of the said epoxy resin is not specifically limited, From the point which suppresses the heat resistant fall of an epoxy resin hardened
  • the weight average molecular weight of the epoxy resin is not particularly limited, but is preferably 5000 or more, more preferably 6000 or more, from the viewpoint of suppressing the disadvantage that the viscosity is lowered and a viscosity suitable for foaming cannot be obtained. Yes, more preferably 7000 or more. Further, the weight average molecular weight of the epoxy resin is preferably 200000 or less, more preferably 150,000 or less, from the viewpoint of suppressing the problem that the viscosity becomes too large to obtain a viscosity suitable for foaming. More preferably, it is 100,000 or less.
  • the ratio of the epoxy resin in the epoxy curable resin is not particularly limited as long as it is 50% by weight or more with respect to the total amount of the epoxy curable resin (total weight, 100% by weight), but preferably 60% by weight or more. More preferably, it is 75 weight% or more, More preferably, it is 90 weight% or more.
  • the other resin is not particularly limited, and may be a thermoplastic resin.
  • a thermoplastic resin is not particularly limited.
  • the polyolefin resin is not particularly limited.
  • low density polyethylene low density polyethylene
  • medium density polyethylene high density polyethylene
  • linear low density polyethylene polypropylene
  • copolymer of ethylene and propylene ethylene or propylene and other ⁇ -Copolymers with olefins (eg, butene-1, pentene-1, hexene-1, 4-methylpentene-1, etc.)
  • ethylene and other ethylenically unsaturated monomers eg, vinyl acetate, acrylic acid
  • Acrylic acid ester methacrylic acid
  • methacrylic acid ester vinyl alcohol and the like.
  • styrene-type resin For example, a polystyrene, an acrylonitrile butadiene styrene copolymer (ABS resin), etc. are mentioned.
  • ABS resin acrylonitrile butadiene styrene copolymer
  • polyamide-type resin For example, nylon 6, nylon 66, nylon 12, etc. are mentioned.
  • acrylic resin For example, polymethylmethacrylate etc. are mentioned.
  • polyester-type resin For example, a polyethylene terephthalate, a polybutylene terephthalate, etc. are mentioned.
  • the polycarbonate is not particularly limited, and examples thereof include bisphenol A-based polycarbonate.
  • thermoplastic resins can be used alone or in combination of two or more.
  • thermoplastic resin when it is a copolymer, it may be a random copolymer or a block copolymer.
  • the thermoplastic resin contains a rubber component and / or a thermoplastic elastomer component. Since the rubber component and the thermoplastic elastomer component have a glass transition temperature of room temperature or lower (for example, 20 ° C. or lower), if the thermoplastic resin is a rubber component and / or a thermoplastic elastomer component, the cured epoxy resin foam Flexibility and shape followability are easily improved.
  • the rubber component and / or thermoplastic elastomer component is not particularly limited as long as it has rubber elasticity and can be foamed.
  • natural or synthetic rubber for example, natural or synthetic rubber, olefin elastomer, styrene elastomer, polyester elastomer, Examples thereof include polyamide-based elastomers and polyurethane-based elastomers.
  • natural rubber polyisobutylene, polyisoprene, chloroprene rubber, butyl rubber, nitrile butyl rubber etc. are mentioned.
  • olefin type elastomer For example, an ethylene-propylene copolymer, an ethylene-propylene-diene copolymer, an ethylene-vinyl acetate copolymer, polybutene, chlorinated polyethylene, etc. are mentioned.
  • styrene-type elastomer For example, a styrene-butadiene-styrene copolymer, a styrene-isoprene-styrene copolymer, those hydrogenated substances, etc. are mentioned.
  • Such rubber components and / or thermoplastic elastomer components can be used alone or in combination of two or more.
  • said other resin (resins other than the said epoxy resin) can be used individually or in combination of 2 or more types.
  • the proportion of the other resin in the epoxy curable resin is particularly limited as long as the proportion of the epoxy resin is 50% by weight or more. However, it is preferably less than 50% by weight, more preferably less than 40% by weight, still more preferably less than 25% by weight, even more based on the total amount of epoxy-based curable resin (total weight, 100% by weight). Preferably it is less than 10% by weight.
  • the epoxy resin composition A contains an imidazole group-containing curing agent together with the epoxy curable resin.
  • the cured epoxy resin foam of the present invention includes an imidazole group-containing curing agent together with the epoxy curable resin, and has a high foaming ratio cell structure. This is because the imidazole group-containing curing agent loses its temporary activity and does not hinder foaming, and after foaming, the activity of the imidazole group-containing curing agent is restored to accelerate the curing reaction, and an epoxy resin cured product foam is obtained. It is presumed to be.
  • the epoxy resin is a curable resin that has an epoxy group in the molecule and is cured by a curing reaction
  • the cured epoxy resin is a mixture of an epoxy resin and a curing agent (curing catalyst).
  • the cured epoxy resin foam is obtained by foaming and curing a mixture of an epoxy resin and a curing agent.
  • the curing agent may be unintentionally deactivated and cannot be cured, or the curing agent may be unintentionally cured and cannot be foamed.
  • the imidazole group-containing curing agent it is presumed that a cell structure with a high expansion ratio can be obtained because such unintentional deactivation of the curing agent and unintentional curing of the curing agent do not occur.
  • the imidazole group-containing curing agent contains a compound having an imidazole group in the molecule.
  • the compound shown by following Chemical formula (1) is mentioned.
  • R 1 , R 2 , R 3 , and R 4 may be the same or different.
  • R 1 , R 2 , R 3 , and R 4 include an alkyl group, an aryl group, an aralkyl group, a cyanoalkyl group, a hydroxyalkyl group, a haloalkyl group, an alkoxy group, and a halogen atom.
  • alkyl group examples include methyl groups, ethyl groups, propyl groups, isopropyl groups, butyl groups, isobutyl groups, pentyl groups, hexyl groups, octyl groups, 2-ethylhexyl groups, decyl groups, undecyl groups, and dodecyl groups. Examples thereof include 1 to 20 (preferably 1 to 14) alkyl groups.
  • aryl group include a phenyl group and a naphthyl group.
  • aralkyl group examples include benzyl group, 1-phenylethyl group, 2-phenylethyl group, and 3-phenylpropyl group.
  • Examples of the cyanoalkyl group include cyanoalkyl groups having 1 to 10 carbon atoms in the alkyl moiety such as a cyanomethyl group, a cyanoethyl group, and a cyanopropyl group.
  • Examples of the hydroxyalkyl group include hydroxyalkyl groups having 1 to 10 carbon atoms such as a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
  • Examples of the haloalkyl group include a trifluoromethyl group, a chloromethyl group, and a chloroethyl group.
  • alkoxy group examples include alkoxy groups having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • imidazole group-containing curing agent examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, and 1-isobutyl.
  • curing agent is used individually or in combination of 2 or more types.
  • 1-Benzyl-2-methylimidazole is represented by the following chemical formula (2).
  • 1-isobutyl-2-methylimidazole is represented by the following chemical formula (3).
  • 2-ethyl-4-methylimidazole is represented by the following chemical formula (4).
  • the content of the imidazole group-containing curing agent in the epoxy resin composition A is not particularly limited, but is preferably 0.1 parts by weight or more with respect to 100 parts by weight of the epoxy-based curable resin, more preferably. It is 0.3 parts by weight or more, more preferably 1 part by weight or more. It becomes easy to prevent generation
  • the content of the imidazole group-containing curing agent is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and still more preferably 3 with respect to 100 parts by weight of the epoxy-based curable resin. Less than parts by weight. When the content is 10 parts by weight or less, unintended curing occurs in the epoxy resin composition A, and it becomes easy to prevent the occurrence of a problem that sufficient foaming does not occur.
  • the epoxy resin composition A may contain additives as long as it does not impair the effects of the present invention.
  • additives include nucleating agents (bubble nucleating agents), crystal nucleating agents, plasticizers, lubricants, colorants (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, filling Agents, reinforcing agents, antistatic agents, surfactants, tension modifiers, shrinkage inhibitors, fluidity modifiers, clays, vulcanizing agents, surface treatment agents, flame retardants and the like.
  • nucleating agents bubble nucleating agents
  • crystal nucleating agents plasticizers
  • lubricants colorants (pigments, dyes, etc.)
  • ultraviolet absorbers antioxidants, anti-aging agents
  • such an additive can be used individually or in combination of 2 or more
  • a nucleating agent may be used as an additive. That is, the epoxy resin composition A may contain a nucleating agent.
  • the nucleating agent is contained in the epoxy resin composition A, the cell diameter in the cell structure can be easily prepared, and the epoxy resin cured foam having excellent flexibility and cutting workability can be easily prepared. The body can be easily obtained.
  • nucleating agent powder particles are preferable. Specifically, talc, silica, alumina, zeolite, calcium carbonate, magnesium carbonate, barium sulfate, zinc oxide, titanium oxide, aluminum hydroxide, magnesium hydroxide, mica, montmorillonite and other oxides, composite oxides, metal carbonates Examples include salts, metal sulfates, metal hydroxides; carbon particles, glass fibers, and carbon tubes.
  • a nucleating agent can be used individually or in combination of 2 or more types.
  • the average particle size of the nucleating agent is not particularly limited, but is preferably 0.3 to 1.5 ⁇ m, more preferably 0.4 to 1.2 ⁇ m.
  • a function as a nucleating agent can be sufficiently obtained.
  • it can suppress that a nucleating agent penetrates the wall of a cell, and it becomes easy to obtain the epoxy resin hardened
  • the average particle diameter can be measured by a laser diffraction particle size distribution measuring method.
  • the measurement can be performed from a dispersion solution of the sample (AUTO measurement mode) using a laser diffraction / scattering particle size distribution measuring device “MICROTRAC MT-3000” manufactured by LEEDS & NORTHRUP INSTRUMENTS.
  • a laser diffraction / scattering particle size distribution measuring device “MICROTRAC MT-3000” manufactured by LEEDS & NORTHRUP INSTRUMENTS.
  • content of the said nucleating agent in the epoxy resin composition A is not specifically limited, 0.5 weight part or more is preferable with respect to 100 weight part of the said epoxy curable resin, More preferably, it is 2 weight or more. More preferably, it is 3 parts by weight or more. When the content is 0.5 part by weight or more, a cell structure having a high expansion ratio can be easily obtained. Moreover, the cell diameter in the bubble structure can be easily adjusted.
  • the content of the nucleating agent is preferably 150 parts by weight or less, more preferably 140 parts by weight or less, and still more preferably 130 parts by weight with respect to 100 parts by weight of the epoxy curable resin. It is as follows. When the content is 150 parts by weight or less, it is easy to prevent the viscosity of the resin composition from significantly increasing, or outgassing during foaming, and insufficient foaming characteristics from being obtained.
  • the cured epoxy resin foam of the present invention may be used for applications requiring flame retardancy such as electrical or electronic equipment.
  • the flame retardant may be contained in the epoxy resin composition A.
  • a flame retardant for example, an inorganic flame retardant is mentioned preferably.
  • a flame retardant can be used individually or in combination of 2 or more types.
  • the inorganic flame retardant is not particularly limited, and examples thereof include a brominated flame retardant, a chlorine flame retardant, a phosphorus flame retardant, and an antimony flame retardant.
  • chlorinated flame retardants and brominated flame retardants generate gas components that are harmful to the human body and corrosive to equipment during combustion.
  • Phosphorus flame retardants and antimony flame retardants are harmful.
  • There are problems such as sexuality and explosiveness. Therefore, as said inorganic flame retardant, a non-halogen non-antimony inorganic flame retardant is mentioned more suitably.
  • non-halogen-nonantimony inorganic flame retardant examples include hydrated metal compounds such as aluminum hydroxide, magnesium hydroxide, magnesium oxide / nickel oxide hydrate, magnesium oxide / zinc oxide hydrate, and the like. .
  • magnesium hydroxide is preferable.
  • the hydrated metal oxide may be surface treated.
  • content of the said flame retardant in the epoxy resin composition A is not specifically limited, 5 weight part or more is preferable with respect to 100 weight part of the said epoxy curable resin, More preferably, it is 25 weight or more. When the content is 5 parts by weight or more, it is easy to obtain a good flame retardant effect. Moreover, it is preferable that content of the said flame retardant is 70 weight part or less with respect to 100 weight part of the said epoxy-type curable resin, More preferably, it is 65 weight part or less. When the content is 70 parts by weight or less, a cell structure having a high expansion ratio is easily obtained.
  • the method for producing the epoxy resin composition A is not particularly limited.
  • the epoxy resin composition A may be prepared by kneading the epoxy curable resin, an imidazole group-containing curing agent, and an additive that is added as necessary.
  • the shape of the epoxy resin composition A is not particularly limited, and examples thereof include a strand shape, a sheet shape, a flat plate shape, and a pellet shape. From the viewpoint of productivity, a pellet form is preferable.
  • the foamed epoxy resin product of the present invention is obtained by foaming and curing the epoxy resin composition A. Note that foaming and curing may occur simultaneously or separately, but if curing occurs before foaming, it may be difficult to obtain a cell structure with a high expansion ratio. It is preferred that curing occurs after
  • the foaming method of the epoxy resin composition A is not particularly limited, and examples thereof include a physical foaming method and a chemical foaming method.
  • the physical foaming method is a method of forming cells (bubbles) by impregnating (dispersing) a low boiling point liquid (foaming agent) in a resin composition and then volatilizing the foaming agent.
  • the said chemical foaming method is a method of forming a cell with the gas produced by the thermal decomposition of the compound added to the resin composition.
  • the physical foaming method is preferable from the viewpoint of avoiding contamination in the cured epoxy resin foam and the ease of obtaining a fine and uniform cell structure.
  • the physical foaming method using a high-pressure gas as a foaming agent is more preferable. That is, it is particularly preferable that the cured epoxy resin foam of the present invention is obtained by foaming and curing the epoxy resin composition A with a high-pressure gas.
  • an inert gas is preferable.
  • the inert gas is not particularly limited as long as it is inert to the epoxy curable resin and can be impregnated in the epoxy curable resin.
  • carbon dioxide, nitrogen gas, air, helium And argon are examples of inert gas.
  • the inert gas has a large amount of impregnation into the epoxy resin composition A, has a high impregnation rate, and inhibits the curing reaction of the epoxy curable resin during molding.
  • Carbon dioxide is preferred.
  • the said inert gas can be used individually or in combination of 2 or more types.
  • the amount of gas impregnation (mixing amount) at this time is not particularly limited, but a cell structure with a high foaming ratio can be easily obtained. From the point that can be achieved, 2 wt% to 10 wt% is preferable with respect to the total amount of epoxy resin composition A (total weight, 100 wt%).
  • the gas is preferably in a liquefied state (liquid state) at the time of impregnation, and particularly in a supercritical state at the time of impregnation, from the viewpoint of increasing the impregnation rate of the epoxy resin composition A. . That is, it is particularly preferable that the cured epoxy resin foam of the present invention is obtained by foaming the epoxy resin composition A with an inert gas in a supercritical state and curing it.
  • the gas is a supercritical fluid (supercritical state)
  • the solubility in the epoxy resin composition A increases and high concentration impregnation (mixing) is possible.
  • the foaming method of the epoxy resin composition A is preferably a physical foaming method using gas as a foaming agent.
  • a method in which the epoxy resin composition A is impregnated with a high-pressure gas (particularly the above inert gas) and then foamed through a step of reducing pressure (for example, to atmospheric pressure) (step of releasing pressure) is preferable.
  • a high-pressure gas particularly the above inert gas
  • a step of reducing pressure for example, to atmospheric pressure
  • step of releasing pressure is preferable.
  • an unfoamed molded product is obtained by molding the epoxy resin composition A. After impregnating the unfoamed molded product with a high-pressure gas, foaming is performed through a process of reducing pressure (for example, up to atmospheric pressure).
  • a method in which a molten epoxy resin composition A is impregnated with a gas under a pressurized state and then foamed under reduced pressure for example, up to atmospheric pressure).
  • the foamed epoxy resin composition A is molded into an appropriate shape such as a sheet to obtain an unfoamed resin molded body (unfoamed molded product). It may be carried out in a batch system in which a foamed resin molded body is impregnated with a high-pressure gas and foamed by releasing the pressure, and when the epoxy resin composition A is kneaded and molded with a high-pressure gas under high-pressure conditions. At the same time, the pressure may be released, and a continuous method in which molding and foaming are performed simultaneously may be performed.
  • the method for forming the unfoamed resin molded body is not particularly limited.
  • the epoxy resin composition A is molded using an extruder such as a single screw extruder or a twin screw extruder; A method in which the epoxy resin composition A is uniformly kneaded using a kneader equipped with blades such as a roller, a cam, a kneader, and a Banbury mold, and is press-molded to a predetermined thickness using a hot plate press or the like.
  • the shape of the unfoamed resin molded body is not particularly limited, and examples thereof include a sheet shape, a roll shape, and a plate shape.
  • an unfoamed resin molded body is molded from the epoxy resin composition A by an appropriate method for obtaining an unfoamed resin molded body having a desired shape and thickness.
  • a non-foamed resin molded product is placed in a pressure-resistant container, a high-pressure gas is injected (introduced and mixed), and the non-foamed resin molded product is impregnated with gas.
  • the pressure is released, the pressure is released (usually up to atmospheric pressure), and a bubble structure is formed through a decompression step for generating bubble nuclei in the unfoamed resin molded body.
  • the epoxy resin composition A is injected (introduced,) while kneading the epoxy resin composition A using an extruder (for example, a single screw extruder, a twin screw extruder, etc.) or an injection molding machine. Pressure) by extruding the epoxy resin composition A impregnated with gas through a kneading impregnation step of impregnating the epoxy resin composition A with a sufficiently high pressure gas, a die provided at the tip of the extruder, etc. Is released (usually up to atmospheric pressure), and the epoxy resin composition A is foamed and molded by a molding decompression process in which molding and foaming are performed simultaneously.
  • an extruder for example, a single screw extruder, a twin screw extruder, etc.
  • Pressure by extruding the epoxy resin composition A impregnated with gas through a kneading impregnation step of impregnating the epoxy resin composition A with a sufficiently high pressure gas, a die provided
  • a heating step for growing bubble nuclei by heating may be provided as necessary.
  • bubble nuclei may be grown at room temperature without providing a heating step.
  • the shape may be fixed rapidly by cooling with cold water or the like.
  • the high-pressure gas may be introduced continuously or discontinuously.
  • the heating method for growing the cell nuclei is not particularly limited, and examples thereof include known or conventional methods such as a water bath, an oil bath, a hot roll, a hot air oven, far infrared rays, near infrared rays, and microwaves.
  • the pressure when impregnating the gas is appropriately selected in consideration of the type of gas, operability, etc., for example, 5 MPa or more (for example, 5 MPa to 100 MPa), more preferably 7 MPa or more (for example, 7 MPa to 100 MPa). That is, the epoxy resin composition A is preferably impregnated with a gas having a pressure of 5 MPa or more (for example, a pressure of 5 MPa to 100 MPa), and more preferably impregnated with a gas having a pressure of 7 MPa or more (for example, a pressure of 7 MPa to 100 MPa).
  • the pressure of the gas is 5 MPa or more
  • the bubble growth at the time of foaming becomes too fast, the cell becomes too large, and the occurrence of problems such as deterioration of the sealing property and dustproof effect of the obtained foam is suppressed. It becomes easy. This is because when the pressure is low, the amount of impregnation of the gas is relatively small compared to when the pressure is high, and the number of bubble nuclei formed by decreasing the bubble nucleus formation rate is reduced. This is because the bubble diameter is extremely increased. Further, in the pressure region lower than 5 MPa, the cell diameter and the bubble density are greatly changed only by slightly changing the impregnation pressure, so that it is difficult to control the cell diameter and the bubble density.
  • the temperature (impregnation temperature) when impregnating the gas in the gas impregnation step in the batch method or the kneading impregnation step in the continuous method is not particularly limited, but is preferably 10 ° C to 350 ° C, more preferably 40 ° C. It is ⁇ 240 ° C, more preferably 60 ° C to 230 ° C.
  • the temperature during impregnation is preferably 32 ° C. or higher (particularly 40 ° C. or higher) in order to maintain a supercritical state.
  • the curing agent contained in the epoxy resin composition A is an imidazole group-containing curing agent, the curing proceeds during foaming, and the foamability deteriorates. There is no. This is because the curing agent does not cause unintentional deactivation, and further, when the epoxy resin composition A is foamed, the imidazole group-containing curing agent reacts with the foaming agent, and curing does not proceed.
  • the imidazole group-containing curing agent is separated from the foaming agent after foaming of the product A.
  • the epoxy resin composition A is foamed with high-pressure carbon dioxide gas, unintentional deactivation of the curing agent does not occur.
  • the imidazole group-containing curing agent in the epoxy resin composition A is carbon dioxide and Reaction, the progress of curing of the epoxy-based curable resin is inhibited, and after foaming, carbon dioxide and imidazole group-containing curing agent are separated to release the imidazole group-containing curing agent, and curing of the epoxy-based curable resin It is presumed that the progress of
  • the pressure reduction rate in the pressure reduction step is not particularly limited, but preferably 5 MPa / second from the viewpoint of obtaining a cell structure having uniform and fine cells. ⁇ 300 MPa / sec.
  • the heating temperature is preferably 40 ° C. to 250 ° C., and more preferably 60 ° C. to 250 ° C., for example.
  • the curing of the epoxy-based curable resin proceeds by heating, the growth of bubble nuclei is hindered. Therefore, it is preferable to perform the heating while inhibiting the progress of curing of the epoxy-based curable resin.
  • the cell structure, the apparent density, and the degree of foaming for example, the foaming method and foaming conditions of the epoxy resin composition A (for example, foaming) are determined according to the type of resin to be configured. It can be adjusted by selecting the type and amount of the agent, the temperature, pressure and time during foaming.
  • the cured epoxy resin foam of the present invention is obtained by foaming and curing the epoxy resin composition A, and among them, it is preferable that the epoxy resin composition A is obtained by foaming and curing.
  • the curing conditions are not particularly limited. For example, heating at a temperature of 50 ° C. to 200 ° C. (preferably 60 ° C. to 180 ° C., more preferably 80 ° C. to 160 ° C.) can be mentioned.
  • the cured epoxy resin foam of the present invention can be obtained by foaming and curing the epoxy resin composition A. According to such a production method, a cured epoxy resin foam having a high expansion ratio can be produced efficiently and continuously. Moreover, the epoxy resin hardened
  • the cured epoxy resin foam of the present invention is obtained by foaming and curing the epoxy resin composition A, and has a cellular structure (foamed structure).
  • the cell structure in the cured epoxy resin foam of the present invention is not particularly limited, but is a closed cell structure, an open cell structure, a semi-continuous semi-closed cell structure (a cell structure in which a closed cell structure and an open cell structure are mixed). It may be either.
  • the cured epoxy resin foam of the present invention preferably has a semi-continuous semi-closed cell structure from the viewpoint of flexibility, and in particular, the semi-continuous semi-cell structure having a closed cell structure part of 40% or less (preferably 30% or less). It preferably has a closed cell structure.
  • the average cell diameter in the cell structure of the cured epoxy resin foam of the present invention is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more. . Moreover, it is preferable that it is 5000 micrometers or less, More preferably, it is 2500 micrometers or less, More preferably, it is 1000 micrometers or less. When the average cell diameter is 0.1 ⁇ m or more, good flexibility and shock absorption are easily obtained. When the average cell diameter of the resin foam of the present invention is 5000 ⁇ m or less, good sealing properties and dustproof properties are easily obtained.
  • the cell diameter in the bubble structure is obtained, for example, by taking an enlarged image of the bubble structure portion of the cut surface with a digital microscope, obtaining the bubble area, and converting the equivalent circle diameter.
  • the expansion ratio of the cured epoxy resin foam of the present invention is not particularly limited, it is preferably 2 times or more, more preferably 5 times or more from the point of obtaining good flexibility and shock absorption, More preferably, it is 7 times or more. Further, the expansion ratio is preferably 60 times or less, more preferably 50 times or less, and still more preferably 40 times or less, from the viewpoint of securing strength. The expansion ratio is obtained by (density before foaming) / (density after foaming).
  • the apparent density of the cured epoxy resin foam of the present invention is not particularly limited, it is preferably 0.020 g / cm 3 or more, more preferably from the viewpoint of obtaining good flexibility and shock absorption. It is 050 g / cm 3 or more, more preferably 0.080 g / cm 3 or more.
  • the apparent density is preferably 0.8 g / cm 3 or less, more preferably 0.5 g / cm 3 or less, and further preferably 0.3 g / cm 3 or less from the viewpoint of securing strength. It is.
  • the solvent-insoluble content (gel fraction) of the cured epoxy resin foam of the present invention with respect to methyl ethyl ketone is not particularly limited, but mechanical strength, dimensional stability, water resistance, chemical resistance, flexibility and wear resistance are not particularly limited. From this point, it is preferably 60% by weight or more, more preferably 65% by weight or more, and further preferably 70% by weight or more. In addition, the solvent insoluble content with respect to the methyl ethyl ketone may be usually 100% by weight or less.
  • the shape of the cured epoxy resin foam of the present invention is not particularly limited, but is preferably in the form of a sheet or tape. Further, it may be processed into an appropriate shape according to the purpose of use. For example, it may be processed into a linear shape, a circular shape, a polygonal shape, a frame shape (frame shape), or the like by cutting, punching, or the like. Furthermore, slice processing etc. may be given from the point of obtaining desired thickness.
  • the thickness of the cured epoxy resin foam of the present invention is not particularly limited, but is preferably 50 ⁇ m or more, more preferably 60 ⁇ m or more. Moreover, it is preferable that the said thickness is 70000 micrometers or less, More preferably, it is 50000 micrometers or less.
  • the cured epoxy resin foam of the present invention contains a cured epoxy resin and has a foam structure with a high expansion ratio, so that it has heat resistance, heat insulation, shock absorption, sealing properties, waterstop, dustproof material, sound absorption, etc. Excellent. Also, the appearance is excellent.
  • the epoxy resin cured product foam of the present invention is a member (for example, a dustproof material, a sealing material, a shock absorbing material, a soundproofing material, and the like used when attaching (attaching) various members or parts to a predetermined site. Buffer material, heat insulating material, etc.).
  • the cured epoxy resin foam of the present invention is a member (for example, a dustproof material or a sealing material) used when attaching (attaching) a component constituting the electrical or electronic device to a predetermined part in the electrical or electronic device. , Shock absorbers, soundproofing materials, shock absorbing materials, heat insulating materials, etc.).
  • cured material foam of this invention may comprise all or one part of a member. That is, the cured epoxy resin foam of the present invention may constitute part or all of the foamed member including the cured epoxy resin foam.
  • the “foamed member including the cured epoxy resin foam of the present invention” may be referred to as an “epoxy resin cured foam member”.
  • the above-mentioned cured epoxy resin foam member is a member including at least the cured epoxy resin foam of the present invention.
  • cured material foam member is not specifically limited, A sheet form, a film form, and a tape form are preferable.
  • the epoxy resin cured product foam member may be composed of, for example, only the epoxy resin cured product foam of the present invention, or other layers (particularly adhesive) on the epoxy resin cured product foam of the present invention. Layer (adhesive layer), base material layer, etc.) may be laminated.
  • the cured epoxy resin foam member has an adhesive layer.
  • a processing mount can be provided via the adhesive layer, and can be fixed or temporarily fixed to the adherend.
  • an adhesive which comprises the said adhesion layer For example, an acrylic adhesive, a rubber adhesive (a natural rubber adhesive, a synthetic rubber adhesive, etc.), a silicone adhesive, a polyester adhesive Agents, urethane adhesives, polyamide adhesives, epoxy adhesives, vinyl alkyl ether adhesives, fluorine adhesives, and the like.
  • the pressure-sensitive adhesives can be used alone or in combination of two or more.
  • the pressure-sensitive adhesive may be any form of pressure-sensitive adhesive such as an emulsion-based pressure-sensitive adhesive, a solvent-based pressure-sensitive adhesive, a hot-melt pressure-sensitive adhesive, an oligomer-based pressure-sensitive adhesive, or a solid-based pressure-sensitive adhesive.
  • an acrylic pressure-sensitive adhesive is suitable as the pressure-sensitive adhesive from the viewpoint of preventing contamination of the adherend.
  • the thickness of the adhesive layer is preferably 2 to 100 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the thinner the adhesive layer the higher the effect of preventing the adhesion of dust and dirt at the end, and thus the thinner the adhesive layer, the better.
  • the adhesion layer may have any form of a single layer or a laminated body.
  • the adhesive layer may be provided via another layer (lower layer).
  • a lower layer include other pressure-sensitive adhesive layers, intermediate layers, undercoat layers, and base material layers (particularly film layers and nonwoven fabric layers).
  • the adhesive layer may be protected by a release film (separator) (for example, release paper, release film, etc.).
  • the above-mentioned cured epoxy resin foam member may be processed so as to have a desired shape and thickness.
  • various shapes may be processed according to the device, equipment, casing, parts, and the like used.
  • the cured epoxy resin foam member contains the cured epoxy resin foam, it is excellent in heat resistance, heat insulation, shock absorption, sealability, water-stopping, dustproof material, sound absorption, and the like. Also, the appearance is excellent.
  • the cured epoxy resin foam member is a member (for example, a dustproof material, a sealing material, a shock absorbing material, a soundproofing material, a shock absorbing material, a heat insulating material) used when attaching (attaching) various members or parts to a predetermined part. Material).
  • the epoxy resin cured product foam member is a member (for example, a dustproof material, a sealing material, etc.) used when attaching (attaching) a component constituting the electrical or electronic device to a predetermined part in the electrical or electronic device. It is preferably used as an impact absorbing material, a soundproofing material, a cushioning material, a heat insulating material, etc.
  • Example 1 Epoxy resin (trade name “jER” grade 1256, manufactured by Mitsubishi Chemical Corporation, high molecular weight type, bisphenol A type epoxy resin, epoxy equivalent: 7,500 to 8,500, weight average molecular weight: 50,000): 100 parts by weight 1-benzyl-2-methylimidazole as a curing agent: 1 part by weight was added to methyl ethyl ketone (MEK) to obtain a solution having an active ingredient of 40% by weight. This solution was applied on a process separator (PET separator) by a die coating method (die method) to obtain a coating layer. Next, this coating layer was dried at a temperature of 60 ° C. for 30 minutes to obtain a film having a thickness of 20 ⁇ m.
  • MEK methyl ethyl ketone
  • the film was put into a high-pressure chamber under room temperature conditions, and the inside of the chamber was sealed. After sealing, carbon dioxide gas was injected into the chamber, and the pressure in the chamber was increased to 15 MPa. Thereafter, the temperature in the chamber was raised to 150 ° C. After the temperature in the chamber was 150 ° C. and the pressure in the chamber was 15 MPa, this state was maintained for 30 minutes, and the film was impregnated with a sufficient amount of carbon dioxide. Thereafter, the pressure in the chamber was rapidly reduced to normal pressure, and the film was foamed to obtain an epoxy resin foam. And this epoxy resin foam was heat-processed on the conditions of pressure: 1 atm (atmospheric pressure), temperature: 150 degreeC, time: 30 minutes, and it was made to harden, and the epoxy resin hardened material foam was obtained.
  • Example 2 Epoxy resin curing was carried out in the same manner as in Example 1 except that 1 part by weight of 1-isobutyl-2-methylimidazole was used instead of 1 part by weight of 1-benzyl-2-methylimidazole as a curing agent. A product foam was obtained.
  • Example 3 Epoxy resin curing was carried out in the same manner as in Example 1, except that 1 part by weight of 2-ethyl-4-methylimidazole was used instead of 1 part by weight of 1-benzyl-2-methylimidazole as the curing agent. A product foam was obtained.
  • Example 4 A cured epoxy resin foam was obtained in the same manner as in Example 1 except that the amount of 1-benzyl-2-methylimidazole was 3 parts by weight.
  • Example 5 A cured epoxy resin foam was obtained in the same manner as in Example 2 except that the amount of 1-isobutyl-2-methylimidazole was 3 parts by weight.
  • Example 6 A cured epoxy resin foam was obtained in the same manner as in Example 3 except that the amount of 2-ethyl-4-methylimidazole was 3 parts by weight.
  • Example 1 As a curing agent, a resin composition was obtained in the same manner as in Example 1 except that 1 part by weight of trisdimethylaminomethylphenol was used instead of 1 part by weight of 1-benzyl-2-methylimidazole. .
  • This film-like resin composition was impregnated with a sufficient amount of carbon dioxide in the same manner as in Example 1. Thereafter, the pressure was suddenly reduced to normal pressure. However, foaming did not occur in the obtained sample, and an epoxy resin foam could not be obtained.
  • the obtained sheet was heat-treated under the conditions of pressure: 1 atm (atmospheric pressure), temperature: 150 ° C., and time: 30 minutes. And the sample of the comparative example 1 was obtained.
  • Trisdimethylaminomethylphenol is represented by the following chemical formula (5).
  • Comparative Example 2 As a curing agent, a resin composition was obtained in the same manner as in Example 1, except that 1 part by weight of 1-benzyl-2-methylimidazole was used instead of 3 parts by weight of trisdimethylaminomethylphenol. .
  • This film-like resin composition was impregnated with a sufficient amount of carbon dioxide in the same manner as in Example 1. Thereafter, the pressure was suddenly reduced to normal pressure. However, foaming did not occur in the obtained sample, and an epoxy resin foam could not be obtained.
  • the obtained sheet was heat-treated under the conditions of pressure: 1 atm (atmospheric pressure), temperature: 150 ° C., and time: 30 minutes. And the sample of the comparative example 2 was obtained.
  • a sheet-like sample was punched with a punching blade mold having a width of 100 mm and a length of 100 mm to obtain a measurement sample. And the dimension of the sample for a measurement was measured. Further, the thickness of the measurement sample was measured on a 1/100 dial gauge having a measurement terminal diameter ( ⁇ ) of 20 mm. The volume of the measurement sample was calculated from these values. Next, the weight of the measurement sample was measured with an upper pan balance having a minimum scale of 0.01 g or more. The density (g / cm 3 ) of the sample was calculated from these values.
  • Foaming ratio (density of pellet-shaped resin composition) / (density of cured epoxy resin foam)
  • a digital microscope (product name “VHX-500” manufactured by Keyence Corporation) is used to capture an enlarged image of the foam bubble, and image analysis is performed using image analysis software (product name “Win ROOF” manufactured by Mitani Corporation). As a result, the equivalent circle diameter was converted to obtain the average cell diameter ( ⁇ m). Note that the number of bubbles in the captured enlarged image is about 100.
  • the solvent insoluble content (gel fraction) with respect to the methyl ethyl ketone was determined as follows. About 0.2 g of a measurement sample was obtained from the sample to be measured, and the obtained measurement sample was prepared from a porous sheet having a width of 11 cm and a length of 11 cm (trade name “TEMISH”, manufactured by Nitto Denko Corporation, PTFE ( (Polytetrafluoroethylene) porous film) and ligated with a tako thread. In other words, the mouth of the packet was tied with a tako thread.
  • TEMISH porous sheet having a width of 11 cm and a length of 11 cm
  • PTFE Polytetrafluoroethylene
  • the measurement sample wrapped with the porous sheet was weighed, and the measured weight was defined as “weight before storage (g)”.
  • the measurement sample wrapped with the porous sheet was put into a 50 ml bottle, and 50 g of methyl ethyl ketone (MEK) was put into the bottle. And it preserve
  • saved for five days on room temperature conditions. Thereafter, the measurement sample wrapped with the porous sheet was taken out of methyl ethyl ketone and dried at 130 ° C. for 1 hour. After drying, the sample for measurement wrapped with a porous sheet was weighed for 30 minutes at room temperature. The measured weight was defined as “weight after storage (g)”. And the solvent insoluble content with respect to methyl ethyl ketone was computed from the following formula. Solvent insoluble content in methyl ethyl ketone (%) (weight after storage) / (weight before storage) ⁇ 100
  • Foamability was evaluated by observing the appearance and confirming the presence or absence of foaming (the presence or absence of a cell structure). When the appearance could not be evaluated, the sample was cut and the presence or absence of foaming was confirmed by checking whether the cut surface had a bubble structure. The case where foaming occurred was evaluated as “good”, and the case where foaming did not occur was evaluated as “bad”.
  • the cured agent is an imidazole group-containing curing agent, so that the cured epoxy resin foam having a high foaming ratio cell structure can be provided.
  • Epoxy resin cured foam with a cellular structure can be efficiently produced, so it is excellent in heat resistance, heat insulation, shock absorption, sealability, waterstop, dustproof material, sound absorption, etc., and also has an excellent appearance
  • a resin cured product foam or a cured epoxy resin foam member can be formed. Therefore, such an epoxy resin cured product foam or epoxy resin cured product foam member is a member (for example, a dustproof material, a sealing material, etc.) used when attaching (attaching) various members or parts to a predetermined part.
  • shock absorbers soundproofing materials, cushioning materials, heat insulating materials, etc.
  • mounting attaching (mounting) components constituting electric or electronic devices to predetermined parts in electric or electronic devices.
  • a member for example, a dustproof material, a seal material, an impact absorbing material, a soundproof material, a shock absorbing material, a heat insulating material, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

高い発泡倍率を有するエポキシ樹脂硬化物発泡体を提供する。本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂を50重量%以上含む硬化性樹脂、及び、イミダゾール基含有硬化剤を含む樹脂組成物を発泡・硬化させて得られる。上記エポキシ樹脂硬化物発泡体において、発泡倍率は、2倍以上であることが好ましい。また、メチルエチルケトンに対する溶剤不溶分は、60重量%以上であることが好ましい。

Description

エポキシ樹脂硬化物発泡体、及び、その製造方法
 本発明は、エポキシ樹脂硬化物発泡体、及び、その製造方法に関する。
 エポキシ樹脂は、分子内にエポキシ基を有し、硬化反応により硬化する硬化性樹脂である。エポキシ樹脂と硬化剤(硬化触媒)との混合物に対して硬化処理を行うことにより、エポキシ樹脂硬化物が得られる。エポキシ樹脂硬化物は、様々な分野で用いられている。
 エポキシ樹脂硬化物の発泡体として、クロマトグラフィー用分離媒体、血液分離用多孔質体、環境分析用試料濃縮媒体等として用いられる、エポキシ樹脂硬化物からなり、三次元網目構造の骨格と空隙とを有する多孔体が知られている(特許文献1参照)。この多孔体は、抽出法を用いて作製されている。つまり、この多孔体は、添加剤としての有機高分子を含むエポキシ樹脂組成物を硬化させて硬化物を得てから、この得られた硬化物を洗浄し、硬化物中から添加剤としての有機高分子を除くことにより空孔構造を形成することにより作製されている。
特開2009−269948号公報
 エポキシ樹脂硬化物発泡体を作製するに際して、抽出法では、高い発泡倍率が得にくいという問題があり、連続的に作製することが難しく、生産性の点でも問題がある。さらには、抽出法では、添加剤としての有機高分子が残存することがあり、汚染の問題が生じやすい。
 従って、本発明の目的は、高い発泡倍率を有するエポキシ樹脂硬化物発泡体を提供することにある。
 さらに、本発明の他の目的は、高い発泡倍率を有するエポキシ樹脂硬化物発泡体を、効率よく生産できる方法を提供することにある。
 本発明者らは、上記の問題を解決するために鋭意検討した結果、エポキシ樹脂の硬化剤をイミダゾール基含有硬化剤とすると、発泡・硬化の際に、硬化剤の失活、発泡阻害、硬化阻害が生じることなく、高発泡倍率の気泡構造を有するエポキシ樹脂硬化物発泡体が効率よく得られることを見出した。本発明はこれらの知見に基づいて完成されたものである。
 すなわち、本発明は、エポキシ樹脂を50重量%以上含む硬化性樹脂、及び、イミダゾール基含有硬化剤を含む樹脂組成物を発泡・硬化させて得られるエポキシ樹脂硬化物発泡体を提供する。
 上記エポキシ樹脂硬化物発泡体では、発泡倍率は、2倍以上であることが好ましい。
 上記エポキシ樹脂硬化物発泡体では、メチルエチルケトンに対する溶剤不溶分は、60重量%以上であることが好ましい。
 上記エポキシ樹脂硬化物発泡体では、見掛け密度は、0.020~0.8g/cmであることが好ましい。
 上記エポキシ樹脂硬化物発泡体では、上記樹脂組成物を不活性ガスで発泡させることが好ましい。
 上記不活性ガスは、二酸化炭素であることが好ましい。
 上記不活性ガスは、超臨界状態であることが好ましい。
 さらに、本発明は、エポキシ樹脂を50重量%以上含む硬化性樹脂、及び、イミダゾール基含有硬化剤を含む樹脂組成物を発泡・硬化させることを特徴とするエポキシ樹脂硬化物発泡体の製造方法を提供する。
 本発明のエポキシ樹脂硬化物発泡体は、硬化剤がイミダゾール基含有硬化剤であるので、高発泡倍率の気泡構造を有する。また、本発明のエポキシ樹脂硬化物発泡体の製造方法は、硬化剤がイミダゾール基含有硬化剤であるので、高発泡倍率の気泡構造を有するエポキシ樹脂硬化物発泡体を、効率よく生産できる。
実施例1のエポキシ樹脂硬化物発泡体の断面の電子顕微鏡写真である。
 本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂を50重量%以上含む硬化性樹脂、及び、イミダゾール基含有硬化剤を含む樹脂組成物を発泡・硬化させることにより得られる。本明細書において、「エポキシ樹脂を50重量%以上含む硬化性樹脂、及び、イミダゾール基含有硬化剤を含む樹脂組成物」を「エポキシ樹脂組成物A」と称する場合があり、また、「エポキシ樹脂を50重量%以上含む硬化性樹脂」を「エポキシ系硬化性樹脂」と称する場合がある。
(エポキシ樹脂組成物A)
 本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂組成物Aを発泡・硬化させることにより得られる。エポキシ樹脂組成物Aは、本発明のエポキシ樹脂硬化物発泡体の形成に用いられる組成物であり、エポキシ系硬化性樹脂とイミダゾール基含有硬化剤とを少なくとも含有する。
 エポキシ樹脂組成物Aにおけるエポキシ系硬化性樹脂の含有量は、特に限定されないが、エポキシ系硬化性樹脂は主成分であることから、エポキシ樹脂組成物A全量(全重量、100重量%)に対して、60重量%以上であることは好ましく、より好ましくは70重量%であり、さらに好ましくは80重量%以上である。
 上記エポキシ系硬化性樹脂は、エポキシ樹脂を50重量%以上含む硬化性樹脂である。上記エポキシ系硬化性樹脂は、エポキシ樹脂のみから構成されていてもよいし、「エポキシ樹脂」と「エポキシ樹脂以外の樹脂」(「その他の樹脂」と称する場合がある)とが併用されていてもよい。つまり、上記エポキシ系硬化性樹脂は、エポキシ樹脂とその他の樹脂との混合物であり、エポキシ樹脂の割合が50重量%以上である混合物であってもよい。なお、その他の樹脂は、硬化性樹脂であってもよし、非硬化性樹脂であってもよい。
 上記エポキシ樹脂は、分子内にエポキシ基を有し、硬化反応により硬化する硬化性樹脂のことをいう。上記エポキシ樹脂としては、特に限定されないが、芳香族エポキシ樹脂、非芳香族エポキシ樹脂などが挙げられる。芳香族エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、スチルベン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、テトラキス(ヒドロキシフェニル)エタンベースなどのポリフェニルベースエポキシ樹脂、フルオレン含有エポキシ樹脂、トリグリシジルイソシアヌレート、複素芳香環(例えば、トリアジン環など)を含有するエポキシ樹脂などが挙げられる。また、非芳香族エポキシ樹脂としては、例えば、脂肪族グリシジルエーテル型エポキシ樹脂、脂肪族グリシジルエステル型エポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルエステル型エポキシ樹脂などが挙げられる。なお、エポキシ樹脂は、単独で又は2種以上組み合わせて用いることができる。
 中でも、上記エポキシ樹脂は、エポキシ樹脂組成物Aにおいて発泡に適した粘度を得やすい点、流動性の点、成形性の点より、ビスフェノールA型エポキシ樹脂などのグリシジルエーテル型のエポキシ樹脂が好ましい。
 上記エポキシ樹脂のエポキシ当量は、特に限定されないが、エポキシ樹脂硬化物の耐熱性の低下を抑制する点より、10000以下であることが好ましく、より好ましくは9000以下であり、さらに好ましくは8000以下である。また、上記エポキシ樹脂のエポキシ当量は、エポキシ樹脂硬化物が脆性材料となることを抑制する点より、800以上であることが好ましく、より好ましくは900以上であり、さらに好ましくは1000以上である。
 上記エポキシ樹脂の重量平均分子量は、特に限定されないが、粘度が低下し、発泡に適した粘度を得られないという不具合を抑制する点より、5000以上であることが好ましく、より好ましくは6000以上であり、さらに好ましくは7000以上である。また、上記エポキシ樹脂の重量平均分子量は、粘度が大きくなりすぎて、発泡に適した粘度を得られないという不具合を抑制する点より、200000以下であることが好ましく、より好ましくは150000以下であり、さらに好ましくは100000以下である。
 上記エポキシ系硬化性樹脂におけるエポキシ樹脂の割合は、エポキシ系硬化性樹脂全量(全重量、100重量%)に対して50重量%以上である限り特に限定されないが、好ましくは60重量%以上であり、より好ましくは75重量%以上であり、さらに好ましくは90重量%以上である。
 さらに、上記のその他の樹脂(上記エポキシ樹脂以外の樹脂)としては、特に限定されないが、熱可塑性樹脂が挙げられる。このような熱可塑性樹脂としては、特に限定されないが、例えば、ポリオレフィン系樹脂、スチレン系樹脂、ポリアミド系樹脂、ポリアミドイミド、ポリウレタン、ポリイミド、ポリエーテルイミド、アクリル系樹脂、ポリ塩化ビニル、ポリフッ化ビニル、アルケニル芳香族樹脂、ポリエステル系樹脂、ポリカーボネート、ポリアセタール、ポリフェニレンスルフィドなどが挙げられる。上記ポリオレフィン系樹脂としては、特に限定されないが、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレンとプロピレンとの共重合体、エチレン又はプロピレンと他のα−オレフィン(例えば、ブテン−1、ペンテン−1、ヘキセン−1、4−メチルペンテン−1など)との共重合体、エチレンと他のエチレン性不飽和単量体(例えば、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、ビニルアルコールなど)との共重合体などが挙げられる。上記スチレン系樹脂としては、特に限定されないが、例えば、ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)などが挙げられる。上記ポリアミド系樹脂としては、特に限定されないが、例えば、ナイロン6、ナイロン66、ナイロン12などが挙げられる。上記アクリル系樹脂としては、特に限定されないが、例えば、ポリメチルメタクリレートなどが挙げられる。上記ポリエステル系樹脂としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどが挙げられる。上記ポリカーボネートとしては、特に限定されないが、例えば、ビスフェノールA系ポリカーボネートなどが挙げられる。
 上記熱可塑性樹脂は、単独で又は2種以上を組み合わせて用いることができる。上記熱可塑性樹脂が共重合体である場合、ランダム共重合体、ブロック共重合体のいずれの形態の共重合体であってもよい。
 さらには、上記熱可塑性樹脂には、ゴム成分及び/又は熱可塑性エラストマー成分が含まれる。ゴム成分及び熱可塑性エラストマー成分は、ガラス転移温度が室温以下(例えば20℃以下)であるため、上記熱可塑性樹脂がゴム成分及び/又は熱可塑性エラストマー成分であると、エポキシ樹脂硬化物発泡体における柔軟性及び形状追随性を向上させやすくなる。上記ゴム成分及び/又は熱可塑性エラストマー成分としては、ゴム弾性を有し、発泡可能なものであれば特に限定されないが、例えば、天然又は合成ゴム、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマーなどが挙げられる。上記天然又は合成ゴムとしては、特に限定されないが、例えば、天然ゴム、ポリイソブチレン、ポリイソプレン、クロロプレンゴム、ブチルゴム、ニトリルブチルゴムなどが挙げられる。上記オレフィン系エラストマーとしては、特に限定されないが、例えば、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−酢酸ビニル共重合体、ポリブテン、塩素化ポリエチレンなどが挙げられる。上記スチレン系エラストマーとしては、特に限定されないが、例えば、スチレン−ブタジエン−スチレン共重合体、スチレン−イソプレン−スチレン共重合体及びそれらの水素添加物などが挙げられる。このようなゴム成分及び/又は熱可塑性エラストマー成分は、単独で又は2種以上組み合わせて用いることができる。
 なお、上記のその他の樹脂(上記エポキシ樹脂以外の樹脂)は、単独で又は2種以上組み合わせて用いることができる。
 上記エポキシ系硬化性樹脂において上記エポキシ樹脂と上記その他の樹脂が併用されている場合、上記エポキシ系硬化性樹脂におけるその他樹脂の割合は、上記エポキシ樹脂の割合が50重量%以上となる限り特に限定されないが、エポキシ系硬化性樹脂全量(全重量、100重量%)に対して、50重量%未満が好ましく、より好ましくは40重量%未満であり、さらに好ましくは25重量%未満であり、さらにより好ましくは10重量%未満である。
 上記エポキシ樹脂組成物Aは、上記エポキシ系硬化性樹脂とともに、イミダゾール基含有硬化剤を含む。本発明のエポキシ樹脂硬化物発泡体は、上記エポキシ系硬化性樹脂とともに、イミダゾール基含有硬化剤を含み、高発泡倍率の気泡構造を有する。これは、イミダゾール基含有硬化剤が、一時活性を失い、発泡を阻害せず、さらに発泡後、イミダゾール基含有硬化剤の活性が復活し、硬化反応を促進し、エポキシ樹脂硬化物発泡体が得られるためと推測される。
 上述のように、エポキシ樹脂は、分子内にエポキシ基を有し、硬化反応により硬化する硬化性樹脂であり、また、エポキシ樹脂硬化物は、エポキシ樹脂と硬化剤(硬化触媒)との混合物に対して硬化処理を行うことにより得られる。そして、エポキシ樹脂硬化物発泡体は、エポキシ樹脂と硬化剤との混合物を発泡・硬化させることにより得られる。しかしながら、硬化剤の種類によっては、硬化剤の意図しない失活が生じて硬化できないことや、硬化剤の意図しない硬化が生じて発泡できないことがあった。
 イミダゾール基含有硬化剤によれば、このような硬化剤の意図しない失活や硬化剤の意図しない硬化が生じないので、高発泡倍率の気泡構造を得ることができると推測される。
 上記イミダゾール基含有硬化剤は、分子内にイミダゾール基を有する化合物を含有する。例えば、下記の化学式(1)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)において、R、R、R、及び、Rは、同一又は異なっていてもよい。
、R、R、及び、Rとしては、アルキル基、アリール基、アラルキル基、シアノアルキル基、ヒドロキシアルキル基、ハロアルキル基、アルコキシ基、ハロゲン原子などが挙げられる。
 上記アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、デシル基、ウンデシル基、ドデシル基などの炭素数1~20(好ましくは1~14)のアルキル基が挙げられる。
 上記アリール基としては、フェニル基、ナフチル基などが挙げられる。
 上記アラルキル基としては、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、3−フェニルプロピル基などが挙げられる。
 上記シアノアルキル基としては、シアノメチル基、シアノエチル基、シアノプロピル基などのアルキル部分の炭素数が1~10のシアノアルキル基などが挙げられる。
 上記ヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基などの炭素数が1~10のヒドロキシアルキル基などが挙げられる。
 上記ハロアルキル基としては、トリフルオロメチル基、クロロメチル基、クロロエチル基などが挙げられる。
 上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などの炭素数1~6のアルコキシ基などが挙げられる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
 上記イミダゾール基含有硬化剤としては、具体的には、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−イソブチル−2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールなどが挙げられる。なお、イミダゾール基含有硬化剤は、単独で又は2種以上組み合わせて用いられる。
 1−ベンジル−2−メチルイミダゾールは、下記の化学式(2)で示される。1−イソブチル−2−メチルイミダゾールは、下記の化学式(3)で示される。2−エチル−4−メチルイミダゾールは、下記の化学式(4)で示される。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 エポキシ樹脂組成物Aにおける上記イミダゾール基含有硬化剤の含有量は、特に限定されないが、上記エポキシ系硬化性樹脂100重量部に対して、0.1重量部以上であることが好ましく、より好ましくは0.3重量部以上であり、さらに好ましくは1重量部以上である。上記含有量が0.1重量部以上であると、エポキシ樹脂組成物Aにおける硬化不良の発生を防止しやすくなる。また、上記イミダゾール基含有硬化剤の含有量は、上記エポキシ系硬化性樹脂100重量部に対して、10重量部以下であることが好ましく、より好ましくは5重量部以下であり、さらに好ましくは3重量部以下である。上記含有量が10重量部以下であると、エポキシ樹脂組成物Aにおいて意図しない硬化が生じ、十分な発泡が生じないという不具合の発生を防止しやすくなる。
 また、エポキシ樹脂組成物Aは、必要に応じて、本発明の効果を損なわない範囲で、添加剤が含まれていてもよい。このような添加剤としては、例えば、造核剤(気泡核剤)、結晶核剤、可塑剤、滑剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、充填剤、補強剤、帯電防止剤、界面活性剤、張力改質剤、収縮防止剤、流動性改質剤、クレイ、加硫剤、表面処理剤、難燃剤などが挙げられる。なお、このような添加剤は、単独で又は2種以上組み合わせて用いることができる。
 例えば、本発明のエポキシ樹脂硬化物発泡体では、添加剤として造核剤が用いられてもよい。つまり、エポキシ樹脂組成物Aには、造核剤が含まれていてもよい。エポキシ樹脂組成物Aに造核剤が含まれていると、気泡構造中のセル径を容易に調製することができ、適度な柔軟性を有するとともに、切断加工性に優れたエポキシ樹脂硬化物発泡体を容易に得ることができる。
 上記造核剤としては、パウダー粒子が好ましい。具体的には、タルク、シリカ、アルミナ、ゼオライト、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化亜鉛、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、マイカ、モンモリロナイトなどの酸化物、複合酸化物、金属炭酸塩、金属硫酸塩、金属水酸化物;カーボン粒子、グラスファイバー、カーボンチューブなどが挙げられる。なお、造核剤は、単独で又は2種以上組み合わせて用いることができる。
 上記造核剤の平均粒子径は、特に限定されないが、0.3~1.5μmが好ましく、より好ましくは0.4~1.2μmである。上記造核剤がこのような平均粒子径を有していると、造核剤としての機能を十分に得ることができる。また、造核剤がセルの壁を突き破ることを抑制でき、高発泡倍率を実現したエポキシ樹脂硬化物発泡体を得やすくなる。なお、この平均粒子径は、レーザー回折式の粒度分布測定法により測定することができる。例えば、LEEDS & NORTHRUP INSTRUMENTS社製のレーザー回折・散乱式粒子径分布測定装置「MICROTRAC MT−3000」により、試料の分散希釈液から測定(AUTO測定モード)することができる。
 エポキシ樹脂組成物Aにおける上記造核剤の含有量は、特に限定されないが、上記エポキシ系硬化性樹脂100重量部に対して、0.5重量部以上が好ましく、より好ましくは2重量以上であり、さらに好ましくは3重量部以上である。上記含有量が0.5重量部以上であると、高発泡倍率の気泡構造を容易に得ることができる。また、気泡構造中のセル径を容易に調整することができる。また、上記造核剤の含有量は、上記エポキシ系硬化性樹脂100重量部に対して、150重量部以下であることが好ましく、より好ましくは140重量部以下であり、さらに好ましくは130重量部以下である。上記含有量が150重量部以下であると、樹脂組成物の粘度が著しく上昇することや、発泡時にガス抜けが生じて、十分な発泡特性が得られないことを防止しやすくなる。
 本発明のエポキシ樹脂硬化物発泡体は、電気又は電子機器用途などの難燃性が求められる用途に用いられることがある。このため、エポキシ樹脂組成物Aには、難燃剤が含まれていてもよい。このような難燃剤としては、特に限定されないが、例えば、無機難燃剤が好ましく挙げられる。なお、難燃剤は、単独で又は2種以上組み合わせて用いることができる。
 上記無機難燃剤としては、特に限定されないが、例えば、臭素系難燃剤、塩素系難燃剤、リン系難燃剤、アンチモン系難燃剤などが挙げられる。しかしながら、塩素系難燃剤や臭素系難燃剤は、燃焼時に人体に対して有害で機器類に対して腐食性を有するガス成分を発生し、また、リン系難燃剤やアンチモン系難燃剤は、有害性や爆発性などの問題がある。ゆえに、上記無機難燃剤としては、ノンハロゲン−ノンアンチモン系無機難燃剤がより好適に挙げられる。ノンハロゲン−ノンアンチモン系無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム・酸化ニッケルの水和物、酸化マグネシウム・酸化亜鉛の水和物等の水和金属化合物などが挙げられる。中でも、水酸化マグネシウムが好適に挙げられる。なお、水和金属酸化物は表面処理されていてもよい。
 エポキシ樹脂組成物Aにおける上記難燃剤の含有量は、特に限定されないが、上記エポキシ系硬化性樹脂100重量部に対して、5重量部以上が好ましく、より好ましくは25重量以上である。上記含有量が5重量部以上であると、良好な難燃効果を得やすくなる。また、上記難燃剤の含有量は、上記エポキシ系硬化性樹脂100重量部に対して、70重量部以下であることが好ましく、より好ましくは65重量部以下である。上記含有量が70重量部以下であると、高発泡倍率の気泡構造が得やすくなる。
 エポキシ樹脂組成物Aの作製方法は、特に限定されない。例えば、上記エポキシ樹脂組成物Aは、上記エポキシ系硬化性樹脂、イミダゾール基含有硬化剤、必要に応じて添加される添加剤を、混練することにより作製されてもよい。また、一軸(単軸)混練押出機や二軸混練押出機などの公知の溶融混練押出機により混練し、押し出すことにより得てもよい。
 エポキシ樹脂組成物Aの形は、特に限定されないが、例えば、ストランド状、シート状、平板状、ペレット状などが挙げられる。生産性の点からは、ペレット状であることが好ましい。
(発泡・硬化)
 本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂組成物Aを発泡・硬化することにより得られる。なお、発泡と硬化は、同時に生じていてもよいし、別々に生じてもよいが、発泡の前に硬化が生じると、高発泡倍率の気泡構造を得ることが難しくなることがあるので、発泡の後に、硬化が生じることが好ましい。
 エポキシ樹脂組成物Aの発泡方法としては、特に限定されないが、例えば、物理的発泡方法や化学的発泡方法が挙げられる。上記物理的発泡方法は、低沸点液体(発泡剤)を樹脂組成物に含浸(分散)させ、次に発泡剤を揮発させることによりセル(気泡)を形成させる方法である。また、上記化学的発泡方法は、樹脂組成物に添加した化合物の熱分解により生じたガスによりセルを形成させる方法である。中でも、エポキシ樹脂硬化物発泡体における汚染を回避する点、微細で均一な気泡構造の得やすさの点より、物理的発泡方法が好ましく、特に、発泡剤として高圧のガスを用いる物理的発泡方法がより好ましい。つまり、本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂組成物Aを、高圧のガスで発泡させて、硬化させることにより得られることが特に好ましい。
 上記ガスとしては、不活性ガスが好ましい。不活性ガスとしては、上記エポキシ系硬化性樹脂に対して不活性であり、上記エポキシ系硬化性樹脂に含浸可能なものあれば、特に限定されないが、例えば、二酸化炭素、窒素ガス、空気、ヘリウム、アルゴンなどが挙げられる。中でも、上記不活性ガスは、エポキシ樹脂組成物Aへの含浸量が多く、また、含浸速度が大きい点、成形中におけるエポキシ系硬化性樹脂の硬化反応を阻害する点より、
二酸化炭素が好ましい。なお、上記不活性ガスは、単独で又は2種以上を組み合わせて用いることができる。
 エポキシ樹脂組成物Aの発泡方法として、高圧のガスで発泡させる方法を用いる場合、このときのガスの含浸量(混合量)は、特に限定されないが、高発泡倍率の気泡構造を容易に得ることができる点より、エポキシ樹脂組成物Aの総量(総重量、100重量%)に対して、2重量%~10重量%が好ましい。
 上記ガス、特に上記不活性ガスは、エポキシ樹脂組成物Aへの含浸速度を大きくする点より、含浸時に液化状態(液体状態)であることが好ましく、特に含浸時に超臨界状態であることが好ましい。つまり、本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂組成物Aを、超臨界状態の不活性ガスで発泡させて、硬化させることにより得られることが特に好ましい。上記ガスが超臨界流体(超臨界状態)であると、エポキシ樹脂組成物Aへの溶解度が増大し、高濃度の含浸(混入)が可能である。また、高濃度で含浸することが可能であるため、含浸後に圧力を急激に降下させた際には、気泡核の発生が多くなり、その気泡核が成長してできる気泡の密度が気孔率が同じであっても大きくなるため、微細な気泡を得ることができる。なお、二酸化炭素の臨界温度は31℃、臨界圧力は7.4MPaである。
 上述のように、エポキシ樹脂組成物Aの発泡方法としては、発泡剤としてガスを用いる物理的発泡方法が好ましい。特に、エポキシ樹脂組成物Aに高圧のガス(特に上記不活性ガス)を含浸させた後、減圧(例えば大気圧まで)する工程(圧力を解放する工程)を経て発泡させる方法が好ましい。具体的には、エポキシ樹脂組成物Aを成形することにより未発泡成形物を得て、該未発泡成形物に高圧のガスを含浸させた後、減圧(例えば大気圧まで)する工程を経て発泡させる方法や、溶融したエポキシ樹脂組成物Aにガスを加圧状態下で含浸させた後、減圧(例えば大気圧まで)して発泡させる方法などが挙げられる。
 すなわち、本発明のエポキシ樹脂硬化物発泡体では、エポキシ樹脂組成物Aの発泡を、シート状などの適宜な形状に成形して未発泡樹脂成形体(未発泡成形物)とした後、この未発泡樹脂成形体に、高圧のガスを含浸させ、圧力を解放することにより発泡させるバッチ方式で行ってもよく、また、エポキシ樹脂組成物Aを高圧条件下、高圧のガスと共に混練し、成形すると同時に圧力を解放し、成形と発泡を同時に行う連続方式で行ってもよい。
 上記バッチ方式において、未発泡樹脂成形体を形成する方法は、特に限定されないが、例えば、エポキシ樹脂組成物Aを、単軸押出機、二軸押出機等の押出機を用いて成形する方法;エポキシ樹脂組成物Aを、ローラ、カム、ニーダ、バンバリ型等の羽根を設けた混練機を使用して均一に混練しておき、熱板のプレスなどを用いて所定の厚みにプレス成形する方法;エポキシ樹脂組成物Aを、射出成形機を用いて成形する方法などが挙げられる。また、未発泡樹脂成形体の形状は、特に限定されないが、例えば、シート状、ロール状、板状等が挙げられる。上記バッチ方式では、所望の形状や厚みの未発泡樹脂成形体が得られる適宜な方法により、エポキシ樹脂組成物Aから未発泡樹脂成形体が成形される。
 上記バッチ方式では、未発泡樹脂成形体を耐圧容器中に入れて、高圧のガスを注入(導入、混入)し、未発泡樹脂成形体中にガスを含浸させるガス含浸工程、十分にガスを含浸させた時点で圧力を解放し(通常、大気圧まで)、未発泡樹脂成形体中に気泡核を発生させる減圧工程を経て、気泡構造が形成される。
 一方、上記連続方式では、エポキシ樹脂組成物Aを、押出機(例えば、単軸押出機、二軸押出機等)や射出成形機を使用して混練しながら、高圧のガスを注入(導入、混入)し、十分に高圧のガスを、エポキシ樹脂組成物Aに含浸させる混練含浸工程、押出機の先端に設けられたダイスなどを通して、ガスを含浸させたエポキシ樹脂組成物Aを押し出すことにより圧力を解放し(通常、大気圧まで)、成形と発泡を同時に行う成形減圧工程により、エポキシ樹脂組成物Aが発泡し成形される。
 上記バッチ方式や連続方式では、必要に応じて、加熱により気泡核を成長させる加熱工程が設けられてもよい。なお、加熱工程を設けずに、室温で気泡核を成長させてもよい。さらにまた、気泡を成長させた後、必要により冷水などにより急激に冷却し、形状を固定化させてもよい。高圧のガスの導入は、連続的に行ってもよく不連続的に行ってもよい。なお、気泡核を成長させる際の加熱の方法は、特に限定されないが、ウォーターバス、オイルバス、熱ロール、熱風オーブン、遠赤外線、近赤外線、マイクロ波などの公知乃至慣用の方法が挙げられる。
 上記バッチ方式のガス含浸工程や上記連続方式の混練含浸工程において、ガスを含浸させるときの圧力は、ガスの種類や操作性等を考慮して適宜選択されるが、例えば、5MPa以上(例えば、5MPa~100MPa)が好ましく、より好ましくは7MPa以上(例えば、7MPa~100MPa)である。すなわち、エポキシ樹脂組成物Aに、圧力5MPa以上(例えば、圧力5MPa~100MPa)のガスを含浸させることが好ましく、圧力7MPa以上(例えば、圧力7MPa~100MPa)のガスを含浸させることがより好ましい。上記ガスの圧力が5MPa以上であると、発泡時の気泡成長が早くなりすぎて、セルが大きくなりすぎ、得られた発泡体のシール性や防塵効果が低下するなどの不具合の発生を抑制しやすくなる。これは、圧力が低いと、ガスの含浸量が高圧時に比べて相対的に少なく、気泡核形成速度が低下して形成される気泡核数が少なくなるため、1気泡あたりのガス量が逆に増えて気泡径が極端に大きくなるからである。また、5MPaより低い圧力領域では、含浸圧力を少し変化させるだけでセル径、気泡密度が大きく変わるため、セル径及び気泡密度の制御が困難になりやすい。
 また、上記バッチ方式におけるガス含浸工程や上記連続方式における混練含浸工程で、ガスを含浸させるときの温度(含浸温度)は、特に限定されないが、10℃~350℃が好ましく、より好ましくは40℃~240℃であり、さらに好ましくは60℃~230℃である。なお、高圧のガスとして二酸化炭素を用いる場合には、超臨界状態を保持するため、含浸時の温度(含浸温度)は32℃以上(特に40℃以上)であることが好ましい。
 なお、一般的に、エポキシ樹脂を発泡させる際に、硬化剤の硬化温度より高い温度で発泡させると、エポキシ樹脂の硬化が進行し、発泡性が悪化する。しかし、本発明のエポキシ硬化物樹脂発泡体では、エポキシ樹脂組成物Aに含有される硬化剤がイミダゾール基含有硬化剤であるので、発泡の際に、硬化が進行し、発泡性が悪化することはない。これは、硬化剤の意図しない失活を生じることがないこと、さらに、エポキシ樹脂組成物Aの発泡の際にはイミダゾール基含有硬化剤が発泡剤と反応し、硬化が進まず、エポキシ樹脂組成物Aの発泡後はイミダゾール基含有硬化剤が発泡剤と分離するためと推測される。特に、エポキシ樹脂組成物Aを高圧の二酸化炭素ガスで発泡させる場合、硬化剤の意図しない失活が生じることはなく、さらに、エポキシ樹脂組成物A中のイミダゾール基含有硬化剤が、二酸化炭素と反応し、上記エポキシ系硬化性樹脂の硬化の進行が阻害され、発泡後に、二酸化炭素とイミダゾール基含有硬化剤とが分離してイミダゾール基含有硬化剤が遊離し、上記エポキシ系硬化性樹脂の硬化の進行が生じるためと推測される。
 さらに、上記バッチ方式や上記連続方式において、減圧工程(圧力を解放する工程)での減圧速度は、特に限定されないが、均一で微細なセルを有する気泡構造を得る点から、好ましくは5MPa/秒~300MPa/秒である。
 気泡核を成長させるために、加熱工程を設ける場合には、加熱温度は、例えば、40℃~250℃が好ましく、より好ましくは60℃~250℃である。ただし、加熱により、上記エポキシ系硬化性樹脂の硬化が進行すると、気泡核を成長が妨げられるので、上記エポキシ系硬化性樹脂の硬化の進行を阻害して、加熱を行うことが好ましい。
 なお、本発明のエポキシ樹脂硬化物発泡体において、気泡構造、見掛け密度、発泡の程度は、構成する樹脂の種類に応じて、例えば、エポキシ樹脂組成物Aの発泡方法や発泡条件(例えば、発泡剤の種類や量、発泡の際の温度や圧力や時間など)を選択することにより調整することができる。
 本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂組成物Aを発泡・硬化させることにより得られ、中でも、エポキシ樹脂組成物Aを発泡させてから、硬化させることにより得られることが好ましいが、その硬化の条件は、特に限定されない。例えば、50℃~200℃(好ましくは60℃~180℃、より好ましくは80℃~160℃)の温度で加熱することが挙げられる。
 このように、本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂組成物Aを発泡・硬化させることにより得ることができる。このような作製方法によれば、高い発泡倍率を有するエポキシ樹脂硬化物発泡体を、効率よく、連続的に、生産できる。また、耐熱性に優れ、外観に優れたエポキシ樹脂硬化物発泡体を得ることができる。特に、エポキシ樹脂組成物Aを高圧の二酸化炭素ガスで発泡させて、硬化させる作成方法を用いれば、高い発泡倍率を有し、微細な気泡構造を有するエポキシ樹脂硬化物発泡体を、より効率よく、より連続的に、生産できる。
(エポキシ樹脂硬化物発泡体)
 本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂組成物Aを発泡・硬化させることにより得られ、気泡構造(発泡構造)を有する。本発明のエポキシ樹脂硬化物発泡体における気泡構造は、特に限定されないが、独立気泡構造、連続気泡構造、半連続半独立気泡構造(独立気泡構造と連続気泡構造が混在している気泡構造)の何れであってよい。本発明のエポキシ樹脂硬化物発泡体では、柔軟性の点より、半連続半独立気泡構造を有することが好ましく、特に、独立気泡構造部が40%以下(好ましくは30%以下)の半連続半独立気泡構造を有することが好ましい。
 本発明のエポキシ樹脂硬化物発泡体の気泡構造における平均セル径は、特に限定されないが、0.1μm以上であることが好ましく、より好ましくは0.5μm以上であり、さらに好ましくは1μm以上である。また、5000μm以下であることが好ましく、より好ましくは2500μm以下であり、さらに好ましくは1000μm以下である。上記平均セル径が0.1μm以上であると、良好な柔軟性や衝撃吸収性が得やすくなる。本発明の樹脂発泡体の平均セル径が5000μm以下であると、良好なシール性や防塵性が得やすくなる。なお、気泡構造におけるセル径は、例えば、デジタルマイクロスコープにより切断面の気泡構造部の拡大画像を取り込み、気泡の面積を求め、円相当径換算することにより求められる。
 本発明のエポキシ樹脂硬化物発泡体の発泡倍率は、特に限定されないが、良好な柔軟性や衝撃吸収性を得る点より、2倍以上であることが好ましく、より好ましくは5倍以上であり、さらに好ましくは7倍以上である。また、上記発泡倍率は、強度を確保する点より、60倍以下であることが好ましく、より好ましくは50倍以下であり、さらに好ましくは40倍以下である。なお、発泡倍率は、(発泡前の密度)/(発泡後の密度)で求められる。
 本発明のエポキシ樹脂硬化物発泡体の見掛け密度は、特に限定されないが、良好な柔軟性や衝撃吸収性を得る点より、0.020g/cm以上であることが好ましく、より好ましくは0.050g/cm以上であり、さらに好ましくは0.080g/cm以上である。また、上記見掛け密度は、強度を確保する点より、0.8g/cm以下であることが好ましく、より好ましくは0.5g/cm以下であり、さらに好ましくは0.3g/cm以下である。
 本発明のエポキシ樹脂硬化物発泡体の、メチルエチルケトンに対する溶剤不溶分(ゲル分率)は、特に限定されないが、機械的強度、寸法安定性、耐水性、耐薬品性、可撓性及び耐摩耗性の点より、60重量%以上であることが好ましく、より好ましくは65重量%以上であり、さらに好ましくは70重量%以上である。なお、上記メチルエチルケトンに対する溶剤不溶分は、通常、100重量%以下であってもよい。
 上記メチルエチルケトンに対する溶剤不溶分(ゲル分率)は、以下のようにして、求められる。エポキシ樹脂硬化物発泡体から約0.2gのサンプルを得て、このサンプルを精秤し、精秤により得られた重さを「保存前重量(g)」とする。次に、このサンプルを、50gのメチルエチルケトン(MEK)に投入し、室温条件で、5日間保存する。その後、サンプルをメチルエチルケトンから取り出し、取り出したサンプルを130℃で1時間乾燥させる。乾燥後、室温条件で30分間放置してから、サンプルを精秤する。この精秤により得られた重さを「保存後重量(g)」とする。そして、下記式(1)より、メチルエチルケトンに対する溶剤不溶分を算出する。
 メチルエチルケトンに対する溶剤不溶分(%)=(保存後重量)/(保存前重量)×100   (1)
 本発明のエポキシ樹脂硬化物発泡体の形状は、特に限定されないが、シート状やテープ状であることが好ましい。また、使用目的に応じ、適当な形状に加工されていてもよい。例えば、切断加工、打ち抜き加工等により、線状、円形や多角形状、額縁形状(枠形状)等に加工されていてもよい。さらには、所望の厚みを得る点より、スライス加工などが施されていてもよい。
 本発明のエポキシ樹脂硬化物発泡体の厚みは、特に限定されないが、50μm以上であることが好ましく、より好ましくは60μm以上である。また、上記厚みは、70000μm以下であることが好ましく、より好ましくは50000μm以下である。
 本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂硬化物を含み、高発泡倍率の気泡構造を有するので、耐熱性、断熱性、衝撃吸収性、シール性、止水性、防塵材、吸音性等に優れる。また、外観も優れる。このため、本発明のエポキシ樹脂硬化物発泡体は、各種部材又は部品を、所定の部位に取り付ける(装着する)際に用いられる部材(例えば、防塵材、シール材、衝撃吸収材、防音材、緩衝材、断熱材等)として好適に用いられる。特に、本発明のエポキシ樹脂硬化物発泡体は、電気又は電子機器において、電気又は電子機器を構成する部品を所定の部位に取り付ける(装着する)際に用いられる部材(例えば、防塵材、シール材、衝撃吸収材、防音材、緩衝材、断熱材等)として好適に用いられる。
(エポキシ樹脂硬化物発泡体部材)
 また、本発明のエポキシ樹脂硬化物発泡体は、部材の全部又は一部を構成していてもよい。つまり、本発明のエポキシ樹脂硬化物発泡体は、エポキシ樹脂硬化物発泡体を含む発泡部材の一部又は全部を構成していてもよい。本明細書では、「本発明のエポキシ樹脂硬化物発泡体を含む発泡部材」を「エポキシ樹脂硬化物発泡体部材」と称する場合がある。
 上記エポキシ樹脂硬化物発泡体部材は、本発明のエポキシ樹脂硬化物発泡体を少なくとも含む部材である。上記エポキシ樹脂硬化物発泡体部材の形状は、特に限定されないが、シート状、フィルム状、テープ状が好ましい。また、上記エポキシ樹脂硬化物発泡体部材は、例えば、本発明のエポキシ樹脂硬化物発泡体のみからなる構成であってもよいし、本発明のエポキシ樹脂硬化物発泡体に他の層(特に粘着層(粘着剤層)、基材層など)が積層されている構成であってもよい。
 特に、上記エポキシ樹脂硬化物発泡体部材は、粘着層を有することが好ましい。上記エポキシ樹脂硬化物発泡体部材が粘着層を有していると、例えば、粘着層を介して加工用台紙を設けることができ、また、被着体へ固定ないし仮止めすることができる。
 上記粘着層を構成する粘着剤としては、特に限定されないが、例えば、アクリル系粘着剤、ゴム系粘着剤(天然ゴム系粘着剤、合成ゴム系粘着剤など)、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、ポリアミド系粘着剤、エポキシ系粘着剤、ビニルアルキルエーテル系粘着剤、フッ素系粘着剤などなどが挙げられる。上記粘着剤は、単独で又は2種以上組み合わせて用いることができる。なお、上記粘着剤は、エマルジョン系粘着剤、溶剤系粘着剤、ホットメルト型粘着剤、オリゴマー系粘着剤、固系粘着剤などのいずれの形態の粘着剤であってもよい。中でも、粘着剤としては、被着体への汚染防止などの観点から、アクリル系粘着剤が好適である。
 上記粘着層の厚みは、2~100μmが好ましく、より好ましくは10~100μmである。粘着層は、薄層であるほど、端部のゴミや埃の付着を防止する効果が高いため、厚みは薄い方が好ましい。なお、粘着層は、単層、積層体のいずれの形態を有していてもよい。
 上記エポキシ樹脂硬化物発泡体部材において、上記粘着層は、他の層(下層)を介して、設けられていてもよい。このような下層としては、例えば、他の粘着層、中間層、下塗り層、基材層(特にフィルム層や不織布層など)などが挙げられる。さらに、上記粘着層は、剥離フィルム(セパレーター)(例えば、剥離紙、剥離フィルムなど)により保護されていてもよい。
 上記エポキシ樹脂硬化物発泡体部材は、所望の形状や厚みなどを有するように加工が施されていてもよい。例えば、用いられる装置や機器、筐体、部品等に合わせて種々の形状に加工が施されていてもよい。
 上記エポキシ樹脂硬化物発泡体部材は、上記エポキシ樹脂硬化物発泡体を含むので、耐熱性、断熱性、衝撃吸収性、シール性、止水性、防塵材、吸音性等に優れる。また、外観も優れる。上記エポキシ樹脂硬化物発泡体部材は、各種部材又は部品を、所定の部位に取り付ける(装着する)際に用いられる部材(例えば、防塵材、シール材、衝撃吸収材、防音材、緩衝材、断熱材等)として好適に用いられる。特に、上記エポキシ樹脂硬化物発泡体部材は、電気又は電子機器において、電気又は電子機器を構成する部品を所定の部位に取り付ける(装着する)際に用いられる部材(例えば、防塵材、シール材、衝撃吸収材、防音材、緩衝材、断熱材等)として好適に用いられる。
 以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。
(実施例1)
 エポキシ樹脂(商品名「jER」グレード1256、三菱化学株式会社製、高分子量タイプ、ビスフェノールA型エポキシ樹脂、エポキシ当量:7,500~8,500、重量平均分子量:50,000):100重量部、硬化剤としての1−ベンジル−2−メチルイミダゾール:1重量部を、メチルエチルケトン(MEK)に加えて、有効成分が40重量%である溶液を得た。
 この溶液を、ダイ塗布方式(ダイ方式)で、工程セパレーター(PETセパレーター)上に塗工し、塗工層を得た。次に、この塗工層を60℃の温度下で30分間乾燥させて、厚みが20μmのフィルムを得た。
 次に、上記フィルムを、室温条件で高圧チャンバーに投入し、チャンバー内を密閉した。密閉後、チャンバー内に炭酸ガスを注入し、チャンバー内を15MPaに昇圧した。その後、チャンバー内の温度を150℃まで昇温させた。チャンバー内の温度を150℃とし、チャンバー内の圧力を15MPaとしてから、その状態を30分間維持し、上記フィルムに十分な量の二酸化炭素を含浸させた。
 その後、チャンバー内の圧力を常圧まで急減圧させて、上記フィルムを発泡させて、エポキシ樹脂発泡体を得た。
 そして、このエポキシ樹脂発泡体に対して、圧力:1atm(大気圧)、温度:150℃、時間:30分の条件で熱処理を行い、硬化させて、エポキシ樹脂硬化物発泡体を得た。
(実施例2)
 硬化剤として、1−ベンジル−2−メチルイミダゾール:1重量部の代わりに、1−イソブチル−2−メチルイミダゾール:1重量部を用いたこと以外は、実施例1と同様にして、エポキシ樹脂硬化物発泡体を得た。
(実施例3)
 硬化剤として、1−ベンジル−2−メチルイミダゾール:1重量部の代わりに、2−エチル−4−メチルイミダゾール:1重量部を用いたこと以外は、実施例1と同様にして、エポキシ樹脂硬化物発泡体を得た。
(実施例4)
 1−ベンジル−2−メチルイミダゾールの量を3重量部としたこと以外は、実施例1と同様にして、エポキシ樹脂硬化物発泡体を得た。
(実施例5)
 1−イソブチル−2−メチルイミダゾールの量を3重量部としたこと以外は、実施例2と同様にして、エポキシ樹脂硬化物発泡体を得た。
(実施例6)
 2−エチル−4−メチルイミダゾールの量を3重量部としたこと以外は、実施例3と同様にして、エポキシ樹脂硬化物発泡体を得た。
(比較例1)
 硬化剤として、1−ベンジル−2−メチルイミダゾール:1重量部の代わりに、トリスジメチルアミノメチルフェノール:1重量部を用いたこと以外は、実施例1と同様にして、樹脂組成物を得た。
 このフィルム状の樹脂組成物に対して、実施例1と同様にして、十分な量の二酸化炭素を含浸させた。その後、常圧まで急減圧させたが、得られたサンプルでは、発泡が生じておらず、エポキシ樹脂発泡体を得ることができなかった。
 この得られたシートに対して、圧力:1atm(大気圧)、温度:150℃、時間:30分の条件で熱処理を行った。そして、比較例1のサンプルを得た。
 なお、トリスジメチルアミノメチルフェノールは、下記の化学式(5)で示される。
Figure JPOXMLDOC01-appb-C000005
(比較例2)
 硬化剤として、1−ベンジル−2−メチルイミダゾール:1重量部の代わりに、トリスジメチルアミノメチルフェノール:3重量部を用いたこと以外は、実施例1と同様にして、樹脂組成物を得た。
 このフィルム状の樹脂組成物に対して、実施例1と同様にして、十分な量の二酸化炭素を含浸させた。その後、常圧まで急減圧させたが、得られたサンプルでは、発泡が生じておらず、エポキシ樹脂発泡体を得ることができなかった。
 この得られたシートに対して、圧力:1atm(大気圧)、温度:150℃、時間:30分の条件で熱処理を行った。そして、比較例2のサンプルを得た。
(比較例3)
 硬化剤として、1−ベンジル−2−メチルイミダゾール:1重量部の代わりに、商品名「エポキシ樹脂硬化剤 jERキュア グレードW」(変性芳香族アミン、1級アミン):0.625重量部を用いたこと以外は、実施例1と同様にして、フィルム状の樹脂組成物を得た。
 このフィルム状の樹脂組成物に対して、実施例1と同様にして、十分な量の二酸化炭素を含浸させた。その後、常圧まで急減圧させて、エポキシ樹脂発泡体を得た。
 次に、このエポキシ樹脂発泡体に対して、圧力:1atm(大気圧)、温度:150℃、時間:30分の条件で熱処理を行った。そして、比較例3のシートを得た。
(比較例4)
 硬化剤として、1−ベンジル−2−メチルイミダゾール:1重量部の代わりに、商品名「エポキシ樹脂硬化剤 jERキュア グレードYH306」(酸無水物型):3重量部を用いたこと以外は、実施例1と同様にして、フィルム状の樹脂組成物を得た。
 このフィルム状の樹脂組成物に対して、実施例1と同様にして、十分な量の二酸化炭素を含浸させた。その後、常圧まで急減圧させたが、得られたサンプルでは、発泡が生じておらず、エポキシ樹脂発泡体を得ることができなかった。
 次に、このサンプルに対して、圧力:1atm(大気圧)、温度:150℃、時間:30分の条件で熱処理を行った。そして、比較例4のサンプルを得た。
 なお、上記酸無水物型のエポキシ樹脂硬化剤は、下記の化学式(6)で示される。
Figure JPOXMLDOC01-appb-C000006
(評価)
 実施例及び比較例について、下記の測定方法により、発泡倍率、見掛け密度、平均セル径、メチルエチルケトンに対する溶剤不溶分を測定した。また、下記の評価方法により、発泡性の有無、及び、硬化の有無を評価した。
(密度(見掛け密度))
 幅100mm、長さ100mmの打抜き刃型にてシート状のサンプルを打抜き、測定用試料を得た。そして、測定用試料の寸法を測定した。また、測定端子の直径(φ)20mmである1/100ダイヤルゲージに測定用試料の厚みを測定した。これらの値から測定用試料の体積を算出した。
 次に、測定用試料の重量を最小目盛り0.01g以上の上皿天秤にて測定した。これらの値よりサンプルの密度(g/cm)を算出した。
(発泡倍率)
 上記の密度の測定法を用いて、ペレット状の樹脂組成物の密度、及び、エポキシ樹脂硬化物発泡体の密度を測定した。次に、下記式より、発泡倍率を求めた。
 発泡倍率(倍)=(ペレット状の樹脂組成物の密度)/(エポキシ樹脂硬化物発泡体の密度)
(平均セル径)
 デジタルマイクロスコープ(商品名「VHX−500」キーエンス株式会社製)により、発泡体気泡部の拡大画像を取り込み、画像解析ソフト(商品名「Win ROOF」三谷商事株式会社製)を用いて、画像解析することにより、円相当径換算を行って、平均セル径(μm)を求めた。なお、取り込んだ拡大画像の気泡数は100個程度である。
(メチルエチルケトンに対する溶剤不溶分(ゲル分率))
 上記メチルエチルケトンに対する溶剤不溶分(ゲル分率)は、以下のようにして求めた。測定するサンプルから約0.2gの測定用試料を得て、この得られた測定用試料を、幅11cm、長さ11cmの多孔質シート(商品名「テミッシュ」、日東電工株式会社製、PTFE(ポリテトラフルオロエチレン)の多孔質膜)で包み、たこ糸で結紮した。つまり、包みの口をたこ糸で結んだ。そして、この多孔質シートで包んだ測定用試料を秤量し、測定された重さを「保存前重量(g)」とした。
 次に、この多孔質シートで包んだ測定用試料を50mlの瓶に投入し、この瓶に50gのメチルエチルケトン(MEK)を投入した。そして、室温条件で、5日間保存した。その後、多孔質シートで包んだ測定用試料を、メチルエチルケトンから取り出し、130℃で1時間乾燥させた。乾燥後、室温条件で30分間放置してから、多孔質シートで包んだ測定用試料を秤量した。そして、測定された重さを「保存後重量(g)」とした。
 そして、下記式より、メチルエチルケトンに対する溶剤不溶分を算出した。
 メチルエチルケトンに対する溶剤不溶分(%)=(保存後重量)/(保存前重量)×100
(発泡性の評価)
 外観を観察し、発泡の有無(気泡構造の有無)を確認することにより、発泡性を評価した。なお、外観の観察で評価できない場合には、サンプルを切断し、その切断面に気泡構造があるかどうかを確認することにより、発泡の有無を確認した。
 発泡が生じている場合を「良好」と評価し、発泡が生じていない場合を「不良」と評価した。
(硬化の有無の評価)
 熱処理前のサンプルにおけるメチルエチルケトンに対する溶剤不溶分の値と、熱処理後のサンプルにおけるメチルエチルケトンに対する溶剤不溶分の値とを比較して、熱処理後のサンプルにおけるメチルエチルケトンに対する溶剤不溶分の値が大きい場合、硬化が生じていると判断でき、「硬化あり」と評価した。一方、比較して、値が変わらない場合や、熱処理後のサンプルにおけるメチルエチルケトンに対する溶剤不溶分の値が小さい場合を「硬化なし」と評価した。
(総合評価)
 上記発泡性の評価において「良好」と評価でき、上記硬化の有無の評価において「硬化あり」と評価できた場合、エポキシ樹脂硬化物発泡体が得られていると評価でき、総合評価を「良好」とした。一方、それ以外の場合(例えば、上記発泡性の評価が「不良」である場合、上記硬化の有無の評価が「硬化なし」の場合、上記発泡性の評価が「良好」であるものの、上記硬化の有無の評価が「硬化なし」の場合、上記硬化の有無の評価が「硬化あり」であるものの、上記発泡性の評価が「不良」である場合など)を「不良」とした。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明のエポキシ樹脂硬化物発泡体によれば、硬化剤がイミダゾール基含有硬化剤であることにより、高発泡倍率の気泡構造を有するエポキシ樹脂硬化物発泡体を提供でき、また、高発泡倍率の気泡構造を有するエポキシ樹脂硬化物発泡体を効率よく生産できるので、耐熱性、断熱性、衝撃吸収性、シール性、止水性、防塵材、吸音性等に優れ、さらに、外観も優れているエポキシ樹脂硬化物発泡体またはエポキシ樹脂硬化物発泡体部材を構成することができる。従って、このようなエポキシ樹脂硬化物発泡体またはエポキシ樹脂硬化物発泡体部材は、各種部材又は部品を、所定の部位に取り付ける(装着する)際に用いられる部材(例えば、防塵材、シール材、衝撃吸収材、防音材、緩衝材、断熱材等)としての用途に適用でき、特に、電気又は電子機器において、電気又は電子機器を構成する部品を所定の部位に取り付ける(装着する)際に用いられる部材(例えば、防塵材、シール材、衝撃吸収材、防音材、緩衝材、断熱材等)としての用途に適用できる。

Claims (8)

  1.  エポキシ樹脂を50重量%以上含む硬化性樹脂、及び、イミダゾール基含有硬化剤を含む樹脂組成物を発泡・硬化させて得られるエポキシ樹脂硬化物発泡体。
  2.  発泡倍率が、2倍以上である請求項1記載のエポキシ樹脂硬化物発泡体。
  3.  メチルエチルケトンに対する溶剤不溶分が、60重量%以上である請求項1又は2記載のエポキシ樹脂硬化物発泡体。
  4.  見掛け密度が、0.020~0.8g/cmである請求項1~3の何れか1項に記載のエポキシ樹脂硬化物発泡体。
  5.  前記樹脂組成物を不活性ガスで発泡させる請求項1~4の何れか1項に記載のエポキシ樹脂硬化物発泡体。
  6.  前記不活性ガスが、二酸化炭素である請求項5記載のエポキシ樹脂硬化物発泡体。
  7.  前記不活性ガスが、超臨界状態である請求項5又は6記載のエポキシ樹脂硬化物発泡体。
  8.  エポキシ樹脂を50重量%以上含む硬化性樹脂、及び、イミダゾール基含有硬化剤を含む樹脂組成物を発泡・硬化させることを特徴とするエポキシ樹脂硬化物発泡体の製造方法。
PCT/JP2015/059529 2014-03-27 2015-03-20 エポキシ樹脂硬化物発泡体、及び、その製造方法 WO2015147235A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-066881 2014-03-27
JP2014066881A JP2015189826A (ja) 2014-03-27 2014-03-27 エポキシ樹脂硬化物発泡体、及び、その製造方法

Publications (1)

Publication Number Publication Date
WO2015147235A1 true WO2015147235A1 (ja) 2015-10-01

Family

ID=54195739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059529 WO2015147235A1 (ja) 2014-03-27 2015-03-20 エポキシ樹脂硬化物発泡体、及び、その製造方法

Country Status (2)

Country Link
JP (1) JP2015189826A (ja)
WO (1) WO2015147235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018094763A1 (zh) * 2016-11-22 2018-05-31 常州天晟新材料股份有限公司 一种酚酞基聚芳醚酮结构泡沫材料的制备方法
CN113372604A (zh) * 2021-07-29 2021-09-10 西北工业大学 一种超声辅助制备热固性环氧树脂微孔泡沫的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430593B1 (ja) * 2017-06-23 2018-11-28 サンユレック株式会社 シート材、発泡体の製造方法、成形材料、及びシート材の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103633A (ja) * 1987-10-15 1989-04-20 Mitsui Petrochem Ind Ltd エポキシ発泡体の製造方法
JP2002523588A (ja) * 1998-08-27 2002-07-30 ヘンケル コーポレーション 構造フォーム材生産のために有用な保管安定性を有する組成物
JP2005097508A (ja) * 2003-12-10 2005-04-14 Toyoshiro Sato エポキシ樹脂発泡体の製造方法
JP2005139218A (ja) * 2003-11-04 2005-06-02 Nitto Denko Corp 鋼板補強用樹脂組成物、鋼板補強シートおよび鋼板の補強方法
JP2010533757A (ja) * 2007-07-16 2010-10-28 シーカ・テクノロジー・アーゲー 熱により硬化可能な発泡体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103633A (ja) * 1987-10-15 1989-04-20 Mitsui Petrochem Ind Ltd エポキシ発泡体の製造方法
JP2002523588A (ja) * 1998-08-27 2002-07-30 ヘンケル コーポレーション 構造フォーム材生産のために有用な保管安定性を有する組成物
JP2005139218A (ja) * 2003-11-04 2005-06-02 Nitto Denko Corp 鋼板補強用樹脂組成物、鋼板補強シートおよび鋼板の補強方法
JP2005097508A (ja) * 2003-12-10 2005-04-14 Toyoshiro Sato エポキシ樹脂発泡体の製造方法
JP2010533757A (ja) * 2007-07-16 2010-10-28 シーカ・テクノロジー・アーゲー 熱により硬化可能な発泡体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018094763A1 (zh) * 2016-11-22 2018-05-31 常州天晟新材料股份有限公司 一种酚酞基聚芳醚酮结构泡沫材料的制备方法
US11001689B2 (en) 2016-11-22 2021-05-11 Jiangsu Sinc-Tech Polymerization New Materials Industry Technology Research Institute Method of preparation of cardo polyetherketone (PEK-C) structural foam material
CN113372604A (zh) * 2021-07-29 2021-09-10 西北工业大学 一种超声辅助制备热固性环氧树脂微孔泡沫的方法

Also Published As

Publication number Publication date
JP2015189826A (ja) 2015-11-02

Similar Documents

Publication Publication Date Title
TWI613238B (zh) 樹脂發泡體、及發泡密封材
KR102121184B1 (ko) 수지 발포체 시트 및 수지 발포 복합체
WO2012111443A1 (ja) 樹脂発泡体及びその製造方法
JP6082239B2 (ja) 樹脂発泡体シート、樹脂発泡体シート製造方法、及び樹脂発泡複合体
TW201313797A (zh) 聚酯系彈性體發泡體
JP6302289B2 (ja) 多孔質シートおよびその製造方法
TW200916518A (en) Thermoplastic resin foam and process for producing the same
JP5594938B2 (ja) 微細セル構造を有する発泡防水材
KR20050021912A (ko) 폴리올레핀 수지 발포체용 조성물, 폴리올레핀 수지발포체, 및 이의 제조방법
WO2015147235A1 (ja) エポキシ樹脂硬化物発泡体、及び、その製造方法
EP3753730A1 (en) Polyolefin resin foam sheet and adhesive tape
JP2011178989A (ja) 熱可塑性樹脂発泡体、およびその製造方法
KR101223219B1 (ko) 폴리락틱엑시드를 이용한 신발 중창용 생분해성 발포체 조성물 및 이의 제조방법
JP5731835B2 (ja) 電気又は電子機器用の発泡積層体
WO2012133288A1 (ja) ポリオレフィン系樹脂発泡体及びそれを用いたポリオレフィン系樹脂発泡防塵材
JP2012214624A (ja) 発泡体、該発泡体を用いたシール材、及び該発泡体の製造方法
JP2011097578A (ja) 2次元通信用低誘電シートおよびその製造方法、通信用シート構造体
JP2013072038A (ja) 熱可塑性樹脂発泡体の製造方法
JP4459494B2 (ja) 難燃性樹脂発泡体
JP2013053178A (ja) 架橋ポリオレフィン樹脂発泡シート、粘着テープ及びシール材
JP5427972B2 (ja) 樹脂発泡体
JP5654203B2 (ja) 架橋型樹脂発泡体、及びその製造方法
JP4858420B2 (ja) 内装材、発泡体の製造方法及び車両用内装成型品
JP2015201895A (ja) 2次元通信用低誘電シートおよびその製造方法、通信用シート構造体
JP2023134928A (ja) 樹脂組成物、発泡シート、製造物、及び発泡シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768047

Country of ref document: EP

Kind code of ref document: A1